Sample records for x-ray emitting plasma

  1. The effects of the cathode array on emitted hard x-ray from a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.

    2017-08-01

    In this study, the effects of the cathode array variations on emitted hard x-rays from a small Mather type plasma focus device (450 J) were investigated. The gradual elimination of the cathode rods inside the cathode array of the device lowered the quality and quantity of the emitted hard x-rays at different pressure values of argon gas. We theorized that the variations of the cathode array were able to change some discharge parameters that could vary the number of the energetic runaway electrons generated during the pinch phase which were responsible for the created features of the emitted hard x-rays. On the other hand, we hypothesized that the removal of the cathode rods could influence the current sheath dynamics during all the phases of a shot including its average axial velocity which was demonstrated by using two axial magnetic probes. We also theorized that cathode rod omission from the cathode array could also increase the initial inductance and the impedance of the system, and the impurities inside the plasma during the pinch phase which could lead to the growth of the instabilities. Moreover, by using the wavelet technique and studying the Mirnov signals, it was shown that the decrease of the cathode rod number increased the plasma magnetic field fluctuations or instabilities (MHD activities) that adversely affected the pinch quality, and reduced the emitted hard x-rays.

  2. Positron production by x rays emitted by betatron motion in a plasma wiggler.

    PubMed

    Johnson, D K; Auerbach, D; Blumenfeld, I; Barnes, C D; Clayton, C E; Decker, F J; Deng, S; Emma, P; Hogan, M J; Huang, C; Ischebeck, R; Iverson, R; Joshi, C; Katsouleas, T C; Kirby, N; Krejcik, P; Lu, W; Marsh, K A; Mori, W B; Muggli, P; O'Connell, C L; Oz, E; Siemann, R H; Walz, D; Zhou, M

    2006-10-27

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  3. Measurement of the effective energy of pulsed X-rays emitted from a Mather-type plasma focus device.

    PubMed

    Miremad, Seyed Milad; Shirani Bidabadi, Babak

    2017-07-01

    The current study examined the effective energy of pulsed x-rays emitted from a Mather-type plasma focus device with copper anodes at an energy range of 2-3kJ using x-ray transmission radiography. Aluminum filters of different thicknesses and dental x-ray film were used. When air gas was used at a constant voltage of 21kV at 0.3, 0.6, 0.9 and 1.2 mbar, the effective energy of pulsed the x-ray was 10.9, 10.7, 17.3 and 15.8keV, respectively. At 0.6 mbar of air, as the operating voltage increased to 19, 21 and 23kV, the effective energy of the x-ray radiation was 10.6, 10.7 and 12.4keV, respectively. Comprehensive investigation of the characteristics of x-ray emission from plasma focus devices makes it feasible to use this device as an intensive x-ray generator for medical and industrial purposes. The present study is a part of a program which is planned to realize these applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1976-01-01

    The physical processes occurring in plasma focus devices were studied. These devices produce dense high temperature plasmas, which emit X rays of hundreds of KeV energy and one to ten billion neutrons per pulse. The processes in the devices seem related to solar flare phenomena, and would also be of interest for controlled thermonuclear fusion applications. The high intensity, short duration bursts of X rays and neutrons could also possibly be used for pumping nuclear lasers.

  5. The thermal X-ray flare plasma. [on sun

    NASA Technical Reports Server (NTRS)

    Moore, R.; Mckenzie, D. L.; Svestka, Z.; Widing, K. G.; Dere, K. P.; Antiochos, S. K.; Dodson-Prince, H. W.; Hiei, E.; Krall, K. R.; Krieger, A. S.

    1980-01-01

    Following a review of current observational and theoretical knowledge of the approximately 10 to the 7th K plasma emitting the thermal soft X-ray bursts accompanying every H alpha solar flare, the fundamental physical problem of the plasma, namely the formation and evolution of the observed X-ray arches, is examined. Extensive Skylab observations of the thermal X-ray plasmas in two large flares, a large subflare and several compact subflares are analyzed to determine plasma physical properties, deduce the dominant physical processes governing the plasma and compare large and small flare characteristics. Results indicate the density of the thermal X-ray plasma to be higher than previously thought (from 10 to the 10th to 10 to the 12th/cu cm for large to small flares), cooling to occur radiatively as much as conductively, heating to continue into the decay phase of large flares, and the mass of the thermal X-ray plasma to be supplied primarily through chromospheric evaporation. Implications of the results for the basic flare mechanism are indicated.

  6. Semiconductor and thermoluminescent dosimetry of pulsed soft X ray plasma sources.

    PubMed

    Krása, J; Cejnarová, A; Juha, L; Ryć, L; Scholz, M; Kubes, P

    2002-01-01

    A multichannel detection system having a dynamic range of approximately 1 x 10(-9) Gy --20 Gy was developed with the use of commercially produced Si-photodiodes and TLDs for accurate measurement of X ray energy emitted from plasma-focus facility and from laser-produced plasmas. The proof of linearity of the employed detectors accomplished by a comparison of their responses to a broad band spectrum of X rays emitted from plasmas, is reported. It is demonstrated that TLDs irradiated with no protective filter show an incorrect response due to overloading in the sub-keV range and repopulation of dosimetric peaks induced by the UV radiation. The measurement of the power of undesirable secondary X ray sources driven by the primary plasma inside the interaction chamber was performed on the basis of analysis of space dependence of X ray intensity with respect to the assumed r(-2) decrease in the intensity far away from the plasma.

  7. Formation of X-ray emitting stationary shocks in magnetized protostellar jets

    NASA Astrophysics Data System (ADS)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2016-12-01

    Context. X-ray observations of protostellar jets show evidence of strong shocks heating the plasma up to temperatures of a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. Aims: We investigate the physics that guides the formation of X-ray emitting stationary shocks in protostellar jets; the role of the magnetic field in determining the location, stability, and detectability in X-rays of these shocks; and the physical properties of the shocked plasma. Methods: We performed a set of 2.5-dimensional magnetohydrodynamic numerical simulations that modelled supersonic jets ramming into a magnetized medium and explored different configurations of the magnetic field. The model takes into account the most relevant physical effects, namely thermal conduction and radiative losses. We compared the model results with observations, via the emission measure and the X-ray luminosity synthesized from the simulations. Results: Our model explains the formation of X-ray emitting stationary shocks in a natural way. The magnetic field collimates the plasma at the base of the jet and forms a magnetic nozzle there. After an initial transient, the nozzle leads to the formation of a shock diamond at its exit which is stationary over the time covered by the simulations ( 40-60 yr; comparable with timescales of the observations). The shock generates a point-like X-ray source located close to the base of the jet with luminosity comparable with that inferred from X-ray observations of protostellar jets. For the range of parameters explored, the evolution of the post-shock plasma is dominated by the radiative cooling, whereas the thermal conduction slightly affects the structure of the shock. A movie is available at http://www.aanda.org

  8. Relativistic plasma control for single attosecond x-ray burst generation

    NASA Astrophysics Data System (ADS)

    Baeva, T.; Gordienko, S.; Pukhov, A.

    2006-12-01

    We show that managing time-dependent polarization of the relativistically intense laser pulse incident on a plasma surface allows us to gate a single (sub)attosecond x-ray burst even when a multicycle driver is used. The single x-ray burst is emitted when the tangential component of the vector potential at the plasma surface vanishes. This relativistic plasma control is based on the theory of relativistic spikes [T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006)]. The relativistic plasma control is demonstrated here numerically by particle-in-cell simulations.

  9. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  10. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    NASA Astrophysics Data System (ADS)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  11. X-ray emission from a plasma mirror of a neodymium glass laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalal, M.; Pina, L.; Vrbova, M.

    1984-11-01

    An investigation was made of the optical and x-ray characteristics of the radiation emitted by a plasma mirror in a neodymium glass laser. The optical reflection coefficient of the mirror was found to be nonlinear and the plasma temperature was about 300 eV.

  12. X-ray emitting T Tauri stars in the L1551 cloud

    NASA Technical Reports Server (NTRS)

    Koyama, Katsuji; Reid, I. Neill; Carkner, Lee; Feigelson, Eric D.; Montmerle, Thierry

    1995-01-01

    Low mass pre-main sequence stars in the nearby Lynds 1551 star forming cloud are studied with the ROSAT and ASCA X-ray satellites. An 8 ksec ROSAT image reveals 38 sources including 7 well-known T Tauri stars, 2 likely new weak-lined T Tauri stars, 5 potential new weak-lined T Tauri stars, one is a young B9 star, and the remaining sources are unrelated to the cloud or poorly identified. A 40 ksec ASCA image of the cloud detects seven of the ROSAT sources. Spectral fitting of the brighter X-ray emitting stars suggests the emission is produced in either a multi-temperature plasma, with temperatures near 0.2 and 1 keV, or a single-temperature plasma with low metal abundances. XZ Tau, a young classical T Tauri star, is much stronger in ASCA than ROSAT observations showing a harder (1.5-2.0 kev) component. Timing analysis reveals all but one of the T Tauri stars are variable on timescales ranging from one hour to a year. A powerful flare, emitting 3 x 10(exp 34) ergs within a 40 minute rise and fall, was observed by ASCA on the weak-lined T Tauri star V826 Tau. The event was preceded and followed by constant quiescent X-ray emission. The extreme classical T Tauri star XZ Tau was also caught during both high and low states, varying by a factor of 15 between the ASCA and ROSAT observations. Neither of the luminous infrared embedded protostars L1551-IRS 5 or L1551NE were detected by ROSAT or ASCA.

  13. The effects of pre-ionization on the impurity and x-ray level in a dense plasma focus device

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; Salar Elahi, A.; Ghoranneviss, M.

    2017-02-01

    In this study, the effects of pre-ionization on the reduction of the impurities and non-uniformities, the increased stability of the pinch plasma, the enhancement of the total hard x-ray yield, the plasmoid x-ray yield, and the current sheath dynamics of the argon gas at different pressures in a Mather type plasma focus device were investigated. For this purpose, different shunt resistors together with two x-ray detectors were used, and the data gathered from the x-ray signals showed that the optimum shunt resistor could cause the maximum total hard and plasmoid hard x-ray emissions. Moreover, in order to calculate the average speed of the current sheath, two axial magnetic probes were used. It was revealed that the pre-ionization could increase the whole range of the emitted x-rays and produce a more uniform current sheath layer, which moved faster, and this technique could lead to the reduction of the impurities, creating a more stabilized pinched plasma, which was capable of emitting more x-rays than the usual case without using pre-ionization.

  14. X-ray Synchrotron Radiation in a Plasma Wiggler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is importantmore » for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.« less

  15. X-ray Spectropolarimetry of Z-pinch Plasmas with a Single-Crystal Technique

    NASA Astrophysics Data System (ADS)

    Wallace, Matt; Haque, Showera; Neill, Paul; Pereira, Nino; Presura, Radu

    2017-10-01

    When directed beams of energetic electrons exist in a plasma the resulting x-rays emitted by the plasma can be partially polarized. This makes plasma x-ray polarization spectroscopy, spectropolarimetry, useful for revealing information about the anisotropy of the electron velocity distribution. X-ray spectropolarimetry has indeed been used for this in both space and laboratory plasmas. X-ray polarization measurements are typically performed employing two crystals, both at a 45° Bragg angle. A single-crystal spectropolarimeter can replace two crystal schemes by utilizing two matching sets of internal planes for polarization-splitting. The polarization-splitting planes diffract the incident x-rays into two directions that are perpendicular to each other and the incident beam as well, so the two sets of diffracted x-rays are linearly polarized perpendicularly to each other. An X-cut quartz crystal with surface along the [11-20] planes and a paired set of [10-10] planes in polarization-splitting orientation is now being used on aluminum z-pinches at the University of Nevada, Reno. Past x-ray polarization measurements have been reserved for point-like sources. Recently a slotted collimating aperture has been used to maintain the required geometry for polarization-splitting enabling the spectropolarimetry of extended sources. The design of a single-crystal x-ray spectropolarimeter and experimental results will be presented. Work was supported by U.S. DOE, NNSA Grant DE-NA0001834 and cooperative agreement DE-FC52-06NA27616.

  16. Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.

    1998-01-01

    We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes

  17. Effect of insulator sleeve material on the x-ray emission from a plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, S.; Badar, M. A.; Shafiq, M.

    The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60%H{sub 2} at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves suchmore » as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K{alpha} line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.« less

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  19. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1977-01-01

    The physical processes occurring in plasma focus devices were investigated with particular emphasis on X-ray emission. Topics discussed include: trajectories of high energy electrons; detection of ion trajectories; spatial distribution of neutron emission; space and time resolved emission of hard X-rays from a plasma focus; the staged plasma focus as a variation of the hypocloidal pinch; formation of current sheets in a staged plasma focus; and X-ray and neutron emission from a staged plasma focus. The possibility of operating dense plasma-focus type devices in multiple arrays beyond the scaling law for a single gun is discussed.

  20. Recombining plasma in the gamma-ray-emitting mixed-morphology supernova remnant 3C 391

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergin, T.; Sezer, A.; Saha, L.

    2014-07-20

    A group of middle-aged mixed-morphology (MM) supernova remnants (SNRs) interacting with molecular clouds (MCs) has been discovered to be strong GeV gamma-ray emitters by the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope (Fermi-LAT). The recent observations of the Suzaku X-ray satellite have revealed that some of these interacting gamma-ray-emitting SNRs, such as IC443, W49B, W44, and G359.1-0.5, have overionized plasmas. 3C 391 (G31.9+0.0) is another Galactic MM SNR interacting with MCs. It was observed in GeV gamma rays by Fermi-LAT as well as in the 0.3-10.0 keV X-ray band by Suzaku. In this work, 3C 391more » was detected in GeV gamma rays with a significance of ∼18σ and we showed that the GeV emission is point-like in nature. The GeV gamma-ray spectrum was shown to be best explained by the decay of neutral pions assuming that the protons follow a broken power-law distribution. We revealed radiative recombination structures of silicon and sulfur from 3C 391 using Suzaku data. In this paper, we discuss the possible origin of this type of radiative plasma and hadronic gamma rays.« less

  1. Effect of inserted metal at anode tip on formation of pulsed X-ray emitting zone of plasma focus device

    NASA Astrophysics Data System (ADS)

    Miremad, Seyed Milad; Shirani Bidabadi, Babak

    2018-04-01

    The effect of the anode's insert material of a plasma focus device on the properties of X-ray emission zone was studied. Inserts were fabricated out of six different materials including aluminum, copper, zinc, tin, tungsten, and lead to cover a wide range of atomic numbers. For each anode's insert material at different gas pressures and different voltages, the shape of X-ray emission zone was recorded by three pinhole cameras, which were installed on sidewall and roof of the chamber of plasma focus device. The results indicated that by changing the gas pressure and the charge voltage of capacitor, the X-ray source of plasma focus emerges with different forms as a concentrated column or conical shape with sharp or cloudy edges. These structures are in the form of a combination of plasma emission and anode-tip emission with different intensities. These observations indicate that the material of the anode-tip especially affects the structure of X-ray emission zone.

  2. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  3. Strong higher-order resonant contributions to x-ray line polarization in hot plasmas

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Amaro, Pedro; Steinbrügge, Rene; Beilmann, Christian; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo López-Urrutia, José R.; Tashenov, Stanislav

    2016-06-01

    We studied angular distributions of x rays emitted in resonant recombination of highly charged iron and krypton ions, resolving dielectronic, trielectronic, and quadruelectronic channels. A tunable electron beam drove these processes, inducing x rays registered by two detectors mounted along and perpendicular to the beam axis. The measured emission asymmetries comprehensively benchmarked full-order atomic calculations. We conclude that accurate polarization diagnostics of hot plasmas can only be obtained under the premise of inclusion of higher-order processes that were neglected in earlier work.

  4. X-Ray generation in strongly nonlinear plasma waves.

    NASA Astrophysics Data System (ADS)

    Kiselev, Sergey; Pukhov, Alexander; Kostyukov, Igor

    2004-11-01

    Using three-dimensional particle-in-cell simulations we show that a strongly nonlinear plasma wave excited by an ultrahigh intensity laser pulse works as a compact high-brightness source of Xray radiation. It has been recently suggested by A. Pukhov and J. Meyer-ter-Vehn, Appl. Phys. B 74, 355 (2002), that in a strongly nonlinear regime the plasma wave transforms to a ``bubble'', which is almost free from background electrons. Inside the bubble, a dense bunch of relativistic electrons is produced. These accelerated electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband X-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of X-ray generation by an external 28.5-GeV electron bunch injected into the bubble. Gamma-quanta with up to GeV energies are observed in the simulation in a good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  5. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    PubMed

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  6. Nitrogen soft and hard X-ray emissions using different shapes of anodes in a 4-kJ plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahtab, M., E-mail: m.mahtab.83@gmail.com; Habibi, M., E-mail: mortezahabibi@aut.ac.ir

    2013-12-15

    The effect of different anode tip geometries on the intensity of soft and hard X-rays emitted from a 4-kJ plasma focus device is investigated using five different anode tips. The shapes of the uppermost region of these anodes (tips) have been cylindrical-flat, cylindrical-hollow, spherical-convex, cone-flat, and cone-hollow. For time-resolved measurement of the emitted X-rays, several BPX-65 pin diodes covered by different filters and a fast plastic scintillator are used. Experimental results have shown that, the highest intensity of the both soft and hard X-ray is recorded in cone-flat, spherical-convex, and cone-hollow tips, respectively. The use of cone-flat anode tip hasmore » augmented the emitted X-ray three times.« less

  7. Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device

    NASA Astrophysics Data System (ADS)

    Farzin, M. Aghamir; Reza, A. Behbahani

    2014-06-01

    The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu—Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu—Kα and Cu—Kβ was around 0.14 ± 0.02 (J/Sr) and 0.04 ± 0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (> 15 keV) was around 0.12 ± 0.02 (J/Sr).

  8. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    NASA Astrophysics Data System (ADS)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  9. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1974-01-01

    X-rays from a 25-hJ plasma focus apparatus were observed with pinhole cameras. The cameras consist of 0.4 mm diameter pinholes in 2 cm thick lead housing enclosing an X-ray intensifying screen at the image plane. Pictures recorded through thin aluminum foils or plastic sheets for X-ray energies sub gamma smaller than 15 keV show distributed X-ray emissions from the focussed plasma and from the anode surface. However, when thick absorbers are used, radial filamentary structure in the X-ray emission from the anode surface is revealed. Occasionally larger structures are observed in addition to the filaments. Possible mechanisms for the filamentary structure are discussed.

  10. The effects of pre-ionization using a shunt resistor on reproducibility of the x-ray emission in a dense plasma focus device

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.

    2017-08-01

    In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.

  11. Picosecond excimer laser-plasma x-ray source for microscopy, biochemistry, and lithography

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. Edmond; Ross, Ian N.; Trenda, P.; Wharton, C. W.; Meldrum, R. A.; Daido, Hiroyuki; Schulz, M. S.; Fluck, P.; Michette, Alan G.; Juna, A. P.; Maldonado, Juan R.; Shields, Harry; Tallents, Gregory J.; Dwivedi, L.; Krishnan, J.; Stevens, D. L.; Jenner, T.; Batani, Dimitri; Goodson, H.

    1994-02-01

    At Rutherford Appleton Laboratory we developed a high repetition rate, picosecond, excimer laser system which generates a high temperature and density plasma source emitting approximately 200 mW (78 mW/sr) x ray average power at h(nu) approximately 1.2 KeV or 0.28 KeV < h(nu) < 0.53 KeV (the `water window'). At 3.37 nm wavelength the spectral brightness of the source is approximately 9 X 1011 photons/s/mm2/mrad2/0.1% bandwidth. The x-ray source serves a large user community for applications such as: scanning and holographic microscopy, the study of the biochemistry of DNA damage and repair, microlithography and spectroscopy.

  12. Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232

    NASA Astrophysics Data System (ADS)

    Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.

    2017-11-01

    Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.

  13. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J.

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago.more » The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.« less

  14. Results from the X-ray polychromator on SMM

    NASA Astrophysics Data System (ADS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  15. Results from the X-ray polychromator on SMM

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    1984-01-01

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  16. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various

  17. Soft x-ray emission from postpulse expanding laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Feldman, U.; Mostovych, A. N.; Seely, J. F.; Colombant, D.; Holland, G.

    2003-12-01

    A diagnostic spectrometer has been developed at the Naval Research Laboratory to measure the time resolved absolute intensity of radiation emitted from targets irradiated by the Nike laser. The spectrometer consists of a dispersive transmission grating of 2500 lines/mm or 5000 lines/mm and a detection system consisting of an absolutely calibrated Si photodiode array and a charge coupled device camera. In this article, this spectrometer was used to study the spatial distribution of soft x-ray radiation from low Z elements (primarily carbon) that lasted tens of nanoseconds after the main laser illumination was over. We recorded soft x-ray emission as a function of the target material and target orientation with respect to the incoming laser beam and the spectrometer line of sight. While a number of spectral features have been identified in the data, the instrument's combined temporal and spatial resolution allowed observation of the plasma expansion from CH targets for up to ˜25 ns after the cessation of the main laser pulse. The inferred plasma expansion velocities are slightly higher than those previously reported.

  18. X-ray GEM Detectors for Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.

    2009-11-01

    The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.

  19. X-ray diagnostics of hohlraum plasma flow

    NASA Astrophysics Data System (ADS)

    Back, C. A.; Glenzer, S. H.; Landen, O. L.; MacGowan, B. J.; Shepard, T. D.

    1997-01-01

    In this study we use spectroscopy and x-ray imaging to investigate the macroscopic plasma flow in mm-sized laser-produced hohlraum plasmas. By using multiple diagnostics to triangulate the emission on a single experiment, we can pinpoint the position of dopants placed inside the hohlraum. X-ray emission from the foil has been used in the past to measure electron temperature. Here we analyze the spatial movement of dopant plasmas for comparison to hydrodynamic calculations.

  20. Characteristics of X-Ray Emission from the PFRC-2 Capacitively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Oliver, Richard; Pearcy, Jacob; Jandovitz, Peter; Swanson, Charles; Matteucci, Jackson; Cohen, Samuel; PFRC Team

    2015-11-01

    It is uncertain what causes keV X-rays emitted from the central-cell region of a cool (bulk Te ~ 4 eV), tenuous (ne ~1010 cm-3), 5 cm diameter, weakly ionized hydrogen plasma column generated in a tandem high-mirror-ratio mirror machine (PFRC-2 device) by a low-power, external, capacitively-coupled RF (27 MHz) antenna. We explored whether the energetic electrons responsible for the X-rays exist only in the central cell (ER) or also in the asymmetric mirror regions at opposite ends of the machine, as well as how the spectra compare if they do exist in both regions. To address this, we have designed, built, calibrated, installed and operated an X-ray detector system to view the PFRC-2 region near the RF antenna in one end cell (MC). We observe somewhat different X-ray spectra emanating from the two regions. The system comprises two Amptek XR-100CR detectors with moveable slits that scan across the plasma column. Further control of radial resolution (to 0.4 cm) is afforded by changing the detector-to-slit distance. Calibrations were performed with an 55Fe source. These data are being used to understand the source of the fast electrons that create the X-rays in the MC and in the ER. This work is supported by the US DOE Contract No. DE-AC02-09CH11466 and the Princeton Environmental Institute.

  1. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  2. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less

  3. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  4. Characterization of X-ray emission from laser generated plasma

    NASA Astrophysics Data System (ADS)

    Cannavò, Antonino; Torrisi, Lorenzo; Ceccio, Giovanni; Cutroneo, Mariapompea; Calcagno, Lucia; Sciuto, Antonella; Mazzillo, Massimo

    2018-01-01

    X-ray emission from laser generated plasma was studied at low (1010 W/cm2) and high (1018 W/cm2) intensity using ns and fs laser, respectively. Plasma characteristics were controlled trough the laser parameters, the irradiation conditions and the target properties. The X-ray spectra were acquired using fast detection technique based on SiC diodes with different active regions. The X-ray yield increases with the atomic number of the target, both at low and high intensity, and a similar empirical law has been obtained. The X-ray emission mechanisms from plasma are correlated to the plasma temperature and density and to the Coulomb charge particle acceleration, due to the charge separation effects produced in the non-equilibrium plasma. Functional dependences, theoretical approaches and interpretation of possible mechanism will be presented and discussed.

  5. X-ray emission from high temperature plasmas

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1975-01-01

    The bremsstrahlung X-rays from a plasma focus device were investigated with emphasis on the emission versus position, time, energy, and angle of emission. It is shown that low energy X-rays come from the plasma focus region, but that the higher energy components come from the anode. The emission is anisotropic, the low energy polar diagram resembling a cardioid, while the high energy emission is a lobe into the anode. The plasma parameters were considered indicating that even in the dense focus, the plasma is collisionless near the axis. By considering the radiation patterns of relativistic electrons a qualitative picture is obtained, which explains the measured polar diagrams, assuming the electrons that produce the X-rays have velocity vectors lying roughly in a cone between the point of focus and the anode. The average electron energy is about 3keV at the focus and about 10 keV on the anode surface. Results are consistent with the converging beam model of neutron production.

  6. X-ray spectral signatures of photoionized plasmas. [astrophysics

    NASA Technical Reports Server (NTRS)

    Liedahl, Duane A.; Kahn, Steven M.; Osterheld, Albert L.; Goldstein, William H.

    1990-01-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae. This point is illustrated by comparing model spectra which have been calculated under conditions appropriate to both coronal plasmas and X-ray photoionized plasmas. It is shown that the (3s-2p)/(3d-2p) line ratios in the Fe L-shell spectrum can be used to effectively discriminate between these two cases. This diagnostic will be especially useful for data analysis associated with AXAF and XMM, which will carry spectroscopic instrumentation with sufficient sensitivity and resolution to identify X-ray photoionized nebulae in a wide range of astrophysical environments.

  7. Angular distribution of fusion products and x rays emitted by a small dense plasma focus machine

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Herrera, J. J. E.; Gamboa, Isabel; Rangel, J.; Golzarri, J. I.; Espinosa, G.

    2007-01-01

    Time integrated measurements of the angular distributions of fusion products and x rays in a small dense plasma focus machine are made inside the discharge chamber, using passive detectors. The machine is operated at 37kV with a stored energy of 4.8kJ and a deuterium filling pressure of 2.75torr. Distributions of protons and neutrons are measured with CR-39 Lantrack® nuclear track detectors, on 1.8×0.9cm2 chips, 500μm thick. A set of detectors was placed on a semicircular Teflon® holder, 13cm away from the plasma column, and covered with 15μm Al filters, thus eliminating tritium and helium-3 ions, but not protons and neutrons. A second set was placed on the opposite side of the holder, eliminating protons. The angular distribution of x rays is also studied within the chamber with TLD-200 dosimeters. While the neutron angular distributions can be fitted by Gaussian curves mounted on constant pedestals and the proton distributions are strongly peaked, falling rapidly after ±40°, the x-ray distributions show two maxima around the axis, presumably as a result of the collision of a collimated electron beam against the inner electrode, along the axis.

  8. Laboratory-Produced X-Ray Photoionized Plasmas for Astrophysics Exploration

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Le Pape, Sebastien; Liedahl, Duane; Ma, Tammy; Berzak-Hopkins, Laura; Reverdin, Charles; Rousseaux, Christophe; Renaudin, Patrick; Blancard, Christophe; Nottet, Edouard; Bidault, Niels; Mancini, Roberto; Koenig, Michel

    2015-11-01

    X-ray photoionized plasmas are rare in the laboratory, but of broad importance in astrophysical objects such as active galactic nuclei, x-ray binaries. Indeed, existing models are not yet able to accurately describe these plasmas where ionization is driven by radiation rather than electron collisions. Here, we describe an experiment on the LULI2000 facility whose versatility allows for measuring the X-ray absorption of the plasma while independently probing its electron density and temperature. The bright X-ray source is created by the two main beams focused inside a gold hohlraum and is used to photoionise a Neon gas jet. Then, a thin gold foil serves as a source of backlit photons for absorption spectroscopy. The transmitted spectrum through the plasma is collected by a crystal spectrometer. We will present the experimental setup used to characterize both plasma conditions and X-ray emission. Then we will show the transmitted spectra through the plasma to observe the transition from collision dominated to radiation dominated ionization and compare it to model predictions. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore Natl Lab under Contract No. DE-AC52-07NA27344.

  9. Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto

    2017-06-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  10. Burning plasmas with ultrashort soft-x-ray flashing

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Goncharov, V. N.; Skupsky, S.

    2012-07-01

    Fast ignition with narrow-band coherent x-ray pulses has been revisited for cryogenic deuterium-tritium (DT) plasma conditions achieved on the OMEGA Laser System. In contrast to using hard-x-rays (hv = 3-6 keV) proposed in the original x-ray fast-ignition proposal, we find that soft-x-ray sources with hv ≈ 500 eV photons can be suitable for igniting the dense DT-plasmas achieved on OMEGA. Two-dimensional radiation-hydrodynamics simulations have identified the break-even conditions for realizing such a "hybrid" ignition scheme (direct-drive compression with soft-x-ray heating) with 50-μm-offset targets: ˜10 ps soft-x-ray pulse (hv ≈ 500 eV) with a total energy of 500-1000 J to be focused into a 10 μm spot-size. A variety of x-ray pulse parameters have also been investigated for optimization. It is noted that an order of magnitude increase in neutron yield has been predicted even with x-ray energy as low as ˜50 J. Scaling this idea to a 1 MJ large-scale target, a gain above ˜30 can be reached with the same soft-x-ray pulse at 1.65 kJ energy. Even though such energetic x-ray sources do not currently exist, we hope that the proposed ignition scheme may stimulate efforts on generating powerful soft-x-ray sources in the near future.

  11. Study of the Anatomy of the X-Ray and Neutron Production Scaling Laws in the Plasma Focus.

    DTIC Science & Technology

    1980-05-15

    plasma focus discharge in deuterium as an extension of our previous work on scaling laws of x-ray and neutron production. The structure of dense plasmoids which emit MeV ions has been recorded by ion imaging with pinhole camera and contact print techniques. The plasmoids are generated in the same region in which particle beams, neutron and x-ray emission reach a maximum of intensity. Sharply defined boundaries of the ion-beam source and of plasmoids have been obtained by ion track etching on plastic material

  12. Modeling Broadband X-Ray Absorption of Massive Star Winds

    NASA Technical Reports Server (NTRS)

    Leutenegger, Maurice A.; Cohen,David H.; Zsargo, Janos; Martell, Erin M.; MacArthur, James P.; Owocki, Stanley P.; Gagne, Marc; Hillier, D. John

    2010-01-01

    We present a method for computing the net transition of X-rays emitted by shock-heated plasma distributed throughout a partially optically thick stellar wind from a massive star. We find the transmission by an exact integration of the formal solution, assuming the emitting plasma and absorbing plasma are mixed at a constant mass ratio above some minimum radius, below which there is assumed to be no emission. This model is more realistic than either the slab absorption associated with a corona at the base of the wind or the exospheric approximation that assumes all observed X-rays are emitted without attenuation from above the radius of optical depth unity. Our model is implemented in XSPEC as a pre-calculated table that can be coupled to a user-defined table of the wavelength dependent wind opacity. We provide a default wind opacity model that is more representative of real wind opacities than the commonly used neutral ISM tabulation. Preliminary modeling of Chandra grating data indicates that the X-ray hardness trend of OB stars with spectral subtype cars largely be understood as a wind absorption effect.

  13. Energetics of impulsive solar flares: Correlating BATSE hard x-ray bursts and the solar atmosphere's soft x-ray response

    NASA Technical Reports Server (NTRS)

    Newton, Elizabeth

    1996-01-01

    This investigation has involved the correlation of BATSE-observed solar hard X-ray emission with the characteristics of soft X-ray emitting plasma observed by the Yohkoh Bragg Crystal Spectrometers. The goal was to test the hypothesis that localized electron beam heating is the dominant energy transport mechanism in impulsive flares, as formulated in the thick-target electron-heated model of Brown.

  14. Spectroscopy of X-ray Photoionized Plasmas in the Laboratory

    NASA Astrophysics Data System (ADS)

    Liedahl, Duane A.; Loisel, Guillaume; Bailey, James E.; Nagayama, Taisuke; Hansen, Stephanie B.; Rochau, Gregory; Fontes, Christopher J.; Mancini, Roberto; Kallman, Timothy R.

    2018-06-01

    The physical processes operating in astrophysical plasmas --- heating, cooling, ionization, recombination, level population kinetics, and radiation transport --- are all accessible to observation in the laboratory. What distinguishes X-ray photoionized plasmas from the more common case of high-temperature collisionally-ionized plasmas is the elevated level of importance of the radiation/matter interaction. The advent of laboratory facilities with the capability to generate high-powered X-ray sources has provided the means by which to study this interaction, which is also fundamental to active galactic nuclei and other accretion-powered objects. We discuss recent and ongoing experiments, with an emphasis on X-ray spectroscopic measurements of silicon plasmas obtained at the Sandia Z Pulsed Power Facility.

  15. Hard X-Ray-emitting Black Hole Fed by Accretion of Low Angular Momentum Matter

    NASA Astrophysics Data System (ADS)

    Igumenshchev, Igor V.; Illarionov, Andrei F.; Abramowicz, Marek A.

    1999-05-01

    Observed spectra of active galactic nuclei and luminous X-ray binaries in our Galaxy suggest that both hot (~109 K) and cold (~106 K) plasma components exist close to the central accreting black hole. The hard X-ray component of the spectra is usually explained by Compton upscattering of optical/UV photons from optically thick cold plasma by hot electrons. Observations also indicate that some of these objects are quite efficient in converting gravitational energy of accretion matter into radiation. Existing theoretical models have difficulties in explaining the two plasma components and high intensity of hard X-rays. Most of the models assume that the hot component emerges from the cold one because of some kind of instability, but no one offers a satisfactory physical explanation for this. Here we propose a solution to these difficulties that reverses what was imagined previously: in our model, the hot component forms first and afterward it cools down to form the cold component. In our model, the accretion flow initially has a small angular momentum, and thus it has a quasi-spherical geometry at large radii. Close to the black hole, the accreting matter is heated up in shocks that form because of the action of the centrifugal force. The hot postshock matter is very efficiently cooled down by Comptonization of low-energy photons and condensates into a thin and cool accretion disk. The thin disk emits the low-energy photons which cool the hot component. All the properties of our model, in particular the existence of hot and cold components, follow from an exact numerical solution of standard hydrodynamical equations--we postulate no unknown processes operating in the flow. In contrast to the recently discussed advection-dominated accretion flow, the particular type of accretion flow considered in this Letter is both very hot and quite radiatively efficient.

  16. X-Ray Emission from an Asymmetric Blast Wave and a Massive White Dwarf in the Gamma Ray Emitting Nova V407 CYG

    NASA Technical Reports Server (NTRS)

    Nelson, Thomas; Donato, Davide; Mukai, Koji; Sokoloski, Jennifer; Chomiuk, Laura

    2012-01-01

    Classical nova events in symbiotic stars, although rare, offer a unique opportunity to probe the interaction between ejecta and a dense environment in stellar explosions. In this work, we use X-ray data obtained with Swift and Suzaku during the recent classical nova outburst in V407 Cyg to explore such an interaction. We find evidence of both equilibrium and non-equilibrium ionization plasmas at the time of peak X-ray brightness, indicating a strong asymmetry in the density of the emitting region. Comparing a simple model to the data, we find that the X-ray evolution is broadly consistent with nova ejecta driving a forward shock into the dense wind of the Mira companion. We detect a highly absorbed soft X-ray component in the spectrum during the first 50 days of the outburst that is consistent with supersoft emission from the nuclear burning white dwarf. The high temperature and short turn off time of this emission component, in addition to the observed breaks in the optical and UV lightcurves, indicate that the white dwarf in the binary is extremely massive. Finally, we explore the connections between the X-ray and GeV-ray evolution, and propose that the gamma ray turn-off is due to the stalling of the forward shock as the ejecta reach the red giant surface.

  17. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of generation of picosecond and subpicosecond x-ray pulses in thin films

    NASA Astrophysics Data System (ADS)

    Gordienko, Vyacheslav M.; Dzhidzhoev, M. S.; Kolchin, V. V.; Magnitskiy, Sergey A.; Platonenko, Viktor T.; Savel'ev, Andrei B.; Tarasevitch, A. P.

    1995-02-01

    The characteristics of a femtosecond laser plasma, formed by irradiation of a thin freely suspended carbon film, are investigated numerically. It is shown that the use of thin films can increase considerably the electron temperature of a femtosecond laser plasma and make it possible to generate x-rays of shorter wavelengths. This method can also be used to increase the efficiency of conversion of the energy of laser pulses into the radiation emitted by hydrogen-like carbon ions without a significant increase in the duration of x-ray pulses.

  18. X-ray-emitting filaments in the cooling flow cluster A2029

    NASA Technical Reports Server (NTRS)

    Sarazin, Craig L.; O'Connell, Robert W.; Mcnamara, Brian R.

    1992-01-01

    High-resolution X-ray observations of the cluster A2029 are presented which confirm the presence of a cooling flow, despite the lack of optical line emission or evidence for recent star formation. The cooling rate and radius are about 370 solar mass/yr and 230 kpc, respectively. Emission from the inner cooling flow is dominated by a number of X-ray-emitting filaments. This may be the first case where such inhomogeneities are clearly resolved. The filaments are theorized to be supported in part by magnetic fields and may be connected with the filaments of very strong Faraday rotation seen in several nearly cooling flows.

  19. Plasma x-ray radiation source.

    PubMed

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  20. X-Ray Production in Defense Plasma Focus.

    DTIC Science & Technology

    1980-03-01

    This program investigated the operation of plasma focus (PF) devices at high voltage. Discharge formation, energy transfer, and X-ray emission were...produced electron beam phenomena: The model predicted that a neon plasma would radiate 1 percent of the stored energy. The construction of a 120-kV (108 kJ) plasma focus system is described. (Author)

  1. Suzaku Reveals Helium-burning Products in the X-Ray-emitting Planetary Nebula BD +30 3639

    NASA Astrophysics Data System (ADS)

    Murashima, M.; Kokubun, M.; Makishima, K.; Kotoku, J.; Murakami, H.; Matsushita, K.; Hayashida, K.; Arnaud, K.; Hamaguchi, K.; Matsumoto, H.

    2006-08-01

    BD +30 3639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K lines from C VI, O VII, and O VIII were resolved for the first time, and the C/O, N/O, and Ne/O abundance ratios were determined. The C/O and Ne/O abundance ratios exceed the solar value by factors of at least 30 and 5, respectively. These results indicate that the X-rays are emitted mainly by helium-shell-burning products.

  2. Soft X-ray spectrometer design for warm dense plasma measurements on DARHT Axis-I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramey, Nicholas Bryan; Perry, John Oliver; Coleman, Joshua Eugene

    2017-07-11

    A preliminary design study is being performed on a soft X-ray spectrometer to measure K-shell spectra emitted by a warm dense plasma generated on Axis-I of the Dual-Axis Radiographic Hydrodynamic Testing (DARHT) facility at Los Alamos National Laboratory. The 100-ns-long intense, relativistic electron pulse with a beam current of 1.7 kA and energy of 19.8 MeV deposits energy into a thin metal foil heating it to a warm dense plasma. The collisional ionization of the target by the electron beam produces an anisotropic angular distribution of K-shell radiation and a continuum of both scattered electrons and Bremsstrahlung up to themore » beam energy of 19.8 MeV. The principal goal of this project is to characterize these angular distributions to determine the optimal location to deploy the soft X-ray spectrometer. In addition, a proof-of-principle design will be presented. The ultimate goal of the spectrometer is to obtain measurements of the plasma temperature and density to benchmark equation-of-state models of the warm dense matter regime.« less

  3. X-Ray Emitting Supermassive Nuclei of the Local Group

    NASA Astrophysics Data System (ADS)

    Melia, Fulvio; Liu, Siming

    2001-09-01

    In this talk, we will focus on a theoretical interpretation of what we have learned with recent Chandra observations of the supermassive black hole at the Galactic center (Sgr A*) and in the nucleus of M31 (M31*). The recent detection of Sgr A* in the X-ray band, together with the radio polarization measurements conducted over the past few years, offer the best constraints yet for understanding the nature of the emitting gas within several Schwarzschild radii (rS) of this object. It now appears that the sub-mm radiation from this source may be associated with thermal synchrotron emission from an inner Keplerian region within the circularization radius of the accreting plasma. In this talk, we discuss the implied high-energy emission of Sgr A* associated with the orbiting, hot, magnetized gas. For the accretion rate inferred from the fits to the sub-mm data, the dominant contribution to Sgr A*'s X-ray flux is due to self-Comptonization of the radio photons, rather than from bremsstrahlung. The latter is a two-body process, which would produce significant X-ray emission only at much higher accretion rates. This picture leads to the testable prediction that the physical conditions within the inner ~5rS are variable on a time scale of order a year. In particular, the accretion rate dot M appears to have changed by about 15% between the sub-mm measurements in 1996 and 1999. Given that the radio and self-Comptonized fluxes are strongly correlated, upcoming multi-wavelength observations of Sgr A* may provide the direct evidence required to test this picture. M31* has many features in common with Sgr A*, yet they differ in several significant and important ways. Though M31* is probably ten times heavier, its radio luminosity at 3.6 cm is only one third that of Sgr A*. At the same time, M31* is apparently thousands of times more luminous in X-rays than its Galactic Center counterpart. Thus, a comparative study of these objects can be valuable in helping us to understand the

  4. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  5. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  6. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.

    PubMed

    Toyosugi, N; Yamada, H; Minkov, D; Morita, M; Yamaguchi, T; Imai, S

    2007-03-01

    The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \\overline\\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV.

  7. Development of a low-energy x-ray camera for the imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation for range estimation.

    PubMed

    Ando, Koki; Yamaguchi, Mitsutaka; Yamamoto, Seiichi; Toshito, Toshiyuki; Kawachi, Naoki

    2017-06-21

    Imaging of secondary electron bremsstrahlung x-ray emitted during proton irradiation is a possible method for measurement of the proton beam distribution in phantom. However, it is not clear that the method is used for range estimation of protons. For this purpose, we developed a low-energy x-ray camera and conducted imaging of the bremsstrahlung x-ray produced during irradiation of proton beams. We used a 20 mm  ×  20 mm  ×  1 mm finely grooved GAGG scintillator that was optically coupled to a one-inch square high quantum efficiency (HQE)-type position-sensitive photomultiplier tube to form an imaging detector. The imaging detector was encased in a 2 cm-thick tungsten container, and a pinhole collimator was attached to its camera head. After performance of the camera was evaluated, secondary electron bremsstrahlung x-ray imaging was conducted during irradiation of the proton beams for three different proton energies, and the results were compared with Monte Carlo simulation as well as calculated value. The system spatial resolution and sensitivity of the developed x-ray camera with 1.5 mm-diameter pinhole collimator were estimated to be 32 mm FWHM and 5.2  ×  10 -7 for ~35 keV x-ray photons at 100 cm from the collimator surface, respectively. We could image the proton beam tracks by measuring the secondary electron bremsstrahlung x-ray during irradiation of the proton beams, and the ranges for different proton energies could be estimated from the images. The measured ranges from the images were well matched with the Monte Carlo simulation, and slightly smaller than the calculated values. We confirmed that the imaging of the secondary electron bremsstrahlung x-ray emitted during proton irradiation with the developed x-ray camera has the potential to be a new tool for proton range estimations.

  8. X-ray free-electron laser studies of dense plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam M.

    2015-10-01

    > The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.

  9. Hot and dense plasma probing by soft X-ray lasers

    NASA Astrophysics Data System (ADS)

    Krůs, M.; Kozlová, M.; Nejdl, J.; Rus, B.

    2018-01-01

    Soft X-ray lasers, due to their short wavelength, its brightness, and good spatial coherence, are excellent sources for the diagnostics of dense plasmas (up to 1025 cm-3) which are relevant to e.g. inertial fusion. Several techniques and experimental results, which are obtained at the quasi-steady state scheme being collisionally pumped 21.2 nm neon-like zinc laser installed at PALS Research Center, are presented here; among them the plasma density measurement by a double Lloyd mirror interferometer, deflectometer based on Talbot effect measuring plasma density gradients itself, with a following ray tracing postprocessing. Moreover, the high spatial resolution (nm scale) plasma images can be obtained when soft X-ray lasers are used.

  10. Results from OSO-IV - The long term behavior of X-ray emitting regions.

    NASA Technical Reports Server (NTRS)

    Krieger, A.; Paolini, F.; Vaiana, G. S.; Webb, D.

    1972-01-01

    Analysis of images of the sun obtained with the aid of a grazing incidence X-ray telescope on board the OSO IV spacecraft in the 2.5 to 12-A waveband nearly continuously from Oct. 27, 1967, to May 12, 1968. The instrument had sufficient spatial resolution (one and four arc minutes) and temporal resolution (5 to 20 min) to estimate the spatial characteristics of X-ray emitting regions and to monitor the temporal behavior of individual active regions. Variations in the absence of flares of as much as a factor of 10 in the X-ray output of individual regions were observed, with typical durations ranging from several hours to several days. The X-ray time variations are related to observations at optical and radio wavelengths. The results are interpreted under the assumption that the X-ray time variations are caused by temperature changes in the coronal portions of active regions. The contribution of radiative losses to the energy budget of the coronal active region is estimated.

  11. XMM-Newton X-ray Observatory Guest Observer program (AO-1) at CASA

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2003-01-01

    In this research program, we obtained and analyzed X-ray observations of the Wolf-Rayet (WR) star WR 110 (HD 165688) using the XMM-Newton space-based observatory. Radio observations were also obtained using the Very Large Array (VLA) radio telescope located in New Mexico and operated by the Natl. Radio Astronomy Observatory (NRAO). This star was targeted for observations primarily because it is believed to be a single WR star without a companion. Single WR stars are thought to emit X-rays from cool plasma in shocks distributed throughout their powerful stellar winds. However, there has been little observational work done to test this idea since single WR stars are relatively weak X-ray sources and have been difficult to detect with previous generation telescopes. The launch of XMM-Newton provides a new telescope that is much more sensitive than its predecessors, allowing single WR stars to be studied in detail for the first time. X-ray emission was clearly detected from WR 110. Analysis of its spectrum yields a surprising result. Its X-ray emitting plasma is distributed over a range of temperatures and is dominated by relatively cool plasma with a characteristic temperature T is approximately 6 million K. Such plasma can be explained by existing theoretical wind shock models. However, the spectrum also shows hotter plasma whose temperature is uncertain but is thought to be in excess of T approximately 30 million K. The origin of this hotter plasma is yet unknown, but possible mechanisms are identified

  12. Two hump-shaped angular distributions of neutrons and soft X-rays in a small plasma focus device.

    PubMed

    Habibi, Morteza

    2018-03-01

    Angular distributions of soft X-rays (SXRs) and neutrons emitted by a small plasma focus device (PFD) were investigated simultaneously using TLD-100 dosimeters and Geiger-Muller activation counters, respectively. The distributions represented two humps with a small dip at the angular position 0° and reduced from the angles of ± 15° and ± 30° for the neutrons and SXRs, respectively. The maximum yield of 2.98 × 10 8 neutrons per shot of the device was obtained at 13.5kV and 6.5mbar. A time of flight (TOF) of 75.2ns between the hard X-ray and the neutron peaks corresponds to neutrons with energy of 2.67MeV. A similar behavior was observed between the angular distributions of neutron and soft X-ray emissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.

    PubMed

    Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E

    2010-10-01

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  14. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  15. Suzaku Reveals He-burning Products in the X-ray Emitting Planetary Nebula BD +30deg 3639

    NASA Technical Reports Server (NTRS)

    Murashima, M.; Kokubun, M.; Makishima, K.; Kotoku, J.; Murakami, H.; Matsushita, K.; Hayashida, K.; Hamaguchi, K.; Matsumoto, H.

    2004-01-01

    BD +30deg 3639, the brightest planetary nebula at X-ray energies, was observed with Suzaku, an X-ray observatory launched on 2005 July 10. Using the X-ray Imaging Spectrometer, the K-lines from C VI, O VII, and O VIII were resolved for the first time, and C/O, N/O, and Ne/O abundance ratios determined. The C/O abundance ratio exceeds the solar value by nearly two orders of magnitude, and that of Ne/O by at least a factor of 5. These results indicate that the X-rays are emitted mainly by helium shell-burning products.

  16. X-ray Heating and Electron Temperature of Laboratory Photoionized Plasmas

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto; Lockard, Tom; Mayes, Daniel C.; Loisel, Guillaume; Bailey, James E.; Rochau, Gregory; Abdallah, J.; Golovkin, I.

    2018-06-01

    In separate experiments performed at the Z facility of Sandia National Laboratories two different samples were employed to produce and characterize photoionized plasmas. One was a gas cell filled with neon, and the other was a thin silicon layer coated with plastic. Both samples were driven by the broadband x-ray flux produced at the collapse of a wire array z-pinch implosion. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the charge state distribution, and the electron temperature was extracted from a Li-like ion level population ratio. To interpret the temperature measurement, we performed Boltzmann kinetics and radiation-hydrodynamic simulations. We found that non-equilibrium atomic physics and the coupling of the radiation flux to the atomic level population kinetics play a critical role in modeling the x-ray heating of photoionized plasmas. In spite of being driven by similar x-ray drives, differences of ionization and charged state distributions in the neon and silicon plasmas are reflected in the plasma heating and observed electron temperatures.This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  17. Katherine E. Weimer Award: X-ray light sources from laser-plasma and laser-electron interaction: development and applications

    NASA Astrophysics Data System (ADS)

    Albert, Felicie

    2017-10-01

    Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed

  18. Diagnosis of Plasma States in X-Ray Laser Experiments

    DTIC Science & Technology

    1992-10-01

    J e AD-A256 909 FOREIGN AEROSPACE SCIENCE AND TECHNOLOGY CENTER DTIC 4 OCT 2 6 1992’ DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS by Yang ...0619-92 HUMAN TRANSLATION FASTC-ID(RS)T-0619-92 8 October 1992 DIAGNOSIS OF PLASMA STATES IN X-RAY LASER EXPERIMENTS By: Yang Shangjin, Cai Yuqin, Chunyu... Yang Shangjin, Cai Yuqin, and Chunyu Shutai China Academy of Engineering Physics Abstract At an LF-12 laser installation, an Nd glass laser of

  19. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, P.C.

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  20. Multi-energy x-ray detector calibration for T e and impurity density (n Z) measurements of MCF plasmas

    DOE PAGES

    Maddox, J.; Pablant, N.; Efthimion, P.; ...

    2016-09-07

    Here, soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n 2 eZ eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emittedmore » from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.« less

  1. X-Ray Background Survey Spectrometer (XBSS)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T. (Principal Investigator); Paulos, R. J.

    1996-01-01

    The objective of this investigation was to perform a spectral survey of the low energy diffuse X-ray background using the X-ray Background Survey Spectrometer (XBSS) on board the Space Station Freedom (SSF). XBSS obtains spectra of the X-ray diffuse background in the 11-24 A and 44-84 A wavelength intervals over the entire sky with 15 deg spatial resolution. These X-rays are almost certainly from a very hot (10(exp 6) K) component of the interstellar medium that is contained in regions occupying a large fraction of the interstellar volume near the Sun. Astrophysical plasmas near 10(exp 6) K are rich in emission lines, and the relative strengths of these lines, besides providing information about the physical conditions of the emitting gas, also provide information about its history and heating mechanisms.

  2. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  3. Surface modification of platinum by laser-produced X-rays

    NASA Astrophysics Data System (ADS)

    Latif, Hamid; Shahid Rafique, M.; Khaleeq-ur-Rahaman, M.; Sattar, Abdul; Anjum, S.; Usman, A.; Zaheer, S.; Rawat, R. S.

    2014-11-01

    Laser-induced plasma is used as an X-ray source for the growth of hillocks like nanostructures on platinum surface. To generate X-rays, plasma is produced by Nd:YAG laser, which is operated at second harmonics (λ = 532 nm, E = 400 mJ). Analytical grade 5 N pure Al, Cu and W are used as laser targets for X-rays production. X-rays produced from Al, Cu and W plasmas are used to irradiate three analytical grade (5 N pure) platinum substrates, respectively, under the vacuum ∼10-4 torr. XRD analysis shows considerable structural changes in the exposed platinum. The decrement in reflection intensities, increment in dislocation line density, change in d-spacing and disturbance in the periodicity of planes evidently prove these structural changes. Atomic force microscope AFM topographic analysis of the platinum exposed to X-rays emitted from Al, Cu and W targets showed that nanometer-size hillocks are produced on the platinum surface irrespective of the source. It has also been observed that due to these hillocks, the roughness of the surface has increased. Conductivity of hillocks produced from X-rays produced by Al, Cu and W targets is compared and it is shown that the hillocks produced by Al target X-rays have better conductivity compared to the hillocks produced by X-rays from Cu and W targets.

  4. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observationsmore » of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.« less

  5. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  6. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  7. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  8. Intensity-dependent resonant transmission of x-rays in solid-density aluminum plasma

    NASA Astrophysics Data System (ADS)

    Cho, M. S.; Chung, H.-K.; Cho, B. I.

    2018-05-01

    X-ray free-electron lasers (XFELs) provide unique opportunities to generate and investigate dense plasmas. The absorption and transmission properties of x-ray photons in dense plasmas are important in characterizing the state of the plasmas. Experimental evidence shows that the transmission of x-ray photons through dense plasmas depends greatly on the incident XFEL intensity. Here, we present a detailed analysis of intensity-dependent x-ray transmission in solid-density aluminum using collisional-radiative population kinetics calculations. Reverse saturable absorption (RSA), i.e., an increase in x-ray absorption with intensity has been observed for photon energies below the K-absorption edge and in the intensity range of 1016-1017 W/cm2 for XFEL photons with 1487 eV. At higher intensities, a transition from RSA to saturable absorption (SA) is predicted; thus, the x-ray absorption decreases with intensity above a threshold value. For XFEL photon energies of 1501 eV and 1515 eV, the transition from RSA to SA occurs at XFEL intensities between 1017-1018 W/cm2. Electron temperatures are predicted to be in the range of 30-50 eV for the given experimental conditions. Detailed population kinetics of the charge states explains the intensity-dependent absorption of x-ray photons and the fast modulation of XFEL pulses for both RSA and SA.

  9. Polarization of resonantly excited X-ray lines

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Amaro, Pedro; Steinbrügge, René; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo Lopez-Urrutia, José R.; Tashenov, Stanislav

    2017-08-01

    For a wide range of temperatures, resonantly captured electrons with energies below the excitation threshold are the strongest source of X-ray line excitation in hot plasmas containing highly charged Fe ions. The angular distribution and polarization of X-rays emitted due to these processes were experimentally studied using an electron beam ion trap. The electron-ion collision energy was scanned over the KLL dielectronic, trielectronic, and quadruelectronic recombination resonances of Fe18+..24+ and Kr28+..34+ with an exemplary resolution of ~6 eV. The angular distribution of induced X-ray fluorescence was measured along and perpendicular to the electron beam propagation direction [1]. Subsequently, the polarization of X-ray fluorescence was also measured using a novel Compton polarimeter [2, 3].The experimental data reveal the alignment of the populated excited states and exhibit a high sensitivity to the relativistic Breit interaction [2, 4]. We observed that most of the transitions lead to polarization, including hitherto-neglected trielectronic and quadruelectronic recombination channels. Furthermore, these channels dominate the polarization of the prominent Kα X-rays emitted by hot anisotropic plasmas in a wide temperature range. The present experimental results comprehensively benchmark full-order atomic calculations carried out with the FAC [5] and RATIP [6] codes. We conclude that accurate polarization diagnostics of hot anisotropic plasmas, e.~g., of solar flares and active galactic nuclei, and laboratory fusion plasmas of tokamaks can only be obtained under the premise of careful inclusion of relativistic effects and higher-order resonances which were often neglected in previous works [1]. The present experiments also demonstrate the suitability of the applied technique for accurate directional diagnostics of electron or ion beams in hot plasmas [7].[1] C. Shah et al., Phys. Rev. E 93, 061201 (R) (2016)[2] C. Shah et al., Phys. Rev. A 92, 042702 (2015

  10. X-ray Generation in Strongly Nonlinear Plasma Waves

    NASA Astrophysics Data System (ADS)

    Kiselev, S.; Pukhov, A.; Kostyukov, I.

    2004-09-01

    We show that a laser wake field in the “bubble” regime [

    A. Pukhov and J. Meyer-ter-Vehn Appl. Phys. BAPBOEM0946-2171 74, 355 (2002)10.1007/s003400200795
    ], works as a compact high-brightness source of x-rays. The self-trapped relativistic electrons make betatron oscillations in the transverse fields of the bubble and emit a bright broadband x-ray radiation with a maximum about 50 keV. The emission is confined to a small angle of about 0.1 rad. In addition, we make simulations of x-ray generation by an external 28.5 GeV electron bunch injected into the bubble. γ quanta with up to GeV energies are observed in the simulation in good agreement with analytical results. The energy conversion is efficient, leading to a significant stopping of the electron bunch over 5 mm interaction distance.

  11. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  12. Resonant Polarization Spectroscopy for Hot X-ray Plasmas

    DOE PAGES

    Chen, Guo -Xin

    2016-04-28

    X-ray line polarization spectroscopy is a method of choice for probing hot plasma conditions. The precise roles of resonant structures in this method have not been realized and fully understood. With a sophisticated relativistic close coupling Dirac R-matrix calculation of polarized radiation of the quadrupole magnetic M2 line at 2.717 Å in Ba 46+, we revealed the nature of resonant structures in x-ray line polarization spectroscopy. We found that signatures with a heavy resonance forest imprinting on polarization may be used for a sensitive new spectroscopic method. The resonant polarization spectrum was used to determine or constrain the directional beammore » electron distribution of the laboratory Ba plasma. Lastly, our results provide a start of resonant polarization spectroscopy as a method for diagnostics of laboratory, fusion and astrophysical plasma source conditions.« less

  13. The Outer X-ray and Radio Jets in R Aquarii

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Anderson, C.; DePasquale, J.; Korreck, K.; Nichols, J.; Sokoloski, J.; Krauss, M.; Pedelty, J.

    2007-01-01

    The symbiotic star R Aquarii has been known to emit collimated outflow in the form of jets for many years. We report on five years of observations in x-rays and radio using Chandra, VLA and XMM-Newton. We discuss the evolution of the outer thermal jets, including new observations performed in June and October 2005. We see motion of the NE x-ray jet at a projected velocity of about 600 km (sup -1). The SW x-ray jet has almost disappeared between 2000.7 and 2004.0. An XMM grating spectrum of the NE jet confirms the existence of O VII He-like lines, and offers the possibility of doing plasma density diagnostics. We comment on on the physics of cooling in the SW jet and implications for the density of the x-ray emitting gas, the heating mechanism, and mass and kinetic energy in the jets and its implications for the system as a whole. This work was supported by NASA and NSF.

  14. The gamma-ray emitting region of the jet in Cyg X-3

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Sikora, Marek; Dubus, Guillaume; Yuan, Feng; Cerutti, Benoit; Ogorzałek, Anna

    2012-04-01

    We study models of the γ-ray emission of Cyg X-3 observed by Fermi. We calculate the average X-ray spectrum during the γ-ray active periods. Then, we calculate spectra from Compton scattering of a photon beam into a given direction by isotropic relativistic electrons with a power-law distribution, both based on the Klein-Nishina cross-section and in the Thomson limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-3, we find that a low-energy break in the electron distribution at a Lorentz factor of ˜300-103 is required by the shape of the observed X-ray/γ-ray spectrum in order to avoid overproducing the observed X-ray flux. The electrons giving rise to the observed γ-rays are efficiently cooled by Compton scattering, and the power-law index of the acceleration process is ≃2.5-3. The bulk Lorentz factor of the jet and the kinetic power before the dissipation region depend on the fraction of the dissipation power supplied to the electrons; if it is ≃1/2, the Lorentz factor is ˜2.5, and the kinetic power is ˜1038 erg s-1, which represents a firm lower limit on the jet power, and is comparable to the bolometric luminosity of Cyg X-3. Most of the power supplied to the electrons is radiated. The broad-band spectrum constrains the synchrotron and self-Compton emission from the γ-ray emitting electrons, which requires the magnetic field to be relatively weak, with the magnetic energy density ≲ a few times 10-3 of that in the electrons. The actual value of the magnetic field strength can be inferred from a future simultaneous measurement of the infrared and γ-ray fluxes.

  15. Flash x-ray radiography of argon jets in ambient air

    NASA Astrophysics Data System (ADS)

    Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.

    1998-09-01

    This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.

  16. IDENTIFICATION OF A POPULATION OF X-RAY-EMITTING MASSIVE STARS IN THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Gemma E.; Gaensler, B. M.; Kaplan, David L.

    2011-02-01

    We present X-ray, infrared, optical, and radio observations of four previously unidentified Galactic plane X-ray sources: AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. Detection of each source with the Chandra X-ray Observatory has provided sub-arcsecond localizations, which we use to identify bright infrared counterparts to all four objects. Infrared and optical spectroscopy of these counterparts demonstrate that all four X-ray sources are extremely massive stars, with spectral classifications: Ofpe/WN9 (AX J163252-4746), WN7 (AX J184738-0156 = WR121a), WN7-8h (AX J144701-5919), and OIf{sup +} (AX J144547-5931). AX J163252-4746 and AX J184738-0156 are both luminous, hard, X-ray emitters with strong Femore » XXV emission lines in their X-ray spectra at {approx}6.7 keV. The multi-wavelength properties of AX J163252-4746 and AX J184738-0156 are not consistent with isolated massive stars or accretion onto a compact companion; we conclude that their X-ray emission is most likely generated in a colliding-wind binary (CWB) system. For both AX J144701-5919 and AX J144547-5931, the X-ray emission is an order of magnitude less luminous and with a softer spectrum. These properties are consistent with a CWB interpretation for these two sources also, but other mechanisms for the generation of X-rays cannot be excluded. There are many other as yet unidentified X-ray sources in the Galactic plane, with X-ray properties similar to those seen for AX J163252-4746, AX J184738-0156, AX J144701-5919, and AX J144547-5931. This may indicate a substantial population of X-ray-emitting massive stars and CWBs in the Milky Way.« less

  17. Development of GEM gas detectors for X-ray crystal spectrometry

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Dominik, W.; Jakubowska, K.; Rzadkiewicz, J.; Scholz, M.; Pozniak, K.; Kasprowicz, G.; Zabolotny, W.

    2014-03-01

    Two Triple Gas Electron Multiplier (Triple-GEM) detectors were developed for high-resolution X-ray spectroscopy measurements for tokamak plasma to serve as plasma evolution monitoring in soft X-ray region (SXR). They provide energy resolved fast dynamic plasma radiation imaging in the SXR with 0.1 kHz frequency. Detectors were designed and constructed for continuous data-flow precise energy and position measurement of plasma radiation emitted by metal impurities, W46+ and Ni26+ ions, at 2.4 keV and 7.8 keV photon energies, respectively. High counting rate capability of the detecting units has been achieved with good position resolution. This article presents results of the laboratory and tokamak experiments together with the system performance under irradiation by photon flux from the plasma core.

  18. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  19. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less

  20. DEEP CHANDRA X-RAY IMAGING OF A NEARBY RADIO GALAXY 4C+29.30: X-RAY/RADIO CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemiginowska, Aneta; Aldcroft, Thomas L.; Burke, D. J.

    2012-05-10

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z = 0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N{sub H} {approx_equal} 3.95{sup +0.27}{sub -0.33} Multiplication-Sign 10{sup 23} cm{sup -2}) with an unabsorbed luminosity of L{sub 2-10keV} {approx_equal} (5.08 {+-} 0.52) Multiplication-Sign 10{sup 43} erg s{sup -1} characteristic of Type 2 active galactic nuclei. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlatedmore » with radio structures along the main radio axis, indicating a strong relation between the two. The X-ray emission extends beyond the radio source and correlates with the morphology of optical-line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT {approx_equal} 0.5 keV, with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming that these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray-emitting gas in the outermost regions suggests that the hot ISM is slightly underpressured with respect to the cold optical-line-emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.« less

  1. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  2. Plasma diagnostics for x-ray driven foils at Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R F; Bailey, J E; Cuneo, M E

    We report the development of techniques to diagnose plasmas produced by X-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW X-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated 3-crystal Johann spectrometer with dual lines of sight to meet these requirements.more » We present sample data from experiments in which 1 cm, 180 eV tungsten pinches photoionized foils composed of 200{angstrom} Fe and 300{angstrom} NaF co-mixed and sandwiched between 1000{angstrom} layers of Lexan (CHO), and discuss the application of this work to benchmarking astrophysical models.« less

  3. Plasma diagnostics for x-ray driven foils at Z

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R. F.; Bailey, J. E.; Cuneo, M. E.

    We report the development of techniques to diagnose plasmas produced by x-ray photoionization of thin foils placed near the Z-pinch on the Sandia Z Machine. The development of 100+ TW x-ray sources enables access to novel plasma regimes, such as the photoionization equilibrium. To diagnose these plasmas one must simultaneously characterize both the foil and the driving pinch. The desired photoionized plasma equilibrium is only reached transiently for a 2-ns window, placing stringent requirements on diagnostic synchronization. We have adapted existing Sandia diagnostics and fielded an additional gated three-crystal Johann spectrometer with dual lines of sight to meet these requirements.more » We present sample data from experiments using 1-cm, 180-eV tungsten pinches to photoionize foils made of 200 Aa Fe and 300 Aa NaF co-mixed and sandwiched between 1000 Aa layers of Lexan (C16H14O3), and discuss the application of this work to benchmarking astrophysical models.« less

  4. Identification of two hard X-ray emitting Be stars using the HEAO 1 scanning modulation collimator

    NASA Technical Reports Server (NTRS)

    Steiner, J. E.; Ferrara, A.; Garcia, M.; Patterson, J.; Schwartz, D. A.; Warwick, R. S.; Watson, M. G.; Mcclintock, J. E.

    1984-01-01

    Using precise positions from the HEAO 1 Scanning Modulation Collimator experiment, two hard X-ray sources, 4U 0728 - 25 = 3A 0726 - 260 and 4U 2206 + 54 = 3A 2206 + 543, are identified with early-type stars. In both cases broad (10 A FWHM) H-alpha emission is detected. The UBV colors suggest that the optical counterparts are main-sequence B0-B2 stars at 2-6 kpc, implying a mean X-ray luminosity of order 10 to the 35th ergs/sq cm s (2-10 keV). The X-ray emission in both cases is highly variable, and it is suggested that they belong to the class of X-ray emitting Be stars, containing a neutron star in a widely separated binary system.

  5. X-ray emission processes in stars and their immediate environment

    PubMed Central

    Testa, Paola

    2010-01-01

    A decade of X-ray stellar observations with Chandra and XMM-Newton has led to significant advances in our understanding of the physical processes at work in hot (magnetized) plasmas in stars and their immediate environment, providing new perspectives and challenges, and in turn the need for improved models. The wealth of high-quality stellar spectra has allowed us to investigate, in detail, the characteristics of the X-ray emission across the Hertzsprung-Russell (HR) diagram. Progress has been made in addressing issues ranging from classical stellar activity in stars with solar-like dynamos (such as flares, activity cycles, spatial and thermal structuring of the X-ray emitting plasma, and evolution of X-ray activity with age), to X-ray generating processes (e.g., accretion, jets, magnetically confined winds) that were poorly understood in the preChandra/XMM-Newton era. I will discuss the progress made in the study of high energy stellar physics and its impact in a wider astrophysical context, focusing on the role of spectral diagnostics now accessible. PMID:20360562

  6. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  7. Subresolution Fibrillation in X-Ray Microflares Observed by Yohkoh SXT

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Porter, Jason

    1999-01-01

    We analyze the cooling of the X-ray plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope (SXT). A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approx. 2 x 10(exp 8) cm). The plasma heated to X-ray temperatures in the body of the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is fluid by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (X-ray brightness through the thin aluminum filter - 4 x 10(exp 3) DN/s/pixeL lifetime approx. 5 min, temperature approx. 6 x 10(exp 6) K, loop length approx. 10(exp 9) cm, loop diameter approx. 3 x 10(exp 8) cm), we find that for filling factors greater than approx. 1%: (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that: (1) heating to X-ray temperatures continues through nearly the entire lifetime of the microflare, (2) die heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction

  8. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Wallace, M. S.; Haque, S.; Neill, P.; Pereira, N. R.; Presura, R.

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  9. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    PubMed

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  10. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  11. Potential application of X-ray communication through a plasma sheath encountered during spacecraft reentry into earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Li, Huan; Tang, Xiaobin; Hang, Shuang; Liu, Yunpeng; Chen, Da

    2017-03-01

    Rapid progress in exploiting X-ray science has fueled its potential application in communication networks as a carrier wave for transmitting information through a plasma sheath during spacecraft reentry into earth's atmosphere. In this study, we addressed the physical transmission process of X-rays in the reentry plasma sheath and near-earth space theoretically. The interactions between the X-rays and reentry plasma sheath were investigated through the theoretical Wentzel-Kramers-Brillouin method, and the Monte Carlo simulation was employed to explore the transmission properties of X-rays in the near-earth space. The simulation results indicated that X-ray transmission was not influenced by the reentry plasma sheath compared with regular RF signals, and adopting various X-ray energies according to different spacecraft reentry altitudes is imperative when using X-ray uplink communication especially in the near-earth space. Additionally, the performance of the X-ray communication system was evaluated by applying the additive white Gaussian noise, Rayleigh fading channel, and plasma sheath channel. The Doppler shift, as a result of spacecraft velocity changes, was also calculated through the Matlab Simulink simulation, and various plasma sheath environments have no significant influence on X-ray communication owing to its exceedingly high carrier frequency.

  12. Diffuse X-ray sky in the Galactic center

    NASA Astrophysics Data System (ADS)

    Koyama, Katsuji

    2018-01-01

    The Galactic diffuse X-ray emission (GDXE) in the Milky Way Galaxy is spatially and spectrally decomposed into the Galactic center X-ray emission (GCXE), the Galactic ridge X-ray emission (GRXE), and the Galactic bulge X-ray emission (GBXE). The X-ray spectra of the GDXE are characterized by the strong K-shell lines of the highly ionized atoms, and the brightest lines are the K-shell transition (principal quantum number transition of n = 2 → 1) of neutral iron (Fe I-Kα), He-like iron (Fe XXV-Heα), and He-like sulfur (S XV-Heα). Accordingly, the GDXE is composed of a high-temperature plasma of ˜7 keV (HTP) and a low-temperature plasma of ˜1 keV, which emit the Fe XXV-Heα and S XV-Heα lines, respectively. The Fe I-Kα line is emitted from nearly neutral irons, and hence the third component of the GDXE is a cool gas (CG). The Fe I-Kα distribution in the GCXE region is clumpy (Fe I-Kα clump), associated with giant molecular cloud (MC) complexes (Sagittarius A, B, C, D, and E) in the central molecular zone. The origin of the Fe I-Kα clumps is the fluorescence and Thomson scattering from the MCs irradiated by past big flares of the supermassive black hole Sagittarius A*. The scale heights and equivalent widths of the Fe I-Kα, Fe XXV-Heα, and Fe XXVI-Lyα (n = 2 → 1 transition of H-like iron) lines are different among the GCXE, GBXE, and GRXE. Therefore, their structures and origins are separately examined. This paper gives an overview of the research history and the present understandings of the GDXE, while in particular focusing on the origin of the HTP and CG in the GCXE.

  13. Research of X-ray curved crystals analyzer

    NASA Astrophysics Data System (ADS)

    Xiao, Shali; Xong, Xian-cai; Qian, Jia-yu; Zhong, Xian-xin; Yan, Guo-hong; Liu, Zhong-li; Ding, Yong-kun

    2005-08-01

    X-ray spectrograph has long been used as a means of diagnosing conditions of laser-produced plasmas, as information concerning both the temperature and density can be extracted from the emitted radiation. For the measurement of X-ray lines in the energy range of 0.6-6 keV, A curved crystal X-ray spectrometer of reflection type elliptical geometry is required. In order to obtain both high resolution and collection efficiency the elliptical geometry is more advantageous than the flat configurations. Elliptical curved crystals spectrograph with a relatively wide spectral range are of particular use for deducing electron temperatures by measurement of the ratios of lines associated with different charge states. Curved crystals analyzer was designed and manufactured for use on an experiment to investigate the properties of laser produced plasmas. The spectrograph has 1350mm focal length and for these measurements, utilized PET, LIF, KAP and MICA crystal bent onto an elliptical substrate. This crystal analyzer covers the Bragg angel range from 30 to 67.5. The analyzer based on elliptically geometrical principle, which has self-focusing characteristics. The experiment was carried out on Shanghai Shengguang-II Facility and aimed to investigate the characteristics of a high density plasma. Experimental results using Curved crystal analyzer are described which show spectrum of Ti, Au laser-plasma. The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal. Spectra showing the main resonance line were recorded with X-ray CCD and with laser energies 150J laser wavelength 350nm. The calculated wavelength resolution is about 500-1000.

  14. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  15. Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.

    2015-11-01

    Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.

  16. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  17. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  18. The X-ray emitting galaxy Cen-A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Sercemitsos, P. J.; Becker, R. H.; Boldt, E. A.; Holt, S. S.

    1977-01-01

    OSO-8 X-ray observations of Cen-A in 1975 and 1976 are reported. The source spectrum is well fit in both years by a power law of number index 1.62 and absorption due to 1.3 x 10 to the 23rd power at/sq cm. The total flux varied by a factor 2 between 1975 and 1976. In 1976 there were approximately 40% flux variations on a time scale of days. The 6.4 keV Fe fluorescent line and the 7.1 keV absorption edge were measured implying Fe/H approximately equals .000016. Simultaneous radio measurements show variation in phase with X-ray variability. Models considering radio, milimeter, IR and X-ray data show that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H(2) cloud.

  19. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  20. Rest-wavelength fiducials for the ITER core imaging x-ray spectrometer.

    PubMed

    Beiersdorfer, P; Brown, G V; Graf, A T; Bitter, M; Hill, K W; Kelley, R L; Kilbourne, C A; Leutenegger, M A; Porter, F S

    2012-10-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W(64+), which has become the line of choice for the ITER (Latin "the way") core imaging x-ray spectrometer. Close-by standards are the Hf Lβ(3) line and the Ir Lα(2) line, which bracket the W(64+) line by ±30 eV; other standards are given by the Ir Lα(1) and Lα(2) lines and the Hf Lβ(1) and Lβ(2) lines, which bracket the W(64+) line by ±40 and ±160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W(64+) line obtained both with an x-ray microcalorimeter and a crystal spectrometer.

  1. Rest-wavelength Fiducials for the ITER Core Imaging X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Graf, A. T.; Bitter, M.; Hill, K. W.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; Porter, F. S.

    2012-01-01

    Absolute wavelength references are needed to derive the plasma velocities from the Doppler shift of a given line emitted by a moving plasma. We show that such reference standards exist for the strongest x-ray line in neonlike W64+, which has become the line of choice for the ITER (Latin the way) core imaging x-ray spectrometer. Close-by standards are the Hf L3 line and the Ir L2 line, which bracket the W64+ line by 30 eV; other standards are given by the Ir L1 and L2 lines and the Hf L1 and L2 lines, which bracket the W64+ line by 40 and 160 eV, respectively. The reference standards can be produced by an x-ray tube built into the ITER spectrometer. We present spectra of the reference lines obtained with an x-ray microcalorimeter and compare them to spectra of the W64+ line obtained both with an x-ray microcalorimeter and a crystal spectrometer

  2. The Kinematic and Plasma Properties of X-Ray Knots in Cassiopeia A from the Chandra HETGS

    NASA Astrophysics Data System (ADS)

    Lazendic, J. S.; Dewey, D.; Schulz, N. S.; Canizares, C. R.

    2006-11-01

    We present high-resolution X-ray spectra from the young supernova remnant Cas A using a 70 ks observation taken by the Chandra High Energy Transmission Grating Spectrometer (HETGS). Line emission, dominated by Si and S ions, is used for high-resolution spectral analysis of many bright, narrow regions of Cas A to examine their kinematics and plasma state. These data allow a three-dimensional (3D) reconstruction using the unprecedented X-ray kinematic results: we derive unambiguous Doppler shifts for these selected regions, with values ranging between -2500 and +4000 km s-1 and the typical velocity error less than 200 km s-1. Plasma diagnostics of these regions, derived from line ratios of resolved He-like triplet lines and H-like lines of Si, indicate temperatures largely around 1 keV, which we model as O-rich reverse-shocked ejecta. The ionization age also does not vary considerably over these regions of the remnant. The gratings analysis was complemented by the nondispersed spectra from the same data set, which provided information on emission measure and elemental abundances for the selected Cas A regions. The derived electron density of X-ray emitting ejecta varies from 20 to 200 cm-3. The measured abundances of Mg, Si, S, and Ca are consistent with O being the dominant element in the Cas A plasma. With a diameter of 5', Cas A is the largest source observed with the HETGS to date. We therefore describe the technique we use and some of the challenges we face in the HETGS data reduction from such an extended, complex object.

  3. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  4. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  5. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faussurier, Gérald, E-mail: gerald.faussurier@cea.fr; Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  6. Laser-driven powerful kHz hard x-ray source

    NASA Astrophysics Data System (ADS)

    Li, Minghua; Huang, Kai; Chen, Liming; Yan, Wenchao; Tao, Mengze; Zhao, Jiarui; Ma, Yong; Li, Yifei; Zhang, Jie

    2017-08-01

    A powerful hard x-ray source based on laser plasma interaction is developed. By introducing the kHz, 800 nm pulses onto a rotating molybdenum (Mo) disk target, intense Mo Kα x-rays are emitted with suppressed bremsstrahlung background. Results obtained with different laser intensities suggest that the dominant absorption mechanism responsible for the high conversion efficiency is vacuum heating (VH). The high degree of spatial coherence is verified. With the high average flux and a source size comparable to the laser focus spot, absorption contrast imaging and phase contrast imaging are carried out to test the imaging capability of the source. Not only useful for imaging application, this compact x-ray source is also holding great potential for ultrafast x-ray diffraction (XRD) due to the intrinsic merits such as femtosecond pulse duration and natural synchronization with the driving laser pulses.

  7. X-Ray Shadowing Experiments Toward Infrared Dark Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, L. E.; Snowden, S.; Bania, T. M.

    2009-01-01

    We searched for X-ray shadowing toward two infrared dark clouds (IRDCs) using the MOS detectors on XMM-Newton to learn about the Galactic distribution of X-ray emitting plasma. IRDCs make ideal X-ray shadowing targets of 3/4 keY photons due to their high column densities, relatively large angular sizes, and known kinematic distances. Here we focus on two clouds near 30 deg Galactic longitude at distances of 2 and 5 kpc from the Sun. We derive the foreground and background column densities of molecular and atomic gas in the direction of the clouds. We find that the 3/4 ke V emission must be distributed throughout the Galactic disk. It is therefore linked to the structure of the cooler material of the ISM, and to the birth of stars.

  8. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    NASA Astrophysics Data System (ADS)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Arefiev, Alexey V.; Zhang, Xi; Zgadzaj, Rafal; Henderson, Watson; Khudik, V.; Shvets, G.; Downer, M. C.

    2015-02-01

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a0 ˜ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic "denting" of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75-200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (˜6 × 10-12) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  9. An extended soft X-ray source in Delphinus - H2027+19

    NASA Technical Reports Server (NTRS)

    Stern, R. A.; Walker, A. B. C.; Charles, P. A.; Nugent, J. J.; Garmire, G. P.

    1980-01-01

    A new extended soft X-ray source has been observed with the HEAO 1 A-2 experiment. The source, H2027+19, emits primarily in the 0.16-0.4 keV band with a total flux in this band of 2 x 10 to the -11th erg/sq cm s. It is found that both simple continuum and coronal plasma models provide good fits to the observed pulse-height spectrum. The most likely physical models are either that the source is an old supernova remnant or that it is a region of enhanced soft X-ray emission surrounding an H I cloud imbedded in a coronal plasma, as suggested by Hayakawa et al. (1979) for the Lupus Loop.

  10. Properties of the X-ray emitting gas in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Canizares, Claude R.; Fabbiano, Giuseppina; Trinchieri, Ginevra

    1987-01-01

    The properties of the X-ray emitting gas in a sample of 81 E and S0 galaxies observed with the Einstein Observatory are studied. Measured fluxes for 55 of the galaxies and upper limits for 26 of them are reported. An attempt is made to use consistent optical parameters for the galaxies, including a correction to the velocities for the Virgocentric flow. The sample is then used to explore the contribution from discrete sources, the global physical properties of the hot gas, and the implications for heating by supernovae and gravity. Finally, the question of the presence of heavy halos is addressed.

  11. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  12. Lightweight Target Generates Bright, Energetic X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    fraction of 1 percent. Solid targets have low efficiencies because much of the laser energy is deposited far from the target's x-ray emitting region, and the energy is carried by the relatively slow process of thermal conduction. ''The laser beam ablates material from the massive target, and that material moves away from the target's surface'', says Fournier. With a nanosecond pulse or longer, the laser interacts with the blow-off plasma rather than the remaining bulk sample. As a result, much of the laser's energy goes into the kinetic energy of the blow-off material, not into heating the bulk of the foil.« less

  13. The X-ray emitting galaxy Centaurus A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Becker, R. H.

    1978-01-01

    OSO-8 X-ray observations of Cen A in 1975 and 1976 are reported. The source spectrum can be well fitted in both years by a power law of number index 1.66 and absorption due to 1.3 by 10 to the 23rd power atoms/sq cm. The total flux varied by a factor of 2 between 1975 and 1976. In 1976 there were flux variations of approximately 40% on a time scale of days. Measurements of the 6.4-keV Fe fluorescent line and the 7.1-keV absorption edge imply Fe/H of approximately 0.000016. Simultaneous radio measurements show variation in phase with X-ray variability. Consideration of radio, millimeter, infrared, and X-ray data shows that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H2 cloud.

  14. Design of T-GEM detectors for X-ray diagnostics on JET

    NASA Astrophysics Data System (ADS)

    Rzadkiewicz, J.; Dominik, W.; Scholz, M.; Chernyshova, M.; Czarski, T.; Czyrkowski, H.; Dabrowski, R.; Jakubowska, K.; Karpinski, L.; Kasprowicz, G.; Kierzkowski, K.; Pozniak, K.; Salapa, Z.; Zabolotny, W.; Blanchard, P.; Tyrrell, S.; Zastrow, K.-D.; JET EFDA Contributors

    2013-08-01

    Upgraded high-resolution X-ray diagnostics on JET is expected to monitor the plasma radiation emitted by W46+ and Ni26+ ions at 2.4 keV and 7.8 keV photon energies, respectively. Both X-ray lines will be monitored by new generation energy-resolved micropattern gas detectors with 1-D position reconstruction capability. The detection structure is based on triple GEM (T-GEM) amplification structure followed by the strip readout electrode. This article presents a design of new detectors and prototype detector tests.

  15. Coronal Properties of X-ray bright stars in young associations: abundances, temperatures and variability

    NASA Astrophysics Data System (ADS)

    Argiroffi, Costanza

    2006-03-01

    In this work I have investigated open issues related to the X-ray radiation from young stars, including heating mechanisms of the emitting plasma, its chemical composition, and possible effects due to circumstellar accretion disks. To this aim, I have analyzed observations of young nearby stars taken with the X-ray observatories XMM-Newton and Chandra. For a detailed study of the characteristics of the X-ray emitting plasma, I have selected two X-ray bright young stars, TWA 5 and PZ Tel, for which high-resolution X-ray spectroscopy was achievable, and two regions of the young stellar association Upper Scorpius (USco), for which X-ray images and medium-resolution spectra of individual sources were obtained. TWA 5 is a 10 Myr old star in the TW Hydrae association, which is still accreting material from its circumstellar envelope, while PZ Tel is a ? 12 Myr star in the beta Pictoris moving group, which already dissipated its circumstellar disk. The different evolutionary stages of these two stars allow to probe whether X-ray emission is produced, or affected, by accretion processes. High-resolution X-ray spectra of TWA 5 and PZ Tel were gathered with the grating spectrometers on board XMM-Newton and Chandra, respectively. From the measurements of individual emission line fluxes in their X-ray spectra, I have derived emission measure distributions vs. temperature, abundances, and electron densities of the X-ray emitting plasma. I have found that, in spite of their different evolutionary status, hot (T ? 10 MK) plasma is the main responsible for the observed X-ray emission of both stars. The hot plasma on TWA 5 displays peculiar element abundances with respect to the solar photospheric composition with Ne/Fe ? 10(Ne/Fe), while the coronal plasma on PZ Tel shows Ne/Fe ? 3(Ne/Fe). To explain the strong Fe underabundance (? 0.1 Fe) and the extremely high Ne/Fe ratio of TWA 5 I have considered three different scenarios: (1) coronal plasma may be affected by selective

  16. Production of hard X rays in a plasma focus

    NASA Technical Reports Server (NTRS)

    Newman, C. E.; Petrosian, V.

    1975-01-01

    A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.

  17. The effect of beam-driven return current instability on solar hard X-ray bursts

    NASA Technical Reports Server (NTRS)

    Cromwell, D.; Mcquillan, P.; Brown, J. C.

    1986-01-01

    The problem of electrostatic wave generation by a return current driven by a small area electron beam during solar hard X-ray bursts is discussed. The marginal stability method is used to solve numerically the electron and ion heating equations for a prescribed beam current evolution. When ion-acoustic waves are considered, the method appears satisfactory and, following an initial phase of Coulomb resistivity in which T sub e/T sub i rise, predicts a rapid heating of substantial plasma volumes by anomalous ohmic dissipation. This hot plasma emits so much thermal bremsstrahlung that, contrary to previous expectations, the unstable beam-plasma system actually emits more hard X-rays than does the beam in the purely collisional thick target regime relevant to larger injection areas. Inclusion of ion-cyclotron waves results in ion-acoustic wave onset at lower T sub e/T sub i and a marginal stability treatment yields unphysical results.

  18. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30 fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ∼ 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jetmore » exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic “denting” of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75–200 KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (∼6 × 10{sup −12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.« less

  19. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  20. Low Energy X-Ray and Electron Physics and Technology for High-Temperature Plasma Diagnostics

    DTIC Science & Technology

    1987-10-01

    This program in low-energy x-ray physics and technology has expanded into a major program with the principal objective of supporting research and application programs at the new large x-ray source facilities, particularly the high temperature plasma and synchrotron radiation sources. This program addresses the development of absolute x-ray diagnostics for the fusion energy and x-ray laser research and development. The new laboratory includes five specially designed

  1. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  2. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosionmore » stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.« less

  3. Redshifted X-rays from the material accreting onto TW Hydrae: Evidence of a low-latitude accretion spot

    NASA Astrophysics Data System (ADS)

    Argiroffi, C.; Drake, J. J.; Bonito, R.; Orlando, S.; Peres, G.; Miceli, M.

    2017-10-01

    Context. High resolution spectroscopy, providing constraints on plasma motions and temperatures, is a powerful means to investigate the structure of accretion streams in classical T Tauri stars (CTTS). In particular, the accretion shock region, where the accreting material is heated to temperatures of a few million degrees as it continues its inward bulk motion, can be probed by X-ray spectroscopy. Aims: In an attempt to detect for the first time the motion of this X-ray-emitting post-shock material, we searched for a Doppler shift in the deep Chandra High Energy Transmission Grating observation of the CTTS TW Hya. This test should unveil the nature of this X-ray emitting plasma component in CTTS and constrain the accretion stream geometry. Methods: We searched for a Doppler shift in the X-ray emission from TW Hya with two different methods: by measuring the position of a selected sample of emission lines and by fitting the whole TW Hya X-ray spectrum, allowing the line-of-sight velocity to vary. Results: We found that the plasma at T 2 - 4 MK has a line-of-sight velocity of 38.3 ± 5.1 km s-1 with respect to the stellar photosphere. This result definitively confirms that this X-ray-emitting material originates in the post-shock region, at the base of the accretion stream, and not in coronal structures. The comparison of the observed velocity along the line of sight, 38.3 ± 5.1 km s-1, with the inferred intrinsic velocity of the post shock of TW Hya, vpost ≈ 110 - 120 km s-1, indicates that the footpoints of the accretion streams on TW Hya are located at low latitudes on the stellar surface. Conclusions: Our results indicate that complex magnetic field geometries, such as those of TW Hya, permit low-latitude accretion spots. Moreover, since on TW Hya the redshift of the soft X-ray emission is very similar to that of the narrow component of the C iv resonance doublet at 1550 Å, then the plasma at 2 - 4 MK and that at 0.1 MK likely originate in the same post

  4. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  5. Production of photoionized plasmas in the laboratory with x-ray line radiation

    NASA Astrophysics Data System (ADS)

    White, S.; Irwin, R.; Warwick, J. R.; Gribakin, G. F.; Sarri, G.; Keenan, F. P.; Riley, D.; Rose, S. J.; Hill, E. G.; Ferland, G. J.; Han, B.; Wang, F.; Zhao, G.

    2018-06-01

    In this paper we report the experimental implementation of a theoretically proposed technique for creating a photoionized plasma in the laboratory using x-ray line radiation. Using a Sn laser plasma to irradiate an Ar gas target, the photoionization parameter, ξ =4 π F /Ne , reached values of order 50 ergcm s-1 , where F is the radiation flux in ergc m-2s-1 . The significance of this is that this technique allows us to mimic effective spectral radiation temperatures in excess of 1 keV. We show that our plasma starts to be collisionally dominated before the peak of the x-ray drive. However, the technique is extendable to higher-energy laser systems to create plasmas with parameters relevant to benchmarking codes used to model astrophysical objects.

  6. Tenth International Colloquium on UV and X-Ray Spectroscopy of Astrophysical and Laboratory Plasmas

    NASA Astrophysics Data System (ADS)

    Silver, Eric H.; Kahn, Steven M.

    UV and X-ray spectroscopy of astrophysical and laboratory plasmas draws interest from many disciplines. Contributions from international specialists are collected together in this book from a timely recent conference. In astrophysics, the Hubble Space Telescope, Astro 1 and ROSAT observatories are now providing UV and X-ray spectra and images of cosmic sources in unprecedented detail, while the Yohkoh mission recently collected superb data on the solar corona. In the laboratory, the development of ion-trap facilities and novel laser experiments are providing vital new data on high temperature plasmas. Recent innovations in the technology of spectroscopic instrumentation are discussed. These papers constitute an excellent up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. These proceedings give an up-to-date review of developments in short-wavelength spectroscopy and offer a solid introduction to its theoretical and experimental foundations. Various speakers presented some of the first results from the high resolution spectrograph on the Hubble Space Telescope, the high sensitivity far ultraviolet and X-ray spectrometers of the ASTRO 1 Observatory, the imaging X-ray spectrometer on the ROSAT Observatory, and the high resolution solar X-ray spectrometer on Yohkoh. The development of ion trap devices had brought about a revolution in laboratory investigations of atomic processes in highly charged atoms. X-ray laser experiments had not only yielded considerable insight into electron ion interactions in hot dense plasmas, but also demonstrated the versatility of laser plasmas as laboratory X-ray sources. Such measurements also motivated and led to refinements in the development of large-scale atomic and molecular codes. On the instrumental side, the design and development of the next series of very powerful short wavelength observatories had generated a large number of

  7. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H.more » Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.« less

  8. Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Fein, Jeffrey R.

    This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced

  9. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  10. Study of X-ray photoionized Fe plasma and comparisons with astrophysical modeling codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foord, M E; Heeter, R F; Chung, H

    The charge state distributions of Fe, Na and F are determined in a photoionized laboratory plasma using high resolution x-ray spectroscopy. Independent measurements of the density and radiation flux indicate the ionization parameter {zeta} in the plasma reaches values {zeta} = 20-25 erg cm s{sup -1} under near steady-state conditions. A curve-of-growth analysis, which includes the effects of velocity gradients in a one-dimensional expanding plasma, fits the observed line opacities. Absorption lines are tabulated in the wavelength region 8-17 {angstrom}. Initial comparisons with a number of astrophysical x-ray photoionization models show reasonable agreement.

  11. X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.

    2005-01-01

    Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.

  12. A High Speed, Radiation Hard X-Ray Imaging Spectroscometer for Planetary Investigations

    NASA Technical Reports Server (NTRS)

    Kraft, R. P.; Kenter, A. T.; Murray, S. S.; Martindale, A.; Pearson, J.; Gladstone, R.; Branduardi-Raymont, G.; Elsner, R.; Kimura, T.; Ezoe, Y.; hide

    2014-01-01

    X-ray observations provide a unique window into fundamental processes in planetary physics, and one that is complementary to observations obtained at other wavelengths. We propose to develop an X-ray imaging spectrometer (0.1-10 keV band) that, on orbital planetary missions, would measure the elemental composition, density, and temperature of the hot plasma in gas giant magnetospheres, the interaction of the Solar wind with the upper atmospheres of terrestrial planets, and map the elemental composition of the surfaces of the Galilean moons and rocky or icy airless systems on spatial scales as small as a few meters. The X-ray emission from gas giants, terrestrial planets and moons with atmospheres, displays diverse characteristics that depend on the Solar wind's interaction with their upper atmospheres and/or magnetospheres. Our imaging spectrometer, as part of a dedicated mission to a gas giant, will be a paradigm changing technology. On a mission to the Jovian system, our baseline instrument would map the elemental composition of the rocky and icy surfaces of the Galilean moons via particle-induced X-ray fluorescence. This instrument would also measure the temperature, density and elemental abundance of the thermal plasma in the magnetosphere and in the Io plasma torus (IPT), explore the interaction of the Solar wind with the magnetosphere, and characterize the spectrum, flux, and temporal variability of X-ray emission from the polar auroras. We will constrain both the mode of energy transport and the effective transport coefficients in the IPT and throughout the Jovian magnetosphere by comparing temporal and spatial variations of the X-ray emitting plasma with those seen from the cooler but energetically dominant 5 eV plasma.

  13. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  14. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  15. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less

  16. Influence of Xe and Kr impurities on x-ray yield from debris-free plasma x-ray sources with an Ar supersonic gas jet irradiated by femtosecond near-infrared-wavelength laser pulses

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Schultz, K. A.; Shlyaptseva, V. V.; Petrov, G. M.; Safronova, A. S.; Petkov, E. E.; Moschella, J. J.; Shrestha, I.; Cline, W.; Wiewior, P.; Chalyy, O.

    2016-11-01

    Many aspects of physical phenomena occurring when an intense laser pulse with subpicosecond duration and an intensity of 1018-1019W /cm2 heats an underdense plasma in a supersonic clustered gas jet are studied to determine the relative contribution of thermal and nonthermal processes to soft- and hard-x-ray emission from debris-free plasmas. Experiments were performed at the University of Nevada, Reno (UNR) Leopard laser operated with a 15-J, 350-fs pulse and different pulse contrasts (107 or 105). The supersonic linear (elongated) nozzle generated Xe cluster-monomer gas jets as well as jets with Kr-Ar or Xe-Kr-Ar mixtures with densities of 1018-1019cm-3 . Prior to laser heating experiments, all jets were probed with optical interferometry and Rayleigh scattering to measure jet density and cluster distribution parameters. The supersonic linear jet provides the capability to study the anisotropy of x-ray yield from laser plasma and also laser beam self-focusing in plasma, which leads to efficient x-ray generation. Plasma diagnostics included x-ray diodes, pinhole cameras, and spectrometers. Jet signatures of x-ray emission from pure Xe gas, as well as from a mixture with Ar and Kr, was found to be very different. The most intense x-ray emission in the 1-9 KeV spectral region was observed from gas mixtures rather than pure Xe. Also, this x-ray emission was strongly anisotropic with respect to the direction of laser beam polarization. Non-local thermodynamic equilibrium (Non-LTE) models have been implemented to analyze the x-ray spectra to determine the plasma temperature and election density. Evidence of electron beam generation in the supersonic jet plasma was found. The influence of the subpicosecond laser pulse contrast (a ratio between the laser peak intensity and pedestal pulse intensity) on the jets' x-ray emission characteristics is discussed. Surprisingly, it was found that the x-ray yield was not sensitive to the prepulse contrast ratio.

  17. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Chakera, J. A.; Naik, P. A.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available formore » time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.« less

  18. Hard X-Ray Burst Detected From Caltech Plasma Jet Experiment Magnetic Reconnection Event

    NASA Astrophysics Data System (ADS)

    Marshall, Ryan S.; Bellan, Paul M.

    2016-10-01

    In the Caltech plasma jet experiment a 100 kA MHD driven jet becomes kink unstable leading to a Rayleigh-Taylor instability that quickly causes a magnetic reconnection event. Movies show that the Rayleigh-Taylor instability is simultaneous with voltage spikes across the electrodes that provide the current that drives the jet. Hard x-rays between 4 keV and 9 keV have now been observed using an x-ray scintillator detector mounted just outside of a kapton window on the vacuum chamber. Preliminary results indicate that the timing of the x-ray burst coincides with a voltage spike on the electrodes occurring in association with the Rayleigh-Taylor event. The x-ray signal accompanies the voltage spike and Rayleigh-Taylor event in approximately 50% of the shots. A possible explanation for why the x-ray signal is sometimes missing is that the magnetic reconnection event may be localized to a specific region of the plasma outside the line of sight of the scintillator. The x-ray signal has also been seen accompanying the voltage spike when no Rayleigh-Taylor is observed. This may be due to the interframe timing on the camera being longer than the very short duration of the Rayleigh-Taylor instability.

  19. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toalá, J. A.; Guerrero, M. A.; Gruendl, R. A.

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ∼1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ∼ 1.4 × 10{sup 6} K, T {sub 2} ∼ 7.4 × 10{sup 6} K). Wemore » confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ≳ 0.4 cm{sup –3} for a total mass ≳ 1.2 M {sub ☉}.« less

  20. Explosive plasma flows in a solar flare

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.; Canfield, Richard C.; Metcalf, Thomas R.; Strong, Keith T.

    1988-01-01

    Solar Maximum Mission soft X-ray data and Sacramento Peak Observatory H-alpha observations are combined in a study of the impulsive phase of a solar flare. A blue asymmetry, indicative of upflows, was observed in the coronal Ca XIX line during the soft X-ray rise phase. A red asymmetry, indicative of downflows, was observed simultaneously in chromospheric H-alpha emitted from bright flare kernels during the period of hard X-ray emission. Combining the velocity data with a measurement of coronal electron density, it is shown that the impulsive phase momentum of upflowing soft X-ray-emitting plasma equalled that of the downflowing H-alpha-emitting plasma to within one order of magnitude. In particular, the momentum of the upflowing plasma was 2 x 10 to the 21st g cm/s while that of the downflowing plasma was 7 x 10 to the 21st g cm/s, with a factor of 2 uncertainty on each value. This equality supports the explosive chromospheric evaporation model of solar flares, in which a sudden pressure increase at the footprint of a coronal loop produces oppositely directed flows in the heated plasma.

  1. ASCA Observation of an "X-Ray Shadow" in the Galactic Plane

    NASA Technical Reports Server (NTRS)

    Park, Sangwook; Ebisawa, Ken

    2001-01-01

    The diffuse X-ray background (DXB) emission near the Galactic plane (l,b approximately 25.6 degrees, 0.78 degrees) has been observed with ASCA (Advanced Satellite for Cosmology and Astrophysics). The observed region is toward a Galactic molecular cloud which was recently reported to cast a deep X-ray shadow in the 0.5 - 2.0 keV band DXB. The selection of this particular region is intended to provide a constraint on the spatial distribution of the DXB emission along the line of sight: i.e., the molecular cloud is optically thick at <2 keV and so the bulk of the observed soft X-rays must originate in the foreground of the cloud, which is at approximately 3 kpc from the Sun. In the 0.8 - 9.0 keV band, the observed spectrum is primarily from multiple components of thermal plasmas. We here report a detection of soft X-ray (0.5 - 2 keV) emission from an approximately 10(exp 7) K thermal plasma. Comparisons with the ROSAT (Roentgen Satellite) data suggest that this soft X-ray emission is absorbed by N(sub H) = 1 - 3 x 10(exp 21) cm(exp -2), which implies a path-length through the soft X-ray emitting regions of approximately less than 1 kpc from the Sun.

  2. Numerical experiments on neutron yield and soft x-ray study of a ˜100 kJ plasma focus using the current profile fitting technique

    NASA Astrophysics Data System (ADS)

    Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.

    2014-07-01

    Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.

  3. Search for thermal X-ray features from the Crab nebula with the Hitomi soft X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sato, Toshiki; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Tominaga, Nozomu; Moriya, Takashi J.

    2018-03-01

    The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 AD. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core-collapse SN. Intensive searches have been made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that SN 1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core-collapse SNe. X-ray imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit on the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter on board the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from as yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of ≲ 1 M⊙ for a wide range of assumed shell radius, size, and plasma temperature values both in and out of collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform interstellar medium versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of ≲ 0.03 cm-3 (Fe core) or ≲ 0.1 cm-3 (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by a mass loss rate of 10-5 M⊙ yr-1 at 20 km s-1 for the wind environment.

  4. Physical parameters in long-decay coronal enhancements. [from Skylab X ray observations

    NASA Technical Reports Server (NTRS)

    Maccombie, W. J.; Rust, D. M.

    1979-01-01

    Four well-observed long-decay X-ray enhancements (LDEs) are examined which were associated with filament eruptions, white-light transients, and loop prominence systems. In each case the physical parameters of the X-ray-emitting plasma are determined, including the spatial distribution and temporal evolution of temperature and density. The results and recent analyses of other aspects of the four LDEs are compared with current models of loop prominence systems. It is concluded that only a magnetic-reconnection model, such as that proposed by Kopp and Pneuman (1976) is consistent with the observations.

  5. Efficient UV-emitting X-ray phosphors: octahedral Zr(PO 4) 6 luminescence centers in potassium hafnium-zirconium phosphates K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3

    NASA Astrophysics Data System (ADS)

    Torardi, C. C.; Miao, C. R.; Li, J.

    2003-02-01

    Potassium hafnium-zirconium phosphates, K 2Hf 1- xZr x(PO 4) 2 and KHf 2(1- x) Zr 2 x(PO 4) 3, are broad-band UV-emitting phosphors. At room temperature, they have emission peak maxima at approximately 322 and 305 nm, respectively, under 30 kV peak molybdenum X-ray excitation. Both phosphors demonstrate luminescence efficiencies that make them up to ˜60% as bright as commercially available CaWO 4 Hi-Plus. The solid-state and flux synthesis conditions, and X-ray excited UV luminescence of these two phosphors are discussed. Even though the two compounds have different atomic structures, they contain zirconium in the same active luminescence environment as that found in highly efficient UV-emitting BaHf 1- xZr x(PO 4) 2. All the three materials have hafnium and zirconium in octahedral coordination via oxygen-atom corner sharing with six separate PO 4 tetrahedra. This octahedral Zr(PO 4) 6 moiety appears to be an important structural element for efficient X-ray excited luminescence, as are the edge-sharing octahedral TaO 6 chains for tantalate emission.

  6. Comparing plasma and X-ray exposure and identifying vulnerable cell parts

    NASA Astrophysics Data System (ADS)

    Graham, Bill

    2012-10-01

    Here two issues in plasma medicine that are being addressed in a collaboration between the Centre of Plasma Physics and the School of Pharmacy at Queen's University Belfast and the Plasma Institute at York University UK will be discussed. Recent measurements of the interaction of plasmas created directly in DMEM cell medium and MDAMB-231, a human breast cancer cell line, showed evidence of reduced cell viability and of DNA damage. The same set of experiments were undertaken but with X-ray exposure. A correlation of the dependence on plasma exposure time and X-ray dose was observed which might point the way to dose definition in plasma medicine. We have also been working to identify the cell parts most vulnerable to plasma exposure. In this study a 10 kHz atmospheric pressure non-thermal plasma jet, operating in He/0.5%O2 and characterized to determine the behavior of many of the plasma species, was incident onto the surface of media containing either bacterial strains, in their planktonic and biofilm forms, or isolated bacterial plasmid DNA. The results of measurements to look for changes in plasmid structural conformation, rates of single and double strand breaks, the catalytic activity of certain bacterial enzymes, the peroxidation of lipid content of the bacterial cells, the leakage of ATP and Scanning Electron Microscope (SEM) images will be discussed.

  7. Hit detection in serial femtosecond crystallography using X-ray spectroscopy of plasma emission.

    PubMed

    Jönsson, H Olof; Caleman, Carl; Andreasson, Jakob; Tîmneanu, Nicuşor

    2017-11-01

    Serial femtosecond crystallography is an emerging and promising method for determining protein structures, making use of the ultrafast and bright X-ray pulses from X-ray free-electron lasers. The upcoming X-ray laser sources will produce well above 1000 pulses per second and will pose a new challenge: how to quickly determine successful crystal hits and avoid a high-rate data deluge. Proposed here is a hit-finding scheme based on detecting photons from plasma emission after the sample has been intercepted by the X-ray laser. Plasma emission spectra are simulated for systems exposed to high-intensity femtosecond pulses, for both protein crystals and the liquid carrier systems that are used for sample delivery. The thermal radiation from the glowing plasma gives a strong background in the XUV region that depends on the intensity of the pulse, around the emission lines from light elements (carbon, nitrogen, oxygen). Sample hits can be reliably distinguished from the carrier liquid based on the characteristic emission lines from heavier elements present only in the sample, such as sulfur. For buffer systems with sulfur present, selenomethionine substitution is suggested, where the selenium emission lines could be used both as an indication of a hit and as an aid in phasing and structural reconstruction of the protein.

  8. SCO X-1: Origin of the radio and hard X-ray emissions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Cheng, C. C.; Tsuruta, S.

    1973-01-01

    The consequences of models for the central radio source and the hard X-ray ( 30 keV) emitting region in Sco X-1 are examined. It was found that the radio emission could result from noncoherent synchrotron radiation and that the X-rays may be produced by bremsstrahlung. It is shown that both mechanisms require a mass outflow from Sco X-1. The radio source is located at r approximately 3x10 to the 12th power cm from the center of the star, and its linear dimensions do not exceed 3x10 to the 13th power cm. The magnetic field in the radio source is on the order of 1 gauss. If the hard X-rays are produced by thermal bremsstrahlung, their source is located at 10 to the 9th power approximately r approximately 5x10 to the 9th power cm, the temperature is 2x10 to the 9th power K, and the emission measure is 2x10 to the 56th power/cu cm. This hot plasma loses energy inward by conduction and outward by supersonic expansion. The rates of energy loss for both processes are about 10 to the 36th power erg/s, comparable to the total luminosity of Sco X-1.

  9. Soft x-ray plasma-based seeded multistage amplification chain.

    PubMed

    Oliva, Eduardo; Fajardo, Marta; Li, Lu; Sebban, Stephane; Ros, David; Zeitoun, Philippe

    2012-10-15

    To date, plasma-based soft x-ray lasers have demonstrated experimentally 1 μJ, 1 ps (1 MW) pulses. This Letter reports extensive study using time-dependant Maxwell-Bloch code of seeding millimeter scale plasmas that store more than 100 mJ in population inversion. Direct seeding of these plasmas has to overcome very strong amplified spontaneous emission (ASE) as well as prevent wake-field amplification. Below 100 nJ injected energy, seed produces pulses with picosecond duration. To overcome this limitation, a new scheme has been studied, taking advantage of a plasma preamplifier that dramatically increases the seed energy prior to entering the main plasma amplifier leading to ASE and wake-free, fully coherent 21.6 μJ, 80 fs pulses (0.27 GW).

  10. A deep X-ray observation of the supernova remnant G304.6+0.1 (Kes 17) using Suzaku

    NASA Astrophysics Data System (ADS)

    Gök, F.; Sezer, A.

    2012-06-01

    In this paper, we present the analysis of a deep (99.6 ks) observation of G304.6+0.1 with the X-ray Imaging Spectrometer on board the Suzaku satellite. The X-ray spectral data are well fitted with a plasma model consisting of a thermal component, in collisional ionization equilibrium, and a non-thermal component. The thermal emission is well fitted with the VMEKAL model with an electron temperature of kTe˜ 0.75 keV, a high absorbing column density of NH˜ 3.9 × 1022 cm-2 and near/lower solar abundances, which indicate that the X-ray emitting plasma of G304.6+0.1 is dominated by a swept-up ambient medium. The non-thermal component is well fitted with a power-law model with a photon index of Γ˜ 1.4. We have found a relatively high electron density ne˜ 2.3f-1/2 cm-3, an age t˜ 1.4 × 104f1/2 yr and an X-ray emitting mass Mx˜ 380f1/2 M⊙ at an adopted distance of d= 10 kpc. Using the morphological and spectral X-ray data, we confirm that the remnant is a new member of the mixed-morphology supernova remnants.

  11. Electromagnetic diagnostics of ECR-Ion Sources plasmas: optical/X-ray imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Mascali, D.; Castro, G.; Altana, C.; Caliri, C.; Mazzaglia, M.; Romano, F. P.; Leone, F.; Musumarra, A.; Naselli, E.; Reitano, R.; Torrisi, G.; Celona, L.; Cosentino, L. G.; Giarrusso, M.; Gammino, S.

    2017-12-01

    Magnetoplasmas in ECR-Ion Sources are excited from gaseous elements or vapours by microwaves in the range 2.45-28 GHz via Electron Cyclotron Resonance. A B-minimum, magnetohydrodynamic stable configuration is used for trapping the plasma. The values of plasma density, temperature and confinement times are typically ne= 1011-1013 cm-3, 01 eVplasmas, in the optical/X-ray domain. Fast Silicon Drift detectors with high energy resolution of 125 eV at 5.9 keV have been used for the characterization of plasma emission at 02X-ray pin-hole camera technique has allowed space resolved X-ray spectroscopy with a spatial resolution down to 30 μm and an energy resolution down to 140 eV at 5.9 keV . In parallel, imaging in the optical range and spectroscopic measurements have been carried out. Relative abundances of H/H2 atoms/molecules in the plasmas have been measured for different values of neutral pressure, microwave power and magnetic field profile (they are critical for high-power proton sources).

  12. Discovery of Diffuse Hard X-ray Emission associated with Jupiter

    NASA Astrophysics Data System (ADS)

    Ezoe, Y.; Miyoshi, Y.; Ishikawa, K.; Ohashi, T.; Terada, N.; Uchiyama, Y.; Negoro, H.

    2009-12-01

    Our discovery of diffuse hard (1-5 keV) X-ray emission around Jupiter is reported. Recent Chandra and XMM-Newton observations revealed several types of X-rays in the vicinity of Jupiter such as auroral and disk emission from Jupiter and faint diffuse X-rays from the Io Plasma Torus (see Bhardwaj et al. 2007 for review). To investigate possible diffuse hard X-ray emission around Jupiter with the highest sensitivity, we conducted data analysis of Suzaku XIS observations of Jupiter on Feb 2006. After removing satellite and planetary orbital motions, we detected a significant diffuse X-ray emission extending to ~6 x 3 arcmin with the 1-5 keV X-ray luminosity of ~3e15 erg/s. The emitting region very well coincided with the Jupiter's radiation belts. The 1-5 keV X-ray spectrum was represented by a simple power law model with a photon index of 1.4. Such a flat continuum strongly suggests non-thermal origin. Although such an emission can be originated from multiple background point sources, its possibility is quite low. We hence examined three mechanisms, assuming that the emission is truly diffuse: bremsstrahlung by keV electrons, synchrotron emission by TeV electrons, and inverse Compton scattering of solar photons by MeV electrons. The former two can be rejected because of the X-ray spectral shape and implausible existence of TeV electrons around Jupiter, respectively. The last possibility was found to be possible because tens MeV electrons, which have been confirmed in inner radiation belts (Bolton et al. 2002), can kick solar photons to the keV energy range and provide a simple power-law continuum. We estimated an average electron density from the X-ray luminosity assuming the oblate spheroid shaped emitting region with 8 x 8 x 4 Jovian radii. The necessary density was 0.02 1/cm3 for 50 MeV electrons. Hence, our results may suggest a new particle acceleration phenomenon around Jupiter.

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-12-01

    This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The Chandra image reveals a large population of extremely bright x-ray sources in this area of intense star formation. These x-ray sources, which emit 10 to several hundred times more x-ray power than similar sources in our own galaxy, are believed to be either massive black holes, or black holes that are beaming their energy toward Earth. In this x-ray image, red represents the low energy band, green intermediate, and blue the highest observed energies. The white and yellow sources are those that emit significant amounts of both low and high energy x-rays. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the gala

  14. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  15. Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in plasmas

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.; Moroz, N. N.

    2017-11-01

    It is shown that for sufficiently short pulses the resonance scattering probability becomes a nonlinear function of the pulse duration. For fs X-ray pulses scattered on atoms in plasmas maxima and minima develop in the nonlinear regime whereas in the limit of long pulses the probability becomes linear and turns over into the standard description of the electromagnetic pulse scattering. Numerical calculations are carried out in terms of a generalized scattering probability for the total time of pulse duration including fine structure splitting and ion Doppler broadening in hot plasmas. For projected X-ray monocycles, the generalized nonlinear approach differs by 1-2 orders of magnitude from the standard theory.

  16. Near-edge x-ray absorption fine structure spectroscopy at atmospheric pressure with a table-top laser-induced soft x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kühl, Frank-Christian, E-mail: Frank-christian.kuehl@mail.de; Müller, Matthias, E-mail: matthias.mueller@llg-ev.de; Schellhorn, Meike

    2016-07-15

    The authors present a table-top soft x-ray absorption spectrometer, accomplishing investigations of the near-edge x-ray absorption fine structure (NEXAFS) in a laboratory environment. The system is based on a low debris plasma ignited by a picosecond laser in a pulsed krypton gas jet, emitting soft x-ray radiation in the range from 1 to 5 nm. For absorption spectroscopy in and around the “water window” (2.3–4.4 nm), a compact helium purged sample compartment for experiments at atmospheric pressure has been constructed and tested. NEXAFS measurements on CaCl{sub 2} and KMnO{sub 4} samples were conducted at the calcium and manganese L-edges, as well asmore » at the oxygen K-edge in air, atmospheric helium, and under vacuum, respectively. The results indicate the importance of atmospheric conditions for an investigation of sample hydration processes.« less

  17. Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers

    NASA Astrophysics Data System (ADS)

    Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane

    2018-02-01

    High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.

  18. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Research in space science and technology. [including X-ray astronomy and interplanetary plasma physics

    NASA Technical Reports Server (NTRS)

    Beckley, L. E.

    1977-01-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include: infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed.

  20. X-ray source characterization of aluminum X-pinch plasmas driven by the 0. 5 TW LION accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, N.; Hammer, D.A.; Kalantar, D.H.

    1989-12-01

    Recent experiments at Cornell have been performed to investigate X-pinch plasmas as intense x-ray sources which might be used to pump resonant photoexcitation lasers. Crossed Al wires have been driven by up to 600 kA current for 40 ns. High density bright spots are observed at the crossing point(s). Various diagnostics were used to characterize the X-pinch plasmas as a function of initial mass loading for several specific wire configurations. The optimum mass loading for different ionization stages of Al, and the total x-ray energy yields, which are on the order of hundreds of Joules, were examined. Estimates of plasmamore » density, {similar to}10{sup 20} cm{sup {minus}3}, and temperature, about 400 eV, were obtained.« less

  1. Dust-gas Interactions in Dusty X-ray Emitting Plasmas

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    Dusty shocked plasmas cool primarily by infrared emission from dust that is collisionally heated by the ambient hot gas. The infrared emission provides therefore an excellent diagnostic of the conditions (density and temperature) of the shocked gas. In this review I will discuss the physical processes in these plasmas, with a particular emphasis on recent infrared observations of the interaction between the blast wave of SN1987a and its equatorial ring.

  2. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    NASA Astrophysics Data System (ADS)

    Piriaei, D.; Mahabadi, T. D.; Javadi, S.; Ghoranneviss, M.; Saw, S. H.; Lee, S.

    2015-12-01

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fitting process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.

  3. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    PubMed Central

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-01-01

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021  W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017  W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230

  4. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE PAGES

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10 21 W/cm 2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E 4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery,more » changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10 17 W/cm 2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  5. Enhanced energy coupling and x-ray emission in Z-pinch plasma implosions

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Thornhill, J. W.; Apruzese, J. P.; Davis, J.; Deeney, C.; Coverdale, C. A.

    2004-08-01

    Recent experiments conducted on the Saturn pulsed-power generator at Sandia National Laboratories [R. B. Spielman et al., in Proceedings of the Second International Conference on Dense Z Pinches, Laguna Beach, CA, 1989, edited by N. R. Pereira, J. Davis, and N. Rostoker (American Institute of Physics, New York, 1989), p. 3] have produced large amounts of x-ray output, which cannot be accounted for in conventional magnetohydrodynamic (MHD) calculations. In these experiments, the Saturn current had a rise time of ~180 ns in contrast to a rise time of ~60 ns in Saturn's earlier mode of operation. In both aluminum and tungsten wire-array Z-pinch implosions, 2-4 times more x-ray output was generated than could be supplied according to one-dimensional (1D) magnetohydrodynamic calculations by the combined action of the j×B acceleration forces and ohmic heating (as described by a classical Braginskii resistivity). In this paper, we reexamine the problem of coupling transmission line circuits to plasma fluid equations and derive expressions for the Z-pinch load circuit resistance and inductance that relate these quantities in a 1D analysis to the surface resistivity of the fluid, and to the magnetic field energy that is stored in the vacuum diode, respectively. Enhanced energy coupling in this analysis, therefore, comes from enhancements to the surface resistivity, and we show that plasma resistivities approximately three orders of magnitude larger than classical are needed in order to achieve energy inputs that are comparable to the Saturn experiment x-ray outputs. Large enhancements of the plasma resistivity increase the rate of magnetic field and current diffusion, significantly modify the qualitative features of the MHD, and raise important questions as to how the plasma fluid dynamics converts enhanced energy inputs into enhanced x-ray outputs. One-dimensional MHD calculations in which resistivity values are adjusted phenomenologically are used to illustrate how

  6. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U

  7. X-Ray generation by the laser-plasma interaction in the regime of relativistic electronic spring

    NASA Astrophysics Data System (ADS)

    Gonoskov, Arkady; Blackburn, Thomas; Blanco, Manuel; Flores-Arias, M. T.; Wettervik, Benjamin; Marklund, Mattias

    2017-10-01

    Inducing and controlling relativistic motion of surface electrons in overdense plasmas with high-intensity lasers is a promising way to produce X-rays with unique properties, including high brightness, ultra-short duration and tunable polarization. Although the well-studied relativistic oscillating mirror (ROM) regime provides robust generation of high harmonics, the amplitude of the outgoing light in this regime is always equal to that of the incident radiation because the conversion takes place continuously without energy accumulation. This restriction can be overcome by increasing the laser intensity and/or decreasing the plasma density such that n / a < 10 . In this case the plasma acts as a spring, first accumulating up to 60% of the energy of one laser cycle, then re-emitting it in the form of a burst of high harmonics. Under optimal conditions this burst can be both 100 times shorter in duration and 100 times higher in intensity. The theory of relativistic electronic spring (RES) describes a wide variety of interaction scenarios in this regime and provides insight into the underlying physics. The talk will concern the prospects of creating and controlling XUV bursts of exceptional brightness in the RES regime.

  8. Comparative study of X-ray emission from plasma focus relative to different preionization schemes

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Qayyum, A.; Hassan, M.; Zakaullah, M.

    2017-07-01

    A 2.7-kJ Mather-type plasma focus has been investigated for X-ray emission with preionization produced by an α-source, a β-source, and a shunt resistor. Time-resolved and time integrated measurements are carried out using a PIN-diode-based X-ray spectrometer and pinhole camera. The β-source (28Ni63) assisted preionization enhances the X-ray emission up to 25%, while preionization induced by depleted uranium (92U238) increases both Cu-Kα and total X-ray yield of about 100%. The preionization caused by the optimum shunt resistor enhances the Cu-Kα and total X-ray yield of about 53%. It is found that preionization also broadens the working pressure range for the high X-ray yield and improves the shot-to-shot reproducibility of the system. Pinhole images reveal that the X-ray emission from the anode tip is dominant owing to impact of electron bombardment, while the X-ray emission from hot spots is also visible.

  9. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Takabe, Hideaki; Yamamoto, Norimasa; Salzmann, David; Wang, Feilu; Nishimura, Hiroaki; Li, Yutong; Dong, Quanli; Wang, Shoujun; Zhang, Yi; Rhee, Yong-Joo; Lee, Yong-Woo; Han, Jae-Min; Tanabe, Minoru; Fujiwara, Takashi; Nakabayashi, Yuto; Zhao, Gang; Zhang, Jie; Mima, Kunioki

    2009-11-01

    X-ray spectroscopy is an important tool for understanding the extreme photoionization processes that drive the behaviour of non-thermal equilibrium plasmas in compact astrophysical objects such as black holes. Even so, the distance of these objects from the Earth and the inability to control or accurately ascertain the conditions that govern their behaviour makes it difficult to interpret the origin of the features in astronomical X-ray measurements. Here, we describe an experiment that uses the implosion driven by a 3TW, 4kJ laser system to produce a 0.5keV blackbody radiator that mimics the conditions that exist in the neighbourhood of a black hole. The X-ray spectra emitted from photoionized silicon plasmas resemble those observed from the binary stars Cygnus X-3 (refs 7, 8) and Vela X-1 (refs 9, 10 11) with the Chandra X-ray satellite. As well as demonstrating the ability to create extreme radiation fields in a laboratory plasma, our theoretical interpretation of these laboratory spectra contrasts starkly with the generally accepted explanation for the origin of similar features in astronomical observations. Our experimental approach offers a powerful means to test and validate the computer codes used in X-ray astronomy.

  10. X-ray laser system, x-ray laser and method

    DOEpatents

    London, Richard A.; Rosen, Mordecai D.; Strauss, Moshe

    1992-01-01

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  11. Potentiality of a small and fast dense plasma focus as hard x-ray source for radiographic applications

    NASA Astrophysics Data System (ADS)

    Pavez, Cristian; Pedreros, José; Zambra, Marcelo; Veloso, Felipe; Moreno, José; Ariel, Tarifeño-Saldivia; Soto, Leopoldo

    2012-10-01

    Currently, a new generation of small plasma foci devices is being developed and researched, motivated by its potential use as portable sources of x-ray and neutron pulsed radiation for several applications. In this work, experimental results of the accumulated x-ray dose angular distribution and characterization of the x-ray source size are presented for a small and fast plasma focus device, ‘PF-400J’ (880 nF, 40 nH, 27-29 kV, ˜350 J, T/4 ˜ 300 ns). The experimental device is operated using hydrogen as the filling gas in a discharge region limited by a volume of around 80 cm3. The x-ray radiation is monitored, shot by shot, using a scintillator-photomultiplier system located outside the vacuum chamber at 2.3 m far away from the radiation emission region. The angular x-ray dose distribution measurement shows a well-defined emission cone, with an expansion angle of 5°, which is observed around the plasma focus device symmetry axis using TLD-100 crystals. The x-ray source size measurements are obtained using two image-forming aperture techniques: for both cases, one small (pinhole) and one large for the penumbral imaging. These results are in agreement with the drilling made by the energetic electron beam coming from the pinch region. Additionally, some examples of image radiographic applications are shown in order to highlight the real possibilities of the plasma focus device as a portable x-ray source. In the light of the obtained results and the scaling laws observed in plasma foci devices, we present a discussion on the potentiality and advantages of these devices as pulsed and safe sources of x-radiation for applications.

  12. Observation and theory of X-ray mirages

    PubMed Central

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell–Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography. PMID:23733009

  13. Observation and theory of X-ray mirages.

    PubMed

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell-Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography.

  14. Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Bajčetić, Jovan; Mitrović, Srdjan T.; Popović, Luka Č.

    2018-04-01

    Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT - 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

  15. Empirical studies of solar flares: Comparison of X-ray and H alpha filtergrams and analysis of the energy balance of the X-ray plasma

    NASA Technical Reports Server (NTRS)

    Moore, R. L.

    1979-01-01

    The physics of solar flares was investigated through a combined analysis of X-ray filtergrams of the high temperature coronal component of flares and H alpha filtergrams of the low temperature chromospheric component. The data were used to study the magnetic field configuration and its changes in solar flares, and to examine the chromospheric location and structure of X-ray bright points (XPB) and XPB flares. Each topic and the germane data are discussed. The energy balance of the thermal X-ray plasma in flares, while not studied, is addressed.

  16. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  17. Hybrid modelling of a high-power X-ray attenuator plasma.

    PubMed

    Martín Ortega, Álvaro; Lacoste, Ana; Minea, Tiberiu

    2018-05-01

    X-ray gas attenuators act as stress-free high-pass filters for synchrotron and free-electron laser beamlines to reduce the heat load in downstream optical elements without affecting other properties of the X-ray beam. The absorption of the X-ray beam triggers a cascade of processes that ionize and heat up the gas locally, changing its density and therefore the X-ray absorption. Aiming to understand and predict the behaviour of the gas attenuator in terms of efficiency versus gas pressure, a hybrid model has been developed, combining three approaches: an analytical description of the X-ray absorption; Monte Carlo for the electron thermalization; and a fluid treatment for the electron diffusion, recombination and excited-states relaxation. The model was applied to an argon-filled attenuator prototype built and tested at the European Synchrotron Radiation Facility, at a pressure of 200 mbar and assuming stationary conditions. The results of the model showed that the electron population thermalizes within a few nanoseconds after the X-ray pulse arrival and it occurs just around the X-ray beam path, recombining in the bulk of the gas rather than diffusing to the attenuator walls. The gas temperature along the beam path reached 850 K for 770 W of incident power and 182 W m -1 of absorbed power. Around 70% of the absorbed power is released as visible and UV radiation rather than as heat to the gas. Comparison of the power absorption with the experiment showed an overall agreement both with the plasma radial profile and power absorption trend, the latter within an error smaller than 20%. This model can be used for the design and operation of synchrotron gas attenuators and as a base for a time-dependent model for free-electron laser attenuators.

  18. Loop models of low coronal structures observed by the Normal Incidence X-Ray Telescope (NIXT)

    NASA Technical Reports Server (NTRS)

    Peres, G.; Reale, F.; Golub, L.

    1994-01-01

    The X-ray pictures obtained with the Normal Incidence X-Ray Telescope (NIXT), apart from the ubiquitous coronal loops well known from previous X-ray observations, show a new and peculiar morphology: in many active regions there are wide and apparently low-lying areas of intense emission which resemble H alpha plages. By means of hydrostatic models of coronal arches, we analyze the distribution of temperature, density, emission measure, and plasma emissivity in the spectral band to which NIXT is sensitive, and we show that the above morphology can be explained by the characteristics of high pressure loops having a thin region of high surface brightness at the base. We therefore propose that this finding might help to identify high-pressure X-ray emitting coronal regions in NIXT images, and it is in principle applicable to any imaging instrument which has high sensitivity to 10(exp 4) - 10(exp 6) K plasma within a narrow coronal-temperature passband. As a more general result of this study, we propose that the comparison of NIXT observations with models of stationary loops might provide a new diagnostic: the determination of the loop plasma pressure from measurements of brightness distribution along the loop.

  19. Chandra Image Gives First Look at Mars Emitted X-Rays

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  20. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses

    DOE PAGES

    Albert, F.; Lemos, N.; Shaw, J. L.; ...

    2017-03-31

    We investigate a new regime for betatron x-ray emission that utilizes kilojoule-class picosecond lasers to drive wakes in plasmas. When such laser pulses with intensities of ~ 5 × 1 0 18 W / cm 2 are focused into plasmas with electron densities of ~ 1 × 1 0 19 cm - 3 , they undergo self-modulation and channeling, which accelerates electrons up to 200 MeV energies and causes those electrons to emit x rays. The measured x-ray spectra are fit with a synchrotron spectrum with a critical energy of 10–20 keV, and 2D particle-in-cell simulations were used to modelmore » the acceleration and radiation of the electrons in our experimental conditions« less

  1. Comparison of X-ray Radiation Process in Single and Nested Wire Array Implosions

    NASA Astrophysics Data System (ADS)

    Li, Z. H.; Xu, Z. P.; Yang, J. L.; Xu, R. K.; Guo, C.; Grabovsky, E. V.; Oleynic, G. M.; Smirnov, V. P.

    2006-01-01

    In order to understanding the difference between tungsten single-wire-array and tungsten nested-wire-array Z-pinches, we have measured the x-ray power, the temporal-spatial distributions of x-ray radiation from each of the two loads. The measurements were performed with 0.1mm spatial and 1 ns temporal resolutions at 2.5- and 3.5-MA currents. The experimental conditions, including wire material, number of wires, wire-array length, electrode design, and implosion time, remained unchanged from shot to shot. Analysis of the radiation power profiles suggests that the nested-wire-array radiate slightly less x-ray energy in relatively shorter time interval than the single wire-array, leading to a much greater x-ray power in nested-wire-array implosion. The temporal-spatial distributions of x-ray power show that in both cases, plasmas formed by wire-array ablation radiate not simultaneously along load axis. For nested-wire-array Z-pinch, plasmas near the anode begin to radiate in 2ns later than that near the cathode. As a contrast, the temporal divergence of radiation among different plasma zones of single-wire-array Z-pinch along Z-axis is more than 6ns. Measurements of the x-ray emissions from small segments of pinch (2mm length along axis) indicate that local radiation power profiles almost do not vary for the two loads. Photographs taken by X-ray framing camera give a same description about the radiation process of pinch. One may expect that, as a result of this study, if the single-wire-array can be redesigned so ingeniously that the x-rays are emitted at the same time all over the pinch zone, the radiation power of single wire array Z-pinch may be much greater than what have been achieved.

  2. THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montez, R. Jr.; Kastner, J. H.; Freeman, M.

    2015-02-10

    We present X-ray spectral analysis of 20 point-like X-ray sources detected in Chandra Planetary Nebula Survey observations of 59 planetary nebulae (PNe) in the solar neighborhood. Most of these 20 detections are associated with luminous central stars within relatively young, compact nebulae. The vast majority of these point-like X-ray-emitting sources at PN cores display relatively ''hard'' (≥0.5 keV) X-ray emission components that are unlikely to be due to photospheric emission from the hot central stars (CSPN). Instead, we demonstrate that these sources are well modeled by optically thin thermal plasmas. From the plasma properties, we identify two classes of CSPN X-raymore » emission: (1) high-temperature plasmas with X-ray luminosities, L {sub X}, that appear uncorrelated with the CSPN bolometric luminosity, L {sub bol} and (2) lower-temperature plasmas with L {sub X}/L {sub bol} ∼ 10{sup –7}. We suggest these two classes correspond to the physical processes of magnetically active binary companions and self-shocking stellar winds, respectively. In many cases this conclusion is supported by corroborative multiwavelength evidence for the wind and binary properties of the PN central stars. By thus honing in on the origins of X-ray emission from PN central stars, we enhance the ability of CSPN X-ray sources to constrain models of PN shaping that invoke wind interactions and binarity.« less

  3. Discovery of Rapidly Moving Partial X-Ray Absorbers Within Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2016-01-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called "softness dips" in a approx.100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either approx.40% or approx.70% partial covering absorption to kT approx.12 keV plasma emission by matter with a neutral hydrogen column density of approx.(2-8) ×10(exp 21)/sq cm, while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the gamma Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT approx 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past.

  4. Turbulent heating in galaxy clusters brightest in X-rays.

    PubMed

    Zhuravleva, I; Churazov, E; Schekochihin, A A; Allen, S W; Arévalo, P; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2014-11-06

    The hot (10(7) to 10(8) kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius-it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.

  5. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. System for phase-contrast x-ray radiography using X pinch radiation and a method thereof

    DOEpatents

    Chandler, Katherine; Chelkovenko, Tatiana; Hammer, David; Pikuz, Sergei; Sinars, Daniel; Song, Byungmoo

    2007-11-06

    A radiograph system with an anode plate, a cathode plate, and a power source coupled to said anode plate and the cathode plate. At least two wires coupled between the anode plate and the cathode plate provide a configuration to form an X-pinch having a photon source size of less than five microns at energies above 2.5 keV. Material at the configuration forming the X-pinch vaporizes upon application of a suitable current to the wires forming a dense hot plasma and emitting a single x-ray pulse with sufficient photons having energies in the range of from about 2.5 keV to about 20 keV to provide a phase contrast image of an object in the path of the photons. Multiple simultaneous images may be formed of a plurality of objects. Suitable filters and x-ray detectors are provided.

  7. X-Ray Diagnostics of Laser-Produced Aluminum Plasmas

    DTIC Science & Technology

    1976-06-01

    n.n g (E /kT ) ’ (24) ff r l e ff H e but shoys re spectral dependence on T [29]. Thus in the e visible region, electron density can be extracted...abetract entered In Block 20, It different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS ’Continue on reveree aide it neceaaary and Identity by block...Continue on reveree tide It naceeeary and identity by block number) Electron temperatures have been evaluated using the x-ray emission from plasmas

  8. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  9. Investigating inertial confinement fusion target fuel conditions through x-ray spectroscopya)

    NASA Astrophysics Data System (ADS)

    Hansen, Stephanie B.

    2012-05-01

    Inertial confinement fusion (ICF) targets are designed to produce hot, dense fuel in a neutron-producing core that is surrounded by a shell of compressing material. The x-rays emitted from ICF plasmas can be analyzed to reveal details of the temperatures, densities, gradients, velocities, and mix characteristics of ICF targets. Such diagnostics are critical to understand the target performance and to improve the predictive power of simulation codes.

  10. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  11. X-ray frequency combs from optically controlled resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Buth, Christian; Keitel, Christoph H.

    2013-12-01

    An x-ray pulse-shaping scheme is put forward for imprinting an optical frequency comb onto the radiation emitted on a driven x-ray transition, thus producing an x-ray frequency comb. A four-level system is used to describe the level structure of N ions driven by narrow-bandwidth x rays, an optical auxiliary laser, and an optical frequency comb. By including many-particle enhancement of the emitted resonance fluorescence, a spectrum is predicted consisting of equally spaced narrow lines which are centered on an x-ray transition energy and separated by the same tooth spacing as the driving optical frequency comb. Given an x-ray reference frequency, our comb could be employed to determine an unknown x-ray frequency. While relying on the quality of the light fields used to drive the ensemble of ions, the model has validity at energies from the 100 eV to the keV range.

  12. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray systems...

  13. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray systems...

  14. 21 CFR 1020.40 - Cabinet x-ray systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cabinet x-ray systems. 1020.40 Section 1020.40...) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING PRODUCTS § 1020.40 Cabinet x-ray systems. (a) Applicability. The provisions of this section are applicable to cabinet x-ray systems...

  15. SEARCHING FOR OVERIONIZED PLASMA IN THE GAMMA-RAY-EMITTING SUPERNOVA REMNANT G349.7+0.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ergin, T.; Sezer, A.; Saha, L.

    2015-05-10

    G349.7+0.2 is a supernova remnant (SNR) expanding in a dense medium of molecular clouds and interacting with clumps of molecular material emitting gamma-rays. We analyzed the gamma-ray data of the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope and detected G349.7+0.2 in the energy range of 0.2–300 GeV with a significance of ∼13σ, showing no extended morphology. Modeling of the gamma-ray spectrum revealed that the GeV gamma-ray emission dominantly originates from the decay of neutral pions, where the protons follow a broken power-law distribution with a spectral break at ∼12 GeV. To search for features of radiative recombinationmore » continua in the eastern and western regions of the remnant, we analyzed the Suzaku data of G349.7+0.2 and found no evidence for overionized plasma. In this paper, we discuss possible scenarios to explain the hadronic gamma-ray emission in G349.7+0.2 and the mixed morphology nature of this SNR.« less

  16. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    NASA Astrophysics Data System (ADS)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  17. Generation of X-rays and neutrons with a RF-discharge

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1982-01-01

    An experimental study concerning disk shaped plasma structures was performed. Such disk-shaped structures can be obtained using an rf discharge in hydrogen. The applied frequency was 1-2 Mhz. In case of operation in deuterium it was found that the discharge emits neutrons and X-rays, although the applied voltage is only 2 kV. This phenomenon was explained by assuming formation of plasma cavitons which are surrounded by high electric fields. The condition for formation of these cavitons is that the applied rf frequency is equal to the plasma frequency. The ions trapped in these resonance structures acquire sufficient energy that they can undergo fusion reactions with the ions in the surrounding gas.

  18. Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2010-01-01

    The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.

  19. The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard x-ray emission in a Mather type dense plasma focus device (SABALAN2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriaei, D.; Javadi, S.; Ghoranneviss, M.

    In this study, by using argon and nitrogen as the filling gases in a Mather type dense plasma focus device at different values of pressure and charging voltage, two different kinds of pinch regimes were observed for each of the gases. The physics of the pinch regimes could be explained by using the two versions of the Lee's computational model which predicted each of the scenarios and clarified their differences between the two gases according to the radiation-enhanced compression and, additionally, predicted the pinch regimes through the anomalous resistivity effect during the pinch time. This was accomplished through the fittingmore » process (simulation) on the current signal. Moreover, the characteristic amplitude and time scales of the anomalous resistances were obtained. The correlations between the features of the plasma current dip and the emitted hard x-ray pulses were observed. The starting time, intensity, duration, and the multiple or single feature of the emitted hard x-ray strongly correlated to the same respective features of the current dip.« less

  20. Blazars in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Ghisellini, Gabriele

    2009-05-01

    Although blazars are thought to emit most of their luminosity in the γ-ray band, there are subclasses of them very prominent in hard X-rays. These are the best candidates to be studied by Simbol-X. They are at the extremes of the blazar sequence, having very small or very high jet powers. The former are the class of TeV emitting BL Lacs, whose synchrotron emission often peaks at tens of keV or more. The latter are the blazars with the most powerful jets, have high black hole masses accreting at high (i.e. close to Eddington) rates. These sources are predicted to have their high energy peak even below the MeV band, and therefore are very promising candidates to be studied with Simbol-X.

  1. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Wang, Shoujun; Oliva, E

    2014-01-01

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionallymore » excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.« less

  2. Chandra Detects Enigmatic Point X-ray Sources in the Cat's Eye and the Helix Nebulae

    NASA Astrophysics Data System (ADS)

    Guerrero, M. A.; Gruendl, R. A.; Chu, Y.-H.; Kaler, J. B.; Williams, R. M.

    2000-12-01

    Central stars of planetary nebulae (PNe) with Teff greater than 100,000 K are expected to emit soft X-rays that peak below 0.1 keV. Chandra ACIS-S observations of the Cat's Eye Nebula (NGC 6543) and the Helix Nebula (NGC 7293) have detected point X-ray sources at their central stars. The point X-ray source at the central star of the Cat's Eye is both unknown previously and unexpected because the stellar temperature is only ~50,000 K. In contrast, the point X-ray source at the central star of the Helix was previously detected by ROSAT and its soft X-ray emission is expected because the stellar temperature is ~100,000 K. However, the Helix X-ray source also shows a harder X-ray component peaking at 0.8 keV that is unexpected and for which Chandra has provided the first high-resolution spectrum for detailed analysis. The spectra of the point X-ray sources in the Cat's Eye and the Helix show line features indicating an origin of thermal plasma emission. The spectrum of the Helix source can be fit by Raymond & Smith's model of plasma emission at ~9*E6 K. The spectrum of the Cat's Eye source has too few counts for a spectral fit, but appears to be consistent with plasma emission at 2-3*E6 K. The X-ray luminosities of both sources are ~5*E29 erg s-1. The observed plasma temperatures are too high for accretion disks around white dwarfs, but they could be ascribed to coronal X-ray emission. While central stars of PNe are not known to have coronae, the observed spectra are consistent with quiescent X-ray emission from dM flare stars. On the other hand, neither the central star of the Helix or the Cat's Eye are known to have a binary companion. It is possible that the X-rays from the Cat's Eye's central star originate from shocks in the stellar wind, but the central star of the Helix does not have a measurable fast stellar wind. This work is supported by the CXC grant number GO0-1004X.

  3. STELLAR X-RAY SOURCES IN THE CHANDRA COSMOS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, N. J.; Drake, J. J.; Civano, F., E-mail: nwright@cfa.harvard.ed

    2010-12-10

    We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160 ks) and wide ({approx}0.9 deg{sup 2}) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves, and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distancesmore » ranging from 30 pc to {approx}12 kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L{sub X}-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more luminous than the active Sun, representing the high-luminosity end of the disk and halo X-ray luminosity functions. The halo population appears to include both low-activity spectrally hard sources that may be emitting through thermal bremsstrahlung, as well as a number of highly active sources in close binaries.« less

  4. Element Specific Imaging Using Muonic X-rays

    NASA Astrophysics Data System (ADS)

    Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.

    The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.

  5. Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses.

    PubMed

    Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi

    2014-09-02

    Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.

  6. X-ray Emission Characteristics of Ultra-High Energy Density Relativistic Plasmas Created by Ultrafast Laser Irradiation of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.

    2014-10-01

    Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.

  7. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less

  8. Plasma instability control toward high fluence, high energy x-ray continuum source

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  9. The Most Distant X-Ray Clusters

    NASA Technical Reports Server (NTRS)

    Dickinson, Mark

    1999-01-01

    In this program we have used ROSAT (Roentgen Satellite Mission) to observe X-ray emission around several high redshift radio galaxies in a search for extended, hot plasma which may indicate the presence of a rich galaxy cluster. When this program was begun, massive, X-ray emitting galaxy clusters were known to exist out to to z=0.8, but no more distant examples had been identified. However, we had identified several apparently rich clusters around 3CR radio galaxies at z greater than 0.8, and hoped to use ROSAT to confirm the nature of these structures as massive, virialized clusters. We have written up our results and submitted them as a paper to the Astrophysical Journal. This paper has been refereed and requires some significant revisions to accommodate the referees comments. We are in the process of doing this, adding some additional analysis as well. We will resubmit the paper early in 2000, and hopefully will meet with the referee's approval. We are including three copies of the submitted paper here, although it has not yet been accepted for publication.

  10. Calibration of X-ray spectrometers for opacity experiments at the Orion laser facility (invited).

    PubMed

    Bentley, C; Allan, P; Brent, K; Bruce, N; Hoarty, D; Meadowcroft, A; Percival, J; Opie, C

    2016-11-01

    Accurately calibrated and characterised x-ray diagnostics are a key requirement in the fielding of experiments on the Orion laser where absolute measurements of x-ray emission are used to underpin the validity of models of emissivity and opacity. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. The ability to undertake diffraction crystal calibrations supports the successful outcome of these Orion experiments. This paper details the design and commissioning of a system to undertake these calibrations in the energy range 2.0 keV to approximately 8.5 keV. Improvements to the design are detailed which will extend the commissioned range of energies to below 1 keV.

  11. Betatron x-ray radiation from laser-plasma accelerators driven by femtosecond and picosecond laser systems

    NASA Astrophysics Data System (ADS)

    Albert, F.; Lemos, N.; Shaw, J. L.; King, P. M.; Pollock, B. B.; Goyon, C.; Schumaker, W.; Saunders, A. M.; Marsh, K. A.; Pak, A.; Ralph, J. E.; Martins, J. L.; Amorim, L. D.; Falcone, R. W.; Glenzer, S. H.; Moody, J. D.; Joshi, C.

    2018-05-01

    A comparative experimental study of betatron x-ray radiation from laser wakefield acceleration in the blowout and self-modulated regimes is presented. Our experiments use picosecond duration laser pulses up to 150 J (self-modulated regime) and 60 fs duration laser pulses up to 10 J (blowout regime), for plasmas with electronic densities on the order of 1019 cm-3. In the self-modulated regime, where betatron radiation has been very little studied compared to the blowout regime, electrons accelerated in the wake of the laser pulse are subject to both the longitudinal plasma and transverse laser electrical fields. As a result, their motion within the wake is relatively complex; consequently, the experimental and theoretical properties of the x-ray source based on self-modulation differ from the blowout regime of laser wakefield acceleration. In our experimental configuration, electrons accelerated up to about 250 MeV and betatron x-ray spectra with critical energies of about 10-20 keV and photon fluxes between 108 and 1010 photons/eV Sr are reported. Our experiments open the prospect of using betatron x-ray radiation for applications, and the source is competitive with current x-ray backlighting methods on multi-kilojoule laser systems.

  12. High-efficiency collector design for extreme-ultraviolet and x-ray applications.

    PubMed

    Zocchi, Fabio E

    2006-12-10

    A design of a two-reflection mirror for nested grazing-incidence optics is proposed in which maximum overall reflectivity is achieved by making the two grazing-incidence angles equal for each ray. The design is proposed mainly for application to nonimaging collector optics for extreme-ultraviolet microlithography where the radiation emitted from a hot plasma source needs to be collected and focused on the illuminator optics. For completeness, the design of a double- reflection mirror with equal reflection angles is also briefly outlined for the case of an object at infinity for possible use in x-ray applications.

  13. A Non-thermal Pulsed X-Ray Emission of AR Scorpii

    NASA Astrophysics Data System (ADS)

    Takata, J.; Hu, C.-P.; Lin, L. C. C.; Tam, P. H. T.; Pal, P. S.; Hui, C. Y.; Kong, A. K. H.; Cheng, K. S.

    2018-02-01

    We report the analysis result of UV/X-ray emission from AR Scorpii, which is an intermediate polar (IP) composed of a magnetic white dwarf and an M-type star, with the XMM-Newton data. The X-ray/UV emission clearly shows a large variation over the orbit, and their intensity maximum (or minimum) is located at the superior conjunction (or inferior conjunction) of the M star orbit. The hardness ratio of the X-ray emission shows a small variation over the orbital phase and shows no indication of the absorption by an accretion column. These properties are naturally explained by the emission from the M star surface rather than that from the accretion column on the white dwarf’s (WD) star, which is similar to usual IPs. Additionally, the observed X-ray emission also modulates with the WD’s spin with a pulse fraction of ∼14%. The peak position is aligned in the optical/UV/X-ray band. This supports the hypothesis that the electrons in AR Scorpii are accelerated to a relativistic speed and emit non-thermal photons via the synchrotron radiation. In the X-ray bands, evidence of the power-law spectrum is found in the pulsed component, although the observed emission is dominated by the optically thin thermal plasma emissions with several different temperatures. It is considered that the magnetic dissipation/reconnection process on the M star surface heats up the plasma to a temperature of several keV and also accelerates the electrons to the relativistic speed. The relativistic electrons are trapped in the WD’s closed magnetic field lines by the magnetic mirror effect. In this model, the observed pulsed component is explained by the emissions from the first magnetic mirror point.

  14. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: New soft X-ray spectrometer to investigate properties of hot plasma in the quiet Sun, active regions, and flares.

    NASA Astrophysics Data System (ADS)

    Moore, C. S.; Dennis, B. R.; Woods, T. N.

    2017-12-01

    Detection of soft X-rays from the Sun provides direct information on coronal plasma at temperatures in excess of 1 MK. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats provides new spectrally resolved measurements from 0.8 -12 keV. The MinXSS spectral resolving power (R 40 at 5.9 keV) allows plasma abundances to be determined for Fe, Mg, Ni, Ca, Si, S, and Ar. Long-term temporal variations during quiet-Sun times allow active region contributions to be extracted from the full solar flux. The MinXSS 10 second time cadence allows short-term variations of the soft X-ray flux, temperature, and abundances to be determined during flares. The MinXSS spectroscopic observations, combined with the imaging spectroscopy from the Hinode X-ray Telescope (XRT) and the Reuven Ramaty Solar Spectroscopic Imager (RHESSI), hold great potential for advancing our understanding of solar dynamics.

  15. A Benchmark Experiment for Photoionized Plasma Emission from Accretion-Powered X-ray Sources

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Bailey, J.; Nagayama, T.; Hansen, S.; Rochau, G.; Liedahl, D.; Fontes, C.; Kallman, T.; Mancini, R.

    2017-10-01

    Accretion-powered emission from X-ray binaries or black-hole accretion in Active Galactic Nuclei is a powerful diagnostic for their behavior and structure. Interpretation of x-ray emission from these objects requires a spectral synthesis model for photoionized plasma. Models must predict the photoionized charge state distribution, the photon emission processes, and the radiation transport influence on the observed emission. At the Z facility, we have measured simultaneously emission and absorption from a photoionized silicon plasma suitable to benchmark photoionization and spectrum formation models with +/-5% reproducibility and E/dE >2500 spectral resolution. Plasma density, temperature, and charge state distribution are determined with absorption spectroscopy. Self-emission measured at adjustable column densities tests radiation transport effects. Observation of 14 transitions in He-like silicon will help understand population mechanisms in a photoionized plasma. First observation of radiative recombination continuum in a photoionized plasma will be presented. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  16. X-ray transmission microscope development

    NASA Astrophysics Data System (ADS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-08-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  17. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    This report covers the third 6 month period, from February 28, 1995 to August 31, 1995, under this contract. The main efforts during this period were the construction of the X-ray furnace, evaluation and selection of the CCD technology for the X-ray camera, solidification experiments with Al alloys and Al-zirconia composites in the prototype furnace, evaluation of specimens for the particle pushing flight experiment - PEPSI, measurements of emitted spectra from X-ray source, testing of the high resolution X-ray test targets, and the establishment of criteria for and selection of peripheral equipment. In addition to these tasks, two presentations were prepared in this period; one for the AIAA Microgravity Symposium and another for the Gordon Conference on Gravitational Effects in Pyisico-Chemical Systems.

  18. Study of a Solar X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1997-01-01

    photosphere at x-ray wavelengths when observing the disk of the Sun, this part of the solar atmosphere emits so little that far from the peak of its Planck curve it appears dark in x-ray images. This impression of hot plasma following the magnetic field direction is further strengthened by quantitative studies that calculate coronal magnetic field strength and direction based on photospheric measurements and compare them with the observed brightness and location of the x-ray emitting structures. Such comparisons make it clear that, for the most part, the hot plasma conforms to the geometry of the magnetic field and that the coronal brightness is strongly linked to the strength of the magnetic fields which have erupted to the solar surface from the interior. It is also the case that the larger-scale, fainter corona, as well as coronal holes, are strongly influenced by the large-scale solar magnetic field. We may get a small hint of the reason that the coronal plasma outlines the direction of B by examining the thermal conductivity of a hot plasma in the presence of a magnetic field. This quantity has enormously different values in the directions parallel and perpendicular to the field for a coronal temperature of 10(exp 6) K, a particle density of 10(exp 9)/cu cm and a magnetic field strength of 100 G, the conductivity along the field is approximately 13 orders of magnitude greater than that perpendicular to the field. It is therefore not surprising that a parcel of plasma which is locally heated would conduct that heat preferentially in the direction of the field. We also note that the thermal conductivity parallel to the magnetic field increases with temperature T, while the perpendicular conductivity decreases. To the extent that the loop aspect ratio, i.e., the ratio of loop length to loop width, is determined by the thermal conductivity, we would expect that higher temperature loops are longer and thinner than cooler ones. However, if the loop width becomes smaller than

  19. Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.

    1999-01-01

    Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.

  20. Calibration of high-dynamic-range, finite-resolution x-ray pulse-height spectrometers for extracting electron energy distribution data from the PFRC-2 device

    NASA Astrophysics Data System (ADS)

    Swanson, C.; Jandovitz, P.; Cohen, S. A.

    2017-10-01

    Knowledge of the full x-ray energy distribution function (XEDF) emitted from a plasma over a large dynamic range of energies can yield valuable insights about the electron energy distribution function (EEDF) of that plasma and the dynamic processes that create them. X-ray pulse height detectors such as Amptek's X-123 Fast SDD with Silicon Nitride window can detect x-rays in the range of 200eV to 100s of keV. However, extracting EEDF from this measurement requires precise knowledge of the detector's response function. This response function, including the energy scale calibration, the window transmission function, and the resolution function, can be measured directly. We describe measurements of this function from x-rays from a mono-energetic electron beam in a purpose-built gas-target x-ray tube. Large-Z effects such as line radiation, nuclear charge screening, and polarizational Bremsstrahlung are discussed.

  1. The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Ishida, Manabu

    2000-01-01

    We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.

  2. Baryons at the edge of the X-ray-brightest galaxy cluster.

    PubMed

    Simionescu, Aurora; Allen, Steven W; Mantz, Adam; Werner, Norbert; Takei, Yoh; Morris, R Glenn; Fabian, Andrew C; Sanders, Jeremy S; Nulsen, Paul E J; George, Matthew R; Taylor, Gregory B

    2011-03-25

    Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.

  3. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative

  4. Catalytic action of β source on x-ray emission from plasma focus

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Sadiq, Mehboob; Hussain, S.; Shafiq, M.; Zakaullah, M.; Waheed, A.

    2006-01-01

    The influence of preionization around the insulator sleeve by a mesh-type β source (Ni6328) for the x-ray emission from a (2.3-3.9 kJ) plasma focus device is investigated. Quantrad Si p-i-n diodes along with suitable filters are employed as time-resolved x-ray detectors and a multipinhole camera with absorption filters is used for time-integrated analysis. X-ray emission in 4π geometry is measured as a function of argon and hydrogen gas filling pressures with and without β source at different charging voltages. It is found that the pressure range for the x-ray emission is broadened, x-ray emission is enhanced, and shot to shot reproducibility is improved with the β source. With argon, the CuKα emission is estimated to be 27.14 J with an efficiency of 0.7% for β source and 21.5 J with an efficiency of 0.55% without β source. The maximum x-ray yield in 4π geometry is found to be about 68.90 J with an efficiency of 1.8% for β source and 54.58 J with an efficiency of 1.4% without β source. With hydrogen, CuKα emission is 11.82 J with an efficiency of 0.32% for β source and 10.07 J with an efficiency of 0.27% without β source. The maximum x-ray yield in 4π geometry is found to be 30.20 J with an efficiency of 0.77% for β source and 25.58 J with an efficiency of 0.6% without β source. The x-ray emission with Pb insert at the anode tip without β source is also investigated and found to be reproducible and significantly high. The maximum x-ray yield is estimated to be 46.6 J in 4π geometry with an efficiency of 1.4% at 23 kV charging voltage. However, degradation of x-ray yield is observed when charging voltage exceeds 23 kV for Pb insert. From pinhole images it is observed that the x-ray emission due to the bombardment of electrons at the anode tip is dominant in both with and without β source.

  5. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  6. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    PubMed

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm -2 . This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  7. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  8. X-ray observations from RT-1 magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Sugata, Tetsuya; Masaki Nishiura Collaboration; Zensho Yoshida Collaboration; Naoki Kenmochi Collaboration; Shotaro Katsura Collaboration; Kaori Nakamura Collaboration

    2017-10-01

    Planetary magnetospheres like Earth and Jupiter realize stable confinement of high beta plasma. The RT-1 device produces a laboratory magnetosphere by using a levitated superconducting coil for dipole magnetic fields and 8.2 GHz electromagnetic wave for plasma production (ne 1017m-3) and electron heating. In the recent experiments, the RT-1 device has achieved the local beta that exceeds 1. It is considered that the high energy component of electrons contributes to the beta value. Therefore, Si(Li) detectors measured the X-ray spectra from the peripheral plasmas in the range from a few keV to a few ten keV. The density of a few keV component and a few ten keV component are comparable and a few ten keV component dominates the majority of the high beta value that is operated up to 0.8. We found that 150 keV component of electrons exists near the outer of the levitated dipole magnet by using a CdTe detector.

  9. X-Raying the Beating Heart of a Newborn Star: Rotational Modulation of High-Energy Radiation from V1647 Ori

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael; Petre, Robert; Teets, William K.; Principe, David

    2012-01-01

    We report a periodicity of approx.1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-breakup speed. Modeling of the phased X-ray light curve indicates the high-temperature ( 50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense ( 5 1010 cm.3), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years. Subject headings: stars: formation stars: individual (V1647 Ori) stars: pre-main sequence X-rays: stars

  10. Renewed Activity from the X-Ray Transient SAXJ 1810.8-2609 with Integral

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Natalucci, L.; Chenevez, J.; Bazzano, A.; Tarana, A.; Ubertini, P.; Brandt, S.; Beckmann, V.; Federici, M.; Galis, R.; Hudec, R.

    2009-03-01

    We report on the results of International Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the neutron star low-mass X-ray binary SAX J1810.8-2609 during its latest active phase in 2007 August. The current outburst is the first one since 1998 and the derived luminosity is 1.1-2.6 ×1036 erg s-1 in the 20-100 keV energy range. This low outburst luminosity and the long-term time-average accretion rate of ~5 × 10-12 M sun yr-1 suggest that SAX J1810.8-2609 is a faint soft X-ray transient. During the flux increase, spectra are consistent with a thermal Comptonization model with a temperature plasma of kT e~ 23-30 keV and an optical depth of τ~ 1.2-1.5, independent of the luminosity of the system. This is a typical low hard spectral state for which the X-ray emission is attributed to the upscattering of soft seed photons by a hot, optically thin electron plasma. During the decay, spectra have a different shape, the high energy tail being compatible with a single power law. This confirm similar behavior observed by BeppoSAX during the previous outburst, with the absence of visible cutoff in the hard X-ray spectrum. INTEGRAL/JEM-X instrument observed four X-ray bursts in Fall 2007. The first one has the highest peak flux (≈3.5 crab in 3-25 keV) giving an upper limit to the distance of the source of about 5.7 kpc, for a L Edd ≈ 3.8 × 1038 erg s-1. The observed recurrence time of ~ 1.2 days and the ratio of the total energy emitted in the persistent flux to that emitted in the bursts (α~ 73) allow us to conclude that the burst fuel was composed by mixed hydrogen and helium with X >= 0.4. INTEGRAL is an ESA project with Instruments and Science Data Center funded by ESA member states, especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain; Czech Republic and Poland; and with the participation of Russia and USA.

  11. A CATALOG OF SOLAR X-RAY PLASMA EJECTIONS OBSERVED BY THE SOFT X-RAY TELESCOPE ON BOARD YOHKOH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomczak, M.; Chmielewska, E., E-mail: tomczak@astro.uni.wroc.pl, E-mail: chmielewska@astro.uni.wroc.pl

    2012-03-01

    A catalog of X-ray plasma ejections (XPEs) observed by the Soft X-ray Telescope on board the Yohkoh satellite has been recently developed in the Astronomical Institute of University of Wroclaw. The catalog contains records of 368 events observed in years 1991-2001 including movies and cross-references to associated events like flares and coronal mass ejections (CMEs). One hundred sixty-three XPEs out of 368 in the catalog were not reported until now. A new classification scheme of XPEs is proposed in which morphology, kinematics, and recurrence are considered. The relation between individual subclasses of XPEs and the associated events was investigated. Themore » results confirm that XPEs are strongly inhomogeneous, responding to different processes that occur in the solar corona. A subclass of erupting loop-like XPEs is a promising candidate to be a high-temperature precursor of CMEs.« less

  12. Exospheric Neutral Density at the Earth's subsolar magnetopause deduced from the XMM-Newton X-ray observations

    NASA Astrophysics Data System (ADS)

    Connor, H. K.; Carter, J. A.

    2017-12-01

    Soft X-rays can be emitted when highly charged solar wind ions and exospheric neutrals exchange electrons. Astrophysics missions, such as XMM-Newton and ROSAT X-ray telescopes, have found that such solar wind charge exchange happens at the Earth's exosphere. The Earth's magnetosphere can be imaged via soft X-rays in order to understand its interaction with solar wind. Consequently, two soft X-ray telescope missions (CuPID and SMILE) are scheduled to launch in 2019 and 2021. They will provide wide field-of-view soft X-ray images of the Earth's dayside magnetosphere. The imagers will track the location and movement of the cusps, magnetopause, and bow shock in response to solar wind variations. To support these missions, an understanding of exospheric neutral density profile is needed. The neutral density is one of the controlling factors of soft X-ray signals. Strong neutral density can help to obtain high-resolution and high-cadence of soft X-ray images. In this study, we estimate the exospheric neutral density at 10 RE subsolar point using XMM X-ray observations, Cluster plasma observations, and OpenGGCM global magnetosphere - ionosphere MHD model. XMM-Newton observes line-of-sight, narrow field-of-view, integrated soft X-ray emissions when it looks through the dayside magnetosphere. OpenGGCM reproduces soft X-ray signals seen by the XMM spacecraft, assuming exospheric neutral density as a function of the neutral density at the 10RE subsolar point and the radial distance. Cluster observations are used to confirm OpenGGCM plasma results. Finally, we deduce the neutral density at 10 RE subsolar point by adjusting the model results to the XMM-Newton soft X-ray observations.

  13. X-Ray Radiation Measurements With Photodiodes In Plasmas Generated By 1017 W/Cm2 Intensity Krf Excimer Laser Pulses

    NASA Astrophysics Data System (ADS)

    Rácz, E.; Földes, I. B.; Ryć, L.

    2006-01-01

    Experiments were carried out using a prepulse-free hybrid KrF excimer-dye laser system (700fs pulse duration, 248nm wavelength, 15mJ pulse energy). The intensity of the p-polarized, focused laser beam was 1.5ṡ1017 W/cm2. Vacuum ultraviolet (VUV) and x-rays from solid state laser plasmas were generated in the laser-plasma interaction of subpicosecond laser pulses of nonrelativistic laser intensities. An x-ray sensitive FLM photodiode (ITE, Warsaw) was used to detect x-rays between 1-19 keV in front of the targets. The diode was filtered by a 4μm Al foil. The dependence of the x-ray flux on laser intensity and the angular distribution of x-rays for aluminum and copper targets in the half space of the front side of the targets were investigated.

  14. X-ray line emission from the Puppis A supernova remnant - Oxygen lines

    NASA Technical Reports Server (NTRS)

    Winkler, P. F.; Clark, G. W.; Markert, T. H.; Petre, R.; Canizares, C. R.

    1981-01-01

    Six prominent X-ray emission lines of O VII and O VIII have been detected from a portion of the Puppis A supernova remnant in observations with the Einstein Observatory Focal Plane Crystal Spectrometer. The lines are sufficiently well resolved to serve as diagnostics of the emitting plasma. From the relative intensities of the lines, it is inferred that the population of O VIII is about 1.5 times that of O VII, and that electron collisions are the dominant excitation mechanism in the plasma. A locus of allowed electron temperatures and interstellar-absorption column densities is derived: 1.5 x 10 to the 6th K, and (2-6) x 10 to the 21st per sq cm. The data are consistent with either a thin plasma source in equilibrium at a temperature of 2.2 x 10 to the 6th K with a column density of 4 x 10 to the 21st per sq cm, or with a nonequilibrium source in which the electrons have been shock-heated to a higher temperature and oxygen is underionized.

  15. DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.

    2016-12-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually strong hard X-ray emission. The Suzaku observatory detected six rapid X-ray spectral hardening events called “softness dips” in a ∼100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ∼40% or ∼70% partial covering absorption to kT  ∼ 12 keV plasma emission by matter with a neutral hydrogen column density of ∼(2−8) × 10{sup 21} cm{sup −2}, while the spectrum outside these dips is almost free of absorption. This resultmore » suggests the presence of two distinct X-ray-emitting spots in the γ  Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT  ∼ 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; γ  Cas may have experienced such activity in the past.« less

  16. Laser-hole boring into overdense plasmas measured with soft X-Ray laser probing

    PubMed

    Takahashi; Kodama; Tanaka; Hashimoto; Kato; Mima; Weber; Barbee; Da Silva LB

    2000-03-13

    A laser self-focused channel formation into overdense plasmas was observed using a soft x-ray laser probe system with a grid image refractometry (GIR) technique. 1.053 &mgr;m laser light with a 100 ps pulse duration was focused onto a preformed plasma at an intensity of 2x10(17) W/cm (2). Cross sections of the channel were obtained which show a 30 &mgr;m diameter in overdense plasmas. The channel width in the overdense region was kept narrow as a result of self-focusing. Conically diverging density ridges were also observed along the channel, indicating a Mach cone created by a shock wave due to the supersonic propagation of the channel front.

  17. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; hide

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  18. Measurements of the K -Shell Opacity of a Solid-Density Magnesium Plasma Heated by an X-Ray Free-Electron Laser

    DOE PAGES

    Preston, T. R.; Vinko, S. M.; Ciricosta, O.; ...

    2017-08-25

    We present measurements of the spectrally resolved x rays emitted from solid-density magnesium targets of varying sub-μm thicknesses isochorically heated by an x-ray laser. The data exhibit a largely thickness independent source function, allowing the extraction of a measure of the opacity to K-shell x rays within well-defined regimes of electron density and temperature, extremely close to local thermodynamic equilibrium conditions. The deduced opacities at the peak of the Kα transitions of the ions are consistent with those predicted by detailed atomic-kinetics calculations.

  19. Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications.

    PubMed

    Hirano, Takashi; Osaka, Taito; Sano, Yasuhisa; Inubushi, Yuichi; Matsuyama, Satoshi; Tono, Kensuke; Ishikawa, Tetsuya; Yabashi, Makina; Yamauchi, Kazuto

    2016-06-01

    We have developed a method of fabricating speckle-free channel-cut crystal optics with plasma chemical vaporization machining, an etching method using atmospheric-pressure plasma, for coherent X-ray applications. We investigated the etching characteristics to silicon crystals and achieved a small surface roughness of less than 1 nm rms at a removal depth of >10 μm, which satisfies the requirements for eliminating subsurface damage while suppressing diffuse scattering from rough surfaces. We applied this method for fabricating channel-cut Si(220) crystals for a hard X-ray split-and-delay optical system and confirmed that the crystals provided speckle-free reflection profiles under coherent X-ray illumination.

  20. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  1. STATISTICAL STUDY of HARD X-RAY SPECTRAL CHARACTERISTICS OF SOLAR FLARES

    NASA Astrophysics Data System (ADS)

    Alaoui, M.; Krucker, S.; Saint-Hilaire, P.; Lin, R. P.

    2009-12-01

    We investigate the spectral characteristics of 75 solar flares at the hard X-ray peak time observed by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in the energy range 12-150keV. At energies above 40keV, the Hard X-ray emission is mostly produced by bremsstrahlung of suprathermal electrons as they interact with the ambient plasma in the chromosphere. The observed photon spectra therefore provide diagnostics of electron acceleration processes in Solar flares. We will present statistical results of spectral fitting using two models: a broken power law plus a thermal component which is a direct fit of the photon spectrum and a thick target model plus a thermal component which is a fit of the photon spectra with assumptions on the electrons emitting bremsstrahlung in the thick target approximation.

  2. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  3. X-ray Emission from Pre-Main-Sequence Stars - Testing the Solar Analogy

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2000-01-01

    This LTSA award funded my research on the origin of stellar X-ray emission and the validity of the solar-stellar analogy. This research broadly addresses the relevance of our current understanding of solar X-ray physics to the interpretation of X-ray emission from stars in general. During the past five years the emphasis has been on space-based X-ray observations of very young stars in star-forming regions (T Tauri stars and protostars), cool solar-like G stars, and evolved high-mass Wolf-Rayet (WR) stars. These observations were carried out primarily with the ASCA and ROSAT space-based observatories (and most recently with Chandra), supplemented by ground-based observations. This research has focused on the identification of physical processes that are responsible for the high levels of X-ray emission seen in pre-main-sequence (PMS) stars, active cool stars, and WR stars. A related issue is how the X-ray emission of such stars changes over time, both on short timescales of days to years and on evolutionary timescales of millions of years. In the case of the Sun it is known that magnetic fields play a key role in the production of X-rays by confining the coronal plasma in loop-like structures where it is heated to temperatures of several million K. The extent to which the magnetically-confined corona interpretation can be applied to other X-ray emitting stars is the key issue that drives the research summarized here.

  4. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of

  5. Bragg x-ray optics for imaging spectroscopy of plasma microsources.

    PubMed

    Pikuz, T A; Ya Faenov, A; Pikuz, S A; Romanova, V M; Shelkovenko, T A

    1995-01-01

    Bragg x-ray optics based on crystals with transmission and reflection properties bent on cylindrical or spherical surfaces are discussed. Applications of such optics for obtaining one- and two-dimensional monochromatic images of different plasma sources in the wide spectral range 1-20 Å are described. Samples of spectra obtained with spectral resolution of up to λ/Δλ ~ 10,000 and spatial resolution of up to 18 μm are presented.

  6. Prediction and observation of tin and silver plasmas with index of refraction greater than one in the soft x-ray range.

    PubMed

    Filevich, Jorge; Grava, Jonathan; Purvis, Mike; Marconi, Mario C; Rocca, Jorge J; Nilsen, Joseph; Dunn, James; Johnson, Walter R

    2006-07-01

    We present the calculated prediction and the experimental confirmation that doubly ionized Ag and Sn plasmas can have an index of refraction greater than one for soft x-ray wavelengths. Interferometry experiments conducted using a capillary discharge soft x-ray laser operating at a wavelength of confirm that in few times ionized laser-created plasmas of these elements the anomalous dispersion from bound electrons can dominate the free electron contribution, making the index of refraction greater than one. The results confirm that bound electrons can strongly influence the index of refraction of numerous plasmas over a broad range of soft x-ray wavelengths confirming recent observations. The understanding of index of refraction at short wavelengths will become even more essential during the next decade as x-ray free electron lasers will become available to probe a wider variety of plasmas at higher densities and shorter wavelengths.

  7. A galaxy overdensity at z = 0.401 associated with an X-ray emitting structure of warm-hot intergalactic medium

    NASA Astrophysics Data System (ADS)

    Mannucci, F.; Bonnoli, G.; Zappacosta, L.; Maiolino, R.; Pedani, M.

    2007-06-01

    We present the results of spectroscopic observations of galaxies associated with the diffuse X-ray emitting structure discovered by Zappacosta et al. (2002, A&A, 394, 7). After measuring the redshifts of 161 galaxies, we confirm an overdensity of galaxies with projected dimensions of at least 2 Mpc, determine its spectroscopic redshift in z = 0.401 ± 0.002, and show that it is spatially coincident with the diffuse X-ray emission. This confirms the original claim that this X-ray emission has an extragalactic nature and is due to the warm-hot intergalactic medium (WHIM). We used this value of the redshift to compute the temperature of the emitting gas. The resulting value depends on the metallicity that is assumed for the IGM, and is constrained to be between 0.3 and 0.6 keV for metallicities between 0.05 and 0.3 solar, in good agreement with the expectations from the WHIM. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica), and with the William Hershel Telescope (WHT), operated by the ING, both at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/468/807

  8. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  9. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    NASA Astrophysics Data System (ADS)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  10. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  11. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  13. X-ray Emission from the Interaction of a Macroscopic Particle with a Dense Plasma Focus.

    DTIC Science & Technology

    1976-10-01

    Recently the interest in dense plasma focus has greatly increased because of the possibility of developing the device into an intense, pulsed...using a macroscopic particle to interact with a plasma focus . A theoretical study was carried out to predict the relative amount of X-ray increase

  14. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimatedmore » to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.« less

  15. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swadling, G. F.; Ross, J. S.; Datte, P.

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  16. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    DOE PAGES

    Swadling, G. F.; Ross, J. S.; Datte, P.; ...

    2016-07-21

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore » be ~ 8 J cm -2. This is then significantly above the expected threshold for the onset of “blanking” effects. A novel Xenon Plasma X-ray Shield (XPXS) has been proposed to protect the blast shield from x-rays and mitigate “blanking”. Finally, these estimates suggest that an areal density of 10 19 cm -2 Xe atoms will be sufficient to absorb 99.5% the soft x-ray flux. Two potential designs for this shield are presented.« less

  17. DETECTION OF A COOL, ACCRETION-SHOCK-GENERATED X-RAY PLASMA IN EX LUPI DURING THE 2008 OPTICAL ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.

    2012-11-20

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak ofmore » the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a {approx}0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.« less

  18. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    NASA Technical Reports Server (NTRS)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  19. Specific features of thermocouple calorimeter application for measurements of pulsed X-ray emission from plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gavrilov, V. V.; Fasakhov, I. K.

    2012-01-15

    It is shown that the accuracy of time-integrated measurements of pulsed X-ray emission from hot plasma with calibrated thermocouple calorimeters is mainly determined by two factors. The first and the most important factor is heating of the filter by the absorbed X-rays; as a result, the calorimeter measures the thermal radiation of the filter, which causes appreciable distortion of the temporal profile and amplitude of the recorded signal. The second factor is the dependence of the effective depth of X-ray absorption in the dielectric that covers the entrance window of the calorimeter on the energy of X-ray photons, i.e., onmore » the recorded radiation spectrum. The results of model calculations of the calorimeter signal are compared with the experimental data.« less

  20. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Astrophysics Data System (ADS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 × 10-2 M ⊙, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and

  1. X-ray Photoelectron Spectroscopy Study of Argon-Plasma-Treated Fluoropolymers

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.; Lopata, Eugene S.; Finney, Lorie S.

    1994-01-01

    Films of poly(tetrafluoroethylene) (PTFE) and of a tetrafluoroethylene-perfluoroalkyl vinyl ether (approximately 49:1) copolymer (PFA) were exposed to a radio-frequency argon plasma and then examined by X-ray photoelectron spectroscopy (XPS). The use of fluoropolymer films nearly free of surface hydrocarbon contamination as well as the use of a monochromatized X-ray source for XPS removed two factors contributing to conflicting reports on the effect of exposure time on the fluorine-to-carbon (F/C) and oxygen-to-carbon (O/C) ratios for several Ar-plasma-treated fluoropolymers. Contrary to literature indications, a common pattern was found for PTFE and PFA: a moderate decrease in F/C ratio (from 1.99 to 1.40, and from 1.97 to 1.57, respectively), together with a moderate increase in O/C ratio (from negligible to about 0.10, and from 0.012 to about O.10, respectively) at very short exposures, after which the F/C ratios remained essentially constant on prolonged exposures, while the O/C ratios for PTFE and PFA leveled off at 0.11 and 0.15, respectively. The XPS C(sub 1s), spectra for these polymers exposed to the Ar plasma for 20 min were similar and presented, besides a prominent peak at 292.0 eV (CF2,) and a minor peak at 294.0 or 294.1 eV (CF3), a composite band of four curve-resolved peaks (approximately 285-290 eV) representing various CH, CC, CO, CN, and CF functionalities.

  2. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source.

    PubMed

    Osborne, G C; Kantsyrev, V L; Safronova, A S; Esaulov, A A; Weller, M E; Shrestha, I; Shlyaptseva, V V; Ouart, N D

    2012-10-01

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature (∼10-40 eV) plasmas than emission spectra (∼350-500 eV).

  3. Development of a 0.1 μm linewidth fabrication process for x-ray lithography with a laser plasma source

    NASA Astrophysics Data System (ADS)

    Bobkowski, Romuald; Fedosejevs, Robert; Broughton, James N.

    1999-06-01

    A process has been developed for the purpose of fabricating 0.1 micron linewidth interdigital electrode patterns based on proximity x-ray lithography using a laser-plasma source. Such patterns are required in the manufacture of surface acoustic wave devices. The x-ray lithography was carried out using emission form a Cu plasma produced by a 15Hz, 248nm KrF excimer laser. A temporally multiplexed 50ps duration seed pulse was used to extract the KrF laser energy producing a train of several 50ps pulses spaced approximately 2ns apart within each output pulse. Each short pulse within the train gave the high focal spot intensity required to achieve high efficiency emission of keV x-rays. The first stage of the overall process involves the fabrication of x-ray mask patterns on 1 micron thick Si3N4 membranes using 3-beam lithography followed by gold electroplating. The second stage involves x-ray exposure of a chemically amplified resist through the mask patterns to produce interdigital electrode patterns with 0.1 micron linewidth. Helium background gas and thin polycarbonate/aluminum filters are employed to prevent debris particles from the laser-plasma source form reaching the exposed sample. A computer control system fires the laser and monitors the x-ray flux from the laser-plasma source to insure the desired x-ray exposure is achieved at the resist. In order to reduce diffusion effects in the chemically amplified resist during the post exposure bake the temperature had to be reduced from that normally used. Good reproduction of 0.1 micron linewidth patterns into the x-ray resist was obtained once the exposure parameters and post exposure bake were optimized. A compact exposure station using flowing helium at atmospheric pressure has also been developed for the process, alleviating the need for a vacuum chamber. The details of the overall process and the compact exposure station will be presented.

  4. X-ray tube with magnetic electron steering

    DOEpatents

    Reed, Kim W.; Turman, Bobby N.; Kaye, Ronald J.; Schneider, Larry X.

    2000-01-01

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  5. X-Ray Laser

    DTIC Science & Technology

    1991-01-31

    Reflection in Relativistic Electron Beam Channel Radiation Systems, IEEE Trans. on Plasma Science 16(5), 548 (1988). 3. M. Strauss, P. Amendt, N...Reduced Radiation Losses in a Channeled-Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 39(11), 5791 (1989). 6. M. Strauss and N. Rostoker... Radiation Guiding in Channeling Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 40(12), 7097 (1989). 91-00870111 llllltl

  6. Multi-energy x-ray imaging and sensing for diagnostic and control of the burning plasma.

    PubMed

    Stutman, D; Tritz, K; Finkenthal, M

    2012-10-01

    New diagnostic and sensor designs are needed for future burning plasma (BP) fusion experiments, having good space and time resolution and capable of prolonged operation in the harsh BP environment. We evaluate the potential of multi-energy x-ray imaging with filtered detector arrays for BP diagnostic and control. Experimental studies show that this simple and robust technique enables measuring with good accuracy, speed, and spatial resolution the T(e) profile, impurity content, and MHD activity in a tokamak. Applied to the BP this diagnostic could also serve for non-magnetic sensing of the plasma position, centroid, ELM, and RWM instability. BP compatible x-ray sensors are proposed using "optical array" or "bi-cell" detectors.

  7. MIT modular x-ray source systems for the study of plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Coleman, J. W.; Wenzel, K. W.; Petrasso, R. D.; Lo, D. H.; Li, C. K.; Lierzer, J. R.; Wei, T.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an e-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded e-gun of the RACEHORSE system gives a 0.5-1.0-cm pulsable spot on target. The nongridded e-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.

  8. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2011-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approximately 1.5 keY, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approximately 140 K by a relatively dense, hot plasma that also gives rise to the hot X-my emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-my emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) x solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide

  9. Development of optics for x-ray phase-contrast imaging of high energy density plasmas.

    PubMed

    Stutman, D; Finkenthal, M; Moldovan, N

    2010-10-01

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  10. Recent developments of x-ray lithography in Canada

    NASA Astrophysics Data System (ADS)

    Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues

    1991-08-01

    An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.

  11. X-ray emitting class I protostars in the Serpens dark cloud

    NASA Astrophysics Data System (ADS)

    Preibisch, T.

    2004-12-01

    We analyze a set of three individual XMM-Newton X-ray observation of the Serpens dark cloud. In addition to the 45 sources already reported in the analysis of the first of these XMM-Newton observations by Preibisch (\\cite{Preibisch2003), the complete combined data set leads to the detection of X-ray emission from four of the 19 known class I protostars in the region. The set of three observations allows us to study the variability of the sources on timescales from minutes to several months. The lightcurves of two of the four X-ray detected class I protostars show evidence for significant variability; the data suggest at least four flare-like events on these objects. This relatively high level of variability in the X-ray emission from the class I protostars is in qualitative agreement with the result by Imanishi et al. (\\cite{Imanishi2001}), who found that the class I protostars in the ρ Ophiuchi dark cloud show a higher level of variability than that of more evolved class II and class III young stellar objects. This may support non-coronal X-ray emission mechanisms for class I protostars and is in agreement with the predictions of models that assume magnetic interactions between the protostar and its surrounding disk as a source of high-energy emission. We also find a strong variation (by a factor of ˜10) in the X-ray luminosity of the class II object EC 74 between the three observations, which may be explained by a long duration flare or by rotational modulation. Finally, we find no evidence for X-ray emission from the five class 0 protostars in the region.

  12. Film calibration for soft x-ray wavelengths

    NASA Astrophysics Data System (ADS)

    Tallents, Gregory J.; Krishnan, J.; Dwivedi, L.; Neely, David; Turcu, I. C. Edmond

    1997-10-01

    The response of photographic film to X-rays from laser- plasma is of practical interest. Film is often used for the ultimate detection of x-rays in crystal and grating spectrometers and in imaging instruments such as pinhole cameras largely because of its high spatial resolution (approximately 1 - 10 microns). Characteristic curves for wavelengths--3 nm and 23 nm are presented for eight x-ray films (Kodak 101-01, 101-07, 104-02, Kodak Industrex CX, Russian UF-SH4, UF-VR2, Ilford Q plates and Shanghai 5F film). The calibrations were obtained from the emission of laser-produced carbon plasmas and a Ne-like Ge X-ray laser.

  13. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  14. Chandra X-ray Grating Spectrometry of Eta Carinae near X-ray Minimum: I. Variability of the Sulfur and Silicon Emission Lines

    NASA Technical Reports Server (NTRS)

    Henley, D. B.; Corcoran, M. F.; Pittard, J. M.; Stevens, I. R.; Hamaguchi, K.; Gull, T. R.

    2008-01-01

    We report on variations in important X-ray emission lines in a series of Chandra grating spectra of the supermassive colliding wind binary star eta Car, including key phases around the X-ray minimum/periastron passage in 2003.5. The X-rays arise from the collision of the slow, dense wind of eta Car with the fast, low-density wind of an otherwise hidden companion star. The X-ray emission lines provide the only direct measure of the flow dynamics of the companion's wind along the wind-wind collision zone. We concentrate here on the silicon and sulfur lines, which are the strongest and best resolved lines in the X-ray spectra. Most of the line profiles can be adequately fit with symmetric Gaussians with little significant skewness. Both the silicon and sulfur lines show significant velocity shifts and correlated increases in line widths through the observations. The R = forbidden-to-intercombination ratio from the Si XIII and S XV triplets is near or above the low-density limit in all observations, suggesting that the line-forming region is > 1.6 stellar radii from the companion star, and that the emitting plasma may be in a non-equilibrium state. We show that simple geometrical models cannot simultaneously fit both the observed centroid variations and changes in line width as a function of phase. We show that the observed profiles can be fitted with synthetic profiles with a reasonable model of the emissivity along the wind-wind collision boundary. We use this analysis to help constrain the line formation region as a function of orbital phase, and the orbital geometry. Subject headings: X-rays: stars -stars: early-type-stars: individual (q Car)

  15. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  16. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    NASA Astrophysics Data System (ADS)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  17. Echo-Enabled X-Ray Vortex Generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Marinelli, A.

    2012-11-01

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.

  18. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    PubMed

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  19. X-ray And EUV Spectroscopy Of Highly Charged Tungsten Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biedermann, Christoph; Radtke, Rainer

    2009-09-10

    The Berlin EBIT has been established by the Max-Planck-Institut fuer Plasmaphysik to generate atomic physics data in support of research in the field of controlled nuclear fusion, by measuring the radiation from highly charged ions in the x-ray, extreme ultraviolet and visible spectral ranges and providing valuable diagnostics for high temperature plasmas. In future fusion devices, for example ITER, currently being constructed at Cadarache, France, the plasma facing components will be armored with high-Z materials, most likely tungsten, due to the favorable properties of this element. At the same time the tremendous radiation cooling of these high-Z materials represents amore » threat to fusion and obliges one to monitor carefully the radiation. With EBIT a selected ensemble of ions in specific charge states can be produced, stored and excited for spectroscopic investigations. Employing this technique, we have for example resolved the wide structure observed around 5 nm at the ASDEX Upgrade tokamak as originating from E1-transitions into the open 4d shell of tungsten ions in charge states 25+ to 37+ producing a band-like emission pattern. Further, these ions emit well-separated M1 lines in the EUV range around 65 nm suitable for plasma diagnostics. Kr-like to Cr-like tungsten ions (38+ to 50+) show strong soft-x-ray lines in the range 0.5 to 2 and 5 to 15 nm. Lines of even higher charged tungsten ions, up to Ne-like W{sup 64+}, abundant in the core plasma of present and future fusion test devices, have been investigated with high resolution Bragg-crystal spectroscopy at 0.13 nm. Recently, x-ray spectroscopic measurements of the dielectronic recombination LMn resonances of W{sup 60+} to W{sup 67+} ions have been preformed and compare well with atomic structure calculations.« less

  20. Deducing Electron Properties from Hard X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Kontar, E. P.; Brown, J. C.; Emslie, A. G.; Hajdas, W.; Holman, G. D.; Hurford, G. J.; Kasparova, J.; Mallik, P. C. V.; Massone, A. M.; McConnell, M. L.; hide

    2011-01-01

    X-radiation from energetic electrons is the prime diagnostic of flare-accelerated electrons. The observed X-ray flux (and polarization state) is fundamentally a convolution of the cross-section for the hard X-ray emission process(es) in question with the electron distribution function, which is in turn a function of energy, direction, spatial location and time. To address the problems of particle propagation and acceleration one needs to infer as much information as possible on this electron distribution function, through a deconvolution of this fundamental relationship. This review presents recent progress toward this goal using spectroscopic, imaging and polarization measurements, primarily from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Previous conclusions regarding the energy, angular (pitch angle) and spatial distributions of energetic electrons in solar flares are critically reviewed. We discuss the role and the observational evidence of several radiation processes: free-free electron-ion, free-free electron-electron, free-bound electron-ion, photoelectric absorption and Compton backscatter (albedo), using both spectroscopic and imaging techniques. This unprecedented quality of data allows for the first time inference of the angular distributions of the X-ray-emitting electrons and improved model-independent inference of electron energy spectra and emission measures of thermal plasma. Moreover, imaging spectroscopy has revealed hitherto unknown details of solar flare morphology and detailed spectroscopy of coronal, footpoint and extended sources in flaring regions. Additional attempts to measure hard X-ray polarization were not sufficient to put constraints on the degree of anisotropy of electrons, but point to the importance of obtaining good quality polarization data in the future.

  1. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the

  2. Space and time resolved emission of hard X-rays from a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    The X-ray emission from focused plasmas was observed with an image converter camera in the streak and framing modes. Use of a very high gain image intensifier enabled weak hard X-ray emission (above 25 keV) to be recorded. The use of an admixture of higher atomic number into the deuterium was avoided, and the role of the vapor from the anode surface could be discerned. The recorded bremsstrahlung emission seemed to be from a metallic plasma of copper released from the anode surface by bombardment from an intense electron beam. The intensity of emission was determined by the density of copper and the density and energy of the electron beam. The main emission recorded occurred several 100 nsec after the focus was over, which implies that the electric fields driving the beam existed for this duration. It is suggested that the fields were created by annihilation of magnetic flux for a time much longer than the focus duration.

  3. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    NASA Astrophysics Data System (ADS)

    Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.

    2015-04-01

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.

  4. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  5. Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core-shell (In,Ga)N/GaN rod light-emitting diodes.

    PubMed

    Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2016-08-12

    Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.

  6. Nanofocus x-ray diffraction and cathodoluminescence investigations into individual core-shell (In,Ga)N/GaN rod light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Krause, Thilo; Hanke, Michael; Cheng, Zongzhe; Niehle, Michael; Trampert, Achim; Rosenthal, Martin; Burghammer, Manfred; Ledig, Johannes; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-Heinrich; Waag, Andreas

    2016-08-01

    Employing nanofocus x-ray diffraction, we investigate the local strain field induced by a five-fold (In,Ga)N multi-quantum well embedded into a GaN micro-rod in core-shell geometry. Due to an x-ray beam width of only 150 nm in diameter, we are able to distinguish between individual m-facets and to detect a significant in-plane strain gradient along the rod height. This gradient translates to a red-shift in the emitted wavelength revealed by spatially resolved cathodoluminescence measurements. We interpret the result in terms of numerically derived in-plane strain using the finite element method and subsequent kinematic scattering simulations which show that the driving parameter for this effect is an increasing indium content towards the rod tip.

  7. X-ray emission scaling law from a plasma focus with different anode tip materials (Cu, Mo, and W)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharif, M.; Ahmad, S.; Zakaullah, M.

    X-ray emission from a 2.3-5.3 kJ Mather-type plasma focus [Phys. Fluids 7, 5 (1964)] employing copper, molybdenum, and tungsten anode tip is studied. Argon is used as a working gas. Characteristic Cu K{alpha} and Mo K-series emission and their ratio to the continuous x-rays are determined. From the variation of the x-ray yield data with filling pressure at different charging voltages, scaling laws are obtained. X-ray pinhole images demonstrate that a significant amount of x-ray emission is from the anode tip. The comparison of the ratio of characteristic to continuum radiation for copper anode with typical x-ray tube data revealsmore » that the contribution of very high energy electron beam from the focus region for x-ray generation through thick target bremsstrahlung mechanism is not significant. Rather, electrons with energy of the order of, or even less than, the charging voltage are responsible for bulk of the x-ray emission.« less

  8. Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas.

    PubMed

    Popmintchev, Dimitar; Hernández-García, Carlos; Dollar, Franklin; Mancuso, Christopher; Pérez-Hernández, Jose A; Chen, Ming-Chang; Hankla, Amelia; Gao, Xiaohui; Shim, Bonggu; Gaeta, Alexander L; Tarazkar, Maryam; Romanov, Dmitri A; Levis, Robert J; Gaffney, Jim A; Foord, Mark; Libby, Stephen B; Jaron-Becker, Agnieszka; Becker, Andreas; Plaja, Luis; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching--the constructive addition of x-ray waves from a large number of atoms--favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth-limited pulse trains of ~100 attoseconds. Copyright © 2015, American Association for the Advancement of Science.

  9. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  10. MIT modular x-ray source systems for the study of plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.W.; Wenzel, K.W.; Petrasso, R.D.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an {ital e}-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded {ital e}-gun of the RACEHORSE system gives a 0.5--1.0-cm pulsable spot on target. The nongridded {ital e}-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design detailsmore » and some RACEHORSE results are presented.« less

  11. Compact gain saturated plasma based X-ray lasers down to 6.9nm

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge; Wang, Y.; Wang, S.; Rockwood, A.; Berrill, M.; Shlyaptsev, V.

    2017-10-01

    Plasma based soft x-ray amplifiers allow many experiments requiring bright, high energy soft x-ray laser pulses to be conducted in compact facilities. We have extended the wavelength of compact gain saturated x-ray lasers to 6.89 nm in a Ni-like Gd plasma generated by a Ti:Sa laser. Gain saturated laser operation was also obtained at 7.36 nm in Ni-like Sm. Isolectronic scaling and optimization of laser pre-pulse duration allowed us to also observe strong lasing at 6.6 nm and 6.1 nm in Ni-like Tb, and amplification at 6.4 nm and 5.89 nm in Ni-like Dy. The results were obtained by transient laser heating of solid targets with traveling wave excitation at progressively increased gracing incidence angles. We show that the optimum pump angle of incidence for collisional Ni-like lasers increases linearly with atomic number from Z =42 to Z =66, reaching 43 degrees for Ni-like Dy, in good agreement with hydrodynamic/atomic physics simulations. These results will enable single-shot nano-scale imaging and other application of sub-7 nm lasers to be performed at compact facilities. Work supported by Grant DE-FG02-4ER15592 of the Department of Energy, Office of Science, and by the National Science Foundation Grant ECCS 1509925.

  12. Spatial coherence measurements and x-ray holographic imaging using a laser-generated plasma x-ray source in the water window spectral region

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. E.; Ross, I. N.; Schulz, M. S.; Daido, H.; Tallents, G. J.; Krishnan, J.; Dwivedi, L.; Hening, A.

    1993-06-01

    The properties of a coherent x-ray point source in the water window spectral region generated using a small commercially available KrF laser system focused onto a Mylar (essentially carbon) target have been measured. By operating the source in a low-pressure (approximately 20 Torr) nitrogen environment, the degree of monochromaticity was improved due to the nitrogen acting as an x-ray filter and relatively enhancing the radiation at a wavelength of 3.37 nm (C vi 1s-2p). X-ray pinhole camera images show a minimum source size of 12 μm. A Young's double slit coherence measurement gave fringe visibilities of approximately 62% for a slit separation of 10.5 μm at a distance of 31.7 cm from the source. To demonstrate the viability of the laser plasma as a source for coherent imaging applications a Gabor (in-line) hologram of two carbon fibers, of different sizes, was produced. The exposure time and the repetition rate was 2 min and 10 Hz, respectively.

  13. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  14. Single- and double-core-hole ion emission spectroscopy of transient neon plasmas produced by ultraintense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-02-01

    Single-core-hole (SCH) and double-core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma-density effects on level populations and charge-state distribution are demonstrated with an x-ray photon energy of 2000 eV. It is shown that atomic number density of relevant experiment is about 1 × 1018 cm-3, which is comparable to a recent experiment. At this density, we systematically investigate the emissivity of the transient neon plasmas. For laser photon energy in the range 937-1360 eV, resonant absorptions (RA) of 1s\\to {np} (n≥slant 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. The RA effects are illustrated in detail for an x-ray pulse of 944 eV photon energy, which creates the 1s\\to 2p RA from the SCH states (1s2{s}22{p}4, 1s2s2p5, and 1s2p6) of Ne3+. After averaging over the space and time distribution of x-ray pulse, DCH emission spectroscopy is studied at x-ray photon energies of 937, 944, 955, 968, 980, and 990 eV, where there exist 1s\\to 2p resonances from SCH states of Ne2+-Ne7+. The processes with producing DCH states are discussed. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.

  15. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  16. Long Duration X-ray Bursts Observed by MAXI

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi

    Monitor of All-sky X-ray Image (MAXI) is X-ray mission on the International Space Station. MAXI scans all sky every 92 min and detects various X-ray transient events including X-ray bursts. Among the X-ray bursts observed by MAXI, eleven had long duration and were observed more than one scan. Six out of eleven long bursts have the e-folding time of >1 h, that should be classified as "superbursts", while the rest are "intermediate-duration bursts". The total emitted energy of these long X-ray bursts range from 1041 to 1042 ergs. The lower limits of the superburst recurrence time of 4U 0614+091 and Ser X-1 are calculated as 4400 and 59 days, which may be consistent with the observed recurrence time of 3523 and 1148 days, respectively.

  17. X ray and gamma ray emission from classical nova outbursts

    NASA Technical Reports Server (NTRS)

    Truran, James W.; Starrfield, Sumner; Sparks, Warren M.

    1992-01-01

    The outbursts of classical novae are now recognized to be consequences of thermonuclear runaways proceeding in accreted hydrogen-rich shells on white dwarfs in close binary systems. For the conditions that are known to exist in these environments, it is expected that soft x-rays can be emitted, and indeed x-rays were detected from a number of novae. The circumstances for which we expect novae to produce significant x-ray fluxes and provide estimates of the luminosities and effective temperatures are described. It is also known that at the high temperatures that are known to be achieved in this explosive hydrogen-burning environment, significant production of both Na-22 and Al-26 will occur. In this context, we identify the conditions for which gamma-ray emission may be expected to result from nova outbursts.

  18. Table-top soft x-ray microscope using laser-induced plasma from a pulsed gas jet.

    PubMed

    Müller, Matthias; Mey, Tobias; Niemeyer, Jürgen; Mann, Klaus

    2014-09-22

    An extremely compact soft x-ray microscope operating in the "water window" region at the wavelength λ = 2.88 nm is presented, making use of a long-term stable and nearly debris-free laser-induced plasma from a pulsed nitrogen gas jet target. The well characterized soft x-ray radiation is focused by an ellipsoidal grazing incidence condenser mirror. Imaging of a sample onto a CCD camera is achieved with a Fresnel zone plate using magnifications up to 500x. The spatial resolution of the recorded microscopic images is about 100 nm as demonstrated for a Siemens star test pattern.

  19. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    NASA Astrophysics Data System (ADS)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  20. The Ultraviolet Surprise. Efficient Soft X-Ray High Harmonic Generation in Multiply-Ionized Plasmas

    DOE PAGES

    Popmintchev, Dimitar; Hernandez-Garcia, Carlos; Dollar, Franklin; ...

    2015-12-04

    High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Reduced quantum diffusion of the radiating electron wave function results in emission from each species which is highest when a short-wavelength ultraviolet driving laser is used. But, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers. We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams inmore » the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma. We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.« less

  1. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  2. The first X-ray emitting brown dwarf.

    NASA Astrophysics Data System (ADS)

    Comerón, F.; Neuhäuser, R.; Kaas, A. A.

    1998-12-01

    The increasing number of brown dwarfs discovered in the last few years is rapidly opening the possibilities of studying a wide range of their properties and the ways in which these depend on essential parameters, such as the mass, the age, the rotation, or the environment. One of these properties is the magnetic field, which in principle should be expected to be important in fully convective objects such as brown dwarfs. The chromospheric X-ray emission, widely observed in M-type dwarfs (Neuhäuser 1997), has its origin in this magnetic activity. As such, it offers an observational tool to probe the interior of these objects, the mechanisms for the generation and maintenance of their magnetic fields, and the way in which the magnetic activity is affected by the basic parameters of the object. The detection of X-ray emission from brown dwarfs is thus of great importance to extend our understanding of the properties of stellar magnetic fields to the substellar domain, as well as to ascertain to what extent a small, substellar mass, and the consequent lack of a permanent nuclear energy source, can have an impact in the production and the evolution of a magnetic field.

  3. Single and double core-hole ion emission spectroscopy of transient neon plasmas produced by ultraintense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-05-01

    Single core-hole (SCH) and double core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in the detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma density effects on level populations are demonstrated with an x-ray photon energy of 2000 eV. For laser photon energy in the range of 937 - 1360 eV, resonant absorptions (RA) of 1s-np (n> = 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.

  4. The Chandra X-Ray Observatory and its Role for the Study of Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2010-01-01

    NASA's Chandra X-Ray Observatory was launched in July of 1999. Featuring a 1000cm2-class X-ray telescope with sub-arcsecond angular resolution, the Observatory has observed targets from the solar system including the earth s moon, comets, and planets to the most distant galaxy clusters and active galactic nuclei. Capable of performing moderate energy resolution image-resolved spectroscopy using its CCD detectors, and high-resolution grating spectroscopy, the Observatory has produced, and continues to produce, valuable data and insights into the emission mechanisms of the ionized plasmas in which the X-rays originate. We present a brief overview of the Observatory to provide insight as to how to use it for your investigations. We also present an, admittedly brief and biased, overview of some of the results of investigations performed with Chandra that may be of interest to this audience.

  5. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  6. A color gradient in the soft X-ray diffuse background

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Schmitt, J. H. M. M.; Edwards, B. C.

    1990-01-01

    It is shown that the deviations of the soft X-ray diffuse background B band to C band intensity ratio from a constant value can be described as a simple dipole-like variation across the sky. In terms of the observed Wisconsin B/C band intensity ratio, the mean value is 0.355, the dipole magnitude is 0.106, and the positive dipole axis points toward l = 168.7 deg, b = 11.2 deg, almost in the galactic anticenter direction. This gradient in the spectral hardness can be due to several causes; the simplest is a temperature gradient in the X-ray emitting plasma of the local cavity from about 10 exp 6.2 K toward the galactic center to about 10 exp 5.9 K in the anticenter direction. While the physical origin of such a temperature gradient is uncertain, the alignment of the dipole with the higher temperature (and absorbed) Loop I region may be significant.

  7. Plasma synthesis, Mössbauer spectroscopy and X-ray diffraction studies of nanosized iron oxides

    NASA Astrophysics Data System (ADS)

    Paneva, Daniela; Zaharieva, Katerina; Grabis, Janis; Mitov, Ivan; Vissokov, Gheorghi

    2010-06-01

    In this article synthesis and study of iron oxide nanopowders are described. The synthesis of sample 1 and sample 2—iron oxides—was carried out by electric arc plasma cutting of ordinary steel. The sample 3 was prepared by evaporation of Fe2O3/FeO mixture in radio-frequency nitrogen plasma. The characterization of the as prepared iron oxide nanoproducts was achieved by means of Mössbauer spectroscopy and X-ray diffraction analysis. The presence of different phases of iron oxide with a basic phase Fe3 - xO4 (magnetite), additional Fe1 - xO (wüstite) and α or γ-Fe2O3 (hematite or maghemite) with superparamagnetic particles for sample 1 and sample 2 and Fe3 - xO4 (magnetite) for sample 3 is observed.

  8. Normal incidence X-ray mirror for chemical microanalysis

    DOEpatents

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  9. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  10. The study of hard x-ray emission and electron beam generation in wire array Z-pinch and X-pinch plasmas at university-scale generators

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor Kumar

    ) and cold L-shell spectral lines (1-1.54Á) in the HXR region were observed only during the interaction of electron beam with load material and anode surface. These observations suggest that the mechanism of HXR emission should be associated with non-thermal mechanisms such as the interaction of the electron beam with the load material. In order to estimate the characteristics of the high-energetic electron beam in Z-pinch plasmas, a hard x-ray polarimeter (HXP) has been developed and used in experiments on the Zebra generator. The electron beams (energy more than 30keV) have been investigated with measurements of the polarization state of the emitted bremsstrahlung radiation from plasma. We also analyzed characteristics of energetic electron beams produced by implosions of multi-planar wire arrays, compact cylindrical and nested wire arrays as well as X-pinches. Direct indications of electron beams (electron cutoff energy EB from 42-250 keV) were obtained by using the measured current of a Faraday cup placed above the anode or mechanical damage observed in the anode surface. A comparison of total electron beam energy and the spatial and spectral analysis of the parameters of plasmas were investigated for different wire materials. The dependences of the total electron beam energy (E b) on the wire material and the geometry of the wire array load were studied.

  11. Fabrication of 0.25-um electrode width SAW filters using x-ray lithography with a laser plasma source

    NASA Astrophysics Data System (ADS)

    Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.

    1996-05-01

    A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.

  12. MODEL-INDEPENDENT LIMITS ON THE LINE-OF-SIGHT DEPTH OF CLUSTERS OF GALAXIES USING X-RAY AND SUNYAEV-ZEL'DOVICH DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Andisheh; Chang Weihan

    2011-07-01

    We derive a model-independent expression for the minimum line-of-sight extent of the hot plasma in a cluster of galaxies. The only inputs are the 1-5 keV X-ray surface brightness and the Comptonization from Sunyaev-Zel'dovich (SZ) data. No a priori assumptions regarding equilibrium or geometry are required. The method applies when the X-ray emitting material has temperatures anywhere between 0.3 keV and 20 keV and metallicities between 0 and twice solar-conditions fulfilled by nearly all intracluster plasma. Using this method, joint APEX-SZ and Chandra X-ray Observatory data on the Bullet Cluster yield a lower limit of 400 {+-} 56 kpc onmore » the half-pressure depth of the main component, limiting it to being at least spherical, if not cigar-shaped primarily along the line of sight.« less

  13. Through the X-ray looking glass, and what plasma physics found there

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Jones, Christine; Roediger, Elke

    2017-08-01

    How energy is transported and dissipated is the most fundamental process in the thermalization and evolution of galaxy clusters. At temperatures of 1--10 keV, intracluster medium (ICM) approximates a highly ionized plasma. Contemporary X-ray observations have revealed a wealth of substructures in the ICM, even in relatively relaxed clusters. Of particular interest is the ubiquitous presence of cold fronts, resulting from the shear interface between gaseous regions of different entropies. This configuration inevitably leads to the Kelvin-Helmholtz Instability (KHI), appearing as “horn” or “roll” features in X-ray images. Both viscosity and ordered magnetic field can suppress the growth of KHI. We present results of Chandra, XMM-Newton, and Suzaku observations of Fornax and Virgo. We probe the cluster plasma physics through the gas properties of the sloshing cold fronts, merging cold fronts, AGN bubbles, and gaseous stripped tails in these systems. We found that the ICM ought to be inviscous and we can put an upper limit on the intracluster magnetic field. Our results have also provided insights into the merging history of galaxy clusters, which have been reproduced in tailored simulations.

  14. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  15. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  16. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  17. Hydrodynamic study of plasma amplifiers for soft-x-ray lasers: a transition in hydrodynamic behavior for plasma columns with widths ranging from 20 μm to 2 mm.

    PubMed

    Oliva, Eduardo; Zeitoun, Philippe; Velarde, Pedro; Fajardo, Marta; Cassou, Kevin; Ros, David; Sebban, Stephan; Portillo, David; le Pape, Sebastien

    2010-11-01

    Plasma-based seeded soft-x-ray lasers have the potential to generate high energy and highly coherent short pulse beams. Due to their high density, plasmas created by the interaction of an intense laser with a solid target should store the highest amount of energy density among all plasma amplifiers. Our previous numerical work with a two-dimensional (2D) adaptive mesh refinement hydrodynamic code demonstrated that careful tailoring of plasma shapes leads to a dramatic enhancement of both soft-x-ray laser output energy and pumping efficiency. Benchmarking of our 2D hydrodynamic code in previous experiments demonstrated a high level of confidence, allowing us to perform a full study with the aim of the way for 10-100 μJ seeded soft-x-ray lasers. In this paper, we describe in detail the mechanisms that drive the hydrodynamics of plasma columns. We observed transitions between narrow plasmas, where very strong bidimensional flow prevents them from storing energy, to large plasmas that store a high amount of energy. Millimeter-sized plasmas are outstanding amplifiers, but they have the limitation of transverse lasing. In this paper, we provide a preliminary solution to this problem.

  18. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  19. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  20. X-Ray Detector for 1 to 30 keV

    NASA Technical Reports Server (NTRS)

    Alcorn, G.; Jackson, J., Jr; Grant, P.; Marshall, F.

    1983-01-01

    Array of silicon X-ray detecting diodes measures photon energy and provides image of X-ray pattern. Regardless of thickness of new X-ray detector, depletion region extends through it. Impinging X-rays generate electrons in quantities proportional to X-ray energy. X-ray detector is mated to chargecoupled-device array for image generation and processing. Useful in industrial part inspection, pulsed-plasma research and medical application.

  1. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaury, C.; Ta Phuoc, K.; Corde, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction lengthmore » to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.« less

  2. The TESIS Project: Are Type 2 QSO Hidden in X-Ray Emitting EROs?

    NASA Astrophysics Data System (ADS)

    Severgnini, P.; Della Ceca, R.; Braito, V.; Saracco, P.; Longhetti, M.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    X-ray selected EROs are, on average, the hardest X-ray sources in medium and deep X-ray fields. This coupled with their extremely red colors (R-K > 5) suggest that they represent one of the most promising population where looking for high-luminosity (LX > 1044 erg s-1) and X-ray obscured (NH > 1022 cm-2) type2 AGNs, the so called QSO2 (e.g., [5]; [4]; Mignoli et al. submitted to A&A). These latter are predicted in large density by the synthesis model of the Cosmic X-ray background [9] even if only few observational evidences have been found so far (e.g., [1] and references therein; Caccianiga et al. A&A accepted).

  3. X-rays and gamma-rays from accretion flows onto black holes in Seyferts and X-ray binaries

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Poutanen, Juri; Magdziarz, Pawel; Gierlinski, Marek

    1997-01-01

    Observations and theoretical models of X-ray/gamma ray spectra of radio quiet Seyfert galaxies and Galactic black hole candidates are reviewed. The spectra from these objects share the following characteristics: an underlying power law with a high energy cutoff above 200 keV; a Compton reflection component with a Fe K alpha line, and a low energy absorption by intervening cold matter. The X-ray energy spectral index, alpha, is typically in the range between 0.8 and 1 in Seyfert spectra, and that of the hard state spectra of the black hole candidates Cygnus X-1 and GX 339-4 is typically between 0.6 and 0.8. The Compton reflection component corresponds with cold matter covering a solid angle of between 0.8pi and 2pi as seen from the X-ray source. The broadband spectra of both classes of sources are well fitted by Compton upscattering of soft photons in thermal plasma. The fits yield a thermal plasma temperature of 100 keV and the Thomson optical depth of 1. All the spectra presented are cut off before the electron rest energy 511 keV, indicating that electron/positron pair production is an important process.

  4. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, G.D.; Richardson, M.C.

    1996-11-19

    Method and apparatus for producing extreme ultraviolet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10{sup 11}--10{sup 12} watts/cm{sup 2}) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10--30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle. 5 figs.

  5. Cluster beam targets for laser plasma extreme ultraviolet and soft x-ray sources

    DOEpatents

    Kublak, Glenn D.; Richardson, Martin C. (CREOL

    1996-01-01

    Method and apparatus for producing extreme ultra violet (EUV) and soft x-ray radiation from an ultra-low debris plasma source are disclosed. Targets are produced by the free jet expansion of various gases through a temperature controlled nozzle to form molecular clusters. These target clusters are subsequently irradiated with commercially available lasers of moderate intensity (10.sup.11 -10.sup.12 watts/cm.sup.2) to produce a plasma radiating in the region of 0.5 to 100 nanometers. By appropriate adjustment of the experimental conditions the laser focus can be moved 10-30 mm from the nozzle thereby eliminating debris produced by plasma erosion of the nozzle.

  6. Investigation of Zn and Cu prepulse plasmas relevant to collisional excitation x-ray lasers

    NASA Astrophysics Data System (ADS)

    Rus, B.; Zeitoun, P.; Mocek, T.; Sebban, S.; Kálal, M.; Demir, A.; Jamelot, G.; Klisnick, A.; Králiková, B.; Skála, J.; Tallents, G. J.

    1997-11-01

    This paper presents the results of a comparative experimental study of low-temperature Zn and Cu line plasmas created on slab targets by 400-ps laser pulse producing irradiance from 4×109 to 1011 W cm-2. The aim was to examine the nanosecond-scale postpulse evolution of plasmas created in conditions equivalent to those produced by prepulses in collisional x-ray lasers, of elements that have neighboring atomic numbers but very different material properties. The plasmas were interferometrically probed at 4 and 10 ns next to the driving pulse, using geometry that made it possible to obtain an authentic two-dimensional (2D) electron density pattern in the plane perpendicular to the plasma axis. VIS-IR spectroscopy and imaging were used to provide an indication of the electron temperature and volume of the plasma layer near the target. We observe that over the whole range of the applied irradiances the characteristics and/or the expansion history of the Zn and Cu plasmas are very different. For irradiance exceeding a threshold specific to each element the density patterns exhibit an unexpected structure characterized by symmetrical flanks strongly localized in space, suggesting plasma is generated in addition to that produced within the laser pulse duration. The results imply that during the postpulse time the energy coupling between the plasma and the target is substantial for the plasma flow that exhibits a complex 2D character. A comparison of the data and results of a 1.5D hydrodynamic simulation for 1011 W cm-2 is made, indicating reasons for problems of such models in the treatment of the plasmas in question, and thus in the treatment of small-prepulse action in some x-ray laser systems.

  7. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valdivia, M. P., E-mail: mpvaldivia@pha.jhu.edu; Stutman, D.; Stoeckl, C.

    2016-11-15

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25–29 J, 8–30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  8. Talbot-Lau x-ray deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments (invited).

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Mileham, C; Begishev, I A; Theobald, W; Bromage, J; Regan, S P; Klein, S R; Muñoz-Cordovez, G; Vescovi, M; Valenzuela-Villaseca, V; Veloso, F

    2016-11-01

    Talbot-Lau X-ray deflectometry (TXD) has been developed as an electron density diagnostic for High Energy Density (HED) plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping were demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moiré pattern formation and grating survival were also observed using a copper x-pinch driven at 400 kA, ∼1 kA/ns. These results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  9. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  10. Clusters in intense x-ray pulses

    NASA Astrophysics Data System (ADS)

    Bostedt, Christoph

    2012-06-01

    Free-electron lasers can deliver extremely intense, coherent x-ray flashes with femtosecond pulse length, opening the door for imaging single nanoscale objects in a single shot. All matter irradiated by these intense x-ray pulses, however, will be transformed into a highly-excited non-equilibrium plasma within femtoseconds. During the x-ray pulse complex electron dynamics and the onset of atomic disorder will be induced, leading to a time-varying sample. We have performed first experiments about x-ray laser pulse -- cluster interaction with a combined spectroscopy and imaging approach at both, the FLASH free electron laser in Hamburg (Germany) and the LCLS x-ray free-electron laser in Stanford (California). Atomic clusters are ideal for investigating the light - matter interaction because their size can be tuned from the molecular to the bulk regime, thus allowing to distinguish between intra and inter atomic processes. Imaging experiments with xenon clusters show power-density dependent changes in the scattering patterns. Modeling the scattering data indicates that the optical constants of the clusters change during the femtosecond pulse due to the transient creation of high charge states. The results show that ultra fast scattering is a promising approach to study transient states of matter on a femtosecond time scale. Coincident recording of time-of-flight spectra and scattering patterns allows the deconvolution of focal volume and particle size distribution effects. Single-shot single-particle experiments with keV x-rays reveal that for the highest power densities an highly excited and hot cluster plasma is formed for which recombination is suppressed. Time resolved infrared pump -- x-ray probe experiments have started. Here, the clusters are pumped into a nanoplasma state and their time evolution is probed with femtosecond x-ray scattering. The data show strong variations in the scattering patterns stemming from electronic reconfigurations in the cluster

  11. Femtosecond profiling of shaped x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  12. Femtosecond profiling of shaped x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M. C.; Grguras, I.; Behrens, C.

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  13. Femtosecond profiling of shaped x-ray pulses

    DOE PAGES

    Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...

    2018-03-26

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  14. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  15. Double core-hole emissivity of transient aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-11-01

    Emissivity of single core-hole (SCH) and double core-hole (DCH) states of aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse interaction are investigated systematically by solving the time-dependent rate equation implemented in the detailed level accounting approximation. We first demonstrated the plasma density effects on level populations and charge state distribution. Compared with recent experiments, it is shown that the plasma density effects play important roles in the evolution dynamics. Then we systematically investigated the emissivity of the transient aluminum plasmas produced by the x-ray laser pulses with a few photon energies above the threshold photon energy to create DCH states. For the laser photon energy where there are resonant absorptions (RA), 1s-np transitions with both full 1s and SCH 1s states play important roles in time evolution of the population and DCH emission spectroscopy. The significant RA effects are illustrated in detail for x-ray pulses, which creates the 1s-2p resonant absorption from the SCH states of Al VII. With the increase of the photon energy, the emissions from lower charge states become larger.

  16. The Origin of Soft X-rays in DQ Herculis

    NASA Technical Reports Server (NTRS)

    White, Nicholas E. (Technical Monitor); Mukai, K.; Still, M.; Ringwald, F. A.

    2002-01-01

    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we detect weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.

  17. Soft x-ray emission of galliumlike rare-earth atoms produced by high-temperature low-density tokamak and high-density laser plasmas

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Goldstein, W. H.; Osterheld, A.; Finkenthal, M.; Lippmann, S.; Huang, L. K.; Moos, H. W.; Spector, N.

    1994-09-01

    Spectra of rare-earth atoms praseodymium, Z=59, to ytterbium, Z=70, emitted from the high-temperature (1 keV) low-density (1013 cm-3) TEXT tokamak (at the Fusion Research Center, University of Texas, Austin) and high-density (1020 cm-3) laser plasmas have been recorded in the soft-x-ray range of 50-200 Å with an image intensifier detector and on photographic plates. The brightest n=4 to n=4 transitions of galliumlike ions have been identified and their emission patterns have been studied by comparison with ab initio atomic structure calculations and collisional radiative models under the respective plasma conditions. We have investigated the use of the ratios of the intensities of 4-4 transitions as indicators of plasma densities. This is possible owing to the doublet structure of the galliumlike ground state, which leads to a strong density dependence for ratios of transitions between low-lying levels. We have also used semiempirical ionization balance calculations to characterize the charge state distribution of the tokamak plasmas, in preparation for an investigation of the use of ratios of galliumlike to zinclike and copperlike emission features as indicators of whether the impurities are in coronal equilibrium or undergoing ionization.

  18. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma.

    PubMed

    Ta Phuoc, K; Rousse, A; Pittman, M; Rousseau, J P; Malka, V; Fritzler, S; Umstadter, D; Hulin, D

    2003-11-07

    We have generated x-ray radiation from the nonlinear Thomson scattering of a 30 fs/1.5 J laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked at 0.15 keV with a significant tail up to 2 keV has been observed. These characteristics are found to depend strongly on the laser strength parameter a(0). This radiative process is dominant for a(0) greater than unity at which point the relativistic scattering of the laser light originates from MeV energy electrons inside the plasma.

  19. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Malinowski, K.; Pozniak, K. T.; Kasprowicz, G.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zabolotny, W.

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  20. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics.

    PubMed

    Czarski, T; Chernyshova, M; Malinowski, K; Pozniak, K T; Kasprowicz, G; Kolasinski, P; Krawczyk, R; Wojenski, A; Zabolotny, W

    2016-11-01

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals, and cluster charge values corresponding to the energy spectra.

  1. The cluster charge identification in the GEM detector for fusion plasma imaging by soft X-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czarski, T., E-mail: tomasz.czarski@ifpilm.pl; Chernyshova, M.; Malinowski, K.

    2016-11-15

    The measurement system based on gas electron multiplier detector is developed for soft X-ray diagnostics of tokamak plasmas. The multi-channel setup is designed for estimation of the energy and the position distribution of an X-ray source. The focal measuring issue is the charge cluster identification by its value and position estimation. The fast and accurate mode of the serial data acquisition is applied for the dynamic plasma diagnostics. The charge clusters are counted in the space determined by 2D position, charge value, and time intervals. Radiation source characteristics are presented by histograms for a selected range of position, time intervals,more » and cluster charge values corresponding to the energy spectra.« less

  2. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  3. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  4. The Massive Star-Forming Regions Omnibus X-Ray Catalog

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick S.; Garmire, Gordon P.; Bouwman, Jeroen; Povich, Matthew S.; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.

    2014-07-01

    We present the Massive Star-forming Regions (MSFRs) Omnibus X-ray Catalog (MOXC), a compendium of X-ray point sources from Chandra/ACIS observations of a selection of MSFRs across the Galaxy, plus 30 Doradus in the Large Magellanic Cloud. MOXC consists of 20,623 X-ray point sources from 12 MSFRs with distances ranging from 1.7 kpc to 50 kpc. Additionally, we show the morphology of the unresolved X-ray emission that remains after the cataloged X-ray point sources are excised from the ACIS data, in the context of Spitzer and WISE observations that trace the bubbles, ionization fronts, and photon-dominated regions that characterize MSFRs. In previous work, we have found that this unresolved X-ray emission is dominated by hot plasma from massive star wind shocks. This diffuse X-ray emission is found in every MOXC MSFR, clearly demonstrating that massive star feedback (and the several-million-degree plasmas that it generates) is an integral component of MSFR physics.

  5. Using X-ray spectroscopy of relativistic laser plasma interaction to reveal parametric decay instabilities: a modeling tool for astrophysics.

    PubMed

    Oks, E; Dalimier, E; Faenov, A Ya; Angelo, P; Pikuz, S A; Tubman, E; Butler, N M H; Dance, R J; Pikuz, T A; Skobelev, I Yu; Alkhimova, M A; Booth, N; Green, J; Gregory, C; Andreev, A; Zhidkov, A; Kodama, R; McKenna, P; Woolsey, N

    2017-02-06

    By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also supported by PIC simulations. Our results can be used for laboratory modeling of physical processes in astrophysical objects and a better understanding of intense laser-plasma interactions.

  6. Application of Laser Plasma Sources of Soft X-rays and Extreme Ultraviolet (EUV) in Imaging, Processing Materials and Photoionization Studies

    NASA Astrophysics Data System (ADS)

    Fiedorowicz, H.; Bartnik, A.; Wachulak, P. W.; Jarocki, R.; Kostecki, J.; Szczurek, M.; Ahad, I. U.; Fok, T.; Szczurek, A.; Wȩgrzyński, Ł.

    In the paper we present new applications of laser plasma sources of soft X-rays and extreme ultraviolet (EUV) in various areas of plasma physics, nanotechnology and biomedical engineering. The sources are based on a gas puff target irradiated with nanosecond laser pulses from commercial Nd: YAG lasers, generating pulses with time duration from 1 to 10 ns and energies from 0.5 to 10 J at a 10 Hz repetition rate. The targets are produced with the use of a double valve system equipped with a special nozzle to form a double-stream gas puff target which allows for high conversion efficiency of laser energy into soft X-rays and EUV without degradation of the nozzle. The sources are equipped with various optical systems to collect soft X-ray and EUV radiation and form the radiation beam. New applications of these sources in imaging, including EUV tomography and soft X-ray microscopy, processing of materials and photoionization studies are presented.

  7. X-ray emissions from centimeter-long streamer corona discharges

    NASA Astrophysics Data System (ADS)

    da Silva, C. L.; Millan, R. M.; McGaw, D. G.; Yu, C. T.; Putter, A. S.; Labelle, J. W.; Dwyer, J. R.

    2017-12-01

    In this work we provide extensive evidence that runaway electron acceleration and subsequent bremsstrahlung X-ray emission are a common feature in electrical discharges of negative polarity. They can be easily detected at voltages as low as 100 kV, indicating that all negative lightning could potentially produce runaway electrons. We show that centimeter-long streamer corona discharges produce bursts of X-ray radiation that are emitted by a source that is highly compact in space and time. Therefore, the emitted X-ray photons arrive together at the detector and pile up. Median burst energies vary between 33-96% of the total 100 keV available electrostatic energy that an electron can acquire in the gap. We present detailed statistical analysis of 5000+ discharges, showing that X-rays are observed in as many as 60% of the triggers, depending on the configuration. X-ray detection is more frequent when: the streamer corona discharge is not followed by a spark, the detector is oriented perpendicular to the gap, and a thicker anode is used. We show that for an 8-cm-long gap, X-rays are produced when runaway electrons hit the anode, and that the runaway electron acceleration is not correlated with streamer collisions, as inferred in meter-long discharges. The described experiment is a promising way for measuring the runaway electron distribution very close to the source and its dependence on the applied voltage.

  8. What Can Be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes?

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2008-01-01

    Both solar wind charge exchange emission and diffuse thermal emission from the Local Bubble are strongly dominated in the soft X-ray band by lines from highly ionized elements. While both processes share many of the same lines, the spectra should differ significantly due to the different production mechanisms, abundances, and ionization states. Despite their distinct spectral signatures, current and past observatories have lacked the spectral resolution to adequately distinguish between the two sources. High-resolution X-ray spectroscopy instrumentation proposed for future missions has the potential to answer fundamental questions such as whether there is any hot plasma in the Local Hot Bubble, and if so, what are the abundances of the emitting plasma and whether the plasma is in equilibrium. Such instrumentation will provide dynamic information about the solar wind including data on ion species which are currently difficult to track. It will also make possible remote sensing of the solar wind.

  9. Ultrashort x-ray backlighters and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umstadter, D., University of Michigan

    Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant tomore » high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.« less

  10. X-Ray Spectroscopy of Photoionized Plasmas

    NASA Technical Reports Server (NTRS)

    Kallman, Tim

    2008-01-01

    Spectroscopy allows study of sources on small spatial scales, and can provide detailed diagnostic information about elemental abundances, temperature, density and gas dynamics. For compact sources such as accreting black holes in active galactic nuclei (AGN) and X-ray binaries X-ray spectra provide truly unique insight. Observations using Chandra and XMM have revealed components of gas in these systems which were previously unknown or poorly studied. Interpretation of these data presents modeling and analysis challenges, and requires an understanding of atomic physics, ionization and spectrum formation in a radiation-dominated environment. In this talk I will discuss examples, and how they have contributed to our understanding of accreting sources and the nearby gas.

  11. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  12. NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources

    NASA Technical Reports Server (NTRS)

    Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin; hide

    2016-01-01

    We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.

  13. Study of the Jupiter X-ray imaging spectrometer on JMO

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ezoe, Y.; Kasahara, S.; Miyoshi, Y.; Yamazaki, A.; Fujimoto, M.; JMO X-ray Experiment Team

    2011-12-01

    In 2000's, the new generation X-ray observatories (Chandra, XMM-Newton and Suzaku) have revealed various new X-ray phenomena in the Jupiter system. The detected objects include Jupiter's aurorae, disk (middle and low-latitude emission), Io, Europa, the Io Plasma Torus, and radiation belts. For example, Jupiter's aurorae emit time variable X-rays via bremsstrahlung by keV electrons and charge exchange by MeV ions (Gladstone et al. 2002 Nature). A diffuse X-ray emission associated with the Jupiter's radiation belts suggests an inverse Compton scattering of tens MeV electrons (Ezoe et al. 2010 ApJ). Hence, the X-ray emission can be a unique diagnostic tool to investigate key fundamental problems on the Jupiter system such as the relativistic particle acceleration and the Jupiter-satellite reaction. However, since these observations have been done with the X-ray astronomy satellites orbiting the Earth, the photon statistics of X-ray spectra and light curves, and the angular resolution of X-ray images were severely limited. In this context, we have started to study design of an X-ray imaging spectrometer for JMO (Jupiter Magnetospheric Orbiter) which is expected to collaborate with international Jupiter exploration mission JUICE (JUpiter ICy moon Explorer). JUICE is originally EJSM (Europa Jupiter System Mission) but recently renamed JUICE as ESA-lead mission, which is proposed to be launched in 2020's. It consists of one main flight element developed by ESA to explore icy moons of Jupiter, and JMO by JAXA is expected to perform high-latitude (10-30 deg inclination) measurements of the Jupiter system and overview the magnetospheric activities. The in-situ measurements by EJSM JMO provide us with an unprecedented opportunity to observe Jupiter with extremely high photon statistics, high time and angular resolution. To realize the in-situ X-ray instrument for EJSM JMO, stringent mass and power limitations must be fulfilled. Furthermore, the radiation and the contamination

  14. X-Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-05-01

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV γ-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of σX = 1farcm66 and σX = 1farcm49, respectively. The peaks of the diffuse X-ray emission are located within the γ-ray excess maps obtained by H.E.S.S. and the offsets from the γ-ray peaks are 2farcm8 for PSR J1420-6048 and 4farcm5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with Γ = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 μG and 2.5 μG, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-01-01

    NGC 3603 is a bustling region of star birth in the Carina spiral arm of the Milky Way galaxy, about 20,000 light-years from Earth. For the first time, this Chandra image resolves the multitude of individual x-ray sources in this star-forming region. (The intensity of the x-rays observed by Chandra are depicted by the various colors in this image. Green represents lower intensity sources, while purple and red indicate increasing x-ray intensity.) Specifically, the Chandra image reveals dozens of extremely massive stars born in a burst of star formation about 2 million years ago. This region's activities may be indicative of what is happening in other distant "starburst" galaxies (bright galaxies flush with new stars). In the case of NGC 3603, scientists now believe that these x-rays are emitted from massive stars and stellar winds, since the stars are too young to have produced supernovae or have evolved into neutron stars. The Chandra observations of NGC 3603 may provide new clues about x-ray emission in starburst galaxies as well as star formation itself. (Photo credit: NASA/GSFC/M. Corcoran et al)

  16. Planetary X ray experiment: Supporting research for outer planets mission: Experiment definition phase

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Anderson, K. A.

    1972-01-01

    Models of Jupiter's magnetosphere were examined to predict the X-ray flux that would be emitted in auroral or radiation zone processes. Various types of X-ray detection were investigated for energy resolution, efficiency, reliability, and background. From the model fluxes it was determined under what models Jovian X-rays could be detected.

  17. Quasi-spherical accretion in High Mass X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Postnov, Konstantin

    2016-07-01

    Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.

  18. A Pulsating X-Ray Hot Spot on Jupiter

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H.; Grodent, D. C.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Majeed, T.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; hide

    2001-01-01

    Previous observations of jovian auroral x-ray emissions provided limited spectral information and extensive but low spatial resolution images. These emissions have been thought to result from charge exchange and excitation of energetic sulfur and oxygen ions precipitating from the outer edge of the Io Plasma Torus; bremsstrahlung emission from precipitating energetic electrons is too inefficient to produce the x-ray emissions. However, new high spatial resolution observations demonstrate that most of Jupiter's northern auroral x-rays come from a hot spot located much further north than the footprint of the Io Plasma Torus and which is even poleward of the main ultraviolet auroral oval. The hot spot appears fixed in magnetic latitude and longitude and occurs in a region where anomalous infrared and ultraviolet emissions have also been observed. Interestingly, the hot spot x-rays pulsate with an approximately 40-minute period, a period similar to that reported for high-latitude radio and energetic electron bursts observed by near-Jupiter spacecraft. These results invalidate the idea that jovian x-ray emissions are mainly excited by steady precipitation of energetic heavy ions from the region of the Io Plasma Torus. Instead, the x-rays appear to result from currently unexplained processes in the outer magnetosphere that produce highly localized and highly variable emissions over an extremely wide range of wavelengths.

  19. Spectral Atlas of X-ray Lines Emitted During Solar Flares Based on CHIANTI

    NASA Technical Reports Server (NTRS)

    Landi, E.; Phillips, K. J. H.

    2005-01-01

    A spectral atlas of X-ray lines in the wavelength range 7.47-18.97 Angstroms is presented, based on high-resolution spectra obtained during two M-class solar flares (on 1980 August 25 and 1985 July 2) with the Flat Crystal Spectrometer on board the Solar Maximum Mission. The physical properties of the flaring plasmas are derived as a function of time using strong, isolated lines. From these properties predicted spectra using the CHIANTI database have been obtained which were then compared with wavelengths and fluxes of lines in the observed spectra to establish line identifications. identifications for nearly all the observed lines in the resulting atlas are given, with some significant corrections to previous analysis of these flare spectra.

  20. Station Explorer for X-Ray Timing and Navigation Technology Architecture Overview

    NASA Technical Reports Server (NTRS)

    Hasouneh, Monther Abdel Hamid

    2014-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA astrophysics Explorer Mission of Opportunity, scheduled for launch in mid-2016, that will be hosted on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). By exploiting the regular pulsations emit-ted by the ultra dense remnants of dead stars, which rotate many hundreds of times per second, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar-based navigation is a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond and include the worlds first completely functional system architecture for navigation using X-ray pulsars. In addition, NICER SEXTANT will investigate the suit-ability of these millisecond X-ray pulsars (MSPs) as a Solar System-wide timing infrastructure to rival terrestrial atomic clocks on long timescales. This paper provides a brief overview of the SEXTANT demonstration and the design of the system architecture that consists of the NICER X-ray timing instrument, the SEXTANT flight software and algorithms, supporting ground system, and the GSFC X-ray Navigation Laboratory Testbed (GXLT).

  1. Detection of Nitrogen and Neon in the X-ray Spectrum of GP Com with XMM/Newton

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    We report on X-ray spectroscopic observations with XMM/Newton of the ultra-compact, double white dwarf binary, GP Com. With the Reflection Grating Spectrometers (RGS) we detect the L(alpha) and L(beta) lines of hydrogen-like nitrogen (N VII) and neon (Ne X), as well as the helium-like triplets (N VI and Ne IX) of these same elements. All the emission lines are unresolved. These are the first detections of X-ray emission lines from a double-degenerate, AM CVn system. We detect the resonance (r) and intercombination (i) lines of the N VI triplet, but not the forbidden (f) line. The implied line ratios for N VI, R = f/i less than 0.3, and G = (f + i ) / r approx. = 1, combined with the strong resonance line are consistent with a dense, collision-dominated plasma. Both the RGS and EPIC/MOS spectra are well fit by emission horn an optically thin thermal plasma with an emission measure (EM) is a member of (kT/6.5 keV)(sup 0.8) (model cevmkl in XSPEC). Helium, nitrogen, oxygen and neon are required to adequately model the spectrum, however, the inclusion of sulphur and iron further improves the fit, suggesting these elements may also be present at low abundance. We confirm in the X-rays the under- abundance of both carbon and oxygen relative to nitrogen, first deduced from optical spectroscopy by Marsh et al. The average X-ray luminosity of approx. = 3 x 10(exp 30) ergs/s implies a mass accretion rate dot-m approx. = 9 x 10(exp -13) solar mass/yr. The implied temperature and density of the emitting plasma, combined with the presence of narrow emission lines and the low dot-m value, are consistent with production of the X-ray emission in an optically thin boundary layer just above the surface of the white dwarf.

  2. The temperature and density structures of an X-ray flare during the decay phase. [Skylab observations

    NASA Technical Reports Server (NTRS)

    Silk, J. K.; Kahler, S. W.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    The X-ray flare of 9 August 1973 was characterized by a spatially small kernel structure which persisted throughout its duration. The decay phase of this flare was observed in the objective grating mode of the X-ray telescope aboard the Skylab. Data analysis was carried out by scanning the images with a microdensitometer, converting the density arrays to energy using laboratory film calibration data and taking cross sections of the energy images. The 9 August flare shows two distinct periods in its decay phase, involving both cooling and material loss. The objective grating observations reveal that the two phenomena are separated in time. During the earlier phase of the flare decay, the distribution of emission measure as a function of temperature is changing, the high temperature component of the distribution being depleted relative to the cooler body of plasma. As the decay continues, the emission measure distribution stabilizes and the flux diminishes as the amount of material at X-ray emitting temperatures decreases.

  3. Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G Randall; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (approx.37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (approx.130 eV wide) energy band centered on the atomic oxygen Ka fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H20 icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen atmosphere and ionosphere recently discovered by Cassini.

  4. Testing the Wind-shock Paradigm for B-Type Star X-Ray Production with θ Car

    NASA Astrophysics Data System (ADS)

    Doyle, T. F.; Petit, V.; Cohen, D.; Leutenegger, M.

    2017-11-01

    We present Chandra X-ray grating spectroscopy of the B0.2V star, θ Carina. θ Car is in a critical transition region between the latest O-type and earliest B-type stars, where some stars are observed to have UV-determined wind densities much lower than theoretically expected (e.g., Marcolino et al. 2009). In general, X-ray emission in this low-density wind regime should be less prominent than for O-stars (e.g., Martins et al. 2005), but observations suggest a higher than expected X-ray emission filling factor (Lucy 2012; Huenemoerder et al. 2012); if a larger fraction of the wind is shock-heated, it could explain the weak UV wind signature seen in weak wind stars, but this might severely challenge predictions of radiatively-driven wind theory. We measured the line widths of several He-, H-like and Fe ions and the f/i ratio of He-like ions in the X-ray spectrum, which improves upon the results from Nazé et al. (2008) (XMM-Newton RGS) with additional measurements (Chandra HETG) of Mgxi and Sixiii by further constraining the X-ray emission location. The f/i ratio is modified by the proximity to the UV-emitting stellar photosphere, and is therefore a diagnostic of the radial location of the X-ray emitting plasma. The measured widths of X-ray lines are narrow, <300 km s-1 and the f/i ratios place the X-rays relatively close to the surface, both implying θ Car is a weak wind star. The measured widths are also consistent with other later-type stars in the weak wind regime, β Cru (Cohen et al. 2008), for example, and are smaller on average than earlier weak wind stars such as μ Col (Huenemoerder et al. 2012). This could point to a spectral type divide, where one hypothesis, low density, works for early-B type stars and the other hypothesis, a larger fraction of shock-heated gas, explains weak winds in late-O type stars. Archival IUE data still needs to be analyzed to determine the mass loss rate and hydrodynamical simulations will be compared with observations to

  5. Wide band laser-plasma soft X-ray source using a gas puff target for direct photo-etching of polymers

    NASA Astrophysics Data System (ADS)

    Bartnik, Andrzej; Fiedorowicz, Henryk; Jarocki, Roman; Kostecki, Jerzy; Rakowski, Rafał; Szczurek, Mirosław

    2005-09-01

    Organic polymers (PMMA, PTFE, PET, and PI) are considered as the important materials in microengineering, especially for biological and medical applications. Micromachining of such materials is possible with the use of different techniques that involve electromagnetic radiation or charged particle beams. Another possibility of high aspect ratio micromachining of PTFE is direct photo-etching using synchrotron radiation. X-ray and ultraviolet radiation from other sources, for micromachining of materials by direct photo-etching can be also applied. In this paper we present the results of investigation of a wide band soft X-ray source and its application for direct photo-etching of organic polymers. X-ray radiation in the wavelength range from about 3 nm to 20 nm was produced as a result of irradiation of a double-stream gas puff target with laser pulses of energy 0.8 J and time duration of about 3 ns. The spectra, plasma size and absolute energies of soft X-ray pulses for different gas puff targets were measured. Photo-etching process of polymers irradiated with the use of the soft X-ray radiation was analyzed and investigated. Samples of organic polymers were placed inside a vacuum chamber of the x-ray source, close to the gas puff target at the distance of about 2 cm from plasmas created by focused laser pulses. A fine metal grid placed in front of the samples was used as a mask to form structures by x-ray ablation. The results of photo-etching process for several minutes exposition with l0Hz repetition rate were presented. High ablation efficiency was obtained with the use of the gas puff target containing xenon surrounded by helium.

  6. Laser plasma x-ray line spectra fitted using the Pearson VII function

    NASA Astrophysics Data System (ADS)

    Michette, A. G.; Pfauntsch, S. J.

    2000-05-01

    The Pearson VII function, which is more general than the Gaussian, Lorentzian and other profiles, is used to fit the x-ray spectral lines produced in a laser-generated plasma, instead of the more usual, but computationally expensive, Voigt function. The mean full-width half-maximum of the fitted lines is 0.102+/-0.014 nm, entirely consistent with the value expected from geometrical considerations, and the fitted line profiles are generally inconsistent with being either Lorentzian or Gaussian.

  7. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  8. X-ray opacity measurements in mid-Z dense plasmas with a new target design of indirect heating

    NASA Astrophysics Data System (ADS)

    Dozières, M.; Thais, F.; Bastiani-Ceccotti, S.; Blenski, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Khaghani, D.; Pain, J.-C.; Reverdin, C.; Rosmej, F.; Silvert, V.; Soullié, G.; Villette, B.

    2015-12-01

    X-ray transmission spectra of copper, nickel and aluminum laser produced plasmas were measured at the LULI2000 laser facility with an improved target design of indirect heating. Measurements were performed in plasmas close to local thermodynamic equilibrium at temperatures around 25 eV and densities between 10-3g/cm3 and 10-2 g/cm3. This improved design provides several advantages, which are discussed in this paper. The sample is a thin foil of mid-Z material inserted between two gold cavities heated by two 300J, 2ω, nanosecond laser beams. A third laser beam irradiates a gold foil to create a spectrally continuous X-ray source (backlight) used to probe the sample. We investigate 2p-3d absorption structures in Ni and Cu plasmas as well as 1s-2p transitions in an additional Al plasma layer to infer the in-situ plasma temperature. Geometric and hydrodynamic calculations indicate that the improved geometry reduces spatial gradients during the transmission measurements. Experimental absorption spectra are in good agreement with calculations from the hybrid atomic physics code SCO-RCG.

  9. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-01-01

    Left image: The x-ray data from the Chandra X-Ray Observatory (CXO) has revealed a bright central star surrounded by a cloud of multimillion-degree gas in the planetary nebula known as the Cat's Eye. This CXO image, where the intensity of the x-ray emission is correlated to the brightness of the orange coloring, captures the expulsion of material from a star that is expected to collapse into a white dwarf in a few million years. The intensity of x-rays from the central star was unexpected, and it is the first time astronomers have seen such x-ray emission from the central star of a planetary nebula. Right image: An image of Cat's Eye taken by the Hubble Space Telescope (HST). By comparing the CXO data with that from the HST, researchers are able to see where the hotter, x-ray emitting gas appears in relation to the cooler material seen in optical wavelengths by the HST. The CXO team found that the chemical abundance in the region of hot gas (its x-ray intensity is shown in purple) was not like those in the wind from the central star and different from the outer cooler material (the red and green structures.) Although still incredibly energetic and hot enough to radiate x-rays, CXO shows the hot gas to be somewhat cooler than scientists would have expected for such a system. CXO image credit: (NASA/UIUC/Y. Chu et al.) HST image credit: (NASA/HST)

  11. Optical spectroscopy of the Be/X-ray binary V850 Centauri/GX 304-1 during faint X-ray periodical activity

    NASA Astrophysics Data System (ADS)

    Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.

    2017-07-01

    Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (I ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.

  12. Soft x-ray pinhole imaging diagnostics for compact toroid plasmas

    NASA Astrophysics Data System (ADS)

    Crawford, E. A.; Taggart, D. P.; Bailey, A. D., III

    1990-10-01

    Soft x-ray pinhole imaging has recently become established as a valuable diagnostic for visualization of field reversed configuration (FRC) plasmas in the TRX-2, FRX-C/LSM devices. Gated MCP image converter devices with CsI cathodes and Be filters with a peak response around 11 nm wavelength are used for exposure durations ranging from a few tenths up to several microseconds. Results of experiments with single and Chevron channel plates are discussed along with estimates of linear exposure limitations with both film and CCD cameras as recording media. Plans for multiframe devices on the FRX-C/LSM and the LSX devices are also discussed.

  13. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2011-09-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  14. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2010-10-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  15. Study of soft X-ray emission during wire array implosion under plasma focus conditions at the PF-3 facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan’ko, S. A.; Mitrofanov, K. N., E-mail: mitrofan@triniti.ru; Krauz, V. I.

    2015-11-15

    Results of measurements of soft X-ray emission with photon energies of <1 keV under conditions of a plasma focus (PF) experiment are presented. The experiments were carried out at the world’s largest PF device—the PF-3 Filippov-type facility (I ⩽ 3 MA, T/4 ≈ 15–20 µs, W{sub 0} ⩽ 3 MJ). X-ray emission from both a discharge in pure neon and with a tungsten wire array placed on the axis of the discharge chamber was detected. The wire array imploded under the action of the electric current intercepted from the plasma current sheath of the PF discharge in neon. The measuredmore » soft X-ray powers from a conventional PF discharge in gas and a PF discharge in the presence of a wire array were compared for the first time.« less

  16. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  17. Discovery of X-Ray-Emitting O-Ne-Mg-Rich Ejecta in the Galactic Supernova Remnant Puppis A

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Hwang, Una; Petre, Robert; Park, Sangwook; Mori, Koji; Tsunemi, Hiroshi

    2010-01-01

    We report on the discovery of X-ray-emitting O-Ne-Mg-rich ejecta in the middle-aged Galactic O-rich supernova remnant Puppis A with Chandra and XMM-Newton. We use line ratios to identify a low-ionization filament running parallel to the northeastern edge of the remnant that requires super-solar abundances, particularly for O, Ne, and Mg, which we interpret to be from O-Ne-Mg-rich ejecta. Abundance ratios of Ne/O, Mg/O, and Fe/O are measured to be [approx]2, [approx]2, and <0.3 times the solar values. Our spatially resolved spectral analysis from the northeastern rim to the western rim otherwise reveals sub-solar abundances consistent with those in the interstellar medium. The filament is coincident with several optically emitting O-rich knots with high velocities. If these are physically related, the filament would be a peculiar fragment of ejecta. On the other hand, the morphology of the filament suggests that it may trace ejecta heated by a shock reflected strongly off the dense ambient clouds near the northeastern rim.

  18. Infrared and X-Ray Evidence for Circumstellar Grain Destruction by the Blast Wave of Supernova 1987A

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu; Arendt, Richard G.; Bouchet, Patrice; Burrows, David N.; Challis, Peter; Danziger, John; DeBuizer James M.; Gehrz, Robert D.; Kirshner, Robert P.; McCray, Richard; hide

    2007-01-01

    Multiwavelength observations of supernova remnant (SNR) 1987A show that its morphology and luminosity are rapidly changing at X-ray, optical, infrared, and radio wavelengths as the blast wave from the explosion expands into the circumstellar equatorial ring, produced by mass loss from the progenitor star. The observed infrared (IR) radiation arises from the interaction of dust grains that formed in mass outflow with the soft X-ray emitting plasma component of the shocked gas. Spitzer IRS spectra at 5 - 30 microns taken on day 6190 since the explosion show that the emission arises from approx. 1.1 x 10(exp -6) solar mass of silicate grains radiating at a temperature of approx. 180+/-(15-20) K. Subsequent observations on day 7137 show that the IR flux had increased by a factor of 2 while maintaining an almost identical spectral shape. The observed IR-to-X-ray flux ratio (IRX) is consistent with that of a dusty plasma with standard LMC dust abundances. This flux ratio has decreased by a factor of approx. 2 between days 6190 and 7137, providing the first direct observation of the ongoing destruction of dust in an expanding SN blast wave on dynamic time scales. Detailed models consistent with the observed dust temperature, the ionization fluence of the soft X-ray emission component, and the evolution of IRX suggest that the radiating si1icate grains are immersed in a 3.5 x 10(exp 6) K plasma with a density of (0.3 - 1) x 10(exp 4)/cu cm, and have a size distribution that is confined to a narrow range of radii between 0.02 and 0.2 microns. Smaller grains may have been evaporated by the initial UV flash from the supernova.

  19. Kinetic Modeling of Ultraintense X-ray Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Royle, Ryan; Sentoku, Yasuhiko; Mancini, Roberto

    2016-10-01

    Hard x-ray free-electron lasers (XFELs) have had a profound impact on the physical, chemical, and biological sciences. They can produce millijoule x-ray laser pulses just tens of femtoseconds in duration with more than 1012 photons each, making them the brightest laboratory x-ray sources ever produced by several orders of magnitude. An XFEL pulse can be intensified to 1020 W/cm2 when focused to submicron spot sizes, making it possible to isochorically heat solid matter well beyond 100 eV. These characteristics enable XFELs to create and probe well-characterized warm and hot dense plasmas of relevance to HED science, planetary science, laboratory astrophysics, relativistic laser plasmas, and fusion research. Several newly developed atomic physics models including photoionization, Auger ionization, and continuum-lowering have been implemented in a particle-in-cell code, PICLS, which self-consistently solves the x-ray transport, to enable the simulation of the non-LTE plasmas created by ultraintense x-ray laser interactions with solid density matter. The code is validated against the results of several recent experiments and is used to simulate the maximum-intensity x-ray heating of solid iron targets. This work was supported by DOE/OFES under Contract No. DE-SC0008827.

  20. Performance summary on a high power dense plasma focus x-ray lithography point source producing 70 nm line features in AlGaAs microcircuits

    NASA Astrophysics Data System (ADS)

    Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John

    2004-08-01

    A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.

  1. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  2. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  3. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  4. Diagnosis of a two wire X-pinch by X-ray absorption spectroscopy utilizing a doubly curved ellipsoidal crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, A. D., E-mail: adc87@cornell.edu; Hoyt, C. L., E-mail: adc87@cornell.edu; Shelkovenko, T. A., E-mail: adc87@cornell.edu

    2014-12-15

    X-ray absorption spectroscopy is a powerful tool for the diagnosis of plasmas over a wide range of both temperature and density. However, such a measurement is often limited to probing plasmas with temperatures well below that of the x-ray source in order to avoid object plasma emission lines from obscuring important features of the absorption spectrum. This has excluded many plasmas from being investigated by this technique. We have developed an x-ray spectrometer that provides the ability to record absorption spectra from higher temperature plasmas than the usual approach allows without the risk of data contamination by line radiation emittedmore » by the plasma under study. This is accomplished using a doubly curved mica crystal which is bent both elliptically and cylindrically. We present here initial absorption spectra obtained from an aluminum x-pinch plasma.« less

  5. X-ray Spectroscopic Characterization of Plasma for a Charged-Particle Energy-Loss Experiment

    NASA Astrophysics Data System (ADS)

    Hoffman, Nm; Lee, Cl; Wilson, Dc; Barnes, Cris W.; Petrasso, Rd; Li, C.; Hicks, D.

    2000-10-01

    We are pursuing an approach to a charged-particle energy-loss experiment in which charged fusion products from an imploded ICF capsule travel through a well characterized, spatially separate plasma. For this purpose, a fully ionized, uniform, nearly steady-state carbon-hydrogen plasma will be created by laser irradiation of a plastic foil. The temperature and density structure of this plasma must be determined accurately in order to relate observed energy losses to predictions of theory. Various methods for diagnosing the plasma are possible, including Thomson scattering. Alternatively, if a small admixture of higher-Z material such as chlorine is included in the plastic, x-ray spectroscopic techniques will allow the plasma's temperature and density to be determined. Electron temperature is inferred from the ratios of line strengths of various chlorine ion stages, while electron density is determined from the spectra of lithium-like satellite lines near the He beta line of helium-like chlorine. We present results from detailed-configuration accounting (DCA) models of line emission from C+H+Cl plasmas, and estimate the accuracy with which such plasmas can be characterized.

  6. The X-ray background contributed by QSOs ejected from galaxies

    NASA Technical Reports Server (NTRS)

    Burbidge, G.; Hoyle, F.

    1996-01-01

    The X-ray background can be explained as coming from the integrated effect of X-ray emitting quasi-stellar objects (QSOs) ejected from spiral galaxies. The model developed to interpret the observations is summarized. The redshift of the QSOs consisted of an intrinsic component and of a cosmological component. The QSOs have a spatial density proportional to that of normal galaxies.

  7. X-ray illumination of globular cluster puzzles. [globular cluster X ray sources as clues to Milky Way Galaxy age and evolution

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Grindlay, J. E.

    1982-01-01

    Globular clusters are thought to be among the oldest objects in the Galaxy, and provide, in this connection, important clues for determining the age and process of formation of the Galaxy. The present investigation is concerned with puzzles relating to the X-ray emission of globular clusters, taking into account questions regarding the location of X-ray emitting clusters (XEGC) unusually near the galactic plane and/or galactic center. An adopted model is discussed for the nature, formation, and lifetime of X-ray sources in globular clusters. An analysis of the available data is conducted in connection with a search for correlations between binary formation time scales, central relaxation times, galactic locations, and X-ray emission. The positive correlation found between distance from galactic center and two-body binary formation time for globular clusters, explanations for this correlation, and the hypothesis that X-ray sources in globular clusters require binary star systems provide a possible explanation of the considered puzzles.

  8. Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment.

    PubMed

    Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Inubushi, Yuichi; Shiraga, Hiroyuki; Azechi, Hiroshi

    2010-10-01

    Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 μm and 100 ps of spatial and temporal resolutions, respectively.

  9. Intensity correlation measurement system by picosecond single shot soft x-ray laser.

    PubMed

    Kishimoto, Maki; Namikawa, Kazumichi; Sukegawa, Kouta; Yamatani, Hiroshi; Hasegawa, Noboru; Tanaka, Momoko

    2010-01-01

    We developed a new soft x-ray speckle intensity correlation spectroscopy system by use of a single shot high brilliant plasma soft x-ray laser. The plasma soft x-ray laser is characterized by several picoseconds in pulse width, more than 90% special coherence, and 10(11) soft x-ray photons within a single pulse. We developed a Michelson type delay pulse generator using a soft x-ray beam splitter to measure the intensity correlation of x-ray speckles from materials and succeeded in generating double coherent x-ray pulses with picosecond delay times. Moreover, we employed a high-speed soft x-ray streak camera for the picosecond time-resolved measurement of x-ray speckles caused by double coherent x-ray pulse illumination. We performed the x-ray speckle intensity correlation measurements for probing the relaxation phenomena of polarizations in polarization clusters in the paraelectric phase of the ferroelectric material BaTiO(3) near its Curie temperature and verified its performance.

  10. Extraplanar X-ray emission from disc-wide outflows in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Vijayan, Aditi; Sarkar, Kartick C.; Nath, Biman B.; Sharma, Prateek; Shchekinov, Yuri

    2018-04-01

    We study the effects of mass and energy injection due to OB associations spread across the rotating disc of a Milky Way-type galaxy, with the help of three-dimensional (3D) hydrodynamic simulations. We compare the resulting X-ray emission with that produced from the injection of mass and energy from a central region. We find that the predicted X-ray image shows a filamentary structure that arises even in the absence of disc gas inhomogeneity. This structure stems from warm clumps made of disc material being lifted by the injected gas. We show that as much as half of the total X-ray emission comes from regions surrounding warm clumps that are made of a mix of disc and injected gas. This scenario has the potential to explain the origin of the observed extraplanar X-ray emission around star-forming galaxies and can be used to understand the observed sub-linear relation between the LX, the total X-ray luminosity, and star formation rate (SFR). We quantify the mass contained in these `bow-shock' regions. We also show that the top-most region of the outer shock above the central area emits harder X-rays than the rest. Further, we find that the mass distribution in different temperature ranges is bimodal, peaking at 104-105 K (in warm clumps) and 106-107 K (X-ray emitting gas). The mass-loading factor is found to decrease with increasing SFR, consistent with previous theoretical estimates and simulations.

  11. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING... for the radiographic visualization and measurement of the dimensions of the human head. Coefficient of...

  12. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Diagnostic x-ray system means an x-ray system designed for irradiation of any part of the human body for the... HUMAN SERVICES (CONTINUED) RADIOLOGICAL HEALTH PERFORMANCE STANDARDS FOR IONIZING RADIATION EMITTING... for the radiographic visualization and measurement of the dimensions of the human head. Coefficient of...

  13. An X-ray image of the violent interstellar medium in 30 Doradus

    NASA Technical Reports Server (NTRS)

    Wang, Q.; Helfand, D. J.

    1991-01-01

    A detailed analysis of the X-ray emission from the largest H II region complex in the Local Group, 30 Dor, is presented. Applying a new maximum entropy deconvolution algorithm to the Einstein Observatory data, reveals striking correlations among the X-ray, radio, and optical morphologies of the region, with X-ray-emitting bubbles filling cavities surrounded by H-alpha shells and coextensive diffuse X-ray and radio continuum emission from throughout the region. The total X-ray luminosity in the 0.16-3.5 keV band from an area within 160 pc of the central cluster R136 is about 2 x 10 to the 37th ergs/sec.

  14. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    PubMed

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  15. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  16. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  17. BL-Lacs in X-Ray Outburst

    NASA Technical Reports Server (NTRS)

    Remillard, Ronald A.; Urry, C. Megan; Aharonian, Felix; Pian, Elena; Sambruna, Rita; Coppi, Paolo

    2000-01-01

    We conducted a multifrequency campaign for the TeV blazar Markarian 421 in 1998 April. The campaign started from a pronounced high-amplitude flare recorded by BeppoSAX and Whipple; the Advanced Satellite for Cosmology and Astrophysics (ASCA) observation started three days later. In the X-ray data, we detected multiple flares, occurring on timescales of about one day. ASCA data clearly reveal spectral variability. The comparison of the data from ASCA, the Extreme Ultraviolet Explorer, and the Rossi X-Ray Timing Explorer indicates that the variability amplitudes in the low-energy synchrotron component are larger at higher photon energies. In TeV and gamma-rays, large intraday variations-which were correlated with the X-ray flux-were observed when results from three Cerenkov telescopes were combined. The rms variability of TeV and gamma-rays was similar to that observed in hard X-rays, above ten keV. The X-ray light curve reveals flares that are almost symmetric for most cases, implying that the dominant timescale is the light crossing time through the emitting region. The structure function analysis based on the continuous X-ray light curve of seven days indicates that the characteristic timescale is approx. 0.5 days. The analysis of ASCA light curves in various energy bands appears to show both soft (positive) and hard (negative) lags. These may not be real, as systematic effects could also produce these lags, which are all much smaller than an orbit. If the lags of both signs are real, these imply that the particle acceleration and X-ray cooling timescales are similar.

  18. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  19. A DEEP X-RAY VIEW OF THE BARE AGN ARK 120. I. REVEALING THE SOFT X-RAY LINE EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, J. N.; Braito, V.; Porquet, D.

    2016-09-10

    The Seyfert 1 galaxy Ark 120 is a prototype example of the so-called class of bare nucleus active galactic nuclei (AGNs), whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep (>400 ks exposure), high-resolution X-ray spectroscopy of Ark 120 is presented from XMM-Newton observations that were carried out in 2014 March, together with simultaneous Chandra /High Energy Transmission Grating exposures. The high-resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the interstellar medium (ISM) of our ownmore » Galaxy, with a possible slight enhancement of the oxygen abundance required with respect to the expected ISM values in the solar neighborhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated with the AGN and arising from the He- and H-like ions of N, O, Ne, and Mg. The He-like line profiles of N, O, and Ne appear velocity broadened, with typical FWHMs of ∼5000 km s{sup −1}, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from a gas of density n {sub e} ∼ 10{sup 11} cm{sup −3}, while the photoionization calculations infer that the emitting gas covers at least 10% of 4 π steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical–UV broad-line region on sub-parsec scales, whereas the narrow profiles originate on larger parsec scales, perhaps coincident with the AGN narrow-line region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray-emitting gas exists out of our direct line of sight toward this AGN.« less

  20. High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.

    2001-06-01

    The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe

  1. Extreme ultraviolet and Soft X-ray diagnostic upgrade on the HBT-EP tokamak: Progress and Results

    NASA Astrophysics Data System (ADS)

    Desanto, S.; Levesque, J. P.; Battey, A.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.; Hansen, C. J.

    2017-10-01

    In order to understand internal MHD mode structure in a tokamak plasma, it is helpful to understand temperature and density fluctuations within that plasma. In the HBT-EP tokamak, the plasma emits bremsstrahlung radiation in the extreme ultraviolet (EUV) and soft x-ray (SXR) regimes, and the emitted power is primarily related to electron density and temperature. This radiation is detected by photodiode arrays located at several different angular positions near the plasma's edge, each array making several views through a poloidal slice of plasma. From these measurements a 2-d emissivity profile of that slice can be reconstructed with tomographic algorithms. This profile cannot directly tell us whether the emissivity is due to electron density, temperature, line emission, or charge recombination; however, when combined with information from other diagnostics, it can provide strong evidence of the type of internal mode or modes depending on the temporal-spatial context. We present ongoing progress and results on the installation of a new system that will eventually consist of four arrays of 16 views each and a separate two-color, 16-chord tangential system, which will provide an improved understanding of the internal structure of HBT-EP plasmas. Supported by U.S. DOE Grant DE-FG02-86ER5322.

  2. X-ray Source Populations in Old Open Clusters - Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti

    2014-11-01

    We are carrying out an X-ray survey of old open clusters (OCs) with the Chandra X-ray Observatory. Single old stars emit very faint X-rays, making X-rays produced by mass transfer in CVs, or by rapid rotation of the stars in tidally-locked, detached binaries detectable, without contamination from single stars. By comparing properties of interacting binaries in different environments, we aim to study binary evolution, and how dynamical encounters with other cluster members affect it. Collinder (Cr) 261 is an old OC(~7Gyr), with one of the richest populations inferred, of close binary populations and blue stragglers of all OCs. We will present the first results, detailing the X-ray population of Cr 261, in conjugation with other OCs, and in comparison with populations in globular clusters.

  3. X-ray Probes of Magnetospheric Interactions with Jupiter's Auroral zones, the Galilean Satellites, and the Io Plasma Torus

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  4. X-RAY DIAGNOSTICS OF THERMAL CONDITIONS OF THE HOT PLASMAS IN THE CENTAURUS CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, I.; Makishima, K.; Kitaguchi, T.

    2009-08-10

    X-ray data of the Centaurus cluster, obtained with XMM-Newton for 45 ks, were analyzed. Deprojected EPIC spectra from concentric thin-shell regions were reproduced equally well by a single-phase plasma emission model, or by a two-phase model developed by ASCA, both incorporating cool (1.7-2.0 keV) and hot ({approx} 4 keV) plasma temperatures. However, EPIC spectra with higher statistics, accumulated over three-dimensional thick-shell regions, were reproduced better by the two-phase model than by the singe-phase one. Therefore, hot and cool plasma phases are inferred to co-exist in the cluster core region within {approx} 70 kpc. The iron and silicon abundances of themore » plasma were reconfirmed to increase significantly toward the center, while that of oxygen was consistent with being radially constant. The implied nonsolar abundance ratios explain away the previously reported excess X-ray absorption from the central region. Although an additional cool ({approx} 0.7 keV) emission was detected within {approx} 20 kpc of the center, the RGS data gave tight upper limits on any emission with temperatures below {approx} 0.5 keV. These results are compiled into a magnetosphere model, which interprets the cool phase as confined within closed magnetic loops anchored to the cD galaxy. When combined with the so-called Rosner-Tucker-Vaiana mechanism which applies to solar coronae, this model can potentially explain basic properties of the cool phase, including its temperature and thermal stability.« less

  5. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  6. Chandra X-Ray Observatory Image NGC 3603

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NGC 3603 is a bustling region of star birth in the Carina spiral arm of the Milky Way galaxy, about 20,000 light-years from Earth. For the first time, this Chandra image resolves the multitude of individual x-ray sources in this star-forming region. (The intensity of the x-rays observed by Chandra are depicted by the various colors in this image. Green represents lower intensity sources, while purple and red indicate increasing x-ray intensity.) Specifically, the Chandra image reveals dozens of extremely massive stars born in a burst of star formation about 2 million years ago. This region's activities may be indicative of what is happening in other distant 'starburst' galaxies (bright galaxies flush with new stars). In the case of NGC 3603, scientists now believe that these x-rays are emitted from massive stars and stellar winds, since the stars are too young to have produced supernovae or have evolved into neutron stars. The Chandra observations of NGC 3603 may provide new clues about x-ray emission in starburst galaxies as well as star formation itself. (Photo credit: NASA/GSFC/M. Corcoran et al)

  7. THE BLAZAR EMISSION ENVIRONMENT: INSIGHT FROM SOFT X-RAY ABSORPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furniss, A.; Williams, D. A.; Fumagalli, M.

    Collecting experimental insight into the relativistic particle populations and emission mechanisms at work within TeV-emitting blazar jets, which are spatially unresolvable in most bands and have strong beaming factors, is a daunting task. New observational information has the potential to lead to major strides in understanding the acceleration site parameters. Detection of molecular carbon monoxide (CO) in TeV emitting blazars, however, implies the existence of intrinsic gas, a connection often found in photo-dissociated region models and numerical simulations. The existence of intrinsic gas within a blazar could provide a target photon field for Compton up-scattering of photons to TeV energiesmore » by relativistic particles. We investigate the possible existence of intrinsic gas within the three TeV emitting blazars RGB J0710+591, W Comae, and 1ES 1959+650 which have measurements or upper limits on molecular CO line luminosity using an independent technique that is based on the spectral analysis of soft X-rays. Evidence for X-ray absorption by additional gas beyond that measured within the Milky Way is searched for in Swift X-ray Telescope (XRT) data between 0.3 and 10 keV. Without complementary information from another measurement, additional absorption could be misinterpreted as an intrinsically curved X-ray spectrum since both models can frequently fit the soft X-ray data. After breaking this degeneracy, we do not find evidence for intrinsically curved spectra for any of the three blazars. Moreover, no evidence for intrinsic gas is evident for RGB J0710+591 and W Comae, while the 1ES 1959+650 XRT data support the existence of intrinsic gas with a column density of {approx}1 Multiplication-Sign 10{sup 21} cm{sup -2}.« less

  8. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazé, Yaël; Petit, Véronique; Rinbrand, Melanie

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ∼60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens formore » the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.« less

  9. Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu

    The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less

  10. High Resolution X-ray Spectroscopy and Star Formation: HETG Observations of the Pre-Main Sequence Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Principe, David; Huenemoerder, David P.; Schulz, Norbert; Kastner, Joel H.; Weintraub, David; Preibisch, Thomas

    2018-01-01

    We present Chandra High Energy Transmission Grating (HETG) observations of the ∼3 Myr old pre-main sequence (pre-MS) stellar cluster IC 348. With 400-500 cluster members at a distance of ∼300 pc, IC 348 is an ideal target to observe a large number of X-ray sources in a single pointing and is thus an extremely efficient use of Chandra-HETG. High resolution X-ray spectroscopy offers a means to investigate detailed spectral characteristic of X-ray emitting plasmas and their surrounding environments. We present preliminary results where we compare X-ray spectral signatures (e.g., luminosity, temperature, column density, abundance) of the X-ray brightest pre-MS stars in IC 348 with spectral type, multiwavelength signatures of accretion, and the presence of circumstellar disks at multiple stages of pre-MS stellar evolution. Assuming all IC 348 members formed from the same primordial molecular cloud, any disparity between coronal abundances of individual members, as constrained by the identification and strength of emission lines, will constrain the source(s) of coronal chemical evolution at a stage of pre-MS evolution vital to the formation of planets.

  11. A NuSTAR Observation of the Gamma-Ray Emitting Millisecond Pulsar PSR J1723–2837

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, A. K. H.; Hui, C. Y.; Takata, J.

    We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723–2837. X-ray radiation up to 79 keV is clearly detected, and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power law with a photon index of ∼1.3. We also find X-ray modulations in the 3–10, 10–20, 20–79, and 3–79 keV bands at the 14.8 hr binary orbital period. All of these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723–2837 provides strong evidence that the X-rays are from the intrabinary shock viamore » an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.« less

  12. Crystallization and preliminary X-ray analysis of a low density lipoprotein from human plasma.

    PubMed

    Prassl, R; Chapman, J M; Nigon, F; Sara, M; Eschenburg, S; Betzel, C; Saxena, A; Laggner, P

    1996-11-15

    Single crystals of human plasma low density lipoprotein (LDL), the major transport vehicle for cholesterol in blood, have been produced with a view to analysis of the three-dimensional structure by x-ray crystallography. Crystals with dimensions of approximately 200 x 100 x 50 microm have been reproducibly obtained from highly homogeneous LDL particle subspecies, isolated in the density ranges d = 1.0271-1. 0297 g/ml and d = 1.0297-1.0327 g/ml. Electron microscopic imaging of ultrathin-sectioned preparations of the crystals confirmed the existence of a regular, quasihexagonal arrangement of spherical particles of approximately 18 nm in diameter, thereby resembling the dimensions characteristic of LDL after dehydration and fixation. X-ray diffraction with synchrotron radiation under cryogenic conditions revealed the presence of well resolved diffraction spots, to a resolution of about 29 A. The diffraction patterns are indexed in terms of a triclinic lattice with unit cell dimensions of a = 16. 1 nm, b = 39.0 nm, c = 43.9 nm; alpha = 96.2 degrees, beta = 92.1 degrees, gamma = 102 degrees, and with space group P1.

  13. Nonlocal heat transport and improved target design for x-ray heating studies at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver; Seidler, Gerald T.

    2018-01-01

    The extremely high-power densities and short durations of single pulses of x-ray free electron lasers (XFELs) have opened new opportunities in atomic physics, where complex excitation-relaxation chains allow for high ionization states in atomic and molecular systems, and in dense plasma physics, where XFEL heating of solid-density targets can create unique dense states of matter having temperatures on the order of the Fermi energy. We focus here on the latter phenomena, with special emphasis on the problem of optimum target design to achieve high x-ray heating into the warm dense matter (WDM) state. We report fully three-dimensional simulations of the incident x-ray pulse and the resulting multielectron relaxation cascade to model the spatial energy density deposition in multicomponent targets, with particular focus on the effects of nonlocal heat transport due to the motion of high energy photoelectrons and Auger electrons. We find that nanoscale high-Z /low-Z multicomponent targets can give much improved energy density deposition in lower-Z materials, with enhancements reaching a factor of 100. This has three important benefits. First, it greatly enlarges the thermodynamic parameter space in XFEL x-ray heating studies of lower-Z materials. Second, it allows the use of higher probe photon energies, enabling higher-information content x-ray diffraction (XRD) measurements such as in two-color XFEL operations. Third, while this is merely one step toward optimization of x-ray heating target design, the demonstration of the importance of nonlocal heat transport establishes important common ground between XFEL-based x-ray heating studies and more traditional laser plasma methods.

  14. The X-ray emitting gas in poor clusters with central dominant galaxies

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.

    1983-01-01

    The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.

  15. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, A.; Glesener, L.; Klimchuk, J. A.; Bradshaw, S. J.; Smith, D. M.; Hannah, I. G.

    2016-12-01

    The nanoflare heating theory predicts the ubiquitous presence of hot ( >5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare "storms" that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  16. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  17. X-ray emission on hybird stars: ROSAT observations of alpha Trianguli Australis and iota Aurigae

    NASA Technical Reports Server (NTRS)

    Kashyap, V.; Rosner, R.; Harnden, F. R., Jr.; Maggio, A.; Micela, G.; Sciortino, S.

    1994-01-01

    We report on deep ROSAT observations of two Hybrid atmosphere stars, alpha TrA and iota Aur, and our analysis of these observations. We detect high-energy transient phenomena on alpha TrA and consider the implications of this discovery to the atmospheres of Hybrid stars. We detect iota Aur in the high-energy passband of ROSAT, implying the existence of multimillion degree plasma on the star. Our major results include the following: discovery of two large flare events, detected during pointed observations of alpha TrA; the demonstration that the flare emission most likely comes from the giant itself, rather than from a previously unseen low-mass companion star; the demonstration that the plasma characteristics associated with the flares and with the 'quiescent' component are essentially indistinguishable; and that the geometric dimensions of the emitting plasma are considerably smaller than the critical dimension characterizing stable 'hot' coronal loop structures. Our results suggest that alpha TrA does not have any steady X-ray emission consistent with theoretical expectations, and support the argument that Hybrid stars constitute a transitional type of object in which large-scale magnetic dynamo activity ceases, and the dominant spatial scales characterizing coronal structure rapidly decline as such stars evolve across the X-ray 'Dividing Line' in the H-R diagram.

  18. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Scott, A. E.

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less

  19. Relativistic self-focusing of ultra-high intensity X-ray laser beams in warm quantum plasma with upward density profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, M., E-mail: habibi.physics@gmail.com; Ghamari, F.

    2014-05-15

    The results of a numerical study of high-intensity X-ray laser beam interaction with warm quantum plasma (WQP) are presented. By means of an upward ramp density profile combined with quantum factors specially the Fermi velocity, we have demonstrated significant relativistic self-focusing (RSF) of a Gaussian electromagnetic beam in the WQP where the Fermi temperature term in the dielectric function is important. For this purpose, we have considered the quantum hydrodynamics model that modifies refractive index of inhomogeneous WQPs with the inclusion of quantum correction through the quantum statistical and diffraction effects in the relativistic regime. Also, to better illustration ofmore » the physical difference between warm and cold quantum plasmas and their effect on the RSF, we have derived the envelope equation governing the spot size of X-ray laser beam in Q-plasmas. In addition to the upward ramp density profile, we have found that the quantum effects would be caused much higher oscillation and better focusing of X-ray laser beam in the WQP compared to that of cold quantum case. Our computational results reveal the importance of the use of electrons density profile and Fermi speed in enhancing self-focusing of laser beam.« less

  20. Optimisation of X-ray emission from a laser plasma source for the realisation of microbeam in sub-keV region.

    PubMed

    Di Paolo Emilio, M; Festuccia, R; Palladino, L

    2015-09-01

    In this work, the X-ray emission generated from a plasma produced by focusing Nd-YAG laser beam on the Mylar and Yttrium targets will be characterised. The goal is to reach the best condition that optimises the X-ray conversion efficiency at 500 eV (pre-edge of the Oxigen K-shell), strongly absorbed by carbon-based structures. The characteristics of the microbeam optical system, the software/hardware control and the preliminary measurements of the X-ray fluence will be presented. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The X-ray eclipse of the LMC binary CAL 87

    NASA Technical Reports Server (NTRS)

    Schmidtke, P. C.; Mcgrath, T. K.; Cowley, A. P.; Frattare, L. M.

    1993-01-01

    ROSAT-PSPC observations of the LMC eclipsing binary CAL 87 show a short-duration, shallow X-ray eclipse which coincides in phase with the primary optical minimum. Characteristics of the eclipse suggest the X-ray emitting region is only partially occulted. Similarities with the eclipse of the accretion-disk corona in X 1822-37 are discussed. However, no temperature variation through eclipse is found for CAL 87. A revised orbital period, combining published data and recent optical photometry, is given.

  2. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  3. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  4. Is there a UV/X-ray connection in IRAS 13224-3809?

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.

    2018-04-01

    We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.

  5. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade.

    PubMed

    Chernyshova, M; Malinowski, K; Czarski, T; Wojeński, A; Vezinet, D; Poźniak, K T; Kasprowicz, G; Mazon, D; Jardin, A; Herrmann, A; Kowalska-Strzęciwilk, E; Krawczyk, R; Kolasiński, P; Zabołotny, W; Zienkiewicz, P

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  6. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Malinowski, K.; Czarski, T.; Wojeński, A.; Vezinet, D.; Poźniak, K. T.; Kasprowicz, G.; Mazon, D.; Jardin, A.; Herrmann, A.; Kowalska-Strzeciwilk, E.; Krawczyk, R.; Kolasiński, P.; Zabołotny, W.; Zienkiewicz, P.

    2016-11-01

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signal include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.

  7. The Origin of X-ray Emission from the Enigmatic Be Star γ Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Hamaguchi, K.; Oskinova, L.; Russell, C. M. P.; Petre, R.; Enoto, T.; Morihana, K.; Ishida, M.

    2017-11-01

    Gamma Cassiopeiae is an enigmatic Be star with unusually hard, strong X-ray emission compared with normal main-sequence B stars. The origin has been debated for decades between two theories: mass accretion onto a hidden compact companion and a magnetic dynamo driven by the star-Be disk differential rotation. There has been no decisive signature found that supports either theory, such as a pulse in X-ray emission or the presence of large-scale magnetic field. In a ~100 ksec duration observation of the star with the Suzaku X-ray observatory in 2011, we detected six rapid X-ray spectral hardening events called ``softness dips''. All the softness dip events show symmetric softness ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either ~40% or ~70% partial covering absorption to kT ~12 keV plasma emission by matter with a neutral hydrogen column density of ~2 - 8 × 1021cm-2, while the spectrum outside of these dips is almost free of absorption. This result suggests that two distinct X-ray emitting spots in the γ Cas system, perhaps on a white dwarf companion with dipole mass accretion, are occulted by blobs in the Be stellar wind, the Be disk, or rotating around the white dwarf companion. The formation of a Be star and white dwarf binary system requires mass transfer between two stars; γ Cas may have experienced such activity in the past.

  8. Laser plasma source for soft x-ray imaging in CIOM

    NASA Astrophysics Data System (ADS)

    Shao, Zhongxing; Wang, Zhanshan; Xu, Fengming; Lu, Junxia; Chen, Xingdan

    1997-10-01

    We previously reported 18 nm Schwartzchild microscope by using a laser plasma source. Now we are planning to improve our Nd:YAG laser system and the multilayers mirror of Mo/B4C instead of Mo/Si, for producing shorter wavelength radiation and developing a new soft x-ray imaging setup. To compress the pulse width of the laser, the SBS (Stimulated Brillouin Scattering) cells is available. To short the wavelength to the 4th harmonics of the laser with high as 0.4 J energy per pulse, the hindrance is the low, less than 20%, nonlinear conversion efficiency. In this paper we are going to briefly introduce the new method to overcome the hindrance and the configuration of the SBS cell.

  9. Bragg x-ray survey spectrometer for ITER.

    PubMed

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  10. Trajectories of high energy electrons in a plasma focus

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Lee, J. H.; Mcfarland, D. R.

    1978-01-01

    Measurements are made of high-energy electron trajectories in a plasma focus as functions of position, time, energy, and angle of emission. The spatial resolution of the X-ray emission shows that low-energy X-rays are emitted from the anode surface. It is also suggested that the highest energy X-rays originate from a small region on the axis. The so-called shadow technique shows that the electron beam is perpendicular to the anode surface. Polar diagrams of medium and high-energy X-rays agree with the bremsstrahlung emission from a relativistic electron beam, the current of which is several 100 A.

  11. Hard X-ray and Particle Beams Research on 1.7 MA Z-pinch and Laser Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Shrestha, Ishor; Kantsyrev, Victor; Safronova, Alla; Esaulov, Andrey; Nishio, Mineyuki; Shlyaptseva, Veronica; Keim, Steven; Weller, Michael; Stafford, Austin; Petkov, Emil; Schultz, Kimberly; Cooper, Matthew; PPDL Team

    2013-10-01

    Studies of hard x-ray (HXR) emission, electron and ion beam generation in z-pinch and laser plasmas are important for Inertial Confinement Fusion (ICF) and development of HXR sources from K-shell and L-shell radiation. The characteristics of HXR and particle beams produced by implosions of planar wire arrays, nested and single cylindrical wire arrays, and X-pinches were analyzed on 100 ns UNR Zebra generator with current up to 1.7 MA. In addition, the comparison of characteristics of HXR and electron beams on Zebra and 350 fs UNR Leopard laser experiments with foils has been performed. The diagnostics include Faraday cups, HXR diodes, different x-ray spectrometers and imaging systems, and ion mass spectrometer using the technique of Thomson parabola. Future work on HXRs and particle beams in HED plasmas is discussed. This work was supported by the DOE/NNSA Cooperative agreement DE-NA0001984 and in part by DE-FC52-06NA27616. This work was also supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-13-1-0033, to University of Nevada, Reno.

  12. GIANT LOBES OF CENTAURUS A RADIO GALAXY OBSERVED WITH THE SUZAKU X-RAY SATELLITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stawarz, L.; Gandhi, P.; Takahashi, T.

    2013-03-20

    -thermal pressure provided by the radio-emitting electrons and the lobes' magnetic field. A prominent large-scale fluctuation of the Galactic foreground emission, resulting in excess foreground X-ray emission aligned with the lobe, cannot be ruled out. Although tentative, our findings potentially imply that the structure of the extended lobes in active galaxies is likely to be highly inhomogeneous and non-uniform, with magnetic reconnection and turbulent acceleration processes continuously converting magnetic energy to internal energy of the plasma particles, leading to possibly significant spatial and temporal variations in the plasma {beta} parameter around the volume-averaged equilibrium condition {beta} {approx} 1.« less

  13. Astronomers Go Behind The Milky Way To Solve X-Ray Mystery

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Through layers of gas and dust that stretch for more than 30,000 light years, astronomers using NASA's Chandra X-ray Observatory have taken a long, hard look at the plane of the Milky Way galaxy and found that its X-ray glow comes from hot and diffuse gas. The findings, published in the August 10 issue of Science, help to settle a long-standing mystery about the source of the X-ray emission from the galactic plane. Scientists have debated whether the Milky Way plane's X-ray emission was diffuse light or from individual stars. Armed with Chandra, an international team led Dr. Ken Ebisawa of NASA's Goddard Space Flight Center, Greenbelt, MD zoomed in on a tiny region of the galactic plane in the constellation Scutum. "The point sources we saw in the galactic plane were actually active galaxies with bright cores millions of light years behind our galaxy," said Ebisawa. "The number of these sources is consistent with the expected number of extragalactic sources in the background sky. We saw few additional point sources within our Galaxy." The observation marks the deepest X-ray look at the so-called "zone of avoidance" -- a region of space behind which no optical observation has ever been taken because thick dust and gas in the spiral arms of the Milky Way galaxy block out visible radiation. Infrared, radio, and X-rays, however, can penetrate this dust and gas. Detection of diffuse X rays emanating from the Galactic plane, what we call the "Milky Way" in visible light, indicates the presence of plasma gas with temperatures of tens of millions of degrees Celsius. Smoothed X-ray Image of the Galactic Plane Smoothed X-ray Image of the Galactic Plane Gas this hot would escape the gravitational confines of the Milky Way galaxy under normal circumstances. The fact that it still lingers within the Galactic plane is the next mystery to solve. One possibility, suggested by Ebisawa is that hot plasma may be confined to the Milky Way by magnetic fields. The Chandra observation

  14. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  15. Iron K lines from low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; White, N. E.

    1989-01-01

    Models are presented for the 6-7 keV iron line emission from low-mass X-ray binaries. A simplified model for an accretion disk corona is used to examine the dependence of the observable line properties, line width and mean energy, on the radial distance of the emission region from the X-ray source, and on the fraction of the X-rays from the source which reach the disk surface. The effects of blending of multiple line components and of Comptonization of the line profile are included in numerical calculations of the emitted profile shape. The results of these calculations, when compared with the line properties observed from several low-mass X-ray binaries, suggest that the broadening is dominated either by rotation or by Compton scattering through a greater optical depth than is expected from an accretion disk corona.

  16. Evolution of plasma characteristics for weak X-ray brightenings seen by SphinX during recent deep minimum of solar activity

    NASA Astrophysics Data System (ADS)

    Sylwester, Barbara; Sylwester, Janusz; Siarkowski, Marek; Gburek, Szymon; Phillips, Kenneth

    Very high sensitivity of SphinX soft X-ray spectrophotometer aboard Coronas-Photon allows to observe spectra of small X-ray brightenings(microflares), many of them with maximum intensities well below the GOES or RHESSI sensitivity thresholds. Hundreds of such small flare-like events have been observed in the period between March and November 2009 with energy resolution better than 0.5 keV. The spectra have been measured in the energy range extending above 1 keV. In this study we investigate the time variability of basic plasma parameters: temperature T and emission measure EM for a number of these weak flare-like events and discuss respective evolutionary patterns on the EM-T diagnostic diagrams. For some of these events, unusual behavior is observed, different from this characteristic for a "normal" flares of higher maximum intensities. Physical scenarios providing possible explanation of such unusual evolutionary patterns will be discussed.

  17. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  18. X-ray insights into star and planet formation.

    PubMed

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  19. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    NASA Astrophysics Data System (ADS)

    Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.

    2015-01-01

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.

  1. Hard X-ray Detectability of Small-Scale Coronal Heating Events

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Glesener, Lindsay; Klimchuk, James A.; Bradshaw, Stephen; Smith, David; Hannah, Iain

    2016-05-01

    The nanoflare heating theory predicts the ubiquitous presence of hot (~>5 MK) plasma in the solar corona, but evidence for this high-temperature component has been scarce. Current hard x-ray instruments such as RHESSI lack the sensitivity to see the trace amounts of this plasma that are predicted by theoretical models. New hard X-ray instruments that use focusing optics, such as FOXSI (the Focusing Optics X-ray Solar Imager) and NuSTAR (the Nuclear Spectroscopic Telescope Array) can extend the visible parameter space of nanoflare “storms” that create hot plasma. We compare active-region data from FOXSI and NuSTAR with a series of EBTEL hydrodynamic simulations, and constrain nanoflare properties to give good agreement with observations.

  2. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  3. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    NASA Technical Reports Server (NTRS)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  4. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  5. X-Rays from the Explosion Site: Fifteen Years of Light Curves of SN 1993J

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Dwarkadas, Vikram V.; Ray, Alak; Immler, Stefan; Pooley, David

    2009-01-01

    We present a comprehensive analysis of the X-ray light curves of SN 1993J in a nearby galaxy M81. This is the only supernova other than SN 1987A, which is so extensively followed in the X-ray bands. Here we report on SN 1993J observations with the Chandra in the year 2005 and 2008, and Swift observations in 2005, 2006 and 2008. We combined these observations with all available archival data of SN 1993J, which includes ROSAT, ASCA, Chandra, and XMM-Newton, observations from 1993 April to 2006 August. In this paper we report the X-ray light curves of SN 1993J, extending up to fifteen years, in the soft (0.3-2.4 keV), hard (2-8 keV) and combined (0.3-8 keV) bands. The hard and soft-band fluxes decline at different rates initially, but after about 5 years they both undergo a t(sup -1) decline. The soft X-rays, which are initially low, start dominating after a few hundred days. We interpret that most of the emission below 8 keV is coming from the reverse shock which is radiative initially for around first 1000-2000 days and then turn into adiabatic shock. Our hydrodynamic simulation also confirms the reverse shock origin of the observed light curves. We also compare the Ha line luminosity of SN 1993J with its X-ray light curve and note that the Ha line luminosity has a fairly high fraction of the X-ray emission, indicating presence of clumps in the emitting plasma.

  6. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-02-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ˜ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high-temperature (kT ˜ 3.4 keV) component with a very low ionization timescale (˜2.7 × 109 cm-3 s), or a hard nonthermal component with a photon index Γ ˜ 2.3. The average density of the low-temperature plasma is rather low, of the order of 10-3-10-2 cm-3, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  7. Discovery of X-Ray Emission from the Galactic Supernova Remnant G32.8-0.1 with Suzaku

    NASA Technical Reports Server (NTRS)

    Bamba, Aya; Terada, Yukikatsu; Hewitt, John; Petre, Robert; Angelini, Lorella; Safi-Harb, Samar; Zhou, Ping; Bocchino, Fabrizio; Sawada, Makoto

    2016-01-01

    We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT approximately 0.6 kiloelectronvolts) thermal emission in a nonequilibrium ionization state, but also a very high-temperature (approximately 3.4 kiloelectronvolts) component with a very low ionization timescale (approximately 2.7 times 10 (sup 9) per cubic centimeter per second), or a hard nonthermal component with a photon index Gamma approximately equal to 2.3. The average density of the low-temperature plasma is rather low, of the order of 10 (sup -3) - 10 (sup -2) per cubic centimeter, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in teraelectronvolts with H.E.S.S. (High Energy Stereoscopic System), together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard-X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.

  8. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    unexpectedly, that the radio jet does not turn on until the hard X-ray emission is well past its peak hard state level, strongly constraining theoretical models for hard X-ray production and the spectrum emitted by the jet. Finally, the X-ray/radio results in A2 led us to propose a general picture about the relationship between jet production and X-ray spectral states .

  9. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  10. Transmission properties and physical mechanisms of X-ray communication for blackout mitigation during spacecraft reentry

    NASA Astrophysics Data System (ADS)

    Liu, Yunpeng; Li, Huan; Li, Yanlong; Hang, Shuang; Tang, Xiaobin

    2017-11-01

    Recent advances in X-ray science have witnessed the X-ray communication (XCOM), a new revolutionary technology first proposed by NASA since 2007. In combination with the advanced modulated X-ray source, XCOM shows a promising prospect for helping to alleviate the occurrence of inevitable blackout communication by using the regular radio frequency (RF) signal, paving the way towards realizing real-time communication during spacecraft reentry into atmosphere. Here, we acquired the detailed information of electron density distribution of plasma sheath encountered during vehicle reentry through Computational Fluid Dynamics simulation. Based on these derived parameters, Finite-difference Time-domain method was employed to investigate the transmission properties of X-rays through the plasma sheath, and the results indicated that X-ray transmission was not influenced by the reentry plasma sheath at different reentry altitudes and spacecraft surface positions compared with RF signal. In addition, 2D Particle-In-Cell simulation was also adopted to provide deeper insight into the transmission properties and physical mechanisms of X-ray carrier propagating through the plasma sheath, and results showed that the transmission coefficient was over 0.994 and the observation of plasma channel effect was also an important signature, which was of great importance to X-ray propagating through the plasma sheath.

  11. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    PubMed

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  12. Measurements of laser-hole boring into overdense plasmas using x-ray laser refractometry (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, R.; Takahashi, K.; Tanaka, K.A.

    We developed a 19.6 nm laser x-ray laser grid-image refractometer (XRL-GIR) to diagnose laser-hole boring into overdense plasmas. The XRL-GIR was optimized to measure two-dimensional electron density perturbation on a scale of a few tens of {mu}m in underdense plasmas. Electron density profiles of laser-produced plasmas were obtained for 10{sup 20}{endash}10{sup 22}thinspcm{sup {minus}3} with the XRL-GIR and for 10{sup 19}{endash}10{sup 20}thinspcm{sup {minus}3} from an ultraviolet interferometer, the profiles of which were compared with those from hydrodynamic simulation. By using this XRL-GIR, we directly observed laser channeling into overdense plasmas accompanied by a bow shock wave showing a Mach cone ascribedmore » to supersonic propagation of the channel front. {copyright} {ital 1999 American Institute of Physics.}« less

  13. Search for Thermal X-ray Features from the Crab nebula with Hitomi Soft X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Tsujimoto, M.; Mori, K.; Lee, S.; Yamaguchi, H.; Tominaga, N.; Moriya, T.; Sato, T.; Bamba, A.

    2017-10-01

    The Crab nebula originates from a core-collapse SN in 1054. It has an anomalously low observed ejecta mass for a Fe-core collapse SN. Intensive searches were made for an undetected massive shell to solve this discrepancy. An alternative idea is that the SN1054 is an electron-capture (EC) explosion with a lower explosion energy than Fe-core collapse SNe. In the X-rays, imaging searches were performed for the plasma emission from the shell in the Crab outskirts. However, the extreme brightness hampers access to its vicinity. We used spectroscopic technique using the X-ray micro-calorimeter onboard Hitomi. We searched for the emission or absorption features by the thermal plasma and set a new limit. We re-evaluated the existing data to claim that the X-ray plasma mass is < 1 M_{⊙} for a wide range of assumed parameters. We further performed hydrodynamic simulation for two SN models (Fe core versus EC) under two environments (uniform ISM versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the environment has a low density of <0.03 cm^{-3} (Fe core) or <0.1 cm^{-3} (EC) for the uniform density, or <10^{14} g cm^{-1} for the wind density parameter for the wind environment.

  14. A survey of X-ray line emission from the supernova remnant Puppis A

    NASA Technical Reports Server (NTRS)

    Winkler, P. F.; Clark, G. W.; Markert, T. H.; Kalata, K.; Schnopper, H. W.; Canizares, C. R.

    1981-01-01

    Initial results from the first high-resolution study of the X-ray spectrum of a supernova remnant are reported. The spectrum of Puppis A between 500 and 1100 eV has been surveyed with the Focal Plane Crystal Spectrometer on the Einstein Observatory and the flux in eight lines and three line blends from various transitions of highly ionized nitrogen, oxygen, neon, and iron has been measured. The spectrum resembles that of active regions in the solar corona, but the neon lines seem enhanced relative to the oxygen lines, and both are enhanced relative to iron. The observed line strengths serve as diagnostics of the physical conditions in the emitting material. Without a priori assumptions, the ionization temperatures of O (2.2 million K) and Ne (4 million K) and the dominant ionization stage of Fe (Fe XVII) are deduced. Isothermal equilibrium plasmas or homogeneous nonequilibrium plasmas as descriptions of the source are ruled out. It is concluded that Puppis A must contain plasma over a temperature range 2-million to 5-million K with an intervening absorption column of 4 x 10 to the 21st/sq cm.

  15. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  16. SMM X ray polychromator

    NASA Astrophysics Data System (ADS)

    Saba, J. L. R.

    1993-07-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  17. AN X-RAY INVESTIGATION OF THREE SUPERNOVA REMNANTS IN THE LARGE MAGELLANIC CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, Matthew D.; Points, S. D.; Smith, R. C.

    2010-12-20

    We have investigated three supernova remnants (SNRs) in the LMC using multi-wavelength data. These SNRs are generally fainter than the known sample (see Section 4) and may represent a previously missed population. One of our SNRs is the second LMC remnant analyzed which is larger than any Galactic remnant for which a definite size has been established. The analysis of such a large remnant contributes to the understanding of the population of highly evolved SNRs. We have obtained X-ray images and spectra of three of these recently identified SNRs using the XMM-Newton observatory. These data, in conjunction with pre-existing opticalmore » emission-line images and spectra, were used to determine the physical conditions of the optical- and X-ray-emitting gas in the SNRs. We have compared the morphologies of the SNRs in the different wavebands. The physical properties of the warm ionized shell were determined from the H{alpha} surface brightness and the SNR expansion velocity. The X-ray spectra were fit with a thermal plasma model and the physical conditions of the hot gas were derived from the model fits. Finally, we have compared our observations with simulations of SNR evolution.« less

  18. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Cravens, T. E.; Howell, R. R.; Metzger, A. E.; Ostgaard, N.; Maurellis, A.; hide

    2002-01-01

    A wide variety of solar system planetary bodies are now known to radiate in the soft x-ray energy (<5 keV) regime. These include planets (Earth, Jupiter, Venus, Saturn): bodies having thick atmosphere and with/without intrinsic magnetic field; planetary satellites (Moon, Io, Europa, Ganymede): bodies with no/thin atmosphere; and comets and Io plasma torus: bodies having extended tenuous atmosphere. Several different mechanisms have been proposed to explain the generation of soft x-rays from these objects. whereas in the hard x-ray energy range (>10 keV) x-rays mainly result from electron bremsstrahlung process. In this paper we present a brief review of the x-ray observations on each of the planetary bodies and discuss their characteristics and proposed source mechanisms.

  19. X-ray Emission from Thunderstorms and Lightning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, Joseph

    2009-07-08

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdownmore » plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. « less

  20. X-ray Emission from Thunderstorms and Lightning

    ScienceCinema

    Dwyer, Joseph [Florida Institute of Technology, Melbourne, Florida, United States

    2017-12-09

    How lightning is initiated in the relatively low electric fields inside thunderclouds and how it can then propagate for tens of kilometers through virgin air are two of the great unsolved problems in the atmospheric sciences.  Until very recently it was believed that lightning was entirely a conventional discharge, involving only low-energy (a few eV) electrons.  This picture changed completely a few years ago with the discovery of intense x-ray emission from both natural cloud-to-ground lightning and rocket-triggered lightning.  This energetic emission cannot be produced by a conventional discharge, and so the presence of x-rays strongly implies that runaway breakdown plays a role in lightning processes.  During runaway breakdown, electrons are accelerated through air to nearly the speed of light by strong electric fields.  These runaway electrons then emit bremsstrahlung x-rays and gamma-rays during collisions with air.  Indeed, the x-ray and gamma-ray emission produced by runaway breakdown near the tops of thunderstorms is bright enough to be seen from outer space, 600 km away.  As a result, the physics used for decades to describe thunderstorm electrification and lightning discharges is incomplete and needs to be revisited. 

  1. X-ray emission from upward initiated lightning at Gaisberg tower

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, P.; Cooray, G. V.; Diendorfer, G.; Pichler, H.; Dwyer, J. R.; Rassoul, H.

    2016-12-01

    We report the occurrence of X-rays at ground level due to cloud to ground flashes of upward initiated lightning from Gaisberg tower in Austria which is located at a 1300m altitude. This is the first time that the X-rays from upward lightning from a tower top located in high altitude is observed. Measurement was carried out using scintillation detectors installed close to the tower top. X-rays were recorded in three subsequent strokes of two flashes out of the total 15 flashes recorded in the system in the period December 2014 to July 2015. In contrast to the observations from downward natural or triggered lightning, X-rays were observed only within 10 µs prior to the subsequent return stroke. This shows that X-rays were emitted when the dart leader is in the vicinity of the tower top and hence during the most intense phase of the dart leader. Both the detected energy and the fluence of X-rays are far lower compared to X-rays from downward natural or rocket triggered lightning. The X-ray waveforms together with current and electric field measurements is presented and comparison of this result to previous ground level observations of X-rays from natural and triggered lightning is discussed.

  2. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  3. First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.

    2007-01-01

    After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.

  4. Temperature dependence of emission measure in solar X-ray plasmas. 1: Non-flaring active regions

    NASA Technical Reports Server (NTRS)

    Phillips, K. J. H.

    1974-01-01

    X-ray and ultraviolet line emission from hot, optically thin material forming coronal active regions on the sun may be described in terms of an emission measure distribution function, Phi (T). A relationship is developed between line flux and Phi (T), a theory which assumes that the electron density is a single-valued function of temperature. The sources of error involved in deriving Phi (T) from a set of line fluxes are examined in some detail. These include errors in atomic data (collisional excitation rates, assessment of other mechanisms for populating excited states of transitions, element abundances, ion concentrations, oscillator strengths) and errors in observed line fluxes arising from poorly - known instrumental responses. Two previous analyses are discussed in which Phi (T) for a non-flaring active region is derived. A least squares method of Batstone uses X-ray data of low statistical significance, a fact which appears to influence the results considerably. Two methods for finding Phi (T) ab initio are developed. The coefficients are evaluated by least squares. These two methods should have application not only to active-region plasmas, but also to hot, flare-produced plasmas.

  5. Development of high intensity X-ray sources at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    May, M. J.; Colvin, J. D.; Kemp, G. E.; Barrios, M. A.; Widmann, K.; Benjamin, R.; Thorn, D.; Poole, P.; Blue, B.

    2018-05-01

    Laser heated plasmas have provided recently some of the most powerful and energetic nanosecond length laboratory sources of x-ray photons (Ephoton = 1-30 keV). The highest x-ray to laser conversion is currently accessible by using underdense (ne ˜ 0.25 nc) plasmas since optimal laser coupling is obtained in millimeter scale targets. The targets can have conversion efficiencies of up to 10%. Several types of targets can be used to produce underdense plasmas: metal lined cylindrical cavities, gas pipes, and most recently nano-wire foams. Both the experimental and simulation details of these high intensity x-ray sources are discussed.

  6. The SMILE Soft X-ray Imager (SXI) CCD design and development

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Hall, D. J.; Holland, A. D.; Burgon, R.; Buggey, T.; Skottfelt, J.; Sembay, S.; Drumm, P.; Thornhill, J.; Read, A.; Sykes, J.; Walton, D.; Branduardi-Raymont, G.; Kennedy, T.; Raab, W.; Verhoeve, P.; Agnolon, D.; Woffinden, C.

    2018-01-01

    SMILE, the Solar wind Magnetosphere Ionosphere Link Explorer, is a joint science mission between the European Space Agency and the Chinese Academy of Sciences. The spacecraft will be uniquely equipped to study the interaction between the Earth's magnetosphere-ionosphere system and the solar wind on a global scale. SMILE's instruments will explore this science through imaging of the solar wind charge exchange soft X-ray emission from the dayside magnetosheath, simultaneous imaging of the UV northern aurora and in-situ monitoring of the solar wind and magnetosheath plasma and magnetic field conditions. The Soft X-ray Imager (SXI) is the instrument being designed to observe X-ray photons emitted by the solar wind charge exchange process at photon energies between 200 eV and 2000 eV . X-rays will be collected using a focal plane array of two custom-designed CCDs, each consisting of 18 μm square pixels in a 4510 by 4510 array. SMILE will be placed in a highly elliptical polar orbit, passing in and out of the Earth's radiation belts every 48 hours. Radiation damage accumulated in the CCDs during the mission's nominal 3-year lifetime will degrade their performance (such as through decreases in charge transfer efficiency), negatively impacting the instrument's ability to detect low energy X-rays incident on the regions of the CCD image area furthest from the detector outputs. The design of the SMILE-SXI CCDs is presented here, including features and operating methods for mitigating the effects of radiation damage and expected end of life CCD performance. Measurements with a PLATO device that has not been designed for soft X-ray signal levels indicate a temperature-dependent transfer efficiency performance varying between 5×10-5 and 9×10-4 at expected End of Life for 5.9 keV photons, giving an initial set of measurements from which to extrapolate the performance of the SXI CCDs.

  7. The X-ray footprint of the circumnuclear disc

    NASA Astrophysics Data System (ADS)

    Mossoux, Enmanuelle; Eckart, Andreas

    2018-03-01

    We studied the central regions of the Galactic Centre to determine if the circumnuclear disc (CND) acts as an absorber or a barrier for the central X-rays diffuse emission. After reprocessing 4.6 Ms of Chandra observations, we were able to detect, for the first time, a depression in the X-ray luminosity of the diffuse emission whose size and location correspond to those of the CND. We extracted the X-ray spectra for various regions inside the CND footprint as well as for the region where the footprint is observed and for a region located outside the footprint. We simultaneously fitted these spectra as an optically thin plasma whose absorption by the interstellar medium (ISM) and by the local plasma were fitted independently using the Markov chain Monte Carlo method. The hydrogen column density of the ISM is 7.5 × 1022 cm-2. The X-ray diffuse emission inside the CND footprint is formed by a 2T plasma of 1 and 4 keV with slightly super-solar abundances except for the iron and carbon that are sub-solar. The plasma from the CND, in turn, is better described by a 1T model with abundances and local hydrogen column density that are very different from those of the innermost regions. The large iron abundance in this region confirms that the CND is dominated by the shock-heated ejecta of the Sgr A East supernova remnant. We deduced that the CND rather acts as a barrier for the Galactic Centre plasma and that the plasma located outside the CND may correspond to the collimated outflow possibly created by Sgr A* or the interaction between the wind of massive stars and the mini-spiral material.

  8. Gaseous electron multiplier-based soft x-ray plasma diagnostics development: Preliminary tests at ASDEX Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshova, M., E-mail: maryna.chernyshova@ipplm.pl; Malinowski, K.; Czarski, T.

    2016-11-15

    A Gaseous Electron Multiplier (GEM)-based detector is being developed for soft X-ray diagnostics on tokamaks. Its main goal is to facilitate transport studies of impurities like tungsten. Such studies are very relevant to ITER, where the excessive accumulation of impurities in the plasma core should be avoided. This contribution provides details of the preliminary tests at ASDEX Upgrade (AUG) with a focus on the most important aspects for detector operation in harsh radiation environment. It was shown that both spatially and spectrally resolved data could be collected, in a reasonable agreement with other AUG diagnostics. Contributions to the GEM signalmore » include also hard X-rays, gammas, and neutrons. First simulations of the effect of high-energy photons have helped understanding these contributions.« less

  9. The Presence of Thermally Unstable X-Ray Filaments and the Production of Cold Gas in the NGC 5044 Group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Laurence P.; Vrtilek, Jan; O’Sullivan, Ewan

    We present the results of a deep Chandra observation of the X-ray bright moderate-cooling flow group NGC 5044 along with the observed correlations between the ionized, atomic, and molecular gas in this system. The Chandra observation shows that the central AGN has undergone two outbursts in the past 10{sup 8} years, based on the presence of two pairs of nearly bipolar X-ray cavities. The molecular gas and dust within the central 2 kpc is aligned with the orientation of the inner pair of bipolar X-ray cavities, suggesting that the most recent AGN outburst had a dynamical impact on the molecularmore » gas. NGC 5044 also hosts many X-ray filaments within the central 8 kpc, but there are no obvious connections between the X-ray and H α filaments and the more extended X-ray cavities that were inflated during the prior AGN outburst. Using the line width of the blended Fe-L line complex as a diagnostic for multiphase gas, we find that the majority of the multiphase thermally unstable gas in NGC 5044 is confined within the X-ray filaments. While the cooling time and entropy of the gas within the X-ray filaments are very similar, not all filaments show evidence of gas cooling or an association with H α emission. We suggest that the various observed properties of the X-ray filaments are suggestive of an evolutionary sequence where thermally unstable gas begins to cool, becomes multiphased, develops H α emitting plasma, and finally produces cold gas.« less

  10. Extended X-Ray Emission around Quasars at Intermediate Redshift

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio

    1998-01-01

    We compare the optical to soft X-ray spectral energy distribution (SED) of a sample of bright low-redshift (0.048 less than z less than 0.155), radio-quiet quasars, with a range of thermal models which have been proposed to explain the optical/UV/soft X-ray quasar emission: (a) optically thin emission from an ionized plasma, (b) optically thick emission from the innermost regions of an accretion disk in Schwarzschild and Kerr geometries. We presented ROSAT PSPC observations of these quasars in an earlier paper. Here our goals are to search for the signature of thermal emission in the quasar SED, and to investigate whether a single component is dominating at different frequencies. We find that isothermal optically thin plasma models can explain the observed soft X-ray color and the mean OUV color. However, they predict an ultraviolet (1325 Angstrom) luminosity a factor of 3 to 10 times lower than observed. Pure disk models, even in a Kerr geometry, do not have the necessary flexibility to account for the observed OUV and soft X-ray luminosities. Additional components are needed both in the optical and in the soft X-rays (e.g. a hot corona can explain the soft X-ray color). The most constrained modification of pure disk models, is the assumption of an underlying power law component extending from the infrared (3 micrometers) to the X-ray. This can explain both the OUV and soft X-ray colors and luminosities and does not exceed the 3 micrometers luminosity, where a contribution from hot dust is likely to be important. We also discuss the possibility that the observed soft X-ray color and luminosity are dominated by reflection from the ionized surface of the accretion disk. While modifications of both optically thin plasma models and pure disk models might account for the observed SED, we do not find any strong evidence that the OUV bump and soft X-ray emission are one and the same component. Likewise, we do not find any strong argument which definitely argues in favor

  11. X-ray emission from the Wolf-Rayet bubble NGC 6888 - II. XMM-Newton EPIC observations

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Arthur, S. J.; Tafoya, D.; Gruendl, R. A.

    2016-03-01

    We present deep XMM-Newton European Photon Imaging Camera observations of the Wolf-Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s-1 in the 0.3-1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm-3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.

  12. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  13. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  14. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  15. Study of the Role of Vortex Annihilation in the Mechanism of Neutron and X-Ray Production in the Plasma Focus.

    DTIC Science & Technology

    This paper shows that an understanding of the nature of the x-ray and neutron producing processes in the plasma focus requires a study of the ’fine...structure’ of the plasma focus and that this fine structure study requires diagnostic techniques with spacial resolution down to 50 micrometers and

  16. Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1994-01-01

    We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.

  17. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  18. X-Ray Spectroscopies of Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Hoidn, Oliver

    This dissertation provides a perspective on the role of x-ray spectroscopy and diffraction diagnostics in experimental studies of warm dense matter (WDM). The primary focus of the work I discuss is the development of techniques to measure the structure and state variables of laboratory-generated WDM with a view towards both phenomenlogy and placing contraints on theoretical models. I present techniques adapted to two experimental venues for WDM studies: large-scale laser plasma facilities and x-ray free electron lasers. My focus is on the latter, in the context of which I have studied a dose enhancement technique that exploits nonlocal heat transport in nanostructured targets and considered several aspects of optimizing x-ray diffraction measurements. This work came into play in beam runs at the Linac Coherent Light Source (LCLS) in which my group performed x-ray diffraction studies of several materials heated to eV-scale temperatures. The results from these experiments include confirmation of the persistence of long-range crystalline order upon heating of metal oxides to tens of eV temperarures on the 40 fs timescale. One material, MgO, additionally manifested a surprising anomalous early onset in delocalization of valence charge density, contradicting predictions of all models based on either ground state electronic structure or (high-energy density) plasma physics. This particular result outlines a future path for studies of ordered insulators heated to temperatures on the order of the band gap. Such experiments will offer strong tests of electronic strucure theory, implementing a scientific approach that sees measurement of real-space charge density via x-ray diffraction (XRD) as a particularly effectve means to constrain density functional theory (DFT)-based modeling of the solid state/plasma transitional regime.

  19. X-Rays from Pluto

    NASA Image and Video Library

    2016-09-14

    The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first

  20. Diffusive transport of energetic electrons in the solar corona: X-ray and radio diagnostics

    NASA Astrophysics Data System (ADS)

    Musset, S.; Kontar, E. P.; Vilmer, N.

    2018-02-01

    Context. Imaging spectroscopy in X-rays with RHESSI provides the possibility to investigate the spatial evolution of X-ray emitting electron distribution and therefore, to study transport effects on energetic electrons during solar flares. Aims: We study the energy dependence of the scattering mean free path of energetic electrons in the solar corona. Methods: We used imaging spectroscopy with RHESSI to study the evolution of energetic electrons distribution in various parts of the magnetic loop during the 2004 May 21 flare. We compared these observations with the radio observations of the gyrosynchrotron radiation of the same flare and with the predictions of a diffusive transport model. Results: X-ray analysis shows a trapping of energetic electrons in the corona and a spectral hardening of the energetic electron distribution between the top of the loop and the footpoints. Coronal trapping of electrons is stronger for radio-emitting electrons than for X-ray-emitting electrons. These observations can be explained by a diffusive transport model. Conclusions: We show that the combination of X-ray and radio diagnostics is a powerful tool to study electron transport in the solar corona in different energy domains. We show that the diffusive transport model can explain our observations, and in the range 25-500 keV, the scattering mean free path of electrons decreases with electron energy. We can estimate for the first time the scattering mean free path dependence on energy in the corona.