Sample records for x-ray fluorescence sensitivity

  1. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  2. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  3. Reevaluation of the Apollo orbital X-ray fluorescence data

    NASA Technical Reports Server (NTRS)

    Hubbard, N. J.; Keith, J. E.

    1977-01-01

    A combination of Al/Mg ratios and Al/Si ratios has provided high-quality geochemical and geological information from the Apollo orbital X-ray fluorescence data. The high sensitivity of the characteristic Si X-rays to alterations in the energy spectra of the solar X-ray flux limits the analytical usefulness of the ratios involving Si. A photometric study indicates that the Si concentration in lunar materials varies by less than about + or - 15% of the Si present. In addition, particle size and surface roughness are shown to have small effects on the characteristic fluorescent X-ray radiation of Si.

  4. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  5. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  6. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2015-02-24

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and ~90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. Finally, this combined approach offers a way to study the role of trace elements in their structural context.« less

  7. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Vine, David J.; Chen, Si

    Trace metals play important roles in normal and in disease-causing biological functions. X-ray fluorescence microscopy reveals trace elements with no dependence on binding affinities (unlike with visible light fluorophores) and with improved sensitivity relative to electron probes. However, X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular material. Here we show that X-ray ptychography can be combined with fluorescence to image both cellular structure and trace element distribution in frozen-hydrated cells at cryogenic temperatures, with high structural and chemical fidelity. Ptychographic reconstruction algorithms deliver phase and absorption contrast images at a resolutionmore » beyond that of the illuminating lens or beam size. Using 5.2-keV X-rays, we have obtained sub-30-nm resolution structural images and similar to 90-nm-resolution fluorescence images of several elements in frozen-hydrated green algae. This combined approach offers a way to study the role of trace elements in their structural context.« less

  8. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  9. X-ray fluorescence tomographic system design and image reconstruction.

    PubMed

    Cong, Wenxiang; Shen, Haiou; Cao, Guohua; Liu, Hong; Wang, Ge

    2013-01-01

    In this paper, we presented a new design of x-ray fluorescence CT imaging system. For detecting fuorescence signals of gold nanoparticles in-vivo, multiple spectroscopic detectors are arranged and rotated orthogonal to an excited region of interest so that a localized scan can be acquired with a maximized efficiency. Excitation filtration was employed to minimize the effects of low-energy x-rays and background scattering for lowering radiation dose to the object. Numerical simulations showed that the radiation dose is less than 300 mGy/second for a complete 30 views tomographic scan; and the sensitivity of 3D fluorescence signal detection is up to 0.2% contrast concentrations of nanoparticles. The x-ray fluorescence computed tomography is an important molecular imaging tool. It can be used directly in samall animal research. It has great translational potential for future clinical applications.

  10. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    PubMed

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  11. X ray sensitive area detection device

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  12. Experimental investigation of a HOPG crystal fan for x-ray fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Rosentreter, Tanja; Müller, Bernhard; Schlattl, Helmut; Hoeschen, Christoph

    2017-03-01

    Imaging x-ray fluorescence generally generates a conflict between the best image quality or highest sensitivity and lowest possible radiation dose. Consequently many experimental studies investigating the feasibility of this molecular imaging method, deal with either monochromatic x-ray sources that are not practical in clinical environment or accept high x-ray doses in order to maintain the advantage of high sensitivity and producing high quality images. In this work we present a x-ray fluorescence imaging setup using a HOPG crystal fan construction consisting of a Bragg reflecting analyzer array together with a scatter reducing radial collimator. This method allows for the use of polychromatic x-ray tubes that are in general easily accessible in contrast to monochromatic x-ray sources such as synchrotron facilities. Moreover this energy-selecting device minimizes the amount of Compton scattered photons while simultaneously increasing the fluorescence signal yield, thus significantly reducing the signal to noise ratio. The aim is to show the feasibility of this approach by measuring the Bragg reflected Kα fluorescence signal of an object containing an iodine solution using a large area detector with moderate energy resolution. Contemplating the anisotropic energy distribution of background scattered x-rays we compare the detection sensitivity, applying two different detector angular configurations. Our results show that even for large area detectors with limited energy resolution, iodine concentrations of 0.12 % can be detected. However, the potentially large scan times and therefore high radiation dose need to be decreased in further investigations.

  13. Gold nanoclusters as contrast agents for fluorescent and X-ray dual-modality imaging.

    PubMed

    Zhang, Aili; Tu, Yu; Qin, Songbing; Li, Yan; Zhou, Juying; Chen, Na; Lu, Qiang; Zhang, Bingbo

    2012-04-15

    Multimodal imaging technique is an alternative approach to improve sensitivity of early cancer diagnosis. In this study, highly fluorescent and strong X-ray absorption coefficient gold nanoclusters (Au NCs) are synthesized as dual-modality imaging contrast agents (CAs) for fluorescent and X-ray dual-modality imaging. The experimental results show that the as-prepared Au NCs are well constructed with ultrasmall sizes, reliable fluorescent emission, high computed tomography (CT) value and fine biocompatibility. In vivo imaging results indicate that the obtained Au NCs are capable of fluorescent and X-ray enhanced imaging. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Simultaneous X-ray fluorescence and scanning X-ray diffraction microscopy at the Australian Synchrotron XFM beamline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.

    2016-08-11

    Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.

  15. X-ray Fluorescence Holography: Principles, Apparatus, and Applications

    NASA Astrophysics Data System (ADS)

    Hayashi, Kouichi; Korecki, Pawel

    2018-06-01

    X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.

  16. On the viability of exploiting L-shell fluorescence for X-ray polarimetry

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Sutherland, P. G.; Elsner, R. F.; Ramsey, B. D.

    1985-01-01

    It has been suggested that one may build an X-ray polarimeter by exploiting the polarization dependence of the angular distribution of L-shell fluorescence photons. In this paper the sensitivity of this approach to polarimetry is examined theoretically. The calculations are applied to several detection schemes using imaging proportional counters that would have direct application in X-ray astronomy. It is found, however, that the sensitivity of this method for measuring X-ray polarization is too low to be of use for other than laboratory applications.

  17. Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe

    NASA Technical Reports Server (NTRS)

    Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.

    1993-01-01

    A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.

  18. Fluorescent scanning x-ray tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  19. An x-ray fluorescence imaging system for gold nanoparticle detection.

    PubMed

    Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J

    2013-11-07

    Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.

  20. Use of polarized radiation for increasing the sensitivity of multielement x-ray fluorescence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ter-Saakov, A.A.; Glebov, M.V.

    1985-10-01

    An experimental x-ray fluorescence analysis facility has been developed using polarized radiation. A modernized small-sized REIS-I emitter is used as the x-ray genertor. Its characteristics are: a straight-through drift tube with a copper, molybdenum, or silver anode; and a controlled working voltage from 0 to 45 kV. The thickness of the inlet beryllium window is 100 um. Experiments were carried out on the facility on the optimization of fluorescence excitation conditions of biological samples. The investigations conducted of the dosimetric and spectral characteristics of the BS-1, BS-3, and BKh-7 x-ray tubes with copper, silver, and molybdenum anodes have shown thatmore » for the analysis in samples of biogenic elements, it is most efficient to use the BKh-7 and BS-1 tubes with a copper anode.« less

  1. Medical imaging by fluorescent x-ray CT: its preliminary clinical evaluation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Zeniya, Tsutomu; Wu, Jin; Yu, Quanwen; Lwin, Thet T.; Tsuchiya, Yoshinori; Rao, Donepudi V.; Yuasa, Tetsuya; Yashiro, Toru; Dilmanian, F. Avraham; Itai, Yuji; Akatsuka, Takao

    2002-01-01

    Fluorescent x-ray CT (FXCT) with synchrotron radiation (SR) is being developed to detect the very low concentration of specific elements. The endogenous iodine of the human thyroid and the non-radioactive iodine labeled BMIPP in myocardium were imaged by FXCT. FXCT system consists of a silicon (111) double crystal monochromator, an x-ray slit, a scanning table for object positioning, a fluorescent x-ray detector, and a transmission x-ray detector. Monochromatic x-ray with 37 keV energy was collimated into a pencil beam (from 1 mm to 0.025 mm). FXCT clearly imaged endogenous iodine of thyroid and iodine labeled BMIPP in myocardium, whereas transmission x-ray CT could not demonstrate iodine. The distribution of iodine was heterogeneous within thyroid cancer, and its concentration was lower than that of normal thyroid. Distribution of BMIPP in normal rat myocardium was almost homogeneous; however, reduced uptake was slightly shown in ischemic region. FXCT is a highly sensitive imaging modality to detect very low concentration of specific element and will be applied to reveal endogenous iodine distribution in thyroid and to use tracer study with various kinds of labeled material.

  2. Development of a micro-X-ray fluorescence system based on polycapillary X-ray optics for non-destructive analysis of archaeological objects

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Ding, Xunliang; Liu, Zhiguo; Pan, Qiuli; Chu, Xuelian

    2007-08-01

    A new micro-X-ray fluorescence (micro-XRF) system based on rotating anode X-ray generator and polycapillary X-ray optics has been set up in XOL Lab, BNU, China, in order to be used for analysis of archaeological objects. The polycapillary X-ray optics used here can focus the primary X-ray beam down to tens of micrometers in diameter that allows for non-destructive and local analysis of sub-mm samples with minor/trace level sensitivity. The analytical characteristics and potential of this micro-XRF system in archaeological research are discussed. Some described uses of this instrument include studying Chinese ancient porcelain.

  3. Joint reconstruction of x-ray fluorescence and transmission tomography

    DOE PAGES

    Di, Zichao; Chen, Si; Hong, Young Pyo; ...

    2017-05-30

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combinedmore » signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Furthermore, compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption.« less

  4. Joint reconstruction of x-ray fluorescence and transmission tomography

    PubMed Central

    Di, Zichao Wendy; Chen, Si; Hong, Young Pyo; Jacobsen, Chris; Leyffer, Sven; Wild, Stefan M.

    2017-01-01

    X-ray fluorescence tomography is based on the detection of fluorescence x-ray photons produced following x-ray absorption while a specimen is rotated; it provides information on the 3D distribution of selected elements within a sample. One limitation in the quality of sample recovery is the separation of elemental signals due to the finite energy resolution of the detector. Another limitation is the effect of self-absorption, which can lead to inaccurate results with dense samples. To recover a higher quality elemental map, we combine x-ray fluorescence detection with a second data modality: conventional x-ray transmission tomography using absorption. By using these combined signals in a nonlinear optimization-based approach, we demonstrate the benefit of our algorithm on real experimental data and obtain an improved quantitative reconstruction of the spatial distribution of dominant elements in the sample. Compared with single-modality inversion based on x-ray fluorescence alone, this joint inversion approach reduces ill-posedness and should result in improved elemental quantification and better correction of self-absorption. PMID:28788848

  5. The X-ray Fluorescence Microscopy Beamline at the Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterson, D.; Jonge, M. D. de; Howard, D. L.

    2011-09-09

    A hard x-ray micro-nanoprobe has commenced operation at the Australian Synchrotron providing versatile x-ray fluorescence microscopy across an incident energy range from 4 to 25 keV. Two x-ray probes are used to collect {mu}-XRF and {mu}-XANES for elemental and chemical microanalysis: a Kirkpatrick-Baez mirror microprobe for micron resolution studies and a Fresnel zone plate nanoprobe capable of 60-nm resolution. Some unique aspects of the beamline design and operation are discussed. An advanced energy dispersive x-ray fluorescence detection scheme named Maia has been developed for the beamline, which enables ultrafast x-ray fluorescence microscopy.

  6. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    PubMed Central

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  7. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    PubMed

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  8. Development of a single-cell X-ray fluorescence flow cytometer

    DOE PAGES

    Crawford, Andrew M.; Kurecka, Patrick; Yim, Tsz Kwan; ...

    2016-06-17

    An X-ray fluorescence flow cytometer that can determine the total metal content of single cells has been developed. Capillary action or pressure was used to load cells into hydrophilic or hydrophobic capillaries, respectively. Once loaded, the cells were transported at a fixed vertical velocity past a focused X-ray beam. X-ray fluorescence was then used to determine the mass of metal in each cell. By making single-cell measurements, the population heterogeneity for metals in the µ M to m M concentration range on fL sample volumes can be directly measured, a measurement that is difficult using most analytical methods. This approachmore » has been used to determine the metal composition of 936 individual bovine red blood cells (bRBC), 31 individual 3T3 mouse fibroblasts (NIH3T3) and 18 Saccharomyces cerevisiae (yeast) cells with an average measurement frequency of ~4 cells min –1. These data show evidence for surprisingly broad metal distributions. Lastly, details of the device design, data analysis and opportunities for further sensitivity improvement are described.« less

  9. Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Xing, Lei; Fahrig, Rebecca

    2015-01-01

    Abstract. Thanks to the current advances in nanoscience, molecular biochemistry, and x-ray detector technology, x-ray fluorescence computed tomography (XFCT) has been considered for molecular imaging of probes containing high atomic number elements, such as gold nanoparticles. The commonly used XFCT imaging performed with K-shell x rays appears to have insufficient imaging sensitivity to detect the low gold concentrations observed in small animal studies. Low energy fluorescence L-shell x rays have exhibited higher signal-to-background ratio and appeared as a promising XFCT mode with greatly enhanced sensitivity. The aim of this work was to experimentally demonstrate the feasibility of L-shell XFCT imaging and to assess its achievable sensitivity. We built an experimental L-shell XFCT imaging system consisting of a miniature x-ray tube and two spectrometers, a silicon drift detector (SDD), and a CdTe detector placed at ±120  deg with respect to the excitation beam. We imaged a 28-mm-diameter water phantom with 4-mm-diameter Eppendorf tubes containing gold solutions with concentrations of 0.06 to 0.1% Au. While all Au vials were detectable in the SDD L-shell XFCT image, none of the vials were visible in the CdTe L-shell XFCT image. The detectability limit of the presented L-shell XFCT SDD imaging setup was 0.007% Au, a concentration observed in small animal studies. PMID:26839910

  10. Nanoparticle characterization by means of scanning free grazing emission X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Kayser, Yves; Sá, Jacinto; Szlachetko, Jakub

    2015-05-01

    Nanoparticles are considered for applications in domains as various as medical and pharmaceutical sciences, opto- and microelectronics, catalysis, photovoltaics, spintronics or nano- and biotechnology. The applications realized with nanocrystals depend strongly on the physical dimensions (shape and size) and elemental constitution. We demonstrate here that grazing emission X-ray fluorescence (GEXRF) is an element sensitive technique that presents the potential for a reliable and accurate determination of the morphology of nanoparticles deposited on a flat substrate (ready-to-use devices). Thanks to the scanning-free approach of the used GEXRF setup, the composition, shape and average size of nanoparticles are determined in short time intervals, minimizing the exposure to radiation. The (scanning-free) GEXRF technique allows for in situ investigations of the nanoparticulate systems thanks to the penetration properties of both the probe X-ray beam and the emitted X-ray fluorescence signal.

  11. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  12. Proton-induced x-ray fluorescence CT imaging

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-01-01

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm2 CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R2 > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a small animal

  13. X-ray fluorescence cross sections for K and L x rays of the elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, M.O.; Nestor, C.W. Jr.; Sparks, C.J. Jr.

    1978-06-01

    X-ray fluorescence cross sections are calculated for the major x rays of the K series 5 less than or equal to Z less than or equal to 101, and the three L series 12 less than or equal to Z less than or equal to 101 in the energy range 1 to 200 keV. This calculation uses Scofield's theoretical partical photoionization cross sections, Krause's evaluation of fluorescence and Coster-Kronig yields, and Scofield's theoretical radiative rates. Values are presented in table and graph format, and an estimate of their accuracy is made. The following x rays are considered: K..cap alpha../sub 1/,more » K..cap alpha../sub 1/,/sub 2/, K..beta../sub 1/, K..beta../sub 1/,/sub 3/, L..cap alpha../sub 1/, L..cap alpha../sub 1/,/sub 2/, L..beta../sub 1/, L..beta../sub 2/,/sub 15/, L..beta../sub 3/, Ll, L..gamma../sub 1/, L..gamma../sub 4/, and L/sub 1/ ..-->.. L/sub 2/,/sub 3/. For use in x-ray fluorescence analysis, K..cap alpha.. and L..cap alpha.. fluorescence cross sections are presented at specific energies: TiK identical with 4.55 keV, CrK identical with 5.46 keV, CoK identical with 7.00 keV, CuK identical with 8.13 keV, MoK..cap alpha.. identical with 17.44 keV, AgK identical with 22.5 keV, DyK identical with 47.0 keV, and /sup 241/Am identical with 59.54 keV. Supplementary material includes fluorescence and Coster--Kronig yields, fractional radiative rates, fractional fluorescence yields, total L-shell fluorescence cross sections, fluorescence and Coster-Kronig yields in condensed matter, effective fluorescence yields, average L-shell fluorescence yield, L-subshell photoionization cross section ratios, and conversion factors from barns per atom to square centimeters per gram.« less

  14. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

  15. The Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.

    1972-01-01

    The objectives of Apollo 15 X-ray fluorescence experiment were to obtain a partial chemical map of a large portion of the moon. Gamma ray and alpha particle experiments were also performed. Mapping information from approximately 150 deg east on the moon to about 50 deg west was secured. Secondary X-rays characteristic of silicon, aluminum, and magnesium were measured.

  16. [Development of X-ray excited fluorescence spectrometer].

    PubMed

    Ni, Chen; Gu, Mu; Di, Wang; Cao, Dun-Hua; Liu, Xiao-Lin; Huang, Shi-Ming

    2009-08-01

    An X-ray excited fluorescence spectrometer was developed with an X-ray tube and a spectrometer. The X-ray tube, spectrometer, autocontrol method and data processing selected were roundly evaluated. The wavelength and detecting efficiency of the apparatus were calibrated with the mercury and tungsten bromine standard lamps, and the X-ray excited emission spectra of BaF2, Cs I (Tl) crystals were measured. The results indicate that the apparatus has advantages of good wavelength resolution, high stability, easy to operation and good radioprotection. It is a wery effective tool for exploration of new scintillation materials.

  17. Fluorescent x-ray computed tomography to visualize specific material distribution

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yuasa, Tetsuya; Hoshino, Atsunori; Akiba, Masahiro; Uchida, Akira; Kazama, Masahiro; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1997-10-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT systems consists of a silicon channel cut monochromator, an x-ray slit and a collimator for detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the K(alpha) line, incident monochromatic x-ray was set at 37 keV. At 37 keV Monte Carlo simulation showed almost complete separation between Compton scattering and the K(alpha) line. Actual experiments revealed small contamination of Compton scattering on the K(alpha) line. A clear FXCT image of a phantom was obtained. Using this system the minimal detectable dose of iodine was 30 ng in a volume of 1 mm3, and a linear relationship was demonstrated between photon counts of fluorescent x-rays and the concentration of iodine contrast material. The use of high incident x-ray energy allows an increase in the signal to noise ratio by reducing the Compton scattering on the K(alpha) line.

  18. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    NASA Astrophysics Data System (ADS)

    Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Záray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.

    2006-11-01

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2O 3. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection limits

  19. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  20. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  1. Gadolinium concentration analysis in brain phantom by X-ray fluorescence.

    PubMed

    Almalki, Musaed; Majid, Samir Abdul; Butler, Philip H; Reinisch, Lou

    2010-06-01

    We have measured the X-ray fluorescence from gadolinium as a function of concentration and position in tumors of different sizes and shapes in a head phantom. The gadolinium fluorescence was excited with a 36 GBq Am-241 source. The fluorescence signal was detected with a CdTe detector and a multi-channel analyzer. The fluorescence peak was clearly separated from the scattered X-rays. Concentrations of 5.62-78.63 mg/ml of Gd ion were used in 1, 2, and 3 cm diameter spherical tumors and a 2x4 cm oblate spheroid tumor. The data show trends approaching saturation for the highest concentrations, probably due to reabsorption in the tumor. A comparison of X-ray photographic imaging and densitometer measurements to determine concentration is also presented.

  2. Development of a fluorescent x-ray source for medical imaging

    NASA Astrophysics Data System (ADS)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  3. Human thyroid specimen imaging by fluorescent x-ray computed tomography with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Yu, Quanwen; Yashiro, Toru; Yuasa, Tetsuya; Hasegawa, Yasuo; Itai, Yuji; Akatsuka, Takao

    1999-09-01

    Fluorescent x-ray computed tomography (FXCT) is being developed to detect non-radioactive contrast materials in living specimens. The FXCT system consists of a silicon (111) channel cut monochromator, an x-ray slit and a collimator for fluorescent x ray detection, a scanning table for the target organ and an x-ray detector for fluorescent x-ray and transmission x-ray. To reduce Compton scattering overlapped on the fluorescent K(alpha) line, incident monochromatic x-ray was set at 37 keV. The FXCT clearly imaged a human thyroid gland and iodine content was estimated quantitatively. In a case of hyperthyroidism, the two-dimensional distribution of iodine content was not uniform, and thyroid cancer had a small amount of iodine. FXCT can be used to detect iodine within thyroid gland quantitatively and to delineate its distribution.

  4. Analytical possibilities of different X-ray fluorescence systems for determination of trace elements in aqueous samples pre-concentrated with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Zawisza, B.; Skorek, R.; Theato, T.; Queralt, I.; Hidalgo, M.; Sitko, R.

    2013-10-01

    This study was aimed to achieve improved instrumental sensitivity and detection limits for multielement determination of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Se, Pb and Cd in liquid samples by using different X-ray fluorescence (XRF) configurations (a benchtop energy-dispersive X-ray fluorescence spectrometer, a benchtop polarised energy-dispersive X-ray fluorescence spectrometer and a wavelength-dispersive X-ray fluorescence spectrometer). The preconcentration of metals from liquid solutions consisted on a solid-phase extraction using carbon nanotubes (CNTs) as solid sorbents. After the extraction step, the aqueous sample was filtered and CNTs with the absorbed elements were collected onto a filter paper which was directly analyzed by XRF. The calculated detection limits in all cases were in the low ng mL- 1 range. Nevertheless, results obtained indicate the benefits, in terms of sensitivity, of using polarized X-ray sources using different secondary targets in comparison to conventional XRF systems, above all if Cd determination is required. The developed methodologies, using the aforementioned equipments, have been applied for multielement determination in water samples from an industrial area of Poland.

  5. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  6. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.

  7. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  8. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  9. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  10. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  11. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  12. X-ray fluorescence camera for imaging of iodine media in vivo.

    PubMed

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  13. A novel portable energy dispersive X-ray fluorescence spectrometer with triaxial geometry

    NASA Astrophysics Data System (ADS)

    Pessanha, S.; Alves, M.; Sampaio, J. M.; Santos, J. P.; Carvalho, M. L.; Guerra, M.

    2017-01-01

    The X-ray fluorescence technique is a powerful analytical tool with a broad range of applications such as quality control, environmental contamination by heavy metals, cultural heritage, among others. For the first time, a portable energy dispersive X-ray fluorescence spectrometer was assembled, with orthogonal triaxial geometry between the X-ray tube, the secondary target, the sample and the detector. This geometry reduces the background of the measured spectra by reducing significantly the Bremsstrahlung produced in the tube through polarization in the secondary target and in the sample. Consequently, a practically monochromatic excitation energy is obtained. In this way, a better peak-background ratio is obtained compared to similar devices, improving the detection limits and leading to superior sensitivity. The performance of this setup is compared with the one of a benchtop setup with triaxial geometry and a portable setup with planar geometry. Two case studies are presented concerning the analysis of a 18th century paper document, and the bone remains of an individual buried in the early 19th century.

  14. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    PubMed

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  15. Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Leyffer, Sven; Wild, Stefan M.

    2016-01-01

    Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less

  16. Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.

    2004-05-01

    A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.

  17. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study

    PubMed Central

    Jung, Seongmoon; Sung, Wonmo; Ye, Sung-Joon

    2017-01-01

    This work aims to develop a Monte Carlo (MC) model for pinhole K-shell X-ray fluorescence (XRF) imaging of metal nanoparticles using polychromatic X-rays. The MC model consisted of two-dimensional (2D) position-sensitive detectors and fan-beam X-rays used to stimulate the emission of XRF photons from gadolinium (Gd) or gold (Au) nanoparticles. Four cylindrical columns containing different concentrations of nanoparticles ranging from 0.01% to 0.09% by weight (wt%) were placed in a 5 cm diameter cylindrical water phantom. The images of the columns had detectable contrast-to-noise ratios (CNRs) of 5.7 and 4.3 for 0.01 wt% Gd and for 0.03 wt% Au, respectively. Higher concentrations of nanoparticles yielded higher CNR. For 1×1011 incident particles, the radiation dose to the phantom was 19.9 mGy for 110 kVp X-rays (Gd imaging) and 26.1 mGy for 140 kVp X-rays (Au imaging). The MC model of a pinhole XRF can acquire direct 2D slice images of the object without image reconstruction. The MC model demonstrated that the pinhole XRF imaging system could be a potential bioimaging modality for nanomedicine. PMID:28860750

  18. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  19. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  20. Feasibility Study of Compton Cameras for X-ray Fluorescence Computed Tomography with Humans

    PubMed Central

    Vernekohl, Don; Ahmad, Moiz; Chinn, Garry; Xing, Lei

    2017-01-01

    X-ray fluorescence imaging is a promising imaging technique able to depict the spatial distributions of low amounts of molecular agents in vivo. Currently, the translation of the technique to preclinical and clinical applications is hindered by long scanning times as objects are scanned with flux-limited narrow pencil beams. The study presents a novel imaging approach combining x-ray fluorescence imaging with Compton imaging. Compton cameras leverage the imaging performance of XFCT and abolish the need of pencil beam excitation. The study examines the potential of this new imaging approach on the base of Monte-Carlo simulations. In the work, it is first presented that the particular option of slice/fan-beam x-ray excitation has advantages in image reconstruction in regard of processing time and image quality compared to traditional volumetric Compton imaging. In a second experiment, the feasibility of the approach for clinical applications with tracer agents made from gold nano-particles is examined in a simulated lung scan scenario. The high energy of characteristic x-ray photons from gold is advantageous for deep tissue penetration and has lower angular blurring in the Compton camera. It is found that Doppler broadening in the first detector stage of the Compton camera adds the largest contribution on the angular blurring; physically limiting the spatial resolution. Following the analysis of the results from the spatial resolution test, resolutions in the order of one centimeter are achievable with the approach in the center of the lung. The concept of Compton imaging allows to distinguish to some extend between scattered photons and x-ray fluorescent photons based on their difference in emission position. The results predict that molecular sensitivities down to 240 pM/l for 5 mm diameter lesions at 15 mGy for 50 nm diameter gold nano-particles are achievable. A 45-fold speed up time for data acquisition compared to traditional pencil beam XFCT could be achieved

  1. Method for detecting binding events using micro-X-ray fluorescence spectrometry

    DOEpatents

    Warner, Benjamin P.; Havrilla, George J.; Mann, Grace

    2010-12-28

    Method for detecting binding events using micro-X-ray fluorescence spectrometry. Receptors are exposed to at least one potential binder and arrayed on a substrate support. Each member of the array is exposed to X-ray radiation. The magnitude of a detectable X-ray fluorescence signal for at least one element can be used to determine whether a binding event between a binder and a receptor has occurred, and can provide information related to the extent of binding between the binder and receptor.

  2. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  3. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3  ×  3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  4. Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief

    PubMed Central

    Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.

    2012-01-01

    Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888

  5. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  6. A first evaluation of the analytical capabilities of the new X-ray fluorescence facility at International Atomic Energy Agency-Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Hidalgo, Manuela; Migliori, Alessandro; Leani, Juan José; Queralt, Ignasi; Kallithrakas-Kontos, Nikolaos; Streli, Christina; Prost, Josef; Karydas, Andreas Germanos

    2018-07-01

    The aim of the work is to present a systematic evaluation of the analytical capabilities of the new X-ray fluorescence facility jointly operated between the International Atomic Energy Agency and the Elettra Sincrotrone Trieste for multipurpose total reflection X-ray fluorescence analysis. The analytical performance of the XRF beamline end-station (IAEAXspe) was systematically evaluated under TXRF excitation geometry by analyzing different types of aqueous (lake, waste and fresh water) and solid (soil, vegetal, biological) certified reference materials using an excitation energy of 13.0 keV (for the purpose of multielemental analysis). The results obtained for both types of samples in terms of limits of detection and accuracy were also compared with those obtained using laboratory X-ray tube based TXRF systems with different features (including Mo and W X-ray tube systems). Taking advantage of the possibility to work under high vacuum, the IAEAXspe set-up instrumental sensitivity was also determined using an excitation energy of 6.2 keV to explore the possibilities for light elements determination. A clear improvement of the element detection limits is achieved when comparing this facility to conventional X-ray tube based TXRF systems highlighting the benefits of using the monoenergetic synchrotron exciting radiation and the ultra-high vacuum chamber in comparison with conventional laboratory systems. The results of the present work are discussed in view of further exploitation of the facility for different environmental and biological related applications.

  7. High-definition X-ray fluorescence elemental mapping of paintings.

    PubMed

    Howard, Daryl L; de Jonge, Martin D; Lau, Deborah; Hay, David; Varcoe-Cocks, Michael; Ryan, Chris G; Kirkham, Robin; Moorhead, Gareth; Paterson, David; Thurrowgood, David

    2012-04-03

    A historical self-portrait painted by Sir Arthur Streeton (1867-1943) has been studied with fast-scanning X-ray fluorescence microscopy using synchrotron radiation. One of the technique's unique strengths is the ability to reveal metal distributions in the pigments of underlying brushstrokes, thus providing information critical to the interpretation of a painting. We have applied the nondestructive technique with the event-mode Maia X-ray detector, which has the capability to record elemental maps at megapixels per hour with the full X-ray fluorescence spectrum collected per pixel. The painting poses a difficult challenge to conventional X-ray analysis, because it was completely obscured with heavy brushstrokes of highly X-ray absorptive lead white paint (2PbCO(3)·Pb(OH)(2)) by the artist, making it an excellent candidate for the application of the synchrotron-based technique. The 25 megapixel elemental maps were successfully observed through the lead white paint across the 200 × 300 mm(2) scan area. The sweeping brushstrokes of the lead white overpaint contributed significant detrimental structure to the elemental maps. A corrective procedure was devised to enhance the visualization of the elemental maps by using the elastic X-ray scatter as a proxy for the lead white overpaint. We foresee the technique applied to the most demanding of culturally significant artworks where conventional analytical methods are inadequate.

  8. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    NASA Astrophysics Data System (ADS)

    Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.

    2015-04-01

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.

  9. Remote X-Ray Diffraction and X-Ray Fluorescence Analysis on Planetary Surfaces

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The legacy of planetary X-ray Diffraction (XRD) and X-ray Fluorescence (XRF) began in 1960 when W. Parish proposed an XRD instrument for deployment on the moon. The instrument was built and flight qualified, but the Lunar XRD program was cancelled shortly before the first human landing in 1969. XRF chemical data have been collected in situ by surface landers on Mars (Viking 1 & 2, Pathfinder) and Venus (Venera 13 & 14). These highly successful experiments provide critical constraints on our current understanding of surface processes and planetary evolution. However, the mineralogy, which is more critical to planetary surface science than simple chemical analysis, will remain unknown or will at best be imprecisely constrained until X-ray diffraction (XRD) data are collected. Recent progress in X-ray detector technology allows the consideration of simultaneous XRD (mineralogic analysis) and high-precision XRF (elemental analysis) in systems miniaturized to the point where they can be mounted on fixed landers or small robotic rovers. There is a variety of potential targets for XRD/XRF equipped landers within the solar system, the most compelling of which are the poles of the moon, the southern highlands of Mars and Europa.

  10. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2009-04-14

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  11. Flow method and apparatus for screening chemicals using micro x-ray fluorescence

    DOEpatents

    Warner, Benjamin P [Los Alamos, NM; Havrilla, George J [Los Alamos, NM; Miller, Thomasin C [Bartlesville, OK; Lewis, Cris [Los Alamos, NM; Mahan, Cynthia A [Los Alamos, NM; Wells, Cyndi A [Los Alamos, NM

    2011-04-26

    Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

  12. Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayser, Y., E-mail: yves.kayser@psi.ch; Paul Scherrer Institut, 5232 Villigen-PSI; Błachucki, W.

    2014-04-15

    The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-raymore » tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO{sub 2} optical fibers.« less

  13. X-ray frequency combs from optically controlled resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Buth, Christian; Keitel, Christoph H.

    2013-12-01

    An x-ray pulse-shaping scheme is put forward for imprinting an optical frequency comb onto the radiation emitted on a driven x-ray transition, thus producing an x-ray frequency comb. A four-level system is used to describe the level structure of N ions driven by narrow-bandwidth x rays, an optical auxiliary laser, and an optical frequency comb. By including many-particle enhancement of the emitted resonance fluorescence, a spectrum is predicted consisting of equally spaced narrow lines which are centered on an x-ray transition energy and separated by the same tooth spacing as the driving optical frequency comb. Given an x-ray reference frequency, our comb could be employed to determine an unknown x-ray frequency. While relying on the quality of the light fields used to drive the ensemble of ions, the model has validity at energies from the 100 eV to the keV range.

  14. Fluorescence imaging as a diagnostic of M-band x-ray drive condition in hohlraum with fluorescent Si targets

    NASA Astrophysics Data System (ADS)

    Li, Qi; Hu, Zhimin; Yao, Li; Huang, Chengwu; Yuan, Zheng; Zhao, Yang; Xiong, Gang; Qing, Bo; Lv, Min; Zhu, Tuo; Deng, Bo; Li, Jin; Wei, Minxi; Zhan, Xiayu; Li, Jun; Yang, Yimeng; Su, Chunxiao; Yang, Guohong; Zhang, Jiyan; Li, Sanwei; Yang, Jiamin; Ding, Yongkun

    2017-01-01

    Fluorescence imaging of surrogate Si-doped CH targets has been used to provide a measurement for drive condition of high-energy x-ray (i.e. M-band x-ray) drive symmetry upon the capsule in hohlraum on Shenguang-II laser facility. A series of experiments dedicated to the study of photo-pumping and fluorescence effect in Si-plasma are presented. To investigate the feasibility of fluorescence imaging in Si-plasma, an silicon plasma in Si-foil target is pre-formed at ground state by the soft x-ray from a half-hohlraum, which is then photo-pumped by the K-shell lines from a spatially distinct laser-produced Si-plasma. The resonant Si photon pump is used to improve the fluorescence signal and cause visible image in the Si-foil. Preliminary fluorescence imaging of Si-ball target is performed in both Si-doped and pure Au hohlraum. The usual capsule at the center of the hohlraum is replaced with a solid Si-doped CH-ball (Si-ball). Since the fluorescence is proportional to the photon pump upon the Si-plasma, high-energy x-ray drive symmetry is equal to the fluorescence distribution of the Si-ball.

  15. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  16. X-ray fluorescence holography studies for a Cu3Au crystal

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Jaworska-Gołąb, T.; Rysz, J.; Korecki, P.

    2015-12-01

    In this work we show that performing a numerical correction for beam attenuation and indirect excitation allows one to fully restore element sensitivity in the three-dimensional reconstruction of the atomic structure. This is exemplified by a comparison of atomic images reconstructed from holograms measured for ordered and disordered phases of a Cu3Au crystal that clearly show sensitivity to changes in occupancy of the atomic sites. Moreover, the numerical correction, which is based on quantitative methods of X-ray fluorescence spectroscopy, was extended to take into account the influence of a disturbed overlayer in the sample.

  17. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography

    PubMed Central

    Cong, Wenxiang; Shen, Haiou; Wang, Ge

    2011-01-01

    The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815

  18. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful

  19. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  20. Demonstration of x-ray fluorescence imaging of a high-energy-density plasma.

    PubMed

    MacDonald, M J; Keiter, P A; Montgomery, D S; Biener, M M; Fein, J R; Fournier, K B; Gamboa, E J; Klein, S R; Kuranz, C C; LeFevre, H J; Manuel, M J-E; Streit, J; Wan, W C; Drake, R P

    2014-11-01

    Experiments at the Trident Laser Facility have successfully demonstrated the use of x-ray fluorescence imaging (XRFI) to diagnose shocked carbonized resorcinol formaldehyde (CRF) foams doped with Ti. One laser beam created a shock wave in the doped foam. A second laser beam produced a flux of vanadium He-α x-rays, which in turn induced Ti K-shell fluorescence within the foam. Spectrally resolved 1D imaging of the x-ray fluorescence provided shock location and compression measurements. Additionally, experiments using a collimator demonstrated that one can probe specific regions within a target. These results show that XRFI is a capable alternative to path-integrated measurements for diagnosing hydrodynamic experiments at high energy density.

  1. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Clark, III, Benton C. (Inventor); Thornton, Michael G. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  2. X-ray fluorescence measurements of dissolved gas and cavitation

    DOE PAGES

    Duke, Daniel J.; Kastengren, Alan L.; Swantek, Andrew B.; ...

    2016-09-28

    The dynamics of dissolved gas and cavitation are strongly coupled, yet these phenomena are difficult to measure in-situ. Both create voids in the fluid that can be difficult to distinguish. In this paper, we present an application of X-ray fluorescence in which liquid density and total noncondensible gas concentration (both dissolved and nucleated) are simultaneously measured. The liquid phase is doped with 400 ppm of a bromine tracer, and dissolved air is removed and substituted with krypton. Fluorescent emission at X-ray wavelengths is simultaneously excited from the Br and Kr with a focused monochromatic X-ray beam from a synchrotron source.more » We measure the flow in a cavitating nozzle 0.5 mm in diameter. From Br fluorescence, total displacement of the liquid is measured. From Kr fluorescence, the mass fraction of both dissolved and nucleated gas is measured. Volumetric displacement of liquid due to both cavitation and gas precipitation can be separated through estimation of the local equilibrium dissolved mass fraction. The uncertainty in the line of sight projected densities of the liquid and gas phases is 4–6 %. The high fluorescence yields and energies of Br and Kr allow small mass fractions of gas to be measured, down to 10 -5, with an uncertainty of 8 %. Finally, these quantitative measurements complement existing optical diagnostic techniques and provide new insight into the diffusion of gas into cavitation bubbles, which can increase their internal density, pressure and lifetimes by orders of magnitude.« less

  3. Correcting for surface topography in X-ray fluorescence imaging

    PubMed Central

    Geil, E. C.; Thorne, R. E.

    2014-01-01

    Samples with non-planar surfaces present challenges for X-ray fluorescence imaging analysis. Here, approximations are derived to describe the modulation of fluorescence signals by surface angles and topography, and suggestions are made for reducing this effect. A correction procedure is developed that is effective for trace element analysis of samples having a uniform matrix, and requires only a fluorescence map from a single detector. This procedure is applied to fluorescence maps from an incised gypsum tablet. PMID:25343805

  4. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  5. High-Resolution Detector For X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  6. Fluorescent x-ray computed tomography with synchrotron radiation using fan collimator

    NASA Astrophysics Data System (ADS)

    Takeda, Tohoru; Akiba, Masahiro; Yuasa, Tetsuya; Kazama, Masahiro; Hoshino, Atsunori; Watanabe, Yuuki; Hyodo, Kazuyuki; Dilmanian, F. Avraham; Akatsuka, Takao; Itai, Yuji

    1996-04-01

    We describe a new system of fluorescent x-ray computed tomography applied to image nonradioactive contrast materials in vivo. The system operates on the basis of computed tomography (CT) of the first generation. The experiment was also simulated using the Monte Carlo method. The research was carried out at the BLNE-5A bending-magnet beam line of the Tristan Accumulation Ring in Kek, Japan. An acrylic cylindrical phantom containing five paraxial channels of 5 and 4 mm diameters was imaged. The channels were filled with a diluted iodine-based contrast material, with iodine concentrations of 2 mg/ml and 500 (mu) g/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated clearly the K(alpha ) and K(beta 1) x-ray fluorescent lines, and the Compton scattering. CT images were reconstructed from projections generated by integrating the counts in these spectral lines. The method had adequate sensitivity and detection power, as shown by the experiment and predicted by the simulations, to show the iodine content of the phantom channels, which corresponded to 1 and 4 (mu) g iodine content per pixel in the reconstructed images.

  7. Portable total reflection x-ray fluorescence analysis in the identification of unknown laboratory hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu

    In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less

  8. Confocal total reflection X-ray fluorescence technology based on an elliptical monocapillary and a parallel polycapillary X-ray optics.

    PubMed

    Zhu, Yu; Wang, Yabing; Sun, Tianxi; Sun, Xuepeng; Zhang, Xiaoyun; Liu, Zhiguo; Li, Yufei; Zhang, Fengshou

    2018-07-01

    A total reflection X-ray fluorescence (TXRF) spectrometer based on an elliptical monocapillary X-ray lens (MXRL) and a parallel polycapillary X-ray lens (PPXRL) was designed. This TXRF instrument has micro focal spot, low divergence and high intensity of incident X-ray beam. The diameter of the focal spot of MXRL was 16.5 µm, and the divergence of the incident X-ray beam was 3.4 mrad. We applied this TXRF instrument to the micro analysis of a single-layer film containing Ni deposited on a Si substrate by metal vapor vacuum arc ion source. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    DOE PAGES

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; ...

    2018-01-09

    Here, we measured the fluorescence photon yield of neon upon soft x-ray ionization (~1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  10. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  11. X-Ray Fluorescence Imaging of Ancient Artifacts

    NASA Astrophysics Data System (ADS)

    Thorne, Robert; Geil, Ethan; Hudson, Kathryn; Crowther, Charles

    2011-03-01

    Many archaeological artifacts feature inscribed and/or painted text or figures which, through erosion and aging, have become difficult or impossible to read with conventional methods. Often, however, the pigments in paints contain metallic elements, and traces may remain even after visible markings are gone. A promising non-destructive technique for revealing these remnants is X-ray fluorescence (XRF) imaging, in which a tightly focused beam of monochromatic synchrotron radiation is raster scanned across a sample. At each pixel, an energy-dispersive detector records a fluorescence spectrum, which is then analyzed to determine element concentrations. In this way, a map of various elements is made across a region of interest. We have succesfully XRF imaged ancient Greek, Roman, and Mayan artifacts, and in many cases, the element maps have revealed significant new information, including previously invisible painted lines and traces of iron from tools used to carve stone tablets. X-ray imaging can be used to determine an object's provenance, including the region where it was produced and whether it is authentic or a copy.

  12. X-Ray Diffraction and Fluorescence Measurements for In Situ Planetary Instruments

    NASA Astrophysics Data System (ADS)

    Hansford, G.; Hill, K. S.; Talboys, D.; Vernon, D.; Ambrosi, R.; Bridges, J.; Hutchinson, I.; Marinangeli, L.

    2011-12-01

    The ESA/NASA ExoMars mission, due for launch in 2018, has a combined X-ray fluorescence/diffraction instrument, Mars-XRD, as part of the onboard analytical laboratory. The results of some XRF (X-ray fluorescence) and XRD (X-ray diffraction) tests using a laboratory chamber with representative performance are reported. A range of standard geological reference materials and analogues were used in these tests. The XRD instruments are core components of the forthcoming NASA Mars Science Laboratory (MSL) and ESA/NASA ExoMars missions and will provide the first demonstrations of the capabilities of combined XRD/XRF instrumentation in situ on an extraterrestrial planetary surface. The University of Leicester team is part of the Italy-UK collaboration that is responsible for building the ExoMars X-ray diffraction instrument, Mars-XRD [1,2]. Mars-XRD incorporates an Fe-55 radioisotope source and three fixed-position charge-coupled devices (CCDs) to simultaneously acquire an X-ray fluorescence spectrum and a diffraction pattern providing a measurement of both elemental and mineralogical composition. The CCDs cover an angular range of 2θ = 6° to 73° enabling the analysis of a wide range of geologically important minerals including phyllosilicates, feldspars, oxides, carbonates and evaporites. The identification of hydrous minerals may help identify past Martian hydrothermal systems capable of preserving traces of life. Here we present some initial findings from XRF and XRD tests carried out at the University of Leicester using an Fe-55 source and X-ray sensitive CCD. The XRF/XRD test system consists of a single CCD on a motorised arm, an Fe-55 X-ray source, a collimator and a sample table which approximately replicate the reflection geometry of the Mars-XRD instrument. It was used to test geological reference standard materials and Martian analogues. This work was funded by the Science and Technology Facilities Council, UK. References [1] Marinangeli, L., Hutchinson, I

  13. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. Methods: 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg/cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence/scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm × 15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. Results: XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73 × 10−2 cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. Conclusions:L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level

  14. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics

    NASA Astrophysics Data System (ADS)

    Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.

    2008-11-01

    Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV. In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.

  15. Iodine X-ray fluorescence computed tomography system utilizing a cadmium telluride detector in conjunction with a cerium-target tube

    NASA Astrophysics Data System (ADS)

    Hagiwara, Osahiko; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-06-01

    An X-ray fluorescence computed tomography system (XRF-CT) is useful for determining the main atoms in objects. To detect iodine atoms without using a synchrotron, we developed an XRF-CT system utilizing a cadmium telluride (CdTe) detector and a cerium X-ray generator. CT is performed by repeated linear scans and rotations of an object. When cerium K-series characteristic X-rays are absorbed by iodine atoms in objects, iodine K fluorescence is produced from atoms and is detected by the CdTe detector. Next, event signals of X-ray photons are produced with the use of charge-sensitive and shaping amplifiers. Iodine Kα fluorescence is isolated using a multichannel analyzer, and the number of photons is counted using a counter card. In energy-dispersive XRF-CT, the tube voltage and tube current were 70 kV and 0.40 mA, respectively, and the X-ray intensity was 115.3 μGy/s at a distance of 1.0 m from the source. The demonstration of XRF-CT was carried out by the selection of photons in an energy range from 27.5 to 29.5 keV with a photon-energy resolution of 1.2 keV.

  16. An X-ray fluorescence spectrometer and its applications in materials studies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Han, K. S.

    1977-01-01

    An X-ray fluorescence system based on a Co(57) gamma-ray source has been developed. The system was used to calculate the atomic percentages of iron implanted in titanium targets. Measured intensities of Fe (k-alpha + k-beta) and Ti (k-alpha + k-beta) X-rays from the Fe-Ti targets are in good agreement with the calculated values based on photoelectric cross sections of Ti and Fe for the Co(57) gamma rays.

  17. Combined synchrotron X-ray tomography and X-ray powder diffraction using a fluorescing metal foil.

    PubMed

    Kappen, P; Arhatari, B D; Luu, M B; Balaur, E; Caradoc-Davies, T

    2013-06-01

    This study realizes the concept of simultaneous micro-X-ray computed tomography and X-ray powder diffraction using a synchrotron beamline. A thin zinc metal foil was placed in the primary, monochromatic synchrotron beam to generate a divergent wave to propagate through the samples of interest onto a CCD detector for tomographic imaging, thus removing the need for large beam illumination and high spatial resolution detection. Both low density materials (kapton tubing and a piece of plant) and higher density materials (Egyptian faience) were investigated, and elemental contrast was explored for the example of Cu and Ni meshes. The viability of parallel powder diffraction using the direct beam transmitted through the foil was demonstrated. The outcomes of this study enable further development of the technique towards in situ tomography∕diffraction studies combining micrometer and crystallographic length scales, and towards elemental contrast imaging and reconstruction methods using well defined fluorescence outputs from combinations of known fluorescence targets (elements).

  18. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    Treesearch

    Kevin T. Smith; Jean Christophe Balouet; Walter C. Shortle; Michel Chalot; François Beaujard; Hakan Grudd; Don A. Vroblesky; Joel G. Burken

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to...

  19. The Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1972-01-01

    The CSM spectrometric data on the lunar surface with respect to its chemical composition are presented for Al, Mg, and Si as Al/Si and Mg/Si ratios for the various features overflow by the spacecraft. The lunar surface measurements involved observations of the intensity and characteristic energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The results showed that the highlands and maria are chemically different, with the highlands having considerably more Al and less Mg than the maria. The mare-highland contact is quite sharp and puts a limit on the amount of horizontal transport of material. The X-ray data suggest that the dominant rock type of the lunar highlands is a plagioclase-rich pyroxene bearing rock, probably anorthositic gabbro or feldspathic basalt. Thus the moon appears to have a widespread differentiated crust (the highlands) systematically richer in Al and lower in Mg than the maria. This crust is pre-mare and may represent the first major internal differentiation of the moon.

  20. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  1. PyXRF: Python-based X-ray fluorescence analysis package

    NASA Astrophysics Data System (ADS)

    Li, Li; Yan, Hanfei; Xu, Wei; Yu, Dantong; Heroux, Annie; Lee, Wah-Keat; Campbell, Stuart I.; Chu, Yong S.

    2017-09-01

    We developed a python-based fluorescence analysis package (PyXRF) at the National Synchrotron Light Source II (NSLS-II) for the X-ray fluorescence-microscopy beamlines, including Hard X-ray Nanoprobe (HXN), and Submicron Resolution X-ray Spectroscopy (SRX). This package contains a high-level fitting engine, a comprehensive commandline/ GUI design, rigorous physics calculations, and a visualization interface. PyXRF offers a method of automatically finding elements, so that users do not need to spend extra time selecting elements manually. Moreover, PyXRF provides a convenient and interactive way of adjusting fitting parameters with physical constraints. This will help us perform quantitative analysis, and find an appropriate initial guess for fitting. Furthermore, we also create an advanced mode for expert users to construct their own fitting strategies with a full control of each fitting parameter. PyXRF runs single-pixel fitting at a fast speed, which opens up the possibilities of viewing the results of fitting in real time during experiments. A convenient I/O interface was designed to obtain data directly from NSLS-II's experimental database. PyXRF is under open-source development and designed to be an integral part of NSLS-II's scientific computation library.

  2. Some radiation effects on organic binders in X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Novosel-Radović, Vj.; MaljkoviĆ, Da.; NenadiĆ, N.

    The paper deals with diminished wear resistance of standard samples in X-ray fluorescence spectrometry. The effect of X-ray irradiation on pellet samples, pressed with starch as organic binder, was investigated by sieve analysis and scanning electron microscopy. A change in the starch grain size was found as a result of swelling and cracking.

  3. Direct determination of gallium on polyurethane foam by X-ray fluorescence.

    PubMed

    Carvalho, M S; Medeiros, J A; Nóbrega, A W; Mantovano, J L; Rocha, V P

    1995-01-01

    Gallium chloride is easily extracted from 6M HCl by comminuted polyether-type polyurethane foam. After the extraction step, the gallium absorbed by the PU foam can be quantitatively determined by X-ray fluorescence. A procedure for the direct determination of gallium absorbed by PU foam by XRFS is thus described. Gallium is determined at levels as low as 60 ng/ml (C(L)), with a calibration sensitivity of 424 cps ml/mug, within a linear range 0.1-2.30 mug/ml. The procedure investigated was successfully applied to determination of gallium in aluminum alloys, bauxite and industrial residue samples.

  4. On the Detectability of Oxygen X-Ray Fluorescence and Its Use as a Solar Photospheric Abundance Diagnostic

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Ercolano, Barbara

    2008-08-01

    Monte Carlo calculations of the O Kα line fluoresced by coronal X-rays and emitted just above the temperature minimum region of the solar atmosphere have been employed to investigate the use of this feature as an abundance diagnostic. While they are quite weak, we estimate line equivalent widths in the range 0.02-0.2 Å, depending on the X-ray plasma temperature. The line remains essentially uncontaminated by blends for coronal temperatures T <= 3 × 106 K and should be quite observable, with a flux gtrsim2 photons s-1 arcmin-2. Model calculations for solar chemical mixtures with an O abundance adjusted up and down by a factor of 2 indicate 35%-60% changes in O Kα line equivalent width, providing a potentially useful O abundance diagnostic. Sensitivity of equivalent width to differences between recently recommended chemical compositions with "high" and "low" complements of the CNO trio important for interpreting helioseismological observations is less acute, amounting to 20%-26% at coronal temperatures T <= 2 × 106 K. While still feasible for discriminating between these two mixtures, uncertainties in measured line equivalent widths and in the models used for interpretation would need to be significantly less than 20%. Provided a sensitive X-ray spectrometer with resolving power >=1000 and suitably well-behaved instrumental profile can be built, X-ray fluorescence presents a viable means for resolving the solar "oxygen crisis."

  5. Evaluation of the sensitivity and fading characteristics of an image plate system for x-ray diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meadowcroft, A. L.; Bentley, C. D.; Stott, E. N.

    2008-11-15

    Image plates (IPs) are a reusable recording media capable of detecting ionizing radiation, used to diagnose x-ray emission from laser-plasma experiments. Due to their superior performance characteristics in x-ray applications [C. C. Bradford, W. W. Peppler, and J. T. Dobbins III, Med. Phys. 26, 27 (1999) and J. Digit. Imaging. 12, 54 (1999)], the Fuji Biological Analysis System (BAS) IPs are fielded on x-ray diagnostics for the HELEN laser by the Plasma Physics Department at AWE. The sensitivities of the Fuji BAS IPs have been absolutely calibrated for absolute measurements of x-ray intensity in the energy range of 0-100 keV.more » In addition, the Fuji BAS IP fading as a function of time was investigated. We report on the characterization of three Fuji BAS IP responses to x-rays using a radioactive source, and discrete x-ray line energies generated by the Excalibur soft x-ray facility and the Defense Radiological Standards Centre filter-fluorescer hard x-ray system at AWE.« less

  6. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOEpatents

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  7. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography

    PubMed Central

    Manohar, Nivedh; Reynoso, Francisco J.; Diagaradjane, Parmeswaran; Krishnan, Sunil; Cho, Sang Hyun

    2016-01-01

    X-ray fluorescence computed tomography (XFCT) is a technique that can identify, quantify, and locate elements within objects by detecting x-ray fluorescence (characteristic x-rays) stimulated by an excitation source, typically derived from a synchrotron. However, the use of a synchrotron limits practicality and accessibility of XFCT for routine biomedical imaging applications. Therefore, we have developed the ability to perform XFCT on a benchtop setting with ordinary polychromatic x-ray sources. Here, we report our postmortem study that demonstrates the use of benchtop XFCT to accurately image the distribution of gold nanoparticles (GNPs) injected into a tumor-bearing mouse. The distribution of GNPs as determined by benchtop XFCT was validated using inductively coupled plasma mass spectrometry. This investigation shows drastically enhanced sensitivity and specificity of GNP detection and quantification with benchtop XFCT, up to two orders of magnitude better than conventional x-ray CT. The results also reaffirm the unique capabilities of benchtop XFCT for simultaneous determination of the spatial distribution and concentration of nonradioactive metallic probes, such as GNPs, within the context of small animal imaging. Overall, this investigation identifies a clear path toward in vivo molecular imaging using benchtop XFCT techniques in conjunction with GNPs and other metallic probes. PMID:26912068

  8. Development of an X-ray fluorescence holographic measurement system for protein crystals

    NASA Astrophysics Data System (ADS)

    Sato-Tomita, Ayana; Shibayama, Naoya; Happo, Naohisa; Kimura, Koji; Okabe, Takahiro; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-06-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α2β2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  9. Submicron hard X-ray fluorescence imaging of synthetic elements.

    PubMed

    Jensen, Mark P; Aryal, Baikuntha P; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E

    2012-04-13

    Synchrotron-based X-ray fluorescence microscopy (XFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurements such as μ-XANES (X-ray absorption near edge structure). We have used XFM to image and simultaneously quantify the transuranic element plutonium at the L(3) or L(2)-edge as well as Th and lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope (242)Pu. Elemental maps demonstrate that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions with an incident X-ray energy of 18 keV for an average 202 μm(2) cell is 1.4 fg Pu or 2.9×10(-20) moles Pu μm(-2), which is similar to the detection limit of K-edge XFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its L(α) X-ray emission. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Calculating the X-Ray Fluorescence from the Planet Mercury Due to High-Energy Electrons

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; Trombka, J. I.; Bergstrom, P. M., Jr.; Christon, S. P.

    2005-01-01

    The least-studied terrestrial planet is Mercury due to its proximity to the Sun, which makes telescopic observations and spacecraft encounters difficult. Our lack of knowledge about Mercury should change in the near future due to the recent launching of MESSENGER, a Mercury orbiter. Another mission (BepiColombo) is currently being planned. The x-ray spectrometer on MESSENGER (and planned for BepiColombo) can characterize the elemental composition of a planetary surface by measuring emitted fluorescent x-rays. If electrons are ejected from an atom s inner shell by interaction with energetic particles such as photons, electrons, or ions, electrons from an outer shell can transfer to the inner shell. Characteristic x-rays are then emitted with energies that are the difference between the binding energy of the ion in its excited state and that of the ion in its ground state. Because each element has a unique set of energy levels, each element emits x-rays at a unique set of energies. Electrons and ions usually do not have the needed flux at high energies to cause significant x-ray fluorescence on most planetary bodies. This is not the case for Mercury where high-energy particles were detected during the Mariner 10 flybys. Mercury has an intrinsic magnetic field that deflects the solar wind, resulting in a bow shock in the solar wind and a magnetospheric cavity. Electrons and ions accelerated in the magnetosphere tend to follow its magnetic field lines and can impact the surface on Mercury s dark side Modeling has been done to determine if x-ray fluorescence resulting from the impact of high-energy electrons accelerated in Mercury's magnetosphere can be detected by MESSENGER. Our goal is to understand how much bulk chemical information can be obtained from x-ray fluorescence measurements on the dark side of Mercury.

  11. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  12. In Situ Mineralogical Analysis of Planetary Materials Using X-Ray Diffraction and X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D.; Vaniman, D.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    Remote observations of Mars have led scientists to believe that its early climate was similar to that of the early Earth, having had abundant liquid water and a dense atmosphere. One of the most fascinating questions of recent times is whether simple bacterial life developed on Mars (as it did on the Earth) during this early element period. Analyses of SNC meteorites have broadened considerably our knowledge of the chemistry of certain types of Martian rocks, underscoring the tantalizing possibility of early hydrothermal systems and even of ancient bacterial life. Detailed analyses of SNC meteorites in Terrestrial laboratories utilize the most sophisticated organic, isotopic and microscopic techniques in existence. Indeed; it is unlikely that the key biogenic indicators used in McKay et al (ibid) could be identified by a remote instrument on the surface of Mars. As a result, it is probable that any robotic search for evidence of an ancient Martian biosphere will have as its focus the identification of key minerals in likely host rocks rather than the direct detection of organic or isotopic biomarkers. Even on a sample return mission, mineralogical screening will be utilized to choose the most likely candidate rocks. X-ray diffraction (XRD) is the only technique that can provide a direct determination of the crystal structures of the phases present within a sample. When many different crystalline phases are present, quantitative analysis is better constrained if used in conjunction with a determination of elemental composition, obtainable by X-ray fluorescence (XRF) using the same X-ray source as for XRD. For planetary surface analysis, a remote instrument combining XRD and XRF could be used for mineralogical characterization of both soils and rocks. We are designing a remote XRD/XRF instrument with this objective in mind. The instrument concept pays specific attention to constraints in sample preparation, weight, volume, power, etc. Based on the geometry of a

  13. X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)

    NASA Astrophysics Data System (ADS)

    Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.

    2002-03-01

    The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.

  14. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted

  15. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.

    PubMed

    Manohar, Nivedh; Reynoso, Francisco J; Cho, Sang Hyun

    2013-08-01

    To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system. 12-mm-diameter water-filled cylindrical tubes with GNP concentrations of 20, 10, 5, 0.5, 0.05, 0.005, and 0 mg∕cm3 served as calibration phantoms. An imaging phantom was created using the same cylindrical tube but filled with tissue-equivalent gel containing structures mimicking a GNP-loaded blood vessel and approximately 1 cm3 tumor. Phantoms were irradiated by a 3-mm-diameter pencil-beam of 62 kVp x-rays filtered by 1 mm aluminum. Fluorescence∕scatter photons from phantoms were detected at 90° with respect to the beam direction using a Si-PIN detector placed behind a 2.5-mm-diameter lead collimator. The imaging phantom was translated horizontally and vertically in 0.3-mm steps to image a 6 mm×15 mm region of interest (ROI). For each phantom, the net L-shell XRF signal from GNPs was extracted from background, and then corrected for detection efficiency and in-phantom attenuation using a fluorescence-to-scatter normalization algorithm. XRF measurements with calibration phantoms provided a calibration curve showing a linear relationship between corrected XRF signal and GNP mass per imaged voxel. Using the calibration curve, the detection limit (at the 95% confidence level) of the current experimental setup was estimated to be a GNP mass of 0.35 μg per imaged voxel (1.73×10(-2) cm3). A 2D XRF map of the ROI was also successfully generated, reasonably matching the known spatial distribution as well as showing the local variation of GNP concentrations. L-shell XRF imaging can be a highly sensitive tool that has the capability of simultaneously imaging the spatial distribution and determining the local concentration of GNPs presented on the order of parts-per-million level within subcentimeter-sized ex vivo

  16. Determination of fluorine by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Tarsoly, G.; Óvári, M.; Záray, Gy.

    2010-04-01

    There is a growing interest in determination of low Z elements, i.e. carbon to phosphorus, in various samples. Total reflection X-ray fluorescence spectrometry (TXRF) has been already established as a suitable trace element analytical method with low sample demand and quite good quantification limits. Recently, the determinable element range was extended towards Z = 6 (carbon). In this study, the analytical performance of the total reflection X-ray fluorescence spectrometry for determination of fluorine was investigated applying a spectrometer equipped with Cr-anode X-ray tube, multilayer monochromator, vacuum chamber, and a silicon drift detector (SDD) with ultra thin window was used. The detection limit for fluorine was found to be 5 mg L - 1 (equivalent to 10 ng absolute) in aqueous matrix. The linear range of the fluorine determination is between 15 and 500 mg L - 1 , within this range the precision is below 10%. The matrix effects of the other halogens (chlorine, bromine and iodine), and sulfate were also investigated. It has been established that the upper allowed concentration limit of the above interfering elements is 100, 200, 50 and 100 mg L - 1 for Cl, Br, I and sulfate, respectively. Moreover, the role of the pre-siliconization of the quartz carrier plate was investigated. It was found, that the presence of the silicone results in poorer analytical performance, which can be explained by the thicker sample residue and stronger self-absorption of the fluorescent radiation.

  17. MSL Chemistry and Mineralogy X-Ray Diffraction X-Ray Fluorescence (CheMin) Instrument

    NASA Technical Reports Server (NTRS)

    Zimmerman, Wayne; Blake, Dave; Harris, William; Morookian, John Michael; Randall, Dave; Reder, Leonard J.; Sarrazin, Phillipe

    2013-01-01

    This paper provides an overview of the Mars Science Laboratory (MSL) Chemistry and Mineralogy Xray Diffraction (XRD), X-ray Fluorescence (XRF) (CheMin) Instrument, an element of the landed Curiosity rover payload, which landed on Mars in August of 2012. The scientific goal of the MSL mission is to explore and quantitatively assess regions in Gale Crater as a potential habitat for life - past or present. The CheMin instrument will receive Martian rock and soil samples from the MSL Sample Acquisition/Sample Processing and Handling (SA/SPaH) system, and process it utilizing X-Ray spectroscopy methods to determine mineral composition. The Chemin instrument will analyze Martian soil and rocks to enable scientists to investigate geophysical processes occurring on Mars. The CheMin science objectives and proposed surface operations are described along with the CheMin hardware with an emphasis on the system engineering challenges associated with developing such a complex instrument.

  18. Characterization of aluminum nitride based films with high resolution X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.

    2018-02-01

    X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.

  19. Bent Laue X-ray Fluorescence Imaging of Manganese in Biological Tissues—Preliminary Results

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Bewer, Brian; Zhang, Honglin; Nichol, Helen; Thomlinson, Bill; Chapman, Dean

    2010-06-01

    Manganese (Mn) is not abundant in human brain tissue, but it is recognized as a neurotoxin. The symptoms of manganese intoxication are similar to Parkinson's disease (PD), but the link between environmental, occupational or dietary Mn exposure and PD in humans is not well established. X-ray Absorption Spectroscopy (XAS) and in particular X-ray fluorescence can provide precise information on the distribution, concentration and chemical form of metals. However the scattered radiation and fluorescence from the adjacent abundant element, iron (Fe), may interfere with and limit the ability to detect ultra-dilute Mn. A bent Laue analyzer based Mn fluorescence detection system has been designed and fabricated to improve elemental specificity in XAS imaging. This bent Laue analyzer of logarithmic spiral shape placed upstream of an energy discriminating detector should improve the energy resolution from hundreds of eV to several eV. The bent Laue detection system was validated by imaging Mn fluorescence from Mn foils, gelatin calibration samples and adult Drosophila at the Hard X-ray MicroAnalysis (HXMA) beamline at the Canadian Light Source (CLS). Optimization of the design parameters, fabrication procedures and preliminary experimental results are presented along with future plans.

  20. Elemental mapping of biofortified wheat grains using micro X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Ramos, I.; Pataco, I. M.; Mourinho, M. P.; Lidon, F.; Reboredo, F.; Pessoa, M. F.; Carvalho, M. L.; Santos, J. P.; Guerra, M.

    2016-06-01

    Micro X-ray fluorescence has been used to obtain elemental maps of biofortified wheat grains. Two varieties of wheat were used in the study, Triticum aestivum L. and Triticum durum desf. Two treatments, with different nutrient concentration, were applied to the plants during the whole plant growth cycle. From the obtained elemental maps it was possible to extract information regarding the plant's physiological processes under the biofortification procedures. Both macro and micronutrients were mapped, providing useful insight into the posterior food processing mechanisms of this biofortified staple food. We have also shown that these kind of studies can now be performed with laboratory benchtop apparatus, rather than using synchrotron radiation, increasing the overall attractiveness of micro X-ray fluorescence in the study of highly heterogeneous biological samples.

  1. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.

    PubMed

    Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf

    2012-02-01

    X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Fluorescence imaging of reactive oxygen species by confocal laser scanning microscopy for track analysis of synchrotron X-ray photoelectric nanoradiator dose: X-ray pump-optical probe.

    PubMed

    Jeon, Jae Kun; Han, Sung Mi; Kim, Jong Ki

    2016-09-01

    Bursts of emissions of low-energy electrons, including interatomic Coulomb decay electrons and Auger electrons (0-1000 eV), as well as X-ray fluorescence produced by irradiation of large-Z element nanoparticles by either X-ray photons or high-energy ion beams, is referred to as the nanoradiator effect. In therapeutic applications, this effect can damage pathological tissues that selectively take up the nanoparticles. Herein, a new nanoradiator dosimetry method is presented that uses probes for reactive oxygen species (ROS) incorporated into three-dimensional gels, on which macrophages containing iron oxide nanoparticles (IONs) are attached. This method, together with site-specific irradiation of the intracellular nanoparticles from a microbeam of polychromatic synchrotron X-rays (5-14 keV), measures the range and distribution of OH radicals produced by X-ray emission or superoxide anions ({\\rm{O}}_2^-) produced by low-energy electrons. The measurements are based on confocal laser scanning of the fluorescence of the hydroxyl radical probe 2-[6-(4'-amino)phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF) or the superoxide probe hydroethidine-dihydroethidium (DHE) that was oxidized by each ROS, enabling tracking of the radiation dose emitted by the nanoradiator. In the range 70 µm below the irradiated cell, ^\\bullet{\\rm{OH}} radicals derived mostly from either incident X-ray or X-ray fluorescence of ION nanoradiators are distributed along the line of depth direction in ROS gel. In contrast, {\\rm{O}}_2^- derived from secondary electron or low-energy electron emission by ION nanoradiators are scattered over the ROS gel. ROS fluorescence due to the ION nanoradiators was observed continuously to a depth of 1.5 mm for both oxidized APF and oxidized DHE with relatively large intensity compared with the fluorescence caused by the ROS produced solely by incident primary X-rays, which was limited to a depth of 600 µm, suggesting dose enhancement as well as more

  3. Trace Element Mapping of a Biological Specimen by a Full-Field X-ray Fluorescence Imaging Microscope with a Wolter Mirror

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Yamada, Norimitsu; Ishino, Toyoaki; Namiki, Takashi; Watanabe, Norio; Aoki, Sadao

    2007-01-01

    A full-field X-ray fluorescence imaging microscope with a Wolter mirror was applied to the element mapping of alfalfa seeds. The X-ray fluorescence microscope was built at the Photon Factory BL3C2 (KEK). X-ray fluorescence images of several growing stages of the alfalfa seeds were obtained. X-ray fluorescence energy spectra were measured with either a solid state detector or a CCD photon counting method. The element distributions of iron and zinc which were included in the seeds were obtained using a photon counting method.

  4. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    PubMed

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  5. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  6. Nanoscale quantification of intracellular element concentration by X-ray fluorescence microscopy combined with X-ray phase contrast nanotomography

    NASA Astrophysics Data System (ADS)

    Gramaccioni, Chiara; Yang, Yang; Procopio, Alessandra; Pacureanu, Alexandra; Bohic, Sylvain; Malucelli, Emil; Iotti, Stefano; Farruggia, Giovanna; Bukreeva, Inna; Notargiacomo, Andrea; Fratini, Michela; Valenti, Piera; Rosa, Luigi; Berlutti, Francesca; Cloetens, Peter; Lagomarsino, Stefano

    2018-01-01

    We present here a correlative X-ray microscopy approach for quantitative single cell imaging of molar concentrations. By combining the elemental content provided by X-ray fluorescence microscopy and the morphology information extracted from X-ray phase nanotomography, we determine the intracellular molarity distributions. This correlative method was demonstrated on a freeze-dried human phagocytic cell to obtain the absolute elemental concentration maps of K, P, and Fe. The cell morphology results showed a very good agreement with atomic-force microscopy measurements. This work opens the way for non-destructive single cell chemical analysis down to the sub-cellular level using exclusively synchrotron radiation techniques. It will be of high interest in the case where it is difficult to access the morphology using atomic-force microscopy, for example, on frozen-hydrated cells or tissues.

  7. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  8. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  10. Development of Standard Samples for on-board Calibration of a New Planetary X-Ray Fluorescence Spectrometer

    NASA Astrophysics Data System (ADS)

    Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan

    2014-05-01

    At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision

  11. Fluorescence X-ray microscopy on hydrated tributyltin-clay mineral suspensions

    NASA Astrophysics Data System (ADS)

    Neuhäusler, U.; Schmidt, C.; Hoch, M.; Susini, J.

    2003-03-01

    Using the scanning transmission X-ray microscope at ID21 beamline of the ESRF in fluorescence mode, we mapped tin at a bulk concentration of 1000 μg(Sn)/ml within hydrated tributyltin (TBT)-clay mineral (Kaolinite) dispersion with sub-300 nm spatial resolution. Using the L absorption edges of tin at 3929, 4156 and 4465 eV fluorescence radiation was excited in tin atoms with incident photon energies of 4 and 4.5 keV. When using 4 keV radiation, only tin fluorescence is excited. For 4.5 keV X rays, both the fluorescence of tin and calcium (which is present in the solid phase) can be measured. Methodologically, we were interested in assessing and proving the possibilities and limitations of fluorescence mapping using the L absorption edges of tin, where the fluorescence yield is significantly lower compared to other elements with their K edges in the same energy range. Scientifically, organotin-clay mineral interactions are of environmental concern because this factor influences significantly the distribution of toxic TBT in the aquatic System. On one hand, the half-life of TBT deposited to the sediment phase increases, and consequently the time of its bioavailability. On the other hand, the adsorption process is reversible, which means that contaminated sediments can act as a source of pollution. The adsorption and desorption effects can be studied directly with high spatial resolution and brought into connection to the surface properties of the clay mineral under study as well as to other experimental parameters, like pH or salinity.

  12. Order of Magnitude Sensitivity Increase in X-ray Fluorescence Computed Tomography (XFCT) Imaging With an Optimized Spectro-Spatial Detector Configuration: Theory and Simulation

    PubMed Central

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong

    2014-01-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110° to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 µg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging. PMID:24770916

  13. Order of magnitude sensitivity increase in X-ray Fluorescence Computed Tomography (XFCT) imaging with an optimized spectro-spatial detector configuration: theory and simulation.

    PubMed

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei

    2014-05-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.

  14. Simultaneous measurements of X-ray reflectivity and grazing incidence fluorescence at BL-16 beamline of Indus-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Kane, S. R.; Khooha, Ajay

    2015-05-15

    A new multipurpose x-ray reflectometer station has been developed and augmented at the microfocus beamline (BL-16) of Indus-2 synchrotron radiation source to facilitate synchronous measurements of specular x-ray reflectivity and grazing incidence x-ray fluorescence emission from thin layered structures. The design and various salient features of the x-ray reflectometer are discussed. The performance of the reflectometer has been evaluated by analyzing several thin layered structures having different surface interface properties. The results reveal in-depth information for precise determination of surface and interface properties of thin layered materials demonstrating the immense potential of the combined measurements of x-ray reflectivity and grazingmore » incidence fluorescence on a single reflectometer.« less

  15. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  16. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE PAGES

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  17. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    PubMed

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  18. Simultaneously Synchrotron X-ray Fluorescence and Ptychographic Imaging of Frozen Biological Single Cells

    DOE PAGES

    Chen, S.; Deng, J.; Nashed, Y. S. G.; ...

    2016-07-25

    Bionanoprobe (BNP), a hard x-ray fluorescence sample-scanning nanoprobe at the Advanced Photon Source of Argonne National Laboratory, has been used to quantitatively study elemental distributions in biological cells with sub-100 nm spatial resolution and high sensitivity. Cryogenic conditions enable biological samples to be studied in their frozen-hydrated state with both ultrastructure and elemental distributions more faithfully preserved compared to conventional chemical fixation or dehydration methods. Furthermore, radiation damage is reduced in two ways: the diffusion rate of free radicals is decreased at low temperatures; and the sample is embedded in vitrified ice, which reduces mass loss.

  19. Electroadsorption-assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy.

    PubMed

    Jiang, Tian-Jia; Guo, Zheng; Liu, Jin-Huai; Huang, Xing-Jiu

    2015-08-18

    An analytical technique based on electroadsorption and transmission X-ray fluorescence (XRF) for the quantitative determination of arsenic in aqueous solution with ppb-level limits of detection (LOD) is proposed. The approach uses electroadsorption to enhance the sensitivity and LOD of the arsenic XRF response. Amine-functionalized carbonaceous microspheres (NH2-CMSs) are found to be the ideal materials for both the quantitative adsorption of arsenic and XRF analysis due to the basic amine sites on the surface and their noninterference in the XRF spectrum. In electroadsorptive X-ray fluorescence (EA-XRF), arsenic is preconcentrated by a conventional three-electrode system with a positive electricity field around the adsorbents. Then, the quantification of arsenic on the adsorbents is achieved using XRF. The electroadsorption preconcentration can realize the fast transfer of arsenic from the solution to the adsorbents and improve the LOD of conventional XRF compared with directly determining arsenic solution by XRF alone. The sensitivity of 0.09 cnt ppb(-1) is obtained without the interferences from coexisted metal ions in the determination of arsenic, and the LOD is found to be 7 ppb, which is lower than the arsenic guideline value of 10 ppb given by the World Health Organization (WHO). These results demonstrated that XRF coupled with electroadsorption was able to determine trace arsenic in real water sample.

  20. Improvement of graphite crystal analyzer for light elements on X-ray fluorescence holography measurement

    NASA Astrophysics Data System (ADS)

    Happo, Naohisa; Hada, Takuma; Kubota, Atsushi; Ebisu, Yoshihiro; Hosokawa, Shinya; Kimura, Koji; Tajiri, Hiroo; Matsushita, Tomohiro; Hayashi, Kouichi

    2018-05-01

    Using a graphite crystal analyzer, focused monochromatic fluorescent X-rays can be obtained on an X-ray fluorescence holography (XFH) measurement. To measure the holograms of elements lighter than Ti, we improved a cylindrical-type crystal analyzer and constructed a small C-shaped analyzer. Using the constructed C-shaped analyzer, a Ca Kα hologram of a fluorite single crystal was obtained, from which we reconstructed a clear atomic image. The XFH measurements for the K, Ca, and Sc elements become possible using the presently constructed analyzer.

  1. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  2. Synchrotron-induced X-ray fluorescence from rat bone and lumber vertebra of different age groups

    NASA Astrophysics Data System (ADS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Takeda, Tohoru; Tromba, Giuliana; Gigante, Giovanni E.

    2009-02-01

    The fluorescence spectra from rat bones of different age groups (8, 56 and 78 weeks) and lumber vertebra were measured with 8, 10 and 12 keV synchrotron X-rays. We have utilized the new hard X-ray micro-spectroscopy beamline facility, X27A, available at NSLS with a primary beam spot size of the order of ˜10 μm. With this spatial resolution and high flux throughput, X-ray fluorescent intensities for Ca and other trace elements were measured using a liquid-nitrogen-cooled 13-element energy-dispersive high-purity germanium detector. Regarding the lumber vertebra, we acquired the fluorescence spectra from the left, right and middle portions and calcium accumulation was evaluated and compared with the other samples. We have identified the major trace elements of Ca, Ni, Fe and Zn and minor trace elements of Ti, Cr and Mn in the sample. The percentage of scattered radiation and trace element contributions from these samples were highlighted at different energies.

  3. Sub-micron Hard X-ray Fluorescence Imaging of Synthetic Elements

    PubMed Central

    Jensen, Mark P.; Aryal, Baikuntha P.; Gorman-Lewis, Drew; Paunesku, Tatjana; Lai, Barry; Vogt, Stefan; Woloschak, Gayle E.

    2013-01-01

    Synchrotron-based X-ray fluorescence microscopy (SXFM) using hard X-rays focused into sub-micron spots is a powerful technique for elemental quantification and mapping, as well as microspectroscopic measurement such as μ-XANES (X-ray absorption near edge structure). We have used SXFM to image and simultaneously quantify the transuranic element plutonium at the L3 or L2 edge as well as lighter biologically essential elements in individual rat pheochromocytoma (PC12) cells after exposure to the long-lived plutonium isotope 242Pu. Elemental maps reveal that plutonium localizes principally in the cytoplasm of the cells and avoids the cell nucleus, which is marked by the highest concentrations of phosphorus and zinc, under the conditions of our experiments. The minimum detection limit under typical acquisition conditions for an average 202 μm2 cell is 1.4 fg Pu/cell or 2.9 × 10−20 moles Pu/μm2, which is similar to the detection limit of K-edge SXFM of transition metals at 10 keV. Copper electron microscopy grids were used to avoid interference from gold X-ray emissions, but traces of strontium present in naturally occurring calcium can still interfere with plutonium detection using its Lα X-ray emission. PMID:22444530

  4. X-ray ptychographic and fluorescence microscopy of frozen-hydrated cells using continuous scanning

    DOE PAGES

    Deng, Junjing; Vine, David J.; Chen, Si; ...

    2017-03-27

    X-ray microscopy can be used to image whole, unsectioned cells in their native hydrated state. It complements the higher resolution of electron microscopy for submicrometer thick specimens, and the molecule-specific imaging capabilites of fluorescence light microscopy. We describe here the first use of fast, continuous x-ray scanning of frozen hydrated cells for simultaneous sub-20 nm resolution ptychographic transmission imaging with high contrast, and sub-100 nm resolution deconvolved x-ray fluorescence imaging of diffusible and bound ions at native concentrations, without the need to add specific labels. Here, by working with cells that have been rapidly frozen without the use of chemicalmore » fixatives, and imaging them under cryogenic conditions, we are able to obtain images with well preserved structural and chemical composition, and sufficient stability against radiation damage to allow for multiple images to be obtained with no observable change.« less

  5. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  6. Chemical Environment Effects on K[beta]/K[alpha] Intensity Ratio: An X-Ray Fluorescence Experiment on Periodic Trends

    ERIC Educational Resources Information Center

    Durham, Chaney R.; Chase, Jeffery M.; Nivens, Delana A.; Baird, William H.; Padgett, Clifford W.

    2011-01-01

    X-ray fluorescence (XRF) data from an energy-dispersive XRF instrument were used to investigate the chlorine K[alpha] and K[beta] peaks in several group 1 salts. The ratio of the peak intensity is sensitive to the local chemical environment of the chlorine atoms studied in this experiment and it shows a periodic trend for these salts. (Contains 1…

  7. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  8. Filter-fluorescer measurement of low-voltage simulator x-ray energy spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, G.T.; Craven, R.E.

    X-ray energy spectra of the Maxwell Laboratories MBS and Physics International Pulserad 737 were measured using an eight-channel filter-fluorescer array. The PHOSCAT computer code was used to calculate channel response functions, and the UFO code to unfold spectrum.

  9. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  10. High Sensitivity, One-Sided X-Ray Inspection System.

    DTIC Science & Technology

    1985-07-01

    8217. X-Ray Imaging Quantitative NDT One-Sided Inspection Backs cat ter De laminat ions .. Nondestructive Testing (NDT) Rocket Motor Case NDT ’j 20...epoxy composites and other low atomic number materials have been detected. Wall thick nesses up to 7 cm thick have been interrogated. The results show...fiber composite rocket motor pressure vessels, the anticipated backscatter x-ray instrument will offer high sensitivity (contact delaminations have

  11. X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings

    NASA Astrophysics Data System (ADS)

    Zielińska, A.; Dąbrowski, W.; Fiutowski, T.; Mindur, B.; Wiącek, P.; Wróbel, P.

    2013-10-01

    Conventional X-ray fluorescence imaging technique uses a focused X-ray beam to scan through the sample and an X-ray detector with high energy resolution but no spatial resolution. The spatial resolution of the image is then determined by the size of the exciting beam, which can be obtained either from a synchrotron source or from an X-ray tube with a micro-capillary lens. Such a technique based on a pixel-by-pixel measurement is very slow and not suitable for imaging large area samples. The goal of this work is to develop a system capable of simultaneous imaging of large area samples by using a wide field uniform excitation X-ray beam and a position sensitive and energy dispersive detector. The development is driven by possible application of such a system to imaging of distributions of hidden pigments containing specific elements in cultural heritage paintings, which is of great interest for the cultural heritage research. The fluorescence radiation from the area of 10 × 10 cm2 is projected through a pinhole camera on the Gas Electron Multiplier detector of the same area. The detector is equipped with two sets of orthogonal readout strips. The strips are read out by the GEMROC Application Specific Integrated Circuits (ASIC)s, which deliver time and amplitude information for each hit. This ASIC architecture combined with a Field Programmable Gate Array (FPGA) based readout system allows us to reconstruct the position and the total energy of each detected photon for high count rates up to 5 × 106 cps. Energy resolution better than 20% FWHM for the 5.9 keV line and spatial resolution of 1 mm FWHM have been achieved for the prototype system. Although the energy resolution of the Gas Electron Multiplier (GEM) detector is, by principle, not competitive with that of specialised high energy resolution semiconductor detectors, it is sufficient for a number of applications. Compared to conventional micro-XRF techniques the developed system allows shortening of the

  12. Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Cirino, S.; Carvalho, M. L.; Manso, M.; Pessanha, S.; Azevedo, C. D. R.; Carramate, L. F. N. D.; Santos, J. P.; Guerra, M.; Veloso, J. F. C. A.

    2017-03-01

    Energy dispersive X-ray imaging can be used in several research fields and industrial applications. Elemental mapping through energy dispersive X-ray imaging technique has become a promising method to obtain positional distribution of specific elements in a non-destructive way. To obtain the elemental distribution of a sample it is necessary to use instruments capable of providing a precise positioning together with a good energy resolution. Polycapillary beams together with silicon drift chamber detectors are used in several commercial systems and are considered state-of-the-art spectrometers, however they are usually very costly. A new concept of large energy dispersive X-ray imaging systems based on gaseous radiation detectors emerged in the last years enabling a promising 2D elemental detection at a very reduced price. The main goal of this work is to analyze a contemporary Indian miniature with both X-ray fluorescence imaging systems, the one based on a gaseous detector 2D-THCOBRA and the state-of-the-art spectrometer M4 Tornado, from Bruker. The performance of both systems is compared and evaluated in the context of the sample's analysis.

  13. Energetic electron processes fluorescence effects for structured nanoparticles X-ray analysis and nuclear medicine applications

    NASA Astrophysics Data System (ADS)

    Taborda, A.; Desbrée, A.; Carvalho, A.; Chaves, P. C.; Reis, M. A.

    2016-08-01

    Superparamagnetic iron oxide (SPIO) nanoparticles are widely used as contrast agents for nuclear magnetic resonance imaging (MRI), and can be modified for improved imaging or to become tissue-specific or even protein-specific. The knowledge of their detailed elemental composition characterisation and potential use in nuclear medicine applications, is, therefore, an important issue. X-ray fluorescence techniques such as particle induced X-ray emission (PIXE) or X-ray fluorescence spectrometry (XRF), can be used for elemental characterisation even in problematic situations where very little sample volume is available. Still, the fluorescence coefficient of Fe is such that, during the decay of the inner-shell ionised atomic structure, keV Auger electrons are produced in excess to X-rays. Since cross-sections for ionisation induced by keV electrons, for low atomic number atoms, are of the order of 103 barn, care should be taken to account for possible fluorescence effects caused by Auger electrons, which may lead to the wrong quantification of elements having atomic number lower than the atomic number of Fe. Furthermore, the same electron processes will occur in iron oxide nanoparticles containing 57Co, which may be used for nuclear medicine therapy purposes. In the present work, simple approximation algorithms are proposed for the quantitative description of radiative and non-radiative processes associated with Auger electrons cascades. The effects on analytical processes and nuclear medicine applications are quantified for the case of iron oxide nanoparticles, by calculating both electron fluorescence emissions and energy deposition on cell tissues where the nanoparticles may be embedded.

  14. CHARACTERIZATION OF CHROMIUM-CONTAMINATED SOILS USING FIELD-PORTABLE X-RAY FLUORESCENCE

    EPA Science Inventory

    A detailed characterization of the underlying and adjacent soils near a chrome plating shop utilized field-portable X- ray fluorescence (XRF) as a screening tool. XRF permitted real-time acquisition of estimates for total metal content of soils. A trailer-mounted soil coring unit...

  15. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  16. A Highly Sensitive X-ray Imaging Modality for Hepatocellular Carcinoma Detection in Vitro

    PubMed Central

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities. PMID:25559398

  17. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    DOE PAGES

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; ...

    2015-01-05

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called Spatial Frequency Heterodyne Imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. Here in this study we use numerical processing to produce x-ray scatter images ofmore » Hepatocellular Carcinoma (HCC) labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and Magnetic Resonance Imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. Lastly, as x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.« less

  18. A highly sensitive x-ray imaging modality for hepatocellular carcinoma detection in vitro

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Walsh, Edward G.; Derdak, Zoltan; Wands, Jack R.; Rose-Petruck, Christoph

    2015-01-01

    Innovations that improve sensitivity and reduce cost are of paramount importance in diagnostic imaging. The novel x-ray imaging modality called spatial frequency heterodyne imaging (SFHI) is based on a linear arrangement of x-ray source, tissue, and x-ray detector, much like that of a conventional x-ray imaging apparatus. However, SFHI rests on a complete paradigm reversal compared to conventional x-ray absorption-based radiology: while scattered x-rays are carefully rejected in absorption-based x-ray radiology to enhance the image contrast, SFHI forms images exclusively from x-rays scattered by the tissue. In this study we use numerical processing to produce x-ray scatter images of hepatocellular carcinoma labeled with a nanoparticle contrast agent. We subsequently compare the sensitivity of SFHI in this application to that of both conventional x-ray imaging and magnetic resonance imaging (MRI). Although SFHI is still in the early stages of its development, our results show that the sensitivity of SFHI is an order of magnitude greater than that of absorption-based x-ray imaging and approximately equal to that of MRI. As x-ray imaging modalities typically have lower installation and service costs compared to MRI, SFHI could become a cost effective alternative to MRI, particularly in areas of the world with inadequate availability of MRI facilities.

  19. Analysis of Historical Coins by X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Raddell, Mark; Manukyan, Khatchatur; Aprahamian, Ani; Jordan, Louis

    2016-09-01

    Using different setups of the EDAX Orbis Micro X-ray Fluorescence (XRF) Analyzer, we have learned more about the limitations and optimizations of the XRF method and collected data about early British and Spanish colonial silver coins. XRF spectrometry was used to study Mexican, Bolivian, and Massachusetts silver coins from the University of Notre Dame's Rare Books and Special Collections Department. Runs were performed in both air and vacuum conditions, and the x-ray beam diameter was compared between 1 and 0.03 mm. Using these methods we were able to contribute to the understanding of the historical coinage as well as learn about the best ways to use the method. During analysis we found significant differences in the spectra for silver L shell excitation and silver K shell excitation when switching from 0.03 to 1mm x-ray beam widths. Our data trends also fit with the historical theory that the coinage from the Massachusetts' mint were created by melting down Spanish silver coins (like the ones made from Mexico and Bolivia) and adding a small percent more of copper. We have the intent to build on what we have learned by also studying some Roman Denarii in the future, and by trying to create a custom designed version of the XRF which can be moved more easily and provide quick scans for a larger number of artifacts.

  20. Rapid and reliable diagnosis of Wilson disease using X-ray fluorescence.

    PubMed

    Kaščáková, Slávka; Kewish, Cameron M; Rouzière, Stéphan; Schmitt, Françoise; Sobesky, Rodolphe; Poupon, Joël; Sandt, Christophe; Francou, Bruno; Somogyi, Andrea; Samuel, Didier; Jacquemin, Emmanuel; Dubart-Kupperschmitt, Anne; Nguyen, Tuan Huy; Bazin, Dominique; Duclos-Vallée, Jean-Charles; Guettier, Catherine; Le Naour, François

    2016-07-01

    Wilson's disease (WD) is a rare autosomal recessive disease due to mutations of the gene encoding the copper-transporter ATP7B. The diagnosis is hampered by the variability of symptoms induced by copper accumulation, the inconstancy of the pathognomonic signs and the absence of a reliable diagnostic test. We investigated the diagnostic potential of X-ray fluorescence (XRF) that allows quantitative analysis of multiple elements. Studies were performed on animal models using Wistar rats (n = 10) and Long Evans Cinnamon (LEC) rats (n = 11), and on human samples including normal livers (n = 10), alcohol cirrhosis (n = 8), haemochromatosis (n = 10), cholestasis (n = 6) and WD (n = 22). XRF experiments were first performed using synchrotron radiation to address the elemental composition at the cellular level. High-resolution mapping of tissue sections allowed measurement of the intensity and the distribution of copper, iron and zinc while preserving the morphology. Investigations were further conducted using a laboratory X-ray source for irradiating whole pieces of tissue. The sensitivity of XRF was highlighted by the discrimination of LEC rats from wild type even under a regimen using copper deficient food. XRF on whole formalin-fixed paraffin embedded needle biopsies allowed profiling of the elements in a few minutes. The intensity of copper related to iron and zinc significantly discriminated WD from other genetic or chronic liver diseases with 97.6% specificity and 100% sensitivity. This study established a definite diagnosis of Wilson's disease based on XRF. This rapid and versatile method can be easily implemented in a clinical setting.

  1. Elemental analysis using a handheld X-Ray fluorescence spectrometer

    USGS Publications Warehouse

    Groover, Krishangi D.; Izbicki, John

    2016-06-24

    The U.S. Geological Survey is collecting geologic samples from local stream channels, aquifer materials, and rock outcrops for studies of trace elements in the Mojave Desert, southern California. These samples are collected because geologic materials can release a variety of elements to the environment when exposed to water. The samples are to be analyzed with a handheld X-ray fluorescence (XRF) spectrometer to determine the concentrations of up to 27 elements, including chromium.

  2. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Di; Li Yuhua; Wong, Molly D.

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signalmore » radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.« less

  3. Correlative organelle fluorescence microscopy and synchrotron X-ray chemical element imaging in single cells.

    PubMed

    Roudeau, Stéphane; Carmona, Asuncion; Perrin, Laura; Ortega, Richard

    2014-11-01

    X-ray chemical element imaging has the potential to enable fundamental breakthroughs in the understanding of biological systems because chemical element interactions with organelles can be studied at the sub-cellular level. What is the distribution of trace metals in cells? Do some elements accumulate within sub-cellular organelles? What are the chemical species of the elements in these organelles? These are some of the fundamental questions that can be addressed by use of X-ray chemical element imaging with synchrotron radiation beams. For precise location of the distribution of the elements, identification of cellular organelles is required; this can be achieved, after appropriate labelling, by use of fluorescence microscopy. As will be discussed, this approach imposes some limitations on sample preparation. For example, standard immunolabelling procedures strongly modify the distribution of the elements in cells as a result of the chemical fixation and permeabilization steps. Organelle location can, however, be performed, by use of a variety of specific fluorescent dyes or fluorescent proteins, on living cells before cryogenic fixation, enabling preservation of element distribution. This article reviews the methods used for fluorescent organelle labelling and X-ray chemical element imaging and speciation of single cells. Selected cases from our work and from other research groups are presented to illustrate the potential of the combination of the two techniques.

  4. Micro-X-ray fluorescence spectrometer with x-ray single bounce metallic capillary optics for light element analysis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Mroczka, Robert; Żukociński, Grzegorz; Łopucki, Rafał

    2017-05-01

    In the last 20 years, , due to the rapid development of X-ray optics, micro X-ray fluorescence spectrometry (micro-XRF) has become a powerful tool to determine the spatial distribution of major, minor, and trace elements within a sample. Micro-X-ray fluorescence (micro-XRF) spectrometers for light element analysis (6 <= Z <= 14) using glass polycapillary optics are usually designed and applied to confocal geometry. Two such X-ray optics systems are used in this setup. The first one focuses the primary beam on the sample; the second restricts the field of view of the detector. In order to be able to analyze a wider range of elements especialy with (6 <= Z <= 14), both sample and detector are under vacuum. Depth resolution varies between 100 μm at 1 keV fluorescence energy (Na-Kα) and 30 μm for 17.5 keV (Mo-Kα) [1,2]. In order to improve resolution at energies below 9 keV, our group designed similar spectrometer (in cooperation with PREVAC) but instead of primary polycapillary optics we applied single bounce metallic capillaries optics , designed and manufactured in our Laboratory. The vacuum chumber is currently under construction and is expected to be fully operational in September this year. Single bounce gold capillaries with elliptic internal shape have recently been redesigned and developed in our Laboratory. Surface roughness was reduced up to 0.5 nm and slope error to 0.3 mrad. For these capillaries an expected depth resolution varies from 3 μm (1 keV) and 10 µm for 9 keV (Cu-Kα). The spectrometer equipped with gold capillaries offers the possibility of elemental analysis with better depth resolution than is offerred by glass polycapillaries at energies below 9 keV. Furthermore, we will compare the capabilities and limitations of this spectrometer with others, that use laboratory and/or synchrotron sources. Acknowledgments: This work was supported and co-funded by the European Union as part of the Operational Programme Development of Eastern Poland for

  5. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  6. Hyper-filter-fluorescer spectrometer for x-rays above 120 keV

    DOEpatents

    Wang, Ching L.

    1983-01-01

    An apparatus utilizing filter-fluorescer combinations is provided to measure short bursts of high fluence x-rays above 120 keV energy, where there are no practical absorption edges available for conventional filter-fluorescer techniques. The absorption edge of the prefilter is chosen to be less than that of the fluorescer, i.e., E.sub.PRF E.sub.F. In this way, the response function is virtually zero between E.sub.PRF and E.sub.F and well defined and enhanced in an energy band of less than 1000 keV above the 120 keV energy.

  7. Application of micro-X-ray fluorescence to chemical mapping of polar ice

    NASA Astrophysics Data System (ADS)

    Fourcade, M. C. Morel; Barnola, J. M.; Susini, J.; Baker, R.; Durand, G.; de Angelis, M.; Duval, P.

    Synchrotron-based micro-X-ray fluorescence (μXRF) equipment has been used to analyze impurities in polar ice. A customized sample holder has been developed and the μXRF equipment has been adapted with a thermal control system to keep samples unaltered during analyses. Artificial ice samples prepared from ultra-pure water were analyzed to investigate possible contamination and/or experimental artefacts. Analyses of polar ice from Antarctica (Dome C and Vostok) confirm this μXRF technique is non-destructive and sensitive. Experiments can be reproduced to confirm or refine results by focusing on interesting spots such as crystal grain boundaries or specific inclusions. Integration times and resolution can be adjusted to optimize sensitivity. Investigation of unstable particles is possible due to the short analysis time. In addition to identification of elements in impurities, μXRF is able to determine their speciations. The accuracy and reliability of the results confirm the potential of this technique for research in glaciology.

  8. Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay.

    PubMed

    Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke; Henderson, J Michael; Suwatthee, Tiffany; Slaw, Benjamin R; Cao, Kathleen D; Lin, Binhua; Bu, Wei; Lee, Ka Yee C

    2017-03-01

    Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca 2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl 2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm 2 of interfacial area contains 2.38 ± 0.06 Ca 2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca 2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr 2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr 2+ at 68 -5 +6 Å 2 per ion, consistent with the result published for the same dataset.

  9. Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay

    NASA Astrophysics Data System (ADS)

    Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke; Henderson, J. Michael; Suwatthee, Tiffany; Slaw, Benjamin R.; Cao, Kathleen D.; Lin, Binhua; Bu, Wei; Lee, Ka Yee C.

    2017-03-01

    Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared to literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68-5+6 Å2 per ion, consistent with the result published for the same dataset.

  10. Quantitative analysis of total reflection X-ray fluorescence from finely layered structures using XeRay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhiliang; Kerr, Daniel; Hwang, Hyeondo Luke

    Total reflection x-ray fluorescence (TXRF) is a widely applicable experimental technique for studying chemical element distributions across finely layered structures at extremely high sensitivity. To promote and facilitate scientific discovery using TXRF, we developed a MATLAB-based software package with a graphical user interface, named XeRay, for quick, accurate, and intuitive data analysis. XeRay lets the user model any layered system, each layer with its independent chemical composition and thickness, and enables fine-tuned data fitting. The accuracy of XeRay has been tested in the analysis of TXRF data from both air/liquid interface and liquid/liquid interfacial studies and has been compared tomore » literature results. In an air/liquid interface study, Ca2+ sequestration was measured at a Langmuir monolayer of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidic acid (SOPA) on a buffer solution of 1 mM CaCl2 at pH 7.5. Data analysis with XeRay reveals that each 1 nm2 of interfacial area contains 2.38 ± 0.06 Ca2+ ions, which corresponds to a 1:1 ratio between SOPA headgroups and Ca2+ ions, consistent with several earlier reports. For the liquid/liquid interface study of Sr2+ enrichment at the dodecane/surfactant/water interface, analysis using XeRay gives a surface enrichment of Sr2+ at 68+6-568-5+6 Å2 per ion, consistent with the result published for the same dataset.« less

  11. In vivo X-ray fluorescence of lead in bone: review and current issues.

    PubMed Central

    Todd, A C; Chettle, D R

    1994-01-01

    Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods. Images p172-a PMID:8033846

  12. Inorganic chemical investigation by X-ray fluorescence analysis - The Viking Mars Lander

    NASA Technical Reports Server (NTRS)

    Toulmin, P., III; Rose, H. J., Jr.; Baird, A. K.; Clark, B. C.; Keil, K.

    1973-01-01

    The inorganic chemical investigation experiment added in August 1972 to the Viking Lander scientific package uses an energy-dispersive X-ray fluorescence spectrometer in which four sealed, gas-filled proportional counters detect X-rays emitted from samples of the Martian surface materials irradiated by X-rays from radioisotope sources (Fe-55 and Cd-109). The instrument is inside the Lander body, and samples are to be delivered to it by the Viking Lander Surface Sampler. Instrument design is described along with details of the data processing and analysis procedures. The results of the investigation will characterize the surface materials of Mars as to elemental composition with accuracies ranging from a few tens of parts per million (at the trace-element level) to a few per cent (for major elements) depending on the element in question.

  13. Using X-ray Fluorescence to Date Petroglyphs

    NASA Astrophysics Data System (ADS)

    McNeil, James

    2009-10-01

    Petroglyphs were created by ancient peoples of the Colorado Plateau who pecked figures of cultural or religious significance into the desert varnish, the ubiquitous dark patina covering the rock surfaces of the region. Manganese (Mn) is a significant elemental component of desert varnish that is often at trace levels in the substrate rock. As such, F. Lytle has shown that under certain conditions, it may be possible to estimate the age of petroglpyhs using Mn levels. In this work we use x-ray fluorescence to measure Mn levels in the desert varnish of petroglyphs and then use dated graffiti to attempt to calibrate the Mn level with age. Preliminary results from petroglyph panels in eastern Utah will be presented.

  14. Intracellular distribution and stability of a luminescent rhenium(I) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging

    DOE PAGES

    Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; ...

    2016-11-23

    Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements,more » such as chlorine, potassium and zinc.« less

  15. Fast X-Ray Fluorescence Microtomography of Hydrated Biological Samples

    PubMed Central

    Lombi, Enzo; de Jonge, Martin D.; Donner, Erica; Kopittke, Peter M.; Howard, Daryl L.; Kirkham, Robin; Ryan, Chris G.; Paterson, David

    2011-01-01

    Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples. PMID:21674049

  16. Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer

    NASA Technical Reports Server (NTRS)

    Semmler, R. A.

    1971-01-01

    A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.

  17. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong

    2016-05-01

    The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.

  18. Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-10-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.

  19. X-ray fluorescence surface contaminant analyzer: A feasibility study

    NASA Technical Reports Server (NTRS)

    Eldridge, Hudson B.

    1988-01-01

    The bonding of liner material to the inner metal surfaces of solid rocket booster cases is adversely affected by minute amounts of impurities on the metal surface. Suitable non-destructive methods currently used for detecting these surface contaminants do not provide the means of identifying their elemental composition. The feasibility of using isotopic source excited energy dispersive X-ray fluorescence as a possible technique for elemental analysis of such contaminants is investigated. A survey is made of the elemental compositions of both D-6ac steel, a common construction material for the booster cases, and Conoco HD-2 grease, a common surface contamination. Source and detector choices that maximize signal to noise ratio in a Recessed Source Geometry are made. A Monte Carlo simulation is then made of the optimized device incorporating the latest available X-ray constants at the energy of the chosen source to determine the device's response to a D-6ac steel surface contained with Conoco HD-2 grease.

  20. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  1. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    NASA Technical Reports Server (NTRS)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  2. Intracellular distribution and stability of a luminescent rhenium(i) tricarbonyl tetrazolato complex using epifluorescence microscopy in conjunction with X-ray fluorescence imaging.

    PubMed

    Wedding, J L; Harris, H H; Bader, C A; Plush, S E; Mak, R; Massi, M; Brooks, D A; Lai, B; Vogt, S; Werrett, M V; Simpson, P V; Skelton, B W; Stagni, S

    2017-04-19

    Optical epifluorescence microscopy was used in conjunction with X-ray fluorescence imaging to monitor the stability and intracellular distribution of the luminescent rhenium(i) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence imaging techniques. X-ray fluorescence also showed that the rhenium complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.

  3. Determination of fluorine concentrations using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry to analyze fluoride precipitates.

    NASA Astrophysics Data System (ADS)

    Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.

    2015-12-01

    In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.

  4. A new anthropometric phantom for calibrating in vivo measurements of stable lead in the human leg using X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spitz, H.; Jenkins, M.; Lodwick, J.

    2000-02-01

    A new anthropometric phantom has been developed for calibrating in vivo measurements of stable lead deposited in bone using x-ray fluorescence. The phantom reproduces the shape of the mid shaft of the adult human leg and is fabricated using polyurethanes and calcium carbonate to produce materials that exhibit the same density, energy transmission, and calcium content as cortical bone, bone marrow, and muscle. The phantom includes a removable tibia fabricated using simulants for cortical bone and bone marrow to which a precise amount of stable lead has been added to cortical bone. The formulations used in fabricating the new anthropometricmore » phantom are much more uniform in density and composition than the conventional phantom made from Plexiglas cylinders filled with plaster-of-Paris. The energy spectrum from an x-ray fluorescence measurement of the phantom using a {sup 109}Cd source is indistinguishable from an in vivo x-ray fluorescence measurement of the human leg, demonstrating that the materials used in the phantom exhibit the same radiological properties as human tissue. Likewise, results from x-ray fluorescence measurements of the phantom exhibit the same positional dependency as the human leg and vary by approximately 36% when, for example, the phantom containing 54 ppm of stable lead in the tibia was rotated by only 15 degrees. The detection limit for a 30 min {sup 109}Cd K shell x-ray fluorescence in vivo measurement is approximately 20 ppm determined from a background measurement using the new phantom containing no added lead in the muscle, bone, or bone marrow. The new anthropometric phantom significantly improves in vivo x-ray fluorescence calibration measurements by (1) faithfully reproducing the anatomy of the human leg, (2) having components that exhibit radiological properties similar to that of human tissue, and (3) providing a realistic calibration standard that can be used for in vivo x-ray fluorescence intercomparison measurements.« less

  5. Elemental concentration analysis in prostate tissues using total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Leitão, R. G.; Palumbo, A.; Souza, P. A. V. R.; Pereira, G. R.; Canellas, C. G. L.; Anjos, M. J.; Nasciutti, L. E.; Lopes, R. T.

    2014-02-01

    Prostate cancer (PCa) currently represents the second most prevalent malignant neoplasia in men, representing 21% of all cancer cases. Benign Prostate Hyperplasia (BPH) is an illness prevailing in men above the age of 50, close to 90% after the age of 80. The prostate presents a high zinc concentration, about 10-fold higher than any other body tissue. In this work, samples of human prostate tissues with cancer, BPH and normal tissue were analyzed utilizing total reflection X-ray fluorescence spectroscopy using synchrotron radiation technique (SR-TXRF) to investigate the differences in the elemental concentrations in these tissues. SR-TXRF analyses were performed at the X-ray fluorescence beamline at Brazilian National Synchrotron Light Laboratory (LNLS), in Campinas, São Paulo. It was possible to determine the concentrations of the following elements: P, S, K, Ca, Fe, Cu, Zn and Rb. By using Mann-Whitney U test it was observed that almost all elements presented concentrations with significant differences (α=0.05) between the groups studied.

  6. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    PubMed

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  8. Imaging plates calibration to X-rays

    NASA Astrophysics Data System (ADS)

    Curcio, A.; Andreoli, P.; Cipriani, M.; Claps, G.; Consoli, F.; Cristofari, G.; De Angelis, R.; Giulietti, D.; Ingenito, F.; Pacella, D.

    2016-05-01

    The growing interest for the Imaging Plates, due to their high sensitivity range and versatility, has induced, in the last years, to detailed characterizations of their response function in different energy ranges and kind of radiation/particles. A calibration of the Imaging Plates BAS-MS, BAS-SR, BAS-TR has been performed at the ENEA-Frascati labs by exploiting the X-ray fluorescence of different targets (Ca, Cu, Pb, Mo, I, Ta) and the radioactivity of a BaCs source, in order to cover the X-ray range between few keV to 80 keV.

  9. Synchrotron Radiation μ-X Ray Fluorescence on Multicellular Tumor Spheroids

    NASA Astrophysics Data System (ADS)

    Burattini, E.; Cinque, G.; Bellisola, G.; Fracasso, G.; Monti, F.; Colombatti, M.

    2003-01-01

    Synchrotron Radiation micro X-Ray Fluorescence (SR μ-XRF) was applied for the first time to map the trace element content on Multicellular Tumor Spheroids (MTS), i.e. human cell clusters used as an in vitro model for testing micrometastases responses to antitumoral drugs. In particular, immunotoxin molecules composed of a carrier protein (Transferrin) bound to a powerful cytotoxin (Ricin A), were here considered as representatives of a class of therapheutic macromolecules used in cancer theraphy. Spheroids included in polyacrylamide gel and placed inside quartz capillaries were studied at the ESRF ID22 beamline using a 15 keV monochromatic photon microbeam. Elemental maps (of Fe, Cu, Zn and Pb) on four groups of spheroids grown under different conditions were studied: untreated, treated only with the carrier molecule or with the toxin alone, and with the complete immunotoxin molecule (carrier+toxin). The results indicate that the distribution of Zn and, to some extent, Cu in the spheroid cells is homogeneous and independent of the treatment type. Total Reflection X-Ray Fluorescence (TR-XRF) was also applied to quantify the average trace element content in the spheroids. Future developments of the technique are finally outlined on the basis of these preliminary results.

  10. An experimental and theoretical study of the dark current and x-ray sensitivity of amorphous selenium x-ray photoconductors

    NASA Astrophysics Data System (ADS)

    Frey, Joel Brandon

    minutes after the application of the bias, the dark current due to hole injection may decay to the point where the electron current becomes significant and even dominant. These conclusions are supported by numerical calculations of the dark current transients which have been calibrated to match experimental results. Work detailed in this Ph.D. thesis also focuses on Monte Carlo modeling of the x-ray sensitivity of a-Se FPXIs. The higher the x-ray sensitivity of a detector, the lower the radiation dose required to acquire an acceptable image. FPXIs can experience a decrease in the x-ray sensitivity of the photoconductive layer with accumulating exposure, leading to a phenomenon known as "ghosting". Modeling this decrease in sensitivity can uncover the reasons behind it. The Monte Carlo model described in this thesis is a continuation of a previous model which now considers the effects of the n- and p-like blocking layers and the flow of dark current between x-ray exposures. The simulation results explain how deep trapping of photogenerated charge carriers, and the resulting effect on the electric field distribution, contribute to sensitivity loss. The model has shown excellent agreement with experimental data and has accurately predicted a sensitivity recovery once exposure has ceased which is due to primarily to the relaxation of metastable x-ray-induced carrier trap states.

  11. Doubly curved mica diffractors and their applications to x-ray microprobe fluorescence and microanalysis

    NASA Astrophysics Data System (ADS)

    Chen, Zewu

    This thesis describes the experimental work in the fabrication of doubly-curved mica diffractors and their applications in monochromatic microprobe x-ray fluorescence analysis and wavelength dispersive spectrometry. Three-dimension focusing of x-rays can be achieved by diffraction from a doubly-curved diffractor. A Johann point-focusing mica diffractor was fabricated for focusing the Cu Kα1 radiation and characterized by using a microfocus x-ray source. The intensity of the focused beam was measured to be 1.01 × 108 photons/s at the focal spot. The spot size of the focused beam was measured by the knife edge scan method. A Cu Kα1 focal spot of 43 μm x 68 μm has been obtained. Monochromatic microprobe x-ray fluorescence (MMXRF) analysis was performed by using the focused Cu Kα1 radiation. The microfocus x-ray source was operated at 30 kV and 0.1 mA. MMXRF spectra of bulk specimens of GaAs, Si, ZnSe, Mg and 40 μm thick Muscovite were recorded with a Si(Li) energy dispersive detector. Exceptional high signal-to-background ratios were observed. Due to the low background, detection limits as low as 1.6 ppm were predicted for a measurement time of 500 s for bulk specimens. The detector background was determined by recording a spectrum from an Fe55 source and was found to be a significant contribution to the total observed background. A wavelength dispersive spectrometer was designed and constructed for the use in a JEOL transmission electron microscope. A logarithmic spiral of revolution diffractor was fabricated and used explored for measurement of Ca concentration in the TEM. Bench tests were carried out by using the microfocus x-ray source. Preliminary data of tests in the TEM indicated that the spectrometer may give better performance than EDS systems previously used.

  12. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotronmore » techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial

  13. High-Sensitivity High-Speed X-ray Fluorescence Scanning Cadmium Telluride Detector for Deep-Portion Cancer Diagnosis Utilizing Tungsten-Kα-Excited Gadolinium Mapping

    NASA Astrophysics Data System (ADS)

    Yanbe, Yutaka; Sato, Eiichi; Chiba, Hiraku; Maeda, Tomoko; Matsushita, Ryo; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira

    2013-09-01

    X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays with energies beyond tantalum (Ta) K-edge energy 67.4 keV are absorbed effectively using a 100-µm-thick Ta filter, and the filtered X-rays including tungsten (W) Kα rays are absorbed by gadolinium (Gd) atoms in objects. The Gd XRF is then produced from Gd atoms in the objects and is counted by a cadmium telluride (CdTe) detector. Gd Kα photons with a maximum count rate of 1 kilo counts per second are dispersed using a multichannel analyzer, and the number of photons is counted by a counter card. The distance between the CdTe detector and the object is minimized to 40 mm to increase the count rate. The object is scanned using an x-y stage with a velocity of 5.0 mm/s, and Gd mapping are shown on a computer monitor. The scan steps of the x- and y-axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We obtained Gd XRF images at high contrast, and Gd Kα photons were easily detected from cancerous regions in a nude mouse placed behind a 20-mm-thick poly(methyl methacrylate) plate.

  14. NBSGSC - a FORTRAN program for quantitative x-ray fluorescence analysis. Technical note (final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, G.Y.; Pella, P.A.; Rousseau, R.M.

    1985-04-01

    A FORTRAN program (NBSGSC) was developed for performing quantitative analysis of bulk specimens by x-ray fluorescence spectrometry. This program corrects for x-ray absorption/enhancement phenomena using the comprehensive alpha coefficient algorithm proposed by Lachance (COLA). NBSGSC is a revision of the program ALPHA and CARECAL originally developed by R.M. Rousseau of the Geological Survey of Canada. Part one of the program (CALCO) performs the calculation of theoretical alpha coefficients, and part two (CALCOMP) computes the composition of the analyte specimens. The analysis of alloys, pressed minerals, and fused specimens can currently be treated by the program. In addition to using measuredmore » x-ray tube spectral distributions, spectra from seven commonly used x-ray tube targets could also be calculated with an NBS algorithm included in the program. NBSGSC is written in FORTRAN IV for a Digital Equipment Corporation (DEC PDP-11/23) minicomputer using RLO2 firm disks and an RSX 11M operating system.« less

  15. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  16. Nuclear Forensics Applications of Principal Component Analysis on Micro X-ray Fluorescence Images

    DTIC Science & Technology

    analysis on quantified micro x-ray fluorescence intensity values. This method is then applied to address goals of nuclear forensics . Thefirst...researchers in the development and validation of nuclear forensics methods. A method for determining material homogeneity is developed and demonstrated

  17. Elemental Composition of Mars Return Samples Using X-Ray Fluorescence Imaging at the National Synchrotron Light Source II

    NASA Astrophysics Data System (ADS)

    Thieme, J.; Hurowitz, J. A.; Schoonen, M. A.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    NSLS-II at BNL provides a unique and critical capability to perform assessments of the elemental composition and the chemical state of Mars returned samples using synchrotron radiation X-ray fluorescence imaging and X-ray absorption spectroscopy.

  18. Determination of total x-ray absorption coefficient using non-resonant x-ray emission

    PubMed Central

    Achkar, A. J.; Regier, T. Z.; Monkman, E. J.; Shen, K. M.; Hawthorn, D. G.

    2011-01-01

    An alternative measure of x-ray absorption spectroscopy (XAS) called inverse partial fluorescence yield (IPFY) has recently been developed that is both bulk sensitive and free of saturation effects. Here we show that the angle dependence of IPFY can provide a measure directly proportional to the total x-ray absorption coefficient, µ(E). In contrast, fluorescence yield (FY) and electron yield (EY) spectra are offset and/or distorted from µ(E) by an unknown and difficult to measure amount. Moreover, our measurement can determine µ(E) in absolute units with no free parameters by scaling to µ(E) at the non-resonant emission energy. We demonstrate this technique with measurements on NiO and NdGaO3. Determining µ(E) across edge-steps enables the use of XAS as a non-destructive measure of material composition. In NdGaO3, we also demonstrate the utility of IPFY for insulating samples, where neither EY or FY provide reliable spectra due to sample charging and self-absorption effects, respectively. PMID:22355697

  19. Specimen preparation for x-ray fluorescence analysis of solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eksperiandova, L.P.; Spolnik, Z.M.; Blank, A.B.

    1995-12-31

    Specimens for x-ray fluorescence analysis (XRFA) were prepared by adding dry gelatine (10%) to the analysis solution, homogenizing the mixture and cooling for 20 minutes. Thus, a compact resilient mass could be formed with the required shape and size; the roughness of the surface was determined by the roughness of the surface on which the specimen was formed, much the same as highly polished. Various calibration methods can be applied in the XRFA of a variety of materials if such specimens are used. 12 refs., 1 fig., 2 tabs.

  20. Kα resonance fluorescence in Al, Ti, Cu and potential applications for X-ray sources

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Pradhan, Anil K.

    2015-04-01

    The Kα resonance fluorescence (RFL) effect via photoabsorptions of inner shell electrons as the element goes through multiple ionization states is studied. We demonstrate that the resonances observed recently in Kα (1s-2p) fluorescence in aluminum plasmas by using a high-intensity X-ray free-electron laser [1] are basically K-shell resonances in hollow atoms going through multiple ionization states at resonant energies as predicted earlier for gold and iron ions [2]. These resonances are formed below the K-shell ionization edge and shift toward higher energies with ionization states, as observed. Fluorescence emission intensities depend on transition probabilities for each ionization stage of the given element for all possible Kα (1 s → 2 p) transition arrays. The present calculations for resonant photoabsorptions of Kα photons in Al have reproduced experimentally observed features. Resonant cross sections and absorption coefficients are presented for possible observation of Kα RFL in the resonant energy ranges of 4.5-5.0 keV for Ti ions and 8.0-8.7 keV for Cu ions respectively. We suggest that theoretically the Kα RFL process may be driven to enhance the Auger cycle by a twin-beam monochromatic X-ray source, tuned to the K-edge and Kα energies, with potential applications such as the development of narrow-band biomedical X-ray devices.

  1. X-ray Sensitive Material

    DTIC Science & Technology

    2015-12-01

    The research resulted in a composite material that holds a quasi-permanent electric charge and rapidly discharges the electric charge upon X-ray...quasi-permanent electric charge and rapidly discharge the electric charge upon X-ray exposure. The composite material combined the properties of an...9 7. Schematic of Circuit for Recording Sample’s Capacitor Discharge ............... 12 8. Schematic of Circuit for

  2. ENVIRONMENTAL TECHNOLOGY VERFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - TN SPECTRACE, TN 9000 AND TN PB FIELD PORTABLE X-RAY FLOURESCENCE ANALYZERS

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were to evaluate these analyzers for: (1) their analytical performance relative to standar...

  3. Single crystal CVD diamond membranes as Position Sensitive X-ray Detector

    NASA Astrophysics Data System (ADS)

    Desjardins, K.; Menneglier, C.; Pomorski, M.

    2017-12-01

    Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.

  4. Proton-induces and x-ray induced fluorescence analysis of scoliotic tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panessa-Warren, B J; Kraner, H W; Jones, K W

    1980-02-01

    Adolescent idiopathic scoliosis is characterized by a curvature or assymetry of the spine which may become progressively more severe, with clinical symptoms appearing just prior to, or during, puberty. The incidence for scoliosis in the age group from 12 to 14 years of age has been reported as high as 8 to 10%, with more than 80% of the cases occurring in females. Although pathologic changes exist in muscles from both sides of the spinal curvature, and no statistically significant side differences have been reported, morphologic changes suggest that the concanve side is the most affected. This paper reports ourmore » preliminary data on the elemental composition of individual muscle fibers derived from convex, concave and gluteal scoliotic muscle, and erythrocytes from scoliotic and normal patients, analyzed by proton induced x-ray emission (PIXE) and x-ray fluorescence spectroscopy (XRF). A new type of specimen holder was designed for this study which offers low x-ray background, minimal absorption and maintenance of a moist environment around the specimen.« less

  5. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  6. Elemental investigation on Spanish dinosaur bones by x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Brunetti, Antonio; Piga, Giampaolo; Lasio, Barbara; Golosio, Bruno; Oliva, Piernicola; Stegel, Giovanni; Enzo, Stefano

    2013-07-01

    In this paper we examine the chemical composition results obtained on a collection of 18 dinosaur fossil bones from Spain studied using a portable x-ray fluorescence spectrometer together with a reverse Monte Carlo numerical technique of data analysis. This approach is applied to the hypothesis of arbitrarily rough surfaces in order to account for the influence of the surface state of specimens on the chemical content evaluation. It is confirmed that the chemical content of elements is essential for understanding the changes brought about by diagenetic and taphonomic processes. However, for precise knowledge of what changes fossil bones have undergone after animal life and burial, it is necessary to use a multi-technique approach making use of other instruments like x-ray diffraction in order to describe accurately the transformations undergone by the mineralogical and bioinorganic phases and the properties of specific molecular groups.

  7. Analytical characterization of a new mobile X-ray fluorescence and X-ray diffraction instrument combined with a pigment identification case study

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo

    2015-08-01

    A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.

  8. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  9. Novel handheld x-ray fluorescence spectrometer for routine testing for the presence of lead

    NASA Astrophysics Data System (ADS)

    Rensing, Noa M.; Tiernan, Timothy C.; Squillante, Michael R.

    2011-06-01

    RMD is developing a safe, inexpensive, and easy to operate lead detector for retailers and consumers that can reliably detect dangerous levels of lead in toys and other household products. Lead and its compounds have been rated as top chemicals that pose a great threat to human health. However, widespread testing for environmental lead is rarely undertaken until lead poisoning has already been diagnosed. The problem is not due to the accuracy or sensitivity of existing lead detection technology, but rather to the high expense, safety and licensing barriers of available test equipment. An inexpensive and easy to use lead detector would enable the identification of highly contaminated objects and areas and allow for timely and cost effective remediation. The military has similar needs for testing for lead and other heavy elements such as mercury, primarily in the decontamination of former military properties prior to their return to civilian use. RMD's research and development efforts are abased on advanced solid-state detectors combined with recently patented lead detection techniques to develop a consumer oriented lead detector that will be widely available and easy and inexpensive to use. These efforts will result in an instrument that offers: (1) high sensitivity, to identify objects containing dangerous amounts of lead, (2) low cost to encourage widespread testing by consumers and other end users and (3) convenient operation requiring no training or licensing. In contrast, current handheld x-ray fluorescence spectrometers either use a radioactive source requiring licensing and operating training, or use an electronic x-ray source that limits their sensitivity to surface lead.

  10. X-ray excitation fluorescence spectra of the Eu2+-stabilized VK center in alkaline-earth fluoride mixed-crystal systems

    NASA Astrophysics Data System (ADS)

    Kawano, K.; Ohya, T.; Tsurumi, T.; Katoh, K.; Nakata, R.

    1999-11-01

    X-ray excitation fluorescence spectra were investigated for MF2:Eu (M=Ca, Sr, and Ba) and their mixed-crystal systems, Ca1-xSrxF2 and Sr1-xBaxF2 with the same fluorite structure. The UV recombination fluorescence band of the VK center associated with blue emission due to the f-d transition of Eu2+ ions was observed with changing mixture ratios x at room temperature. Two sets of weak spectra due to f-f transitions of Eu3+ ions also appeared in the 500-600-nm wavelength region. The peak wavelengths and the integrated intensities of the observed fluorescence were investigated as a function of the Eu concentration as well as the mixture ratio. For the blue emission of Eu2+, pulsed x-ray excitation resulted in shorter lifetimes (500-800 ns) than optical excitation, suggesting energy transfers between the excited states of VK centers and Eu2+. A kinematical fluorescence mechanism was proposed, taking into account the formation of a close pair of a hopping VK center and an immobile Eu2+ ion followed by an energy transfer from the former to the latter. Based on the calculated fluorescence decay curves best fitted to the response curves by x-ray pulse excitation, the energy transfer rates from VK centers to Eu2+ were estimated.

  11. Feasibility study of total reflection X-ray fluorescence analysis using a liquid metal jet X-ray tube

    NASA Astrophysics Data System (ADS)

    Maderitsch, A.; Smolek, S.; Wobrauschek, P.; Streli, C.; Takman, P.

    2014-09-01

    Total reflection X-ray spectroscopy (TXRF) is a powerful analytical technique for qualitative and quantitative analysis of trace and ultratrace elements in a sample with lower limits of detection (LLDs) of pg/g to ng/g in concentration and absolute high fg levels are attainable. Several X-ray sources, from low power (few W), 18 kW rotating anodes to synchrotron radiation, are in use for the excitation and lead accordingly to their photon flux delivered on the sample the detection limits specified. Not only the power, but also the brilliance and focal shape are of importance for TXRF. A microfocus of 50-100 μm spot size or the line focus of diffraction tubes is best suited. Excillum developed a new approach in the design of a source: the liquid metal jet anode. In this paper the results achieved with this source are described. A versatile TXRF spectrometer with vacuum chamber designed at Atominstitut was used for the experiments. A multilayer monochromator selecting the intensive Ga-Kα radiation was taken and the beam was collimated by 50 μm slits. Excellent results regarding geometric beam stability, high fluorescence intensities and low background were achieved leading to detection limits in the high fg range for Ni. A 100 mm2 silicon drift detector (SDD) collimated to 80 mm2 was used to collect the fluorescence radiation. The results from measurements on single element samples are presented.

  12. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  13. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    2016-08-30

    The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.

  14. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    NASA Astrophysics Data System (ADS)

    Reiche, I.; Radtke, M.; Berger, A.; Görner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-05-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606 1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm2. Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is together with external micro-proton-induced X-ray emission the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection.

  15. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  16. SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.

    1977-01-01

    A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.

  17. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, A.; Luo, J.; Wang, A.

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  18. Fat to muscle ratio measurements with dual energy x-ray absorbtiometry

    DOE PAGES

    Chen, A.; Luo, J.; Wang, A.; ...

    2015-03-14

    Accurate measurement of the fat-to-muscle ratio in animal model is important for obesity research. In addition, an efficient way to measure the fat to muscle ratio in animal model using dual-energy absorptiometry is presented in this paper. A radioactive source exciting x-ray fluorescence from a target material is used to provide the two x-ray energies needed. The x-rays, after transmitting through the sample, are measured with an energy-sensitive Ge detector. Phantoms and specimens were measured. The results showed that the method was sensitive to the fat to muscle ratios with good linearity. A standard deviation of a few percent inmore » the fat to muscle ratio could be observed with the x-ray dose of 0.001 mGy.« less

  19. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  20. Ultraviolet germicidal irradiation and its effects on elemental distributions in mouse embryonic fibroblast cells in x-ray fluorescence microanalysis

    DOE PAGES

    Jin, Qiaoling; Vogt, Stefan; Lai, Barry; ...

    2015-02-23

    Rapidly-frozen hydrated (cryopreserved) specimens combined with cryo-scanning x-ray fluorescence microscopy provide an ideal approach for investigating elemental distributions in biological cells and tissues. However, because cryopreservation does not deactivate potentially infectious agents associated with Risk Group 2 biological materials, one must be concerned with contamination of expensive and complicated cryogenic x-ray microscopes when working with such materials. We employed ultraviolet germicidal irradiation to decontaminate previously cryopreserved cells under liquid nitrogen, and then investigated its effects on elemental distributions under both frozen hydrated and freeze dried states with x-ray fluorescence microscopy. We show that the contents and distributions of most biologicallymore » important elements remain nearly unchanged when compared with non-ultraviolet-irradiated counterparts, even after multiple cycles of ultraviolet germicidal irradiation and cryogenic x-ray imaging. This provides a potential pathway for rendering Risk Group 2 biological materials safe for handling in multiuser cryogenic x-ray microscopes without affecting the fidelity of the results.« less

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - METOREX, INC. X-MET 920-P AND 940

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  2. Determination of thorium by fluorescent x-ray spectrometry

    USGS Publications Warehouse

    Adler, I.; Axelrod, J.M.

    1955-01-01

    A fluorescent x-ray spectrographic method for the determination of thoria in rock samples uses thallium as an internal standard. Measurements are made with a two-channel spectrometer equipped with quartz (d = 1.817 A.) analyzing crystals. Particle-size effects are minimized by grinding the sample components with a mixture of silicon carbide and aluminum and then briquetting. Analyses of 17 samples showed that for the 16 samples containing over 0.7% thoria the average error, based on chemical results, is 4.7% and the maximum error, 9.5%. Because of limitations of instrumentation, 0.2% thoria is considered the lower limit of detection. An analysis can be made in about an hour.

  3. A comparison between EGS4 and MCNP computer modeling of an in vivo X-ray fluorescence system.

    PubMed

    Al-Ghorabie, F H; Natto, S S; Al-Lyhiani, S H

    2001-03-01

    The Monte Carlo computer codes EGS4 and MCNP were used to develop a theoretical model of a 180 degrees geometry in vivo X-ray fluorescence system for the measurement of platinum concentration in head and neck tumors. The model included specification of the photon source, collimators, phantoms and detector. Theoretical results were compared and evaluated against X-ray fluorescence data obtained experimentally from an existing system developed by the Swansea In Vivo Analysis and Cancer Research Group. The EGS4 results agreed well with the MCNP results. However, agreement between the measured spectral shape obtained using the experimental X-ray fluorescence system and the simulated spectral shape obtained using the two Monte Carlo codes was relatively poor. The main reason for the disagreement between the results arises from the basic assumptions which the two codes used in their calculations. Both codes assume a "free" electron model for Compton interactions. This assumption will underestimate the results and invalidates any predicted and experimental spectra when compared with each other.

  4. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  5. Portable X-ray Fluorescence Unit for Analyzing Crime Scenes

    NASA Astrophysics Data System (ADS)

    Visco, A.

    2003-12-01

    Goddard Space Flight Center and the National Institute of Justice have teamed up to apply NASA technology to the field of forensic science. NASA hardware that is under development for future planetary robotic missions, such as Mars exploration, is being engineered into a rugged, portable, non-destructive X-ray fluorescence system for identifying gunshot residue, blood, and semen at crime scenes. This project establishes the shielding requirements that will ensure that the exposure of a user to ionizing radiation is below the U.S. Nuclear Regulatory Commission's allowable limits, and also develops the benchtop model for testing the system in a controlled environment.

  6. Measurements of reciprocity law failure in green-sensitive X-ray films.

    PubMed

    Arnold, B A; Eisenberg, H; Bjärngard, B E

    1978-02-01

    Reciprocity law failure was measured for four brands of medical x-ray films exposed with intensifying screens. Three of the films are green light-sensitized for use in combination with green light-emitting rare-earth screens. These films showed larger reciprocity failure effects than one conventional blue-sensitive film, Dupont Cronex-2. Development conditions had a small effect on reciprocity failure. As part of the investigation, a detector was constructed with a response that accurately monitors the light emission from the double screen-cassette combination over a wide range of x-ray photon energies.

  7. In vivo tomographic imaging of lung colonization of tumour in mouse with simultaneous fluorescence and X-ray CT.

    PubMed

    Zhang, Bin; Gao, Fuping; Wang, Mengjiao; Cao, Xu; Liu, Fei; Wang, Xin; Luo, Jianwen; Wang, Guangzhi; Bai, Jing

    2014-01-01

    Non-invasive in vivo imaging of diffuse and wide-spread colonization within the lungs, rather than distinct solid primary tumors, is still a challenging work. In this work, a lung colonization mouse model bearing A549 human lung tumor was simultaneously scanned by a dual-modality fluorescence molecular tomography (FMT) and X-ray computed tomography (CT) system in vivo. A two steps method which incorporates CT structural information into the FMT reconstruction procedure is employed to provide concurrent anatomical and functional information. By using the target-specific fluorescence agent, the fluorescence tomographic results show elevated fluorescence intensity deep within the lungs which is colonized with diffuse and wide-spread tumors. The results were confirmed with ex vivo fluorescence reflectance imaging and histological examination of the lung tissues. With FMT reconstruction combined with the CT information, the dual-modality FMT/micro-CT system is expected to offer sensitive and noninvasive imaging of diffuse tumor colonization within the lungs in vivo. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. MapX: An In Situ, Full-Frame X-Ray Spectroscopic Imager for the Biogenic Elements

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Thompson, Kathy; Bristow, Thomas

    2016-01-01

    Microbial life exploits microscale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms themselves - tens to hundreds of micrometers. These disequilibria can exist within cracks or veins in rocks and ice, at inter- or intra-crystalline boundaries, at sediment/water or sediment/atmosphere interfaces, or even within fluid inclusions trapped inside minerals. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist in a habitable environment? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an arm-deployed contact instrument that directly images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. The instrument provides element images having =100 micron lateral spatial resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground-selected or instrument-selected Regions of Interest (ROI) on the sample. Quantitative XRF spectra from ROI can be translated into mineralogies using ground- or instrument-based algorithms. Either an X-ray tube source (X-ray fluorescence) or a radioisotope source such as 244-Cm (alpha-particle and gamma-ray fluorescence) can be used, and characteristic X-rays emitted from the sample are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). As a fluorescent source, 244-Cm is highly desirable in a MapX instrument intended for life detection since high-energy alpha-particles are unrivaled in fluorescence yield for the low-Z elements. The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection/identification of habitable

  9. Taking into Account Interelement Interference in X-Ray Fluorescence Analysis of Thin Two-Layer Ti/V Systems

    NASA Astrophysics Data System (ADS)

    Mashin, N. I.; Razuvaev, A. G.; Cherniaeva, E. A.; Gafarova, L. M.; Ershov, A. V.

    2018-03-01

    We propose a new method for determining the thickness of layers in x-ray fluorescence analysis of two-layer Ti/V systems, using easily fabricated standardized film layers obtained by sputter deposition of titanium on a polymer film substrate. We have calculated correction factors taking into account the level of attenuation for the intensity of the primary emission from the x-ray tube and the analytical line for the element of the bottom layer in the top layer, and the enhancement of the fluorescence intensity for the top layer by the emission of atoms in the bottom layer.

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - SCITEC, MAP SPECTRUM ANALYZER

    EPA Science Inventory

    In April 1995, the U.S. Environmental Protection Agency (EPA) sponsored a demonstration of field portable X-ray fluorescence (FPXRF) analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to standard reference...

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - FIELD PORTABLE X-RAY FLUORESCENCE ANALYZER - HNU SYSTEMS, SEFA-P

    EPA Science Inventory

    In April 1995, the Environmental Protection Agency (EPA) conducted a demonstration of field portable X-ray fluorescence (FPXRF) Analyzers. The primary objectives of this demonstration were (1) to determine how well FPXRF analyzers perform in comparison to a standard reference m...

  12. Use of x-ray fluorescence for in-situ detection of metals

    NASA Astrophysics Data System (ADS)

    Elam, W. T. E.; Whitlock, Robert R.; Gilfrich, John V.

    1995-01-01

    X-ray fluorescence (XRF) is a well-established, non-destructive method of determining elemental concentrations at ppm levels in complex samples. It can operate in atmosphere with no sample preparation, and provides accuracies of 1% or better under optimum conditions. This report addresses two sets of issues concerning the use of x-ray fluorescence as a sensor technology for the cone penetrometer, for shipboard waste disposal, or for other in-situ, real- time environmental applications. The first issue concerns the applicability of XRF to these applications, and includes investigation of detection limits and matrix effects. We have evaluated the detection limits and quantitative accuracy of a sensor mock-up for metals in soils under conditions expected in the field. In addition, several novel ways of improving the lower limits of detection to reach the drinking water regulatory limits have been explored. The second issue is the engineering involved with constructing a spectrometer within the 1.75 inch diameter of the penetrometer pipe, which is the most rigorous physical constraint. Only small improvements over current state-of-the-art are required. Additional advantages of XRF are that no radioactive sources or hazardous materials are used in the sensor design, and no reagents or any possible sources of ignition are involved.

  13. Differentiation of dental restorative materials combining energy-dispersive X-ray fluorescence spectroscopy and post-mortem CT.

    PubMed

    Merriam, Tim; Kaufmann, Rolf; Ebert, Lars; Figi, Renato; Erni, Rolf; Pauer, Robin; Sieberth, Till

    2018-06-01

    Today, post-mortem computed tomography (CT) is routinely used for forensic identification. Mobile energy-dispersive X-ray fluorescence (EDXRF) spectroscopy of a dentition is a method of identification that has the potential to be easier and cheaper than CT, although it cannot be used with every dentition. In challenging cases, combining both techniques could facilitate the process of identification and prove to be advantageous over chemical analyses. Nine dental restorative material brands were analyzed using EDXRF spectroscopy. Their differentiability was assessed by comparing each material's x-ray fluorescence spectrum and then comparing the spectra to previous research investigating differentiability in CT. To verify EDXRF's precision and accuracy, select dental specimens underwent comparative electron beam excited x-ray spectroscopy (EDS) scans, while the impact of the restorative surface area was studied by scanning a row of dental specimens with varying restorative surface areas (n = 10). EDXRF was able to differentiate all 36 possible pairs of dental filling materials; however, dual-energy CT was only able to differentiate 33 out of 36. The EDS scans showed correlating x-ray fluorescence peaks on the x-ray spectra compared to our EDXRF. In addition, the surface area showed no influence on the differentiability of the dental filling materials. EDXRF has the potential to facilitate corpse identification by differentiating and comparing restorative materials, providing more information compared to post-mortem CT alone. Despite not being able to explicitly identify a brand without a control sample or database, its fast and mobile use could accelerate daily routines or mass victim identification processes. To achieve this goal, further development of EDXRF scanners for this application and further studies evaluating the method within a specific routine need to be performed.

  14. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  15. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  16. Quantitative X-ray fluorescence computed tomography for low-Z samples using an iterative absorption correction algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Limburg, Karin; Rohtla, Mehis

    2017-05-01

    X-ray fluorescence computed tomography is often used to measure trace element distributions within low-Z samples, using algorithms capable of X-ray absorption correction when sample self-absorption is not negligible. Its reconstruction is more complicated compared to transmission tomography, and therefore not widely used. We describe in this paper a very practical iterative method that uses widely available transmission tomography reconstruction software for fluorescence tomography. With this method, sample self-absorption can be corrected not only for the absorption within the measured layer but also for the absorption by material beyond that layer. By combining tomography with analysis for scanning X-ray fluorescence microscopy, absolute concentrations of trace elements can be obtained. By using widely shared software, we not only minimized the coding, took advantage of computing efficiency of fast Fourier transform in transmission tomography software, but also thereby accessed well-developed data processing tools coming with well-known and reliable software packages. The convergence of the iterations was also carefully studied for fluorescence of different attenuation lengths. As an example, fish eye lenses could provide valuable information about fish life-history and endured environmental conditions. Given the lens's spherical shape and sometimes the short distance from sample to detector for detecting low concentration trace elements, its tomography data are affected by absorption related to material beyond the measured layer but can be reconstructed well with our method. Fish eye lens tomography results are compared with sliced lens 2D fluorescence mapping with good agreement, and with tomography providing better spatial resolution.

  17. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping

    NASA Astrophysics Data System (ADS)

    Tice, Michael M.; Quezergue, Kimbra; Pope, Michael C.

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks.

  18. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  19. A new spectrometer for total reflection X-ray fluorescence analysis of light elements

    NASA Astrophysics Data System (ADS)

    Streli, Christina; Wobrauschek, Peter; Unfried, Ernst; Aiginger, Hannes

    1993-10-01

    A new spectrometer for total reflection X-ray fluorescence analysis (TXRF) of light elements as C, N, O, F, Na,… has been designed, constructed and realized. This was done under the aspect of optimizing all relevant parameters for excitation and detection under the conditions of Total Reflection in a vacuum chamber. A commercially available Ge(HP) detector with a diamond window offering a high transparency for low energy radiation was used. As excitation sources a special self-made windowless X-ray tube with Cu-target as well as a standard fine-focus Cr-tube were applied. Detection limits achieved are in the ng range for Carbon and Oxygen.

  20. Combination of grazing incidence x-ray fluorescence with x-ray reflectivity in one table-top spectrometer for improved characterization of thin layer and implants on/in silicon wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingerle, D.; Schiebl, M.; Streli, C.

    2014-08-15

    As Grazing Incidence X-ray Fluorescence (GIXRF) analysis does not provide unambiguous results for the characterization of nanometre layers as well as nanometre depth profiles of implants in silicon wafers by its own, the approach of providing additional information using the signal from X-ray Reflectivity (XRR) was tested. As GIXRF already uses an X-ray beam impinging under grazing incidence and the variation of the angle of incidence, a GIXRF spectrometer was adapted with an XRR unit to obtain data from the angle dependent fluorescence radiation as well as data from the reflected beam. A θ-2θ goniometer was simulated by combining amore » translation and tilt movement of a Silicon Drift detector, which allows detecting the reflected beam over 5 orders of magnitude. HfO{sub 2} layers as well as As implants in Silicon wafers in the nanometre range were characterized using this new setup. A just recently published combined evaluation approach was used for data evaluation.« less

  1. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    PubMed

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  2. Advances in the detection of as in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria.

    PubMed

    Hitchcock, A P; Obst, M; Wang, J; Lu, Y S; Tyliszczak, T

    2012-03-06

    Speciation and quantitative mapping of elements, organic and inorganic compounds, and mineral phases in environmental samples at high spatial resolution is needed in many areas of geobiochemistry and environmental science. Scanning transmission X-ray microscopes (STXMs) provide a focused beam which can interrogate samples at a fine spatial scale. Quantitative chemical information can be extracted using the transmitted and energy-resolved X-ray fluorescence channels simultaneously. Here we compare the relative merits of transmission and low-energy X-ray fluorescence detection of X-ray absorption for speciation and quantitative analysis of the spatial distribution of arsenic(V) within cell-mineral aggregates formed by Acidovorax sp. strain BoFeN1, an anaerobic nitrate-reducing Fe(II)-oxidizing β-proteobacteria isolated from the sediments of Lake Constance. This species is noted to be highly tolerant to high levels of As(V). Related, As-tolerant Acidovorax-strains have been found in As-contaminated groundwater wells in Bangladesh and Cambodia wherein they might influence the mobility of As by providing sorption sites which might have different properties as compared to chemically formed Fe-minerals. In addition to demonstrating the lower detection limits that are achieved with X-ray fluorescence relative to transmission detection in STXM, this study helps to gain insights into the mechanisms of As immobilization by biogenic Fe-mineral formation and to further the understanding of As-resistance of anaerobic Fe(II)-oxidizing bacteria.

  3. Elemental depth profiling in transparent conducting oxide thin film by X-ray reflectivity and grazing incidence X-ray fluorescence combined analysis

    NASA Astrophysics Data System (ADS)

    Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; Streli, C.; Nolot, E.

    2017-09-01

    The optical and electrical properties of transparent conducting oxide (TCO) thin films are strongly linked with the structural and chemical properties such as elemental depth profile. In R&D environments, the development of non-destructive characterization techniques to probe the composition over the depth of deposited films is thus necessary. The combination of Grazing-Incidence X-ray Fluorescence (GIXRF) and X-ray reflectometry (XRR) is emerging as a fab-compatible solution for the measurement of thickness, density and elemental profile in complex stacks. Based on the same formalism, both techniques can be implemented on the same experimental set-up and the analysis can be combined in a single software in order to refine the sample model. While XRR is sensitive to the electronic density profile, GIXRF is sensitive to the atomic density (i. e. the elemental depth profile). The combination of both techniques allows to get simultaneous information about structural properties (thickness and roughness) as well as the chemical properties. In this study, we performed a XRR-GIXRF combined analysis on indium-free TCO thin films (Ga doped ZnO compound) in order to correlate the optical properties of the films with the elemental distribution of Ga dopant over the thickness. The variation of optical properties due to annealing process were probed by spectroscopic ellipsometry measurements. We studied the evolution of atomic profiles before and after annealing process. We show that the blue shift of the band gap in the optical absorption edge is linked to a homogenization of the atomic profiles of Ga and Zn over the layer after the annealing. This work demonstrates that the combination of the techniques gives insight into the material composition and makes the XRR-GIXRF combined analysis a promising technique for elemental depth profiling.

  4. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  5. X-ray fluorescence analysis of low concentrations metals in geological samples and technological products

    NASA Astrophysics Data System (ADS)

    Lagoida, I. A.; Trushin, A. V.

    2016-02-01

    For the past several years many nuclear physics methods of quantitative elemental analysis have been designed. Many of these methods have applied in different devices which have become useful and effective instrument in many industrial laboratories. Methods of a matter structure analysis are based on the intensity detection of the X-ray radiation from the nuclei of elements which are excited by external X-ray source. The production of characteristic X-rays involves transitions of the orbital electrons of atoms in the target material between allowed orbits, or energy states, associated with ionization of the inner atomic shells. One of these methods is X-ray fluorescence analysis, which is widespread in metallurgical and processing industries and is used to identify and measure the concentration of the elements in ores and minerals on a conveyor belt. Samples of copper ore with known concentrations of elements, were taken from the Ural deposit. To excite the characteristic X-rays radionuclide sources 109Cd, with half-life 461.4 days were used. After finding the calibration coefficients, control measurements of samples and averaging of overall samples were made. The measurement error did not exceed 3%.

  6. The study of chemical composition and elemental mappings of colored over-glaze porcelain fired in Qing Dynasty by micro-X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Lin, Cheng; Meitian, Li; Youshi, Kim; Changsheng, Fan; Shanghai, Wang; Qiuli, Pan; Zhiguo, Liu; Rongwu, Li

    2011-02-01

    It is very difficult to measure the chemical composition of colored pigments of over-glaze porcelain by X-ray fluorescence because it contains high concentration of Pb. One of the disadvantages of our polycapillary optics is that it has low transmission efficiency to the high energy X-ray. However, it is beneficial to measure the chemical compositions of rich Pb sample. In this paper, we reported the performances of a tabletop setup of micro-X-ray fluorescence system base on slightly focusing polycapillary and its applications for analysis of rich Pb sample. A piece of Chinese ancient over-glaze porcelain was analyzed by micro-X-ray fluorescence. The experimental results showed that the Cu, Fe and Mn are the major color elements. The possibilities of the process of decorative technology were discussed in this paper, also.

  7. Remote X-ray fluorescence experiments for future missions to Mercury

    NASA Astrophysics Data System (ADS)

    Clark, P. E.; Trombka, J. I.

    1997-01-01

    To date, the only deep space mission to Mercury, Mariner 10, as well as ground-based observations have failed to provide direct measurements of that planet's composition. Such measurements are fundamental for the understanding of Mercury's origin and the inner solar system's history. The spin-stabilized Mercury Orbiter proposed for launch in the first or second decade of the twenty-first century as part of the ESA's Horizon 2000-plus plan could address this problem by including the X-ray spectrometer proposed here. X-ray spectrometers act as detectors for the X-ray emission induced by the solar flux incident on planetary surfaces. This emission is strongly dependent on the chemical composition of the surface as well as on the solar spectrum. Characteristic fluorescent lines, the most prominent being the K-alpha lines, are of sufficient intensity for major elements (Mg, Al, Si, Ca, Fe) to allow orbital measurement by remote X-ray detectors. The X-ray spectrometers described here will all have established heritage for space missions by 2000. These instruments have previously flown, are being flown as part of the NASA NEAR (Near Earth Asteroid Rendezvous) or Clark SSTI (Small Science and Technology Initiative) missions, or are now under development as part of NASA Facility Instrument Development Program. The instrument package would probably consist of an array of solid state detectors for surface measurements, as well as one which would act as a solar monitor. Calculations of anticipated results have been done for a variety of orbital and instrument configurations, and a variety of lunar soil compositions which could be analogous: anorthositie gabbro bearing soils from lunar highlands (Apollo 16), high-Mg basalt-rich soils from a KREEP-bearing area (Apollo 15), and mare basalt bearing soils (Apollo 12). The mission being considered here should result in maps of abundances of major elements, including Mg, Al, Si, Ca, and Fe, for much of Mercury's surface, with

  8. Study of gold nanoparticle synthesis by synchrotron x-ray diffraction and fluorescence

    NASA Astrophysics Data System (ADS)

    Yan, Zhongying; Wang, Xiao; Yu, Le; Moeendarbari, Sina; Hao, Yaowu; Cai, Zhonghou; Cheng, Xuemei

    Gold nanoparticles have a wide range of potential applications, including therapeutic agent delivery, catalysis, and electronics. Recently a new process of hollow nanoparticle synthesis was reported, the mechanism of which was hypothesized to involve electroless deposition around electrochemically evolved hydrogen bubbles. However, the growth mechanism still needs experimental evidence. We report investigation of this synthesis process using synchrotron x-ray diffraction and fluorescence measurements performed at beamline 2-ID-D of the Advanced Photon Source (APS). A series of gold nanoparticle samples with different synthesis time (50-1200 seconds) were deposited using a mixture electrolyte solution of Na3Au(SO3)2 and H4N2NiO6S2 on anodic aluminum oxide (AAO) membranes. The 2D mapping of fluorescence intensity and comparison of x-ray diffraction peaks of the samples have provided valuable information on the growth mechanism. Work at Bryn Mawr College and University of Texas at Arlington is supported by NSF Grants (1207085 and 1207377) and use of the APS at Argonne National Laboratory is supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357.

  9. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  10. Depth profiling of marker layers using x-ray waveguide structures

    NASA Astrophysics Data System (ADS)

    Gupta, Ajay; Rajput, Parasmani; Saraiya, Amit; Reddy, V. R.; Gupta, Mukul; Bernstorff, Sigrid; Amenitsch, H.

    2005-08-01

    It is demonstrated that x-ray waveguide structures can be used for depth profiling of a marker layer inside the guiding layer with an accuracy of better than 0.2 nm. A combination of x-ray fluorescence and x-ray reflectivity measurements can provide detailed information about the structure of the guiding layer. The position and thickness of the marker layer affect different aspects of the angle-dependent x-ray fluorescence pattern, thus making it possible to determine the structure of the marker layer in an unambiguous manner. As an example, effects of swift heavy ion irradiation on a Si/M/Si trilayer ( M=Fe , W), forming the cavity of the waveguide structure, have been studied. It is found that in accordance with the prediction of thermal spike model, Fe is much more sensitive to swift heavy ion induced modifications as compared to W, even in thin film form. However, a clear evidence of movement of the Fe marker layer towards the surface is observed after irradiation, which cannot be understood in terms of the thermal spike model alone.

  11. Conventional X-ray fluorescence camera with a cadmium-telluride detector and its application to cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-04-01

    X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x- y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and Kα photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.

  12. Forensic analysis of laser printed ink by X-ray fluorescence and laser-excited plume fluorescence.

    PubMed

    Chu, Po-Chun; Cai, Bruno Yue; Tsoi, Yeuk Ki; Yuen, Ronald; Leung, Kelvin S Y; Cheung, Nai-Ho

    2013-05-07

    We demonstrated a minimally destructive two-tier approach for multielement forensic analysis of laser-printed ink. The printed document was first screened using a portable-X-ray fluorescence (XRF) probe. If the results were not conclusive, a laser microprobe was then deployed. The laser probe was based on a two-pulse scheme: the first laser pulse ablated a thin layer of the printed ink; the second laser pulse at 193 nm induced multianalytes in the desorbed ink to fluoresce. We analyzed four brands of black toners. The toners were printed on paper in the form of patches or letters or overprinted on another ink. The XRF probe could sort the four brands if the printed letters were larger than font 20. It could not tell the printing sequence in the case of overprints. The laser probe was more discriminatory; it could sort the toner brands and reveal the overprint sequence regardless of font size while the sampled area was not visibly different from neighboring areas even under the microscope. In terms of general analytical performance, the laser probe featured tens of micrometer lateral resolution and tens to hundreds of nm depth resolution and atto-mole mass detection limits. It could handle samples of arbitrary size and shape and was air compatible, and no sample pretreatment was necessary. It will prove useful whenever high-resolution and high sensitivity 3D elemental mapping is required.

  13. X-ray spectra of Hercules X-1. 1: Iron line fluorescence from a subrelativistic shell

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1977-01-01

    The X-ray spectrum of Hercules X-1 was observed in the energy range 2-24 keV from August 29 to September 3, 1975. A broad iron line feature is observed in the normal high state spectrum. The line equivalent width is given along with its full-width-half-maximum energy. Iron line fluorescence from an opaque, cool shell of material at the Alfven surface provides the necessary luminosity in this feature. The line energy width can be due to Doppler broadening if the shell is forced to corotate with the pulsar at a radius 800 million cm. Implications of this model regarding physical conditions near Her X-1 are discussed.

  14. JGIXA - A software package for the calculation and fitting of grazing incidence X-ray fluorescence and X-ray reflectivity data for the characterization of nanometer-layers and ultra-shallow-implants

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.

    2016-04-01

    Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on

  15. Non-conventional applications of a noninvasive portable X-ray diffraction/fluorescence instrument

    NASA Astrophysics Data System (ADS)

    Chiari, Giacomo; Sarrazin, Philippe; Heginbotham, Arlen

    2016-11-01

    Noninvasive techniques have become widespread in the cultural heritage analytical domain. The popular handheld X-ray fluorescence (XRF) devices give the elemental composition of all the layers that X-rays can penetrate, but no information on how atoms are bound together or at which depth they are located. A noninvasive portable X-ray powder diffraction/X-ray fluorescence (XRD/XRF) device may offer a solution to these limitations, since it can provide information on the composition of crystalline materials. This paper introduces applications of XRD beyond simple phase recognition. The two fundamental principles for XRD are: (1) the crystallites should be randomly oriented, to ensure proper intensity to all the diffraction peaks, and (2) the material should be positioned exactly in the focal plane of the instrument, respecting its geometry, as any displacement of the sample would results in 2 θ shifts of the diffraction peaks. In conventional XRD, the sample is ground and set on the properly positioned sample holder. Using a noninvasive portable instrument, these two requirements are seldom fulfilled. The position, size and orientation of a given crystallite within a layered structure depend on the object itself. Equation correlating the displacement (distance from the focal plane) versus peak shift (angular difference in 2 θ from the standard value) is derived and used to determine the depth at which a given substance is located. The quantitative composition of two binary Cu/Zn alloys, simultaneously present, was determined measuring the cell volume and using Vegard's law. The analysis of the whole object gives information on the texture and possible preferred orientations of the crystallites, which influences the peak intensity. This allows for the distinction between clad and electroplated daguerreotypes in the case of silver and between ancient and modern gilding for gold. Analyses of cross sections can be carried out successfully. Finally, beeswax, used in

  16. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  17. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less

  18. Analysis of coke beverages by total-reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Fernández-Ruiz, Ramón; von Bohlen, Alex; Friedrich K, E. Josue; Redrejo, M. J.

    2018-07-01

    The influence of the organic content, sample preparation process and the morphology of the depositions of two types of Coke beverage, traditional and light Coke, have been investigated by mean of Total-reflection X-ray Fluorescence (TXRF) spectrometry. Strong distortions of the nominal concentration values, up to 128% for P, have been detected in the analysis of traditional Coke by different preparation methods. These differences have been correlated with the edge X-ray energies of the elements analyzed being more pronounced for the lighter elements. The influence of the organic content (mainly sugar) was evaluated comparing traditional and light Coke analytical TXRF results. Three sample preparation methods have been evaluated as follows: direct TXRF analysis of the sample only adding internal standard, TXRF analysis after open vessel acid digestion and TXRF analysis after high pressure and temperature microwave-assisted acid digestion. Strong correlations were detected between quantitative results, methods of preparation and energies of the X-ray absorption edges of quantified elements. In this way, a decay behavior for the concentration differences between preparation methods and the energies of the X-ray absorption edges of each element were observed. The observed behaviors were modeled with exponential decay functions obtaining R2 correlation coefficients from 0.989 to 0.992. The strong absorption effect observed, and even possible matrix effect, can be explained by the inherent high organic content of the evaluated samples and also by the morphology and average thickness of the TXRF depositions observed. As main conclusion of this work, the analysis of light elements in samples with high organic content by TXRF, i.e. medical, biological, food or any other organic matrixes should be taken carefully. In any case, the direct analysis is not recommended and a previous microwave-assisted acid digestion, or similar, is mandatory, for the correct elemental

  19. High-sensitivity x-ray mask damage studies employing holographic gratings and phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew E.; Cerrina, Franco

    1994-05-01

    A high-sensitivity holographic and interferometric metrology developed at the Center for X- ray Lithography (CXrL) has been employed to investigate in-plane distortions (IPD) produced in x-ray mask materials. This metrology has been applied to characterize damage to x-ray mask materials exposed to synchrotron radiation. X-ray mask damage and accelerated mask damage studies on silicon nitride and silicon carbide were conducted on the Aladdin ES-1 and ES-2 beamline exposure stations, respectively. Accumulated in-plane distortions due to x-ray irradiation were extracted from the incremental interferometric phase maps to yield IPD vs. dose curves for silicon nitride mask blanks. Silicon carbide mask blanks were subjected to accelerated mask damage in the high flux 2 mm X 2 mm beam of the ES-2 exposure station. An accelerated damage study of silicon carbide has shown no in-plane distortion for an accumulated dose of 800 kJ/cm2 with a measurement sensitivity of less than 5 nm.

  20. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  1. Microbialite Biosignature Analysis by Mesoscale X-ray Fluorescence (μXRF) Mapping.

    PubMed

    Tice, Michael M; Quezergue, Kimbra; Pope, Michael C

    2017-11-01

    As part of its biosignature detection package, the Mars 2020 rover will carry PIXL, the Planetary Instrument for X-ray Lithochemistry, a spatially resolved X-ray fluorescence (μXRF) spectrometer. Understanding the types of biosignatures detectable by μXRF and the rock types μXRF is most effective at analyzing is therefore an important goal in preparation for in situ Mars 2020 science and sample selection. We tested mesoscale chemical mapping for biosignature interpretation in microbialites. In particular, we used μXRF to identify spatial distributions and associations between various elements ("fluorescence microfacies") to infer the physical, biological, and chemical processes that produced the observed compositional distributions. As a test case, elemental distributions from μXRF scans of stromatolites from the Mesoarchean Nsuze Group (2.98 Ga) were analyzed. We included five fluorescence microfacies: laminated dolostone, laminated chert, clotted dolostone and chert, stromatolite clast breccia, and cavity fill. Laminated dolostone was formed primarily by microbial mats that trapped and bound loose sediment and likely precipitated carbonate mud at a shallow depth below the mat surface. Laminated chert was produced by the secondary silicification of microbial mats. Clotted dolostone and chert grew as cauliform, cryptically laminated mounds similar to younger thrombolites and was likely formed by a combination of mat growth and patchy precipitation of early-formed carbonate. Stromatolite clast breccias formed as lag deposits filling erosional scours and interstromatolite spaces. Cavities were filled by microquartz, Mn-rich dolomite, and partially dolomitized calcite. Overall, we concluded that μXRF is effective for inferring genetic processes and identifying biosignatures in compositionally heterogeneous rocks. Key Words: Stromatolites-Biosignatures-Spectroscopy-Archean. Astrobiology 17, 1161-1172.

  2. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Bradley M.; Stuckelberger, Michael; Jeffries, April

    The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less

  3. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

    DOE PAGES

    West, Bradley M.; Stuckelberger, Michael; Jeffries, April; ...

    2017-01-01

    The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less

  4. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ.

    PubMed

    Matsunaga, Tsunenori; Ishizaki, Hidetaka; Tanabe, Shuji; Hayashi, Yoshihiko

    2009-05-01

    Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing. The experiment was performed at the Photon Factory. Synchrotron radiation was monochromatized and X-rays were focused into a small beam spot. The X-ray fluorescence (XRF) from the sample was detected with a silicon (Si) (lithium (Li)) detector. X-ray beam energy was tuned to detect Zn. The examined samples were small enamel fragments remineralized after chewing calcium phosphate-containing gum in situ. The incorporation of Zn atom into hydroxyapatite (OHAP), the main component of enamel, was measured using Zn K-edge extended X-ray absorption fine structure (EXAFS) with fluorescence mode at the SPring-8. A high concentration of Zn was detected in a superficial area 10-microm deep of the sectioned enamel after gum chewing. This concentration increased over that in the intact enamel. The atomic distance between Zn and O in the enamel was calculated using the EXAFS data. The analyzed atomic distances between Zn and O in two sections were 0.237 and 0.240 nm. The present experiments suggest that Zn is effectively incorporated into remineralized enamel through the physiological processes of mineral deposition in the oral cavity through gum-chewing and that Zn substitution probably occurred at the calcium position in enamel hydroxyapatite.

  5. Hard X-ray Ptychography: Making It Cool, Colorful and Fast

    NASA Astrophysics Data System (ADS)

    Deng, Junjing

    Ptychography is a recently developed coherent imaging technique for extended objects, with a resolution not limited by the lens. Because X-rays have short wavelengths and high penetration ability, X-ray ptychography provides a powerful and unique tool for studying thick samples at high spatial resolution. We have advanced X-ray ptychography by making it cool, colorful, and fast. We make it cool by carrying out ptychography experiments at cryogenic conditions to image frozen-hydrated specimens. This largely removes the limitations of radiation damage on the achievable resolution, and allows one to obtain excellent preservation of structure and chemistry in biological specimens. We make it colorful by combining it with X-ray fluorescence measurements of chemical element distributions. In studies of biological specimens, this means that ptychography can reveal cellular ultrastructure at high contrast and at a resolution well beyond that of X-ray focusing optics, while X-ray fluorescence is used to simultaneously image the distribution of trace elements in cells (such as metals that play key roles in cell functions and which can be used in various disease therapeutic agents). Because X-ray fluorescence is not very sensitive for showing the light elements that comprise the majority of cellular materials, this combined approach provides the unique tool to obtain simultaneous views of ultrastructure and elemental compositions of specimens. We make it fast by using continuous-scan (or "fly-scan") methods. Conventional ptychography is implemented in a move-settle-measure approach, which is slow due to the positioning overheads. To overcome this bottleneck, we have developed fly-scan ptychography that is able to speed up the data collection, and real time on-site data analysis can be achieved by using a parallelized reconstruction code. With these advances, we conducted combined cryo X-ray ptychography and fluorescence imaging at 5.2 keV in a more practical way using fly

  6. Bulk sensitive hard x-ray photoemission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C.; Weber, N.

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. Themore » high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.« less

  7. Detection of Genetically Altered Copper Levels in Drosophila Tissues by Synchrotron X-Ray Fluorescence Microscopy

    PubMed Central

    Lye, Jessica C.; Hwang, Joab E. C.; Paterson, David; de Jonge, Martin D.; Howard, Daryl L.; Burke, Richard

    2011-01-01

    Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes. PMID:22053217

  8. Liquid helium cryostat with internal fluorescence detection for x-ray absorption studies in the 2-6 keV energy region

    NASA Astrophysics Data System (ADS)

    McFarlane Holman, Karen L.; Latimer, Matthew J.; Yachandra, Vittal K.

    2004-06-01

    X-ray absorption spectroscopy (XAS) in the intermediate x-ray region (2-6 keV) for dilute biological samples has been limited because of detector/flux limitations and inadequate cryogenic instrumentation. We have designed and constructed a new tailpiece/sample chamber for a commercially available liquid helium cooled cryostat which overcomes difficulties related to low fluorescence signals by using thin window materials and incorporating an internal photodiode detector. With the apparatus, XAS data at the Cl, S, and Ca K edges have been collected on frozen solutions and biological samples at temperatures down to 60 K. A separate chamber has been incorporated for collecting room-temperature spectra of standard compounds (for energy calibration purposes) which prevents contamination of the cryostat chamber and allows the sample to remain undisturbed, both important concerns for studying dilute and radiation-sensitive samples.

  9. A new device for energy-dispersive x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Swoboda, Walter; Kanngiesser, Birgit; Beckhoff, Burkhard; Begemann, Klaus; Neuhaus, Hermann; Scheer, Jens

    1991-12-01

    A new measuring chamber for energy-dispersive x-ray fluorescence is presented, which allows excitation of the sample by three (commonly applied) modes: secondary target excitation, Barkla scattering, and Bragg reflection. In spite of the short distances required to obtain high intensities, the transmission of the radiator through the bulk matter of the chamber wall and the collimators could be kept negligibly small. In the case of Bragg reflection, the adjustment of all degrees of freedom of the crystal is performed independently and reproducibly under vacuum conditions. The device allows the choice of excitation mode optimized for the respective analytical problem. An experimental test using an environmental specimen shows the detection limits obtainable.

  10. Monte Carlo Simulation for Polychromatic X-Ray Fluorescence Computed Tomography with Sheet-Beam Geometry

    PubMed Central

    Jiang, Shanghai

    2017-01-01

    X-ray fluorescence computed tomography (XFCT) based on sheet beam can save a huge amount of time to obtain a whole set of projections using synchrotron. However, it is clearly unpractical for most biomedical research laboratories. In this paper, polychromatic X-ray fluorescence computed tomography with sheet-beam geometry is tested by Monte Carlo simulation. First, two phantoms (A and B) filled with PMMA are used to simulate imaging process through GEANT 4. Phantom A contains several GNP-loaded regions with the same size (10 mm) in height and diameter but different Au weight concentration ranging from 0.3% to 1.8%. Phantom B contains twelve GNP-loaded regions with the same Au weight concentration (1.6%) but different diameter ranging from 1 mm to 9 mm. Second, discretized presentation of imaging model is established to reconstruct more accurate XFCT images. Third, XFCT images of phantoms A and B are reconstructed by filter back-projection (FBP) and maximum likelihood expectation maximization (MLEM) with and without correction, respectively. Contrast-to-noise ratio (CNR) is calculated to evaluate all the reconstructed images. Our results show that it is feasible for sheet-beam XFCT system based on polychromatic X-ray source and the discretized imaging model can be used to reconstruct more accurate images. PMID:28567054

  11. A New High-sensitivity solar X-ray Spectrophotometer SphinX:early operations and databases

    NASA Astrophysics Data System (ADS)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Siarkowski, Marek; Bakala, Jaroslaw; Podgorski, Piotr; Trzebinski, Witold; Plocieniak, Stefan; Kordylewski, Zbigniew; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio

    The Solar Photometer in X-rays (SphinX) is an instrument operating aboard Russian CORONAS-Photon satellite. A short description of this unique instrument will be presented and its unique capabilities discussed. SphinX is presently the most sensitive solar X-ray spectrophotometer measuring solar spectra in the energy range above 1 keV. A large archive of SphinX mea-surements has already been collected. General access to these measurements is possible. The SphinX data repositories contain lightcurves, spectra, and photon arrival time measurements. The SphinX data cover nearly continuously the period since the satellite launch on January 30, 2009 up to the end-of November 2009. Present instrument status, data formats and data access methods will be shown. An overview of possible new science coming from SphinX data analysis will be discussed.

  12. Preliminary testing of a prototype portable X-ray fluorescence spectrometer

    NASA Technical Reports Server (NTRS)

    Patten, L. L.; Anderson, N. B.; Stevenson, J. J.

    1982-01-01

    A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended.

  13. Simulated 'On-Line' Wear Metal Analysis of Lubricating Oils by X-Ray Fluorescence Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Partos, Richard D.; Nelson, Irina

    1996-01-01

    The objective of this project was to assess the sensitivity of X-ray Fluorescence Spectroscopy (XFS) for quantitative evaluation of metal particle content in engine oil suspensions and the feasibility of real-time, dynamic wear metal analysis. The study was focused on iron as the majority wear metal component. Variable parameters were: particle size, particle concentration and oil velocity. A commercial XFS spectrometer equipped with interchangeable static/dynamic (flow cell) sample chambers was used. XFS spectra were recorded for solutions of Fe-organometallic standard and for a series of DTE oil suspensions of high purity spherical iron particles of 2g, 4g, and 8g diameter, at concentrations from 5 ppm to 5,000 ppm. Real contaminated oil samples from Langley Air Force Base aircraft engines and NASA Langley Research Center wind tunnels were also analyzed. The experimental data conform the reliability of XFS as the analytical method of choice for this project. Intrinsic inadequacies of the instrument for precise analytic work at low metal concentrations were identified as being related to the particular x-ray beam definition, system geometry, and flow-cell materials selection. This work supports a proposal for the design, construction and testing of a conceptually new, miniature XFS spectrometer with superior performance, dedicated to on-line, real-time monitoring of lubricating oils in operating engines. Innovative design solutions include focalization of the incident x-ray beam, non-metal sample chamber, and miniaturization of the overall assembly. The instrument would contribute to prevention of catastrophic engine failures. A proposal for two-year funding has been presented to NASA Langley Research Center Internal Operation Group (IOG) Management, to continue the effort begun by this summer's project.

  14. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  15. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; hide

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  16. Reverse engineering the ancient ceramic technology based on X-ray fluorescence spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sciau, Philippe; Leon, Yoanna; Goudeau, Philippe

    2011-07-06

    We present results of X-ray fluorescence (XRF) microprobe analyses of ancient ceramic cross-sections aiming at deciphering the different firing protocols used for their production. Micro-focused XRF elemental mapping, Fe chemical mapping and Fe K-edge X-ray absorption near edge structure spectroscopy were performed on pre-sigillata ceramics from southern Gaul, and terra Sigillata vessels from Italy and southern Gaul. Pieces from the different workshops and regions showed significant difference in the starting clay material, clay conditioning and kiln firing condition. By contrast, sherds from the same workshop exhibited more subtle differences and possible misfirings. Understanding the precise firing conditions and protocols wouldmore » allow recreation of kilns for various productions. Furthermore, evolution and modification of kiln design would shed some light on how ancient potters devised solutions to diverse technological problems they encountered.« less

  17. Airborne particulate matter (PM) filter analysis and modeling by total reflection X-ray fluorescence (TXRF) and X-ray standing wave (XSW).

    PubMed

    Borgese, L; Salmistraro, M; Gianoncelli, A; Zacco, A; Lucchini, R; Zimmerman, N; Pisani, L; Siviero, G; Depero, L E; Bontempi, E

    2012-01-30

    This work is presented as an improvement of a recently introduced method for airborne particulate matter (PM) filter analysis [1]. X-ray standing wave (XSW) and total reflection X-ray fluorescence (TXRF) were performed with a new dedicated laboratory instrumentation. The main advantage of performing both XSW and TXRF, is the possibility to distinguish the nature of the sample: if it is a small droplet dry residue, a thin film like or a bulk sample. Another advantage is related to the possibility to select the angle of total reflection to make TXRF measurements. Finally, the possibility to switch the X-ray source allows to measure with more accuracy lighter and heavier elements (with a change in X-ray anode, for example from Mo to Cu). The aim of the present study is to lay the theoretical foundation of the new proposed method for airborne PM filters quantitative analysis improving the accuracy and efficiency of quantification by means of an external standard. The theoretical model presented and discussed demonstrated that airborne PM filters can be considered as thin layers. A set of reference samples is prepared in laboratory and used to obtain a calibration curve. Our results demonstrate that the proposed method for quantitative analysis of air PM filters is affordable and reliable without the necessity to digest filters to obtain quantitative chemical analysis, and that the use of XSW improve the accuracy of TXRF analysis. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Chemical imaging analysis of the brain with X-ray methods

    NASA Astrophysics Data System (ADS)

    Collingwood, Joanna F.; Adams, Freddy

    2017-04-01

    Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.

  19. 2D-imaging of sampling-probe perturbations in laminar premixed flames using Kr X-ray fluorescence

    DOE PAGES

    Hansen, N.; Tranter, R. S.; Moshammer, K.; ...

    2017-04-14

    The perturbation of the temperature field caused by a quartz sampling probe has been investigated in a fuel-rich low-pressure premixed ethylene/oxygen/argon/krypton flame using X-ray fluorescence. The experiments were performed at the 7-BM beamline at the Advanced Photon Source (APS) at the Argonne National Laboratory where a continuous beam of X-rays at 15 keV was used to excite krypton atoms that were added to the unburnt flame gases in a concentration of 5% (by volume). The resulting krypton X-ray fluorescence at 12.65 keV was collected and the spatially resolved signal was subsequently converted into the local temperature of the imaged spot.more » One and two dimensional scans of the temperature field were obtained by translating the entire flame chamber through a pre-programmed sequence of positions on high precision translation stages and measuring the X-ray fluorescence at each location. Multiple measurements were performed at various separations between the burner surface and probe tip, representing sampling positions from the preheat, reaction, and postflame zones of the low-pressure flame. Distortions of up to 1000 K of the burner-probe centerline flame temperature were found with the tip of the probe in the preheat zone and distortions of up to 500 K were observed with it in the reaction and postflame zones. Furthermore, perturbations of the temperature field have been revealed that radially reach as far as 20 mm from the burner-probe centerline and about 3 mm in front of the probe tip. Finally, these results clearly reveal the limitations of one-dimensional models for predicting flame-sampling experiments and comments are made with regard to model developments and validations based on quantitative speciation data from low-pressure flames obtained via intrusive sampling techniques.« less

  20. Mapping Metal Elements of Shuangbai Dinosaur Fossil by Synchrotron X-ray Fluorescence Microprobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Qun, Y; Ablett, J

    The metal elements mapping of Shuangbai dinosaur fossil, was obtained by synchrotron x-ray fluorescence (SXRF). Eight elements, Ca, Mn, Fe, Cu, Zn, As, Y and Sr were determined. Elements As and Y were detected for the first time in the dinosaur fossil. The data indicated that metal elements are asymmetrical on fossil section. This is different from common minerals. Mapping metals showed that metal element As is few. The dinosaur most likely belongs to natural death. This is different from Zigong dinosaurs which were found dead from poisoning. This method has been used to find that metals Fe and Mnmore » are accrete, and the same is true for Sr and Y. This study indicated that colloid granule Fe and Mn, as well as Sr and Y had opposite electric charges in lithification process of fossils. By this analysis, compound forms can be ascertained. Synchrotron light source x-ray fluorescence is a complementary method that shows mapping of metal elements at the dinosaur fossil, and is rapid, exact and intuitionist. This study shows that dinosaur fossil mineral imaging has a potential in reconstructing the paleoenvironment and ancient geology.« less

  1. The Intensity Modulation of the Fluorescent Line by a Finite Light Speed Effect in Accretion-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio

    2017-11-01

    The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.

  2. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy

    PubMed Central

    Shimura, Mari; Shindou, Hideo; Szyrwiel, Lukasz; Tokuoka, Suzumi M.; Hamano, Fumie; Matsuyama, Satoshi; Okamoto, Mayumi; Matsunaga, Akihiro; Kita, Yoshihiro; Ishizaka, Yukihito; Yamauchi, Kazuto; Kohmura, Yoshiki; Lobinski, Ryszard; Shimizu, Isao; Shimizu, Takao

    2016-01-01

    Fatty acids are taken up by cells and incorporated into complex lipids such as neutral lipids and glycerophospholipids. Glycerophospholipids are major constituents of cellular membranes. More than 1000 molecular species of glycerophospholipids differ in their polar head groups and fatty acid compositions. They are related to cellular functions and diseases and have been well analyzed by mass spectrometry. However, intracellular imaging of fatty acids and glycerophospholipids has not been successful due to insufficient resolution using conventional methods. Here, we developed a method for labeling fatty acids with bromine (Br) and applied scanning X-ray fluorescence microscopy (SXFM) to obtain intracellular Br mapping data with submicrometer resolution. Mass spectrometry showed that cells took up Br-labeled fatty acids and metabolized them mainly into glycerophospholipids in CHO cells. Most Br signals observed by SXFM were in the perinuclear region. Higher resolution revealed a spot-like distribution of Br in the cytoplasm. The current method enabled successful visualization of intracellular Br-labeled fatty acids. Single-element labeling combined with SXFM technology facilitates the intracellular imaging of fatty acids, which provides a new tool to determine dynamic changes in fatty acids and their derivatives at the single-cell level.—Shimura, M., Shindou, H., Szyrwiel, L., Tokuoka, S. M., Hamano, F., Matsuyama, S., Okamoto, M., Matsunaga, A., Kita, Y., Ishizaka, Y., Yamauchi, K., Kohmura, Y., Lobinski, R., Shimizu, I., Shimizu, T. Imaging of intracellular fatty acids by scanning X-ray fluorescence microscopy. PMID:27601443

  3. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  4. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  5. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    PubMed

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  6. Non-destructive in situ study of "Mad Meg" by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers

    NASA Astrophysics Data System (ADS)

    Van de Voorde, Lien; Van Pevenage, Jolien; De Langhe, Kaat; De Wolf, Robin; Vekemans, Bart; Vincze, Laszlo; Vandenabeele, Peter; Martens, Maximiliaan P. J.

    2014-07-01

    "Mad Meg", a figure of Flemish folklore, is the subject of a famous oil-on-panel painting by the Flemish renaissance artist Pieter Bruegel the Elder, exhibited in the Museum Mayer van den Bergh (Antwerp, Belgium). This article reports on the in situ chemical characterization of this masterpiece by using currently available state-of-the-art portable analytical instruments. The applied non-destructive analytical approach involved the use of a) handheld X-ray fluorescence instrumentation for retrieving elemental information and b) portable X-ray fluorescence/X-ray diffraction instrumentation and laser-based Raman spectrometers for obtaining structural/molecular information. Next to material characterization of the used pigments and of the different preparation layers of the painting, also the verification of two important historical iconographic hypotheses is performed concerning the economic way of painting by Brueghel, and whether or not he used blue smalt pigment for painting the boat that appears towards the top of the painting. The pigments identified are smalt pigment (65% SiO2 + 15% K2O + 10% CoO + 5% Al2O3) for the blue color present in all blue areas of the painting, probably copper resinate for the green colors, vermillion (HgS) as red pigment and lead white is used to form different colors. The comparison of blue pigments used on different areas of the painting gives no differences in the elemental fingerprint which confirms the existing hypothesis concerning the economic painting method by Bruegel.

  7. X-ray data booklet. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  8. Non-destructive trace element microanalysis of as-received cometary nucleus samples using synchrotron x ray fluorescence

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.

    1989-01-01

    The Synchrotron X ray Fluorescence (SXRF) microprobe at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory, will be an excellent instrument for non-destructive trace element analyses of cometary nucleus samples. Trace element analyses of as-received cometary nucleus material will also be possible with this technique. Bulk analysis of relatively volatile elements will be important in establishing comet formation conditions. However, as demonstrated for meteorites, microanalyses of individual phases in their petrographic context are crucial in defining the histories of particular components in unequilibrated specimens. Perhaps most informative in comparing cometary material with meteorites will be the halogens and trace metals. In-situ, high spatial resolution microanalyses will be essential in establishing host phases for these elements and identifying terrestrial (collection/processing) overprints. The present SXRF microprobe is a simple, yet powerful, instrument in which specimens are excited with filtered, continuum synchrotron radiation from a bending magnet on a 2.5 GeV electron storage ring. A refrigerated cell will be constructed to permit analyses at low temperatures. The cell will consist essentially of an air tight housing with a cold stage. Kapton windows will be used to allow the incident synchrotron beam to enter the cell and fluorescent x rays to exit it. The cell will be either under vacuum or continuous purge by ultrapure helium during analyses. Several other improvements of the NSLS microprobe will be made prior to the cometary nucleus sample return mission that will greatly enhance the sensitivity of the technique.

  9. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES

  10. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.

    PubMed

    Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J

    2012-02-01

    Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using

  11. Study of heavy metals and other elements in macrophyte algae using energy-dispersive X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvalho, M.L.; Amorim, P.; Marques, M.I.M.

    1997-04-01

    Fucus vesiculosus L. seaweeds from three estuarine stations were analyzed by X-ray fluorescence, providing results for the concentration of total K, Ca, Ti, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Sr, and Pb. Four different structures of the algae (base, stipe, reproductive organs, and growing tips) were analyzed to study the differential accumulation of heavy metals by different parts of Fucus. Some elements (e.g., Cu and Fe) are preferentially accumulated in the base of the algae, whereas others (e.g., As) exhibit higher concentrations in the reproductive organs and growing tips. The pattern of accumulation in different structures is similarmore » for Cu, Zn, and Pb, but for other metals there is considerable variability in accumulation between parts of the plant. This is important in determining which structures of the plant should be used for biomonitoring. For samples collected at stations subject to differing metal loads, the relative elemental composition is approximately constant, notwithstanding significant variation in absolute values. The proportion of metals in Fucus is similar to that found in other estuaries, where metal concentrations are significantly lower. Energy-dispersive X-ray fluorescence has been shown to be a suitable technique for multielement analysis in this type of sample. No chemical pretreatment is required, minimizing sample contamination. The small amount of sample required, and the wide range of elements that can be detected simultaneously make energy-dispersive X-ray fluorescence a valuable tool for pollution studies.« less

  12. High sensitive X-ray films to detect electron showers in 100 GeV region

    NASA Technical Reports Server (NTRS)

    Taira, T.; Shirai, T.; Tateyama, N.; Torii, S.; Nishimura, J.; Fujii, M.; Yoshida, A.; Aizu, H.; Nomura, Y.; Kazuno, M.

    1985-01-01

    Nonscreen type X-ray films were used in emulsion chamber experiments to detect high energy showers in cosmic rays. Ranges of the detection threshold is from about 1 to 2 TeV depending on the exposure conditions. Different types of X-ray films and sheets i.e. high sensitive screen type X-ray films and luminescence sheets were tested. The threshold of the shower detection is found to be about 200 GeV, which is much lower than that of nonscreen type X-ray films. These films are useful to detect showers in the medium energy range, a few hundred GeV, of the cosmic ray electrons.

  13. Iodine imaging in thyroid by fluorescent X-ray CT with 0.05 mm spatial resolution

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Yu, Q.; Yashiro, T.; Zeniya, T.; Wu, J.; Hasegawa, Y.; Thet-Thet-Lwin; Hyodo, K.; Yuasa, T.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    2001-07-01

    Fluorescent X-ray computed tomography (FXCT) at a 0.05 mm in-plane spatial resolution and 0.05 mm slice thickness depicted the cross sectional distribution of endogenous iodine within thyroid. The distribution obtained from the FXCT image correlated closely to that obtained from the pathological pictures.

  14. A method of lead determination in human teeth by energy dispersive X-ray fluorescence (EDXRF).

    PubMed

    Sargentini-Maier, M L; Frank, R M; Leroy, M J; Turlot, J C

    1988-12-01

    A systematic sampling procedure was combined with a method of energy dispersive X-ray fluorescence (EDXRF) to study lead content and its variations in human teeth. On serial ground sections made on unembedded permanent teeth of inhabitants of Strasbourg with a special diamond rotating disk, 2 series of 500 microns large punch biopsies were made systematically in 5 directions from the tooth surface to the inner pulpal dentine with a micro-punching unit. In addition, pooled fragments of enamel and dentine were made for each tooth. On each punched fragment or pooled sample, lead content was determined after dissolution in ultrapure nitric acid, on a 4 microns thick polypropylene film, and irradiation with a Siemens EDXRF prototype with direct sample excitation by a high power X-ray tube with a molybdenum anode. Fluorescence was detected by a Si(Li) detector and calcium was used as an internal standard. This technique allowed a rapid, automatic, multielementary and non-destructive analysis of microsamples with good detection limits.

  15. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  16. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  17. Determination of minor and trace elements in kidney stones by x-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Srivastava, Anjali; Heisinger, Brianne J.; Sinha, Vaibhav; Lee, Hyong-Koo; Liu, Xin; Qu, Mingliang; Duan, Xinhui; Leng, Shuai; McCollough, Cynthia H.

    2014-03-01

    The determination of accurate material composition of a kidney stone is crucial for understanding the formation of the kidney stone as well as for preventive therapeutic strategies. Radiations probing instrumental activation analysis techniques are excellent tools for identification of involved materials present in the kidney stone. In particular, x-ray fluorescence (XRF) can be very useful for the determination of minor and trace materials in the kidney stone. The X-ray fluorescence measurements were performed at the Radiation Measurements and Spectroscopy Laboratory (RMSL) of department of nuclear engineering of Missouri University of Science and Technology and different kidney stones were acquired from the Mayo Clinic, Rochester, Minnesota. Presently, experimental studies in conjunction with analytical techniques were used to determine the exact composition of the kidney stone. A new type of experimental set-up was developed and utilized for XRF analysis of the kidney stone. The correlation of applied radiation source intensity, emission of X-ray spectrum from involving elements and absorption coefficient characteristics were analyzed. To verify the experimental results with analytical calculation, several sets of kidney stones were analyzed using XRF technique. The elements which were identified from this techniques are Silver (Ag), Arsenic (As), Bromine (Br), Chromium (Cr), Copper (Cu), Gallium (Ga), Germanium (Ge), Molybdenum (Mo), Niobium (Nb), Rubidium (Rb), Selenium (Se), Strontium (Sr), Yttrium (Y), Zirconium (Zr). This paper presents a new approach for exact detection of accurate material composition of kidney stone materials using XRF instrumental activation analysis technique.

  18. A Small Mission Featuring an Imaging X-ray Polarimeter with High Sensitivity

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Baldini, Luca; Bellazini, Ronaldo; Brez, Alessandro; Costa, Enrico; Dissley, Richard; Elsner, Ronald; Fabiani, Sergio; Matt, Giorgio; Minuti, Massimo; hide

    2013-01-01

    We present a detailed description of a small mission capable of obtaining high precision and meaningful measurement of the X-ray polarization of a variety of different classes of cosmic X-ray sources. Compared to other ideas that have been suggested this experiment has demonstrated in the laboratory a number of extremely important features relevant to the ultimate selection of such a mission by a funding agency. The most important of these questions are: 1) Have you demonstrated the sensitivity to a polarized beam at the energies of interest (i.e. the energies which represent the majority (not the minority) of detected photons from the X-ray source of interest? 2) Have you demonstrated that the device's sensitivity to an unpolarized beam is really negligible and/or quantified the impact of any systematic effects upon actual measurements? We present our answers to these questions backed up by laboratory measurements and give an overview of the mission.

  19. X-ray Fluorescence Spectroscopy of Pre-Federal American Currency

    NASA Astrophysics Data System (ADS)

    Raddell, Mark; Manukyan, Khachatur; Aprahamian, Ani; Wiescher, Michael; Jordan, Louis

    2017-09-01

    X-ray Fluorescence Spectroscopy (XRF) was used to study 17th and 18th century Mexican, Potosí, and Massachusetts silver colonial coins from the University of Notre Dame's Rare Books and Special Collections. Using different configurations and devices, we have learned more about the limitations and optimizations of the method. We have developed a moveable stand that may be used for XRF mapping of coin surfaces. We created standard silver alloy materials for quantification of the elemental composition of the coins. Inductively coupled plasma (ICP) spectroscopy was applied to determine the precise composition of the standards for accurate and non-destructive analyses of the colonial coins. XRF measurements were performed using two different XRF spectrometers, in both air and vacuum conditions, as well as an x-ray beam tube of varying diameters from 2 mm, 1 mm, and 0.03 mm. We quantified both the major elements and the bulk and surface impurities for 90 coins. We are using PCA to look at possible correlations between compositions of coinage from different geographical regions. Preliminary data analyses suggest that Massachusetts coins were minted using silver from Latin American sources. These results are of great interest to historians in tracing the origins of the currency. This work was made possible by the Notre Dame College of Science Summer Undergraduate Research Fellowships (COS-SURF).

  20. Normal incidence x-ray mirror for chemical microanalysis

    DOEpatents

    Carr, M.J.; Romig, A.D. Jr.

    1987-08-05

    An x-ray mirror for both electron column instruments and micro x-ray fluorescence instruments for making chemical, microanalysis comprises a non-planar mirror having, for example, a spherical reflecting surface for x-rays comprised of a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on a substrate and whose layers have a thickness which is a multiple of the wavelength being reflected. For electron column instruments, the wavelengths of interest lie above 1.5nm, while for x-ray fluorescence instruments, the range of interest is below 0.2nm. 4 figs.

  1. Molybdenum X-Ray Absorption Edges from 200 – 20,000 eV, The Benefits of Soft X-Ray Spectroscopy for Chemical Speciation

    PubMed Central

    George, Simon J.; Drury, Owen B.; Fu, Juxia; Friedrich, Stephan; Doonan, Christian J.; George, Graham N.; White, Jonathan M.; Young, Charles G.; Cramer, Stephen P.

    2009-01-01

    We have surveyed the chemical utility of the near-edge structure of molybdenum x-ray absorption edges from the hard x-ray K-edge at 20,000 eV down to the soft x-ray M4,5-edges at ~230 eV. We compared, for each edge, the spectra of two tetrahedral anions, MoO4 and MoS42-. We used three criteria for assessing near-edge structure of each edge: (i) the ratio of the observed chemical shift between MoO42- and MoS42- and the linewidth, (ii) the chemical information from analysis of the near-edge structure and (iii) the ease of measurement using fluorescence detection. Not surprisingly, the K-edge was by far the easiest to measure, but it contained the least information. The L2,3-edges, although harder to measure, had benefits with regard to selection rules and chemical speciation in that they had both a greater chemical shift as well as detailed lineshapes which could be theoretically analyzed in terms of Mo ligand field, symmetry, and covalency. The soft x-ray M2,3-edges were perhaps the least useful, in that they were difficult to measure using fluorescence detection and had very similar information content to the corresponding L2,3-edges. Interestingly, the soft x-ray, low energy (~230 eV) M4,5-edges had greatest potential chemical sensitivity and using our high resolution superconducting tunnel junction (STJ) fluorescence detector they appear to be straightforward to measure. The spectra were amenable to analysis using both the TT-multiplet approach and FEFF. The results using FEFF indicate that the sharp near-edge peaks arise from 3d → 5p transitions, while the broad edge structure has predominately 3d → 4f character. A proper understanding of the dependence of these soft x-ray spectra on ligand field and site geometry is necessary before a complete assessment of the utility of the Mo M4,5-edges can be made. This work includes crystallographic characterization of sodium tetrathiomolybdate. PMID:19041140

  2. Argon content of the Martian atmosphere at the Viking 1 landing site - Analysis by X-ray fluorescence spectroscopy

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Toulmin, P., III; Rose, H. J., Jr.; Baird, A. K.; Keil, K.

    1976-01-01

    Spectra provided by the Viking 1 X-ray fluorescence spectrometer operating in the calibration mode (without a soil sample in the analysis chamber) were analyzed to determine the argon content of the Martian atmosphere at the landing site. This was found to be less than or equal to 0.15 millibar, or not more than 2% by volume, consistent with data obtained by the entry mass spectrometer and by the mass spectrometer on the lander. It is anticipated that analysis of the K content of surface samples using X-ray fluorescence data will provide information on the evolution of the atmosphere, since most atmospheric argon is apparently produced by decay of K-40.

  3. Higher Sensitivity in X-Ray Photography

    NASA Technical Reports Server (NTRS)

    Buggle, R. N.

    1986-01-01

    Hidden defects revealed if X-ray energy decreased as exposure progresses. Declining-potential X-ray photography detects fractures in thin metal sheet covered by unbroken sheet of twice thickness. Originally developed to check solder connections on multilayer circuit boards, technique has potential for other nondestructive testing.

  4. Use of X-Ray Fluorescence in a Laboratory for the Treatment of Uranium Ores; UTILISATION DE LA FLUORESCENCE DANS UN LABORATOIRE DE TRAITEMENTS DE MINERAIS D'URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillet, H.

    1960-01-01

    A brief description is given of some aspects of the experience gained over a year during which x-ray fluorescence was used at the laberatory of the present Section Autonome d'Etudes, Recherches et Applications Chimiques of the Commissariat a l'Energie Atomique. A standard is tested daily to ensure reproducibility. The observations made during the months from Dec. 1958 to May 1959 are described. In acid leaching of uranium ores, the residues are analyzed by x-ray fluorescence directly in powder form. Fixation and elution of vanadium on ion-exchange resin were also studied. (auth)

  5. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.

    2010-06-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.

  6. X-ray astronomy instrumentation studies. [design of a proportional counter and measurements of fluorescent radiation

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1981-01-01

    Preliminary designs were made for a multiplane, multiwire position sensitive proportional counter for X-ray use. Anode spacing was 2 mm and cathode spacing 1 mm. Assistance was provided in setting up and operating two multiwire proportional counters, one with 5 mm anode spacing, and the other with 2 mm spacing. Argon-based counter gases were used for preliminary work in assembling a working experimental system to measure xenon fluorescence yields. The design and specification of a high purity gas filling system capable of supplying mixtures of xenon and other gases to proportional counters was also performed. The system is mounted on a cart, is fully operational, and is flexible enough to be easily used as a pumping station for other clean applications. When needed, assistance was given to put into operation various computer-related pieces of equipment.

  7. Determination of rhenium in molybdenite by X-ray fluorescence: A combined chemical-spectrometric technique.

    PubMed

    Solt, M W; Wahlberg, J S; Myers, A T

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 microg of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods.

  8. Determination of rhenium in molybdenite by X-ray fluorescence. A combined chemical-spectrometric technique

    USGS Publications Warehouse

    Solt, M.W.; Wahlberg, J.S.; Myers, A.T.

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.

  9. Counter tube window and X-ray fluorescence analyzer study

    NASA Technical Reports Server (NTRS)

    Hertel, R.; Holm, M.

    1973-01-01

    A study was performed to determine the best design tube window and X-ray fluorescence analyzer for quantitative analysis of Venusian dust and condensates. The principal objective of the project was to develop the best counter tube window geometry for the sensing element of the instrument. This included formulation of a mathematical model of the window and optimization of its parameters. The proposed detector and instrument has several important features. The instrument will perform a near real-time analysis of dust in the Venusian atmosphere, and is capable of measuring dust layers less than 1 micron thick. In addition, wide dynamic measurement range will be provided to compensate for extreme variations in count rates. An integral pulse-height analyzer and memory accumulate data and read out spectra for detail computer analysis on the ground.

  10. The feasibility study on 3-dimensional fluorescent x-ray computed tomography using the pinhole effect for biomedical applications.

    PubMed

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu

    2013-01-01

    We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.

  11. New Developments in Hard X-ray Fluorescence Microscopy for In-situ Investigations of Trace Element Distributions in Aqueous Systems of Soil Colloids

    NASA Astrophysics Data System (ADS)

    Gleber, Sophie-Charlotte; Weinhausen, Britta; Köster, Sarah; Ward, Jesse; Vine, David; Finney, Lydia; Vogt, Stefan

    2013-10-01

    The distribution, binding and release of trace elements on soil colloids determine matter transport through the soil matrix, and necessitates an aqueous environment and short length and time scales for their study. However, not many microscopy techniques allow for that. We previously showed hard x-ray fluorescence microscopy capabilities to image aqueous colloidal soil samples [1]. As this technique provides attogram sensitivity for transition elements like Cu, Zn, and other geochemically relevant trace elements at sub micrometer spatial resolution (currently down to 150 nm at 2-ID-E [2]; below 50nm at Bionanoprobe, cf. G.Woloschak et al, this volume) combined with the capability to penetrate tens of micrometer of water, it is ideally suited for imaging the elemental content of soil colloids. To address the question of binding and release processes of trace elements on the surface of soil colloids, we developed a microfluidics based XRF flow cytometer, and expanded the applied methods of hard x-ray fluorescence microscopy towards three dimensional imaging. Here, we show (a) the 2-D imaged distributions of Si, K and Fe on soil colloids of Pseudogley samples; (b) how the trace element distribution is a dynamic, pH-dependent process; and (c) x-ray tomographic applications to render the trace elemental distributions in 3-D. We conclude that the approach presented here shows the remarkable potential to image and quantitate elemental distributions from samles within their natural aqueous microenvironment, particularly important in the environmental, medical, and biological sciences.

  12. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  13. Assessment of Ca and P content variation in enamel during an eight-week bleaching protocol using energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Sorozini, M.; Dos Santos, R. S.; Silva, E. M.; Dos Anjos, M. J.; Perez, C. R.

    2017-05-01

    Tooth bleaching is a simple technique performed with gels based on hydrogen peroxide molecules responsible for removing the tooth structure's pigmentation. The effects of the overuse of these agents on the tooth structure are not well established. Energy dispersive X-ray fluorescence (EDXRF) can be employed to analyze objects of biological origin as bone and tooth. It is very suitable analytical technique to detect demineralization processes in these tissues. The objective of this study was to use x-ray fluorescence to evaluate the effects on mineral content of enamel submitted to eight-week protocols of home bleaching gels (10% carbamide peroxide and 9.5% hydrogen peroxide), as well as bleaching strips. Four enamel fragments obtained from five teeth were subjected to bleaching for 8 weeks: Group 1- artificial saliva; Group 2-10% carbamide peroxide gel, 6 h daily; Group 3-9.5% hydrogen peroxide gel, two 30-minute applications; and Group 4-bleaching strips, twice daily for 30 min. The change in mineral content was assessed weekly using X-ray fluorescence (Artax 200). Differences were basically found in Group 4 for the concentrations of Ca and P after treatment with bleaching strips containing 10% hydrogen peroxide. For the Ca/P ratio, the differences were found in Group 2-15% carbamide peroxide (p < 0.05). X-ray fluorescence proved to be a suitable method for the evaluation of the mineral content, presenting the advantage of being able to evaluate the same area at different stages of the methodology.

  14. Hyperspectral image reconstruction for x-ray fluorescence tomography

    DOE PAGES

    Gürsoy, Doǧa; Biçer, Tekin; Lanzirotti, Antonio; ...

    2015-01-01

    A penalized maximum-likelihood estimation is proposed to perform hyperspectral (spatio-spectral) image reconstruction for X-ray fluorescence tomography. The approach minimizes a Poisson-based negative log-likelihood of the observed photon counts, and uses a penalty term that has the effect of encouraging local continuity of model parameter estimates in both spatial and spectral dimensions simultaneously. The performance of the reconstruction method is demonstrated with experimental data acquired from a seed of arabidopsis thaliana collected at the 13-ID-E microprobe beamline at the Advanced Photon Source. The resulting element distribution estimates with the proposed approach show significantly better reconstruction quality than the conventional analytical inversionmore » approaches, and allows for a high data compression factor which can reduce data acquisition times remarkably. In particular, this technique provides the capability to tomographically reconstruct full energy dispersive spectra without compromising reconstruction artifacts that impact the interpretation of results.« less

  15. Quantification of zinc-porphyrin in dry-cured ham products by spectroscopic methods Comparison of absorption, fluorescence and X-ray fluorescence spectroscopy.

    PubMed

    Laursen, Kristoffer; Adamsen, Christina E; Laursen, Jens; Olsen, Karsten; Møller, Jens K S

    2008-03-01

    Zinc-protoporphyrin (Zn-pp), which has been identified as the major pigment in certain dry-cured meat products, was extracted with acetone/water (75%) and isolated from the following meat products: Parma ham, Iberian ham and dry-cured ham with added nitrite. The quantification of Zn-pp by electron absorption, fluorescence and X-ray fluorescence (XRF) spectroscopy was compared (concentration range used [Zn-pp]=0.8-9.7μM). All three hams were found to contain Zn-pp, and the results show no significant difference among the content of Zn-pp quantified by fluorescence, absorbance and X-ray fluorescence spectroscopy for Parma ham and Iberian ham. All three methods can be used for quantification of Zn-pp in acetone/water extracts of different ham types if the content is higher than 1.0ppm. For dry-cured ham with added nitrite, XRF was not applicable due to the low content of Zn-pp (<0.1ppm). In addition, XRF spectroscopy provides further information regarding other trace elements and can therefore be advantageous in this aspect. This study also focused on XRF determination of Fe in the extracts and as no detectable Fe was found in the three types of ham extracts investigated (limit of detection; Fe⩽1.8ppm), it allows the conclusion that iron containing pigments, e.g., heme, do not contribute to the noticeable red colour observed in some of the extracts.

  16. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  17. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  18. Automating X-ray Fluorescence Analysis for Rapid Astrobiology Surveys.

    PubMed

    Thompson, David R; Flannery, David T; Lanka, Ravi; Allwood, Abigail C; Bue, Brian D; Clark, Benton C; Elam, W Timothy; Estlin, Tara A; Hodyss, Robert P; Hurowitz, Joel A; Liu, Yang; Wade, Lawrence A

    2015-11-01

    A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. Dimensionality reduction-Planetary science-Visualization.

  19. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  20. Analytical Energy Dispersive X-Ray Fluorescence Measurements with a Scanty Amounts of Plant and Soil Materials

    NASA Astrophysics Data System (ADS)

    Mittal, R.; Rao, P.; Kaur, P.

    2018-01-01

    Elemental evaluations in scanty powdered material have been made using energy dispersive X-ray fluorescence (EDXRF) measurements, for which formulations along with specific procedure for sample target preparation have been developed. Fractional amount evaluation involves an itinerary of steps; (i) collection of elemental characteristic X-ray counts in EDXRF spectra recorded with different weights of material, (ii) search for linearity between X-ray counts and material weights, (iii) calculation of elemental fractions from the linear fit, and (iv) again linear fitting of calculated fractions with sample weights and its extrapolation to zero weight. Thus, elemental fractions at zero weight are free from material self absorption effects for incident and emitted photons. The analytical procedure after its verification with known synthetic samples of macro-nutrients, potassium and calcium, was used for wheat plant/ soil samples obtained from a pot experiment.

  1. [Characteristics of specifications of transportable inverter-type X-ray equipment].

    PubMed

    Yamamoto, Keiichi; Miyazaki, Shigeru; Asano, Hiroshi; Shinohara, Fuminori; Ishikawa, Mitsuo; Ide, Toshinori; Abe, Shinji; Negishi, Toru; Miyake, Hiroyuki; Imai, Yoshio; Okuaki, Tomoyuki

    2003-07-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met JIS standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment.

  2. Asymmetric Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, B.F.Gh.; Belak, Z.R.; Ignatyev, K.

    2009-06-04

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less

  3. Asymmetri Distribution of Metals in the Xenopus Laevis Oocyte: a Synchrotron X-Ray Fluorescence Microprobe Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, B.F.G.; Belak, Z.R.; Ignatyev, K.

    2009-04-29

    The asymmetric distribution of many components of the Xenopus oocyte, including RNA, proteins, and pigment, provides a framework for cellular specialization during development. During maturation, Xenopus oocytes also acquire metals needed for development, but apart from zinc, little is known about their distribution. Synchrotron X-ray fluorescence microprobe was used to map iron, copper, and zinc and the metalloid selenium in a whole oocyte. Iron, zinc, and copper were asymmetrically distributed in the cytoplasm, while selenium and copper were more abundant in the nucleus. A zone of high copper and zinc was seen in the animal pole cytoplasm. Iron was alsomore » concentrated in the animal pole but did not colocalize with zinc, copper, or pigment accumulations. This asymmetry of metal deposition may be important for normal development. Synchrotron X-ray fluorescence microprobe will be a useful tool to examine how metals accumulate and redistribute during fertilization and embryonic development.« less

  4. Total reflection X-ray fluorescence as a tool for food screening

    NASA Astrophysics Data System (ADS)

    Borgese, Laura; Bilo, Fabjola; Dalipi, Rogerta; Bontempi, Elza; Depero, Laura E.

    2015-11-01

    This review provides a comprehensive overview of the applications of total reflection X-ray fluorescence (TXRF) in the field of food analysis. Elemental composition of food is of great importance, since food is the main source of essential, major and trace elements for animals and humans. Some potentially toxic elements, dangerous for human health may contaminate food, entering the food chain from the environment, processing, and storage. For this reason the elemental analysis of food is fundamental for safety assessment. Fast and sensitive analytical techniques, able to detect major and trace elements, are required as a result of the increasing demand on multi-elemental information and product screening. TXRF is suitable for elemental analysis of food, since it provides simultaneous multi-elemental identification in a wide dynamic range of concentrations. Several different matrices may be analyzed obtaining results with a good precision and accuracy. In this review, the most recent literature about the use of TXRF for the analysis of food is reported. The focus is placed on the applications within food quality monitoring of drinks, beverages, vegetables, fruits, cereals, animal derivatives and dietary supplements. Furthermore, this paper provides a critical outlook on the developments required to transfer these methods from research to the industrial and analytical laboratories contexts.

  5. Elemental mapping and microimaging by x-ray capillary optics.

    PubMed

    Hampai, D; Dabagov, S B; Cappuccio, G; Longoni, A; Frizzi, T; Cibin, G; Guglielmotti, V; Sala, M

    2008-12-01

    Recently, many experiments have highlighted the advantage of using polycapillary optics for x-ray fluorescence studies. We have developed a special confocal scheme for micro x-ray fluorescence measurements that enables us to obtain not only elemental mapping of the sample but also simultaneously its own x-ray imaging. We have designed the prototype of a compact x-ray spectrometer characterized by a spatial resolution of less than 100 microm for fluorescence and less than 10 microm for imaging. A couple of polycapillary lenses in a confocal configuration together with a silicon drift detector allow elemental studies of extended samples (approximately 3 mm) to be performed, while a CCD camera makes it possible to record an image of the same samples with 6 microm spatial resolution, which is limited only by the pixel size of the camera. By inserting a compound refractive lens between the sample and the CCD camera, we hope to develop an x-ray microscope for more enlarged images of the samples under test.

  6. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfieldmore » to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.« less

  7. Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butorin, S.M.; Guo, J.; Magnuson, M.

    1997-04-01

    Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less

  8. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  9. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; hide

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  10. MCNP estimate of ZLS lens sensitivity in an x-ray field

    NASA Astrophysics Data System (ADS)

    Mitchell, Stephen E.; Baker, Stuart A.; Howe, Russell A.; Malone, Robert M.

    2016-09-01

    The telecentric zoom lens system (ZLS) has proven to be invaluable in flash x-ray field operations and recent successful experiments pertaining to stockpile stewardship. The ZLS contains 11 custom-manufactured lenses, a turning mirror (pellicle), and an x-ray-to-visible-light converting scintillator. Images are recorded on a fully characterized CCD. All hardware is supported by computerized, programmable, electro-mechanical mounts and alignment apparatus. Seven different glass material types varying in chemical stoichiometry comprise the 11 ZLS lenses. All lenses within the ZLS are out of the path of direct x-ray radiation during normal operation. However, any unshielded scattered x-ray radiation can result in energy deposition into the lenses, which may generate some scintillating light that can couple into the CCD. This extra light may contribute to a decrease in signal-to-noise ratio (SNR) and lower the overall fidelity of the radiograph images. An estimate of the scintillation generation and sensitivities for each of the seven types of glass used as lenses in the ZLS is presented. This report also includes estimates of the total observed background decoupling that each of the lens material types contribute.

  11. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    NASA Astrophysics Data System (ADS)

    Friedrich, S.; Drury, O. B.; George, S. J.; Cramer, S. P.

    2007-11-01

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of ˜10-20 eV FWHM below 1 keV, a solid angle coverage of ˜10 -3, and can be operated at total rates of up to ˜10 6 counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  12. X-ray microlaminography with polycapillary optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabrowski, K. M.; Dul, D. T.; Wrobel, A.

    2013-06-03

    We demonstrate layer-by-layer x-ray microimaging using polycapillary optics. The depth resolution is achieved without sample or source rotation and in a way similar to classical tomography or laminography. The method takes advantage from large angular apertures of polycapillary optics and from their specific microstructure, which is treated as a coded aperture. The imaging geometry is compatible with polychromatic x-ray sources and with scanning and confocal x-ray fluorescence setups.

  13. Characterization of Scintillating X-ray Optical Fiber Sensors

    PubMed Central

    Sporea, Dan; Mihai, Laura; Vâţă, Ion; McCarthy, Denis; O'Keeffe, Sinead; Lewis, Elfed

    2014-01-01

    The paper presents a set of tests carried out in order to evaluate the design characteristics and the operating performance of a set of six X-ray extrinsic optical fiber sensors. The extrinsic sensor we developed is intended to be used as a low energy X-ray detector for monitoring radiation levels in radiotherapy, industrial applications and for personnel dosimetry. The reproducibility of the manufacturing process and the characteristics of the sensors were assessed. The sensors dynamic range, linearity, sensitivity, and reproducibility are evaluated through radioluminescence measurements, X-ray fluorescence and X-ray imaging investigations. Their response to the operating conditions of the excitation source was estimated. The effect of the sensors design and implementation, on the collecting efficiency of the radioluminescence signal was measured. The study indicated that the sensors are efficient only in the first 5 mm of the tip, and that a reflective coating can improve their response. Additional tests were done to investigate the concentricity of the sensors tip against the core of the optical fiber guiding the optical signal. The influence of the active material concentration on the sensor response to X-ray was studied. The tests were carried out by measuring the radioluminescence signal with an optical fiber spectrometer and with a Multi-Pixel Photon Counter. PMID:24556676

  14. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  15. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  16. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto

    2011-09-01

    We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less

  17. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    NASA Astrophysics Data System (ADS)

    Woll, Arthur R.; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Finnefrock, Adam C.; Gordon, Robert; Hallin, Emil; Mass, Jennifer

    2014-03-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  18. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy.

    PubMed

    Yang, Soo In; George, Graham N; Lawrence, John R; Kaminskyj, Susan G W; Dynes, James J; Lai, Barry; Pickering, Ingrid J

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to the same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se 0 ). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se 0 using the Se L III edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50-700 nm, suggesting Se 0 nanoparticles. The intimate association of Se 0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.

  19. Multispecies Biofilms Transform Selenium Oxyanions into Elemental Selenium Particles: Studies Using Combined Synchrotron X-ray Fluorescence Imaging and Scanning Transmission X-ray Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Soo In; George, Graham N.; Lawrence, John R.

    2016-10-04

    Selenium (Se) is an element of growing environmental concern, because low aqueous concentrations can lead to biomagnification through the aquatic food web. Biofilms, naturally occurring microbial consortia, play numerous important roles in the environment, especially in biogeochemical cycling of toxic elements in aquatic systems. The complexity of naturally forming multispecies biofilms presents challenges for characterization because conventional microscopic techniques require chemical and physical modifications of the sample. Here, multispecies biofilms biotransforming selenium oxyanions were characterized using X-ray fluorescence imaging (XFI) and scanning transmission X-ray microscopy (STXM). These complementary synchrotron techniques required minimal sample preparation and were applied correlatively to themore » same biofilm areas. Sub-micrometer XFI showed distributions of Se and endogenous metals, while Se K-edge X-ray absorption spectroscopy indicated the presence of elemental Se (Se0). Nanoscale carbon K-edge STXM revealed the distributions of microbial cells, extracellular polymeric substances (EPS), and lipids using the protein, saccharide, and lipid signatures, respectively, together with highly localized Se0 using the Se LIII edge. Transmission electron microscopy showed the electron-dense particle diameter to be 50–700 nm, suggesting Se0 nanoparticles. The intimate association of Se0 particles with protein and polysaccharide biofilm components has implications for the bioavailability of selenium in the environment.« less

  20. MapX An In Situ, Full-frame X-Ray Spectroscopic Imager for Planetary Science and Astrobiology

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Thompson, Kathleen; Bristow, Thomas

    2017-01-01

    Microbial life exploits micron-scale disequilibria at boundaries where valence, chemical potential, pH, Eh, etc. vary on a length scale commensurate with the organisms - 10's to 100's of microns. The detection of accumulations of the biogenic elements C,N,O,P,S at appropriate concentrations on or in a mineral/ice substrate would constitute permissive evidence of extant life, but context is also required. Does the putative biosignature exist under habitable conditions? Under what conditions of P, T, and chemical potential was the host mineralogy formed? MapX is an in situ robotic spacecraft instrument that images the biogenic elements C, N, O, P, S, as well as the cations of the rock-forming minerals (Na, Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe) and important anions such as Cl, Fl. MapX provides element maps with less than or equal to100 microns resolution over a 2.5 cm X 2.5 cm area, as well as quantitative XRF spectra from ground- or instrument-selected Regions of Interest (ROI). XRF spectra are converted to mineralogies using ground- or instrument-based algorithms. Either X-ray tube or radioisotope sources such as 244Cm (Alpha-particle and gamma- ray fluorescence) can be used. Fluoresced sample Xrays are imaged onto an X-ray sensitive CCD through an X-ray MicroPore Optic (MPO). The MapX design as well as baseline performance requirements for a MapX instrument intended for life detection / identification of habitable environments will be presented.

  1. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    NASA Astrophysics Data System (ADS)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  2. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    NASA Astrophysics Data System (ADS)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  3. Curved position-sensitive detector for X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Izumi, T.

    1980-11-01

    A new curved position-sensitive proportional detector has been constructed for X-ray crystallography. A very hard steel wire 0.2 mm in diameter was used as a single anode wire. It was bent to a radius of 6.5 cm and was suspended elastically in a wide 160° 2θ angular aperture. An amplifier and ADC-per-cathode strip system was made in order to encode the position. The spatial resolution is better than 0.37 mm (fwhm) along the curved anode wire, and this value corresponds to an angular resolution of 0.28° in 2θ. It is shown that a thick hard anode wire is quite suitable for use as a curved position-sensitive detector.

  4. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  5. Electrochemical X-ray fluorescence spectroscopy for trace heavy metal analysis: enhancing X-ray fluorescence detection capabilities by four orders of magnitude.

    PubMed

    Hutton, Laura A; O'Neil, Glen D; Read, Tania L; Ayres, Zoë J; Newton, Mark E; Macpherson, Julie V

    2014-05-06

    The development of a novel analytical technique, electrochemical X-ray fluorescence (EC-XRF), is described and applied to the quantitative detection of heavy metals in solution, achieving sub-ppb limits of detection (LOD). In EC-XRF, electrochemical preconcentration of a species of interest onto the target electrode is achieved here by cathodic electrodeposition. Unambiguous elemental identification and quantification of metal concentration is then made using XRF. This simple electrochemical preconcentration step improves the LOD of energy dispersive XRF by over 4 orders of magnitude (for similar sample preparation time scales). Large area free-standing boron doped diamond grown using microwave plasma chemical vapor deposition techniques is found to be ideal as the electrode material for both electrodeposition and XRF due to its wide solvent window, transparency to the XRF beam, and ability to be produced in mechanically robust freestanding thin film form. During electrodeposition it is possible to vary both the deposition potential (Edep) and deposition time (tdep). For the metals Cu(2+) and Pb(2+) the highest detection sensitivities were found for Edep = -1.75 V and tdep (=) 4000 s with LODs of 0.05 and 0.04 ppb achieved, respectively. In mixed Cu(2+)/Pb(2+) solutions, EC-XRF shows that Cu(2+) deposition is unimpeded by Pb(2+), across a broad concentration range, but this is only true for Pb(2+) when both metals are present at low concentrations (10 nM), boding well for trace level measurements. In a dual mixed metal solution, EC-XRF can also be employed to either selectively deposit the metal which has the most positive formal reduction potential, E(0), or exhaustively deplete it from solution, enabling uninhibited detection of the metal with the more negative E(0).

  6. Crystallization and preliminary X-ray characterization of the genetically encoded fluorescent calcium indicator protein GCaMP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez Guilbe, María M.; Protein Research and Development Center, University of Puerto Rico; Alfaro Malavé, Elisa C.

    The genetically encoded fluorescent calcium-indicator protein GCaMP2 was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution and the structure was solved by molecular replacement. Fluorescent proteins and their engineered variants have played an important role in the study of biology. The genetically encoded calcium-indicator protein GCaMP2 comprises a circularly permuted fluorescent protein coupled to the calcium-binding protein calmodulin and a calmodulin target peptide, M13, derived from the intracellular calmodulin target myosin light-chain kinase and has been used to image calcium transients in vivo. To aid rational efforts to engineer improved variants of GCaMP2, thismore » protein was crystallized in the calcium-saturated form. X-ray diffraction data were collected to 2.0 Å resolution. The crystals belong to space group C2, with unit-cell parameters a = 126.1, b = 47.1, c = 68.8 Å, β = 100.5° and one GCaMP2 molecule in the asymmetric unit. The structure was phased by molecular replacement and refinement is currently under way.« less

  7. Element Specific Imaging Using Muonic X-rays

    NASA Astrophysics Data System (ADS)

    Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.

    The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.

  8. Recovering Ancient Inscriptions by X-ray Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Powers, Judson; Dimitrova, Nora; Huang, Rong; Smilgies, Detlef-M.; Bilderback, Don; Clinton, Kevin; Thorne, Robert

    2006-03-01

    For many ancient cultures including those of the Mediterranean, carved stone inscriptions provide our most detailed historical record. Over the ages the surfaces of many of these inscriptions have been eroded so that the original text can no longer be distinguished. A method that allowed at least partial recovery of this lost text would provide a major breakthrough for the study of these cultures. The scope of analytical techniques that can be applied to stone tablets is limited by their large size and weight. We have applied X-ray fluorescence imaging to study the text of ancient stone inscriptions [1]. This method allows the concentrations of trace elements, including those introduced during inscription and painting, to be measured and mapped. The images created in this way correspond exactly to the published text of the inscription, both when traces of letters are visible with the naked eye and when they are barely detectable. [1] J. Powers et al., Zeitschrift für Papyrologie und Epigraphik 152: 221-227 (2005).

  9. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering.

    PubMed

    Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli

    2018-04-17

    Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.

  10. Analytical performance of benchtop total reflection X-ray fluorescence instrumentation for multielemental analysis of wine samples

    NASA Astrophysics Data System (ADS)

    Dalipi, Rogerta; Marguí, Eva; Borgese, Laura; Bilo, Fabjola; Depero, Laura E.

    2016-06-01

    Recent technological improvements have led to a widespread adoption of benchtop total reflection X-ray fluorescence systems (TXRF) for analysis of liquid samples. However, benchtop TXRF systems usually present limited sensitivity compared with high-scale instrumentation which can restrict its application in some fields. The aim of the present work was to evaluate and compare the analytical capabilities of two TXRF systems, equipped with low power Mo and W target X-ray tubes, for multielemental analysis of wine samples. Using the Mo-TXRF system, the detection limits for most elements were one order of magnitude lower than those attained using the W-TXRF system. For the detection of high Z elements like Cd and Ag, however, W-TXRF remains a very good option due to the possibility of K-Lines detection. Accuracy and precision of the obtained results have been evaluated analyzing spiked real wine samples and comparing the TXRF results with those obtained by inductively coupled plasma emission spectroscopy (ICP-OES). In general, good agreement was obtained between ICP-OES and TXRF results for the analysis of both red and white wine samples except for light elements (i.e., K) which TXRF concentrations were underestimated. However, a further achievement of analytical quality of TXRF results can be achieved if wine analysis is performed after dilution of the sample with de-ionized water.

  11. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  12. Sensitivity of photon-counting based K-edge imaging in X-ray computed tomography.

    PubMed

    Roessl, Ewald; Brendel, Bernhard; Engel, Klaus-Jürgen; Schlomka, Jens-Peter; Thran, Axel; Proksa, Roland

    2011-09-01

    The feasibility of K-edge imaging using energy-resolved, photon-counting transmission measurements in X-ray computed tomography (CT) has been demonstrated by simulations and experiments. The method is based on probing the discontinuities of the attenuation coefficient of heavy elements above and below the K-edge energy by using energy-sensitive, photon counting X-ray detectors. In this paper, we investigate the dependence of the sensitivity of K-edge imaging on the atomic number Z of the contrast material, on the object diameter D , on the spectral response of the X-ray detector and on the X-ray tube voltage. We assume a photon-counting detector equipped with six adjustable energy thresholds. Physical effects leading to a degradation of the energy resolution of the detector are taken into account using the concept of a spectral response function R(E,U) for which we assume four different models. As a validation of our analytical considerations and in order to investigate the influence of elliptically shaped phantoms, we provide CT simulations of an anthropomorphic Forbild-Abdomen phantom containing a gold-contrast agent. The dependence on the values of the energy thresholds is taken into account by optimizing the achievable signal-to-noise ratios (SNR) with respect to the threshold values. We find that for a given X-ray spectrum and object size the SNR in the heavy element's basis material image peaks for a certain atomic number Z. The dependence of the SNR in the high- Z basis-material image on the object diameter is the natural, exponential decrease with particularly deteriorating effects in the case where the attenuation from the object itself causes a total signal loss below the K-edge. The influence of the energy-response of the detector is very important. We observed that the optimal SNR values obtained with an ideal detector and with a CdTe pixel detector whose response, showing significant tailing, has been determined at a synchrotron differ by factors of

  13. X-ray-induced fluorescent centers formation in zinc- phosphate glasses doped with Ag and Cu ions

    NASA Astrophysics Data System (ADS)

    Klyukin, D. A.; Pshenova, A. S.; Sidorov, A. I.; Stolyarchuk, M. V.

    2016-08-01

    Fluorescent properties of silver and copper doped zinc-phosphate glasses were studied. By X-ray irradiation of silver and copper co-doped glasses we could create and identify new emission centers which do not exist in single-doped samples. Doping of the glass with both silver and copper ions leads to the increase of quantum yield by 2.7 times. The study was complemented by quantum chemical calculations using the time-dependent density functional theory. It was shown that fluorescence may be attributed to the formation of mixed Ag-Cu molecular clusters.

  14. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging.

    PubMed

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis.

  15. Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

    PubMed Central

    Zhang, Miaomiao; Ju, Huixiang; Zhang, Li; Sun, Mingzhong; Zhou, Zhongwei; Dai, Zhenyu; Zhang, Lirong; Gong, Aihua; Wu, Chaoyao; Du, Fengyi

    2015-01-01

    X-ray computed tomography (CT) is the most commonly used imaging technique for noninvasive diagnosis of disease. In order to improve tissue specificity and prevent adverse effects, we report the design and synthesis of iodine-doped carbon dots (I-doped CDs) as efficient CT contrast agents and fluorescence probe by a facile bottom-up hydrothermal carbonization process. The as-prepared I-doped CDs are monodispersed spherical nanoparticles (a diameter of ~2.7 nm) with favorable dispersibility and colloidal stability in water. The aqueous solution of I-doped CDs showed wavelength-dependent excitation and stable photoluminescence similar to traditional carbon quantum dots. Importantly, I-doped CDs displayed superior X-ray attenuation properties in vitro and excellent biocompatibility. After intravenous injection, I-doped CDs were distributed throughout the body and excreted by renal clearance. These findings validated that I-doped CDs with high X-ray attenuation potency and favorable photoluminescence show great promise for biomedical research and disease diagnosis. PMID:26609232

  16. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  17. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  18. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  19. Combining Monte Carlo methods with coherent wave optics for the simulation of phase-sensitive X-ray imaging

    PubMed Central

    Peter, Silvia; Modregger, Peter; Fix, Michael K.; Volken, Werner; Frei, Daniel; Manser, Peter; Stampanoni, Marco

    2014-01-01

    Phase-sensitive X-ray imaging shows a high sensitivity towards electron density variations, making it well suited for imaging of soft tissue matter. However, there are still open questions about the details of the image formation process. Here, a framework for numerical simulations of phase-sensitive X-ray imaging is presented, which takes both particle- and wave-like properties of X-rays into consideration. A split approach is presented where we combine a Monte Carlo method (MC) based sample part with a wave optics simulation based propagation part, leading to a framework that takes both particle- and wave-like properties into account. The framework can be adapted to different phase-sensitive imaging methods and has been validated through comparisons with experiments for grating interferometry and propagation-based imaging. The validation of the framework shows that the combination of wave optics and MC has been successfully implemented and yields good agreement between measurements and simulations. This demonstrates that the physical processes relevant for developing a deeper understanding of scattering in the context of phase-sensitive imaging are modelled in a sufficiently accurate manner. The framework can be used for the simulation of phase-sensitive X-ray imaging, for instance for the simulation of grating interferometry or propagation-based imaging. PMID:24763652

  20. Detection of Fingerprints Based on Elemental Composition Using Micro-X-Ray Fluorescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, C. G.; Wiltshire, S.; Miller, T. C.

    A method was developed to detect fingerprints using a technique known as micro-X-ray fluorescence. The traditional method of detecting fingerprints involves treating the sample with certain powders, liquids, or vapors to add color to the fingerprint so that it can be easily seen and photographed for forensic purposes. This is known as contrast enhancement, and a multitude of chemical processing methods have been developed in the past century to render fingerprints visible. However, fingerprints present on certain substances such as fibrous papers and textiles, wood, leather, plastic, adhesives, and human skin can sometimes be difficult to detect by contrast enhancement.more » Children's fingerprints are also difficult to detect due to the absence of sebum on their skin, and detection of prints left on certain colored backgrounds can sometimes be problematic. Micro-X-ray fluorescence (MXRF) was studied here as a method to detect fingerprints based on chemical elements present in fingerprint residue. For example, salts such as sodium chloride and potassium chloride excreted in sweat are sometimes present in detectable quantities in fingerprints. We demonstrated that MXRF can be used to detect this sodium, potassium, and chlorine from such salts. Furthermore, using MXRF, each of these elements (and many other elements if present) can be detected as a function of location on a surface, so we were able to 'see' a fingerprint because these salts are deposited mainly along the patterns present in a fingerprint (traditionally called friction ridges in forensic science). MXRF is not a panacea for detecting all fingerprints; some prints will not contain enough detectable material to be 'seen'; however, determining an effective means of coloring a fingerprint with traditional contrast enhancement methods can sometimes be an arduous process with limited success. Thus, MXRF offers a possible alternative for detecting fingerprints, and it does not require any additional

  1. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    PubMed

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  2. Observational Conditions for the Detection of X-Ray Fluorescence from Sodium by the MIXS Instrument on BepiColombo

    NASA Astrophysics Data System (ADS)

    Cooper, R.; Grande, M.; Martindale, A.; Bunce, E.

    2018-05-01

    We model the expected fluorescence from the exosphere and surface of Mercury, as observed by the Mercury Imaging X-ray Spectrometer (MIXS) on the upcoming BepiColombo mission, using code modified from that used for the SMART-1 D-CIXS instrument.

  3. FIELD MEASUREMENT TECHNOLOGY FOR MERCURY IN SOIL AND SEDIMENT NITON'S XLI/XLT 700 SERIES X-RAY FLUORESCENCE ANALYZER

    EPA Science Inventory

    NITON's XL-700 Series X-ray fluorescence analyzers were demonstrated under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in May 2003 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The purpose of the Demonstration...

  4. X-ray fluorescence in investigations of cultural relics and archaeological finds.

    PubMed

    Musílek, Ladislav; Cechák, Tomáš; Trojek, Tomáš

    2012-07-01

    Some characteristic features of X-ray fluorescence (XRF) analysis make it an ideal method for investigations of cultural relics and archaeological finds. It has therefore become a standard method used in archaeometry. Paintings, frescos, manuscripts, pottery, metalwork, glass, and many other objects are analysed with the aim of recognising their materials, production technologies and origin, and for identifying counterfeits. This paper reviews various techniques used in XRF analyses of works of art, summarises the advantages and limitations of the method, and presents some typical examples of its use. The general review is supplemented by some techniques used and some results achieved at CTU-FNSPE in Prague. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. [Simultaneous determination of multiple elements in airborne particulate samples by X-ray fluorescence spectrometry].

    PubMed

    Takada, T; Hitosugi, M; Kadowaki, T; Kudo, M

    1983-07-01

    An energy dispersive X-ray fluorescence spectrometer (EDX) has been applied to determine multielements in the workplace air. The standards for X-ray fluorescence analysis were prepared by the chelate precipitation method on polyvinyl chloride (PVC) membrane filter. And, the specimens were prepared to deposit various metal compounds of different chemical forms by the suspension method on PVC membrane filter, and they were determined with EDX and atomic absorption spectrometer (AAS). The results obtained were as follows. Though there is a difference by each element, an amount less than 3 microgram/cm2 per unit area makes it possible to undergo multielement analysis, that is, is has no influence on fine particle effect (particle size; under 5 microns). Then, effects of the X-ray intensity by different chemical forms are negligible. At the presence the neighboring element and other elements this technique showed greater precision by carrying out on corrective treatment, etc. The coefficient of variation of this technique was in the range of 2.5-6.5% at DDTC-Cu of 0.5-5.0 micrograms/cm2, with the limit of detection for As : 0.002 microgram/cm2, Zn : 0.003 microgram/cm2, Pb : 0.003 microgram/cm2, Cu : 0.004 microgram/cm2, Ni : 0.003 microgram/cm2, Fe : 0.005 microgram/cm2, Mn : 0.008 microgram/cm2, Cr : 0.013 microgram/cm2, respectively. Aerosols collected at the workplace were analyzed with EDX and AAS, and the obtained results showed good agreement with such regression line as y = 1.04 chi + 0.04, the coefficient of correlation being r = 0.995. From these results, this technique was found to be a very excellent method for monitoring of multielements in the workplace air.

  6. Compositional homogeneity and X-ray topographic analyses of CdTe xSe 1-x grown by the vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We grew CdTe xSe 1-x crystals with nominal Se concentrations of 5%, 7%, and 10% by the vertical Bridgman technique, and evaluated their compositional homogeneity and structural quality at the NSLS’ X-ray fluorescence and white beam X-ray topography beam lines. Both X-ray fluorescence and photoluminescence mapping revealed very high compositional homogeneity of the CdTe xSe 1-x crystals. Here, we noted that those crystals with higher concentrations of Se were more prone to twinning than those with a lower content. The crystals were fairly free from strains and contained low concentrations of sub-grain boundaries and their networks.

  7. Development of a Silicon Drift Detector Array: An X-Ray Fluorescence Spectrometer for Remote Surface Mapping

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Carini, Gabriella A.; Wei, Chen; Elsner, Ronald F.; Kramer, Georgiana; De Geronimo, Gianluigi; Keister, Jeffrey W.; Zheng, Li; Ramsey, Brian D.; Rehak, Pavel; hide

    2009-01-01

    Over the past three years NASA Marshall Space Flight Center has been collaborating with Brookhaven National Laboratory to develop a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) intended for fine surface mapping of the light elements of the moon. The value of fluorescence spectrometry for surface element mapping is underlined by the fact that the technique has recently been employed by three lunar orbiter missions; Kaguya, Chandrayaan-1, and Chang e. The SDD-XRS instrument we have been developing can operate at a low energy threshold (i.e. is capable of detecting Carbon), comparable energy resolution to Kaguya (<150 eV at 5.9 keV) and an order of magnitude lower power requirement, making much higher sensitivities possible. Furthermore, the intrinsic radiation resistance of the SDD makes it useful even in radiation-harsh environments such as that of Jupiter and its surrounding moons.

  8. X-ray spectrometer with a low-cost SiC photodiode

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lioliou, G.; Barnett, A. M.

    2018-04-01

    A low-cost Commercial-Off-The-Shelf (COTS) 4H-SiC 0.06 mm2 UV p-n photodiode was coupled to a low-noise charge-sensitive preamplifier and used as photon counting X-ray spectrometer. The photodiode/spectrometer was investigated at X-ray energies from 4.95 keV to 21.17 keV: a Mo cathode X-ray tube was used to fluoresce eight high-purity metal foils to produce characteristic X-ray emission lines which were used to characterise the instrument. The energy resolution (full width at half maximum, FWHM) of the spectrometer was found to be 1.6 keV to 1.8 keV, across the energy range. The energy linearity of the detector/spectrometer (i.e. the detector's charge output per photon as a function of incident photon energy across the 4.95 keV to 21.17 keV energy range), as well as the count rate linearity of the detector/spectrometer (i.e. number of detected photons as a function of photon fluence at a specific energy) were investigated. The energy linearity of the detector/spectrometer was linear with an error < ± 0.7 %; the count rate linearity of the detector/spectrometer was linear with an error < ± 2 %. The use of COTS SiC photodiodes as detectors for X-ray spectrometers is attractive for nanosatellite/CubeSat applications (including solar flare monitoring), and for cost sensitive industrial uses.

  9. Normal incidence X-ray mirror for chemical microanalysis

    DOEpatents

    Carr, Martin J.; Romig, Jr., Alton D.

    1990-01-01

    A non-planar, focusing mirror, to be utilized in both electron column instruments and micro-x-ray fluorescence instruments for performing chemical microanalysis on a sample, comprises a concave, generally spherical base substrate and a predetermined number of alternating layers of high atomic number material and low atomic number material contiguously formed on the base substrate. The thickness of each layer is an integral multiple of the wavelength being reflected and may vary non-uniformly according to a predetermined design. The chemical analytical instruments in which the mirror is used also include a predetermined energy source for directing energy onto the sample and a detector for receiving and detecting the x-rays emitted from the sample; the non-planar mirror is located between the sample and detector and collects the x-rays emitted from the sample at a large solid angle and focuses the collected x-rays to the sample. For electron column instruments, the wavelengths of interest lie above 1.5 nm, while for x-ray fluorescence instruments, the range of interest is below 0.2 nm. Also, x-ray fluorescence instruments include an additional non-planar focusing mirror, formed in the same manner as the previously described m The invention described herein was made in the performance of work under contract with the Department of Energy, Contract No. DE-AC04-76DP00789, and the United States Government has rights in the invention pursuant to this contract.

  10. Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping

    NASA Astrophysics Data System (ADS)

    Nikonow, Wilhelm; Rammlmair, Dieter

    2016-11-01

    Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.

  11. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    NASA Technical Reports Server (NTRS)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  12. [Analysis and characterization of Belamcanda chinensis with space mutagenesis breeding by X-ray fluorescence analysis and X-ray diffraction].

    PubMed

    Guan, Ying; Ding, Xi-Feng; Wang, Wen-Jing; Guo, Xi-Hua; Zhu, Yan-Ying

    2008-02-01

    The contents of various elements in the fourth generation Belamcanda chinensis (L.) DC. with space mutagenesis breeding were analyzed and characterized. X-ray fluorescence spectrum analysis (XRF) and powder X-ray diffraction (PXRD) were applied jointly. It was found that the content of K element in the space flight mutagenesis increases 1.03 and 0.31 times, Mg enhances 1.44 and 0.06 times, but Al reduces 38.5% and 85.5% respectively compared to the contents in the ground group and the comparison group, while those of Ca, Mn and Fe enhance 0.95, 0.30 and 0.29 times respectively contrasted to the ground group. Besides, there was discovered the crystal of whewellite in the Belamcanda chinensis (L.) DC. and the content in the ground group is less than that of the outer space and the outer space group, which in turn is less than that of the comparison group. It is concluded that the contents of mineral elements indispensable to body in the space group are closer or superior to the comparison, group as compared to the ground group. In the present paper, a quick and simple appraising method is offered, which may be of great significance to the popularization of the planting outer space Chinese traditional medicine to filtrate more excellent breed and set up norm of quality appraisal.

  13. Full-field fan-beam x-ray fluorescence computed tomography system design with linear-array detectors and pinhole collimation: a rapid Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Li, Liang; Li, Ruizhe; Chen, Zhiqiang

    2017-11-01

    We present the design concept and initial simulations for a polychromatic full-field fan-beam x-ray fluorescence computed tomography (XFCT) device with pinhole collimators and linear-array photon counting detectors. The phantom is irradiated by a fan-beam polychromatic x-ray source filtered by copper. Fluorescent photons are stimulated and then collected by two linear-array photon counting detectors with pinhole collimators. The Compton scatter correction and the attenuation correction are applied in the data processing, and the maximum-likelihood expectation maximization algorithm is applied for the image reconstruction of XFCT. The physical modeling of the XFCT imaging system was described, and a set of rapid Monte Carlo simulations was carried out to examine the feasibility and sensitivity of the XFCT system. Different concentrations of gadolinium (Gd) and gold (Au) solutions were used as contrast agents in simulations. Results show that 0.04% of Gd and 0.065% of Au can be well reconstructed with the full scan time set at 6 min. Compared with using the XFCT system with a pencil-beam source or a single-pixel detector, using a full-field fan-beam XFCT device with linear-array detectors results in significant scanning time reduction and may satisfy requirements of rapid imaging, such as in vivo imaging experiments.

  14. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  15. X RAY SENSITIVITY OF CONIDIA OF COLLECTOTRICHUM COCCODES (WALLR.) HUGHES (in Italian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loprieno, N.; Nannarone, A.

    1963-01-01

    Conidia collected from 6-day-old cultures of Colletotrichum coccodes were washed, resuspended in distilled water, and exposed to various doses of x radiation. Samples of the conidia were then seeded on complete media and survival was evaluated after 3 days by counting the number of colonies. Results demonstrate a very high sensitivity of this fungus to the lethal effects of x rays. (C.H.)

  16. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  17. The feasibility of polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte Carlo study.

    PubMed

    Jones, Bernard L; Cho, Sang Hyun

    2011-06-21

    A recent study investigated the feasibility to develop a bench-top x-ray fluorescence computed tomography (XFCT) system capable of determining the spatial distribution and concentration of gold nanoparticles (GNPs) in vivo using a diagnostic energy range polychromatic (i.e. 110 kVp) pencil-beam source. In this follow-up study, we examined the feasibility of a polychromatic cone-beam implementation of XFCT by Monte Carlo (MC) simulations using the MCNP5 code. In the current MC model, cylindrical columns with various sizes (5-10 mm in diameter) containing water loaded with GNPs (0.1-2% gold by weight) were inserted into a 5 cm diameter cylindrical polymethyl methacrylate phantom. The phantom was then irradiated by a lead-filtered 110 kVp x-ray source, and the resulting gold fluorescence and Compton-scattered photons were collected by a series of energy-sensitive tallies after passing through lead parallel-hole collimators. A maximum-likelihood iterative reconstruction algorithm was implemented to reconstruct the image of GNP-loaded objects within the phantom. The effects of attenuation of both the primary beam through the phantom and the gold fluorescence photons en route to the detector were corrected during the image reconstruction. Accurate images of the GNP-containing phantom were successfully reconstructed for three different phantom configurations, with both spatial distribution and relative concentration of GNPs well identified. The pixel intensity of regions containing GNPs was linearly proportional to the gold concentration. The current MC study strongly suggests the possibility of developing a bench-top, polychromatic, cone-beam XFCT system for in vivo imaging.

  18. Improving limited-projection-angle fluorescence molecular tomography using a co-registered x-ray computed tomography scan.

    PubMed

    Radrich, Karin; Ale, Angelique; Ermolayev, Vladimir; Ntziachristos, Vasilis

    2012-12-01

    We examine the improvement in imaging performance, such as axial resolution and signal localization, when employing limited-projection-angle fluorescence molecular tomography (FMT) together with x-ray computed tomography (XCT) measurements versus stand-alone FMT. For this purpose, we employed living mice, bearing a spontaneous lung tumor model, and imaged them with FMT and XCT under identical geometrical conditions using fluorescent probes for cancer targeting. The XCT data was employed, herein, as structural prior information to guide the FMT reconstruction. Gold standard images were provided by fluorescence images of mouse cryoslices, providing the ground truth in fluorescence bio-distribution. Upon comparison of FMT images versus images reconstructed using hybrid FMT and XCT data, we demonstrate marked improvements in image accuracy. This work relates to currently disseminated FMT systems, using limited projection scans, and can be employed to enhance their performance.

  19. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  20. A quantitative x-ray detection system for gold nanoparticle tumour biomarkers.

    PubMed

    Ricketts, K; Castoldi, A; Guazzoni, C; Ozkan, C; Christodoulou, C; Gibson, A P; Royle, G J

    2012-09-07

    X-ray fluorescence techniques have proven beneficial for identifying and quantifying trace elements in biological tissues. A novel approach is being developed that employs x-ray fluorescence with an aim to locate heavy nanoparticles, such as gold, which are embedded into tissues. Such nanoparticles can be functionalized to act as markers for tumour characteristics to map the disease state, with the future aim of imaging them to inform cancer therapy regimes. The uptake of functionalized nanoparticles by cancer cells will also enable detection of small clusters of infiltrating cancer cells which are currently missed by commonly used imaging modalities. The novel system, consisting of an energy-resolving silicon drift detector with high spectral resolution, shows potential in both quantification of and sensitivity to nanoparticle concentrations typically found in tumours. A series of synchrotron measurements are presented; a linear relationship between fluorescence intensity and gold nanoparticle (GNP) concentration was found down to 0.005 mgAu ml(-1), the detection limit of the system. Successful use of a bench-top source, suitable for possible future clinical use, is also demonstrated, and found not to degrade the detection limit or accuracy of the GNP concentration measurement. The achieved system sensitivity suggests possible future clinical usefulness in measuring tumour uptake in vivo, particularly in shallow tumour sites and small animals, in ex vivo tissue and in 3D in vitro research samples.

  1. Water analysis via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.

    2017-01-01

    Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.

  2. The Viking X ray fluorescence experiment - Sampling strategies and laboratory simulations. [Mars soil sampling

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Castro, A. J.; Clark, B. C.; Toulmin, P., III; Rose, H., Jr.; Keil, K.; Gooding, J. L.

    1977-01-01

    Ten samples of Mars regolith material (six on Viking Lander 1 and four on Viking Lander 2) have been delivered to the X ray fluorescence spectrometers as of March 31, 1977. An additional six samples at least are planned for acquisition in the remaining Extended Mission (to January 1979) for each lander. All samples acquired are Martian fines from the near surface (less than 6-cm depth) of the landing sites except the latest on Viking Lander 1, which is fine material from the bottom of a trench dug to a depth of 25 cm. Several attempts on each lander to acquire fresh rock material (in pebble sizes) for analysis have yielded only cemented surface crustal material (duricrust). Laboratory simulation and experimentation are required both for mission planning of sampling and for interpretation of data returned from Mars. This paper is concerned with the rationale for sample site selections, surface sampler operations, and the supportive laboratory studies needed to interpret X ray results from Mars.

  3. A Broad-band Spectral and Timing Study of the X-Ray Binary System Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Audley, Michael Damian

    1998-01-01

    This dissertation describes a multi-mission investigation of the high mass X-ray binary pulsar Centaurus X-3. Cen X-3 was observed with the Broad Band X-Ray Telescope (BBXRT) in December 1990. This was the first high-resolution solid state X-ray spectrometer to cover the iron K fluorescence region. The Fe K emission feature was resolved into two components for the first time. A broad 6.7 keV feature was found to be a blend of lines from Fe XXI-Fe XXVI with energies ranging from 6.6 to 6.9 keV due to photoionization of the companion's stellar wind. A narrow line at 6.4 keV due to fluorescence of iron in relatively low ionization states was also found. The quasi-periodic oscillations (QPO) at about 40 mHz were used to estimate the surface magnetic field of Cen X-3 as approx. 2.6 x 10(exp 12) G and to predict that there should be a cyclotron scattering resonance absorption feature (CSRF) near 30 keV. In order to further resolve the iron line complex and to investigate the pulse-phase dependence of the iron line intensities, Cen X-3 was observed with the Advanced Satellite for Cosmology and Astrophysics (ASCA). Using ASCA's state-of-the-art non-dispersive X-ray spectrometers the 6.4 keV fluorescent iron line was found to be pulsing while the intensities of the 6.7 and 6.9 keV recombination lines do not vary with pulse phase. This confirms that the 6.4 keV line is due to reflection by relatively neutral matter close to the neutron star while the recombination lines originate in the extended stellar wind. The continuum spectrum was found to be modified by reflection from matter close to the neutron star. Observations with the EXOSAT GSPC were used to search for a CSRF. The EXOSAT spectra were consistent with the presence of a CSRF but an unambiguous detection was not possible because of a lack of sensitivity at energies higher than the cyclotron energy. Cen X-3 was then observed with the Rossi X-Ray Timing Explorer (RXTE) and evidence for a CSRF at 25.1 +/- 0.3 keV was

  4. Thickness determination of thin solid films by angle-resolved X-ray fluorescence spectrometry using monochromatized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.

    1995-05-01

    Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.

  5. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  6. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  7. High-sensitive computed tomography system using a silicon-PIN x-ray diode

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sato, Yuich; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2012-10-01

    A low-dose-rate X-ray computed tomography (CT) system is useful for reducing absorbed dose for patients. The CT system with a tube current of 1.91 mA was developed using a silicon-PIN X-ray diode (Si-PIN-XD). The Si-PIN-XD is a selected high-sensitive Si-PIN photodiode (PD) for detecting X-ray photons. X-ray photons are detected directly using the Si-PIN-XD without a scintillator, and the photocurrent from the diode is amplified using current-voltage and voltage-voltage amplifiers. The output voltage is converted into logical pulses using a voltage-frequency converter with maximum frequency of 500 kHz, and the frequency is proportional to the voltage. The pulses from the converter are sent to differentiator with a time constant of 1 μs to generate short positive pulses for counting, and the pulses are counted using a counter card. Tomography is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. The exposure time for obtaining a tomogram was 5 min at a scan step of 0.5 mm and a rotation step of 3.0°. The tube current and voltage were 1.91 mA and 100 kV, respectively, and gadolinium K-edge CT was carried out using filtered X-ray spectra with a peak energy of 52 keV.

  8. Measurements of Strontium Levels in Human Bone In Vivo Using Portable X-ray Fluorescence (XRF).

    PubMed

    Specht, Aaron J; Mostafaei, Farshad; Lin, Yanfen; Xu, Jian; Nie, Linda H

    2017-08-01

    Measurement of bone strontium (Sr) is vital to determining the effectiveness of Sr supplementation, which is commonly used for the treatment of osteoporosis. Previous technology uses radioisotope sources and bulky equipment to measure bone Sr. This study demonstrates the effectiveness of portable X-ray fluorescence (XRF) for bone Sr measurement and validates it using data from a population of 238 children. We identified correlations between bone Sr and age in our participants.

  9. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-07-04

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  11. Selenium Preferentially Accumulates in the Eye Lens Following Embryonic Exposure: A Confocal X-ray Fluorescence Imaging Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sanjukta; Thomas, Jith; Sylvain, Nicole J.

    Maternal transfer of elevated selenium (Se) to offspring is an important route of Se exposure for fish in the natural environment. However, there is a lack of information on the tissue specific spatial distribution and speciation of Se in the early developmental stages of fish, which provide important information about Se toxicokinetics. The effect of maternal transfer of Se was studied by feeding adult zebrafish a Se-elevated or a control diet followed by collection of larvae from both groups. Novel confocal synchrotron-based techniques were used to investigate Se within intact preserved larvae. Confocal X-ray fluorescence imaging was used to comparemore » Se distributions within specific planes of an intact larva from each of the two groups. The elevated Se treatment showed substantially higher Se levels than the control; Se preferentially accumulated to highest levels in the eye lens, with lower levels in the retina, yolk and other tissues. Confocal X-ray absorption spectroscopy was used to determine that the speciation of Se within the eye lens of the intact larva was a selenomethionine-like species. Preferential accumulation of Se in the eye lens may suggest a direct cause-and-effect relationship between exposure to elevated Se and Se-induced ocular impairments reported previously. This study illustrates the effectiveness of confocal X-ray fluorescence methods for investigating trace element distribution and speciation in intact biological specimens« less

  12. Micro-x-ray fluorescence, micro-x-ray absorption spectroscopy, and micro-x-ray diffraction investigation of lead speciation after the addition of different phosphorus amendments to a smelter-contaminated soil.

    PubMed

    Baker, Lucas R; Pierzynski, Gary M; Hettiarachchi, Ganga M; Scheckel, Kirk G; Newville, Matthew

    2014-03-01

    The stabilization of Pb on additions of P to contaminated soils and mine spoil materials has been well documented. It is clear from the literature that different P sources result in different efficacies of Pb stabilization in the same contaminated material. We hypothesized that the differences in the efficacy of Pb stabilization in contaminated soils on fluid or granular P amendment addition is due to different P reaction processes in and around fertilizer granules and fluid droplets. We used a combination of several synchrotron-based techniques (i.e., spatially resolved micro-X-ray fluorescence, micro-X-ray absorption near-edge structure spectroscopy, and micro-X-ray diffraction) to speciate Pb at two incubation times in a smelter-contaminated soil on addition of several fluid and granular P amendments. The results indicated that the Pb phosphate mineral plumbogummite was an intermediate phase of pyromorphite formation. Additionally, all fluid and granular P sources were able to induce Pb phosphate formation, but fluid phosphoric acid (PA) was the most effective with time and distance from the treatment. Granular phosphate rock and triple super phosphate (TSP) amendments reacted to generate Pb phosphate minerals, with TSP being more effective at greater distances from the point of application. As a result, PA and TSP were the most effective P amendments at inducing Pb phosphate formation, but caution needs to be exercised when adding large amounts of soluble P to the environment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Nighttime sensitivity of ionospheric VLF measurements to X-ray bursts from a remote cosmic source

    NASA Astrophysics Data System (ADS)

    Raulin, Jean-Pierre; Trottet, Gérard; Giménez de Castro, C. Guillermo; Correia, Emilia; Macotela, E. Liliana

    2014-06-01

    On 22 January 2009, a series of X-ray bursts were emitted by the soft gamma ray repeater SGR J1550-5418. Some of these bursts produced enhanced ionization in the nighttime lower ionosphere. These ionospheric disturbances were studied using X-ray measurements from the Anti-Coincidence Shield of the Spectrometer for Integral onboard the International Gamma-Ray Astrophysics Laboratory and simultaneous phase and amplitude records from two VLF propagation paths between the transmitter Naval Radio Station, Pearl Harbor (Hawaii) and the receivers Radio Observatorio do Itapetinga (Brazil) and Estação Antarctica Commandante Ferraz (Antarctic Peninsula). The VLF measurements have been obtained with an unprecedented high time resolution of 20 ms. We find that the illumination factor I (illuminated path length times the cosine of the zenith angle), which characterizes the propagation paths underlying the flaring object, is a key parameter which determines the sensitivity threshold of the VLF detection of X-ray bursts from nonsolar transients. For the present VLF measurements of bursts from SGR J1550-5418, it is found that for I ≥ 1.8 Mm, all X-ray bursts with fluence in the 25 keV to 2 MeV range larger than F25_min 1.0 × 10-6 erg/cm2 produce a measurable ionospheric disturbance. Such a lower limit of the X-ray fluence value indicates that moderate X-ray bursts, as opposed to giant X-ray bursts, do produce ionospheric disturbances larger than the sensitivity limit of the VLF technique. Therefore, the frequency of detection of such events could be improved, for example by increasing the coverage of existing VLF receiving networks. The VLF detection of high-energy astrophysical bursts then appears as an important observational diagnostic to complement their detection in space. This would be especially important when space observations suffer from adverse conditions, like saturation, occultation from the Earth, or the passage of the spacecraft through the South Atlantic

  14. Inorganic chemical investigation by x-ray fluorescence analysis: The Viking Mars Lander

    USGS Publications Warehouse

    Toulmin, P.; Baird, A.K.; Clark, B. C.; Keil, Klaus; Rose, H.J.

    1973-01-01

    The inorganic chemical investigation added in August 1972 to the Viking Lander scientific package will utilize an energy-dispersive X-ray fluorescence spectrometer in which four sealed, gas-filled proportional counters will detect X-rays emitted from samples of the Martian surface materials irradiated by X-rays from radioisotope sources (55Fe and 109Cd). The output of the proportional counters will be subjected to pulse-height analysis by an on-board step-scanning single-channel analyzer with adjustable counting periods. The data will be returned to Earth, via the Viking Orbiter relay system, and the spectra constructed, calibrated, and interpreted here. The instrument is inside the Lander body, and samples are to be delivered to it by the Viking Lander Surface Sampler. Calibration standards are an integral part of the instrument. The results of the investigation will characterize the surface materials of Mars as to elemental composition with accuracies ranging from a few tens of parts per million (at the trace-element level) to a few percent (for major elements) depending on the element in question. Elements of atomic number 11 or less are determined only as a group, though useful estimates of their individual abundances maybe achieved by indirect means. The expected radiation environment will not seriously hamper the measurements. Based on the results, inferences can be drawn regarding (1) the surface mineralogy and lithology; (2) the nature of weathering processes, past and present, and the question of equilibrium between the atmosphere and the surface; and (3) the extent and type of differentiation that the planet has undergone. The Inorganic Chemical Investigation supports and is supported by most other Viking Science investigations. ?? 1973.

  15. Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer

    NASA Technical Reports Server (NTRS)

    Boothe, R. E.

    2006-01-01

    Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.

  16. The ASTRO-H X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki

    2012-09-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.

  17. Low Z total reflection X-ray fluorescence analysis — challenges and answers

    NASA Astrophysics Data System (ADS)

    Streli, C.; Kregsamer, P.; Wobrauschek, P.; Gatterbauer, H.; Pianetta, P.; Pahlke, S.; Fabry, L.; Palmetshofer, L.; Schmeling, M.

    1999-10-01

    Low Z elements, like C, O, ... Al are difficult to measure, due to the lack of suitable low-energy photons for efficient excitation using standard X-ray tubes, as well as difficult to detect with an energy dispersive detector, if the entrance window is not thin enough. Special excitation sources and special energy dispersive detectors are required to increase the sensitivity and to increase the detected fluorescence signal and so to improve the detection limits. Synchrotron radiation, due to its features like high intensity and wide spectral range covering also the low-energy region, is the ideal source for TXRF, especially of low-Z elements. Experiments at a specific beamline (BL 3-4) at SSRL, Stanford, designed for the exclusive use of low-energy photons has been used as an excitation source. Detection limits <100 fg for Al, Mg and Na have been achieved using quasimonochromatic radiation of 1.7 keV. A Ge(HP) detector with an ultra-thin NORWAR entrance window is used. One application is the determination of low-Z surface contamination on Si-wafers. Sodium, as well as Al, are elements of interest for the semiconductor industry, both influencing the yield of ICs negatively. A detection capacity of 10 10 atoms/cm 2 is required which can be reached using synchrotron radiation as excitation source. Another promising application is the determination of low-Z atoms implanted in Si wafers. Sodium, Mg and Al were implanted in Si-wafers at various depths. From measuring the dependence of the fluorescence signal on the glancing angle, characteristic shapes corresponding to the depth profile and the relevant implantation depth are found. Calculations are compared with measurements. Finally, aerosols sampled on polycarbonate plates in a Battelle impactor were analyzed with LZ-TXRF using multilayer monochromatized Cr-Kα radiation from a 1300-W fine-focus tube for excitation. Results are presented.

  18. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    PubMed Central

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. PMID:19379757

  19. Solar x ray astronomy rocket program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The dynamics were studied of the solar corona through the imaging of large scale coronal structures with AS&E High Resolution Soft X ray Imaging Solar Sounding Rocket Payload. The proposal for this program outlined a plan of research based on the construction of a high sensitivity X ray telescope from the optical and electronic components of the previous flight of this payload (36.038CS). Specifically, the X ray sensitive CCD camera was to be placed in the prime focus of the grazing incidence X ray mirror. The improved quantum efficiency of the CCD detector (over the film which had previously been used) allows quantitative measurements of temperature and emission measure in regions of low x ray emission such as helmet streamers beyond 1.2 solar radii or coronal holes. Furthermore, the improved sensitivity of the CCD allows short exposures of bright objects to study unexplored temporal regimes of active region loop evolution.

  20. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  1. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    PubMed

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  2. A position-sensitive X-ray detector for the HEAO-A satellite.

    NASA Technical Reports Server (NTRS)

    Held, D.; Weisskopf, M. C.

    1973-01-01

    A position-sensitive, low-energy proportional counter system is described which will be used on the High-Energy Astronomical Observatory, Mission A, spacecraft. The associated system incorporates the capability to employ pulse-shape discrimination for background rejection and interpolation circuitry to locate the centroid of an X-ray event with an accuracy of approximately one eighth the cathode-wire spacing.

  3. Palus Somni - Anomalies in the correlation of Al/Si X-ray fluorescence intensity ratios and broad-spectrum visible albedos. [lunar surface mineralogy

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.

    1976-01-01

    The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.

  4. TOMOX : An X-rays tomographer for planetary exploration

    NASA Astrophysics Data System (ADS)

    Marinangeli, Lucia; Pompilio, Loredana; Chiara Tangari, Anna; Baliva, Antonio; Alvaro, Matteo; Chiara Domeneghetti, Maria; Frau, Franco; Melis, Maria Teresa; Bonanno, Giovanni; Consolata Rapisarda, Maria; Petrinca, Paolo; Menozzi, Oliva; Lasalvia, Vasco; Pirrotta, Simone

    2017-04-01

    The TOMOX instrument has recently been founded under the ASI DC-EOS-2014-309 call. The TOMOX objective is to acquire both X-ray fluorescence and diffraction measurements from a sample in order to: a) achieve its chemical and mineralogical composition; b) reconstruct a 3D tomography of the sample exposed surface; c) give hints regarding the sample age. Nevertheless, this technique has applicability in several disciplines other than planetary geology, especially archaeology. The word 'tomography' is nowadays used for many 3D imaging methods, not just for those based on radiographic projections, but also for a wider range of techniques that yield 3D images. Fluorescence tomography is based on the signal produced on an energy-sensitive detector, generally placed in the horizontal plane at some angle with respect to the incident beam caused by photons coming from fluorescence emission. So far, a number of setups have been designed in order to acquire X-rays fluorescence tomograms of several different sample types. The proposed instrument is based on the MARS-XRD heritage, an ultra miniaturised XRD and XRF instrument developed for the ESA ExoMars mission. The general idea of TOMOX is to distribute both sources and detectors along a moving hemispherical support around the target sample. As a result, both sources move integrally with the detectors while the sample is observed from a fixed position, thus preserving the geometry of observation. In that way, the whole sample surface is imagined and XRD and XRF measurements are acquired continuously along all the scans. We plan to irradiate the target sample with X-rays emitted from 55Fe and 109Cd radioactive sources. 55Fe and 109Cd radioisotopes are commonly used as X-ray sources for analysis of metals in soils and rocks. The excitation energies of 55Fe and 109Cd are 5.9 keV, and 22.1 and 87.9 keV, respectively. Therefore, the elemental analysis ranges are Al to Mn with K lines excited with 55Fe; Ca to Rh, with K lines

  5. X-ray fluorescence analysis of wear metals in used lubricating oils

    NASA Technical Reports Server (NTRS)

    Maddox, W. E.; Kelliher, W. C.

    1986-01-01

    Used oils from several aircraft at NASA's Langley Research Center were analyzed over a three year period using X-ray fluorescence (XRF) and atomic emission spectrometry. The results of both analyses are presented and comparisons are made. Fe and Cu data for oil from four internal combustion engines are provided and XRF and atomic emission spectrometry measurements were found to be in perfect agreement. However, distributions were found in the case of oil from a jet aircraft engine whereby the latter method gave values for total iron concentration in the oil and did not distinguish between suspended particles and oil additives. XRF does not have these particle-size limitations; moreover, it is a faster process. It is concluded that XRF is the preferred method in the construction of a man-portable oil wear analysis instrument.

  6. Polarization of resonantly excited X-ray lines

    NASA Astrophysics Data System (ADS)

    Shah, Chintan; Amaro, Pedro; Steinbrügge, René; Bernitt, Sven; Fritzsche, Stephan; Surzhykov, Andrey; Crespo Lopez-Urrutia, José R.; Tashenov, Stanislav

    2017-08-01

    For a wide range of temperatures, resonantly captured electrons with energies below the excitation threshold are the strongest source of X-ray line excitation in hot plasmas containing highly charged Fe ions. The angular distribution and polarization of X-rays emitted due to these processes were experimentally studied using an electron beam ion trap. The electron-ion collision energy was scanned over the KLL dielectronic, trielectronic, and quadruelectronic recombination resonances of Fe18+..24+ and Kr28+..34+ with an exemplary resolution of ~6 eV. The angular distribution of induced X-ray fluorescence was measured along and perpendicular to the electron beam propagation direction [1]. Subsequently, the polarization of X-ray fluorescence was also measured using a novel Compton polarimeter [2, 3].The experimental data reveal the alignment of the populated excited states and exhibit a high sensitivity to the relativistic Breit interaction [2, 4]. We observed that most of the transitions lead to polarization, including hitherto-neglected trielectronic and quadruelectronic recombination channels. Furthermore, these channels dominate the polarization of the prominent Kα X-rays emitted by hot anisotropic plasmas in a wide temperature range. The present experimental results comprehensively benchmark full-order atomic calculations carried out with the FAC [5] and RATIP [6] codes. We conclude that accurate polarization diagnostics of hot anisotropic plasmas, e.~g., of solar flares and active galactic nuclei, and laboratory fusion plasmas of tokamaks can only be obtained under the premise of careful inclusion of relativistic effects and higher-order resonances which were often neglected in previous works [1]. The present experiments also demonstrate the suitability of the applied technique for accurate directional diagnostics of electron or ion beams in hot plasmas [7].[1] C. Shah et al., Phys. Rev. E 93, 061201 (R) (2016)[2] C. Shah et al., Phys. Rev. A 92, 042702 (2015

  7. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  8. Total reflection X-ray Fluorescence determination of interfering elements rubidium and uranium by profile fitting

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Khooha, Ajay; Singh, Ajit Kumar; Tiwari, M. K.; Misra, N. L.

    2018-06-01

    Systematic studies to assess the analytical parameters obtained in the total reflection X-ray fluorescence (TXRF) determinations of interfering elements Rb and U using profile fitting are reported in the present manuscript. The X-ray lines Rb Kα and U Lα having serious spectral interference (ΔE = 218 eV), have been used as analytical lines. The intensities of these X-ray lines have been assessed using profile fitting. In order to compare the analytical results of Rb determinations in presence of U, with and without U excitation, synchrotron radiation was tuned to energy just above and below the U Labs edge. This approach shall excite both Rb Kα and U Lα simultaneously and Rb Kα selectively. Finally, the samples were also analyzed with a laboratory based TXRF spectrometer. The analytical results obtained in all these conditions were comparable. The authenticity of the results was assessed by analyzing U with respect to Rb in Rb2U(SO4)3, a standard reference material for U. The average precision obtained for TXRF determinations was below 3% (RSD, n = 3, 1σ) and the percent deviation of TXRF values from the expected values calculated on the basis of sample preparation was within 3%.

  9. Suzaku Observation of Strong Fluorescent Iron Line Emission from the Young Stellar Object V1647 Ori during Its New X-ray Outburst

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Grosso, Nicolas; Kastner, Joel H.; Weintraub, David A.; Richmond, Michael

    2009-01-01

    The Suzaku X-ray satellite observed the young stellar object V1647 Ori on 2008 October 8 during the new mass accretion outburst reported in August 2008. During the 87 ksec observation with a net exposure of 40 ks, V1647 Ori showed a. high level of X-ray emission with a gradual decrease in flux by a factor of 5 and then displayed an abrupt flux increase by an order of magnitude. Such enhanced X-ray variability was also seen in XMM-Newton observations in 2004 and 2005 during the 2003-2005 outburst, but has rarely been observed for other young stellar objects. The spectrum clearly displays emission from Helium-like iron, which is a signature of hot plasma (kT approx.5 keV). It also shows a fluorescent iron Ka line with a remarkably large equivalent width of approx. 600 eV. Such a, large equivalent width indicates that a part of the incident X-ray emission that irradiates the circumstellar material and/or the stellar surface is hidden from our line of sight. XMM-Newton spectra during the 2003-2005 outburst did not show a strong fluorescent iron Ka line ; so that the structure of the circumstellar gas very close to the stellar core that absorbs and re-emits X-ray emission from the central object may have changed in between 2005 and 2008. This phenomenon may be related to changes in the infrared morphology of McNeil's nebula between 2004 and 2008.

  10. Contribution of inner shell Compton ionization to the X-ray fluorescence line intensity

    NASA Astrophysics Data System (ADS)

    Fernández, Jorge E.; Scot, Viviana; Di Giulio, Eugenio

    2016-10-01

    The Compton effect is a potential ionization mechanism of atoms. It produces vacancies in inner shells that are filled with the same mechanism of atomic relaxation as the one following photo-absorption. This contribution to X-ray fluorescence emission is frequently neglected because the total Compton cross-section is apparently much lower than the photoelectric one at useful X-ray energies. However, a more careful analysis suggests that is necessary to consider single shell cross sections (instead of total cross sections) as a function of energy. In this article these Compton cross sections are computed for the shells K, L1-L3 and M1-M5 in the framework of the impulse approximation. By comparing the Compton and the photoelectric cross-section for each shell it is then possible to determine the extent of the Compton correction to the intensity of the corresponding characteristic lines. It is shown that for the K shell the correction becomes relevant for excitation energies which are too high to be influent in X-ray spectrometry. In contrast, for L and M shells the Compton contribution is relevant for medium-Z elements and medium energies. To illustrate the different grades of relevance of the correction, for each ionized shell, the energies for which the Compton contribution reaches the extent levels of 1, 5, 10, 20, 50 and 100% of the photoelectric one are determined for all the elements with Z = 11-92. For practical applications it is provided a simple formula and fitting coefficients to compute average correction levels for the shells considered.

  11. X ray based displacement measurement for hostile environments

    NASA Technical Reports Server (NTRS)

    Canistraro, Howard A.; Jordon, Eric H.; Pease, Douglas M.; Fralick, Gustave C.

    1992-01-01

    A new method on noncontacting, high temperature extensometry based on the focus and scanning of x rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard x rays such as those emanating from copper or molybdenum sources. The x rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary x ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of x rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.

  12. A new large solid angle multi-element silicon drift detector system for low energy X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Bufon, J.; Schillani, S.; Altissimo, M.; Bellutti, P.; Bertuccio, G.; Billè, F.; Borghes, R.; Borghi, G.; Cautero, G.; Cirrincione, D.; Fabiani, S.; Ficorella, F.; Gandola, M.; Gianoncelli, A.; Giuressi, D.; Kourousias, G.; Mele, F.; Menk, R. H.; Picciotto, A.; Rachevski, A.; Rashevskaya, I.; Sammartini, M.; Stolfa, A.; Zampa, G.; Zampa, N.; Zorzi, N.; Vacchi, A.

    2018-03-01

    Low-energy X-ray fluorescence (LEXRF) is an essential tool for bio-related research of organic samples, whose composition is dominated by light elements. Working at energies below 2 keV and being able to detect fluorescence photons of lightweight elements such as carbon (277 eV) is still a challenge, since it requires in-vacuum operations to avoid in-air photon absorption. Moreover, the detectors must have a thin entrance window and collect photons at an angle of incidence near 90 degrees to minimize the absorption by the protective coating. Considering the low fluorescence yield of light elements, it is important to cover a substantial part of the solid angle detecting ideally all emitted X-ray fluorescence (XRF) photons. Furthermore, the energy resolution of the detection system should be close to the Fano limit in order to discriminate elements whose XRF emission lines are often very close within the energy spectra. To ensure all these features, a system consisting of four monolithic multi-element silicon drift detectors was developed. The use of four separate detector units allows optimizing the incidence angle on all the sensor elements. The multi-element approach in turn provides a lower leakage current on each anode, which, in combination with ultra-low noise preamplifiers, is necessary to achieve an energy resolution close to the Fano limit. The potential of the new detection system and its applicability for typical LEXRF applications has been proved on the Elettra TwinMic beamline.

  13. First results of a novel Silicon Drift Detector array designed for low energy X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-07-01

    We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-01-10

    This Chandra image, the first x-ray image ever made of Venus, shows a half crescent due to the relative orientation of the Sun, Earth, and Venus. The x-rays are produced by fluorescent radiation from oxygen and other atoms in the atmosphere between 120 and 140 kilometers above the surface of the planet. In contrast, the optical light from Venus is caused by the reflection from clouds 50 to 70 kilometers above the surface.

  15. Near-infrared fluorescent silica-coated gold nanoparticle clusters for x-ray computed tomography/optical dual modal imaging of the lymphatic system.

    PubMed

    Hayashi, Koichiro; Nakamura, Michihiro; Ishimura, Kazunori

    2013-05-01

    Lymph nodes (LNs) are often removed to prevent the spread of cancer because they are frequently the first site of metastases. However, the enucleation of LNs requires difficult operative techniques and lymphedema can result as a complication. Although lymphedema can be cured by anastomosis of a lymph vessel (LV) to a vein, the operative procedure is extremely difficult because LNs and LVs are too small and indistinct to be identified. Therefore, visualization of LNs and LVs is important. The combination of X-ray computed tomography (CT) and fluorescence imaging, CT/fluorescence dual modal imaging, enables the visualization of LNs and LVs before and during surgery. To accomplish this, near-infrared fluorescent silica-coated gold nanoparticle clusters (Au@SiO₂) with a high X-ray absorption coefficient are synthesized. Both fluorescence imaging and CT show that the Au@SiO₂ nanoparticles gradually accumulate in LNs through LVs. CT determines the location and size of the LNs and LVs without dissection, and fluorescence imaging facilitates their identification. The Au@SiO₂ nanoparticles have neither hepatotoxicity nor nephrotoxicity. The results demonstrate that CT/fluorescence dual modal imaging using Au@SiO₂ nanoparticles provides anatomical information, including the location and size of LNs and LVs for determining a surgery plan, and provides intraoperative visualization of LNs and LVs to facilitate the operation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. X-ray biosignature of bacteria in terrestrial and extra-terrestrial rocks

    NASA Astrophysics Data System (ADS)

    Lemelle, L.; Simionovici, A.; Susini, J.; Oger, P.; Chukalina, M.; Rau, Ch.; Golosio, B.; Gillet, P.

    2003-04-01

    X-ray imaging techniques at the best spatial resolution and using synchrotron facilities are put forth as powerful techniques for the search of small life forms in extraterrestrial rocks under quarantine conditions (Lemelle et al. 2003). Samples, which may be collected in situ on the martian surface or on a cometary surface, will be brought back and finally stored in a container. We tested on the ID22 beamline, the possibilities of the X-ray absorption and fluorescence tomographies on sub-mm grains of NWA817 (Lemelle et al. submitted) and Tatahouine (Simionovici et al. 2001) meteorites stored in a 10 micrometer silica capillary, full of air, mimicking such containers. Studies of the X-ray microtomographies carried on reveal the positions, the 3D textures and mineralogies of the microenvironments where traces of life should be looked for in priority (with a submicrometer spatial resolution). Limitations with respect to bacterial detection are due to the difficulties to obtain information about light elements (Z <= 14), major constituents of biological and silicate samples. At this stage, traces of life were not detected, nor identified such as, on all the studied meteorites through the capillary. Theoretical developments of an internal elemental microanalysis combining X-ray fluorescence, Compton and Transmission tomographies will soon allow improvements of 3D detection of life by X-ray techniques (Golosio et al. submitted). We tested on the ID21 beamline, the possibilities of the X-ray imaging techniques on bacteria/silicate assemblages prepared in the laboratory and directly placed in the beam. The X-ray signature of a "present" bacteria on a silicate surface was defined by X-ray mapping, out of a container, as coincident micrometer and oval zones having strong P and S fluorescence lines (S-fluorescence being slightly lower than P-fluorescence) and an amino-linked sulfur redox speciation. The X-ray signature of a single bacteria can now be applied to test the

  17. TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques

    NASA Astrophysics Data System (ADS)

    Theodorakou, C.; Farquharson, M. J.

    2008-06-01

    This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.

  18. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  19. In-Situ Silver Acetylide Silver Nitrate Explosive Deposition Measurements Using X-Ray Fluorescence.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covert, Timothy Todd

    2014-09-01

    The Light Initiated High Explosive facility utilized a spray deposited coating of silver acetylide - silver nitrate explosive to impart a mechanical shock into targets of interest. A diagnostic was required to measure the explosive deposition in - situ. An X - ray fluorescence spectrometer was deployed at the facility. A measurement methodology was developed to measure the explosive quantity with sufficient accuracy. Through the use of a tin reference material under the silver based explosive, a field calibration relationship has been developed with a standard deviation of 3.2 % . The effect of the inserted tin material into themore » experiment configuration has been explored.« less

  20. X-ray beam method for displacement measurement in hostile environments

    NASA Technical Reports Server (NTRS)

    Jordan, Eric H.; Pease, D. M.; Canistraro, H.; Brew, Dale

    1989-01-01

    A new method of extensometry using an X-ray beam was devised, and the results of current testing reveal it to be highly feasible. This technique has been shown to provide a non-contacting system that is immune to problems associated with density variations in gaseous environments, that plague currently available optical methods. This advantage is a result of the non-refracting penetrating nature of X-rays. The method is based on X-ray-induced X-ray fluorescence of targets, which subsequently serve as fudicial markers. Some target materials have melting points over 1600 degrees C which will facilitate measurement at extremely high temperatures. A highly focused intense X-ray beam, which is produced using a Johansen 'bent crystal', is then scanned across the target, which responds by fluorescing X-rays when stimulated by the incident beam. This secondary radiation is monitored using a detector. By carefully measuring beam orientation, change in target edge position can be determined. Many variations on this basic theme are now possible such as two targets demarcating a gage length, or a beam shadowing method using opaque targets.

  1. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    NASA Astrophysics Data System (ADS)

    Degueldre, Claude; Cozzo, Cedric; Martin, Matthias; Grolimund, Daniel; Mieszczynski, Cyprian

    2013-06-01

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg-1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (˜0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13- coordination environment (e.g. >90%) and no (<10%) Am(IV) or (V) can be detected in the rim zone. The occurrence of americium dioxide is avoided by the redox buffering activity of the uranium dioxide matrix.

  2. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations.

    PubMed

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-02-08

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.

  3. Tracking ink composition on Herculaneum papyrus scrolls: quantification and speciation of lead by X-ray based techniques and Monte Carlo simulations

    PubMed Central

    Tack, Pieter; Cotte, Marine; Bauters, Stephen; Brun, Emmanuel; Banerjee, Dipanjan; Bras, Wim; Ferrero, Claudio; Delattre, Daniel; Mocella, Vito; Vincze, Laszlo

    2016-01-01

    The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses. PMID:26854067

  4. Mapping alpha-Particle X-Ray Fluorescence Spectrometer (Map-X)

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.

    2014-01-01

    Many planetary surface processes (like physical and chemical weathering, water activity, diagenesis, low-temperature or impact metamorphism, and biogenic activity) leave traces of their actions as features in the size range 10s to 100s of micron. The Mapping alpha-particle X-ray Spectrometer ("Map-X") is intended to provide chemical imaging at 2 orders of magnitude higher spatial resolution than previously flown instruments, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks.

  5. Performance of a Borehole X-ray Fluorescence Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; Willard-Schmoe, Ella

    2008-01-01

    We have designed and constructed a borehole X-ray Fluorescence Spectrometer (XRFS) as part of the Mars Subsurface Access program [1]. It can be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary requirements and performance metrics for the instrument are to obtain parts-per-million (ppm) lower limits of detection over a wide range of elements in the periodic table (Magnesium to Lead). Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight ppm for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  6. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, S.

    1995-10-24

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

  7. Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging

    DOEpatents

    Parker, Sherwood

    1995-01-01

    A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z.sub.1 above upper collimator plane, distance z.sub.2 above the lower collimator plane, and distance z.sub.3 above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v.sub.1, v.sub.2, v.sub.3 proportional to z.sub.1, z.sub.2 and z.sub.3, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site.

  8. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  9. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    NASA Astrophysics Data System (ADS)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  10. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  11. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  12. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  13. Interlaced X-ray diffraction computed tomography

    PubMed Central

    Vamvakeros, Antonios; Jacques, Simon D. M.; Di Michiel, Marco; Senecal, Pierre; Middelkoop, Vesna; Cernik, Robert J.; Beale, Andrew M.

    2016-01-01

    An X-ray diffraction computed tomography data-collection strategy that allows, post experiment, a choice between temporal and spatial resolution is reported. This strategy enables time-resolved studies on comparatively short timescales, or alternatively allows for improved spatial resolution if the system under study, or components within it, appear to be unchanging. The application of the method for studying an Mn–Na–W/SiO2 fixed-bed reactor in situ is demonstrated. Additionally, the opportunities to improve the data-collection strategy further, enabling post-collection tuning between statistical, temporal and spatial resolutions, are discussed. In principle, the interlaced scanning approach can also be applied to other pencil-beam tomographic techniques, like X-ray fluorescence computed tomography, X-ray absorption fine structure computed tomography, pair distribution function computed tomography and tomographic scanning transmission X-ray microscopy. PMID:27047305

  14. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  15. Planetary X-ray studies: past, present and future

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    Our solar system is a fascinating physics laboratory and X-ray observations are now firmly established as a powerful diagnostic tool of the multiple processes taking place in it. The science that X-rays reveal encompasses solar, space plasma and planetary physics, and the response of bodies in the solar system to the impact of the Sun's activity. This talk will review what we know from past observations and what we expect to learn in the short, medium and long term. Observations with Chandra and XMM-Newton have demonstrated that the origin of Jupiter's bright soft X-ray aurorae lies in the Charge eXchange (CX) process, likely to involve the interaction with atmospheric neutrals of local magnetospheric ions, as well as those carried in the solar wind. At higher energies electron bremsstrahlung is thought to be the X-ray emitting mechanism, while the whole planetary disk acts as a mirror for the solar X-ray flux via Thomson and fluorescent scattering. This 'X-ray mirror' phenomenon is all that is observed from Saturn's disk, which otherwise lacks X-ray auroral features. The Earth's X-ray aurora is bright and variable and mostly due to electron bremsstrahlung and line emission from atmospheric species. Un-magnetised planets, Venus and Mars, do not show X-ray aurorae but display the interesting combination of mirroring the solar X-ray flux and producing X-rays by Solar Wind Charge eXchange (SWCX) in their exospheres. These processes respond to different solar stimulation (photons and solar wind plasma respectively) hence their relative contributions are seen to vary according to the Sun's output. Present and future of planetary X-ray studies are very bright. We are preparing for the arrival of the Juno mission at Jupiter this summer and for coordinated observations with Chandra and XMM-Newton on the approach and later during Juno's orbital phase. These will allow direct correlation of the local plasma conditions with the X-ray emissions and the establishment of the

  16. The determination of nanogram amounts of Chromium in urine by x-ray fluorescence spectroscopy

    USGS Publications Warehouse

    Beyermann, K.; Rose, H.J.; Christian, R.P.

    1969-01-01

    Nanogram amounts of chromium can be extracted as oxinate into chloform. By treatment of the chloroform layer 3 M hydrochloric acid, oxinates of other elements and excess of reagent are removed, leaving a chloroform solution of the chromium chelate only. This solution is concentrated and transferred to the top of a small brass rod acting as sample holder. The intensity of the X-ray fluorescence of the Cr K?? line is measured with curved crystal optics. Chromium amounts greater than 5 ng can be detected. The application of the procedure to the analysis of the chromium content of urine is demonstrated. ?? 1969.

  17. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  18. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    Sensitive polarization measurements in X-ray may address a wealth of astrophysical phenomena, which so far remain beyond our understanding through available X-ray spectroscopic, imaging, and timing studies. Though scientific potential of X-ray polarimetry was realized long ago, there has not been any significant advancement in this field for the last four decades since the birth of X-ray astronomy. The only successful polarization measurement in X-rays dates back to 1976, when a Bragg polarimeter onboard OSO-8 measured polarization of Crab nebula. Primary reason behind the lack in progress is its extreme photon hungry nature, which results in poor sensitivity of the polarimeters. Recently, in the last decade or so, with the advancement in detection technology, X-ray polarimetry may see a significant progress in near future, especially in soft X-rays with the invention of photoelectron tracking polarimeters. Though photoelectric polarimeters are expected to provide sensitive polarization measurements of celestial X-ray sources, they are sensitive only in soft X-rays, where the radiation from the sources is dominated by thermal radiation and therefore expected to be less polarized. On the other hand, in hard X-rays, sources are ex-pected to be highly polarized due to the dominance of nonthermal emission over its thermal counterpart. Moreover, polarization measurements in hard X-rays promises to address few interesting scientific issues regarding geometry of corona for black hole sources, emission mechanism responsible for the higher energy peak in the blazars, accretion geometry close to the magnetic poles in accreting neutron star systems and acceleration mechanism in solar flares. Compton polarimeters provide better sensitivity than photoelectric polarimeters in hard X-rays with a broad energy band of operation. Recently, with the development of hard X-ray focusing optics e.g. NuSTAR, Astro-H, it is now possible to conceive Compton polarimeters at the focal plane

  19. Application of an X-ray Fluorescence Instrument to Helicopter Wear Debris Analysis

    DTIC Science & Technology

    2008-04-01

    from magnesium (Mg) to uranium (U) using two X-ray detection sensors: a FOCUS 5+ detector AlX-ray tube X-ray Detector 1. Incident X-ray...zinc (Zn), whilst the PIN detector is used to detect elements from calcium (Ca) to uranium (U) [4]. Elements between calcium (Ca) to zinc (Zn) can be... carbide paper, however polishing is not a normal sample preparation requirement for the Twin-X (see Figure 16). The samples were placed polished side

  20. LABORATORY EVALUATION OF SIX NEW/MODIFIED PORTABLE X-RAY FLUORESCENCE SPECTROMETERS FOR THE MEASUREMENT OF LEAD IN CHARACTERIZED PAINT FILMS AND RESEARCH MATERIAL BOARDS (APPENDICES)

    EPA Science Inventory

    A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...

  1. Results from the X-ray polychromator on SMM

    NASA Astrophysics Data System (ADS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  2. Results from the X-ray polychromator on SMM

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Acton, L. W.; Gabriel, A. H.

    1984-01-01

    Observations of the soft X-ray emitting plasma by means of the X-Ray Polychromator (XRP) on the Solar Maximum Mission satellite are described. The scientific advances achieved by use of the XRP are in the areas of: (1) flare morphology, (2) spectroscopy and plasma diagnostics, (3) chromospheric evaporation and the physics of flare loops, (4) studies of the microwave emission mechanisms of active regions, (5) the fluorescent excitation of Fe II K-alpha radiation, (6) measurement of variations of calcium abundance for X-ray plasmas, and (7) soft X-ray observations of spray transients. The findings in each of these areas are discussed.

  3. Feasibility of a portable X-ray fluorescence device for bone lead measurements of condor bones.

    PubMed

    Specht, Aaron J; Parish, Chris N; Wallens, Emma K; Watson, Rick T; Nie, Linda H; Weisskopf, Marc G

    2018-02-15

    Lead based ammunition is a primary source of lead exposure, especially for scavenging wildlife. Lead poisoning remains the leading cause of diagnosed death for the critically endangered California condors, which are annually monitored via blood tests for lead exposure. The results of these tests are helpful in determining recent exposure in condors and in defining the potential for exposure to other species including humans. Since condors are victim to acute and chronic lead exposure, being able to measure both would lend valuable information on the rates of exposure and accumulation through time. A commercial portable X-ray fluorescence (XRF) device has been optimized to measure bone lead in vivo in humans, but this device could also be valuable for field measurements of bone lead in avian species. In this study, we performed measurements of bone Pb in excised, bare condor bones using inductively coupled plasma mass spectrometry (ICP-MS), a cadmium 109 (Cd-109) K-shell X-ray fluorescence (KXRF) system, and a portable XRF system. Both KXRF and portable XRF bone Pb measurement techniques demonstrated good correlations with ICP-MS results (r=0.93 and r=0.92 respectively), even with increasing skin thickness (r=0.86 between ICP-MS and portable XRF at 1.54mm of soft tissue). In conclusion, our results suggest that a portable XRF could be a useful option for measurement of bone Pb in avian species in the field. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  5. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Kemner, K. M.; Maser, J.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and theirmore » associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.« less

  6. X-Ray Fluorescence Solvent Detection at the Substrate-Adhesive Interface

    NASA Technical Reports Server (NTRS)

    Wurth, Laura; Evans, Kurt; Weber, Bart; Headrick, Sarah

    2005-01-01

    tag element can then be mapped by its characteristic x-ray emission using either x-ray fluorescence, or electron-beam energy-and wavelength-dispersive x-ray spectrometry. The direct mapping techniques avoid issues of different diffusion or migration rates of solvents and elemental tags, while the indirect techniques avoid spectral resolution issues in cases where solvents and substrates have adjacent or overlapping peaks. In this study, cross-section component indirect mapping is being evaluated as a method for measuring migration of d-limonene based solvents in glass-cloth phenolic composite (GCP) prior to and during subsequent bonding and epoxy adhesive cure.

  7. Evaluation on the stability of Hg in ABS disk CRM during measurements by wavelength dispersive X-ray fluorescence spectrometry.

    PubMed

    Ohata, Masaki; Kidokoro, Toshihiro; Hioki, Akiharu

    2012-01-01

    The stability of Hg in an acrylonitrile-butadiene-styrene disk certified reference material (ABS disk CRM, NMIJ CRM 8116-a) during measurements by wavelength dispersion X-ray fluorescence (WD-XRF) analysis was evaluated in this study. The XRF intensities of Hg (L(α)) and Pb (L(α)) as well as the XRF intensity ratios of Hg (L(α))/Pb (L(α)) observed under different X-ray tube current conditions as well as their irradiation time were examined to evaluate the stability of Hg in the ABS disk CRM. The observed XRF intensities and the XRF intensity ratios for up to 32 h of measurements under 80 mA of X-ray tube current condition were constant, even though the surface of the ABS disk CRM was charred by the X-ray irradiation with high current for a long time. Moreover, the measurements on Hg and Pb in the charred disks by an energy dispersive XRF (ED-XRF) spectrometer showed constant XRF intensity ratios of Hg (L(α))/Pb (L(α)). From these results, Hg in the ABS disk CRM was evaluated to be sufficiently stable for XRF analysis.

  8. X-ray fluorescence microscopy artefacts in elemental maps of topologically complex samples: Analytical observations, simulation and a map correction method

    NASA Astrophysics Data System (ADS)

    Billè, Fulvio; Kourousias, George; Luchinat, Enrico; Kiskinova, Maya; Gianoncelli, Alessandra

    2016-08-01

    XRF spectroscopy is among the most widely used non-destructive techniques for elemental analysis. Despite the known angular dependence of X-ray fluorescence (XRF), topological artefacts remain an unresolved issue when using X-ray micro- or nano-probes. In this work we investigate the origin of the artefacts in XRF imaging of topologically complex samples, which are unresolved problems in studies of organic matter due to the limited travel distances of low energy XRF emission from the light elements. In particular we mapped Human Embryonic Kidney (HEK293T) cells. The exemplary results with biological samples, obtained with a soft X-ray scanning microscope installed at a synchrotron facility were used for testing a mathematical model based on detector response simulations, and for proposing an artefact correction method based on directional derivatives. Despite the peculiar and specific application, the methodology can be easily extended to hard X-rays and to set-ups with multi-array detector systems when the dimensions of surface reliefs are in the order of the probing beam size.

  9. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, Eric H.; Legros, Mark; Madden, Norm W.; Goulding, Fred; Landis, Don

    1998-01-01

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  10. Broadband high resolution X-ray spectral analyzer

    DOEpatents

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  11. Soft x-ray spectroscopy of high pressure liquid.

    PubMed

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; Macdougall, James; Pepper, John; Armitage, Kevin; Borsos, Jason; Knauss, Kevin G; Lee, Namhey; Allézy, Arnaud; Gilbert, Benjamin; MacDowell, Alastair A; Liu, Yi-Sheng; Glans, Per-Anders; Sun, Xuhui; Chao, Weilun; Guo, Jinghua

    2018-01-01

    We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3 N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3 N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3 N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length of the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3 N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3 N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (∼350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.

  12. Soft x-ray spectroscopy of high pressure liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  13. Soft x-ray spectroscopy of high pressure liquid

    DOE PAGES

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; ...

    2018-01-01

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  14. Application of the Monte Carlo method to the analysis of doses and shielding around an X-ray fluorescence equipment

    NASA Astrophysics Data System (ADS)

    Ródenas, José; Juste, Belén; Gallardo, Sergio; Querol, Andrea

    2017-09-01

    An X-ray fluorescence equipment is used for practical exercises in the laboratory of Nuclear Engineering of the Polytechnic University of Valencia (Spain). This equipment includes a compact X-ray tube, ECLIPSE-III, and a Si-PIN XR-100T detector. The voltage (30 kV), and the current (100 μA) of the tube are low enough so that expected doses around the tube do not represent a risk for students working in the laboratory. Nevertheless, doses and shielding should be evaluated to accomplish the ALARA criterion. The Monte Carlo method has been applied to evaluate the dose rate around the installation provided with a shielding composed by a box of methacrylate. Dose rates calculated are compared with experimental measurements to validate the model. Obtained results show that doses are below allowable limits. Hence, no extra shielding is required for the X-ray beam. A previous Monte Carlo model was also developed to obtain the tube spectrum and validated by comparison with data from manufacturer.

  15. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  16. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  17. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  18. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  19. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  20. Resonant soft X-ray scattering for polymer materials

    DOE PAGES

    Liu, Feng; Brady, Michael A.; Wang, Cheng

    2016-04-16

    Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less

  1. Copper uptake, intracellular localization, and speciation in marine microalgae measured by synchrotron radiation X-ray fluorescence and absorption microspectroscopy

    DOE PAGES

    Adams, Merrin S.; Dillon, Carolyn T.; Vogt, Stefan; ...

    2016-07-20

    Metal toxicity to aquatic organisms depends on the speciation of the metal and its binding to the critical receptor site(s) (biotic ligand) of the organism. The intracellular nature of the biotic ligand for Cu in microalgal cells was investigated using the high elemental sensitivity of microprobe synchrotron radiation X-ray fluorescence (SR-XRF) and X-ray absorption near-edge spectroscopy (XANES). The marine microalgae, Ceratoneis closterium, Phaeodactylum tricornutum, and Tetraselmis sp. were selected based on their varying sensitivities to Cu (72-h 50% population growth inhibitions of 8–47 μg Cu/L). Intracellular Cu in control cells was similar for all three species (2.5–3.2 × 10–15 gmore » Cu/cell) and increased 4-fold in C. closterium and Tetraselmis sp. when exposed to copper, but was unchanged in P. tricornutum (72-h exposure to 19, 40, and 40 μg Cu/L, respectively). Whole cell microprobe SR-XRF identified endogenous Cu in the central compartment (cytoplasm) of control (unexposed) cells. After Cu exposure, Cu was colocated with organelles/granules dense in P, S, Ca, and Si and this was clearly evident in thin sections of Tetraselmis sp. XANES indicated coexistence of Cu(I) and Cu(II) in control and Cu-exposed cells, with the Cu ligand (e.g., phytochelatin) in P. tricornutum different from that in C. closterium and Tetraselmis sp. Here, this study supports the hypothesis that Cu(II) is reduced to Cu(I) and that polyphosphate bodies and phytochelatins play a significant role in the internalization and detoxification of Cu in marine microalgae.« less

  2. Analytical performance of a versatile laboratory microscopic X-ray fluorescence system for metal uptake studies on argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Gergely, Felicián; Osán, János; Szabó, B. Katalin; Török, Szabina

    2016-02-01

    Laboratory-scale microscopic X-ray fluorescence (micro-XRF) plays an increasingly important role in various fields where multielemental investigations of samples are indispensable. In case of geological samples, the reasonable detection limits (LOD) and spatial resolutions are necessary to identify the trace element content in microcrystalline level. The present study focuses on the analytical performance of a versatile laboratory-scale micro-XRF system with various options of X-ray sources and detectors to find the optimal experimental configuration in terms of sensitivities and LOD for selected elements in loaded petrographic thin sections. The method was tested for sorption studies involving thin sections prepared from cores of Boda Claystone Formation, which is a potential site for a high-level radioactive waste repository. Loaded ions in the sorption measurements were Cs(I) and Ni(II) chemically representing fission and corrosion products. Based on the collected elemental maps, the correlation between the elements representative of main rock components and the selected loaded ion was studied. For the elements of interest, Cs(I) and Ni(II) low-power iMOXS source with polycapillary and silicon drift detector was found to be the best configuration to reach the optimal LOD values. Laboratory micro-XRF was excellent to identify the responsible key minerals for the uptake of Cs(I). In case of nickel, careful corrections were needed because of the relatively high Ca content of the rock samples. The results were compared to synchrotron radiation micro-XRF.

  3. Raman and fluorescence characteristics of resonant inelastic X-ray scattering from doped superconducting cuprates

    DOE PAGES

    Huang, H. Y.; Jia, C. J.; Chen, Z. Y.; ...

    2016-01-22

    Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whether RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi1.5Pb0.6Sr1.54CaCu2O8+δ. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast,more » the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-Tc cuprate superconductors.« less

  4. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  5. Lead foil in dental X-ray film: Backscattering rejection or image intensifier?

    NASA Astrophysics Data System (ADS)

    Hönnicke, M. G.; Delben, G. J.; Godoi, W. C.; Swinka-Filho, V.

    2014-11-01

    Dental X-ray films are still largely used due to sterilization issues, simplicity and, mainly, economic reasons. These films almost always are double coated (double emulsion) and have a lead foil in contact with the film for X-ray backscattering rejection. Herein we explore the use of the lead foil as an image intensifier. In these studies, spatial resolution was investigated when images were acquired on the dental X-ray films with and without the lead foil. Also, the lead foil was subjected to atomic analysis (fluorescent measurements) and structure analysis (X-ray diffraction). We determined that the use of the lead foil reduces the exposure time, however, does not affect the spatial resolution on the acquired images. This suggests that the fluorescent radiation spread is smaller than the grain sizes of the dental X-ray films.

  6. In-vivo analysis of the uptake process of heavy metals through maize roots by using synchrotron X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Bae Geun; Lee, Sang Joon; Gil, Kyehwan

    2016-12-01

    The uptake of heavy metals by plants has been receiving much attention for crop contamination and phytoremediation. We employed synchrotron X-ray fluorescence (XRF) spectroscopy for an in-vivo analysis of heavy-metal uptake through a strand of maize root. A focused X-ray beam of 2.5 × 2.5 μm2 in physical dimensions was scanned along horizontal lines of the maize root at intervals of 3 μm at the 4B X-ray micro-diffraction beamline of the Pohang Accelerator Laboratory (PAL). Time-resolved mapping of the fluorescence intensities from multiple metallic elements in the root tissues provided information about the radial distributions of heavy-metal elements and their temporal variations. The concentrated core stream of heavy-metal elements spread radially up to roughly 500 μm, corresponding to 40 % of the root diameter. The absorption characteristics of three heavy metals, Cr, Mn and Ni, and their physiological features were analyzed. The absolute concentrations and the contents of the heavy-metal elements in the tested maize roots were quantitatively evaluated by using the calibration curve obtained from reference samples with preset concentrations. The uptake quantities of the tested heavy-metal elements are noticeably different, although their molecular weights are similar. This study should be helpful for understanding plant physiology related with heavy-metal uptake.

  7. X-ray microprobe synchroton radiation X-ray fluorescence application on human teeth of renal insufficiency patients

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Marques, J. P.; Casaca, C.; Carvalho, M. L.

    2004-10-01

    This work reports on the measurements of elemental profiles in teeth collected from patients with renal insufficiency. Elemental concentrations of Ti, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Rb Sr and Pb in different parts of teeth from patients with renal insufficiency are discussed and correlated with the corresponding values for healthy citizens. Both situations, patients with and without dialysis treatment were studied. The purpose of this work is to point out the influence of renal insufficiency together with long dialysis treatment, on teeth elemental content. An X-ray fluorescence set-up with microprobe capabilities, installed at the LURE synchrotron (France) was used for elemental determination. The resolution of the synchrotron microprobe was 100 μm and the energy of the incident photons was 19 keV. Teeth of citizens with renal insufficiency and those submitted since several years to dialysis treatment show a similar concentration with teeth of healthy subjects in what concerns the elemental distribution for Mn, Fe, Cu, Zn and Sr. However, higher levels of Pb were found in pulp region of diseased citizens when compared to values of healthy people. Very low concentrations of Ti, Co, Ni, Se, Br and Rb were found in all the analysed teeth. No difference was found in patients with and without dialysis treatment.

  8. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.

    PubMed

    Beck, L; Rousselière, H; Castaing, J; Duran, A; Lebon, M; Moignard, B; Plassard, F

    2014-11-01

    Study of prehistoric art is playing a major role in the knowledge of human evolution. Many scientific methods are involved in this investigation including chemical analysis of pigments present on artefacts or applied to cave walls. In the past decades, the characterization of coloured materials was carried on by taking small samples. This procedure had two main disadvantages: slight but existing damage of the paintings and limitation of the number of samples. Thanks to the advanced development of portable systems, in-situ analysis of pigment in cave can be now undertaken without fear for this fragile Cultural Heritage. For the first time, a portable system combining XRD and XRF was used in an underground and archaeological environment for prehistoric rock art studies. In-situ non-destructive analysis of black prehistoric drawings and determination of their composition and crystalline structure were successfully carried out. Original results on pigments used 13,000 years ago in the cave of Rouffignac (France) were obtained showing the use of two main manganese oxides: pyrolusite and romanechite. The capabilities of the portable XRD-XRF system have been demonstrated for the characterization of pigments as well as for the analysis of rock in a cave environment. This first in-situ experiment combining X-ray diffraction and X-ray fluorescence open up new horizons and can fundamentally change our approach of rock art studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simultaneous determination of thorium, niobium, lead, and zinc by photon-induced x-ray fluorescence of lateritic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBrecque, J.J.; Adames, D.; Parker, W.C.

    1981-01-01

    A rapid method is presented for the simultaneous determinations of thorium, niobium, lead, and zinc in lateritic material from Cerro Impacto, Estado Bolivar, Venezuela. This technique uses a PDP - 11/05 processor - based photon induced x-ray fluorescence system. The total variations of approximately 5% for concentrations of approximately 1 and 10% for concentrations of approximately 0.1% were obtained with only 500 s of fluorescent time. The values obtained by this method were in agreement with values measured by conventional flame atomic absorption spectroscopy for lead and zinc. The values for thorium measured were in agreement with the reported valuesmore » for the reference materials supplied by NBL.« less

  10. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    PubMed

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  11. Feasibility of spectro-photometry in X-rays (SPHINX) from the moon

    NASA Astrophysics Data System (ADS)

    Sarkar, Ritabrata; Chakrabarti, Sandip Kumar

    2010-08-01

    Doing space Astronomy on lunar surface has several advantages. We present here feasibility of an All Sky Monitoring Payload for Spectro-photometry in X-rays (SPHINX) which can be placed on a lander on the moon or in a space craft orbiting around the moon. The Si-PIN photo-diodes and CdTe crystals are used to detect solar flares, bright gamma bursts, soft gamma-ray repeaters from space and also X-ray fluorescence (XRF) from lunar surface. We present the complete Geant4 simulation to study the feasibility of such an instrument in presence of Cosmic Diffused X-Ray Background (CDXRB). We find that the signal to noise ratio is sufficient for moderate to bright GRBs (above 5 keV), for the quiet sun (up to 100 keV), solar flares, soft gamma-ray repeaters, X-ray Fluorescence (XRF) of lunar surface etc. This is a low-cost system which is capable of performing multiple tasks while stationed at the natural satellite of our planet.

  12. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  13. Evaluation of the dose received in the tissues of the neck during quantification of iodine in the thyroid by X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Portararo, Antonio; Licour, Caroline; Gerardy, Isabelle; Pozuelo Navarro, Fausto

    2018-04-01

    The determination of the iodine content in the thyroid is of great interest for many investigations of this gland. The conventional scintigraphic method, using radionuclides, is efficient but delivers a significant dose to the patient. The X-ray fluorescence spectrometry could give information about the iodine content in the thyroid. The measured signal is obtained after stimulation of the stable iodine contained in the gland by X-rays. The advantage of this technique is the complete absence of radioactive isotope injected into the patient body. By applying this, a decrease in effective dose to the patient should be obtained. In this work, the study of the dose received by a thyroid phantom (surrounded by the different tissues of the neck) was performed. The phantom is made of PLA. The dose is measured in optimised conditions defined for the analytical technique. A total head-neck phantom was also used in order to consider the absorbed dose in each different tissues and organs as spinal cord or eyes. Thermo-luminescence dosimeters were chosen for their small size, their sensitivity and the easy positioning on the surface of the phantom but also inside of it to evaluate dose to internal organs. Those LiF 100 dosimeters have been calibrated within the X-ray beam also used for the analysis of iodine. The repeatability and reproducibility of the method has been evaluated. The influence of parameters as concentration of iodine in the thyroid, distance between the X-ray generator and the neck, thickness of the tissues surrounding the thyroid, has been investigated in terms of modifying parameters of the dose received by different tissues situated in the neck and the head.

  14. Using Nondestructive Portable X-ray Fluorescence Spectrometers on Stone, Ceramics, Metals, and Other Materials in Museums: Advantages and Limitations.

    PubMed

    Tykot, Robert H

    2016-01-01

    Elemental analysis is a fundamental method of analysis on archaeological materials to address their overall composition or identify the source of their geological components, yet having access to instrumentation, its often destructive nature, and the time and cost of analyses have limited the number and/or size of archaeological artifacts tested. The development of portable X-ray fluorescence (pXRF) instruments over the past decade, however, has allowed nondestructive analyses to be conducted in museums around the world, on virtually any size artifact, producing data for up to several hundred samples per day. Major issues have been raised, however, about the sensitivity, precision, and accuracy of these devices, and the limitation of performing surface analysis on potentially heterogeneous objects. The advantages and limitations of pXRF are discussed here regarding archaeological studies of obsidian, ceramics, metals, bone, and painted materials. © The Author(s) 2015.

  15. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  16. LABORATORY EVALUATION OF SIX NEW/MODIFIED PORTABLE X-RAY FLUORESCENCE SPECTROMETERS FOR THE MEASUREMENT OF LEAD IN CHARACTERIZED PAINT FILMS AND RESEARCH MATERIAL BOARDS (TECHNICAL REPORT)

    EPA Science Inventory

    A laboratory study was performed in 1994-1995 to identify and estimate the influence of key characteristics for evaluating the performance of portable X-ray fluorescence (XRF) spectrometers. Six new/modified spectrometers, including HNU SEFA-Pb, Metorex X-MET, Niton X-L, Radiat...

  17. X-Ray Emission for the Saturnian System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.

  18. Lower Ionosphere Sensitivity to Solar X-ray Flares Over a Complete Solar Cycle Evaluated From VLF Signal Measurements

    NASA Astrophysics Data System (ADS)

    Macotela, Edith L.; Raulin, Jean-Pierre; Manninen, Jyrki; Correia, Emília; Turunen, Tauno; Magalhães, Antonio

    2017-12-01

    The daytime lower ionosphere behaves as a solar X-ray flare detector, which can be monitored using very low frequency (VLF) radio waves that propagate inside the Earth-ionosphere waveguide. In this paper, we infer the lower ionosphere sensitivity variation over a complete solar cycle by using the minimum X-ray fluence (FXmin) necessary to produce a disturbance of the quiescent ionospheric conductivity. FXmin is the photon energy flux integrated over the time interval from the start of a solar X-ray flare to the beginning of the ionospheric disturbance recorded as amplitude deviation of the VLF signal. FXmin is computed for ionospheric disturbances that occurred in the time interval of December-January from 2007 to 2016 (solar cycle 24). The computation of FXmin uses the X-ray flux in the wavelength band below 0.2 nm and the amplitude of VLF signals transmitted from France (HWU), Turkey (TBB), and U.S. (NAA), which were recorded in Brazil, Finland, and Peru. The main result of this study is that the long-term variation of FXmin is correlated with the level of solar activity, having FXmin values in the range (1 - 12) × 10-7 J/m2. Our result suggests that FXmin is anticorrelated with the lower ionosphere sensitivity, confirming that the long-term variation of the ionospheric sensitivity is anticorrelated with the level of solar activity. This result is important to identify the minimum X-ray fluence that an external source of ionization must overcome in order to produce a measurable ionospheric disturbance during daytime.

  19. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  20. Unified Theory for Decoding the Signals from X-Ray Florescence and X-Ray Diffraction of Mixtures.

    PubMed

    Chung, Frank H

    2017-05-01

    For research and development or for solving technical problems, we often need to know the chemical composition of an unknown mixture, which is coded and stored in the signals of its X-ray fluorescence (XRF) and X-ray diffraction (XRD). X-ray fluorescence gives chemical elements, whereas XRD gives chemical compounds. The major problem in XRF and XRD analyses is the complex matrix effect. The conventional technique to deal with the matrix effect is to construct empirical calibration lines with standards for each element or compound sought, which is tedious and time-consuming. A unified theory of quantitative XRF analysis is presented here. The idea is to cancel the matrix effect mathematically. It turns out that the decoding equation for quantitative XRF analysis is identical to that for quantitative XRD analysis although the physics of XRD and XRF are fundamentally different. The XRD work has been published and practiced worldwide. The unified theory derives a new intensity-concentration equation of XRF, which is free from the matrix effect and valid for a wide range of concentrations. The linear decoding equation establishes a constant slope for each element sought, hence eliminating the work on calibration lines. The simple linear decoding equation has been verified by 18 experiments.

  1. X-ray Optics Development at MSFC

    NASA Technical Reports Server (NTRS)

    Sharma, Dharma P.

    2017-01-01

    Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.

  2. Quantitative determination of the lateral density and intermolecular correlation between proteins anchored on the membrane surfaces using grazing incidence small-angle X-ray scattering and grazing incidence X-ray fluorescence.

    PubMed

    Abuillan, Wasim; Vorobiev, Alexei; Hartel, Andreas; Jones, Nicola G; Engstler, Markus; Tanaka, Motomu

    2012-11-28

    As a physical model of the surface of cells coated with densely packed, non-crystalline proteins coupled to lipid anchors, we functionalized the surface of phospholipid membranes by coupling of neutravidin to biotinylated lipid anchors. After the characterization of fine structures perpendicular to the plane of membrane using specular X-ray reflectivity, the same membrane was characterized by grazing incidence small angle X-ray scattering (GISAXS). Within the framework of distorted wave Born approximation and two-dimensional Percus-Yevick function, we can analyze the form and structure factors of the non-crystalline, membrane-anchored proteins for the first time. As a new experimental technique to quantify the surface density of proteins on the membrane surface, we utilized grazing incidence X-ray fluorescence (GIXF). Here, the mean intermolecular distance between proteins from the sulfur peak intensities can be calculated by applying Abelé's matrix formalism. The characteristic correlation distance between non-crystalline neutravidin obtained by the GISAXS analysis agrees well with the intermolecular distance calculated by GIXF, suggesting a large potential of the combination of GISAXS and GIXF in probing the lateral density and correlation of non-crystalline proteins displayed on the membrane surface.

  3. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  4. Determination of trace metals in spirits by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Siviero, G.; Cinosi, A.; Monticelli, D.; Seralessandri, L.

    2018-06-01

    Eight spirituous samples were analyzed for trace metal content with Horizon Total Reflection X-Ray Fluorescence (TXRF) Spectrometer. The expected single metal amount is at the ng/g level in a mixed aqueous/organic matrix, thus requiring a sample preparation method capable of achieving suitable limits of detection. On-site enrichment and Atmospheric Pressure-Vapor Phase Decomposition allowed to detect Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Sr and Pb with detection limits ranging from 0.1 ng/g to 4.6 ng/g. These results highlight how the synergy between instrument and sample preparation strategy may foster the use of TXRF as a fast and reliable technique for the determination of trace elements in spirituous samples, either for quality control or risk assessment purposes.

  5. Detection of visible and latent fingerprints using micro-X-ray fluorescence elemental imaging.

    PubMed

    Worley, Christopher G; Wiltshire, Sara S; Miller, Thomasin C; Havrilla, George J; Majidi, Vahid

    2006-01-01

    Using micro-X-ray fluorescence (MXRF), a novel means of detecting fingerprints was examined in which the prints were imaged based on their elemental composition. MXRF is a nondestructive technique. Although this method requires a priori knowledge about the approximate location of a print, it offers a new and complementary means for detecting fingerprints that are also left pristine for further analysis (including potential DNA extraction) or archiving purposes. Sebaceous fingerprints and those made after perspiring were detected based on elements such as potassium and chlorine present in the print residue. Unique prints were also detected including those containing lotion, saliva, banana, or sunscreen. This proof-of-concept study demonstrates the potential for visualizing fingerprints by MXRF on surfaces that can be problematic using current methods.

  6. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  7. The X-ray emitting galaxy Cen-A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Sercemitsos, P. J.; Becker, R. H.; Boldt, E. A.; Holt, S. S.

    1977-01-01

    OSO-8 X-ray observations of Cen-A in 1975 and 1976 are reported. The source spectrum is well fit in both years by a power law of number index 1.62 and absorption due to 1.3 x 10 to the 23rd power at/sq cm. The total flux varied by a factor 2 between 1975 and 1976. In 1976 there were approximately 40% flux variations on a time scale of days. The 6.4 keV Fe fluorescent line and the 7.1 keV absorption edge were measured implying Fe/H approximately equals .000016. Simultaneous radio measurements show variation in phase with X-ray variability. Models considering radio, milimeter, IR and X-ray data show that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H(2) cloud.

  8. X-Ray Fluorescence to Determine Zn in Bolivian Children using Hair Samples

    NASA Astrophysics Data System (ADS)

    Tellería Narvaez, C. A.; Fernández Alcázar, S.; Barrientos Zamora, F. G.; Chungara Castro, J.; Luna Lauracia, I.; Mamani Tola, H.; Mita Peralta, E.; Muñoz Gosálvez, A. O.; Romero Bolaños, L. E.; Ramírez Ávila, G. M.

    2014-06-01

    As a first step in the evaluation of nutritional levels in Bolivian children (8-13 years-old), we carried out X-Ray Fluorescence measurements in hair samples of children belonging to different social classes and living either in rural areas or in cities. The aim of this study is to contribute to health policies tending to improve the global health of children and consequently avoid malnutrition. Our method intends to have maximum reliability and at the same time be as simple as possible from an experimental point of view. Additionally, we use this method to determine some other elements such as Fe, Cu, Pb, As and Hg, the latter three considered as contaminants that could be present in children living in areas which neighbor mines and industries. This work will be complemented by some biological and medical tests.

  9. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  10. X-rays from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Sutherland, Peter; Mccray, Richard; Ross, Randy R.

    1988-01-01

    Detailed calculations of the development of the X-ray spectrum of 1987A are presented using more realistic models for the supernova composition and density structure provided by Woosley. It is shown how the emergence of the X-ray spectrum depends on the parameters of the model and the nature of its central energy source. It is shown that the soft X-ray spectrum should be dominated by a 6.4 keV Fe K(alpha) emission line that could be observed by a sensitive X-ray telescope.

  11. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  12. A hard X-ray nanoprobe beamline for nanoscale microscopy.

    PubMed

    Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg

    2012-11-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  13. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  14. Development of scanning x-ray fluorescence microscope with spatial resolution of 30 nm using Kirkpatrick-Baez mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, S.; Mimura, H.; Yumoto, H.

    We developed a high-spatial-resolution scanning x-ray fluorescence microscope (SXFM) using Kirkpatrick-Baez mirrors. As a result of two-dimensional focusing tests at BL29XUL of SPring-8, the full width at half maximum of the focused beam was achieved to be 50x30 nm{sup 2} (VxH) under the best focusing conditions. The measured beam profiles were in good agreement with simulated results. Moreover, beam size was controllable within the wide range of 30-1400 nm by changing the virtual source size, although photon flux and size were in a trade-off relationship. To demonstrate SXFM performance, a fine test chart fabricated using focused ion beam system wasmore » observed to determine the best spatial resolution. The element distribution inside a logo mark of SPring-8 in the test chart, which has a minimum linewidth of approximately 50-60 nm, was visualized with a spatial resolution better than 30 nm using the smallest focused x-ray beam.« less

  15. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy

    DOE PAGES

    Jin, Qiaoling; Paunesku, Tatjana; Lai, Barry; ...

    2016-08-31

    Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with freshmore » media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. Lastly, when chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.« less

  16. Preserving elemental content in adherent mammalian cells for analysis by synchrotron-based x-ray fluorescence microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Qiaoling; Paunesku, Tatjana; Lai, Barry

    Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with freshmore » media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. Lastly, when chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.« less

  17. L X-ray fluorescence cross sections of some rare earth elements ( Z = 62, 64, 66, 68 and 70) at 17.8, 22.6 and 25.8 keV

    NASA Astrophysics Data System (ADS)

    Mandal, A. C.; Santra, S.; Mitra, D.; Sarkar, M.; Bhattacharya, D.

    2005-06-01

    L X-ray fluorescence cross sections of the elements with Z = 62, 64, 66, 68 and 70 have been measured at 17.8, 22.6 and 25.8 keV using an X-ray tube and secondary exciters of Mo, Ag and Sn. The measured cross sections have been compared with the theoretical predictions and with the data of others. Theoretical values calculated using photoionisation cross sections from Scofield [Lawrence Livermore Laboratory, UCRL-51326, 1973], fluorescence yields and Coster-Kronig transition probabilities from Puri et al. [X-ray Spectrom. 22 (1993) 358] and radiative widths from Campbell and Wang [At. Data Nucl. Data Tables 43 (1989) 281] show good agreement with our data. Except two sets of data on Lγ cross sections, all the data of other groups agree well with those of ours.

  18. Hierarchical self-assembly of switchable nucleolipid supramolecular gels based on environmentally-sensitive fluorescent nucleoside analogs

    NASA Astrophysics Data System (ADS)

    Nuthanakanti, Ashok; Srivatsan, Seergazhi G.

    2016-02-01

    Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their proven applications in nanotechnology, scalability and fabrication of nucleic acid nanostructures still remain a challenge. Here, we describe a novel design strategy to construct new supramolecular nucleolipid synthons by using environmentally-sensitive fluorescent nucleoside analogs, based on 5-(benzofuran-2-yl)uracil and 5-(benzo[b]thiophen-2-yl)uracil cores, as the head group and fatty acids, attached to the ribose sugar, as the lipophilic group. These modified nucleoside-lipid hybrids formed organogels driven by hierarchical structures such as fibers, twisted ribbons, helical ribbons and nanotubes, which depended on the nature of fatty acid chain and nucleobase modification. NMR, single crystal X-ray and powder X-ray diffraction studies revealed the coordinated interplay of various non-covalent interactions invoked by modified nucleobase, sugar and fatty acid chains in setting up the pathway for the gelation process. Importantly, these nucleolipid gels retained or displayed aggregation-induced enhanced emission and their gelation behavior and photophysical properties could be reversibly switched by external stimuli such as temperature, ultrasound and chemicals. Furthermore, the switchable nature of nucleolipid gels to chemical stimuli enabled the selective two channel recognition of fluoride and Hg2+ ions through visual phase transition and fluorescence change. Fluorescent organogels exhibiting such a combination of useful features is rare, and hence, we expect that this innovative design of fluorescent nucleolipid supramolecular synthons could lead to the emergence of a new family of smart optical materials and probes.Exquisite recognition and folding properties have rendered nucleic acids as useful supramolecular synthons for the construction of programmable architectures. Despite their

  19. Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Gull, T.; Davidson, K.; Petre, R.; Hillier, D. J.; Smith, N.; Damineli, A.; Morse, J. A.; Walborn, N. R.

    2004-01-01

    We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.

  20. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Marques, A. F.; Brito, J.

    2003-01-01

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 μg g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.