Measuring the X-ray luminosities of SDSS DR7 clusters from ROSAT All Sky Survey
NASA Astrophysics Data System (ADS)
Wang, Lei; Yang, Xiaohu; Shen, Shiyin; Mo, H. J.; van den Bosch, Frank C.; Luo, Wentao; Wang, Yu; Lau, Erwin T.; Wang, Q. D.; Kang, Xi; Li, Ran
2014-03-01
We use ROSAT All Sky Survey broad-band X-ray images and the optical clusters identified from Sloan Digital Sky Survey Data Release 7 to estimate the X-ray luminosities around ˜65 000 candidate clusters with masses ≳ 1013 h- 1 M⊙ based on an optical to X-ray (OTX) code we develop. We obtain a catalogue with X-ray luminosity for each cluster. This catalogue contains 817 clusters (473 at redshift z ≤ 0.12) with signal-to-noise ratio >3 in X-ray detection. We find about 65 per cent of these X-ray clusters have their most massive member located near the X-ray flux peak; for the rest 35 per cent, the most massive galaxy is separated from the X-ray peak, with the separation following a distribution expected from a Navarro-Frenk-White profile. We investigate a number of correlations between the optical and X-ray properties of these X-ray clusters, and find that the cluster X-ray luminosity is correlated with the stellar mass (luminosity) of the clusters, as well as with the stellar mass (luminosity) of the central galaxy and the mass of the halo, but the scatter in these correlations is large. Comparing the properties of X-ray clusters of similar halo masses but having different X-ray luminosities, we find that massive haloes with masses ≳ 1014 h- 1 M⊙ contain a larger fraction of red satellite galaxies when they are brighter in X-ray. An opposite trend is found in central galaxies in relative low-mass haloes with masses ≲ 1014 h- 1 M⊙ where X-ray brighter clusters have smaller fraction of red central galaxies. Clusters with masses ≳ 1014 h- 1 M⊙ that are strong X-ray emitters contain many more low-mass satellite galaxies than weak X-ray emitters. These results are also confirmed by checking X-ray clusters of similar X-ray luminosities but having different characteristic stellar masses. A cluster catalogue containing the optical properties of member galaxies and the X-ray luminosity is available at http://gax.shao.ac.cn/data/Group.html.
IPC two-color analysis of x ray galaxy clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1990-01-01
The mass distributions were determined of several clusters of galaxies by using X ray surface brightness data from the Einstein Observatory Imaging Proportional Counter (IPC). Determining cluster mass distributions is important for constraining the nature of the dark matter which dominates the mass of galaxies, galaxy clusters, and the Universe. Galaxy clusters are permeated with hot gas in hydrostatic equilibrium with the gravitational potentials of the clusters. Cluster mass distributions can be determined from x ray observations of cluster gas by using the equation of hydrostatic equilibrium and knowledge of the density and temperature structure of the gas. The x ray surface brightness at some distance from the cluster is the result of the volume x ray emissivity being integrated along the line of sight in the cluster.
Chandra X-Ray Observatory Image of the Distant Galaxy, 3C294
NASA Technical Reports Server (NTRS)
2000-01-01
This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)
History of Chandra X-Ray Observatory
2000-10-01
This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)
Studies in the X-Ray Emission of Clusters of Galaxies and Other Topics
NASA Technical Reports Server (NTRS)
Vrtilek, Jan; Thronson, Harley (Technical Monitor)
2001-01-01
The paper discusses the following: (1) X-ray study of groups of galaxies with Chandra and XMM. (2) X-ray properties of point sources in Chandra deep fields. (3) Study of cluster substructure using wavelet techniques. (4) Combined study of galaxy clusters with X-ray and the S-Z effect. Groups of galaxies are the fundamental building blocks of large scale structure in the Universe. X-ray study of the intragroup medium offers a powerful approach to addressing some of the major questions that still remain about almost all aspects of groups: their ages, origins, importance of composition of various galaxy types, relations to clusters, and origin and enrichment of the intragroup gas. Long exposures with Chandra have opened new opportunities for the study of X-ray background. The presence of substructure within clusters of galaxies has substantial implications for our understanding of cluster evolution as well as fundamental questions in cosmology.
The X-ray emitting gas in poor clusters with central dominant galaxies
NASA Technical Reports Server (NTRS)
Kriss, G. A.; Cioffi, D. F.; Canizares, C. R.
1983-01-01
The 12 clusters detected in the present study by the Einstein Observatory's X-ray imaging proportional counter show X-ray emission centered on the dominant galaxy in all cases. Comparison of the deduced distribution of binding mass with the light distribution of the central galaxies of four clusters indicates that the mass/luminosity ratio rises to over 200 solar masses/solar luminosity in the galaxy halos. These halos must therefore, like the clusters themselves, posses dark matter. The X-ray data clearly show that the dominant galaxies sit at the bottoms of the poor cluster gravitational potential wells, suggesting a similar origin for dominant galaxies in poor and rich clusters, perhaps through the merger and cannibalism of cluster galaxies. It is the luminosity of the distended cD envelope that reflects the relative wealth of the cluster environment.
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Serlemitsos, P. J.; Smith, B. W.; Boldt, E. A.; Holt, S. S.
1978-01-01
OSO-8 X-ray spectra from 2 to 20 keV were analyzed for 26 clusters of galaxies. Temperature, emission integrals, iron abundances, and low energy absorption measurements are given. Eight clusters have positive iron emission line detections at the 90% confidence level, and all twenty cluster spectra are consistent with Fe/H=0.000014 by number with the possible exception of Virgo. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that: (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral and therefore the bolometric X-ray luminosity is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central galaxy density than with richness; (4) temperature and emission integral are separately correlated with Rood-Sastry type; and (5) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Smith, B. W.
1978-01-01
OSO 8 X-ray spectra from 2 to 20 keV have been analyzed for 26 clusters of galaxies. For 20 clusters temperatures, emission integrals, iron abundances, and low-energy absorption measurements are presented. The data give, in general, better fits to thermal bremsstrahlung than to power-law models. Eight clusters have positive iron emission-line detections at the 90% confidence level, and all 20 cluster spectra are consistent with Fe/H = 0.000014 by number with the possible exception of Virgo. Thus it is confirmed that X-ray emission in this energy band is predominantly thermal radiation from hot intracluster gas rather than inverse Compton radiation. Physical correlations between X-ray spectral parameters and other cluster properties are examined. It is found that (1) the X-ray temperature is approximately proportional to the square of the velocity dispersion of the galaxies; (2) the emission integral is a strong function of the X-ray temperature; (3) the X-ray temperature and emission integral are better correlated with cluster central-galaxy density than with richness; and (4) the fraction of galaxies which are spirals is correlated with the observed ram pressure in the cluster core.
OSO-8 X-ray spectra of clusters of galaxies. 2: Discussion. [hot intracluster gas structures
NASA Technical Reports Server (NTRS)
Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.
1978-01-01
X-ray spectral parameters obtained from 2 to 20 keV OSO-8 data on X-ray clusters and optical cluster properties were examined to obtain information for restricting models for hot intracluster gas structures. Topics discussed include the radius of the X-ray core in relation to the galaxy core radius, the viral mass of hotter clusters, and galaxy density and optical central cluster properties. A population of cool, dim X-ray clusters which have not been observed is predicted. The iron abundance determinations recently quoted for intracluster gas are uncertain by 50 to greater than 100 percent from this nonstatistical cause alone.
NASA Astrophysics Data System (ADS)
Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.
2018-07-01
We present a comparison of two samples of z> 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray-selected XMM Large Scale Structure (LSS) distant cluster survey and 92 clusters from the optical-mid-infrared (MIR)-selected Spitzer Adaptation of the Red Sequence Cluster survey (SpARCS) cluster survey. Both samples are selected from the same approximately 9 sq deg sky area and we examine them using common XMM-Newton, Spitizer Wide-Area Infrared Extra-galactic (SWIRE) survey, and Canada-France-Hawaii Telescope Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: (i) X-ray bright, (ii) X-ray faint, MIR bright, and (iii) X-ray faint, MIR faint clusters. We determine that X-ray- and MIR-selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray- and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of brightest cluster galaxy-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.
A search for X-ray bright distant clusters of galaxies
NASA Technical Reports Server (NTRS)
Nichol, R. C.; Ulmer, M. P.; Kron, R. G.; Wirth, G. D.; Koo, D. C.
1994-01-01
We present the results of a search for X-ray luminous distant clusters of galaxies. We found extended X-ray emission characteristic of a cluster toward two of our candidate clusters of galaxies. They both have a luminosity in the ROSAT bandpass of approximately equals 10(exp 44) ergs/s and a redshift greater than 0.5; thus making them two of the most distant X-ray clusters ever observed. Furthermore, we show that both clusters are optically rich and have a known radio source associated with them. We compare our result with other recent searches for distant X-ray luminous clusters and present a lower limit of 1.2 x 10(exp -7)/cu Mpc for the number density of such high-redshift clusters. This limit is consistent with the expected abundance of such clusters in a standard (b = 2) cold dark matter universe. Finally, our clusters provide important high-redshift targets for further study into the origin and evolution of massive clusters of galaxies.
An X-ray and optical study of the cluster of galaxies Abell 754
NASA Technical Reports Server (NTRS)
Fabricant, D.; Beers, T. C.; Geller, M. J.; Gorenstein, P.; Huchra, J. P.
1986-01-01
X-ray and optical data for A754 are used to study the relative distribution of the luminous and dark matter in this dense, rich cluster of galaxies with X-ray luminosity comparable to that of the Coma Cluster. A quantitative statistical comparison is made of the galaxy positions with the total mass responsible for maintaining the X-ray emitting gas in hydrostatic equilibrium. A simple bimodal model which fits both the X-ray and optical data suggests that the galaxies are distributed consistently with the projected matter distribution within the region covered by the X-ray map (0.5-1 Mpc). The X-ray and optical estimates of the mass in the central region of the cluster are 2.9 x 10 to the 14th and 3.6 + or - 0.5 x 10 to the 14th solar masses, respectively.
OSO 8 X-ray spectra of clusters of galaxies. II - Discussion
NASA Technical Reports Server (NTRS)
Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.
1979-01-01
An observational description of X-ray clusters of galaxies is given based on OSO 8 X-ray results for spatially integrated spectra of 20 such clusters and various correlations obtained from these results. It is found from a correlation between temperature and velocity dispersion that the X-ray core radius should be less than the galaxy core radius or, alternatively, that the polytropic index is about 1.1 for most of the 20 clusters. Analysis of a correlation between temperature and emission integral yields evidence that more massive clusters accumulate a larger fraction of their mass as intracluster gas. Galaxy densities and optical morphology, as they correlate with X-ray properties, are reexamined for indications as to how mass injection by galaxies affects the density structure of the gas. The physical arguments used to derive iron abundances from observed equivalent widths of iron line features in X-ray spectra are critically evaluated, and the associated uncertainties in abundances derived in this manner are estimated to be quite large.
NASA Astrophysics Data System (ADS)
Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.
2018-04-01
We present a comparison of two samples of z > 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray selected XMM-LSS distant cluster survey and 92 clusters from the optical-MIR selected SpARCS cluster survey. Both samples are selected from the same approximately 9 square degree sky area and we examine them using common XMM-Newton, Spitzer-SWIRE and CFHT Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: a) X-ray bright, b) X-ray faint, MIR bright, and c) X-ray faint, MIR faint clusters. We determine that X-ray and MIR selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of BCG-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally-concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.
Abell 2069 - An X-ray cluster of galaxies with multiple subcondensations
NASA Technical Reports Server (NTRS)
Gioia, I. M.; Maccacaro, T.; Geller, M. J.; Huchra, J. P.; Stocke, J.; Steiner, J. E.
1982-01-01
X-ray and optical observations of the cluster Abell 2069 are presented. The cluster is at a mean redshift of 0.116. The cluster shows multiple condensations in both the X-ray emission and in the galaxy surface density and, thus, does not appear to be relaxed. There is a close correspondence between the gas and galaxy distributions which indicates that the galaxies in this system do map the mass distribution, contrary to what might be expected if low-mass neutrinos dominate the cluster mass.
The Morphologies and Alignments of Gas, Mass, and the Central Galaxies of CLASH Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Donahue, Megan; Ettori, Stefano; Rasia, Elena; Sayers, Jack; Zitrin, Adi; Meneghetti, Massimo; Voit, G. Mark; Golwala, Sunil; Czakon, Nicole; Yepes, Gustavo; Baldi, Alessandro; Koekemoer, Anton; Postman, Marc
2016-03-01
Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova survey with Hubble Space Telescope (CLASH) used weak and strong lensing to measure the distribution of matter within a sample of 25 clusters, 20 of which were deemed to be “relaxed” based on their X-ray morphology and alignment of the X-ray emission with the Brightest Cluster Galaxy. Toward a quantitative characterization of this important sample of clusters, we present uniformly estimated X-ray morphological statistics for all 25 CLASH clusters. We compare X-ray morphologies of CLASH clusters with those identically measured for a large sample of simulated clusters from the MUSIC-2 simulations, selected by mass. We confirm a threshold in X-ray surface brightness concentration of C ≳ 0.4 for cool-core clusters, where C is the ratio of X-ray emission inside 100 h70-1 kpc compared to inside 500 {h}70-1 kpc. We report and compare morphologies of these clusters inferred from Sunyaev-Zeldovich Effect (SZE) maps of the hot gas and in from projected mass maps based on strong and weak lensing. We find a strong agreement in alignments of the orientation of major axes for the lensing, X-ray, and SZE maps of nearly all of the CLASH clusters at radii of 500 kpc (approximately 1/2 R500 for these clusters). We also find a striking alignment of clusters shapes at the 500 kpc scale, as measured with X-ray, SZE, and lensing, with that of the near-infrared stellar light at 10 kpc scales for the 20 “relaxed” clusters. This strong alignment indicates a powerful coupling between the cluster- and galaxy-scale galaxy formation processes.
Connecting optical and X-ray tracers of galaxy cluster relaxation
NASA Astrophysics Data System (ADS)
Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie
2018-04-01
Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani; Ricker, Paul M.
2015-05-01
Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium, as shown by observations of X-ray and H I galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that ˜1-4 kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centres. We find that coronal emission should be detected within ˜10 arcsec, or ˜5 kpc up to ˜2.3 Gyr in the lowest (0.1-1.2 keV) energy band. Thus, the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray haloes of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogues can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.
ROSAT observations of Coma Cluster galaxies
NASA Technical Reports Server (NTRS)
Dow, K. L.; White, S. D. M.
1995-01-01
The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.
NASA Technical Reports Server (NTRS)
Lightman, A. P.; Grindlay, J. E.
1982-01-01
Globular clusters are thought to be among the oldest objects in the Galaxy, and provide, in this connection, important clues for determining the age and process of formation of the Galaxy. The present investigation is concerned with puzzles relating to the X-ray emission of globular clusters, taking into account questions regarding the location of X-ray emitting clusters (XEGC) unusually near the galactic plane and/or galactic center. An adopted model is discussed for the nature, formation, and lifetime of X-ray sources in globular clusters. An analysis of the available data is conducted in connection with a search for correlations between binary formation time scales, central relaxation times, galactic locations, and X-ray emission. The positive correlation found between distance from galactic center and two-body binary formation time for globular clusters, explanations for this correlation, and the hypothesis that X-ray sources in globular clusters require binary star systems provide a possible explanation of the considered puzzles.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying; Reiprich, Thomas H.; Schneider, Peter; Clerc, Nicolas; Merloni, Andrea; Schwope, Axel; Borm, Katharina; Andernach, Heinz; Caretta, César A.; Wu, Xiang-Ping
2017-03-01
We present the relation of X-ray luminosity versus dynamical mass for 63 nearby clusters of galaxies in a flux-limited sample, the HIghest X-ray FLUx Galaxy Cluster Sample (HIFLUGCS, consisting of 64 clusters). The luminosity measurements are obtained based on 1.3 Ms of clean XMM-Newton data and ROSAT pointed observations. The masses are estimated using optical spectroscopic redshifts of 13647 cluster galaxies in total. We classify clusters into disturbed and undisturbed based on a combination of the X-ray luminosity concentration and the offset between the brightest cluster galaxy and X-ray flux-weighted center. Given sufficient numbers (I.e., ≥45) of member galaxies when the dynamical masses are computed, the luminosity versus mass relations agree between the disturbed and undisturbed clusters. The cool-core clusters still dominate the scatter in the luminosity versus mass relation even when a core-corrected X-ray luminosity is used, which indicates that the scatter of this scaling relation mainly reflects the structure formation history of the clusters. As shown by the clusters with only few spectroscopically confirmed members, the dynamical masses can be underestimated and thus lead to a biased scaling relation. To investigate the potential of spectroscopic surveys to follow up high-redshift galaxy clusters or groups observed in X-ray surveys for the identifications and mass calibrations, we carried out Monte Carlo resampling of the cluster galaxy redshifts and calibrated the uncertainties of the redshift and dynamical mass estimates when only reduced numbers of galaxy redshifts per cluster are available. The resampling considers the SPIDERS and 4MOST configurations, designed for the follow-up of the eROSITA clusters, and was carried out for each cluster in the sample at the actual cluster redshift as well as at the assigned input cluster redshifts of 0.2, 0.4, 0.6, and 0.8. To follow up very distant clusters or groups, we also carried out the mass calibration based on the resampling with only ten redshifts per cluster, and redshift calibration based on the resampling with only five and ten redshifts per cluster, respectively. Our results demonstrate the power of combining upcoming X-ray and optical spectroscopic surveys for mass calibration of clusters. The scatter in the dynamical mass estimates for the clusters with at least ten members is within 50%.
Chandra Finds Most Distant X-ray Galaxy Cluster
NASA Astrophysics Data System (ADS)
2001-02-01
The most distant X-ray cluster of galaxies yet has been found by astronomers using NASA’s Chandra X-ray Observatory. Approximately 10 billion light years from Earth, the cluster 3C294 is 40 percent farther than the next most distant X-ray galaxy cluster. The existence of such a distant galaxy cluster is important for understanding how the universe evolved. "Distant objects like 3C294 provide snapshots to how these galaxy clusters looked billions of years ago," said Andrew Fabian of the Institute of Astronomy, Cambridge, England and lead author of the paper accepted for publication in the Monthly Notices of Britain’s Royal Astronomical Society. "These latest results help us better understand what the universe was like when it was only 20 percent of its current age." Chandra’s image reveals an hourglass-shaped region of X-ray emission centered on the previously known central radio source. This X-ray emission extends outward from the central galaxy for at least 300,000 light years and shows that the known radio source is in the central galaxy of a massive cluster. Scientists have long suspected that distant radio-emitting galaxies like 3C294 are part of larger groups of galaxies known as "clusters." However, radio data provides astronomers with only a partial picture of these distant objects. Confirmation of the existence of clusters at great distances - and, hence, at early stages of the universe - requires information from other wavelengths. Optical observations can be used to pinpoint individual galaxies, but X-ray data are needed to detect the hot gas that fills the space within the cluster. "Galaxy clusters are the largest gravitationally bound structures in the universe," said Fabian. "We do not expect to find many massive objects, such as the 3C294 cluster, in early times because structure is thought to grow from small scales to large scales." The vast clouds of hot gas that envelope galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until Chandra, X-ray telescopes have not had the needed sensitivity to identify and measure hot gas clouds in distant clusters. Carolin Crawford, Stefano Ettori and Jeremy Sanders of the Institute of Astronomy were also members of the team that observed 3C294 for 5.4 hours on October 29, 2000 with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Pennsylvania State University and Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program for the Office of Space Science in Washington, DC. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
NASA Technical Reports Server (NTRS)
Kurtz, M. J.; Huchra, J. P.; Beers, T. C.; Geller, M. J.; Gioia, I. M.
1985-01-01
X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060.
Studies of the evolution of the x ray emission of clusters of galaxies
NASA Technical Reports Server (NTRS)
Henry, J. Patrick
1990-01-01
The x ray luminosity function of clusters of galaxies was determined at different cosmic epoches using data from the Einstein Observatory Extended Medium Survey. The sample consisted of 67 x ray selected clusters that were grouped into three redshift shells. Evolution was detected in the x ray properties of clusters. The present volume density of high luminosity clusters was found to be greater than it was in the past. This result is the first convincing evidence for evolution in the x ray properties of clusters. Investigations into the constraints provided by these data on various Cold Dark Matter models are underway.
X-ray emission from clusters of galaxies
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.
1983-01-01
Some X-ray spectral observations of approximately 30 clusters of galaxies from HEAO-1 are summarized. There exists strong correlations between X-ray luminosity, L(x), and temperature kT in the form L(x)alphaT to the 2.3 power. This result combined with the L(x) central galaxy density relation and the virial theorem indicates that the core dadius of the gas should be roughly independent of L(x) or KT and that more luminous clusters have a greater fraction of their virial mass in gas. The poor correlation of KT and optical velocity dispersion seems to indicate that clusters have a variety of equations of state. There is poor agreement between X-ray imaging observations and optical and X-ray spectral measures of the polytropic index. Most clusters show Fe emission lines with a strong indication that they all have roughly 1/2 solar abundance. The evidence for cooling in the cores of several clusters is discussed based on spectral observations with the Einstein solid state spectrometer.
M87 at 90 Centimeters: A Different Picture
2000-06-15
as is envisioned in the cooling Ñow model. Subject headings : cooling Ñows È galaxies : active È galaxies : clusters : individual ( Virgo ) È galaxies...atmosphere of the Virgo Cluster (Fabricant, Lecar, & Gorenstein 1980). The X-ray atmosphere has a simple, apparently undis- turbed, morphology with a central...of a small set of amorphous central radio galaxies in other, similar, cooling-core clusters ? 4. PHYSICAL PICTURE : THE CLUSTER CORE The Virgo X-ray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.
We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less
NASA Technical Reports Server (NTRS)
Henry, J. Patrick; Briel, U. G.
1991-01-01
X-ray emission from cluster galaxies as well as from 'dark objects' (i.e. not visible on the Palomar Observatory Sky Survey (POSS)) seen in the x-ray observation of A2256 with the imaging proportional counter on board ROSAT (x-ray astronomy satellite), is reported. This observation revealed significantly more sources in the field around the extended cluster emission than one would expect by chance. In a preliminary investigation, 14 sources were discovered at the limiting flux for this exposure, whereas about 7 sources would have been expected by chance. At least two of those sources are coincident with cluster member galaxies, having x-ray luminosities of approximately 10(exp +42) erg/s in the ROSAT energy band from 0.1 to 2.4 keV, but at least four more are from 'dark' objects. The similarity of these objects to those in A1367 suggests the existence of a new class of x-ray sources in clusters.
Structure and substructure analysis of DAFT/FADA galaxy clusters in the [0.4-0.9] redshift range
NASA Astrophysics Data System (ADS)
Guennou, L.; Adami, C.; Durret, F.; Lima Neto, G. B.; Ulmer, M. P.; Clowe, D.; LeBrun, V.; Martinet, N.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Cypriano, E. S.; Gavazzi, R.; Halliday, C.; Ilbert, O.; Jullo, E.; Just, D.; Limousin, M.; Márquez, I.; Mazure, A.; Murphy, K. J.; Plana, H.; Rostagni, F.; Russeil, D.; Schirmer, M.; Slezak, E.; Tucker, D.; Zaritsky, D.; Ziegler, B.
2014-01-01
Context. The DAFT/FADA survey is based on the study of ~90 rich (masses found in the literature >2 × 1014 M⊙) and moderately distant clusters (redshifts 0.4 < z < 0.9), all with HST imaging data available. This survey has two main objectives: to constrain dark energy (DE) using weak lensing tomography on galaxy clusters and to build a database (deep multi-band imaging allowing photometric redshift estimates, spectroscopic data, X-ray data) of rich distant clusters to study their properties. Aims: We analyse the structures of all the clusters in the DAFT/FADA survey for which XMM-Newton and/or a sufficient number of galaxy redshifts in the cluster range are available, with the aim of detecting substructures and evidence for merging events. These properties are discussed in the framework of standard cold dark matter (ΛCDM) cosmology. Methods: In X-rays, we analysed the XMM-Newton data available, fit a β-model, and subtracted it to identify residuals. We used Chandra data, when available, to identify point sources. In the optical, we applied a Serna & Gerbal (SG) analysis to clusters with at least 15 spectroscopic galaxy redshifts available in the cluster range. We discuss the substructure detection efficiencies of both methods. Results: XMM-Newton data were available for 32 clusters, for which we derive the X-ray luminosity and a global X-ray temperature for 25 of them. For 23 clusters we were able to fit the X-ray emissivity with a β-model and subtract it to detect substructures in the X-ray gas. A dynamical analysis based on the SG method was applied to the clusters having at least 15 spectroscopic galaxy redshifts in the cluster range: 18 X-ray clusters and 11 clusters with no X-ray data. The choice of a minimum number of 15 redshifts implies that only major substructures will be detected. Ten substructures were detected both in X-rays and by the SG method. Most of the substructures detected both in X-rays and with the SG method are probably at their first cluster pericentre approach and are relatively recent infalls. We also find hints of a decreasing X-ray gas density profile core radius with redshift. Conclusions: The percentage of mass included in substructures was found to be roughly constant with redshift values of 5-15%, in agreement both with the general CDM framework and with the results of numerical simulations. Galaxies in substructures show the same general behaviour as regular cluster galaxies; however, in substructures, there is a deficiency of both late type and old stellar population galaxies. Late type galaxies with recent bursts of star formation seem to be missing in the substructures close to the bottom of the host cluster potential well. However, our sample would need to be increased to allow a more robust analysis. Tables 1, 2, 4 and Appendices A-C are available in electronic form at http://www.aanda.org
THE SWIFT AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Rhiannon D.; Dai, Xinyu; Kochanek, Christopher S.
2016-01-15
We study 203 (of 442) Swift AGN and Cluster Survey extended X-ray sources located in the SDSS DR8 footprint to search for galaxy over-densities in three-dimensional space using SDSS galaxy photometric redshifts and positions near the Swift cluster candidates. We find 104 Swift clusters with a >3σ galaxy over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmation as galaxy clusters. We present a series of cluster properties including the redshift, brightest cluster galaxy (BCG) magnitude, BCG-to-X-ray center offset, optical richness, and X-ray luminosity. We also detect red sequences in ∼85% ofmore » the 104 confirmed clusters. The X-ray luminosity and optical richness for the SDSS confirmed Swift clusters are correlated and follow previously established relations. The distribution of the separations between the X-ray centroids and the most likely BCG is also consistent with expectation. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≲ 0.3 and is still 80% complete up to z ≃ 0.4, consistent with the SDSS survey depth. These analysis results suggest that our Swift cluster selection algorithm has yielded a statistically well-defined cluster sample for further study of cluster evolution and cosmology. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 23, and 1 matches in optical, X-ray, and Sunyaev–Zel’dovich catalogs, respectively, and so the majority of these clusters are new detections.« less
Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurgaliev, D.; McDonald, M.; Benson, B. A.
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less
Testing for X-Ray–SZ Differences and Redshift Evolution in the X-Ray Morphology of Galaxy Clusters
Nurgaliev, D.; McDonald, M.; Benson, B. A.; ...
2017-05-16
We present a quantitative study of the X-ray morphology of galaxy clusters, as a function of their detection method and redshift. We analyze two separate samples of galaxy clusters: a sample of 36 clusters atmore » $$0.35\\lt z\\lt 0.9$$ selected in the X-ray with the ROSAT PSPC 400 deg(2) survey, and a sample of 90 clusters at $$0.25\\lt z\\lt 1.2$$ selected via the Sunyaev–Zel’dovich (SZ) effect with the South Pole Telescope. Clusters from both samples have similar-quality Chandra observations, which allow us to quantify their X-ray morphologies via two distinct methods: centroid shifts (w) and photon asymmetry ($${A}_{\\mathrm{phot}}$$). The latter technique provides nearly unbiased morphology estimates for clusters spanning a broad range of redshift and data quality. We further compare the X-ray morphologies of X-ray- and SZ-selected clusters with those of simulated clusters. We do not find a statistically significant difference in the measured X-ray morphology of X-ray and SZ-selected clusters over the redshift range probed by these samples, suggesting that the two are probing similar populations of clusters. We find that the X-ray morphologies of simulated clusters are statistically indistinguishable from those of X-ray- or SZ-selected clusters, implying that the most important physics for dictating the large-scale gas morphology (outside of the core) is well-approximated in these simulations. Finally, we find no statistically significant redshift evolution in the X-ray morphology (both for observed and simulated clusters), over the range of $$z\\sim 0.3$$ to $$z\\sim 1$$, seemingly in contradiction with the redshift-dependent halo merger rate predicted by simulations.« less
NASA Technical Reports Server (NTRS)
Fabbiano, G.
1995-01-01
X-ray studies of galaxies by the Smithsonian Astrophysical Observatory (SAO) and MIT are described. Activities at SAO include ROSAT PSPC x-ray data reduction and analysis pipeline; x-ray sources in nearby Sc galaxies; optical, x-ray, and radio study of ongoing galactic merger; a radio, far infrared, optical, and x-ray study of the Sc galaxy NGC247; and a multiparametric analysis of the Einstein sample of early-type galaxies. Activities at MIT included continued analysis of observations with ROSAT and ASCA, and continued development of new approaches to spectral analysis with ASCA and AXAF. Also, a new method for characterizing structure in galactic clusters was developed and applied to ROSAT images of a large sample of clusters. An appendix contains preprints generated by the research.
Abell 1142 and the Missing Central Galaxy – A Cluster in Transition?
NASA Astrophysics Data System (ADS)
Jones, Alexander; Su, Yuanyuan; Buote, David; Forman, William; van Weeren, Reinout; Jones, Christine; Gastaldello, Fabio; Kraft, Ralph; Randall, Scott
2018-01-01
Two types of galaxy clusters exist: cool core (CC) clusters which exhibit centrally-peaked metallicity and X-ray emission and non-cool core (NCC) clusters, possessing comparably homogeneous metallicity and X-ray emission distributions. However, the origin of this dichotomy is still unknown. The current prevailing theories state that either there is a primordial entropy limit, above which a CC is unable to form, or that clusters can change type through major mergers and radiative cooling. Abell 1142 is a galaxy cluster that can provide a unique probe of the root of this cluster-type division. It is formed of two merging sub-clusters, each with its own brightest cluster galaxies (BCG). Its enriched X-ray centroid (possible CC remnant) lies between these two BCGs. We present the thermal and chemical distributions of this system using deep (180ks) XMM-Newton observations to shed light on the role of mergers in the evolution of galaxy clusters.
NASA Astrophysics Data System (ADS)
Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.
2016-06-01
Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.
NASA Astrophysics Data System (ADS)
Fassbender, R.; Nastasi, A.; Böhringer, H.; Šuhada, R.; Santos, J. S.; Rosati, P.; Pierini, D.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; de Hoon, A.; Kohnert, J.; Pratt, G. W.; Mohr, J. J.
2011-03-01
Context. Observational galaxy cluster studies at z > 1.5 probe the formation of the first massive M > 1014 M⊙ dark matter halos, the early thermal history of the hot ICM, and the emergence of the red-sequence population of quenched early-type galaxies. Aims: We present first results for the newly discovered X-ray luminous galaxy cluster XMMU J1007.4+1237 at z = 1.555, detected and confirmed by the XMM-Newton Distant Cluster Project (XDCP) survey. Methods: We selected the system as a serendipitous weak extended X-ray source in XMM-Newton archival data and followed it up with two-band near-infrared imaging and deep optical spectroscopy. Results: We can establish XMMU J1007.4+1237 as a spectroscopically confirmed, massive,bona fide galaxy cluster with a bolometric X-ray luminosity of Lbol_X,500≃(2.1 ± 0.4)× 10^{44} erg/s, a red galaxy population centered on the X-ray emission, and a central radio-loud brightest cluster galaxy. However, we see evidence for the first time that the massive end of the galaxy population and the cluster red-sequence are not yet fully in place. In particular, we find ongoing starburst activity for the third ranked galaxy close to the center and another slightly fainter object. Conclusions: At a lookback time of 9.4 Gyr, the cluster galaxy population appears to be caught in an important evolutionary phase, prior to full star-formation quenching and mass assembly in the core region. X-ray selection techniques are an efficient means of identifying and probing the most distant clusters without any prior assumptions about their galaxy content. Based on observations under programme ID 081.A-0312 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Figure 2 and Tables 1 and 2 are only available in electronic form at http://www.aanda.org
The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude
NASA Technical Reports Server (NTRS)
Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.
1981-01-01
The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.
NASA Technical Reports Server (NTRS)
Holt, S. S.; Mushotzky, R. F.
1979-01-01
An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.
When clusters collide: constraints on antimatter on the largest scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steigman, Gary, E-mail: steigman@mps.ohio-state.edu
2008-10-15
Observations have ruled out the presence of significant amounts of antimatter in the Universe on scales ranging from the solar system, to the Galaxy, to groups and clusters of galaxies, and even to distances comparable to the scale of the present horizon. Except for the model-dependent constraints on the largest scales, the most significant upper limits to diffuse antimatter in the Universe are those on the {approx}Mpc scale of clusters of galaxies provided by the EGRET upper bounds to annihilation gamma rays from galaxy clusters whose intracluster gas is revealed through its x-ray emission. On the scale of individual clustersmore » of galaxies the upper bounds to the fraction of mixed matter and antimatter for the 55 clusters from a flux-limited x-ray survey range from 5 Multiplication-Sign 10{sup -9} to <1 Multiplication-Sign 10{sup -6}, strongly suggesting that individual clusters of galaxies are made entirely of matter or of antimatter. X-ray and gamma-ray observations of colliding clusters of galaxies, such as the Bullet Cluster, permit these constraints to be extended to even larger scales. If the observations of the Bullet Cluster, where the upper bound to the antimatter fraction is found to be <3 Multiplication-Sign 10{sup -6}, can be generalized to other colliding clusters of galaxies, cosmologically significant amounts of antimatter will be excluded on scales of order {approx}20 Mpc (M{approx}5 Multiplication-Sign 10{sup 15}M{sub sun})« less
A Multivariate Analysis of Galaxy Cluster Properties
NASA Astrophysics Data System (ADS)
Ogle, P. M.; Djorgovski, S.
1993-05-01
We have assembled from the literature a data base on on 394 clusters of galaxies, with up to 16 parameters per cluster. They include optical and x-ray luminosities, x-ray temperatures, galaxy velocity dispersions, central galaxy and particle densities, optical and x-ray core radii and ellipticities, etc. In addition, derived quantities, such as the mass-to-light ratios and x-ray gas masses are included. Doubtful measurements have been identified, and deleted from the data base. Our goal is to explore the correlations between these parameters, and interpret them in the framework of our understanding of evolution of clusters and large-scale structure, such as the Gott-Rees scaling hierarchy. Among the simple, monovariate correlations we found, the most significant include those between the optical and x-ray luminosities, x-ray temperatures, cluster velocity dispersions, and central galaxy densities, in various mutual combinations. While some of these correlations have been discussed previously in the literature, generally smaller samples of objects have been used. We will also present the results of a multivariate statistical analysis of the data, including a principal component analysis (PCA). Such an approach has not been used previously for studies of cluster properties, even though it is much more powerful and complete than the simple monovariate techniques which are commonly employed. The observed correlations may lead to powerful constraints for theoretical models of formation and evolution of galaxy clusters. P.M.O. was supported by a Caltech graduate fellowship. S.D. acknowledges a partial support from the NASA contract NAS5-31348 and the NSF PYI award AST-9157412.
NASA Astrophysics Data System (ADS)
Burchett, Joseph N.; Tripp, Todd M.; Wang, Q. Daniel; Willmer, Christopher N. A.; Bowen, David V.; Jenkins, Edward B.
2018-04-01
We analyse the intracluster medium (ICM) and circumgalactic medium (CGM) in seven X-ray-detected galaxy clusters using spectra of background quasi-stellar objects (QSOs) (HST-COS/STIS), optical spectroscopy of the cluster galaxies (MMT/Hectospec and SDSS), and X-ray imaging/spectroscopy (XMM-Newton and Chandra). First, we report a very low covering fraction of H I absorption in the CGM of these cluster galaxies, f_c = 25^{+25}_{-15} {per cent}, to stringent detection limits (N(H I) <1013 cm-2). As field galaxies have an H I covering fraction of ˜ 100 per cent at similar radii, the dearth of CGM H I in our data indicates that the cluster environment has effectively stripped or overionized the gaseous haloes of these cluster galaxies. Secondly, we assess the contribution of warm-hot (105-106 K) gas to the ICM as traced by O VI and broad Ly α (BLA) absorption. Despite the high signal-to-noise ratio of our data, we do not detect O VI in any cluster, and we only detect BLA features in the QSO spectrum probing one cluster. We estimate that the total column density of warm-hot gas along this line of sight totals to ˜ 3 per cent of that contained in the hot T > 107 K X-ray emitting phase. Residing at high relative velocities, these features may trace pre-shocked material outside the cluster. Comparing gaseous galaxy haloes from the low-density `field' to galaxy groups and high-density clusters, we find that the CGM is progressively depleted of H I with increasing environmental density, and the CGM is most severely transformed in galaxy clusters. This CGM transformation may play a key role in environmental galaxy quenching.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Astrophysics Data System (ADS)
Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna
1989-09-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
NASA Technical Reports Server (NTRS)
Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.
1989-01-01
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
Weak lensing calibration of mass bias in the REFLEX+BCS X-ray galaxy cluster catalogue
NASA Astrophysics Data System (ADS)
Simet, Melanie; Battaglia, Nicholas; Mandelbaum, Rachel; Seljak, Uroš
2017-04-01
The use of large, X-ray-selected Galaxy cluster catalogues for cosmological analyses requires a thorough understanding of the X-ray mass estimates. Weak gravitational lensing is an ideal method to shed light on such issues, due to its insensitivity to the cluster dynamical state. We perform a weak lensing calibration of 166 galaxy clusters from the REFLEX and BCS cluster catalogue and compare our results to the X-ray masses based on scaled luminosities from that catalogue. To interpret the weak lensing signal in terms of cluster masses, we compare the lensing signal to simple theoretical Navarro-Frenk-White models and to simulated cluster lensing profiles, including complications such as cluster substructure, projected large-scale structure and Eddington bias. We find evidence of underestimation in the X-ray masses, as expected, with
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-04-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Ota, Naomi; Nagai, Daisuke; Lau, Erwin T.
2018-06-01
Gas motions in galaxy clusters play important roles in determining the properties of the intracluster medium (ICM) and in the constraint of cosmological parameters via X-ray and Sunyaev-Zel'dovich effect observations of galaxy clusters. The Hitomi measurements of gas motions in the core of the Perseus Cluster have provided new insights into the physics in galaxy clusters. The XARM mission, equipped with the Resolve X-ray micro-calorimeter, will continue Hitomi's legacy by measuring ICM motions through Doppler shifting and broadening of emission lines in a larger number of galaxy clusters, and at larger radii. In this work, we investigate how well we can measure bulk and turbulent gas motions in the ICM with XARM, by analyzing mock XARM simulations of galaxy clusters extracted from cosmological hydrodynamic simulations. We assess how photon counts, spectral fitting methods, multiphase ICM structure, deprojections, and region selection affect the measurements of gas motions. We first show that XARM is capable of recovering the underlying spherically averaged turbulent and bulk velocity profiles for dynamically relaxed clusters to within ˜50% with a reasonable amount of photon counts in the X-ray emission lines. We also find that there are considerable azimuthal variations in the ICM velocities, where the velocities measured in a single azimuthal direction can significantly deviate from the true value even in dynamically relaxed systems. Such variation must be taken into account when interpreting data and developing observing strategies. We will discuss the prospect of using the upcoming XARM mission to measure non-thermal pressure and to correct for the hydrostatic mass bias of galaxy clusters. Our results are broadly applicable for future X-ray missions, such as Athena and Lynx.
The CfA-Rosat Survey of Distant Clusters of Galaxies
NASA Technical Reports Server (NTRS)
McNamara, Brian
1998-01-01
We (Vikhlinin, McNamara, Forman, Jones, Hornstrup, Quintana) have completed a new survey of distant clusters of galaxies, which we use to to study cluster evolution over cosmological timescales. The clusters were identified as extended X-ray sources in 650 ROSAT PSPC images of high Galactic latitude fields. Our catalog of approximately 230 extended X-ray sources covers 160 square degrees on the sky. Ours is the largest of the several ROSAT serendipitous cluster surveys in progress (e.g. SHARC, Rosati, WARPS etc.). Using V,R,I imagery obtained at several observatories, we find that greater than 90% of the X-ray sources are associated with distant clusters of galaxies. We have obtained spectroscopic redshifts for nearly 80 clusters in our catalog, and we have measured photometric redshifts for the remaining clusters. Our sample contains more than 20 clusters at z > 0.5. I will discuss the logN-logS relationship for our clusters. Because our large survey area, we are able to confirm the evolution of the most luminous distant clusters first seen in the Einstein Extended Medium Sensitivity Survey. In addition, I will discuss the relationships between optical richness, core radius, and X-ray luminosity for distant, X-ray-selected clusters.
Detection of X-ray emission from distant clusters of galaxies
NASA Technical Reports Server (NTRS)
Henry, J. P.; Branduardi, G.; Fabricant, D.; Feigelson, E.; Murray, S.; Tananbaum, H.; Briel, U.; Soltan, A.
1979-01-01
The paper reports the first extensive detection of X-ray emission from clusters of galaxies at cosmological distances. The properties of these objects are similar to those observed in objects at low redshifts. The 0.5-4.5 keV luminosities are in the range of less than 1 x 10 to the 43rd to 2 x 10 to the 45th ergs/s; the core radii are on the order of 0.5 Mpc; and Bautz-Morgan type I clusters are more luminous than types II or III. The observations are consistent with models assuming an evolving cluster potential and moderately efficient galaxy formation, but do not require them when observational selection is considered. X-ray observations of the 3C 295 cluster indicate that there is sufficient intergalactic medium to cause stripping of the cluster spirals, but the colors of these galaxies imply that they have not been stripped. A possible explanation of this discrepancy is discussed.
The missing mass in clusters of galaxies and elliptical galaxies
NASA Technical Reports Server (NTRS)
Mushotzky, Richard F.
1991-01-01
We review the available data for the existence of dark matter in clusters of galaxies and elliptical galaxies. While the amount of dark matter in clusters is not well determined, both the X-ray and optical data show that more than 50 percent of the total mass must be dark. There is in general fair agreement in the binding mass estimates between the X-ray and optical techniques, but there is not detailed agreement on the form of the potential or the distribution of dark matter. The X-ray spectral and spatial observations of elliptical galaxies demonstrate that dark matter is also required in these objects and that it must be considerably more extended than the stellar distribution.
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X-ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chandra Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B. A.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X- ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chundru Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
X-ray archaeology in the Coma cluster
NASA Technical Reports Server (NTRS)
White, Simon D. M.; Briel, Ulrich G.; Henry, J. P.
1993-01-01
We present images of X-ray emission from hot gas within the Coma cluster of galaxies. These maps, made with the ROSAT satellite, have much higher SNR than any previous X-ray image of a galaxy cluster, and allow cluster structure to be analyzed in unprecedented detail. They show greater structural irregularity than might have been anticipated from earlier observations of Coma. Emission is detected from a number of bright cluster galaxies in addition to the two known previously. In four cases, there is evidence that these galaxies lie at the center of an extended subconcentration within the cluster, possibly the remnant of their associated groups. For at least two galaxies, the images show direct evidence for ongoing disruption of their gaseous atmosphere. The luminosity associated with these galaxies is comparable to that detected around similar ellipticals in much poorer environments. Emission is easily detected to the limit of our field, about 1 deg from the cluster center, and appears to become more regular at large radii. The data show clearly that this archetype of a rich and regular galaxy cluster was, in fact, formed by the merging of several distinct subunits which are not yet fully destroyed.
Testing the Axion-Conversion Hypothesis of 3.5 keV Emission with Polarization.
Gong, Yan; Chen, Xuelei; Feng, Hua
2017-02-10
The recently measured 3.5 keV line in a number of galaxy clusters, the Andromeda galaxy (M31), and the Milky Way (MW) center can be well accounted for by a scenario in which dark matter decays to axionlike particles (ALPs) and subsequently convert to 3.5 keV photons in magnetic fields of galaxy clusters or galaxies. We propose to test this hypothesis by performing x-ray polarization measurements. Since ALPs can only couple to photons with a polarization orientation parallel to the magnetic field, we can confirm or reject this model by measuring the polarization of the 3.5 keV line and compare it to the orientation of the magnetic field. We discuss luminosity and polarization measurements for both a galaxy cluster and spiral galaxy, and provide a general relation between the polarization and galaxy inclination angle. This effect is marginally detectable with x-ray polarimetry detectors currently under development, such as the enhanced X-ray Timing and Polarization satellite, the Imaging X-ray Polarimetry Explorer and the X-ray Imaging Polarimetry Explorer. The sensitivity can be further improved in the future with detectors of a larger effective area or better energy resolutions.
A cooling flow in a high-redshift, X-ray-selected cluster of galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesci, R.; Perola, G.C.; Gioia, I.M.
The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of themore » most distant cooling flow clusters known to date. 28 refs.« less
Optical Substructure and BCG Offsets of Sunyaev-Zel'dovich and X-ray Selected Galaxy Clusters
NASA Astrophysics Data System (ADS)
Lopes, Paulo AA; Trevisan, M.; Laganá, T. F.; Durret, F.; Ribeiro, A. LB; Rembold, S. B.
2018-05-01
We used optical imaging and spectroscopic data to derive substructure estimates for local Universe (z < 0.11) galaxy clusters from two different samples. The first was selected through the Sunyaev-Zel'dovich (SZ) effect by the Planck satellite and the second is an X-ray selected sample. In agreement to X-ray substructure estimates we found that the SZ systems have a larger fraction of substructure than the X-ray clusters. We have also found evidence that the higher mass regime of the SZ clusters, compared to the X-ray sample, explains the larger fraction of disturbed objects in the Planck data. Although we detect a redshift evolution in the substructure fraction, it is not sufficient to explain the different results between the higher-z SZ sample and the X-ray one. We have also verified a good agreement (˜60%) between the optical and X-ray substructure estimates. However, the best level of agreement is given by the substructure classification given by measures based on the brightest cluster galaxy (BCG), either the BCG-X-ray centroid offset, or the magnitude gap between the first and second BCGs. We advocate the use of those two parameters as the most reliable and cheap way to assess cluster dynamical state. We recommend an offset cut of ˜0.01 ×R500 to separate relaxed and disturbed clusters. Regarding the magnitude gap the separation can be done at Δm12 = 1.0. The central galaxy paradigm (CGP) may not be valid for ˜20% of relaxed massive clusters. This fraction increases to ˜60% for disturbed systems.
A deeper look at the X-ray point source population of NGC 4472
NASA Astrophysics Data System (ADS)
Joseph, T. D.; Maccarone, T. J.; Kraft, R. P.; Sivakoff, G. R.
2017-10-01
In this paper we discuss the X-ray point source population of NGC 4472, an elliptical galaxy in the Virgo cluster. We used recent deep Chandra data combined with archival Chandra data to obtain a 380 ks exposure time. We find 238 X-ray point sources within 3.7 arcmin of the galaxy centre, with a completeness flux, FX, 0.5-2 keV = 6.3 × 10-16 erg s-1 cm-2. Most of these sources are expected to be low-mass X-ray binaries. We finding that, using data from a single galaxy which is both complete and has a large number of objects (˜100) below 1038 erg s-1, the X-ray luminosity function is well fitted with a single power-law model. By cross matching our X-ray data with both space based and ground based optical data for NGC 4472, we find that 80 of the 238 sources are in globular clusters. We compare the red and blue globular cluster subpopulations and find red clusters are nearly six times more likely to host an X-ray source than blue clusters. We show that there is evidence that these two subpopulations have significantly different X-ray luminosity distributions. Source catalogues for all X-ray point sources, as well as any corresponding optical data for globular cluster sources, are also presented here.
Spiral Arm Morphology in Cluster Environment
NASA Astrophysics Data System (ADS)
Choi, Isaac Yeoun-Gyu; Ann, Hong Bae
2011-10-01
We examine the dependence of the morphology of spiral galaxies on the environment using the KIAS Value Added Galaxy Catalog (VAGC) which is derived from the Sloan Digital Sky Survey (SDSS) DR7. Our goal is to understand whether the local environment or global conditions dominate in determining the morphology of spiral galaxies. For the analysis, we conduct a morphological classification of galaxies in 20 X-ray selected Abell clusters up to z˜0.06, using SDSS color images and the X-ray data from the Northern ROSAT All-Sky (NORAS) catalog. We analyze the distribution of arm classes along the clustercentric radius as well as that of Hubble types. To segregate the effect of local environment from the global environment, we compare the morphological distribution of galaxies in two X-lay luminosity groups, the low-Lx clusters (Lx < 0.15×1044erg/s) and high-Lx clusters (Lx > 1.8×1044erg/s). We find that the morphology-clustercentric relation prevails in the cluster envirnment although there is a brake near the cluster virial radius. The grand design arms comprise about 40% of the cluster spiral galaxies with a weak morphology-clustercentric radius relation for the arm classes, in the sense that flocculent galaxies tend to increase outward, regardless of the X-ray luminosity. From the cumulative radial distribution of cluster galaxies, we found that the low-Lx clusters are fully virialized while the high-Lx clusters are not.
An Optical and X-Ray Study of Abell 576, a Galaxy Cluster with a Cold Core
NASA Astrophysics Data System (ADS)
Mohr, Joseph J.; Geller, Margaret J.; Fabricant, Daniel G.; Wegner, Gary; Thorstensen, John; Richstone, Douglas O.
1996-10-01
We analyze the galaxy population and dynamics of the galaxy cluster A576; the observational constraints include 281 redshifts (230 new), R- band CCD galaxy photometry over a 2 h^-1^ Mpc x 2 h^-1^ Mpc region centered on the cluster, an Einstein IPC X-ray image, and an Einstein MPC X-ray spectrum. We focus on an 86% complete magnitude-limited sample (R_23.5_ < 17) of 169 cluster galaxies. The cluster galaxies with emission lines in their spectra have a larger velocity dispersion and are significantly less clustered on this 2 h^-1^ Mpc scale than galaxies without emission lines. We show that excluding the emission-line galaxies from the cluster sample decreases the velocity dispersion by 18% and the virial mass estimate by a factor of 2. The central cluster region contains a nonemission galaxy population and an intracluster medium which is significantly cooler (σ_core_ = 387_-105_^+250^ km s^-1^ and T_x_ = 1.6_-0.3_^+0.4^ keV at 90% confidence) than the global populations (σ = 977_-96_^+124^ km s^- 1^ for the nonemission population and T_X_ > 4 keV at 90% confidence). Because (1) the low-dispersion galaxy population is no more luminous than the global population and (2) the evidence for a cooling flow is weak, we suggest that the core of A576 may contain the remnants of a lower mass subcluster. We examine the cluster mass, baryon fraction, and luminosity function. The cluster virial mass varies significantly depending on the galaxy sample used. Consistency between the hydrostatic and virial estimators can be achieved if (1) the gas temperature at r~1 h^-1^ Mpc is T_X_ ~ 8 keV (the best-fit value) and (2) several velocity outliers are excluded from the virial calculation. Although the best-fit Schechter function parameters and the ratio of galaxy to gas mass in A576 are typical of other clusters, the baryon fraction is relatively low. Using the consistent cluster binding mass, we show that the gas mass fraction is ~3 h^-3/2^% and the baryon fraction is ~4%.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
The Integrated Cluster Finder for the ARCHES project
NASA Astrophysics Data System (ADS)
Mints, Alexey; Schwope, Axel; Rosen, Simon; Pineau, François-Xavier; Carrera, Francisco
2017-01-01
Context. Clusters of galaxies are important for cosmology and astrophysics. They may be discovered through either the summed optical/IR radiation originating from their member galaxies or via X-ray emission originating from the hot intracluster medium. X-ray samples are not affected by projection effects but a redshift determination typically needs optical and infrared follow-up to then infer X-ray temperatures and luminosities. Aims: We want to confirm serendipitously discovered X-ray emitting cluster candidates and measure their cosmological redshift through the analysis and exploration of multi-wavelength photometric catalogues. Methods: We developed a tool, the Integrated Cluster Finder (ICF), to search for clusters by determining overdensities of potential member galaxies in optical and infrared catalogues. Based on a spectroscopic meta-catalogue we calibrated colour-redshift relations that combine optical (SDSS) and IR data (UKIDSS, WISE). The tool is used to quantify the overdensity of galaxies against the background via a modified redMaPPer technique and to quantify the confidence of a cluster detection. Results: Cluster finding results are compared to reference catalogues found in the literature. The results agree to within 95-98%. The tool is used to confirm 488 out of 830 cluster candidates drawn from 3XMMe in the footprint of the SDSS and CFHT catalogues. Conclusions: The ICF is a flexible and highly efficient tool to search for galaxy clusters in multiple catalogues and is freely available to the community. It may be used to identify the cluster content in future X-ray catalogues from XMM-Newton and eventually from eROSITA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrosian, Vahe; /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept.; Madejski, Greg
2006-08-16
Evidence for non-thermal activity in clusters of galaxies is well established from radio observations of synchrotron emission by relativistic electrons. New windows in the Extreme Ultraviolet and Hard X-ray ranges have provided for more powerful tools for the investigation of this phenomenon. Detection of hard X-rays in the 20 to 100 keV range have been reported from several clusters of galaxies, notably from Coma and others. Based on these earlier observations we identified the relatively high redshift cluster 1E0657-56 (also known as RX J0658-5557) as a good candidate for hard X-ray observations. This cluster, also known as the bullet cluster,more » has many other interesting and unusual features, most notably that it is undergoing a merger, clearly visible in the X-ray images. Here we present results from a successful RXTE observations of this cluster. We summarize past observations and their theoretical interpretation which guided us in the selection process. We describe the new observations and present the constraints we can set on the flux and spectrum of the hard X-rays. Finally we discuss the constraints one can set on the characteristics of accelerated electrons which produce the hard X-rays and the radio radiation.« less
Probing the dynamical and X-ray mass proxies of the cluster of galaxies Abell S1101
NASA Astrophysics Data System (ADS)
Rabitz, Andreas; Zhang, Yu-Ying; Schwope, Axel; Verdugo, Miguel; Reiprich, Thomas H.; Klein, Matthias
2017-01-01
Context. The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-σ) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistics to perform precision measurements of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (I) the velocity dispersion (Mvir), (II) the caustic mass computation (Mcaustic), and (III) mass proxies from X-ray observations and the Sunyaev-Zel'dovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of 60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure do not show evidence of major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates, which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of σ erased the deviation of S1101 in the L-σ relation. We also noticed a background structure in the cluster field of S1101. This structure is a galaxy group that is very close to the cluster S1101 in projection but at almost twice its redshift. However the mass of this structure is too low to significantly bias the observed bolometric X-ray luminosity of S1101. Hence, we can conclude that the deviation of S1101 in the L-σ relation in our previous study can be explained by low member statistics and galaxy interlopers, which are known to introduce biases in the estimated velocity dispersion. We have made use of VLT/VIMOS observations taken with the ESO Telescope at the Paranal Observatory under programme 087.A-0096.
NASA Astrophysics Data System (ADS)
Tchernin, C.; Bartelmann, M.; Huber, K.; Dekel, A.; Hurier, G.; Majer, C. L.; Meyer, S.; Zinger, E.; Eckert, D.; Meneghetti, M.; Merten, J.
2018-06-01
Context. The mass of galaxy clusters is not a direct observable, nonetheless it is commonly used to probe cosmological models. Based on the combination of all main cluster observables, that is, the X-ray emission, the thermal Sunyaev-Zel'dovich (SZ) signal, the velocity dispersion of the cluster galaxies, and gravitational lensing, the gravitational potential of galaxy clusters can be jointly reconstructed. Aims: We derive the two main ingredients required for this joint reconstruction: the potentials individually reconstructed from the observables and their covariance matrices, which act as a weight in the joint reconstruction. We show here the method to derive these quantities. The result of the joint reconstruction applied to a real cluster will be discussed in a forthcoming paper. Methods: We apply the Richardson-Lucy deprojection algorithm to data on a two-dimensional (2D) grid. We first test the 2D deprojection algorithm on a β-profile. Assuming hydrostatic equilibrium, we further reconstruct the gravitational potential of a simulated galaxy cluster based on synthetic SZ and X-ray data. We then reconstruct the projected gravitational potential of the massive and dynamically active cluster Abell 2142, based on the X-ray observations collected with XMM-Newton and the SZ observations from the Planck satellite. Finally, we compute the covariance matrix of the projected reconstructed potential of the cluster Abell 2142 based on the X-ray measurements collected with XMM-Newton. Results: The gravitational potentials of the simulated cluster recovered from synthetic X-ray and SZ data are consistent, even though the potential reconstructed from X-rays shows larger deviations from the true potential. Regarding Abell 2142, the projected gravitational cluster potentials recovered from SZ and X-ray data reproduce well the projected potential inferred from gravitational-lensing observations. We also observe that the covariance matrix of the potential for Abell 2142 reconstructed from XMM-Newton data sensitively depends on the resolution of the deprojected grid and on the smoothing scale used in the deprojection. Conclusions: We show that the Richardson-Lucy deprojection method can be effectively applied on a grid and that the projected potential is well recovered from real and simulated data based on X-ray and SZ signal. The comparison between the reconstructed potentials from the different observables provides additional information on the validity of the assumptions as function of the projected radius.
NASA Astrophysics Data System (ADS)
Gargiulo, I. D.; García, F.; Combi, J. A.; Caso, J. P.; Bassino, L. P.
2018-05-01
We report on a detailed X-ray study of the extended emission of the intracluster medium (ICM) around NGC 3268, in the Antlia cluster of galaxies, together with a characterization of an extended source in the field, namely a background cluster of galaxies at z ≈ 0.41, which was previously accounted as an X-ray point source. The spectral properties of the extended emission of the gas present in Antlia were studied using data from the XMM-Newton satellite complemented with optical images of CTIO-Blanco telescope, to attain for associations of the optical sources with the X-ray emission. The XMM-Newton observations show that the intracluster gas is concentrated in a region centred in one of the main galaxies of the cluster, NGC 3268. By means of a spatially-resolved spectral analysis we derived the abundances of the ICM plasma. We found a wall-like feature in the northeast direction where the gas is characterized by a lower temperature with respect to the rest of the ICM. Furthermore, using combined optical observations we inferred the presence of an elliptical galaxy in the centre of the extended X-ray source considered as a background cluster, which favours this interpretation.
INTRAGROUP AND GALAXY-LINKED DIFFUSE X-RAY EMISSION IN HICKSON COMPACT GROUPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis
2013-02-15
Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of themore » detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L{sub X} -T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L{sub X} -{sigma} relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L{sub X} increases with decreasing group H I to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on H I morphology whereby systems with intragroup H I indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L{sub X} of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.« less
Intragroup and Galaxy-linked Diffuse X-ray Emission In Hickson Compact Groups
NASA Technical Reports Server (NTRS)
Desjardins, Tyler D.; Gallagher, Sarah C.; Tzanavaris, Panayiotis; Mulchaey, John S.; Brandt, William N.; Charlton, Jane C.; Garmire, Gordon P.; Gronwall, Caryl; Cardiff, Ann; Johnson, Kelsey E.;
2013-01-01
Isolated compact groups (CGs) of galaxies present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups (HCGs) observed with the Chandra X-Ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of vigourous star formation or activity in the galaxy nucleus, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the L(sub X-Tau) relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster L(sub X-sigma) relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that L(sub X) increases with decreasing group Hi to dynamical-mass ratio with tentative evidence for a dependence in X-ray luminosity on Hi morphology whereby systems with intragroup Hi indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the L(sub X) of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.
X-Ray Gas Temperatures in the Arc Clusters MS0440+204 and MS0302+1658
NASA Technical Reports Server (NTRS)
Gioia, Isabella M.; White, Nicholas
1997-01-01
The cluster of galaxies MS0440+02, originally discovered through its X-ray emission, was part of an optical observational program to search for arcs and arclets in a complete sample of X-ray luminous, medium-distant clusters of galaxies. Mauna Kea CCD images of MS0440+02 showed a remarkable optical morphology. The core of the cluster contains 6 bright galaxies and numerous fainter ones embedded in a low surface brightness halo. Besides, MS0440+02 is the most spectacular example that we have found of an arc system in a compact condensed cluster, with arcs symmetrically distributed to draw almost perfect circles around the cluster center. Giant arcs are magnified images of distant galaxies, gravitationally distorted by massive foreground clusters. It is of great importance to compare the results of the lensing studies with those derived from X-ray observations, as the two are independent methods of studying the mass distribution. Thus MS0440+02 was the ideal target to obtain temperature measurement with ASCA and good spatial resolution X-ray observations with ROSAT. The X-ray data have been used in conjunction with Hubble Space Telescope observations to put more stringent constrains on the mass estimates. Most of the different wavelength datasets have been reduced and analyzed. Mass determinations have been separately obtained from galaxy virial motions and X-ray profile fitting using the cluster gas temperature as measured by the ASCA satellite. Assuming that the hot gas is in hydrostatic equilibrium and in a spherical potential, we find from the X-ray data a mass distribution profile that is well described by a Beta model. From the multiple images formed by gravitational lensing (HST data) using the modelling of the gravitational lensed arcs, we have derived Beta model. To reconcile the mass estimates we have explored the possibility of having a supercluster surrounding the MOS0440 cluster, that is a model with two isothermal spheres, one embedded inside the other. These results have been published or are in press.
NASA Astrophysics Data System (ADS)
Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.
2004-07-01
Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.
a Snapshot Survey of X-Ray Selected Central Cluster Galaxies
NASA Astrophysics Data System (ADS)
Edge, Alastair
1999-07-01
Central cluster galaxies are the most massive stellar systems known and have been used as standard candles for many decades. Only recently have central cluster galaxies been recognised to exhibit a wide variety of small scale {<100 pc} features that can only be reliably detected with HST resolution. The most intriguing of these are dust lanes which have been detected in many central cluster galaxies. Dust is not expected to survive long in the hostile cluster environment unless shielded by the ISM of a disk galaxy or very dense clouds of cold gas. WFPC2 snapshot images of a representative subset of the central cluster galaxies from an X-ray selected cluster sample would provide important constraints on the formation and evolution of dust in cluster cores that cannot be obtained from ground-based observations. In addition, these images will allow the AGN component, the frequency of multiple nuclei, and the amount of massive-star formation in central cluster galaxies to be ass es sed. The proposed HST observatio ns would also provide high-resolution images of previously unresolved gravitational arcs in the most massive clusters in our sample resulting in constraints on the shape of the gravitational potential of these systems. This project will complement our extensive multi-frequency work on this sample that includes optical spectroscopy and photometry, VLA and X-ray images for the majority of the 210 targets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille
2015-06-10
Galaxy clusters exhibit remarkable self-similar behavior which allows us to establish simple scaling relationships between observable quantities and cluster masses, making galaxy clusters useful cosmological probes. Recent X-ray observations suggested that self-similarity may be broken in the outskirts of galaxy clusters. In this work, we analyze a mass-limited sample of massive galaxy clusters from the Omega500 cosmological hydrodynamic simulation to investigate the self-similarity of the diffuse X-ray emitting intracluster medium (ICM) in the outskirts of galaxy clusters. We find that the self-similarity of the outer ICM profiles is better preserved if they are normalized with respect to the mean densitymore » of the universe, while the inner profiles are more self-similar when normalized using the critical density. However, the outer ICM profiles as well as the location of accretion shock around clusters are sensitive to their mass accretion rate, which causes the apparent breaking of self-similarity in cluster outskirts. We also find that the collisional gas does not follow the distribution of collisionless dark matter (DM) perfectly in the infall regions of galaxy clusters, leading to 10% departures in the gas-to-DM density ratio from the cosmic mean value. Our results have a number implications for interpreting observations of galaxy clusters in X-ray and through the Sunyaev–Zel’dovich effect, and their applications to cosmology.« less
NASA Technical Reports Server (NTRS)
Henry, J. P.; Briel, U. G.
1991-01-01
The X-ray observation of A2256 with the imaging proportional counter on board the X-ray observatory Rosat revealed significantly more sources in the field around the extended cluster emission than expected by chance. In a preliminary investigation, 14 sources were discovered at the limiting flux for this exposure whereas about 7 sources would have been expected by chance. At least two of those sources are coincident with cluster-member galaxies, having X-ray luminosities of approximately 10 to the 42nd erg/s in the Rosat energy band from 0.1 to 2.4 keV, but at least four more are from 'dark' objects. The similarity of these objects to those in A1367 suggests the existence of a new class of X-ray sources in clusters.
Correction of Hydrostatic Cluster Masses through Power Ratios and Weak Lensing
NASA Astrophysics Data System (ADS)
Mahdavi, Andisheh
2009-09-01
The evolution of rich, X-ray emitting clusters of galaxies has given us precise measurements of the cosmological parameters, with dramatic constraints on the dark energy equation of state. Built into these measurements are wholesale corrections for the infamous "X-ray mass underestimate"---the fact that X-ray masses are systematically low due to the incomplete thermalization of the intracluster plasma. We seek to refine the mass correction for cosmological use through morphological power ratios. Power ratios deliver more accurate correction factors because they take into account variations in substructure from cluster to cluster. We will test their ability to correct X-ray masses by comparing hydrostatic and weak lensing mass profiles for a sample of 44 rich clusters of galaxies.
A study of cooling flows in poor clusters of galaxies
NASA Technical Reports Server (NTRS)
Kriss, Gerard A.; Dillingham, Stephen
1995-01-01
We observed three poor clusters with central dominant galaxies (AWM 4, MKW 4, and MKW 3's) using the Position Sensitive Proportional Counter on the ROSAT X-ray satellite. The images reveal smooth, symmetrical X-ray emission filling the cluster with a sharp peak on each central galaxy. The cluster surface brightness profiles can be decomposed using superposed King models for the central galaxy and the intracluster medium. The King model parameters for the cluster portions are consistent with previous observations of these clusters. The newly measured King model parameters for the central galaxies are typical of the X-ray surface brightness distributions of isolated elliptical galaxies. Spatially resolved temperature measurements in annular rings throughout the clusters show a nearly isothermal profile. Temperatures are consistent with previously measured values, but are much better determined. There is no significant drop in temperature noted in the innermost bins where cooling flows are likely to be present, nor is any excess absorption by cold gas required. All cold gas columns are consistent with galactic foreground absorption. We derive mass profiles for the clusters assuming both isothermal temperature profiles and cooling flow models with constant mass flow rates. Our results are consistent with previous Einstein IPC observations by Kriss, Cioffi, & Canizares, but extend the mass profiles out to 1 Mpc in these poor clusters.
X-ray emission associated with radio galaxies in the Perseus cluster
NASA Technical Reports Server (NTRS)
Rhee, George; Burns, Jack O.; Kowalski, Michael P.
1994-01-01
In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.
NASA Technical Reports Server (NTRS)
Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.
2004-01-01
X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.
XMM-Newton Observations of the Cluster of Galaxies Sersic 159-03
NASA Technical Reports Server (NTRS)
Kaastra, J. S.; Ferrigno, C.; Tamura, T.; Paerels, F. B. S.; Peterson, J. R.; Mittaz, J. P. D.
2000-01-01
The cluster of galaxies Sersic 159-03 was observed with the XMM-Newton X-ray observatory as part of the Guaranteed Time program. X-ray spectra taken with the EPIC and RGS instruments show no evidence for the strong cooling flow derived from previous X-ray observations. There is a significant lack of cool gas below 1.5 keV as compared to standard isobaric cooling flow models. While the oxygen is distributed more or less uniformly over the cluster, iron shows a strong concentration in the center of the cluster, slightly offset from the brightness center but within the central cD galaxy. This points to enhanced type Ia supernova activity in the center of the cluster. There is also an elongated iron-rich structure ex- tending to the east of the cluster, showing the inhomogeneity of the iron distribution. Finally, the temperature drops rapidly beyond 4' from the cluster center.
X-ray morphological study of galaxy cluster catalogues
NASA Astrophysics Data System (ADS)
Democles, Jessica; Pierre, Marguerite; Arnaud, Monique
2016-07-01
Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.
Science from a glimpse: Hubble SNAPshot observations of massive galaxy clusters
NASA Astrophysics Data System (ADS)
Repp, A.; Ebeling, H.
2018-06-01
Hubble Space Telescope SNAPshot surveys of 86 X-ray selected galaxy clusters at 0.3 < z < 0.5 from the MACS sample have proven invaluable for the exploration of a wide range of astronomical research topics. We here present an overview of the four MACS SNAPshot surveys conducted from Cycle 14 to Cycle 20 as part of a long-term effort aimed at identifying exceptional cluster targets for in-depth follow up by the extragalactic community. We also release redshifts and X-ray luminosities of all clusters observed as part of this initiative. To illustrate the power of SNAPshot observations of MACS clusters, we explore several aspects of galaxy evolution illuminated by the images obtained for these programmes. We confirm the high lensing efficiency of X-ray selected clusters at z > 0.3. Examining the evolution of the slope of the cluster red sequence, we observe at best a slight decrease with redshift, indicating minimal age contribution since z ˜ 1. Congruent to previous studies' findings, we note that the two BCGs which are significantly bluer (≥5σ) than their clusters' red sequences reside in relaxed clusters and exhibit pronounced internal structure. Thanks to our targets' high X-ray luminosity, the subset of our sample observed with Chandra adds valuable leverage to the X-ray luminosity-optical richness relation, which, albeit with substantial scatter, is now clearly established from groups to extremely massive clusters of galaxies. We conclude that SNAPshot observations of MACS clusters stand to continue to play a vital pathfinder role for astrophysical investigations across the entire electromagnetic spectrum.
MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV-ZEL'DOVICH EFFECT AND X-RAY PEAKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molnar, Sandor M.; Hearn, Nathan C.; Stadel, Joachim G., E-mail: sandor@phys.ntu.edu.tw
2012-03-20
Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zel'dovich (SZ) effect images compared with high-resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were aboutmore » 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal, and therefore the offset between the SZ and X-ray peaks, change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak-lensing observations of the merging galaxy cluster CL0152-1357, we find that a large relative velocity of 4800 km s{sup -1} is necessary to explain the observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.« less
Evaluating tests of virialization and substructure using galaxy clusters in the ORELSE survey
NASA Astrophysics Data System (ADS)
Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.
2018-07-01
We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the Observations of Redshift Evolution in Large-Scale Environments survey spanning from 0.7
Evaluating Tests of Virialization and Substructure Using Galaxy Clusters in the ORELSE Survey
NASA Astrophysics Data System (ADS)
Rumbaugh, N.; Lemaux, B. C.; Tomczak, A. R.; Shen, L.; Pelliccia, D.; Lubin, L. M.; Kocevski, D. D.; Wu, P.-F.; Gal, R. R.; Mei, S.; Fassnacht, C. D.; Squires, G. K.
2018-05-01
We evaluated the effectiveness of different indicators of cluster virialization using 12 large-scale structures in the ORELSE survey spanning from 0.7 < z < 1.3. We located diffuse X-ray emission from 16 galaxy clusters using Chandra observations. We studied the properties of these clusters and their members, using Chandra data in conjunction with optical and near-IR imaging and spectroscopy. We measured X-ray luminosities and gas temperatures of each cluster, as well as velocity dispersions of their member galaxies. We compared these results to scaling relations derived from virialized clusters, finding significant offsets of up to 3-4σ for some clusters, which could indicate they are disturbed or still forming. We explored if other properties of the clusters correlated with these offsets by performing a set of tests of virialization and substructure on our sample, including Dressler-Schectman tests, power ratios, analyses of the velocity distributions of galaxy populations, and centroiding differences. For comparison to a wide range of studies, we used two sets of tests: ones that did and did not use spectral energy distribution fitting to obtain rest-frame colours, stellar masses, and photometric redshifts of galaxies. Our results indicated that the difference between the stellar mass or light mean-weighted center and the X-ray center, as well as the projected offset of the most-massive/brightest cluster galaxy from other cluster centroids had the strongest correlations with scaling relation offsets, implying they are the most robust indicators of cluster virialization and can be used for this purpose when X-ray data is insufficiently deep for reliable LX and TX measurements.
Discovery and Characterization of Gravitationally Lensed X-ray Sources in the CLASH Sample
NASA Astrophysics Data System (ADS)
Pasha, Imad; Van Weeren, Reinout J.; Santos, Felipe A.
2017-01-01
We present the discovery of ~20 gravitationally lensed X-ray sources in the Cluster Lensing And Supernova survey with Hubble (CLASH) survey, a sample of massive clusters of galaxies between z ~ 0.2-0.9 observed with the Hubble Space Telescope (HST). By combining CLASH imaging with Chandra X-ray Observatory observations of the same clusters, we select those sources in the HST images which are gravitationally lensed X-ray sources behind the clusters. Of those discovered sources, we determine various properties including source redshifts and magnifications, as well as performing X-ray spectral fits to determine source fluxes and luminosities. Prior to this study, only four lensed X-ray sources behind clusters have been found, thus to the best of our knowledge, our program is the first to systematically categorize lensed X-ray sources behind galaxy clusters.This work was supported by the SAO REU program, which is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.
Nonpolytropic model for the Coma Cluster
NASA Technical Reports Server (NTRS)
Fusco-Femiano, R.; Hughes, John P.
1994-01-01
In this article we demonstrate, for the first time, how a physically motivated static model for both the gas and galaxies in the Coma Cluster of galaxies can jointly fit all available X-ray and optical imaging and spectroscopic data. The principal assumption of this nonpolytropic model (Cavaliere & Fusco-Femiano 1981, hereafter CFF), is that the intracluster gas temperature is proportional to the square of the galaxy velocity dispersion everywhere throughout the cluster; no other assumption about the gas temperature distribution is required. After demonstrating that the CFF nonpolytropic model is an adequate representation of the gas and galaxy distributions, the radial velocity dispersion profile, and the gas temperature distribution, we derive the following information about the Coma Cluster: 1. The central temperature is about 9 keV and the central density is 2.8 x 10(exp -3)/cm(exp 3) for the X-ray emitting plasma; 2. The binding mass of the cluster is approximately 2 x 10(exp 15) solar mass within 5 Mpc for (H(sub 0) = 50 km/sec/Mpc), with a mass-to-light ratio of approximately 160 solar mass/solar luminosity; 3. The contribution of the gas to the total virial mass increases with distance from the cluster center, and we estimate that this ratio is no greater than approximately 50% within 5 Mpc. The ability of the CFF nonpolytropic model to describe the current X-ray and optical data for the Coma Cluster suggests that a significant fraction of the thermal energy contained in the hot gas in this as well as other rich galaxy clusters may have come from the interaction between the galaxies and the ambient cluster medium. interaction between the galaxies and the ambient cluster medium.
NASA Technical Reports Server (NTRS)
Krivonos, Roman A.; Tomsick, John A.; Bauer, Franz E.; Baganoff, Frederick K.; Barriere, Nicolas M.; Bodaghee, Arash; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Grefenstette, Brian W.;
2014-01-01
The Arches cluster is a young, densely packed massive star cluster in our Galaxy that shows a high level of star formation activity. The nature of the extended non-thermal X-ray emission around the cluster remains unclear. The observed bright Fe K(alpha) line emission at 6.4 keV from material that is neutral or in a low ionization state can be produced either by X-ray photoionization or by cosmic-ray particle bombardment or both. In this paper, we report on the first detection of the extended emission around the Arches cluster above 10 keV with the NuSTAR mission, and present results on its morphology and spectrum. The spatial distribution of the hard X-ray emission is found to be consistent with the broad region around the cluster where the 6.4 keV line is observed. The interpretation of the hard X-ray emission within the context of the X-ray reflection model puts a strong constraint on the luminosity of the possible illuminating hard X-ray source. The properties of the observed emission are also in broad agreement with the low-energy cosmic-ray proton excitation scenario. Key words: cosmic rays - Galaxy: center - ISM: general - X-rays: individual (Arches cluster)
NASA Technical Reports Server (NTRS)
Bonamente, Massimiliano; Joy, Marshall K.; Carlstrom, John E.; LaRoque, Samuel J.
2004-01-01
X-ray and Sunyaev-Zeldovich Effect data ca,n be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and interferometric radio measurements of the Sunyam-Zeldovich Effect are available from the BIMA and 0VR.O arrays. We introduce a Monte Carlo Markov chain procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure the full probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and the cluster distance. We apply this technique to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in a follow-up paper to determine the distance of a large sample of galaxy clusters for which high-resolution Chandra X-ray and BIMA/OVRO radio data are available.
NASA Astrophysics Data System (ADS)
Ebeling, H.; Edge, A. C.; Bohringer, H.; Allen, S. W.; Crawford, C. S.; Fabian, A. C.; Voges, W.; Huchra, J. P.
1998-12-01
We present a 90 per cent flux-complete sample of the 201 X-ray-brightest clusters of galaxies in the northern hemisphere (delta>=0 deg), at high Galactic latitudes (|b|>=20 deg), with measured redshifts z<=0.3 and fluxes higher than 4.4x10^-12 erg cm^-2 s^-1 in the 0.1-2.4 keV band. The sample, called the ROSAT Brightest Cluster Sample (BCS), is selected from ROSAT All-Sky Survey data and is the largest X-ray-selected cluster sample compiled to date. In addition to Abell clusters, which form the bulk of the sample, the BCS also contains the X-ray-brightest Zwicky clusters and other clusters selected from their X-ray properties alone. Effort has been made to ensure the highest possible completeness of the sample and the smallest possible contamination by non-cluster X-ray sources. X-ray fluxes are computed using an algorithm tailored for the detection and characterization of X-ray emission from galaxy clusters. These fluxes are accurate to better than 15 per cent (mean 1sigma error). We find the cumulative logN-logS distribution of clusters to follow a power law kappa S^alpha with alpha=1.31^+0.06_-0.03 (errors are the 10th and 90th percentiles) down to fluxes of 2x10^-12 erg cm^-2 s^-1, i.e. considerably below the BCS flux limit. Although our best-fitting slope disagrees formally with the canonical value of -1.5 for a Euclidean distribution, the BCS logN-logS distribution is consistent with a non-evolving cluster population if cosmological effects are taken into account. Our sample will allow us to examine large-scale structure in the northern hemisphere, determine the spatial cluster-cluster correlation function, investigate correlations between the X-ray and optical properties of the clusters, establish the X-ray luminosity function for galaxy clusters, and discuss the implications of the results for cluster evolution.
The ROSAT Brightest Cluster Sample - III. Optical spectra of the central cluster galaxies
NASA Astrophysics Data System (ADS)
Crawford, C. S.; Allen, S. W.; Ebeling, H.; Edge, A. C.; Fabian, A. C.
1999-07-01
We present new spectra of dominant galaxies in X-ray-selected clusters of galaxies, which combine with our previously published spectra to form a sample of 256 dominant galaxies in 215 clusters. 177 of the clusters are members of the ROSAT Brightest Cluster Sample (BCS; Ebeling et al.), and 17 have no previous measured redshift. This is the first paper in a series correlating the properties of brightest cluster galaxies and their host clusters in the radio, optical and X-ray wavebands. 27 per cent of the central dominant galaxies have emission-line spectra, all but five with line intensity ratios typical of cooling flow nebulae. A further 6 per cent show only [N ii]lambdalambda6548,6584 with Hα in absorption. We find no evidence for an increase in the frequency of line emission with X-ray luminosity. Purely X-ray-selected clusters at low redshift have a higher probability of containing line emission. The projected separation between the optical position of the dominant galaxy and its host cluster X-ray centroid is less for the line-emitting galaxies than for those without line emission, consistent with a closer association of the central galaxy and the gravitational centre in cooling flow clusters. The more Hα-luminous galaxies have larger emission-line regions and show a higher ratio of Balmer to forbidden line emission, although there is a continuous trend of ionization behaviour across four decades in Hα luminosity. Galaxies with the more luminous line emission [L(Hα)> 10^41ergs^-1] show a significantly bluer continuum, whereas lower luminosity and [N ii]-only line emitters have continua that differ little from those of non-line-emitting dominant galaxies. Values of the Balmer decrement in the more luminous systems commonly imply intrinsic reddening of E(B-V)~0.3 and, when this is corrected for, the excess blue light can be characterized by a population of massive young stars. Several of the galaxies require a large population of O stars, which also provide sufficient photoionization to produce the observed Hα luminosity. The large number of lower mass stars relative to the O-star population suggests that this anomalous population is caused by a series of starbursts in the central galaxy. The lower Hα-luminosity systems show a higher ionization state and few massive stars, requiring instead the introduction of a harder source of photoionization, such as turbulent mixing layers, or low-level nuclear activity. The line emission from the systems showing only [N ii] is very similar to low-level LINER activity commonly found in many normal elliptical galaxies.
Turbulent heating in galaxy clusters brightest in X-rays.
Zhuravleva, I; Churazov, E; Schekochihin, A A; Allen, S W; Arévalo, P; Fabian, A C; Forman, W R; Sanders, J S; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N
2014-11-06
The hot (10(7) to 10(8) kelvin), X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales much shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating for these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies, through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM remains open. Here we present a plausible solution to this question based on deep X-ray data and a new data analysis method that enable us to evaluate directly the ICM heating rate from the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius-it may therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in the atmospheres of X-ray-emitting, gas-rich systems on scales from galaxy clusters to groups and elliptical galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Böhringer, Hans; Chon, Gayoung; Trümper, Joachim
As the largest, clearly defined building blocks of our universe, galaxy clusters are interesting astrophysical laboratories and important probes for cosmology. X-ray surveys for galaxy clusters provide one of the best ways to characterize the population of galaxy clusters. We provide a description of the construction of the NORAS II galaxy cluster survey based on X-ray data from the northern part of the ROSAT All-Sky Survey. NORAS II extends the NORAS survey down to a flux limit of 1.8 × 10{sup −12} erg s{sup −1} cm{sup −2} (0.1–2.4 keV), increasing the sample size by about a factor of two. The NORAS IImore » cluster survey now reaches the same quality and depth as its counterpart, the southern REFLEX II survey, allowing us to combine the two complementary surveys. The paper provides information on the determination of the cluster X-ray parameters, the identification process of the X-ray sources, the statistics of the survey, and the construction of the survey selection function, which we provide in numerical format. Currently NORAS II contains 860 clusters with a median redshift of z = 0.102. We provide a number of statistical functions, including the log N –log S and the X-ray luminosity function and compare these to the results from the complementary REFLEX II survey. Using the NORAS II sample to constrain the cosmological parameters, σ {sub 8} and Ω{sub m}, yields results perfectly consistent with those of REFLEX II. Overall, the results show that the two hemisphere samples, NORAS II and REFLEX II, can be combined without problems into an all-sky sample, just excluding the zone of avoidance.« less
Energy spectra of X-ray clusters of galaxies
NASA Technical Reports Server (NTRS)
Avni, Y.
1976-01-01
A procedure for estimating the ranges of parameters that describe the spectra of X-rays from clusters of galaxies is presented. The applicability of the method is proved by statistical simulations of cluster spectra; such a proof is necessary because of the nonlinearity of the spectral functions. Implications for the spectra of the Perseus, Coma, and Virgo clusters are discussed. The procedure can be applied in more general problems of parameter estimation.
Chandra Detection of Intracluster X-Ray sources in Virgo
NASA Astrophysics Data System (ADS)
Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze
2017-09-01
We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.
A 70 Kiloparsec X-Ray Tail in the Cluster A3627
NASA Technical Reports Server (NTRS)
Sun, M.; Jones, C.; Forman, W.; Nulsen, P. E. J.; Donahue, M.; Voit, G. M.
2006-01-01
We present the discovery of a 70 kpc X-ray tail behind the small late-type galaxy ESO 137-001, in the nearby, hot (T=6.5 keV) merging cluster A3627, from both Chandra and XMM-Newton observations. The tail has a length-to-width ratio of approx. 10. It is luminous (L(0.5-2keV) approx 1041 ergs/s), with a temperature of approx. 0.7 keV and an X-ray gas mass of approx 10(exp 9) solar masses (approx 10% of the galaxy's stellar mass). We interpret this tail as the stripped interstellar medium of ESO 137-001 mixed with the hot cluster medium, with this blue galaxy being converted into a gas-poor galaxy. Three X-ray point sources are detected in the axis of the tail, which may imply active star formation there. The straightness and narrowness of the tail also imply that the turbulence in the intracluster medium is not strong on scales of 20-70 kpc.
NASA Astrophysics Data System (ADS)
Hallman, Eric J.; Alden, Brian; Rapetti, David; Datta, Abhirup; Burns, Jack O.
2018-05-01
We present results from an X-ray and radio study of the merging galaxy cluster Abell 115. We use the full set of five Chandra observations taken of A115 to date (360 ks total integration) to construct high-fidelity temperature and surface brightness maps. We also examine radio data from the Very Large Array at 1.5 GHz and the Giant Metrewave Radio Telescope at 0.6 GHz. We propose that the high X-ray spectral temperature between the subclusters results from the interaction of the bow shocks driven into the intracluster medium by the motion of the subclusters relative to one another. We have identified morphologically similar scenarios in Enzo numerical N-body/hydrodynamic simulations of galaxy clusters in a cosmological context. In addition, the giant radio relic feature in A115, with an arc-like structure and a relatively flat spectral index, is likely consistent with other shock-associated giant radio relics seen in other massive galaxy clusters. We suggest a dynamical scenario that is consistent with the structure of the X-ray gas, the hot region between the clusters, and the radio relic feature.
VLA observations of a complete sample of extragalactic X-ray sources. II
NASA Technical Reports Server (NTRS)
Schild, R.; Zamorani, G.; Gioia, I. M.; Feigelson, E. D.; Maccacaro, T.
1983-01-01
A complete sample of 35 X-ray selected sources found with the Einstein Observatory has been observed with the Very Large Array at 6 cm to investigate the relationship between radio and X-ray emission in extragalactic objects. Detections include three active galactic nuclei (AGNs), two clusters or groups of galaxies, two individual galaxies, and two BL Lac objects. The frequency of radio emission in X-ray selected AGNs is compared with that of optically selected quasars using the integral radio-optical luminosity function. The result suggests that the probability for X-ray selected quasars to be radio sources is higher than for those optically selected. No obvious correlation is found in the sample between the richness of X-ray luminosity of the cluster and the presence of a galaxy with radio luminosity at 5 GHz larger than 10 to the 30th ergs/s/Hz.
Zhang, Y.; Miller, C.; McKay, T.; ...
2016-01-10
Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into analysis of a redshift-dependent BCG-cluster mass relation.
NASA Astrophysics Data System (ADS)
von der Linden, Anja; Allen, Mark T.; Applegate, Douglas E.; Kelly, Patrick L.; Allen, Steven W.; Ebeling, Harald; Burchat, Patricia R.; Burke, David L.; Donovan, David; Morris, R. Glenn; Blandford, Roger; Erben, Thomas; Mantz, Adam
2014-03-01
This is the first in a series of papers in which we measure accurate weak-lensing masses for 51 of the most X-ray luminous galaxy clusters known at redshifts 0.15 ≲ zCl ≲ 0.7, in order to calibrate X-ray and other mass proxies for cosmological cluster experiments. The primary aim is to improve the absolute mass calibration of cluster observables, currently the dominant systematic uncertainty for cluster count experiments. Key elements of this work are the rigorous quantification of systematic uncertainties, high-quality data reduction and photometric calibration, and the `blind' nature of the analysis to avoid confirmation bias. Our target clusters are drawn from X-ray catalogues based on the ROSAT All-Sky Survey, and provide a versatile calibration sample for many aspects of cluster cosmology. We have acquired wide-field, high-quality imaging using the Subaru Telescope and Canada-France-Hawaii Telescope for all 51 clusters, in at least three bands per cluster. For a subset of 27 clusters, we have data in at least five bands, allowing accurate photometric redshift estimates of lensed galaxies. In this paper, we describe the cluster sample and observations, and detail the processing of the SuprimeCam data to yield high-quality images suitable for robust weak-lensing shape measurements and precision photometry. For each cluster, we present wide-field three-colour optical images and maps of the weak-lensing mass distribution, the optical light distribution and the X-ray emission. These provide insights into the large-scale structure in which the clusters are embedded. We measure the offsets between X-ray flux centroids and the brightest cluster galaxies in the clusters, finding these to be small in general, with a median of 20 kpc. For offsets ≲100 kpc, weak-lensing mass measurements centred on the brightest cluster galaxies agree well with values determined relative to the X-ray centroids; miscentring is therefore not a significant source of systematic uncertainty for our weak-lensing mass measurements. In accompanying papers, we discuss the key aspects of our photometric calibration and photometric redshift measurements (Kelly et al.), and measure cluster masses using two methods, including a novel Bayesian weak-lensing approach that makes full use of the photometric redshift probability distributions for individual background galaxies (Applegate et al.). In subsequent papers, we will incorporate these weak-lensing mass measurements into a self-consistent framework to simultaneously determine cluster scaling relations and cosmological parameters.
2015-12-14
This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20 000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colours of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst.
Hard X-ray Emission from Galaxy Clusters Observed with INTEGRAL and Prospects for Simbol-X
NASA Astrophysics Data System (ADS)
Eckert, D.; Paltani, S.; Courvoisier, T. J.-L.
2009-05-01
Some galaxy clusters are known to contain a large population of relativistic electrons, which produce radio emission through synchrotron radiation. Therefore, it is expected that inverse-Compton scattering of the relativistic electrons with the CMB produce non-thermal emission which should be observable in the hard X-ray domain. Here we focus on the recent results by INTEGRAL, which shed a new light on the non-thermal emission thanks to its angular resolution and sensitivity in the hard X-ray range. We also present the exciting prospects in this field for Simbol-X, which will allow us to detect the non-thermal emission in a number of clusters and map the magnetic field throughout the intra-cluster medium.
"A Richness Study of 14 Distant X-Ray Clusters from the 160 Square Degree Survey"
NASA Technical Reports Server (NTRS)
Jones, Christine; West, Donald (Technical Monitor)
2001-01-01
We have measured the surface density of galaxies toward 14 X-ray-selected cluster candidates at redshifts z(sub i) 0.46, and we show that they are associated with rich galaxy concentrations. These clusters, having X-ray luminosities of Lx(0.5-2 keV) approx. (0.5 - 2.6) x 10(exp 44) ergs/ sec are among the most distant and luminous in our 160 deg(exp 2) ROSAT Position Sensitive Proportional Counter cluster survey. We find that the clusters range between Abell richness classes 0 and 2 and have a most probable richness class of 1. We compare the richness distribution of our distant clusters to those for three samples of nearby clusters with similar X-ray luminosities. We find that the nearby and distant samples have similar richness distributions, which shows that clusters have apparently not evolved substantially in richness since redshift z=0.5. There is, however, a marginal tendency for the distant clusters to be slightly poorer than nearby clusters, although deeper multicolor data for a large sample would be required to confirm this trend. We compare the distribution of distant X-ray clusters in the L(sub X)-richness plane to the distribution of optically selected clusters from the Palomar Distant Cluster Survey. The optically selected clusters appear overly rich for their X-ray luminosities, when compared to X-ray-selected clusters. Apparently, X-ray and optical surveys do not necessarily sample identical mass concentrations at large redshifts. This may indicate the existence of a population of optically rich clusters with anomalously low X-ray emission, More likely, however, it reflects the tendency for optical surveys to select unvirialized mass concentrations, as might be expected when peering along large-scale filaments.
NASA Astrophysics Data System (ADS)
Jørgensen, Inger; Chiboucas, Kristin; Hibon, Pascale; Nielsen, Louise D.; Takamiya, Marianne
2018-04-01
The Gemini/HST Galaxy Cluster Project (GCP) covers 14 z = 0.2–1.0 clusters with X-ray luminosity of {L}500≥slant {10}44 {erg} {{{s}}}-1 in the 0.1–2.4 keV band. In this paper, we provide homogeneously calibrated X-ray luminosities, masses, and radii, and we present the complete catalog of the ground-based photometry for the GCP clusters. The clusters were observed with either Gemini North or South in three or four of the optical passbands g‧, r‧, i‧, and z‧. The photometric catalog includes consistently calibrated total magnitudes, colors, and geometrical parameters. The photometry reaches ≈25 mag in the passband closest to the rest-frame B band. We summarize comparisons of our photometry with data from the Sloan Digital Sky Survey. We describe the sample selection for our spectroscopic observations, and establish the calibrations to obtain rest-frame magnitudes and colors. Finally, we derive the color–magnitude relations for the clusters, and briefly discuss these in the context of evolution with redshift. Consistent with our results based on spectroscopic data, the color–magnitude relations support passive evolution of the red sequence galaxies. The absence of change in the slope with redshift constrains the allowable age variation along the red sequence to <0.05 dex between the brightest cluster galaxies and those four magnitudes fainter. This paper serves as the main reference for the GCP cluster and galaxy selection, X-ray data, and ground-based photometry.
LoCuSS: The infall of X-ray groups onto massive clusters
NASA Astrophysics Data System (ADS)
Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.
2018-03-01
Galaxy clusters are expected to form hierarchically in a ΛCDM universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass halos. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (
LoCuSS: The infall of X-ray groups on to massive clusters
NASA Astrophysics Data System (ADS)
Haines, C. P.; Finoguenov, A.; Smith, G. P.; Babul, A.; Egami, E.; Mazzotta, P.; Okabe, N.; Pereira, M. J.; Bianconi, M.; McGee, S. L.; Ziparo, F.; Campusano, L. E.; Loyola, C.
2018-07-01
Galaxy clusters are expected to form hierarchically in a Λ cold dark matter (ΛCDM) universe, growing primarily through mergers with lower mass clusters and the continual accretion of group-mass haloes. Galaxy clusters assemble late, doubling their masses since z ˜ 0.5, and so the outer regions of clusters should be replete with accreting group-mass systems. We present an XMM-Newton survey to search for X-ray groups in the infall regions of 23 massive galaxy clusters (
Deep X-ray and UV Surveys of Galaxies with Chandra, XMM-Newton, and GALEX
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2006-01-01
Only with the deepest Chandra surveys has X-ray emission from normal and star forming galaxies (as opposed to AGN, which dominate the X-ray sky) been accessible at cosmologically interesting distances. The X-ray emission from accreting binaries provide a critical glimpse into the binary phase of stellar evolution and studies of the hot gas reservoir constrain past star formation. UV studies provide important, sensitive diagnostics of the young star forming populations and provide the most mature means for studying galaxies at 2 < zeta < 4. This talk will review current progress on studying X-ray emission in concert with UV emission from normal/star-forming galaxies at higher redshift. We will also report on our new, deep surveys with GALEX and XMM-Newton in the nearby Coma cluster. These studies are relevant to DEEP06 as Coma is the nearest rich cluster of galaxies and provides an important benchmark for high-redshift studies in the X-ray and UV wavebands. The 30 ks GALEX (note: similar depth to the GALEX Deep Imaging Survey) and the 110 ks XMM observations provide extremely deep coverage of a Coma outskirts field, allowing the construction of the UV and X-ray luminosity function of galaxies and important constraints on star formation scaling relations such as the X-ray-Star Formation Rate correlation and the X-ray/Stellar Mass correlation. We will discuss what we learn from these deep observations of Coma, including the recently established suppression of the X-ray emission from galaxies in the Coma outskirts that is likely associated with lower levels of past star formation and/or the results of tidal gas stripping.
Enrichment and heating of the intracluster medium by ejection from galaxies
NASA Technical Reports Server (NTRS)
Metzler, Chris; Evrard, August
1993-01-01
Results of N-body + hydrodynamic simulations designed to model the formation and evolution of clusters of galaxies and intracluster gas are presented. Clusters of galaxies are the largest bound, relaxed objects in the universe. They are strong x-ray emitters; this radiation originates through thermal bremsstrahlung from a diffuse plasma filling the space between cluster galaxies, the intracluster medium or ICM. From observations, one can infer that the mass of the ICM is comparable to or greater than the mass of all the galaxies in the cluster, and that the ratio of mass in hot gas to mass in galaxies, M(sub ICM)/M(sub STARS), increases with the richness of the cluster. Spectroscopic studies of cluster x-ray emission show heavy element emission lines. While M(sub ICM)/M(sub STARS) is greater than or equal to 1 implies that most of the ICM is primordial in nature, the discovery of heavy elements indicates that some of the gas must have been processed through galaxies. Galaxy evolution thus directly impacts cluster evolution.
NASA Technical Reports Server (NTRS)
Luppino, G. A.; Gioia, I. M.
1995-01-01
During the course of a gravitational lensing survey of distant, X-ray selected Einstein Observatory Extended Medium Sensitivity Survey (EMSS) clusters of galaxies, we have studied six X-ray-luminous (L(sub x) greater than 5 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) clusters at redshifts exceeding z = 0.5. All of these clusters are apparently massive. In addition to their high X-ray luminosity, two of the clusters at z approximately 0.6 exhibit gravitationally lensed arcs. Furthermore, the highest redshift cluster in our sample, MS 1054-0321 at z = 0.826, is both extremely X-ray luminous (L(sub 0.3-3.5keV)=9.3 x 10(exp 44)(h(sub 50)(exp -2))ergs/sec) and exceedingly rich with an optical richness comparable to an Abell Richness Class 4 cluster. In this Letter, we discuss the cosmological implications of the very existence of these clusters for hierarchical structure formation theories such as standard Omega = 1 CDM (cold dark matter), hybrid Omega = 1 C + HDM (hot dark matter), and flat, low-density Lambda + CDM models.
Radial Profiles of PKS 0745-191 Galaxy Cluster with XMM-Newton X-Ray Observations
NASA Astrophysics Data System (ADS)
Tumer, A.; Ezer, C.; Ercan, E.
2017-10-01
Since clusters of galaxies are the largest comprehensive samples of the universe, they provide essential information on from the most basic to the most complex physical mechanisms such as nucleosynthesis and supernovae events. Some of these information are provided by the X-ray emission data from Intra Cluster Medium (ICM) which contains hot dilute gas. Recent archieved observation of the X-Ray spectrum of the cool core galaxy cluster PKS 0745-191 provided by XMM-Newton is subjected to data analysis using ESAS package. Followed by spectra analysis utilizing Xspec spectral fitting software, we present the radial profiles of temperature and abundance from the core to 0.5R_500 of brightest distant cluster (z ˜ 0.102) PKS 0745-191. Using the deprojected spectra, the radial distribution of pressure and entropy in the aforementioned region are also presented.
Baryons at the edge of the X-ray-brightest galaxy cluster.
Simionescu, Aurora; Allen, Steven W; Mantz, Adam; Werner, Norbert; Takei, Yoh; Morris, R Glenn; Fabian, Andrew C; Sanders, Jeremy S; Nulsen, Paul E J; George, Matthew R; Taylor, Gregory B
2011-03-25
Studies of the diffuse x-ray-emitting gas in galaxy clusters have provided powerful constraints on cosmological parameters and insights into plasma astrophysics. However, measurements of the faint cluster outskirts have become possible only recently. Using data from the Suzaku x-ray telescope, we determined an accurate, spatially resolved census of the gas, metals, and dark matter out to the edge of the Perseus Cluster. Contrary to previous results, our measurements of the cluster baryon fraction are consistent with the expected universal value at half of the virial radius. The apparent baryon fraction exceeds the cosmic mean at larger radii, suggesting a clumpy distribution of the gas, which is important for understanding the ongoing growth of clusters from the surrounding cosmic web.
New Fast Lane towards Discoveries of Clusters of Galaxies Inaugurated
NASA Astrophysics Data System (ADS)
2003-07-01
Space and Ground-Based Telescopes Cooperate to Gain Deep Cosmological Insights Summary Using the ESA XMM-Newton satellite, a team of European and Chilean astronomers [2] has obtained the world's deepest "wide-field" X-ray image of the cosmos to date. This penetrating view, when complemented with observations by some of the largest and most efficient ground-based optical telescopes, including the ESO Very Large Telescope (VLT), has resulted in the discovery of several large clusters of galaxies. These early results from an ambitious research programme are extremely promising and pave the way for a very comprehensive and thorough census of clusters of galaxies at various epochs. Relying on the foremost astronomical technology and with an unequalled observational efficiency, this project is set to provide new insights into the structure and evolution of the distant Universe. PR Photo 19a/03: First image from the XMM-LSS survey. PR Photo 19b/03: Zoom-in on PR Photo 19b/03. PR Photo 19c/03: XMM-Newton contour map of the probable extent of a cluster of galaxies, superimposed upon a CHFT I-band image. PR Photo 19d/03: Velocity distribution in the cluster field shown in PR Photo 19c/03. The universal web Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies which themselves congregate into clusters (and even clusters of clusters). These clusters are "strung" throughout the Universe in a web-like structure, cf. ESO PR 11/01. Our Galaxy, the Milky Way, for example, belongs to the so-called Local Group which also comprises "Messier 31", the Andromeda Galaxy. The Local Group contains about 30 galaxies and measures a few million light-years across. Other clusters are much larger. The Coma cluster contains thousands of galaxies and measures more than 20 million light-years. Another well known example is the Virgo cluster, covering no less than 10 degrees on the sky ! Clusters of galaxies are the most massive bound structures in the Universe. They have masses of the order of one thousand million million times the mass of our Sun. Their three-dimensional space distribution and number density change with cosmic time and provide information about the main cosmological parameters in a unique way. About one fifth of the optically invisible mass of a cluster is in the form of a diffuse hot gas in between the galaxies. This gas has a temperature of the order of several tens of million degrees and a density of the order of one atom per liter. At such high temperatures, it produces powerful X-ray emission. Observing this intergalactic gas and not just the individual galaxies is like seeing the buildings of a city in daytime, not just the lighted windows at night. This is why clusters of galaxies are best discovered using X-ray satellites. Using previous X-ray satellites, astronomers have performed limited studies of the large-scale structure of the nearby Universe. However, they so far lacked the instruments to extend the search to large volumes of the distant Universe. The XMM-Newton wide-field observations ESO PR Photo 19a/03 ESO PR Photo 19a/03 [Preview - JPEG: 575 x 400 pix - 52k [Normal - JPEG: 1130 x 800 pix - 420k] ESO PR Photo 19b/03 ESO PR Photo 19b/03 [Preview - JPEG: 400 x 489 pix - 52k [Normal - JPEG: 800 x 978 pix - 464k] Captions: PR Photo 19a/03 is the first image from the XMM-LSS X-Ray survey. It is actually a combination of fourteen separate "pointings" of this space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the X-Ray sources previously known from the 1991 ROSAT All-Sky Survey. PR Photo 19b/03 zooms in on a particularly interesting region of the image shown in ESO PR Photo 19a/03 with a possible cluster identified (in box). Each point on this graph represents a single X-ray photon detected by XMM-Newton. Marguerite Pierre (CEA Saclay, France), with a European/Chilean team of astronomers known as the XMM-LSS consortium [2], used the large field-of-view and the high sensitivity of ESA's X-ray observatory XMM-Newton to search for remote clusters of galaxies and map out their distribution in space. They could see back about 7,000 million years to a cosmological era when the Universe was about half its present size and age, when clusters of galaxies were more tightly packed. Tracking down the clusters is a painstaking, multi-step process, requiring both space and ground-based telescopes. Indeed, from X-ray images with XMM, it was possible to select several tens of cluster candidate objects, identified as areas of enhanced X-radiation (cf PR Photo 19b/03). But having candidates is not enough ! They must be confirmed and further studied with ground-based telescopes. In tandem with XMM-Newton, Pierre uses the very-wide-field imager attached to the 4-m Canada-France-Hawaii Telescope, on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme then combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and represent only about 10% of the detected X-ray sources. The others are mostly distant active galaxies. Back to the Ground ESO PR Photo 19c/03 ESO PR Photo 19c/03 [Preview - JPEG: 400 x 481 pix - 84k [Normal - JPEG: 800 x 961 pix - 1M] ESO PR Photo 19d/03 ESO PR Photo 19d/03 [Preview - JPEG: 400 x 488 pix - 44k [Normal - JPEG: 800 x 976 pix - 520k] Captions: PR Photo 19c/03 represents the XMM-Newton X-ray contour map of the cluster's probable extent superimposed upon the CFHT I-band image. A concentration of distant galaxies is conspicuous, thus confirming the X-ray detection. The symbols indicate the galaxies which have been subject to a subsequent spectroscopic measurement and found to be cluster members (triangles flag emission line galaxies). The individual galaxies in the cluster can then be targeted for further observations with ESO's VLT, in order to measure its distance and locate the cluster in the universe. Following the X-ray discovery and the optical cluster identification, galaxies in the cluster field shown in ESO PR Photo 19c/03 have been spectroscopically observed at the ESO VLT using the FORS2 instrument in order to determine the cluster redshift [3]. Using two masks, each of them observed during one hour, allowing to take the spectra of 16 emission-line galaxies at a time, the cluster was found to have a redshift of 0.84, corresponding to a distance of 8,000 million light-years, and a velocity dispersion of 750 km/s. PR Photo 19d/03 shows the measured velocity distribution. This is one of the most distant known clusters of galaxies for which a velocity dispersion has been measured. When the programme finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which is then superimposed upon the CFHT optical image (PR Photo 19c/03). The astronomers use this to check if anything is visible within the area of extented X-ray emission. If something is seen, the work then shifts to one of the world's prime optical/infrared telescopes, the European Southern Observatory's Very Large Telescope (VLT) at Paranal (Chile). By means of the FORS multi-mode instruments, the astronomers zoom-in on the individual galaxies in the field, taking spectral measurements that reveal their overall characteristics, in particular their redshift and hence, distance. Cluster galaxies have similar distances and these measurement ultimately provide, by averaging, the cluster's distance as well as the velocity dispersion in the cluster. The FORS instruments are among the most efficient and versatile for this type of work, taking on the average spectra of 30 galaxies at a time. The first spectroscopic observations dedicated to the identification and redshift measurement of the XMM-LSS galaxy clusters took place during three nights in the fall of 2002. As of March 2003, there were only 5 known clusters in the literature at such a large redshift with enough spectroscopically measured redshifts to allow an estimate of the velocity dispersion. But the VLT allowed obtaining the dispersion in a distant cluster in 2 hours only, raising great expectations for future work. 700 spectra... Marguerite Pierre is extremely content : Weather and working conditions at the VLT were optimal. In three nights only, 12 cluster fields were observed, yielding no less than 700 spectra of galaxies. The overall strategy proved very successful. The high observing efficiency of the VLT and FORS support our plan to perform follow-up studies of large numbers of distant clusters with relatively little observing time. This represents a most substantial increase in efficiency compared to former searches. The present research programme has begun well, clearly demonstrating the feasibility of this new multi-telescope approach and its very high efficiency. And Marguerite Pierre and her colleagues are already seeing the first tantalising results: it seems to confirm that the number of clusters 7,000 million years ago is little different from that of today. This particular behaviour is predicted by models of the Universe that expand forever, driving the galaxy clusters further and further apart. Equally important, this multi-wavelength, multi-telescope approach developed by the XMM-LSS consortium to locate clusters of galaxies also constitutes a decisive next step in the fertile synergy between space and ground-based observatories and is therefore a basic building block of the forthcoming Virtual Observatory. More information This work is based on two papers to be published in the professional astronomy journal, Astronomy and Astrophysics (The XMM-LSS survey : I. Scientific motivations, design and first results by Marguerite Pierre et al., astro-ph/0305191 and The XMM-LSS survey : II. First high redshift galaxy clusters: relaxed and collapsing systems by Ivan Valtchanov et al., astro-ph/0305192). Dr. M. Pierre will give an invited talk on this subject at the IAU Symposium 216 - Maps of the Cosmos - this Thursday July 17, 2003 during the IAU General Assembly 2003 in Sydney, Australia.
NASA Technical Reports Server (NTRS)
Rossj, B.
1981-01-01
The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.
Mapping the Dark Matter Distribution of the Merging Galaxy Cluster Abell 115
NASA Astrophysics Data System (ADS)
Kim, Mincheol; Jee, Myungkook James; Forman, William; Golovich, Nathan; van Weeren, Reinout
2018-01-01
The colliding galaxy cluster Abell 115 shows a number of clear merging features including radio relics, double X-ray peaks, and offsets between the cluster member galaxies and the X-ray distributions. In order to constrain the merging scenario of this complex system, it is critical to know where the dark matter is. We present a high-fidelity weak-lensing analysis of the system using a state-of-the-art method that robustly models the detailed PSF variations. Our mass reconstruction reveals two distinct mass peaks. Through a careful bootstrapping analysis, we demonstrate that the positions of these two mass peaks are highly consistent with those of the cluster galaxies, although the comparison with the X-ray emission shows that the mass peaks lead the X-ray peaks. We obtain the first weak-lensing mass of each subcluster by simultaneously fitting two NFW profiles, as well as the total mass of the system. Interestingly, the total mass is a few factors lower than the published dynamical mass based on velocity dispersion. This large mass discrepancy may be attributed to a significant disruption of the cluster galaxy orbits due to the violent merger. Our preliminary analysis indicates that the two subclusters might have experienced a first off-axis collision a few Gyrs ago and might be now returning for a second collision.
Einstein x ray observations of the core of the Shapley Supercluster in northern Centaurus
NASA Technical Reports Server (NTRS)
Breen, Jeffrey; Raychaudhury, Somak; Forman, William; Jones, Christine
1994-01-01
We present Einstein x ray observations of the core of the Shapley Supercluster, one of the richest and densest known mass concentrations in the local (z less than 0.1) universe. We used Imaging Proportional Counter (IPC) observations supplemented with data from the Einstein Slew Survey to determine the locations and structure of mass concentrations in the region. An x ray map composed of IPC observations of the central (10 deg x 10 deg) region of the Shapley Supercluster is presented. We present evidence that the X-ray clusters observed within 5 deg of the core of the supercluster are on average brighter than those of corresponding richness class distributed throughout the sky. However, we measure no significant difference in the galaxy formation efficiency of these cluster of galaxies compared to other, more isolated clusters. We also find one previously uncataloged cluster-sized mass concentration in the core of the Shapley Supercluster. This new cluster, 'SC 1327-312', is relatively x ray bright (F(sub x) = 1.1 + or - 0.2 x 10(exp -11) erg sec(exp -1) cm(exp -2)) and L(sub x) = 1.1 + or - 0.2 x 10(exp 44) erg sec(exp -1) within 10 minutes, assuming z = 0.0477, H(sub 0) = 50, q(sub 0) = 0). As SC 1327-312 lies well within an Abell radius of the richness R = 4 cluster Shapley 8 (A3558), we suggest it may contribute to an artificially high galaxy count and richness classification for shapley 8. From slew data, we estimate an x ray luminosity for Shapley 8 which is just half the mean luminosity of the four other R = 4 clusters observed by the IPC, further suggesting the richness classification to be an overestimate.
VLA Discovers Giant Rings Around Galaxy Cluster
NASA Astrophysics Data System (ADS)
2006-11-01
Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have discovered giant, ring-like structures around a cluster of galaxies. The discovery provides tantalizing new information about how such galaxy clusters are assembled, about magnetic fields in the vast spaces between galaxy clusters, and possibly about the origin of cosmic rays. Radio-Optical Image of Cluster Galaxy Cluster Abell 3376 (Radio/Optical) CREDIT: Joydeep Bagchi, IUCAA, NRAO/AUI/NSF Above, a combined radio/optical image shows the galaxy cluster Abell 3376 in visible light (blue) and radio (red) images. The giant radio arcs surrounding the cluster were discovered using the Very Large Array. The visible-light image is from the Digitized Sky survey. Below, an X-ray image of Abell 3376 made using the European Space Agency's XMM-Newton telescope shows a spectacular, bullet-shaped region of X-rays coming from gas heated to 60 million degrees Kelvin. The bullet shape results from the supersonic collision of a smaller smaller galaxy subcluster with the main body of the larger cluster. Click on images for larger version. X-Ray Image of Cluster Galaxy Cluster Abell 3376 (X-Ray) CREDIT: Joydeep Bagchi, IUCAA, ESA "These giant, radio-emitting rings probably are the result of shock waves caused by violent collisions of smaller groups of galaxies within the cluster," said Joydeep Bagchi, of the Inter-University Centre for Astronomy and Astrophysics in Pune, India, who led an international research team. The scientists reported their findings in the November 3 edition of the journal Science. The newly-discovered ring segments, some 6 million light-years across, surround a galaxy cluster called Abell 3376, more than 600 million light-years from Earth. They were revealed because fast-moving electrons emitted radio waves as they spiraled around magnetic field lines in intergalactic space. "Even from this large distance, the feeble radio waves were easily picked up by the VLA, thanks to its very high sensitivity and unique capability to make images of exceedingly faint radio-emitting objects," Bagchi said. The scientists also used the European Space Agency's XMM-Newton, the world's most sensitive X-ray observatory, to observe this extraordinary cluster of galaxies. "The advanced technical capabilities of the orbiting XMM-Newton revealed a spectacular bullet-like region of X-ray emission in this dynamically active cluster," said Gastao B. Lima Neto, of the Institute of Astronomy and Geophysics in Sao Paulo, Brazil, a co-author of the research paper. "Our X-ray observations strongly suggest a recent collision and merger of two or more smaller clusters. Such a phenomenon is among the most energetic events in the Universe after the Big Bang. Only a tiny fraction of the total energy of this collision, if transferred to electrons, would cause them to emit the radio waves observed by the VLA. However, the main question is, how this is achieved," said Florence Durret of the Astrophysical Institute of Paris, France, another of the researchers. The scientists calculated that the total energy of the colliding groups of galaxies would be enough to keep our Sun shining for more than 20 sextillion years (2 followed by 22 zeros)! "We think the shock waves that sped up these electrons came from the collision of a smaller group of galaxies with the main body of the larger cluster. When two such massive objects crash into each other at supersonic speed, gigantic ripple-like shock waves are created in the surrounding gas, which race out to the outer regions of the forming cluster at a speed of thousands of kilometers per second," Bagchi said. "You can imagine that each cluster is like a supersonic aircraft, moving faster than the speed of sound in the surrounding gas, and just as you hear a sonic boom when shock waves from an airplane pass by you, we believe that the situation in the Abell 3376 cluster is similar, with ringlike radio structures tracing out the shock waves," Bagchi explained. Such a scenario also is supported by images of the cluster made with the XMM-Newton and ROSAT X-ray satellites, as well as by computer simulations, Bagchi added. The exact mechanism for producing the shock waves is still open to question, the scientists said. "This is the first observational evidence for this type of shock wave around a massive galaxy cluster," Bagchi said. "This discovery will help us understand more about the thin gas between the galaxies, and also about the magnetic fields in the outskirts of such clusters -- magnetic fields whose origin still is unknown," he said. In addition, the scientists speculate that violent regions like those in Abell 3376 may be sites from which cosmic rays originate. Cosmic rays are protons or atomic nuclei accelerated to nearly the speed of light, and shocks such as those found in the collisions of galaxy groups may be energetic enough to provide the required amount of "kick." "Some of the most energetic cosmic ray particles detected on Earth may contain about 100 million times more energy than the highest energy achieved so far in any man-made particle accelerator. Where do these cosmic rays come from and exactly what process kicks them to such stupendous energy is still a fascinating unsolved problem of physics," said graduate student Surajit Paul of the Institute for Theoretical Physics and Astrophysisc at Wuerzburg University in Germany, who was on the research team. "A cosmic accelerator source containing powerful shock waves and magnetic fields extending over millions of light years in length is capable of accelerating a proton or nucleus to such enormous energies. Although our observations do not conclusively show the evidence for such particles, our VLA radio image does show clearly that such structures are indeed present in this galaxy cluster. Only future cosmic ray observations can tell if Abell 3376 is an ultra-high-energy cosmic ray source. We will continue to explore this fascinating cosmic laboratory in the future, employing some of the world's most sensitive radio, X-ray and gamma-ray telescopes to reveal its mysteries," Bagchi said. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
The structure of clusters of galaxies
NASA Astrophysics Data System (ADS)
Fox, David Charles
When infalling gas is accreted onto a cluster of galaxies, its kinetic energy is converted to thermal energy in a shock, heating the ions. Using a self-similar spherical model, we calculate the collisional heating of the electrons by the ions, and predict the electron and ion temperature profiles. While there are significant differences between the two, they occur at radii larger than currently observable, and too large to explain observed X-ray temperature declines in clusters. Numerical simulations by Navarro, Frenk, & White (1996) predict a universal dark matter density profile. We calculate the expected number of multiply-imaged background galaxies in the Hubble Deep Field due to foreground groups and clusters with this profile. Such groups are up to 1000 times less efficient at lensing than the standard singular isothermal spheres. However, with either profile, the expected number of galaxies lensed by groups in the Hubble Deep Field is at most one, consistent with the lack of clearly identified group lenses. X-ray and Sunyaev-Zel'dovich (SZ) effect observations can be combined to determine the distance to clusters of galaxies, provided the clusters are spherical. When applied to an aspherical cluster, this method gives an incorrect distance. We demonstrate a method for inferring the three-dimensional shape of a cluster and its correct distance from X-ray, SZ effect, and weak gravitational lensing observations, under the assumption of hydrostatic equilibrium. We apply this method to simple, analytic models of clusters, and to a numerically simulated cluster. Using artificial observations based on current X-ray and SZ effect instruments, we recover the true distance without detectable bias and with uncertainties of 4 percent.
NASA Astrophysics Data System (ADS)
Fassbender, R.; Böhringer, H.; Nastasi, A.; Šuhada, R.; Mühlegger, M.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mohr, J. J.; Pierini, D.; Pratt, G. W.; Quintana, H.; Rosati, P.; Santos, J. S.; Schwope, A. D.
2011-12-01
We present the largest sample to date of spectroscopically confirmed x-ray luminous high-redshift galaxy clusters comprising 22 systems in the range 0.9 as part of the XMM-Newton Distant Cluster Project (XDCP). All systems were initially selected as extended x-ray sources over 76.1 deg2 of non-contiguous deep archival XMM-Newton coverage, of which 49.4 deg2 are part of the core survey with a quantifiable selection function and 17.7 deg2 are classified as ‘gold’ coverage as the starting point for upcoming cosmological applications. Distant cluster candidates were followed up with moderately deep optical and near-infrared imaging in at least two bands to photometrically identify the cluster galaxy populations and obtain redshift estimates based on the colors of simple stellar population models. We test and calibrate the most promising redshift estimation techniques based on the R-z and z-H colors for efficient distant cluster identifications and find a good redshift accuracy performance of the z-H color out to at least z ˜ 1.5, while the redshift evolution of the R-z color leads to increasingly large uncertainties at z ≳ 0.9. Photometrically identified high-z systems are spectroscopically confirmed with VLT/FORS 2 with a minimum of three concordant cluster member redshifts. We present first details of two newly identified clusters, XDCP J0338.5+0029 at z = 0.916 and XDCP J0027.2+1714 at z = 0.959, and investigate the x-ray properties of SpARCS J003550-431224 at z = 1.335, which shows evidence for ongoing major merger activity along the line-of-sight. We provide x-ray properties and luminosity-based total mass estimates for the full sample of 22 high-z clusters, of which 17 are at z ⩾ 1.0 and seven populate the highest redshift bin at z > 1.3. The median system mass of the sample is M200 ≃ 2 × 1014 M⊙, while the probed mass range for the distant clusters spans approximately (0.7-7) × 1014 M⊙. The majority (>70%) of the x-ray selected clusters show rather regular x-ray morphologies, albeit in most cases with a discernible elongation along one axis. In contrast to local clusters, the z > 0.9 systems mostly do not harbor central dominant galaxies coincident with the x-ray centroid position, but rather exhibit significant brightest cluster galaxy (BCG) offsets from the x-ray center with a median value of about 50 kpc in projection and a smaller median luminosity gap to the second-ranked galaxy of Δm12 ≃ 0.3 mag. We estimate a fraction of cluster-associated NVSS 1.4 GHz radio sources of about 30%, preferentially located within 1‧ from the x-ray center. This value suggests an increase of the fraction of very luminous cluster-associated radio sources by about a factor of 2.5-5 relative to low-z systems. The galaxy populations in z ≳ 1.5 cluster environments show first evidence for drastic changes on the high-mass end of galaxies and signs of a gradual disappearance of a well-defined cluster red-sequence as strong star formation activity is observed in an increasing fraction of massive galaxies down to the densest core regions. The presented XDCP high-z sample will allow first detailed studies of the cluster population during the critical cosmic epoch at lookback times of 7.3-9.5 Gyr on the aggregation and evolution of baryons in the cold and hot phases as a function of redshift and system mass. Based on observations under program IDs 079.A-0634 and 085.A-0647 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Where are Low Mass X-ray Binaries Formed?
NASA Astrophysics Data System (ADS)
Kundu, A.; Maccarone, T. J.; Zepf, S. E.
2004-08-01
Chandra images of nearby galaxies reveal large numbers of low mass X-ray binaries (LMXBs). As in the Galaxy, a significant fraction of these are associated with globular clusters. We exploit the LMXB-globular cluster link in order to probe both the physical properties of globular clusters that promote the formation of LMXBs within clusters with specific characteristics, and to study whether the non-cluster field LMXB population was originally formed in clusters and then released into the field. The large population of globular clusters around nearby galaxies and the range of properties such as age, metallicity and host galaxy environment spanned by these objects enables us to identify and probe the link between these characteristics and the formation of LMXBs. We present the results of our study of a large sample of elliptical and S0 galaxies which reveals among other things that bright LMXBs definitively prefer metal-rich cluster hosts and that this relationship is unlikely to be driven by age effects. The ancestry of the non-cluster field LMXBs is a matter of some debate with suggestions that they they might have formed in the field, or created in globular clusters and then subsequently released into the field either by being ejected from clusters by dynamical processes or as remnants of dynamically destroyed clusters. Each of these scenarios has a specific spatial signature that can be tested by our combined optical and X-ray study. Furthermore, these scenarios predict additional statistical variations that may be driven by the specific host galaxy environment. We present a detailed analysis of our sample galaxies and comment on the probability that the field sources were actually formed in clusters.
X ray archeology in the Coma cluster
NASA Technical Reports Server (NTRS)
White, Simon D. M.; Briel, Ulrich G.; Henry, J. Patrick
1993-01-01
Images of X-ray emission from hot gas within the Coma cluster of galaxies are presented. These maps, made with the Rosat satellite, have high signal to noise ratio and allow cluster structure to be analyzed in unprecedented detail. They show greater structural irregularity than could be anticipated from earlier observations of Coma. Emission is detected from a number of bright cluster galaxies in addition to the two known previously. In four cases there is evidence that these galaxies lie at the center of an extended subconcentration within the cluster, possibly the remnant of their associated groups. For at least two galaxies the images show direct evidence for ongoing disruption of their gaseous atmosphere. The luminosity associated with these galaxies is comparable to that detected around similar ellipticals in much poorer environments. Emission is easily detected and appears to become more regular at large radii. The data show that this archetype of a rich and regular galaxy cluster was formed by the merging of several distinct subunits which are not yet fully destroyed.
Dynamical history of a binary cluster: Abell 3653
NASA Astrophysics Data System (ADS)
Caglar, Turgay; Hudaverdi, Murat
2017-12-01
We study the dynamical structure of a bimodal galaxy cluster Abell 3653 at z = 0.1089 using optical and X-ray data. Observations include archival data from the Anglo-Australian Telescope, X-ray observatories XMM-Newton and Chandra. We draw a global picture for A3653 using galaxy density, X-ray luminosity and temperature maps. The galaxy distribution has a regular morphological shape at the 3 Mpc size. The galaxy density map shows an elongation in the east-west direction, which perfectly aligns with the extended diffuse X-ray emission. We detect two dominant groups around the two brightest cluster galaxies (BCGs). BCG1 (z = 0.1099) can be associated with the main cluster A3653E, and a foreground subcluster A3653W is concentrated at BCG2 (z = 0.1075). Both X-ray peaks are dislocated from the BCGs by ∼35 kpc, which suggest an ongoing merger process. We measure the subcluster gas temperatures of 4.67 and 3.66 keV, respectively. Two-body dynamical analysis shows that A3653E and A3653W are very likely gravitationally bound (93.5 per cent probability). The highly favoured scenario suggests that the two subclusters have a mass ratio of 1.4 and are colliding close to the plane of sky (α = 17.61°) at 2400 km s-1, and will undergo core passage in 380 Myr. The temperature map also significantly shows a shock-heated gas (6.16 keV) between the subclusters, which confirms the supersonic infalling scenario.
The coma cluster after lunch: Has a galaxcy group passed through the cluster core?
NASA Technical Reports Server (NTRS)
Burns, Jack O.; Roettiger, Kurt; Ledlow, Michael; Klypin, Anatoly
1994-01-01
We propose that the Coma cluster has recently undergone a collision with the NGC 4839 galaxy group. The ROSAT X-ray morphology, the Coma radio halo, the presence of poststarburst galaxies in the bridge between Coma and NGC 4839, the usually high velocity dispersion for the NGC 4839 group, and the position of a large-scale galaxy filament to the NE of Coma are all used to argue that the NGC 4839 group passed through the core of Coma approximately 2 Gyr ago. We present a new Hydro/N-body simulation of the merger between a galaxy group and a rich cluster that reproduces many of the observed X-ray and optical properties of Coma/NGC 4839.
Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506
NASA Astrophysics Data System (ADS)
Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia
2016-09-01
We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.
DISCOVERY OF A GALAXY CLUSTER WITH A VIOLENTLY STARBURSTING CORE AT z = 2.506
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tao; Elbaz, David; Daddi, Emanuele
2016-09-01
We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z {sub spec} = 2.506, which contains 11 massive (M {sub *} ≳ 10{sup 11} M {sub ⊙}) galaxies in the central 80 kpc region (11.6 σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from H α . The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M {sub 200} {sub c} = 10{sup 13.9±0.2} M {sub ⊙}, making it the most distant X-ray-detectedmore » cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ∼3400 M {sub ⊙} yr{sup −1} with a gas depletion time of ∼200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (∼25%, compared to 3%–5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.« less
X-ray sources in dwarf galaxies in the Virgo cluster and the nearby field
NASA Astrophysics Data System (ADS)
Papadopoulou, Marina; Phillipps, S.; Young, A. J.
2016-08-01
The extent to which dwarf galaxies represent essentially scaled down versions of giant galaxies is an important question with regards the formation and evolution of the galaxy population as a whole. Here, we address the specific question of whether dwarf galaxies behave like smaller versions of giants in terms of their X-ray properties. We discuss two samples of around 100 objects each, dwarfs in the Virgo cluster and dwarfs in a large Northern hemisphere area. We find nine dwarfs in each sample with Chandra detections. For the Virgo sample, these are in dwarf elliptical (or dwarf lenticular) galaxies and we assume that these are (mostly) low-mass X-ray binaries (LMXB) [some may be nuclear sources]. We find a detection rate entirely consistent with scaling down from massive ellipticals, viz. about one bright (I.e. LX > 1038 erg s-1) LMXB per 5 × 109 M⊙ of stars. For the field sample, we find one (known) Seyfert nucleus, in a galaxy which appears to be the lowest mass dwarf with a confirmed X-ray emitting nucleus. The other detections are in star-forming dwarf irregular or blue compact dwarf galaxies and are presumably high-mass X-ray binaries (HMXB). This time, we find a very similar detection rate to that in large late-type galaxies if we scale down by star formation rate, roughly one HMXB for a rate of 0.3 M⊙ per year. Nevertheless, there does seem to be one clear difference, in that the dwarf late-type galaxies with X-ray sources appear strongly biased to very low metallicity systems.
The Swift AGN and Cluster Survey
NASA Astrophysics Data System (ADS)
Danae Griffin, Rhiannon; Dai, Xinyu; Kochanek, Christopher S.; Bregman, Joel N.; Nugent, Jenna
2016-01-01
The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding X-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. We examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z ˜ 1 for massive clusters. In the second paper, we use Sloan Digital Sky Survey (SDSS) DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. We also match our SDSS confirmed Swift clusters to existing cluster catalogs, and find 42, 2 and 1 matches in optical, X-ray and SZ catalogs, respectively, so the majority of these clusters are new detections. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology.
A-3 scientific results - extragalactic
NASA Technical Reports Server (NTRS)
Schwartz, D. A.
1979-01-01
The results of the HEAO A-3 experiment are summarized. Specific contributions of the experiment to extragalactic astronomy are emphasized. The discovery of relatively condensed X-ray emission in the cores of those clusters of galaxies which are dominated by a giant elliptical or cD galaxy, the discovery of extended X-ray emitting plasma in groups of galaxies, and the demonstration that BL Lac objects are a class of X-ray sources are among the topics discussed.
The Most Distant X-Ray Clusters
NASA Technical Reports Server (NTRS)
Dickinson, Mark
1999-01-01
In this program we have used ROSAT (Roentgen Satellite Mission) to observe X-ray emission around several high redshift radio galaxies in a search for extended, hot plasma which may indicate the presence of a rich galaxy cluster. When this program was begun, massive, X-ray emitting galaxy clusters were known to exist out to to z=0.8, but no more distant examples had been identified. However, we had identified several apparently rich clusters around 3CR radio galaxies at z greater than 0.8, and hoped to use ROSAT to confirm the nature of these structures as massive, virialized clusters. We have written up our results and submitted them as a paper to the Astrophysical Journal. This paper has been refereed and requires some significant revisions to accommodate the referees comments. We are in the process of doing this, adding some additional analysis as well. We will resubmit the paper early in 2000, and hopefully will meet with the referee's approval. We are including three copies of the submitted paper here, although it has not yet been accepted for publication.
Amuse-Virgo: Downsizing In Black Hole Accretion
NASA Astrophysics Data System (ADS)
Gallo, Elena
2010-03-01
An issue of fundamental importance in understanding the galaxy-black hole connection is the duty cycle of accretion. If black holes are indeed ubiquitous in galactic nuclei, little is known about the frequency and intensity of their activity, the more so at the low-mass/low-luminosity end. I will present new results from AMUSE-Virgo, a Chandra survey of (formally) inactive early type galaxies in the Virgo cluster. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active super-massive black hole. This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass to the power -0.62, with an intrinsic scatter of 0.46 dex. This represents the first observational evidence for down-sizing of black hole accretion in local early types, that is, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing host galaxy mass.
Giant Rapid X-ray Flares in Extragalactic Globular Clusters
NASA Astrophysics Data System (ADS)
Irwin, Jimmy
2018-01-01
There is only one known class of non-destructive, highly energetic astrophysical object in the Universe whose energy emission varies by more than a factor of 100 on time scales of less than a minute -- soft gamma repeaters/anomalous X-ray pulsars, whose flares are believed to be caused by the energy release from the cracking of a neutron star's surface by very strong magnetic fields. All other known violent, rapid explosions, including gamma-ray bursts and supernovae, are believed to destroy the object in the process. Here, we report the discovery of a second class of non-destructive, highly energetic rapidly flaring X-ray object located within two nearby galaxies with fundamentally different properties than soft gamma repeaters/anomalous X-ray pulsars. One source is located within a suspected globular cluster of the host galaxy and flared one time, while the other source is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the host system. While the nature of these sources is still unclear, the discovery of these sources in decade-old archival Chandra X-ray Observatory data illustrates the under-utilization of X-ray timing as a means to discover new classes of explosive events in the Universe.
Investigation relative to the Roentgen Satellite (ROSAT)
NASA Technical Reports Server (NTRS)
Elvis, Martin S.; Primini, Francis A.; Fabbiano, Guiseppina; Harris, Daniel E.; Jones-Foreman, Christine; Trinchieri, Ginevra; Golub, Leon; Bookbinder, Jay; Seward, Frederick D.; Zombeck, Martin V.
1994-01-01
Reports include: High Resolution Observations of the Central Region of M31; The X-ray Emission of Low-X-ray-Luminosity Early-Type Galaxies: Gas Versus Compact Sources; Interaction Between Cluster Gas and Radio Features of Cygnus A; Hot Gas and Dark Halos in Early-Type Galaxies; A Gravitational Lens in X-rays - 0957+461; How Massive are Early-Type Galaxies?; Three Crab-Like SNR in the Large Magellanic Cloud; and Soft X-ray Emission from Boundary Layers in Cataclysmic Variables. Papers submitted to the Astrophysical Journal are attached.
Chandra observations of dying radio sources in galaxy clusters
NASA Astrophysics Data System (ADS)
Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.
2012-12-01
Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims: We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods: We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results: The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions: We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from the AGN outburst is significantly higher than the X-ray luminosity in both clusters. Indeed, it is sufficient that a small fraction of this power is dissipated in the intra-cluster medium to reheat the cool cores. Appendix is available in electronic form at http://www.aanda.org
Chandra Observations of Dying Radio Sources in Galaxy Clusters
NASA Technical Reports Server (NTRS)
Murgia, M.; Markevitch, M.; Govoni, F.; Parma, P.; Fanti, R.; de Ruiter, H. R.; Mack, K.-H.
2012-01-01
Context. The dying radio sources represent a very interesting and largely unexplored stage of the active galactic nucleus (AGN) evolution. They are considered to be very rare, and almost all of the few known ones were found in galaxy clusters. However, considering the small number detected so far, it has not been possible to draw any firm conclusions about their X-ray environment. Aims. We present X-ray observations performed with the Chandra satellite of the three galaxy clusters Abell 2276, ZwCl 1829.3+6912, and RX J1852.1+5711, which harbor at their center a dying radio source with an ultra-steep spectrum that we recently discovered. Methods. We analyzed the physical properties of the X-ray emitting gas surrounding these elusive radio sources. We determined the global X-ray properties of the clusters, derived the azimuthally averaged profiles of metal abundance, gas temperature, density, and pressure. Furthermore, we estimated the total mass profiles. Results. The large-scale X-ray emission is regular and spherical, suggesting a relaxed state for these systems. Indeed, we found that the three clusters are also characterized by significant enhancements in the metal abundance and declining temperature profiles toward the central region. For all these reasons, we classified RX J1852.1+5711, Abell 2276, and ZwCl 1829.3+6912 as cool-core galaxy clusters. Conclusions. We calculated the non-thermal pressure of the radio lobes assuming that the radio sources are in the minimum energy condition. For all dying sources we found that this is on average about one to two orders of magnitude lower than that of the external gas, as found for many other radio sources at the center of galaxy groups and clusters. We found marginal evidence for the presence of X-ray surface brightness depressions coincident with the fossil radio lobes of the dying sources in A2276 and ZwCl 1829.3+691. We estimated the outburst age and energy output for these two dying sources. The energy power from the AGN outburst is significantly higher than the X-ray luminosity in both clusters. Indeed, it is sufficient that a small fraction of this power is dissipated in the intra-cluster medium to reheat the cool cores.
NASA Astrophysics Data System (ADS)
Seward, Frederick D.; Charles, Philip A.
1995-11-01
Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.
This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.NASA Astrophysics Data System (ADS)
Yang, Lilan; Tozzi, Paolo; Yu, Heng; Lusso, Elisabeta; Gaspari, Massimo; Gilli, Roberto; Nardini, Emanuele; Risaliti, Guido
2018-05-01
We present a search for nuclear X-ray emission in the brightest cluster galaxies (BCGs) of a sample of groups and clusters of galaxies extracted from the Chandra archive. The exquisite angular resolution of Chandra allows us to obtain robust photometry at the position of the BCG, and to firmly identify unresolved X-ray emission when present, thanks to an accurate characterization of the extended emission at the BCG position. We consider two redshift bins (0.2 < z < 0.3 and 0.55 < z < 0.75) and analyze all the clusters observed by Chandra with exposure time larger than 20 ks. Our samples have 81 BCGs in 73 clusters and 51 BCGs in 49 clusters in the low- and high-redshift bins, respectively. X-ray emission in the soft (0.5–2 keV) or hard (2–7 keV) band is detected only in 14 and 9 BCGs (∼18% of the total samples), respectively. The X-ray photometry shows that at least half of the BCGs have a high hardness ratio, compatible with significant intrinsic absorption. This is confirmed by the spectral analysis with a power-law model plus intrinsic absorption. We compute the fraction of X-ray bright BCGs above a given hard X-ray luminosity, considering only sources with positive photometry in the hard band (12/5 sources in the low/high-z sample).
The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters
NASA Astrophysics Data System (ADS)
Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.
2017-12-01
An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2
NASA Astrophysics Data System (ADS)
Miyaoka, Keita; Okabe, Nobuhiro; Kitaguchi, Takao; Oguri, Masamune; Fukazawa, Yasushi; Mandelbaum, Rachel; Medezinski, Elinor; Babazaki, Yasunori; Nishizawa, Atsushi J.; Hamana, Takashi; Lin, Yen-Ting; Akamatsu, Hiroki; Chiu, I.-Non; Fujita, Yutaka; Ichinohe, Yuto; Komiyama, Yutaka; Sasaki, Toru; Takizawa, Motokazu; Ueda, Shutaro; Umetsu, Keiichi; Coupon, Jean; Hikage, Chiaki; Hoshino, Akio; Leauthaud, Alexie; Matsushita, Kyoko; Mitsuishi, Ikuyuki; Miyatake, Hironao; Miyazaki, Satoshi; More, Surhud; Nakazawa, Kazuhiro; Ota, Naomi; Sato, Kousuke; Spergel, David; Tamura, Takayuki; Tanaka, Masayuki; Tanaka, Manobu M.; Utsumi, Yousuke
2018-01-01
We present a joint X-ray, optical, and weak-lensing analysis for X-ray luminous galaxy clusters selected from the MCXC (Meta-Catalog of X-Ray Detected Clusters of Galaxies) cluster catalog in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) survey field with S16A data. As a pilot study for a series of papers, we measure hydrostatic equilibrium (HE) masses using XMM-Newton data for four clusters in the current coverage area out of a sample of 22 MCXC clusters. We additionally analyze a non-MCXC cluster associated with one MCXC cluster. We show that HE masses for the MCXC clusters are correlated with cluster richness from the CAMIRA catalog, while that for the non-MCXC cluster deviates from the scaling relation. The mass normalization of the relationship between cluster richness and HE mass is compatible with one inferred by matching CAMIRA cluster abundance with a theoretical halo mass function. The mean gas mass fraction based on HE masses for the MCXC clusters is
The HectoMAP Cluster Survey. II. X-Ray Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sohn, Jubee; Chon, Gayoung; Bohringer, Hans
Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less
The HectoMAP Cluster Survey. II. X-Ray Clusters
Sohn, Jubee; Chon, Gayoung; Bohringer, Hans; ...
2018-03-10
Here, we apply a friends-of-friends algorithm to the HectoMAP redshift survey and cross-identify associated X-ray emission in the ROSAT All-Sky Survey data (RASS). The resulting flux-limited catalog of X-ray cluster surveys is complete to a limiting flux of ~3 × 10 –13 erg s –1 cm –2 and includes 15 clusters (7 newly discovered) with redshifts z ≤ 0.4. HectoMAP is a dense survey (~1200 galaxies deg –2) that provides ~50 members (median) in each X-ray cluster. We provide redshifts for the 1036 cluster members. Subaru/Hyper Suprime-Cam imaging covers three of the X-ray systems and confirms that they are impressivemore » clusters. The HectoMAP X-ray clusters have an L X–σ cl scaling relation similar to that of known massive X-ray clusters. The HectoMAP X-ray cluster sample predicts ~12,000 ± 3000 detectable X-ray clusters in RASS to the limiting flux, comparable with previous estimates.« less
An X-ray study of the Centaurus Cluster of galaxies using Einstein
NASA Technical Reports Server (NTRS)
Matilsky, T.; Jones, C.; Forman, W.
1985-01-01
Einstein Imaging Proportional Counter observations of the core of the Centaurus Cluster of galaxies have been analyzed to map the 0.5-3.5 keV surface brightness and temperature of the intracluster gas. The emission is centered on NGC 4696, the elliptical galaxy believed to be at or near the dynamical center of the cluster. Because the X-ray-emitting gas responds to the gravitational potential of the cluster, the observations may be used to measure the total mass distribution around the central region. It is shown that the gas is very likely in hydrostatic equilibrium. It is found that surrounding NGC 4696, like M87 at the center of the Virgo Cluster, is a dark, massive halo, with a gravitating mass of about 2 x 10 to the 13th M out to a radius of about 20 arcmin (or 200 kpc for H(o) = 50 km/s Mpc). The elliptical galaxy NGC 4709, at the core of a more distant cluster, is also detected with a luminosity of 2 x 10 to the 40th ergs per sec.
Infalling groups and galaxy transformations in the cluster A2142
NASA Astrophysics Data System (ADS)
Einasto, Maret; Deshev, Boris; Lietzen, Heidi; Kipper, Rain; Tempel, Elmo; Park, Changbom; Gramann, Mirt; Heinämäki, Pekka; Saar, Enn; Einasto, Jaan
2018-03-01
Context. Superclusters of galaxies provide dynamical environments for the study of the formation and evolution of structures in the cosmic web from galaxies, to the richest galaxy clusters, and superclusters themselves. Aims: We study galaxy populations and search for possible merging substructures in the rich galaxy cluster A2142 in the collapsing core of the supercluster SCl A2142, which may give rise to radio and X-ray structures in the cluster, and affect galaxy properties of this cluster. Methods: We used normal mixture modelling to select substructure of the cluster A2142. We compared alignments of the cluster, its brightest galaxies (hereafter BCGs), subclusters, and supercluster axes. The projected phase space (PPS) diagram and clustercentric distributions are used to analyse the dynamics of the cluster and study the distribution of various galaxy populations in the cluster and subclusters. Results: We find several infalling galaxy groups and subclusters. The cluster, supercluster, BCGs, and one infalling subcluster are all aligned. Their orientation is correlated with the alignment of the radio and X-ray haloes of the cluster. Galaxy populations in the main cluster and in the outskirts subclusters are different. Galaxies in the centre of the main cluster at the clustercentric distances 0.5 h-1 Mpc (Dc/Rvir < 0.5, Rvir = 0.9 h-1 Mpc) have older stellar populations (with the median age of 10-11 Gyr) than galaxies at larger clustercentric distances. Star-forming and recently quenched galaxies are located mostly at the clustercentric distances Dc ≈ 1.8 h-1 Mpc, where subclusters fall into the cluster and the properties of galaxies change rapidly. In this region the median age of stellar populations of galaxies is about 2 Gyr. Galaxies in A2142 on average have higher stellar masses, lower star formation rates, and redder colours than galaxies in rich groups. The total mass in infalling groups and subclusters is M ≈ 6 × 1014 h-1 M⊙, that is approximately half of the mass of the cluster. This mass is sufficient for the mass growth of the cluster from redshift z = 0.5 (half-mass epoch) to the present. Conclusions: Our analysis suggests that the cluster A2142 has formed as a result of past and present mergers and infallen groups, predominantly along the supercluster axis. Mergers cause complex radio and X-ray structure of the cluster and affect the properties of galaxies in the cluster, especially at the boundaries of the cluster in the infall region. Explaining the differences between galaxy populations, mass, and richness of A2142, and other groups and clusters may lead to better insight about the formation and evolution of rich galaxy clusters.
Application of a Self-Similar Pressure Profile to Sunyaev-Zeldovich Effect Data from Galaxy Clusters
NASA Technical Reports Server (NTRS)
Mroczkowski, Tony; Bonamente, Max; Carlstrom, John E.; Culverhouse, Thomas L.; Greer, Christopher; Hawkins, David; Hennessy, Ryan; Joy, Marshall; Lamb, James W.; Leitch, Erik M.;
2009-01-01
We investigate the utility of a new, self-similar pressure profile for fitting Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters. Current SZ imaging instruments-such as the Sunyaev-Zel'dovich Array (SZA)- are capable of probing clusters over a large range in a physical scale. A model is therefore required that can accurately describe a cluster's pressure profile over a broad range of radii from the core of the cluster out to a significant fraction of the virial radius. In the analysis presented here, we fit a radial pressure profile derived from simulations and detailed X-ray analysis of relaxed clusters to SZA observations of three clusters with exceptionally high-quality X-ray data: A1835, A1914, and CL J1226.9+3332. From the joint analysis of the SZ and X-ray data, we derive physical properties such as gas mass, total mass, gas fraction and the intrinsic, integrated Compton y-parameter. We find that parameters derived from the joint fit to the SZ and X-ray data agree well with a detailed, independent X-ray-only analysis of the same clusters. In particular, we find that, when combined with X-ray imaging data, this new pressure profile yields an independent electron radial temperature profile that is in good agreement with spectroscopic X-ray measurements.
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun; McNamara, B.; Nulsen, P.; Schaffer, R.
2011-09-01
X-ray observations of nearby clusters and galaxies have shown that energetic feedback from AGN is heating hot atmospheres and is probably the principal agent that is offsetting cooling flows. Here we examine AGN heating in distant X-ray clusters by cross correlating clusters selected from the 400 Square Degree X-ray Cluster survey with radio sources in the NRAO VLA Sky Survey. The jet power for each radio source was determined using scaling relations between radio power and cavity power determined for nearby clusters, groups, and galaxies with atmospheres containing X-ray cavities. Roughly 30% of the clusters show radio emission above a flux threshold of 3 mJy within the central 250 kpc that is presumably associated with the brightest cluster galaxy. We find no significant correlation between radio power, hence jet power, and the X-ray luminosities of clusters in redshift range 0.1 -- 0.6. The detection frequency of radio AGN is inconsistent with the presence of strong cooling flows in 400SD, but cannot rule out the presence of weak cooling flows. The average jet power of central radio AGN is approximately 2 10^{44} erg/s. The jet power corresponds to an average heating of approximately 0.2 keV/particle for gas within R_500. Assuming the current AGN heating rate remained constant out to redshifts of about 2, these figures would rise by a factor of two. Our results show that the integrated energy injected from radio AGN outbursts in clusters is statistically significant compared to the excess entropy in hot atmospheres that is required for the breaking of self-similarity in cluster scaling relations. It is not clear that central AGN in 400SD clusters are maintained by a self-regulated feedback loop at the base of a cooling flow. However, they may play a significant role in preventing the development of strong cooling flows at early epochs.
The XMM Cluster Survey: the halo occupation number of BOSS galaxies in X-ray clusters
NASA Astrophysics Data System (ADS)
Mehrtens, Nicola; Romer, A. Kathy; Nichol, Robert C.; Collins, Chris A.; Sahlén, Martin; Rooney, Philip J.; Mayers, Julian A.; Bermeo-Hernandez, A.; Bristow, Martyn; Capozzi, Diego; Christodoulou, L.; Comparat, Johan; Hilton, Matt; Hoyle, Ben; Kay, Scott T.; Liddle, Andrew R.; Mann, Robert G.; Masters, Karen; Miller, Christopher J.; Parejko, John K.; Prada, Francisco; Ross, Ashley J.; Schneider, Donald P.; Stott, John P.; Streblyanska, Alina; Viana, Pedro T. P.; White, Martin; Wilcox, Harry; Zehavi, Idit
2016-12-01
We present a direct measurement of the mean halo occupation distribution (HOD) of galaxies taken from the eleventh data release (DR11) of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS). The HOD of BOSS low-redshift (LOWZ: 0.2 < z < 0.4) and Constant-Mass (CMASS: 0.43 < z < 0.7) galaxies is inferred via their association with the dark matter haloes of 174 X-ray-selected galaxy clusters drawn from the XMM Cluster Survey (XCS). Halo masses are determined for each galaxy cluster based on X-ray temperature measurements, and range between log10(M180/M⊙) = 13 and 15. Our directly measured HODs are consistent with the HOD-model fits inferred via the galaxy-clustering analyses of Parejko et al. for the BOSS LOWZ sample and White et al. for the BOSS CMASS sample. Under the simplifying assumption that the other parameters that describe the HOD hold the values measured by these authors, we have determined a best-fitting alpha-index of 0.91 ± 0.08 and 1.27^{+0.03}_{-0.04} for the CMASS and LOWZ HOD, respectively. These alpha-index values are consistent with those measured by White et al. and Parejko et al. In summary, our study provides independent support for the HOD models assumed during the development of the BOSS mock-galaxy catalogues that have subsequently been used to derive BOSS cosmological constraints.
The X-ray luminosity functions of Abell clusters from the Einstein Cluster Survey
NASA Technical Reports Server (NTRS)
Burg, R.; Giacconi, R.; Forman, W.; Jones, C.
1994-01-01
We have derived the present epoch X-ray luminosity function of northern Abell clusters using luminosities from the Einstein Cluster Survey. The sample is sufficiently large that we can determine the luminosity function for each richness class separately with sufficient precision to study and compare the different luminosity functions. We find that, within each richness class, the range of X-ray luminosity is quite large and spans nearly a factor of 25. Characterizing the luminosity function for each richness class with a Schechter function, we find that the characteristic X-ray luminosity, L(sub *), scales with richness class as (L(sub *) varies as N(sub*)(exp gamma), where N(sub *) is the corrected, mean number of galaxies in a richness class, and the best-fitting exponent is gamma = 1.3 +/- 0.4. Finally, our analysis suggests that there is a lower limit to the X-ray luminosity of clusters which is determined by the integrated emission of the cluster member galaxies, and this also scales with richness class. The present sample forms a baseline for testing cosmological evolution of Abell-like clusters when an appropriate high-redshift cluster sample becomes available.
Searching for decaying axionlike dark matter from clusters of galaxies.
Riemer-Sørensen, Signe; Zioutas, Konstantin; Hansen, Steen H; Pedersen, Kristian; Dahle, Håkon; Liolios, Anastasios
2007-09-28
We constrain the lifetime of radiatively decaying dark matter in clusters of galaxies inspired by generic Kaluza-Klein axions, which have been invoked as a possible explanation for the solar coronal x-ray emission. These particles can be produced inside stars and remain confined by the gravitational potential of clusters. By analyzing x-ray observations of merging clusters, where gravitational lensing observations have identified massive, baryon poor structures, we derive the first cosmological lifetime constraint on this kind of particles of tau > or = 10(23) sec.
Mass concentrations associated with extended X-ray sources in the core of the Coma cluster
NASA Technical Reports Server (NTRS)
Vikhlinin, A.; Forman, W.; Jones, C.
1994-01-01
Using a deep (approx. 20,200 s) ROSAT Position Sensitive Proportional Counter (PSPC) image we have examined the central region of the Coma cluster. Two extended regions of enhanced X-ray emission are found, centered at the positions of the brightest elliptical galaxies in the cluster: NGC 4874 and NGC 4889. Spectral analysis of the sources reveals no evidence of any difference between the spectra of these sources and that of the surrounding cluster emission. We assume that the enhancement in the X-ray surface brightness results from gas density enhancements and also that the underlying mass concentrations lie either at the cluster center or 1 core radius out of the center (420 kpc). With these assumptions, we derive total masses of 1.2 x 10(exp 13) - 1.6 x 10(exp 13), and 0.9 x 10(exp 13) - 1.8 x 10(exp 13) Solar mass within 2 min (80 kpc) of NGC 4874 and NGC 4889, respectively, assuming a Hubble constant H(sub 0) = 50 km/s/Mpc. Corresponding mass-to-light ratios for the galaxies are 30-40 and 25-50 in solar units, increasing at larger radii and approaching the values derived for the entire cluster at distances of more than approximately 150 kpc from the galaxies.
X-ray morphological study of the ESZ sample
NASA Astrophysics Data System (ADS)
Lovisari, L.; Forman, W.; Jones, C.; Andrade-Santos, F.; Democles, J.; Pratt, G.; Ettori, S.; Arnaud, M.; Randall, S.; Kraft, R.
2017-10-01
An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step for studies that aim to constrain cosmological parameters using galaxy clusters. The measure of the dynamical state of the systems offers important information to obtain precise scaling relations and understand their scatter. Unfortunately, characterize the dynamical state of a galaxy cluster requires to access a large set of information in different wavelength which are available only for a few individual systems. An alternative is to compute well defined morphological parameters making use of the relatively cheap X-ray images and profiles. Due to different projection effects none of the methods is good in all the cases and a combination of them is more effective to quantify the level of substructures. I will present the cluster morphologies that we derived for the ESZ sample. I will show their dependence on different cluster properties like total mass, redshift, and luminosity and how they differ from the ones obtained for X-ray selected clusters.
NASA Technical Reports Server (NTRS)
Hasler, Nicole; Bulbul, Esra; Bonamente, Massimiliano; Carlstrom, John E.; Culverhouse, Thomas L.; Gralla, Megan; Greer, Christopher; Lamb, James W.; Hawkins, David; Hennessy, Ryan;
2012-01-01
We perform a joint analysis of X-ray and Sunyaev-Zel'dovich effect data using an analytic model that describes the gas properties of galaxy clusters. The joint analysis allows the measurement of the cluster gas mass fraction profile and Hubble constant independent of cosmological parameters. Weak cosmological priors are used to calculate the overdensity radius within which the gas mass fractions are reported. Such an analysis can provide direct constraints on the evolution of the cluster gas mass fraction with redshift. We validate the model and the joint analysis on high signal-to-noise data from the Chandra X-ray Observatory and the Sunyaev-Zel'dovich Array for two clusters, A2631 and A2204.
HEAO-A2 observations of the X-ray spectra of the Centaurus and A1060 clusters of galaxies
NASA Technical Reports Server (NTRS)
Mitchell, R.; Mushotzky, R.
1979-01-01
The X-ray spectral observations of two low luminosity clusters of galaxies, Centaurus and A1060, are presented. An emission feature of the Centaurus cluster at 7.9 keV is detected at about one third of the strength of the 6.7 keV line. This higher energy line represents K sub beta emission from highly ionized iron. An isothermal model with an Fe emission line is discussed and it is shown that the model cannot fit the data of the Centaurus or the A1060 clusters. The implications of the two component nature of the continuum on the Fe abundance and the X-ray surface brightness distribution are discussed.
ROSAT Discovers Unique, Distant Cluster of Galaxies
NASA Astrophysics Data System (ADS)
1995-06-01
Brightest X-ray Cluster Acts as Strong Gravitational Lens Based on exciting new data obtained with the ROSAT X-ray satellite and a ground-based telescope at the ESO La Silla Observatory, a team of European astronomers [2] has just discovered a very distant cluster of galaxies with unique properties. It emits the strongest X-ray emission of any cluster ever observed by ROSAT and is accompanied by two extraordinarily luminous arcs that represent the gravitationally deflected images of even more distant objects. The combination of these unusual characteristics makes this cluster, now known as RXJ1347.5-1145, a most interesting object for further cosmological studies. DISCOVERY AND FOLLOW-UP OBSERVATIONS This strange cluster of galaxies was discovered during the All Sky Survey with the ROSAT X-ray satellite as a moderately intense X-ray source in the constellation of Virgo. It could not be identified with any already known object and additional ground-based observations were therefore soon after performed with the Max-Planck-Society/ESO 2.2-metre telescope at the La Silla observatory in Chile. These observations took place within a large--scale redshift survey of X-ray clusters of galaxies detected by the ROSAT All Sky Survey, a so-called ``ESO Key Programme'' led by astronomers from the Max-Planck-Institut fur Extraterrestrische Physik and the Osservatorio Astronomico di Brera. The main aim of this programme is to identify cluster X-ray sources, to determine the distance to the X-ray emitting clusters and to investigate their overall properties. These observations permitted to measure the redshift of the RXJ1347.5-1145 cluster as z = 0.45, i.e. it moves away from us with a velocity (about 106,000 km/sec) equal to about one-third of the velocity of light. This is an effect of the general expansion of the universe and it allows to determine the distance as about 5,000 million light-years (assuming a Hubble constant of 75 km/sec/Mpc). In other words, we see these galaxies as they were 5,000 million years ago. Knowing the intensity of the X-ray emission as measured by ROSAT and also the distance, the astronomers were then able to estimate the total X-ray energy emitted by this cluster. It was found to be extremely high [3], in fact higher than that of any other cluster ever observed by ROSAT. It amounts to no less than 1.5 million million times the total energy emitted by the Sun. It is believed that this strong X-ray emission originates in a hot gas located between the galaxies in the cluster. The high temperature indicates that the components of the gas move very rapidly; this is related to the strong gravitational field within the cluster. THE GRAVITATIONAL ARCS To their great surprise and delight, the astronomers also discovered two bright arcs, 5 - 6 arcseconds long and symmetrically placed about 35 arcseconds to the North-East and South-West of the brightest galaxies in the cluster (see the photo). They were detected on exposures of only 3 minutes duration with the 2.2-metre telescope and are among the brightest such arcs ever found. At the indicated distance, the arcs are situated at a projected distance of about 500,000 light-years from the centre of the cluster. It is an interesting possibility that the two arcs may in fact be two images of the same, very distant galaxy, that is situated far beyond RXJ1347.5-1145 and whose light has been bent and split by this cluster's strong gravitational field. This strange phenomenon was first discovered in the late 1970's and is referred to as gravitational lensing. Quite a few examples are now known, in most cases in the form of double or multiple images of quasars. About three dozen cases involve well visible galaxy clusters and elongated arcs, but few, if any, of these arcs are as bright as those seen in the present cluster. This particular arc configuration enables a very accurate determination of the total mass of the cluster, once the distance of the background galaxy has been measured (by obtaining spectra of the arcs and measuring their redshift). The masses of galaxy clusters are important for the determination, for instance of the mean density and distribution of matter in the universe. This is because these clusters are the most massive, clearly defined objects known and as such trace these parameters in the universe on very large scales. Another possibility to derive the cluster mass is offered by X-ray observations, because the distribution of the hot, X-ray emitting gas traces the gravitational field of the cluster. Recently, in some clusters there has been a discrepancy between the mass determined in this way and that found from gravitational lensing effects. The team of astronomers now hopes that follow-up X-ray observations of RXJ1347.5-1145 will help to solve this puzzle. Moreover, the combination of extremely high X-ray brightness and the possibility to perform a rather accurate mass determination by the gravitational lensing effect makes this particular cluster a truly unique object. In view of the exceptional X-ray brightness, a very high mass is expected. The exact determination will be possible, as soon as spectra have been obtained of the two arcs. Contrary to what is the case in other clusters, this will not be so difficult, due to their unusual brightness and their ideal geometrical configuration. [1] This is a joint Press Release of ESO and the Max-Planck-Society. It is accompanied by a B/W photo. [2] The investigation described in this Press Release is the subject of a Letter to the Editor which will soon appear in the European journal Astronomy & Astrophysics, with the following authors: Sabine Schindler (Max-Planck-Institut fuer Extraterrestrische Physik and Max-Planck-Institut fuer Astrophysik, Garching, Germany), Hans Boehringer, Doris M. Neumann and Ulrich G. Briel (Max-Planck-Institut fuer Extraterrestrische Physik, Garching, Germany), Luigi Guzzo (Osservatorio Astronomico di Brera, Merate, Italy), Guido Chincarini (Osservatorio Astronomico di Brera, Merate, and Dipartimento di Fisica, Universita di Milano, Italy), Harald Ebeling (Institute of Astronomy, Cambridge, U.K.), Chris A. Collins (School of Chemical and Physical Sciences, John-Moores University, Liverpool, U.K.), Sabrina De Grandi (Dipartimento di Fisica, Universita di Milano, Italy), Peter Shaver (ESO, Garching, Germany) and Giampaolo Vettolani (Istituto di Radioastronomia del CNR, Bologna, Italy). [3] The total X-ray energy emitted by RXJ1347.5-1145 is (6.2 +-0.6) 10^45 erg s-1 in the range 0.1--2.4 keV. ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE)
Motions in Nearby Galaxy Cluster Reveal Presence of Hidden Superstructure
NASA Astrophysics Data System (ADS)
2004-09-01
A nearby galaxy cluster is facing an intergalactic headwind as it is pulled by an underlying superstructure of dark matter, according to new evidence from NASA's Chandra X-ray Observatory. Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter and that galaxy clusters are formed where these filaments intersect. A Chandra survey of the Fornax galaxy cluster revealed a vast, swept-back cloud of hot gas near the center of the cluster. This geometry indicates that the hot gas cloud, which is several hundred thousand light years in length, is moving rapidly through a larger, less dense cloud of gas. The motion of the core gas cloud, together with optical observations of a group of galaxies racing inward on a collision course with it, suggests that an unseen, large structure is collapsing and drawing everything toward a common center of gravity. X-ray Image of Fornax with labels X-ray Image of Fornax with labels "At a relatively nearby distance of about 60 million light years, the Fornax cluster represents a crucial laboratory for studying the interplay of galaxies, hot gas and dark matter as the cluster evolves." said Caleb Scharf of Columbia University in New York, NY, lead author of a paper describing the Chandra survey that was presented at an American Astronomical Society meeting in New Orleans, LA. "What we are seeing could be associated directly with the intergalactic gas surrounding a very large scale structure that stretches over millions of light years." The infalling galaxy group, whose motion was detected by Michael Drinkwater of the University of Melbourne in Australia, and colleagues, is about 3 million light years from the cluster core, so a collision with the core will not occur for a few billion years. Insight as to how this collision will look is provided by the elliptical galaxy NGC 1404 that is plunging into the core of the cluster for the first time. As discussed by Scharf and another group led by Marie Machacek of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., the hot gas cloud surrounding this galaxy has a sharp leading edge and a trailing tail of gas being stripped from the galaxy. Illustration of Fornax Cluster Illustration of Fornax Cluster "One thing that makes what we see in Fornax rather compelling is that it looks a lot like some of the latest computer simulations," added Scharf. "The Fornax picture, with infalling galaxies, and the swept back geometry of the cluster gas - seen only with the Chandra resolution and the proximity of Fornax - is one of the best matches to date with these high-resolution simulations." Over the course of hundreds of millions of years, NGC 1404's orbit will take it through the cluster core several times, most of the gas it contains will be stripped away, and the formation of new stars will cease. In contrast, galaxies that remain outside the core will retain their gas, and new stars can continue to form. Indeed, Scharf and colleagues found that galaxies located in regions outside the core were more likely to show X-ray activity which could be associated with active star formation. Dissolve from Optical to X-ray View of Fornax Animation Dissolve from Optical to X-ray View of Fornax Animation The wide-field and deep X-ray view around Fornax was obtained through ten Chandra pointings, each lasting about 14 hours. Other members of the research team were David Zurek of the American Museum of Natural History, New York, NY, and Martin Bureau, a Hubble Fellow currently at Columbia. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Analysis of LAC Observations of Clusters of Galaxies and Supernova Remnants
NASA Technical Reports Server (NTRS)
Hughes, J.
1996-01-01
The following publications are included and serve as the final report: The X-ray Spectrum of Abell 665; Clusters of Galaxies; Ginga Observation of an Oxygen-rich Supernova Remnant; Ginga Observations of the Coma Cluster and Studies of the Spatial Distribution of Iron; A Measurement of the Hubble Constant from the X-ray Properties and the Sunyaev-Zel'dovich Effect of Abell 2218; Non-polytropic Model for the Coma Cluster; and Abundance Gradients in Cooling Flow Clusters: Ginga LAC (Large Area Counter) and Einstein SSS (Solid State Spectrometer) Spectra of A496, A1795, A2142, and A2199.
An off-axis galaxy cluster merger: Abell 0141
NASA Astrophysics Data System (ADS)
Caglar, Turgay
2018-04-01
We present structural analysis results of Abell 0141 (z = 0.23) based on X-ray data. The X-ray luminosity map demonstrates that Abell 0141 (A0141) is a bimodal galaxy cluster, which is separated on the sky by ˜0.65 Mpc with an elongation along the north-south direction. The optical galaxy density map also demonstrates this bimodality. We estimate sub-cluster ICM temperatures of 5.17^{+0.20}_{-0.19} keV for A0141N and 5.23^{+0.24}_{-0.23} keV for A0141S. We obtain X-ray morphological parameters w = 0.034 ± 0.004, c = 0.113 ± 0.004, and w = 0.039 ± 0.004, c = 0.104 ± 0.005 for A0141N and A0141S, respectively. The resulting X-ray morphological parameters indicate that both sub-clusters are moderately disturbed non-cool core structures. We find a slight brightness jump in the bridge region, and yet, there is still an absence of strong X-ray emitting gas between sub-clusters. We discover a significantly hotspot (˜10 keV) between sub-clusters, and a Mach number M = 1.69^{+0.40}_{-0.37} is obtained by using the temperature jump condition. However, we did not find direct evidence for shock-heating between sub-clusters. We estimate the sub-clusters' central entropies as K0 > 100 keV cm2, which indicates that the sub-clusters are not cool cores. We find some evidence that the system undergoes an off-axis collision; however, the cores of each sub-clusters have not yet been destroyed. Due to the orientation of X-ray tails of sub-clusters, we suggest that the northern sub-cluster moves through the south-west direction, and the southern cluster moves through the north-east direction. In conclusion, we are witnessing an earlier phase of close core passage between sub-clusters.
Thirty-fold: Extreme Gravitational Lensing of a Quiescent Galaxy at z = 1.6
NASA Astrophysics Data System (ADS)
Ebeling, H.; Stockmann, M.; Richard, J.; Zabl, J.; Brammer, G.; Toft, S.; Man, A.
2018-01-01
We report the discovery of eMACSJ1341-QG-1, a quiescent galaxy at z = 1.594 located behind the massive galaxy cluster eMACSJ1341.9–2442 (z = 0.835). The system was identified as a gravitationally lensed triple image in Hubble Space Telescope images obtained as part of a snapshot survey of the most X-ray luminous galaxy clusters at z > 0.5 and spectroscopically confirmed in ground-based follow-up observations with the ESO/X-Shooter spectrograph. From the constraints provided by the triple image, we derive a first, crude model of the mass distribution of the cluster lens, which predicts a gravitational amplification of a factor of ∼30 for the primary image and a factor of ∼6 for the remaining two images of the source, making eMACSJ1341-QG-1 by far the most strongly amplified quiescent galaxy discovered to date. Our discovery underlines the power of SNAPshot observations of massive, X-ray selected galaxy clusters for lensing-assisted studies of faint background populations.
Constraints on the Energy Density Content of the Universe Using Only Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark
2003-01-01
We demonstrate that it is possible to constrain the energy content of the Universe with high accuracy using observations of clusters of galaxies only. The degeneracies in the cosmological parameters are lifted by combining constraints from different observables of galaxy clusters. We show that constraints on cosmological parameters from galaxy cluster number counts as a function of redshift and accurate angular diameter distance measurements to clusters are complementary to each other and their combination can constrain the energy density content of the Universe well. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Zeldovich effect) surveys, the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect (X-SZ method). In this letter we combine constraints from simulated cluster number counts expected from a 12 deg2 SZ cluster survey and constraints from simulated angular diameter distance measurements based on using the X-SZ method assuming an expected accuracy of 7% in the angular diameter distance determination of 70 clusters with redshifts less than 1.5. We find that R, can be determined within about 25%, A within 20%, and w within 16%. Any cluster survey can be used to select clusters for high accuracy distance measurements, but we assumed accurate angular diameter distance measurements for only 70 clusters since long observations are necessary to achieve high accuracy in distance measurements. Thus the question naturally arises: How to select clusters of galaxies for accurate diameter distance determinations? In this letter, as an example, we demonstrate that it is possible to optimize this selection changing the number of clusters observed, and the upper cut off of their redshift range. We show that constraints on cosmological parameters from combining cluster number counts and angular diameter distance measurements, as opposed to general expectations, will not improve substantially selecting clusters with redshifts higher than one. This important conclusion allow us to restrict our cluster sample to clusters closer than one, in a range where the observational time for accurate distance measurements are more manageable. Subject headings: cosmological parameters - cosmology: theory - galaxies: clusters: general - X-rays: galaxies: clusters
A soft X-ray map of the Perseus cluster of galaxies
NASA Technical Reports Server (NTRS)
Cash, W.; Malina, R. F.; Wolff, R. S.
1976-01-01
A 0.5-3-keV X-ray map of the Perseus cluster of galaxies is presented. The map shows a region of strong emission centered near NGC 1275 plus a highly elongated emission region which lies along the line of bright galaxies that dominates the core of the cluster. The data are compared with various models that include point and diffuse sources. One model which adequately represents the data is the superposition of a point source at NGC 1275 and an isothermal ellipsoid resulting from the bremsstrahlung emission of cluster gas. The ellipsoid has a major core radius of 20.5 arcmin and a minor core radius of 5.5 arcmin, consistent with the values obtained from galaxy counts. All acceptable models provide evidence for a compact source (less than 3 arcmin FWHM) at NGC 1275 containing about 25% of the total emission. Since the diffuse X-ray and radio components have radically different morphologies, it is unlikely that the emissions arise from a common source, as proposed in inverse-Compton models.
NASA Space Science and a Search for Ram-Pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, Beth
2005-01-01
The NASA Goddard Space Flight Center's Sciences and Exploration Directorate seeks to expand scientific knowledge through observational and theoretical research in the study of the Earth-Sun system, the solar system and the origins of life, and the birth and evolution of the universe. This talk will discuss some of the cutting-edge space science research being conducted at Goddard. In addition, I will discuss my research on ram-pressure stripping in cluster elliptical galaxies. Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X-ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chandra Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
The hot interstellar medium in NGC 1399
NASA Technical Reports Server (NTRS)
Loewenstein, Michael; Serlemitsos, Peter J.
1993-01-01
The first two high signal-to-noise, broad bandpass x-ray spectra of elliptical galaxies were obtained with the Broad Band X-ray Telescope (BBXRT) as part of the December 1990 Astro mission. These observations provided unprecedented information on the thermal and metallicity structure of the hot interstellar media in two ellipticals: NGC 1399, the central galaxy in the Fornax cluster, and NGC 4472, the brightest galaxy in the Virgo cluster. The finalized analysis and interpretation of the approximately 4000 sec of BBXRT data on NGC 1399 is reported.
The Physics of Cooling Flow Clusters with Central Radio Sources
NASA Technical Reports Server (NTRS)
Sarazin, Craig L.
2005-01-01
Central galaxies in rich clusters are the sites of cluster cooling flows, with large masses of gas cooling through part of the X-ray band. Many of these galaxies host powerful radio sources. These sources can displace and compress the X-ray gas leading to enhanced cooling and star formation. We observed the bright cooling flow Abell 2626 with a strangely distorted central radio source. We wished to understand the interaction of radio and X-ray thermal plasma, and to determine the dynamical nature of this cluster. One aim was to constrain the source of additional pressure in radio "holes" in the X-ray emission needed to support overlying shells of X-ray gas. We also aimed to study the problem of the lack of kT < 1-2 keV gas in cooling flows by searching for abundance inhomogeneities, heating from the radio source, and excess absorption. We also have a Chandra observation of this cluster. There were problems with the pipeline processing of this data due to a telemetry dropout. We are publishing the Chandra and XMM data together. Delays with the Chandra data have slowed up the publication. At the center of the cluster, there is a complex interaction of the odd, Z-shaped radio source, and the X-ray plasma. However, there are no clear radio bubbles. Also, the cluster SO galaxy IC 5337, which is projected 1.5 arcmin west of the cluster center, has unusual tail-like structures in both the radio and X-ray. It appears to be falling into the cluster center. There is a hot, probably shocked region of gas to the southwest, which is apparently due to the merger of a subcluster in this part of the system. There is also a merging subcluster to the northeast. The axes of these two mergers agrees with a supercluster filament structure.
Mapping the hot gas temperature in galaxy clusters using X-ray and Sunyaev-Zel'dovich imaging
NASA Astrophysics Data System (ADS)
Adam, R.; Arnaud, M.; Bartalucci, I.; Ade, P.; André, P.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourdin, H.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Désert, F.-X.; Doyle, S.; Ferrari, C.; Goupy, J.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J.-F.; Maurogordato, S.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Pajot, F.; Pascale, E.; Perotto, L.; Pisano, G.; Pointecouteau, E.; Ponthieu, N.; Pratt, G. W.; Revéret, V.; Ritacco, A.; Rodriguez, L.; Romero, C.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2017-10-01
We propose a method to map the temperature distribution of the hot gas in galaxy clusters that uses resolved images of the thermal Sunyaev-Zel'dovich (tSZ) effect in combination with X-ray data. Application to images from the New IRAM KIDs Array (NIKA) and XMM-Newton allows us to measure and determine the spatial distribution of the gas temperature in the merging cluster MACS J0717.5+3745, at z = 0.55. Despite the complexity of the target object, we find a good morphological agreement between the temperature maps derived from X-ray spectroscopy only - using XMM-Newton (TXMM) and Chandra (TCXO) - and the new gas-mass-weighted tSZ+X-ray imaging method (TSZX). We correlate the temperatures from tSZ+X-ray imaging and those from X-ray spectroscopy alone and find that TSZX is higher than TXMM and lower than TCXO by 10% in both cases. Our results are limited by uncertainties in the geometry of the cluster gas, contamination from kinetic SZ ( 10%), and the absolute calibration of the tSZ map (7%). Investigation using a larger sample of clusters would help minimise these effects.
NASA Astrophysics Data System (ADS)
2004-06-01
Largest Census Of X-Ray Galaxy Clusters Provides New Constraints on Dark Matter [1] Clusters of galaxies Clusters of galaxies are very large building blocks of the Universe. These gigantic structures contain hundreds to thousands of galaxies and, less visible but equally interesting, an additional amount of "dark matter" whose origin still defies the astronomers, with a total mass of thousands of millions of millions times the mass of our Sun. The comparatively nearby Coma cluster, for example, contains thousands of galaxies and measures more than 20 million light-years across. Another well-known example is the Virgo cluster at a distance of about 50 million light-years, and still stretching over an angle of more than 10 degrees in the sky! Clusters of galaxies form in the densest regions of the Universe. As such, they perfectly trace the backbone of the large-scale structures in the Universe, in the same way that lighthouses trace a coastline. Studies of clusters of galaxies therefore tell us about the structure of the enormous space in which we live. The REFLEX survey ESO PR Photo 18a/04 ESO PR Photo 18a/04 Galaxy Cluster RXCJ 1206.2-0848 (Visible and X-ray) [Preview - JPEG: 400 x 478 pix - 70k] [Normal - JPEG: 800 x 956 pix - 1.2Mk] Caption: PR Photo 18a shows the very massive distant cluster of galaxies RXCJ1206.2-0848, newly discovered during the REFLEX project, and located at a redshift of z = 0.44 [3]. The contours indicate the X-ray surface brightness distribution. Most of the yellowish galaxies are cluster members. A gravitationally lensed galaxy with a distorted, very elongated image is seen, just right of the centre. The image was obtained with the EFOSC multi-mode instrument on the ESO 3.6-m telescope at the La Silla Observatory (Chile). ESO PR Photo 18b/04 ESO PR Photo 18b/04 Galaxy cluster RXCJ1131.9-1955 [Preview - JPEG: 400 x 477 pix - 40k] [Normal - JPEG: 800 x 953 pix - 912k] [FullRes - JPEG: 2251 x 2681 pix - 7.7Mk] Caption: PR Photo 18b displays the very massive galaxy cluster RXCJ1131.9-1955 at redshift z = 0.306 [3] in a very rich galaxy field with two major concentrations. It was originally found by George Abell and designated "Abell 1300". The image was obtained with the ESO/MPG 2.2-m telescope and the WFI camera at La Silla. ESO PR Photo 18c/04 ESO PR Photo 18c/04 Galaxy Cluster RXCJ0937.9-2020 [Preview - JPEG: 400 x 746 pix - 60k] [Normal - JPEG: 800 x 1491 pix - 1.3M] [HiRes - JPEG: 2380 x 4437 pix - 14.2M] Caption: PR Photo 18c/04 shows the much smaller, more nearby galaxy group RXCJ0937.9-2020 at a redshift of z = 0.034 [3]. It is dominated by the massive elliptical galaxy seen at the top of the image. The photo covers only the southern part of this group. Such galaxy groups with typical masses of a few 1013 solar masses constitute the smallest objects included in the REFLEX catalogue. This image was obtained with the FORS1 multi-mode instrument on the ESO 8.2-m VLT Antu telescope. ESO PR Video Clip 05/04 ESO PR Video Clip 05/04 Galaxy Clusters in the REFLEX Catalogue (3D-visualization) [MPG - 11.7Mb] Caption: ESO PR Video Clip 05/04 illustrates the three-dimensional distribution of the galaxy clusters identfied in the ROSAT All-Sky survey in the northern and southern sky. In addition to the galaxy clusters in the REFLEX catalogue this movie also contains those identified during the ongoing, deeper search for X-ray clusters: the extension of the southern REFLEX Survey and the northern complementary survey that is conducted by the MPE team at the Calar Alto observatory and at US observatories in collaboration with John Huchra and coworkers at the Harvard-Smithonian Center for Astrophysics. In total, more than 1400 X-ray bright galaxy cluster have been found to date. (Prepared by Ferdinand Jamitzky.) Following this idea, a European team of astronomers [2], under the leadership of Hans Böhringer (MPE, Garching, Germany), Luigi Guzzo (INAF, Milano, Italy), Chris A. Collins (JMU, Liverpool), and Peter Schuecker (MPE, Garching) has embarked on a decade-long study of these gargantuan structures, trying to locate the most massive of clusters of galaxies. Since about one-fifth of the optically invisible mass of a cluster is in the form of a diffuse very hot gas with a temperature of the order of several tens of millions of degrees, clusters of galaxies produce powerful X-ray emission. They are therefore best discovered by means of X-ray satellites. For this fundamental study, the astronomers thus started by selecting candidate objects using data from the X-ray Sky Atlas compiled by the German ROSAT satellite survey mission. This was the beginning only - then followed a lot of tedious work: making the final identification of these objects in visible light and measuring the distance (i.e., redshift [3]) of the cluster candidates. The determination of the redshift was done by means of observations with several telescopes at the ESO La Silla Observatory in Chile, from 1992 to 1999. The brighter objects were observed with the ESO 1.5-m and the ESO/MPG 2.2-m telescopes, while for the more distant and fainter objects, the ESO 3.6-m telescope was used. Carried out at these telescopes, the 12 year-long programme is known to astronomers as the REFLEX (ROSAT-ESO Flux Limited X-ray) Cluster Survey. It has now been concluded with the publication of a unique catalogue with the characteristics of the 447 brightest X-ray clusters of galaxies in the southern sky. Among these, more than half the clusters were discovered during this survey. Constraining the dark matter content ESO PR Photo 18d/04 ESO PR Photo 18d/04 Constraints on Cosmological Parameters [Preview - JPEG: 400 pix x 572 - 37k] [Normal - JPEG: 800 x 1143 pix - 265k] Caption: PR Photo 18d demonstrates the current observational constraints on the cosmic density of all matter including dark matter (Ωm) and the dark energy (ΩΛ) relative to the density of a critical-density Universe (i.e., an expanding Universe which approaches zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e.g. the WMAP satellite). In fact, the new REFLEX study is very complementary to the above-mentioned methods. The REFLEX team concludes that the mean density of the Universe is in the range 0.27 to 0.43 times the "critical density", providing the strongest constraint on this value up to now. When combined with the latest supernovae study, the REFLEX result implies that, whatever the nature of the dark energy is, it closely mimics a Universe with Einstein's cosmological constant. A giant puzzle The REFLEX catalogue will also serve many other useful purposes. With it, astronomers will be able to better understand the detailed processes that contribute to the heating of the gas in these clusters. It will also be possible to study the effect of the environment of the cluster on each individual galaxy. Moreover, the catalogue is a good starting point to look for giant gravitational lenses, in which a cluster acts as a giant magnifying lens, effectively allowing observations of the faintest and remotest objects that would otherwise escape detection with present-day telescopes. But, as Hans Böhringer says: "Perhaps the most important advantage of this catalogue is that the properties of each single cluster can be compared to the entire sample. This is the main goal of surveys: assembling the pieces of a gigantic puzzle to build the grander view, where every single piece then gains a new, more comprehensive meaning." More information The results presented in this Press Release will appear in the research journal Astronomy and Astrophysics ("The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy Cluster Survey. V. The cluster catalogue" by H. Böhringer et al.; astro-ph/0405546). See also the REFLEX website.
MACS J0553.4-3342: a young merging galaxy cluster caught through the eyes of Chandra and HST
NASA Astrophysics Data System (ADS)
Pandge, M. B.; Bagchi, Joydeep; Sonkamble, S. S.; Parekh, Viral; Patil, M. K.; Dabhade, Pratik; Navale, Nilam R.; Raychaudhury, Somak; Jacob, Joe
2017-12-01
We present a detailed analysis of a young merging galaxy cluster MACS J0553.4-3342 (z=0.43) from Chandra X-ray and Hubble Space Telescope archival data. X-ray observations confirm that the X-ray emitting intra-cluster medium (ICM) in this system is among the hottest (average T = 12.1 ± 0.6 keV) and most luminous known. Comparison of X-ray and optical images confirms that this system hosts two merging subclusters SC1 and SC2, separated by a projected distance of about 650 kpc. The subcluster SC2 is newly identified in this work, while another subcluster (SC0), previously thought to be a part of this merging system, is shown to be possibly a foreground object. Apart from two subclusters, we find a tail-like structure in the X-ray image, extending to a projected distance of ∼1 Mpc, along the north-east direction of the eastern subcluster (SC1). From a surface brightness analysis, we detect two sharp surface brightness edges at ∼40 (∼320 kpc) and ∼80 arcsec (∼640 kpc) to the east of SC1. The inner edge appears to be associated with a merger-driven cold front, while the outer one is likely to be due to a shock front, the presence of which, ahead of the cold front, makes this dynamically disturbed cluster interesting. Nearly all the early-type galaxies belonging to the two subclusters, including their brightest cluster galaxies, are part of a well-defined red sequence.
NASA Astrophysics Data System (ADS)
Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.
2014-10-01
We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.
Cosmological constraints from Chandra observations of galaxy clusters.
Allen, Steven W
2002-09-15
Chandra observations of rich, relaxed galaxy clusters allow the properties of the X-ray gas and the total gravitating mass to be determined precisely. Here, we present results for a sample of the most X-ray luminous, dynamically relaxed clusters known. We show that the Chandra data and independent gravitational lensing studies provide consistent answers on the mass distributions in the clusters. The mass profiles exhibit a form in good agreement with the predictions from numerical simulations. Combining Chandra results on the X-ray gas mass fractions in the clusters with independent measurements of the Hubble constant and the mean baryonic matter density in the Universe, we obtain a tight constraint on the mean total matter density of the Universe, Omega(m), and an interesting constraint on the cosmological constant, Omega(Lambda). We also describe the 'virial relations' linking the masses, X-ray temperatures and luminosities of galaxy clusters. These relations provide a key step in linking the observed number density and spatial distribution of clusters to the predictions from cosmological models. The Chandra data confirm the presence of a systematic offset of ca. 40% between the normalization of the observed mass-temperature relation and the predictions from standard simulations. This finding leads to a significant revision of the best-fit value of sigma(8) inferred from the observed temperature and luminosity functions of clusters.
2016-01-07
Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA's Great Observatories. This multi-wavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light detected by the Spitzer Space Telescope in red. This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how such megastructures formed and evolved early in the universe. The light astronomers observed from IDCS 1426 began its journey to Earth when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early time. First discovered by the Spitzer Space Telescope in 2012, IDCS 1426 was then observed using the Hubble Space Telescope and the Keck Observatory to determine its distance. Observations from the Combined Array for Millimeter-wave Astronomy indicated it was extremely massive. New data from the Chandra X-ray Observatory confirm the galaxy cluster's mass and show that about 90 percent of this mass is in the form of dark matter -- the mysterious substance that has so far been detected only through its gravitational pull on normal matter composed of atoms. http://photojournal.jpl.nasa.gov/catalog/PIA20063
HICOSMO: cosmology with a complete sample of galaxy clusters - II. Cosmological results
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-10-01
The X-ray bright, hot gas in the potential well of a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest galaxy clusters in the Universe, building up a local sample. Here, we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, Ωm and σ8. We apply our total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find Ωm = 0.30 ± 0.01 and σ8 = 0.79 ± 0.03 (statistical uncertainties, 68 per cent credibility level) using our default analysis strategy combining both a mass function analysis and the gas mass fraction results. The main sources of biases that we correct here are (1) the influence of galaxy groups (incompleteness in parent samples and differing behaviour of the Lx-M relation), (2) the hydrostatic mass bias, (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other physical effects (non-negligible neutrino mass). We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, incorporating baryonic effects does not result in a significant change in the constraints. The total (uncorrected) systematic uncertainties (∼20 per cent) clearly dominate the statistical uncertainties on cosmological parameters for our sample.
Non-thermal emission and dynamical state of massive galaxy clusters from CLASH sample
NASA Astrophysics Data System (ADS)
Pandey-Pommier, M.; Richard, J.; Combes, F.; Edge, A.; Guiderdoni, B.; Narasimha, D.; Bagchi, J.; Jacob, J.
2016-12-01
Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of them) different types of non-thermal radio emitting components, viz., 'haloes', 'mini-haloes', 'relics' and 'phoenix' within their Intra Cluster Medium (ICM). The radio haloes show steep (α = -1.2) and ultra steep (α < -1.5) spectral properties at low radio frequencies, giving important insights on the merger (pre or post) state of the cluster. Ultra steep spectrum radio halo emissions are rare and expected to be the dominating population to be discovered via LOFAR and SKA in the future. Further, the distribution of matter (morphological information), alignment of hot X-ray emitting gas from the ICM with the total mass (dark + baryonic matter) and the bright cluster galaxy (BCG) is generally used to study the dynamical state of the cluster. We present here a multi wavelength study on 14 massive clusters from the CLASH survey and show the correlation between the state of their merger in X-ray and spectral properties (1.4 GHz - 150 MHz) at radio wavelengths. Using the optical data we also discuss about the gas-mass alignment, in order to understand the interplay between dark and baryonic matter in massive galaxy clusters.
The environment of x ray selected BL Lacs: Host galaxies and galaxy clustering
NASA Technical Reports Server (NTRS)
Wurtz, Ron; Stocke, John T.; Ellingson, Erica; Yee, Howard K. C.
1993-01-01
Using the Canada-France-Hawaii Telescope, we have imaged a complete, flux-limited sample of Einstein Medium Sensitivity Survey BL Lacertae objects in order to study the properties of BL Lac host galaxies and to use quantitative methods to determine the richness of their galaxy cluster environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, R.; Wilson, G.; DeGroot, A.
We study the slope, intercept, and scatter of the color–magnitude and color–mass relations for a sample of 10 infrared red-sequence-selected clusters at z ∼ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ≳ 3 with an age spread Δt ≳ 1 Gyr. We compare UVJ color–color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color–magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable tomore » detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ∼ 1.« less
Probing cluster potentials through gravitational lensing of background X-ray sources
NASA Technical Reports Server (NTRS)
Refregier, A.; Loeb, A.
1996-01-01
The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.
Hard X-ray emission from accretion shocks around galaxy clusters
NASA Astrophysics Data System (ADS)
Kushnir, Doron; Waxman, Eli
2010-02-01
We show that the hard X-ray (HXR) emission observed from several galaxy clusters is consistent with a simple model, in which the nonthermal emission is produced by inverse Compton scattering of cosmic microwave background photons by electrons accelerated in cluster accretion shocks: The dependence of HXR surface brightness on cluster temperature is consistent with that predicted by the model, and the observed HXR luminosity is consistent with the fraction of shock thermal energy deposited in relativistic electrons being lesssim0.1. Alternative models, where the HXR emission is predicted to be correlated with the cluster thermal emission, are disfavored by the data. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed.
Low-frequency radio observations of poor clusters of galaxies
NASA Technical Reports Server (NTRS)
Hanisch, R. J.; White, R. A.
1981-01-01
Observations have been made at the Clark Lake Radio Observatory of 16 poor clusters of galaxies at 34.3 MHz. Four of the poor clusters were detected at flux densities greater than 20 Jy. The spectra of the four detected clusters are all rather steep. Two of the detected clusters, AWM 4 and AWM 5, are also known to be X-ray sources. The possibility that the X-ray-emitting gas is heated by Coulomb interactions with the relativistic electrons responsible for the radio emission is investigated, and it is found that the observed X-ray luminosities can be accounted for if the electron energy spectrum extends to very low energies (gamma approximately 1-10). Collective plasma effects may increase the heating efficiency and eliminate the need to extrapolate the electron energy spectrum to such low values.
The X-Ray Surveyor Mission: A Concept Study
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.;
2015-01-01
NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.
Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback.
Voit, G M; Bryan, G L
2001-11-22
Clusters of galaxies are thought to contain about ten times as much dark matter as baryonic matter. The dark component therefore dominates the gravitational potential of a cluster, and the baryons confined by this potential radiate X-rays with a luminosity that depends mainly on the gas density in the cluster's core. Predictions of the X-rays' properties based on models of cluster formation do not, however, agree with the observations. If the models ignore the condensation of cooling gas into stars and feedback from the associated supernovae, they overestimate the X-ray luminosity because the density of the core gas is too high. An early episode of uniformly distributed supernova feedback could rectify this by heating the uncondensed gas and therefore making it harder to compress into the core, but such a process seems to require an implausibly large number of supernovae. Here we show how radiative cooling of intergalactic gas and subsequent supernova heating conspire to eliminate highly compressible low-entropy gas from the intracluster medium. This brings the core entropy and X-ray luminosities of clusters into agreement with the observations, in a way that depends little on the efficiency of supernova heating in the early Universe.
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1994-01-01
Preliminary results on the elliptical galaxy NGC 1407 were published in the proceedings of the first ROSAT symposium. NGC 1407 is embedded in diffuse X-ray-emitting gas which is extensive enough that it is likely to be related to the surrounding group of galaxies, rather than just NGC 1407. Spectral data for NGC 1407 (AO2) and IC 1459 (AO3) are also included in a complete sample of elliptical galaxies I compiled in collaboration with David Davis. This allowed us to construct the first complete X-ray sample of optically-selected elliptical galaxies. The complete sample allows us to apply Malmquist bias corrections to the observed correlation between X-ray and optical luminosities. I continue to work on the implications of this first complete X-ray sample of elliptical galaxies. Paul Eskridge Dave Davis and I also analyzed three long ROSAT PSPC observations of the small (but not dwarf) elliptical galaxy M32. We found the X-ray spectra and variability to be consistent with either a Low Mass X-Ray Binary (LMXRB) or a putative 'micro"-AGN.
An X-ray Luminous, Distant (z=0.78) Cluster of Galaxies
NASA Technical Reports Server (NTRS)
Donahue, Megan
2001-01-01
This granted funded ASCA studies of the most X-ray luminous clusters of galaxies in the Extended Medium Sensitivity Survey. These studies leveraged further observations with Chandra and sparked a new collaboration between the PI and John Carlstrom's Sunyaev-Zel'dovich team. The major scientific results due largely or in part from these observations: the first z=0.5-0.8 cluster temperature function, constraints on cluster evolution which showed definitively that the density of the universe divided by the critical density, Omega-m, could not be 1.0, constraints on cluster evolution limiting Omega_m to 0.2-0.5, independent of lambda, the first detections of intracluster iron in a z>0.6 cluster of galaxies. These results are independent of the supernova and cosmological microwave background results, and provide independent constraint on cosmological parameters.
Hubble Checks out a Home for Old Stars
2017-12-08
This image, taken with the Wide Field Planetary Camera 2 on board the NASA/ESA Hubble Space Telescope, shows the globular cluster Terzan 1. Lying around 20,000 light-years from us in the constellation of Scorpius (The Scorpion), it is one of about 150 globular clusters belonging to our galaxy, the Milky Way. Typical globular clusters are collections of around a hundred thousand stars, held together by their mutual gravitational attraction in a spherical shape a few hundred light-years across. It is thought that every galaxy has a population of globular clusters. Some, like the Milky Way, have a few hundred, while giant elliptical galaxies can have several thousand. They contain some of the oldest stars in a galaxy, hence the reddish colors of the stars in this image — the bright blue ones are foreground stars, not part of the cluster. The ages of the stars in the globular cluster tell us that they were formed during the early stages of galaxy formation! Studying them can also help us to understand how galaxies formed. Terzan 1, like many globular clusters, is a source of X-rays. It is likely that these X-rays come from binary star systems that contain a dense neutron star and a normal star. The neutron star drags material from the companion star, causing a burst of X-ray emission. The system then enters a quiescent phase in which the neutron star cools, giving off X-ray emission with different characteristics, before enough material from the companion builds up to trigger another outburst. Image credit: NASA & ESA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
A first determination of the surface density of galaxy clusters at very low x-ray fluxes
NASA Technical Reports Server (NTRS)
Rosati, Piero; Della Ceca, Roberta; Burg, Richard; Norman, Colin; Giacconi, Riccardo
1995-01-01
We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT position sensitive proportional counter (PSPC) pointed observations at high Galactic latitude. The survey is being carried out using a wavelet-based detection algorithm which is not biased against extended, low surface brightness sources. A new flux-diameter limited sample of 10 cluster candidates has been created from approximately 3 deg(exp 2) surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low- to moderate-redshift groups or intermediate- to high-redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 1 x 10(exp -14) ergs cm(exp -2) s(exp -1) (0.5-2.0 keV). This extends the log N-log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.
Galaxy Cluster Smashes Distance Record
NASA Astrophysics Data System (ADS)
2009-10-01
he most distant galaxy cluster yet has been discovered by combining data from NASA's Chandra X-ray Observatory and optical and infrared telescopes. The cluster is located about 10.2 billion light years away, and is observed as it was when the Universe was only about a quarter of its present age. The galaxy cluster, known as JKCS041, beats the previous record holder by about a billion light years. Galaxy clusters are the largest gravitationally bound objects in the Universe. Finding such a large structure at this very early epoch can reveal important information about how the Universe evolved at this crucial stage. JKCS041 is found at the cusp of when scientists think galaxy clusters can exist in the early Universe based on how long it should take for them to assemble. Therefore, studying its characteristics - such as composition, mass, and temperature - will reveal more about how the Universe took shape. "This object is close to the distance limit expected for a galaxy cluster," said Stefano Andreon of the National Institute for Astrophysics (INAF) in Milan, Italy. "We don't think gravity can work fast enough to make galaxy clusters much earlier." Distant galaxy clusters are often detected first with optical and infrared observations that reveal their component galaxies dominated by old, red stars. JKCS041 was originally detected in 2006 in a survey from the United Kingdom Infrared Telescope (UKIRT). The distance to the cluster was then determined from optical and infrared observations from UKIRT, the Canada-France-Hawaii telescope in Hawaii and NASA's Spitzer Space Telescope. Infrared observations are important because the optical light from the galaxies at large distances is shifted into infrared wavelengths because of the expansion of the universe. The Chandra data were the final - but crucial - piece of evidence as they showed that JKCS041 was, indeed, a genuine galaxy cluster. The extended X-ray emission seen by Chandra shows that hot gas has been detected between the galaxies, as expected for a true galaxy cluster rather than one that has been caught in the act of forming. Also, without the X-ray observations, the possibility remained that this object could have been a blend of different groups of galaxies along the line of sight, or a filament, a long stream of galaxies and gas, viewed front on. The mass and temperature of the hot gas detected estimated from the Chandra observations rule out both of those alternatives. The extent and shape of the X-ray emission, along with the lack of a central radio source argue against the possibility that the X-ray emission is caused by scattering of cosmic microwave background light by particles emitting radio waves. It is not yet possible, with the detection of just one extremely distant galaxy cluster, to test cosmological models, but searches are underway to find other galaxy clusters at extreme distances. "This discovery is exciting because it is like finding a Tyrannosaurus Rex fossil that is much older than any other known," said co-author Ben Maughan, from the University of Bristol in the United Kingdom. "One fossil might just fit in with our understanding of dinosaurs, but if you found many more, you would have to start rethinking how dinosaurs evolved. The same is true for galaxy clusters and our understanding of cosmology." The previous record holder for a galaxy cluster was 9.2 billion light years away, XMMXCS J2215.9-1738, discovered by ESA's XMM-Newton in 2006. This broke the previous distance record by only about 0.1 billion light years, while JKCS041 surpasses XMMXCS J2215.9 by about ten times that. "What's exciting about this discovery is the astrophysics that can be done with detailed follow-up studies," said Andreon. Among the questions scientists hope to address by further studying JKCS041 are: What is the build-up of elements (such as iron) like in such a young object? Are there signs that the cluster is still forming? Do the temperature and X-ray brightness of such a distant cluster relate to its mass in the same simple way as they do for nearby clusters? The paper describing the results on JKCS041 from Andreon and his colleagues will appear in an upcoming issue of the journal Astronomy and Astrophysics. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington, DC. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
X-ray-selected galaxy groups in Boötes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajgel, Bruna; Lopes, Paulo A. A.; Jones, Christine
2014-10-10
We present the X-ray and optical properties of the galaxy groups selected in the Chandra X-Boötes survey. We used follow-up Chandra observations to better define the group sample and their X-ray properties. Group redshifts were measured from the AGN and Galaxy Evolution Survey spectroscopic data. We used photometric data from the NOAO Deep Wide Field Survey to estimate the group richness (N {sub gals}) and the optical luminosity (L {sub opt}). Our final sample comprises 32 systems at z < 1.75 with 14 below z = 0.35. For these 14 systems, we estimate velocity dispersions (σ {sub gr}) and performmore » a virial analysis to obtain the radii (R {sub 200} and R {sub 500}) and total masses (M {sub 200} and M {sub 500}) for groups with at least 5 galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L{sub X} ). We examine the performance of the group properties σ{sub gr}, L {sub opt}, and L{sub X} , as proxies for the group mass. Understanding how well these observables measure the total mass is important to estimate how precisely the cluster/group mass function is determined. Exploring the scaling relations built with the X-Boötes sample and comparing these with samples from the literature, we find a break in the L{sub X} -M {sub 500} relation at approximately M {sub 500} = 5 × 10{sup 13} M {sub ☉} (for M {sub 500} > 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.61±0.02}, while for M {sub 500} ≤ 5 × 10{sup 13} M {sub ☉}, M{sub 500}∝L{sub X}{sup 0.44±0.05}). Thus, the mass-luminosity relation for galaxy groups cannot be described by the same power law as galaxy clusters. A possible explanation for this break is the dynamical friction, tidal interactions, and projection effects that reduce the velocity dispersion values of the galaxy groups. By extending the cluster luminosity function to the group regime, we predict the number of groups that new X-ray surveys, particularly eROSITA, will detect. Based on our cluster/group luminosity function estimates, eROSITA will identify ∼1800 groups (L{sub X} = 10{sup 41}-10{sup 43} erg s{sup –1}) within a distance of 200 Mpc. Since groups lie in large-scale filaments, this group sample will map the large-scale structure of the local universe.« less
Accounting for the dispersion in the x ray properties of early-type galaxies
NASA Technical Reports Server (NTRS)
White, Raymond E., III; Sarazin, Craig L.
1990-01-01
The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances between the x ray sample members and bright galaxies from the Revised Shapley - Ames catalog. Collectively, galaxies with low x ray luminosities (for a given L sub B) tend to be in denser environments than galaxies with higher x ray luminosities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Congyao; Yu, Qingjuan; Lu, Youjun, E-mail: yuqj@pku.edu.cn
2014-12-01
Observations reveal that the peaks of the X-ray map and the Sunyaev-Zel'dovich (SZ) effect map of some galaxy clusters are offset from each other. In this paper, we perform a set of hydrodynamical simulations of mergers of two galaxy clusters to investigate the spatial offset between the maxima of the X-ray and the SZ surface brightness of the merging clusters. We find that significantly large SZ-X-ray offsets (>100 kpc) can be produced during the major mergers of galaxy clusters (with mass > 1 × 10{sup 14} M {sub ☉}). The significantly large offsets are mainly caused by a 'jump effect'more » that occurs between the primary and secondary pericentric passages of the two merging clusters, during which the X-ray peak may jump to the densest gas region located near the center of the small cluster, but the SZ peak remains near the center of the large one. Our simulations show that merging systems with higher masses and larger initial relative velocities may result in larger offset sizes and longer offset time durations; and only nearly head-on mergers are likely to produce significantly large offsets. We further investigate the statistical distribution of the SZ-X-ray offset sizes and find that (1) the number distribution of the offset sizes is bimodal with one peak located at low offsets ∼0 and the other at large offsets ∼350-450 h {sup –1} kpc, but the objects with intermediate offsets are scarce; and (2) the probabilities of the clusters in the mass range higher than 2 × 10{sup 14} h {sup –1} M {sub ☉} that have offsets larger than 20, 50, 200, 300, and 500 h {sup –1} kpc are 34.0%, 11.1%, 8.0%, 6.5%, and 2.0%, respectively, at z = 0.7. The probability is sensitive to the underlying pairwise velocity distribution and the merger rate of clusters. We suggest that the SZ-X-ray offsets provide a probe to the cosmic velocity fields on the cluster scale and the cluster merger rate, and future observations on the SZ-X-ray offsets for a large number of clusters may put strong constraints on them. Our simulation results suggest that the SZ-X-ray offset in the Bullet Cluster, together with the mass ratio of the two merging clusters, requires a relative velocity larger than 3000 km s{sup –1} at an initial separation 5 Mpc. The cosmic velocity distribution at the high-velocity end is expected to be crucial in determining whether there exists an incompatibility between the existence of the Bullet Cluster and the prediction of a ΛCDM model.« less
X-ray emission from clusters and groups of galaxies
Mushotzky, Richard
1998-01-01
Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to ≈1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2–4. The baryonic fractions vary by a factor of ≈3 from cluster to cluster and almost always exceed 0.09 h50−[3/2] and thus are in fundamental conflict with the assumption of Ω = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2–0.45 solar, and the abundances of O and Si for low redshift systems are 0.6–1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z ≈ 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1–0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50−2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures. PMID:9419327
X-ray emission from clusters and groups of galaxies
NASA Technical Reports Server (NTRS)
Mushotzky, R.
1998-01-01
Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.
X-ray emission from clusters and groups of galaxies.
Mushotzky, R
1998-01-06
Recent major advances in x-ray imaging and spectroscopy of clusters have allowed the determination of their mass and mass profile out to approximately 1/2 the virial radius. In rich clusters, most of the baryonic mass is in the gas phase, and the ratio of mass in gas/stars varies by a factor of 2-4. The baryonic fractions vary by a factor of approximately 3 from cluster to cluster and almost always exceed 0.09 h50-[3/2] and thus are in fundamental conflict with the assumption of Omega = 1 and the results of big bang nucleosynthesis. The derived Fe abundances are 0.2-0.45 solar, and the abundances of O and Si for low redshift systems are 0.6-1.0 solar. This distribution is consistent with an origin in pure type II supernova. The amount of light and energy produced by these supernovae is very large, indicating their importance in influencing the formation of clusters and galaxies. The lack of evolution of Fe to a redshift of z approximately 0.4 argues for very early enrichment of the cluster gas. Groups show a wide range of abundances, 0.1-0.5 solar. The results of an x-ray survey indicate that the contribution of groups to the mass density of the universe is likely to be larger than 0.1 h50-2. Many of the very poor groups have large x-ray halos and are filled with small galaxies whose velocity dispersion is a good match to the x-ray temperatures.
A matched filter approach for blind joint detection of galaxy clusters in X-ray and SZ surveys
NASA Astrophysics Data System (ADS)
Tarrío, P.; Melin, J.-B.; Arnaud, M.
2018-06-01
The combination of X-ray and Sunyaev-Zeldovich (SZ) observations can potentially improve the cluster detection efficiency, when compared to using only one of these probes, since both probe the same medium, the hot ionized gas of the intra-cluster medium. We present a method based on matched multifrequency filters (MMF) for detecting galaxy clusters from SZ and X-ray surveys. This method builds on a previously proposed joint X-ray-SZ extraction method and allows the blind detection of clusters, that is finding new clusters without knowing their position, size, or redshift, by searching on SZ and X-ray maps simultaneously. The proposed method is tested using data from the ROSAT all-sky survey and from the Planck survey. The evaluation is done by comparison with existing cluster catalogues in the area of the sky covered by the deep SPT survey. Thanks to the addition of the X-ray information, the joint detection method is able to achieve simultaneously better purity, better detection efficiency, and better position accuracy than its predecessor Planck MMF, which is based on SZ maps alone. For a purity of 85%, the X-ray-SZ method detects 141 confirmed clusters in the SPT region; to detect the same number of confirmed clusters with Planck MMF, we would need to decrease its purity to 70%. We provide a catalogue of 225 sources selected by the proposed method in the SPT footprint, with masses ranging between 0.7 and 14.5 ×1014 M⊙ and redshifts between 0.01 and 1.2.
The red-sequence of 72 WINGS local galaxy clusters
NASA Astrophysics Data System (ADS)
Valentinuzzi, T.; Poggianti, B. M.; Fasano, G.; D'Onofrio, M.; Moretti, A.; Ramella, M.; Biviano, A.; Fritz, J.; Varela, J.; Bettoni, D.; Vulcani, B.; Moles, M.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Omizzolo, A.; Cava, A.
2011-12-01
We study the color - magnitude red sequence and blue fraction of 72 X-ray selected galaxy clusters at z = 0.04-0.07 from the WINGS survey, searching for correlations between the characteristics of the red sequence (RS) and the environment. We consider the slope and scatter of the red sequence, the number ratio of red luminous-to-faint galaxies, the blue fraction, and the fractions of ellipticals, S0s, and spirals that compose the RS. None of these quantities correlate with the cluster velocity dispersion, X-ray luminosity, number of cluster substructures, BCG prevalence over next brightest galaxies, and the spatial concentration of ellipticals. The properties of the RS, instead, depend strongly on local galaxy density. Higher density regions have a smaller RS scatter, a higher luminous-to-faint ratio, a lower blue fraction, and a lower spiral fraction on the RS. Our results clearly illustrate the prominent effect of the local density in setting the epoch when galaxies become passive and join the red sequence, as opposed to the mass of the galaxy host structure.
NASA Technical Reports Server (NTRS)
Bonamente, Massimiliano; Joy, Marshall; LaRoque, Samuel J.; Carlstrom, John E.; Nagai, Daisuke; Marrone, Dan
2007-01-01
We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal ,Beta-model with central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each Cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass. and integrated Compton-gamma parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement: We compare our results with cosmological numerical simulations, and find that simulations that include radiative cooling, star formation and feedback match well both the slope and normalization of our SZE scaling relations.
Cosmological constraints from X-ray all sky surveys, from CODEX to eROSITA
NASA Astrophysics Data System (ADS)
Finoguenov, A.
2017-10-01
Large area cluster cosmology has long become a multiwavelength discipline. Understanding the effect of various selections is currently the main path to improving on the validity of cluster cosmological results. Many of these results are based on the large area sample derived from RASS data. We perform wavelet detection of X-ray sources and make extensive simulations of the detection of clusters in the RASS data. We assign an optical richness to each of the 25,000 detected X-ray sources in the 10,000 square degrees of SDSS BOSS area. We show that there is no obvious separation of sources on galaxy clusters and AGN, based on distribution of systems on their richness. We conclude that previous catalogs, such as MACS, REFLEX are all subject to a complex optical selection function, in addition to an X-ray selection. We provide a complete model of identification of cluster counts are galaxy clusters, which includes chance identification, effect of AGN halo occupation distribution and the thermal emission of ICM. Finally we present the cosmological results obtained using this sample.
Discovery of a Giant Radio Halo in a New Planck Galaxy Cluster PLCKG171.9-40.7
NASA Technical Reports Server (NTRS)
Giacintucci, Simona; Kale, Ruta; Wik, Daniel R.; Venturi, Tiziana; Markevitch, Maxim
2013-01-01
We report the discovery of a giant radio halo in a new, hot, X-ray luminous galaxy cluster recently found by Planck, PLCKG171.9-40.7. The radio halo was found using Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz, and in the 1.4 GHz data from a NRAO Very Large Array Sky Survey pointing that we have reanalyzed. The diffuse radio emission is coincident with the cluster X-ray emission, has an extent of approx.1 Mpc and a radio power of approx. 5×10(exp 24)W/Hz at 1.4 GHz. Its integrated radio spectrum has a slope of alpha approx. = 1.8 between 235 MHz and 1.4 GHz, steeper than that of a typical giant halo. The analysis of the archival XMMNewton X-ray data shows that the cluster is hot (approx. 10 keV) and disturbed, consistent with X-ray selected clusters hosting radio halos. This is the first giant radio halo discovered in one of the new clusters found by Planck.
Constraints on Massive Axion-Like Particles from X-ray Observations of NGC1275
NASA Astrophysics Data System (ADS)
Chen, Linhan; Conlon, Joseph P.
2018-06-01
If axion-like particles (ALPs) exist, photons can convert to ALPs on passage through regions containing magnetic fields. The magnetised intracluster medium of large galaxy clusters provides a region that is highly efficient at ALP-photon conversion. X-ray observations of Active Galactic Nuclei (AGNs) located within galaxy clusters can be used to search for and constrain ALPs, as photon-ALP conversion would lead to energy-dependent quasi-sinusoidal modulations in the X-ray spectrum of an AGN. We use Chandra observations of the central AGN of the Perseus Cluster, NGC1275, to place bounds on massive ALPs up to ma ˜ 10-11eV, extending previous work that used this dataset to constrain massless ALPs.
NASA Technical Reports Server (NTRS)
Carilli, Chris; Conner, Sam; Dreher, John; Perley, Rick
1990-01-01
Cygnus A is a powerful double radio source associated with a giant elliptical galaxy at the center of a poor cluster of galaxies. The radio source also sits within the core radius of a dense, cooling flow, x ray emitting cluster gas. Optical spectroscopy and narrow band imaging have revealed copious amounts of narrow line emission from the inner 20 kpc of the associated galaxy. Researchers assume H sub o = 75 km sec (-1) Mpc(-1). Discussed here are the pressures in the three components of the Interstellar Medium (ISM) (i.e., the radio, x ray, and line emitting fluids) within a radius of about 15 kpc of the active nucleus of the Cygnus A galaxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.
2015-05-18
X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). We report on a survey for X-ray cavities in 83 massive, high-redshift (more » $$0.4\\lt z\\lt 1.2$$) clusters of galaxies selected by their Sunyaev-Zel’dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). The majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($$z\\gtrsim 0.5$$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($$\\gt 7$$ Gyr at $$z\\sim 0.8$$). On average, the detected X-ray cavities have powers of $$(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$$, enthalpies of $$(3-6)\\times {{10}^{59}}\\ {\\rm erg}$$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 10(8) to several $${{10}^{9}}\\,{{M}_{\\odot }}$$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Although this result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.« less
Medusa spectroscopy of A400, A576, A1767, and A2124
NASA Technical Reports Server (NTRS)
Hintzen, P.; Hill, J. M.; Lindley, D.; Scott, J. S.; Angel, J. R. P.
1982-01-01
Galaxy velocity data taken with the Steward Observatory multiple aperture fiber optic spectrograph are presented for four Abell clusters. The root-mean-square external errors in these velocities are about 100 km/s; accuracy which compares favorably with that obtained from single-object observations. It is expected that the recent adoption of a CCD detector should decrease external errors to about 50 km/s. All four of the clusters observed are known X-ray sources and the present data agree well with empirically derived velocity dispersion-X-ray luminosity relations for clusters of galaxies. Abell 400 is interesting in this regard, since both its X-ray luminosity and its velocity dispersion are quite small. Such objects are particularly important in determining the slope of the velocity dispersion-X-ray luminosity relation. The large microwave decrement observed in A576 was initially interpreted as due to Compton scattering of the microwave background by the X-ray-emitting intracluster gas. White and Silk have presented Einstein X-ray data which indicate that A576 contains too little gas to produce the observed microwave decrement by Compton scattering. The velocity dispersion obtained here for 47 members of this cluster strengthens their conclusion.
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-08-01
The X-ray regime, where the most massive visible component of galaxy clusters, the intracluster medium, is visible, offers directly measured quantities, like the luminosity, and derived quantities, like the total mass, to characterize these objects. The aim of this project is to analyse a complete sample of galaxy clusters in detail and constrain cosmological parameters, like the matter density, Ωm, or the amplitude of initial density fluctuations, σ8. The purely X-ray flux-limited sample (HIFLUGCS) consists of the 64 X-ray brightest galaxy clusters, which are excellent targets to study the systematic effects, that can bias results. We analysed in total 196 Chandra observations of the 64 HIFLUGCS clusters, with a total exposure time of 7.7 Ms. Here, we present our data analysis procedure (including an automated substructure detection and an energy band optimization for surface brightness profile analysis) that gives individually determined, robust total mass estimates. These masses are tested against dynamical and Planck Sunyaev-Zeldovich (SZ) derived masses of the same clusters, where good overall agreement is found with the dynamical masses. The Planck SZ masses seem to show a mass-dependent bias to our hydrostatic masses; possible biases in this mass-mass comparison are discussed including the Planck selection function. Furthermore, we show the results for the (0.1-2.4) keV luminosity versus mass scaling relation. The overall slope of the sample (1.34) is in agreement with expectations and values from literature. Splitting the sample into galaxy groups and clusters reveals, even after a selection bias correction, that galaxy groups exhibit a significantly steeper slope (1.88) compared to clusters (1.06).
1989-01-01
In 1986, NASA introduced a Shuttle-borne ultraviolet observatory called Astro. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were: The Hopkins Ultraviolet Telescope (HUT), which was designed to obtain far-ultraviolet spectroscopic data from white dwarfs, emission nebulae, active galaxies, and quasars; the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) which was to study polarized ultraviolet light from magnetic white dwarfs, binary stars, reflection nebulae, and active galaxies; and the Ultraviolet Imaging Telescope (UIT) which was to record photographic images in ultraviolet light of galaxies, star clusters, and nebulae. The star trackers that supported the instrument pointing system were also mounted on the cruciform. Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT), which was designed to obtain high-resolution x-ray spectra from stellar corona, x-ray binary stars, active galactic nuclei, and galaxy clusters. Managed by the Marshall Space Flight Center, the Astro-1 observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.
NASA Technical Reports Server (NTRS)
Desjardins, Tyler D.; Gallagher, Sarah C.; Hornschemeier, Ann E.; Mulchaey, John S.; Walker, Lisa May; Brandt, Willian N.; Charlton, Jane C.; Johnson, Kelsey E.; Tzanavaris, Panayiotis
2014-01-01
We present an analysis of the diffuse X-ray emission in 19 compact groups (CGs) of galaxies observed with Chandra. The hottest, most X-ray luminous CGs agree well with the galaxy cluster X-ray scaling relations in L(x-T) and (L(x-sigma), even in CGs where the hot gas is associated with only the brightest galaxy. Using Spitzer photometry, we compute stellar masses and classify Hickson CGs 19, 22, 40, and 42, and RSCGs 32, 44, and 86 as fossil groups using a new definition for fossil systems that includes a broader range of masses. We find that CGs with total stellar and Hi masses are great than or equal to 10(sup (11.3) solar mass are often X-ray luminous, while lower-mass CGs only sometimes exhibit faint, localized X-ray emission. Additionally, we compare the diffuse X-ray luminosity against both the total UV and 24 micron star formation rates of each CG and optical colors of the most massive galaxy in each of the CGs. The most X-ray luminous CGs have the lowest star formation rates, likely because there is no cold gas available for star formation, either because the majority of the baryons in these CGs are in stars or the X-ray halo, or due togas stripping from the galaxies in CGs with hot halos. Finally, the optical colors that trace recent star formation histories of the most massive group galaxies do not correlate with the X-ray luminosities of the CGs, indicating that perhaps the current state of the X-ray halos is independent of the recent history of stellar mass assembly in the most massive galaxies.
Beyond MACS: A Snapshot Survey of the Most Massive Clusters of Galaxies at z>0.5
NASA Astrophysics Data System (ADS)
Ebeling, Harald
2017-08-01
Truly massive galaxy clusters play a pivotal role for a wealth of extragalactic and cosmological research topics, and SNAPshot observations of these systems are ideally suited to identify the most promising cluster targets for further, in-depth study. The power of this approach was demonstrated by ACS/WFC3 SNAPshots of X-ray selected MACS and eMACS clusters at z>0.3 obtained by us in previous Cycles (44 of them in all of F606W, F814W, F110W, and F140W). Based on these data, the CLASH MCT program selected 16 out of 25 of their targets to be MACS clusters. Similarly, all but one of the six most powerful cluster lenses selected for in-depth study by the HST Frontier Fields initiative are MACS detections, and so are 16 of the 29 z>0.3 clusters targeted by the RELICS legacy program.We propose to extend our spectacularly successful SNAPshot survey of the most X-ray luminous distant clusters to a redshift-mass regime that is poorly sampled by any other project. Targeting only extremely massive clusters at z>0.5 from the X-ray selected eMACS sample (median velocity dispersion: 1180 km/s), the proposed program will (a) identify the most powerful gravitational telescopes at yet higher redshift for the next generation of in-depth studies of the distant Universe with HST and JWST, (b) provide constraints on the mass distribution within these extreme systems, (c) help improve our understanding of the physical nature of galaxy-galaxy and galaxy-gas interactions in cluster cores, and (d) unveil Balmer Break Galaxies at z 2 and Lyman-break galaxies at z>6 as F814W dropouts.Acknowledging the broad community interest in our sample we waive our data rights for these observations.
Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster.
Boyarsky, A; Ruchayskiy, O; Iakubovskyi, D; Franse, J
2014-12-19
We report a weak line at 3.52±0.02 keV in x-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster observed by the metal-oxide-silicon (MOS) and p-n (PN) CCD cameras of the XMM-Newton telescope. This line is not known as an atomic line in the spectra of galaxies or clusters. It becomes stronger towards the centers of the objects; is stronger for Perseus than for M31; is absent in the spectrum of a deep "blank sky" data set. Although for each object it is hard to exclude that the feature is due to an instrumental effect or an atomic line, it is consistent with the behavior of a dark matter decay line. Future (non-)detections of this line in multiple objects may help to reveal its nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdavi, Andisheh; Chang Weihan
2011-07-01
We derive a model-independent expression for the minimum line-of-sight extent of the hot plasma in a cluster of galaxies. The only inputs are the 1-5 keV X-ray surface brightness and the Comptonization from Sunyaev-Zel'dovich (SZ) data. No a priori assumptions regarding equilibrium or geometry are required. The method applies when the X-ray emitting material has temperatures anywhere between 0.3 keV and 20 keV and metallicities between 0 and twice solar-conditions fulfilled by nearly all intracluster plasma. Using this method, joint APEX-SZ and Chandra X-ray Observatory data on the Bullet Cluster yield a lower limit of 400 {+-} 56 kpc onmore » the half-pressure depth of the main component, limiting it to being at least spherical, if not cigar-shaped primarily along the line of sight.« less
Cosmology with XMM galaxy clusters: the X-CLASS/GROND catalogue and photometric redshifts
NASA Astrophysics Data System (ADS)
Ridl, J.; Clerc, N.; Sadibekova, T.; Faccioli, L.; Pacaud, F.; Greiner, J.; Krühler, T.; Rau, A.; Salvato, M.; Menzel, M.-L.; Steinle, H.; Wiseman, P.; Nandra, K.; Sanders, J.
2017-06-01
The XMM Cluster Archive Super Survey (X-CLASS) is a serendipitously detected X-ray-selected sample of 845 galaxy clusters based on 2774 XMM archival observations and covering an approximately 90 deg2 spread across the high-Galactic latitude (|b| > 20°) sky. The primary goal of this survey is to produce a well-selected sample of galaxy clusters on which cosmological analyses can be performed. This paper presents the photometric redshift follow-up of a high signal-to-noise ratio subset of 265 of these clusters with declination δ < +20° with Gamma-Ray Burst Optical and Near-Infrared Detector (GROND), a 7-channel (grizJHK) simultaneous imager on the MPG 2.2-m telescope at the ESO La Silla Observatory. We use a newly developed technique based on the red sequence colour-redshift relation, enhanced with information coming from the X-ray detection to provide photometric redshifts for this sample. We determine photometric redshifts for 232 clusters, finding a median redshift of z = 0.39 with an accuracy of Δz = 0.02(1 + z) when compared to a sample of 76 spectroscopically confirmed clusters. We also compute X-ray luminosities for the entire sample and find a median bolometric luminosity of 7.2 × 1043 erg s-1 and a median temperature of 2.9 keV. We compare our results to those of the XMM-XCS and XMM-XXL surveys, finding good agreement in both samples. The X-CLASS catalogue is available online at http://xmm-lss.in2p3.fr:8080/l4sdb/.
Physics of Galaxy Clusters and How it Affects Cosmological Tests
NASA Technical Reports Server (NTRS)
Vikhlinin, Alexey; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
We have worked on the analysis of the Chandra observations of the nearby and distant clusters of galaxies, and on the expansion of the sample of distant X-ray clusters based on the archival ROSAT PSPC data. Some of the scientific results are discussed.
NASA Astrophysics Data System (ADS)
Šuhada, R.; Fassbender, R.; Nastasi, A.; Böhringer, H.; de Hoon, A.; Pierini, D.; Santos, J. S.; Rosati, P.; Mühlegger, M.; Quintana, H.; Schwope, A. D.; Lamer, G.; Kohnert, J.; Pratt, G. W.
2011-06-01
Context. Multi-wavelength surveys for clusters of galaxies are opening a window on the elusive high-redshift (z > 1) cluster population. Well controlled statistical samples of distant clusters will enable us to answer questions about their cosmological context, early assembly phases and the thermodynamical evolution of the intracluster medium. Aims: We report on the detection of two z > 1 systems, XMMU J0302.2-0001 and XMMU J1532.2-0836, as part of the XMM-Newton Distant Cluster Project (XDCP) sample. We investigate the nature of the sources, measure their spectroscopic redshift and determine their basic physical parameters. Methods: The results of the present paper are based on the analysis of XMM-Newton archival data, optical/near-infrared imaging and deep optical follow-up spectroscopy of the clusters. Results: We confirm the X-ray source XMMU J0302.2-0001 as a gravitationally bound, bona fide cluster of galaxies at spectroscopic redshift z = 1.185. We estimate its M500 mass to (1.6 ± 0.3) × 1014 M⊙ from its measured X-ray luminosity. This ranks the cluster among intermediate mass system. In the case of XMMU J1532.2-0836 we find the X-ray detection to be coincident with a dynamically bound system of galaxies at z = 1.358. Optical spectroscopy reveals the presence of a central active galactic nucleus, which can be a dominant source of the detected X-ray emission from this system. We provide upper limits of X-ray parameters for the system and discuss cluster identification challenges in the high-redshift low-mass cluster regime. A third, intermediate redshift (z = 0.647) cluster, XMMU J0302.1-0000, is serendipitously detected in the same field as XMMU J0302.2-0001. We provide its analysis as well. Based on observations obtained with ESO Telescopes at the Paranal Observatory under program ID 080.A-0659 and 081.A-0312, observations collected at the Centro Astrnómico Hispano Alemán (CAHA) at Calar Alto, Spain operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC). X-ray observations were obtained by XMM-Newton.
NASA Astrophysics Data System (ADS)
Burns, Jack O.; Hallman, Eric J.; Alden, Brian; Datta, Abhirup; Rapetti, David
2017-06-01
We present early results from an X-ray/Radio study of a sample of merging galaxy clusters. Using a novel X-ray pipeline, we have generated high-fidelity temperature maps from existing long-integration Chandra data for a set of clusters including Abell 115, A520, and MACSJ0717.5+3745. Our pipeline, written in python and operating on the NASA ARC high performance supercomputer Pleiades, generates temperature maps with minimal user interaction. This code will be released, with full documentation, on GitHub in beta to the community later this year. We have identified a population of observable shocks in the X-ray data that allow us to characterize the merging activity. In addition, we have compared the X-ray emission and properties to the radio data from observations with the JVLA and GMRT. These merging clusters contain radio relics and/or radio halos in each case. These data products illuminate the merger process, and how the energy of the merger is dissipated into thermal and non-thermal forms. This research was supported by NASA ADAP grant NNX15AE17G.
NASA Technical Reports Server (NTRS)
Menanteau, Felipe; Gonzalez, Jorge; Juin, Jean-Baptiste; Marriage, Tobias; Reese, Erik D.; Acquaviva, Viviana; Aguirre, Paula; Appel, John Willam; Baker, Andrew J.; Barrientos, L. Felipe;
2010-01-01
We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps. coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8.0 x 10(exp 14) Stellar Mass. with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1 x 10(exp 15) Stellar Mass and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton. and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.
HEAO A-2 observations of the X-ray spectra of the Centaurus and A1060 clusters of galaxies
NASA Technical Reports Server (NTRS)
Mitchell, R.; Mushotzky, R.
1980-01-01
X-ray spectral observations of two nearby low-luminosity clusters of galaxies are presented. For the Centaurus cluster an emission feature at 7.9 keV is detected at about one-third of the strength of the 6.7 keV line. This higher energy line represents K-beta emission from highly ionized iron. In addition, it is demonstrated that for neither the Centaurus nor the A1060 cluster can an isothermal model with an Fe emission line adequately fit the data. Instead, the simplest models which provide acceptable fits include a second, harder component which may be either a second exponential or a power law. The implications of the two-component nature of the continuum on the Fe abundance and the X-ray surface-brightness distribution are discussed.
Chandra Catches Early Phase of Cosmic Assembly
NASA Astrophysics Data System (ADS)
2004-08-01
A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which that envelops hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution. "We may be seeing hot intergalactic gas in a relatively pristine state before it has been polluted by gas from galaxies," said Q. Daniel Wang of the University of Massachusetts in Amherst, and lead author on an upcoming Astrophysical Journal article describing the study. "This discovery should provide valuable insight into how the most massive structures in the universe are assembled." 3-Panel Image of Abell 2125, Its Core & Galaxy C153 3-Panel Image of Abell 2125, Its Core & Galaxy C153 The complex, known as Abell 2125,is about 3 billion light years from Earth, and is seen at a time about 11 billion years after the Big Bang, when many galaxy clusters are believed to have formed. The Chandra Abell 2125 image shows several huge elongated clouds of multimillion degree gas coming together from different directions. These hot gas clouds, each of which contains hundreds of galaxies, appear to be in the process of merging to form a single massive galaxy cluster. Chandra, Hubble Space Telescope, and Very Large Array radio telescope data show that several galaxies in the Abell 2125 core cluster are being stripped of their gas as they fall through surrounding high-pressure hot gas. This stripping process has enriched the core cluster's gas in heavy elements such as iron. Abell 2125's Core & Galaxy C153 Abell 2125's Core & Galaxy C153 The gas in the pristine cloud, which is still several million light years away from the core cluster, is conspicuous for its lack of iron atoms. This anemic cloud must be in a very early evolutionary stage. The iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms. Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter. Chandra X-ray Image of Abell 2125, Low Energy Chandra X-ray Image of Abell 2125, Low Energy Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Distant clusters of galaxies in the 2XMM/SDSS footprint: follow-up observations with the LBT
NASA Astrophysics Data System (ADS)
Rabitz, A.; Lamer, G.; Schwope, A.; Takey, A.
2017-11-01
Context. Galaxy clusters at high redshift are important to test cosmological models and models for the growth of structure. They are difficult to find in wide-angle optical surveys, however, leaving dedicated follow-up of X-ray selected candidates as one promising identification route. Aims: We aim to increase the number of galaxy clusters beyond the SDSS-limit, z 0.75. Methods: We compiled a list of extended X-ray sources from the 2XMMp catalogue within the footprint of the Sloan Digital Sky Survey. Fields without optical counterpart were selected for further investigation. Deep optical imaging and follow-up spectroscopy were obtained with the Large Binocular Telescope, Arizona (LBT), of those candidates not known to the literature. Results: From initially 19 candidates, selected by visually screening X-ray images of 478 XMM-Newton observations and the corresponding SDSS images, 6 clusters were found in the literature. Imaging data through r,z filters were obtained for the remaining candidates, and 7 were chosen for multi-object (MOS) spectroscopy. Spectroscopic redshifts, optical magnitudes, and X-ray parameters (flux, temperature, and luminosity) are presented for the clusters with spectroscopic redshifts. The distant clusters studied here constitute one additional redshift bin for studies of the LX-T relation, which does not seem to evolve from high to low redshifts. Conclusions: The selection method of distant galaxy clusters presented here was highly successful. It is based solely on archival optical (SDSS) and X-ray (XMM-Newton) data. Out of 19 selected candidates, 6 of the 7 candidates selected for spectroscopic follow-up were verified as distant clusters, a further candidate is most likely a group of galaxies at z 1.21. Out of the remaining 12 candidates, 6 were known previously as galaxy clusters, one object is a likely X-ray emission from an AGN radio jet, and for 5 we see no clear evidence for them to be high-redshift galaxy clusters. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: the University of Arizona on behalf of the Arizona Board of Regents; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, The Leibniz Institute for Astrophysics Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia - http://www.lbto.org/for-investigators.htmlThe catalogue, similar to Table A.1, is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A56
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin
2006-01-01
The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
Hlavacek-Larrondo, J.; McDonald, M.; Benson, B. A.; ...
2015-05-18
X-ray cavities are key tracers of mechanical (or radio mode) heating arising from the active galactic nuclei (AGNs) in brightest cluster galaxies (BCGs). Here, we report on a survey for X-ray cavities in 83 massive, high-redshift (more » $$0.4\\lt z\\lt 1.2$$) clusters of galaxies selected by their Sunyaev-Zel'dovich signature in the South Pole Telescope data. Based on Chandra X-ray images, we find a total of six clusters having symmetric pairs of surface brightness depressions consistent with the picture of radio jets inflating X-ray cavities in the intracluster medium (ICM). Furthermore, the majority of these detections are of relatively low significance and require deeper follow-up data in order to be confirmed. Further, this search will miss small (<10 kpc) X-ray cavities that are unresolved by Chandra at high ($$z\\gtrsim 0.5$$) redshift. Despite these limitations, our results suggest that the power generated by AGN feedback in BCGs has remained unchanged for over half of the age of the universe ($$\\gt 7$$ Gyr at $$z\\sim 0.8$$). On average, the detected X-ray cavities have powers of $$(0.8-5)\\times {{10}^{45}}\\ {\\rm erg}\\ {{{\\rm s}}^{-1}}$$, enthalpies of $$(3-6)\\times {{10}^{59}}\\ {\\rm erg}$$, and radii of ~17 kpc. Integrating over 7 Gyr, we find that the supermassive black holes in BCGs may have accreted 108 to several $${{10}^{9}}\\;{{M}_{\\odot }}$$ of material to power these outflows. This level of accretion indicates that significant supermassive black hole growth may occur not only at early times, in the quasar era, but at late times as well. We also find that X-ray cavities at high redshift may inject an excess heat of 0.1–1.0 keV per particle into the hot ICM above and beyond the energy needed to offset cooling. Though our result needs to be confirmed, we note that the magnitude of excess heating is similar to the energy needed to preheat clusters, break self-similarity, and explain the excess entropy in hot atmospheres.« less
Revisiting Scaling Relations for Giant Radio Halos in Galaxy Clusters
NASA Technical Reports Server (NTRS)
Cassano, R.; Ettori, S.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Venturi, T.; Kale, R.; Dolag, K.; Markevitch, Maxim L.
2013-01-01
Many galaxy clusters host megaparsec-scale radio halos, generated by ultrarelativistic electrons in the magnetized intracluster medium. Correlations between the synchrotron power of radio halos and the thermal properties of the hosting clusters were established in the last decade, including the connection between the presence of a halo and cluster mergers. The X-ray luminosity and redshift-limited Extended GMRT Radio Halo Survey provides a rich and unique dataset for statistical studies of the halos. We uniformly analyze the radio and X-ray data for the GMRT cluster sample, and use the new Planck Sunyaev-Zel'dovich (SZ) catalog to revisit the correlations between the power of radio halos and the thermal properties of galaxy clusters. We find that the radio power at 1.4 GHz scales with the cluster X-ray (0.1-2.4 keV) luminosity computed within R(sub 500) as P(sub 1.4) approx. L(2.1+/-0.2) - 500). Our bigger and more homogenous sample confirms that the X-ray luminous (L(sub 500) > 5 × 10(exp 44) erg/s)) clusters branch into two populations-radio halos lie on the correlation, while clusters without radio halos have their radio upper limits well below that correlation. This bimodality remains if we excise cool cores from the X-ray luminosities. We also find that P(sub 1.4) scales with the cluster integrated SZ signal within R(sub 500), measured by Planck, as P(sub 1.4) approx. Y(2.05+/-0.28) - 500), in line with previous findings. However, contrary to previous studies that were limited by incompleteness and small sample size, we find that "SZ-luminous" Y(sub 500) > 6×10(exp -5) Mpc(exp 2) clusters show a bimodal behavior for the presence of radio halos, similar to that in the radio-X-ray diagram. Bimodality of both correlations can be traced to clusters dynamics, with radio halos found exclusively in merging clusters. These results confirm the key role of mergers for the origin of giant radio halos, suggesting that they trigger the relativistic particle acceleration.
Subcluster mergers and galaxy infall in A2151
NASA Technical Reports Server (NTRS)
Bird, Christina M.; Davis, David S.; Beers, Timothy C.
1995-01-01
We have obtained a 12.5 ks image of the Hercules Cluster, A2151, with the ROSAT PSPC. Comparison of the optical and X-ray emission coincides with the highest-density peak in the distribution, and is bimodal. The northern subclummp, distinct in position and velocity, has no detectable X-ray gas. The eastern subclump, apparent in the optical contour map, is indistinguishable from the clump in velocity space, but is clearly visible in the X-ray image. X-ray spectra derived from the central peak of emission yield a best-fit temperature of 1.6 keV. The emission coincident with the eastern clump of galaxies is cooler, 0.8 keV, and is outside the 90% confidence intervals of the central peak temperature. We suggest that the eastern and central subclusters have recently undergone a merger event. The lack of X-ray emission to the north suggests that those galaxies do not form a physically distinct structure (i.e., they are not located within a distinct gravitational potential), but rather that they are falling into the cluster core along the filament defined by the Hercules Supercluster.
A Search for X-ray Emission in Isolated Compact Triplets
NASA Technical Reports Server (NTRS)
Brown, Beth A.; Williams, Barbara
2006-01-01
We describe preliminary results of an exploratory search for diffuse X-ray emission in a sample of the poorest galaxy groups, i.e., isolated compact triplets of galaxies. These systems represent the simplest forms of galaxy clustering while manifesting all the complexities inherent in other groups. We have selected 20 compact triplets for this initial study. The component galaxies are expected to interact with each other and with the group's intergalactic medium, if present, in complex ways that trigger high-energy processes.
A simulation of the intracluster medium with feedback from cluster galaxies
NASA Technical Reports Server (NTRS)
Metzler, Christopher A.; Evrard, August E.
1994-01-01
We detail method and report first results from a three-dimensional hydrodynamical and N-body simulation of the formation and evolution of a Coma-sized cluster of galaxies, with the intent of studying the history of the hot, X-ray emitting intracluster medium. Cluster gas, galaxies, and dark matter are included in the model. The galaxies and dark matter fell gravitational forces; the cluster gas also undergoes hydrodynamical effects such as shock heating and PdV work. For the first time in three dimensions, we include modeling of ejection of processed gas from the simulated galaxies by winds, including heating and heavy element enrichment. For comparison, we employ a `pure infall' simulation using the same initial conditions but with no galaxies or winds. We employ an extreme ejection history for galactic feedback in order to define the boundary of likely models. As expected, feedback raises the entropy of the intracluster gas, preventing it from collapsing to densities as high as those attained in the infall model. The effect is more pronounced in subclusters formed at high redshift. The cluster with feedback is always less X-ray luminous, but experiences more rapid luminosity evolution, than the pure infall cluster. Even employing an extreme ejection model, the final gas temperature is only approximately 15% larger than in the infall model. The radial temperature profile is very nearly isothermal within 1.5 Mpc. The cluster galaxies in the feedback model have a velocity dispersion approximately 15% lower than the dark matter. This results in the true ratio of specific energies in galaxies to gas being less than one, beta(sub spec) approximately 0.7. The infall model predicts beta(sub spec) approximately 1.2. Large excursions in these values occur over time, following the complex dynamical history of the cluster. The morphology of the X-ray emission is little affected by feedback. The emission profiles of both clusters are well described by the standard beta-model with beta(sub fit) approximately equal to 0.7 - 0.9. X-ray mass estimates based on the assumptions of hydrostatic equilibrium and the applicability of the beta-model are quite accurate in both cases. A strong, radial iron abundance gradient is present, which develops as a consequence of the steepening of the galaxy density profile over time. Spectroscopic observations using nonimaging detectors with wide (approximately 45 min) fields of view dramatically smear the gradient. Observations with arcminute resolution, made available with the ASCA satellite, would readily resolve the gradient.
Sloshing Gas in the Core of the Most Luminous Galaxy Cluster RXJ1347.5-1145
NASA Technical Reports Server (NTRS)
Johnson, Ryan E.; Zuhone, John; Jones, Christine; Forman, William R.; Markevitvh, Maxim
2011-01-01
We present new constraints on the merger history of the most X-ray luminous cluster of galaxies, RXJ1347.5-1145, based on its unique multiwavelength morphology. Our X-ray analysis confirms the core gas is undergoing "sloshing" resulting from a prior, large scale, gravitational perturbation. In combination with extensive multiwavelength observations, the sloshing gas points to the primary and secondary clusters having had at least two prior strong gravitational interactions. The evidence supports a model in which the secondary subcluster with mass M=4.8+/-2.4x10(exp 14) solar Mass has previously (> or approx.0.6 Gyr ago) passed by the primary cluster, and has now returned for a subsequent crossing where the subcluster's gas has been completely stripped from its dark matter halo. RXJ1347 is a prime example of how core gas sloshing may be used to constrain the merger histories of galaxy clusters through multiwavelength analyses.
NASA Technical Reports Server (NTRS)
Mohr, Joseph J.; Fabricant, Daniel G.; Geller, Margaret J.
1993-01-01
We use the moments of the X-ray surface brightness distribution to constrain the dynamical state of a galaxy cluster. Using X-ray observations from the Einstein Observatory IPC, we measure the first moment FM, the ellipsoidal orientation angle, and the axial ratio at a sequence of radii in the cluster. We argue that a significant variation in the image centroid FM as a function of radius is evidence for a nonequilibrium feature in the intracluster medium (ICM) density distribution. In simple terms, centroid shifts indicate that the center of mass of the ICM varies with radius. This variation is a tracer of continuing dynamical evolution. For each cluster, we evaluate the significance of variations in the centroid of the IPC image by computing the same statistics on an ensemble of simulated cluster images. In producing these simulated images we include X-ray point source emission, telescope vignetting, Poisson noise, and characteristics of the IPC. Application of this new method to five Abell clusters reveals that the core of each one has significant substructure. In addition, we find significant variations in the orientation angle and the axial ratio for several of the clusters.
The MUSIC of galaxy clusters - II. X-ray global properties and scaling relations
NASA Astrophysics Data System (ADS)
Biffi, V.; Sembolini, F.; De Petris, M.; Valdarnini, R.; Yepes, G.; Gottlöber, S.
2014-03-01
We present the X-ray properties and scaling relations of a large sample of clusters extracted from the Marenostrum MUltidark SImulations of galaxy Clusters (MUSIC) data set. We focus on a sub-sample of 179 clusters at redshift z ˜ 0.11, with 3.2 × 1014 h-1 M⊙ < Mvir < 2 × 1015 h-1 M⊙, complete in mass. We employed the X-ray photon simulator PHOX to obtain synthetic Chandra observations and derive observable-like global properties of the intracluster medium (ICM), as X-ray temperature (TX) and luminosity (LX). TX is found to slightly underestimate the true mass-weighted temperature, although tracing fairly well the cluster total mass. We also study the effects of TX on scaling relations with cluster intrinsic properties: total (M500 and gas Mg,500 mass; integrated Compton parameter (YSZ) of the Sunyaev-Zel'dovich (SZ) thermal effect; YX = Mg,500 TX. We confirm that YX is a very good mass proxy, with a scatter on M500-YX and YSZ-YX lower than 5 per cent. The study of scaling relations among X-ray, intrinsic and SZ properties indicates that simulated MUSIC clusters reasonably resemble the self-similar prediction, especially for correlations involving TX. The observational approach also allows for a more direct comparison with real clusters, from which we find deviations mainly due to the physical description of the ICM, affecting TX and, particularly, LX.
VizieR Online Data Catalog: XCS-DR1 Cluster Catalogue (Mehrtens+, 2012)
NASA Astrophysics Data System (ADS)
Mehrtens, N.; Romer, A. K.; Hilton, M.; Lloyd-Davies, E. J.; Miller, C. J.; Stanford, S. A.; Hosmer, M.; Hoyle, B.; Collins, C. A.; Liddle, A. R.; Viana, P. T. P.; Nichol, R. C.; Stott, J. P.; Dubois, E. N.; Kay, S. T.; Sahlen, M.; Young, O.; Short, C. J.; Christodoulou, L.; Watson, W. A.; Davidson, M.; Harrison, C. D.; Baruah, L.; Smith, M.; Burke, C.; Mayers, J. A.; Deadman, P.-J.; Rooney, P. J.; Edmondson, E. M.; West, M.; Campbell, H. C.; Edge, A. C.; Mann, R. G.; Sabirli, K.; Wake, D.; Benoist, C.; da Costa, L.; Maia, M. A. G.; Ogando, R.
2013-04-01
The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we present the first data release from the XMM Cluster Survey (XCS-DR1). This consists of 503 optically confirmed, serendipitously detected, X-ray clusters. Of these clusters, 256 are new to the literature and 357 are new X-ray discoveries. We present 463 clusters with a redshift estimate (0.06
A2111: A z= 0.23 Butcher-Oemler Cluster with a Non-Isothermal Atmosphere and Normal Metallicity
NASA Technical Reports Server (NTRS)
Wang, Q. Daniel; Henriksen, Mark
1998-01-01
We report results from an x-ray spectral study of the z=0.23 Abell 2111 galaxy cluster using the Advanced Satellite for Astrophysics and Cosmology and the ROSAT Position Sensitive Proportional Counter. By correcting for the energy-dependent point-spread function of the instruments, we have examined the temperature structure of the cluster. The cluster's core within 3 is found to have a temperature of 5.4 +/- 0.5 keV, significantly higher than 2.8 +/-0.7 keV in the surrounding region of r = 3-6. This radially decreasing temperature structure can be parameterized by a polytropic index of gamma less than 1.4. Furthermore, the intracluster medium appears clumpy on scales less than 1. Early studies have revealed that the x-ray centroid of the cluster shifts with spatial scale and the overall optical and x-ray morphology is strongly elongated. These results together suggest that A2111 in undergoing a merger, which is likely responsible for the high fraction of blue galaxies observed in the cluster. We have further measured the abundance of the medium as 0.25 +/- 0.14 solar. This value is similar to those of nearby clusters which do not show a large blue galaxy function, suggesting that star formation in disk galaxies and subsequent loss to the intracluster medium do not drastically alter the average abundance of a cluster since z=0.23.
SUZAKU OBSERVATIONS OF THE X-RAY BRIGHTEST FOSSIL GROUP ESO 3060170
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; White, Raymond E. III; Miller, Eric D., E-mail: ysu@crimson.ua.edu
2013-10-01
'Fossil' galaxy groups, each dominated by a relatively isolated giant elliptical galaxy, have many properties intermediate between groups and clusters of galaxies. We used the Suzaku X-ray observatory to observe the X-ray brightest fossil group, ESO 3060170, out to R{sub 200}, in order to better elucidate the relation between fossil groups, normal groups, and clusters. We determined the intragroup gas temperature, density, and metal abundance distributions and derived the entropy, pressure, and mass profiles for this group. The entropy and pressure profiles in the outer regions are flatter than in simulated clusters, similar to what is seen in observations ofmore » massive clusters. This may indicate that the gas is clumpy and/or the gas has been redistributed. Assuming hydrostatic equilibrium, the total mass is estimated to be ∼1.7 × 10{sup 14} M{sub ☉} within a radius R{sub 200} of ∼1.15 Mpc, with an enclosed baryon mass fraction of 0.13. The integrated iron mass-to-light ratio of this fossil group is larger than in most groups and comparable to those of clusters, indicating that this fossil group has retained the bulk of its metals. A galaxy luminosity density map on a scale of 25 Mpc shows that this fossil group resides in a relatively isolated environment, unlike the filamentary structures in which typical groups and clusters are embedded.« less
LoCuSS: Testing hydrostatic equilibrium in galaxy clusters
NASA Astrophysics Data System (ADS)
Smith, G. P.; Mazzotta, P.; Okabe, N.; Ziparo, F.; Mulroy, S. L.; Babul, A.; Finoguenov, A.; McCarthy, I. G.; Lieu, M.; Bahé, Y. M.; Bourdin, H.; Evrard, A. E.; Futamase, T.; Haines, C. P.; Jauzac, M.; Marrone, D. P.; Martino, R.; May, P. E.; Taylor, J. E.; Umetsu, K.
2016-02-01
We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at 0.15 < z < 0.3 from the Local Cluster Substructure Survey (LoCuSS). Our weak-lensing measurements of M500 control systematic biases to sub-4 per cent, and our hydrostatic measurements of the same achieve excellent agreement between XMM-Newton and Chandra. The mean ratio of X-ray to lensing mass for these 50 clusters is β_X= 0.95± 0.05, and for the 44 clusters also detected by Planck, the mean ratio of Planck mass estimate to LoCuSS lensing mass is β_P= 0.95± 0.04. Based on a careful like-for-like analysis, we find that LoCuSS, the Canadian Cluster Comparison Project, and Weighing the Giants agree on β_P ≃ 0.9-0.95 at 0.15 < z < 0.3. This small level of hydrostatic bias disagrees at ˜5σ with the level required to reconcile Planck cosmology results from the cosmic microwave background and galaxy cluster counts.
Possible Very Distant or Optically Dark Cluster of Galaxies
NASA Technical Reports Server (NTRS)
Vikhlinin, Alexey; Mushotzky, Richard (Technical Monitor)
2003-01-01
The goal of this proposal was an XMM followup observation of the extended X-ray source detected in our ROSAT PSPC cluster survey. Approximately 95% of extended X-ray sources found in the ROSAT data were optically identified as clusters of galaxies. However, we failed to find any optical counterparts for C10952-0148. Two possibilities remained prior to the XMM observation: (1) This is was a very distant or optically dark cluster of galaxies, too faint in the optical, in which case XMM would easily detect extended X-ray emission and (2) this was a group of point-like sources, blurred to a single extended source in the ROSAT data, but easily resolvable by XMM due to a better energy resolution. The XMM data have settled the case --- C10952-0148 is a group of 7 relatively bright point sources located within 1 square arcmin. All but one source have no optical counterparts down to I=22. Potentially, this can be an interesting group of quasars at a high redshift. We are planning further optical and infrared followup of this system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Kaylea; Nagai, Daisuke; Yu, Liang
2014-02-20
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to themore » bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.« less
NASA Astrophysics Data System (ADS)
Nelson, Kaylea; Lau, Erwin T.; Nagai, Daisuke; Rudd, Douglas H.; Yu, Liang
2014-02-01
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (lsim 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.
The Connection Between X-ray Binaries and Star Clusters in the Antennae
NASA Astrophysics Data System (ADS)
Rangelov, Blagoy; Chandar, R.; Prestwich, A.
2011-05-01
High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.
The X-Ray Globular Cluster Population in NGC 1399
NASA Technical Reports Server (NTRS)
Angelini, Lorella; Loewenstein, Michael; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)
2001-01-01
We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, J.P.; et al.
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas massmore » $$M_\\mathrm{gas}$$, and $$Y_\\mathrm{X}$$, the product of $$M_\\mathrm{gas}$$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.« less
The active galactic nucleus population in X-ray-selected galaxy groups at 0.5 < Z < 1.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Semyeong; Woo, Jong-Hak; Matsuoka, Kenta
2014-07-20
We use Chandra data to study the incidence and properties of active galactic nuclei (AGNs) in 16 intermediate redshift (0.5 < z < 1.1) X-ray-selected galaxy groups in the Chandra Deep Field-South. We measure an AGN fraction of f(L{sub X,H}>10{sup 42};M{sub R}<−20)=8.0{sub −2.3}{sup +3.0}% at z-bar ∼0.74, approximately a factor of two higher than the AGN fraction found for rich clusters at comparable redshift. This extends the trend found at low redshift for groups to have higher AGN fractions than clusters. Our estimate of the AGN fraction is also more than a factor of three higher than that of lowmore » redshift X-ray-selected groups. Using optical spectra from various surveys, we also constrain the properties of emission-line selected AGNs in these groups. In contrast to the large population of X-ray AGNs (N(L{sub X,{sub H}} > 10{sup 41} erg s{sup –1}) = 25), we find only four emission-line AGNs, three of which are also X-ray bright. Furthermore, most of the X-ray AGNs in our groups are optically dull (i.e., lack strong emission-lines), similar to those found in low redshift X-ray groups and clusters of galaxies. This contrasts with the AGN population found in low redshift optically selected groups which are dominated by emission-line AGNs. The differences between the optically and X-ray-selected AGNs populations in groups are consistent with a scenario where most AGNs in the densest environments are currently in a low accretion state.« less
MACS: The impact of environment on galaxy evolution at z>0.5
NASA Astrophysics Data System (ADS)
Ma, Cheng-Jiun
2010-08-01
In order to investigate galaxy evolution in environments of greatly varying density, we conduct an extensive spectroscopic survey of galaxies in eight X-ray luminous clusters at redshift higher than 0.5. Unlike most spectroscopic surveys of cluster galaxies, we sample the galaxy population beyond the virial radius of each cluster (out to ˜6 Mpc), thereby probing regions that differ by typically two orders of magnitude in galaxy density. Galaxies are classified by spectroscopic type into emission-line, absorption-line, post starburst (E+A), and starburst (e(a) and e(b)) galaxies, and the spatial distribution of each type is used as a diagnostic of the presence and efficiency of different physical mechanisms of galaxy evolution. Our analysis yields the perhaps strongest confirmation so far of the morphology-density relation for emission- and absorption-line galaxies. In addition, we find E+A galaxies to be exclusively located within the ram-pressure stripping radius of each cluster. Taking advantage of this largest sample of E+A galaxies in clusters compiled to date, the spatial profile of the distribution of E+A galaxies can be studied for the first time. We show that ram-pressure stripping is the dominant, and possibly only, physical mechanism to cause the post-starburst phase of cluster galaxies. In addition, two particular interesting clusters are studied individually. For MACS J0717.5+3745, a clear morphology-density correlation is observed for lenticular (S0) galaxies around this cluster, but becomes insignificant toward the center of cluster. We interpret this finding as evidence of the creation of S0s being triggered primarily in environments of low to intermediate density. In MACS J0025.4-1225, a cluster undergoing a major merger, all faint E+A galaxies are observed to lie near the peak of the X-ray surface brightness, strongly suggesting that starbursts are enhanced as well as terminated during cluster mergers. We conclude that ram-pressure stripping and/or tidal destruction are central to the evolution of galaxies clusters, and that wide-field spectroscopic surveys around clusters are essential to distinguish between competing physical effects driving galaxy evolution in different environments.
NASA Astrophysics Data System (ADS)
Thölken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; Lovisari, Lorenzo; Allen, Steven W.; Hoekstra, Henk; Applegate, Douglas; Buddendiek, Axel; Hicks, Amalia
2018-03-01
Context. Observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased. Aims: We study the very luminous, high redshift (z = 0.902) galaxy cluster Cl J120958.9+495352 using XMM-Newton data. We measure global cluster properties and study the temperature profile and the cooling time to investigate the dynamical status with respect to the presence of a cool core. We use Hubble Space Telescope (HST) weak lensing data to estimate its total mass and determine the gas mass fraction. Methods: We perform a spectral analysis using an XMM-Newton observation of 15 ks cleaned exposure time. As the treatment of the background is crucial, we use two different approaches to account for the background emission to verify our results. We account for point spread function effects and deproject our results to estimate the gas mass fraction of the cluster. We measure weak lensing galaxy shapes from mosaic HST imaging and select background galaxies photometrically in combination with imaging data from the William Herschel Telescope. Results: The X-ray luminosity of Cl J120958.9+495352 in the 0.1-2.4 keV band estimated from our XMM-Newton data is LX = (13.4+1.2-1.0) × 1044 erg/s and thus it is one of the most X-ray luminous clusters known at similarly high redshift. We find clear indications for the presence of a cool core from the temperature profile and the central cooling time, which is very rare at such high redshifts. Based on the weak lensing analysis, we estimate a cluster mass of M500/1014 M⊙ = 4.4+2.2-2.0 (stat.) + 0.6 (sys.) and a gas mass fraction of fgas,2500 = 0.11-0.03+0.06 in good agreement with previous findings for high redshift and local clusters.
An RXTE Study of M87 and the Core of the Virgo Cluster
NASA Technical Reports Server (NTRS)
Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.
1998-01-01
We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray Timing Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT approx. = 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma(sub core) greater than 1.90 and Gamma(sub jet) greater than 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.
An RXTE Study of M87 and the Core of the Virgo Cluster
NASA Technical Reports Server (NTRS)
Reynolds, Christopher S.; Heinz, Sebastian; Fabian, Andrew C.; Begelman, Mitchell C.
1998-01-01
We present hard X-ray observations of the nearby radio galaxy M87 and the core of the Virgo cluster using the Rossi X-ray 7Tming Explorer. These are the first hard X-ray observations of M87 not affected by contamination from the nearby Seyfert 2 galaxy NGC 4388. Thermal emission from Virgo's intracluster medium is clearly detected and has a spectrum indicative of kT is approximately equal to 2.5 keV plasma with approximately 25% cosmic abundances. No non-thermal (power-law) emission from M87 is detected in the hard X-ray band, with fluctuations in the Cosmic X-ray Background being the limiting factor. Combining with ROSAT data, we infer that the X-ray spectrum of the M87 core and jet must be steep (Gamma (sub core) > 1.90 and Gamma (sub jet) > 1.75), and we discuss the implications of this result. In particular, these results are consistent with M87 being a mis-aligned BL-Lac object.
X-ray and Sunyaev-Zel'dovich Effect Measurements of the Gas Mass Fraction in Galaxy Clusters
NASA Technical Reports Server (NTRS)
LaRoque, Samuel J.; Bonamente, Massimiliano; Carlstrom, John E.; Joy, Marshall K.; Nagai, Daisuke; Reese, Erik D.; Dawson, Kyle S.
2006-01-01
We present gas mass fractions of 38 massive galaxy clusters spanning redshifts from 0.14 to 0.89, derived from Chandra X-ray data and OVRO/BIMA interferometric Sunyaev-Zel' dovich Effect (SZE) measurements. We use three models for the gas distribution: (1) an isothermal Beta-model fit jointly to the X-ray data at radii beyond 100 kpc and to all of the SZE data, (2) a nonisothermal double Beta-model fit jointly to all of the X-ray and SZE data, and (3) an isothermal Beta-model fit only to the SZE spatial data. We show that the simple isothermal model well characterizes the intracluster medium (ICM) outside of the cluster core, and provides consistently good fits to clusters spanning a wide range of morphological properties. The agreement in the results shows that the core can be satisfactorily accounted for by either excluding the core in fits to the X-ray data (the 100 kpc-cut model) or modeling the intracluster gas with a non-isothermal double Beta-model. We find that the SZE is largely insensitive to structure in the core.
XMM-Newton Observations of the Toothbrush and Sausage Clusters
NASA Astrophysics Data System (ADS)
Kara, S.; Mernier, F.; Ezer, C.; Akamatsu, H.; Ercan, E.
2017-10-01
Galaxy clusters are the largest gravitationally-bound objects in the universe. The member galaxies are embedded in a hot X-ray emitting Intra Cluster Medium (ICM) that has been enriched with metals produced by supernovae over the last billion years. Here we report new results from XMM-Newton archival observations of the merging clusters 1RXSJ0603.3+4213 and CIZA J2242.8+5301. These two clusters, also known as the Toothbrush and Sausage clusters, respectively, show a large radio relic associated with a merger shock North of their respective core. We show the distribution of the metal abundances with respect to the merger structures in these two clusters. The results are derived from spatially resolved X-ray spectra from the EPIC instrument on board XMM-Newton.
ROSAT observations of compact groups of galaxies
NASA Technical Reports Server (NTRS)
Pildis, Rachel A.; Bregman, Joel N.; Evrard, August E.
1995-01-01
We have systematically analyzed a sample of 13 new and archival ROSAT Position Sensitive Proportional Counter (PSPC) observations of compact groups of galaxies: 12 Hickson compact groups plus the NCG 2300 group. We find that approximately two-thirds of the groups have extended X-ray emission and, in four of these, the emission is resolved into diffuse emission from gas at a temperature of kT approximately 1 keV in the group potential. All but one of the groups with extended emission have a spiral fraction of less than 50%. The baryon fraction of groups with diffuse emission is 5%-19%, similar to the values in clusters of galaxies. However, with a single exception (HCG 62), the gas-to-stellar mass ratio in our groups has a median value near 5%, somewhat greater than the values for individual early-type galaxies and two orders of magnitude than in clusters of galaxies. The X-ray luminosities of individual group galaxies are comparable to those of similar field galaxies, although the L(sub X)-L(sub B) relation for early-type galaxies may be flatter in compact groups than in the field.
Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggard, Daryl; Heinke, Craig; Hooper, Dan
2017-05-01
If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up to ∼ 4-23% of the observed gamma-ray excess ismore » likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected ∼ 10{sup 3} LMXBs from within a 10{sup o} radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.« less
Low mass X-ray binaries in the Inner Galaxy: implications for millisecond pulsars and the GeV excess
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haggard, Daryl; Heinke, Craig; Hooper, Dan
2017-05-01
If millisecond pulsars (MSPs) are responsible for the excess gamma-ray emission observed from the region surrounding the Galactic Center, the same region should also contain a large population of low-mass X-ray binaries (LMXBs). In this study, we compile and utilize a sizable catalog of LMXBs observed in the the Milky Way's globular cluster system and in the Inner Galaxy, as well as the gamma-ray emission observed from globular clusters, to estimate the flux of gamma rays predicted from MSPs in the Inner Galaxy. From this comparison, we conclude that only up tomore » $$\\sim$$4-23% of the observed gamma-ray excess is likely to originate from MSPs. This result is consistent with, and more robust than, previous estimates which utilized smaller samples of both globular clusters and LMXBs. If MSPs had been responsible for the entirety of the observed excess, INTEGRAL should have detected $$\\sim$$10^3$ LMXBs from within a $$10^{\\circ}$$ radius around the Galactic Center, whereas only 42 LMXBs (and 46 additional LMXB candidates) have been observed.« less
Surprise Discovery of Highly Developed Structure in the Young Universe
NASA Astrophysics Data System (ADS)
2005-03-01
ESO-VLT and ESA XMM-Newton Together Discover Earliest Massive Cluster of Galaxies Known Summary Combining observations with ESO's Very Large Telescope and ESA's XMM-Newton X-ray observatory, astronomers have discovered the most distant, very massive structure in the Universe known so far. It is a remote cluster of galaxies that is found to weigh as much as several thousand galaxies like our own Milky Way and is located no less than 9,000 million light-years away. The VLT images reveal that it contains reddish and elliptical, i.e. old, galaxies. Interestingly, the cluster itself appears to be in a very advanced state of development. It must therefore have formed when the Universe was less than one third of its present age. The discovery of such a complex and mature structure so early in the history of the Universe is highly surprising. Indeed, until recently it would even have been deemed impossible. PR Photo 05a/05: Discovery X-Ray Image of the Distant Cluster (ESA XMM-Netwon) PR Photo 05b/05: False Colour Image of XMMU J2235.3-2557 (FORS/VLT and ESA XMM-Newton) Serendipitous discovery ESO PR Photo 05a/05 ESO PR Photo 05a/05 Discovery X-Ray Image of the Distant Cluster (ESA XMM-Newton) [Preview - JPEG: 400 x 421 pix - 106k] [Normal - JPEG: 800 x 842 pix - 843k] [Full Res - JPEG: 2149 x 2262 pix - 2.5M] Caption: ESO PR Photo 05a/05 is a reproduction of the XMM-Newton observations of the nearby active galaxy NGC7314 (bright object in the centre) from which the newly found distant cluster (white box) was serendipitously identified. The circular field-of-view of XMM-Newton is half-a-degree in diameter, or about the same angular size as the Full Moon. The inset shows the diffuse X-ray emission from the distant cluster XMMU J2235.3-2557. Clusters of galaxies are gigantic structures containing hundreds to thousands of galaxies. They are the fundamental building blocks of the Universe and their study thus provides unique information about the underlying architecture of the Universe as a whole. About one-fifth of the optically invisible mass of a cluster is in the form of a diffuse, very hot gas with a temperature of several tens of millions of degrees. This gas emits powerful X-ray radiation and clusters of galaxies are therefore best discovered by means of X-ray satellites (cf. ESO PR 18/03 and 15/04). It is for this reason that a team of astronomers [1] has initiated a search for distant, X-ray luminous clusters "lying dormant" in archive data from ESA's XMM-Newton satellite observatory. Studying XMM-Newton observations targeted at the nearby active galaxy NGC 7314, the astronomers found evidence of a galaxy cluster in the background, far out in space. This source, now named XMMU J2235.3-2557, appeared extended and very faint: no more than 280 X-ray photons were detected over the entire 12 hour-long observations. A Mature Cluster at Redshift 1.4 ESO PR Photo 05b/05 ESO PR Photo 05b/05 False Colour Image of XMMU J2235.3-2557 (FORS/VLT and ESA XMM-Newton) [Preview - JPEG: 400 x 455 pix - 50k] [Normal - JPEG: 800 x 909 pix - 564k] [Full Res - JPEG: 1599 x 1816 pix - 1.5M] Caption: ESO PR Photo 05b/05 is a false colour image of the XMMU J2235.3-2557 cluster of galaxies, overlaid with the X-ray intensity contours derived from the ESA XMM-Newton data. The red channel is a VLT-ISAAC image (exposure time: 1 hour) obtained in the near-infrared Ks-band (at wavelength 2.2 microns); the green channel is a VLT-FORS2 z-band image (910 nm; 480 sec); the blue channel is a VLT-FORS2 R-band image (; 657 nm; 1140 sec). The VLT reveals 12 reddish galaxies, of elliptical types, as members of the cluster. Knowing where to look, the astronomers then used the European Southern Observatory's Very Large Telescope (VLT) at Paranal (Chile) to obtain images in the visible wavelength region. They confirmed the nature of this cluster and it was possible to identify 12 comparatively bright member galaxies on the images (see ESO PR Photo 05b/05). The galaxies appear reddish and are of the elliptical type. They are full of old, red stars. All of this indicates that these galaxies are already several thousand million years old. Moreover, the cluster itself has a largely spherical shape, also a sign that it is already a very mature structure. In order to determine the distance of the cluster - and hence its age - Christopher Mullis, former European Southern Observatory post-doctoral fellow and now at the University of Michigan in the USA, and his colleagues used again the VLT, now in the spectroscopic mode. By means of one of the FORS multi-mode instruments, the astronomers zoomed-in on the individual galaxies in the field, taking spectral measurements that reveal their overall characteristics, in particular their redshift and hence, distance [2]. The FORS instruments are among the most efficient and versatile available anywhere for this delicate work, obtaining on the average quite detailed spectra of 30 or more galaxies at a time. The VLT data measured the redshift of this cluster as 1.4, indicating a distance of 9,000 million light-years, 500 million light years farther out than the previous record holding cluster. This means that the present cluster must have formed when the Universe was less than one third of its present age. The Universe is now believed to be 13,700 million years old. "We are quite surprised to see that a fully-fledged structure like this could exist at such an early epoch," says Christopher Mullis. "We see an entire network of stars and galaxies in place, just a few thousand million years after the Big Bang". "We seem to have underestimated how quickly the early Universe matured into its present-day state," adds Piero Rosati of ESO, another member of the team. "The Universe did grow up fast!" Towards a Larger Sample This discovery was relative easy to make, once the space-based XMM and the ground-based VLT observations were combined. As an impressive result of the present pilot programme that is specifically focused on the identification of very distant galaxy clusters, it makes the astronomers very optimistic about their future searches. The team is now carrying out detailed follow-up observations both from ground- and space-based observatories. They hope to find many more exceedingly distant clusters, which would then allow them to test competing theories of the formation and evolution of such large structures. "This discovery encourages us to search for additional distant clusters by means of this very efficient technique," says Axel Schwope, team leader at the Astrophysical Institute Potsdam (Germany) and responsible for the source detection from the XMM-Newton archival data. Hans Böhringer of the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, another member of the team, adds: "Our result also confirms the great promise inherent in other facilities to come, such as APEX (Atacama Pathfinder Experiment) at Chajnantor, the site of the future Atacama Large Millimeter Array. These intense searches will ultimately place strong constraints on some of the most fundamental properties of the Universe." More information This finding is presented today by Christopher Mullis at a scientific meeting in Kona, Hawaii, entitled "The Future of Cosmology with Clusters of Galaxies". It will also soon appear in The Astrophysical Journal ("Discovery of an X-ray Luminous Galaxy Cluster at z=1.4", by C. R. Mullis et al.). More images and information is available on Christopher Mullis' dedicated web page at http://www.astro.lsa.umich.edu/~cmullis/research/xmmuj2235/. A German version of the press release is issued by the Max Planck Society and is available at http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2005/pressemitteilung20050228/presselogin/ .
Witnessing the Formation of a Brightest Cluster Galaxy in a Nearby X-ray Cluster
NASA Astrophysics Data System (ADS)
Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali
2010-07-01
The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
The Inhomogeneous Centers of Cooling Flows in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Sharma, Mangala
2004-04-01
The intracluster medium (ICM) in the centers of galaxy clusters is cool, dense and may be imhomogeneous. We present Chandra X-ray Observatory imaging spectroscopic data on two galaxy clusters, Abell 1991 and MS 0839.8+2938, that have cooling flows in their central few hundred kpc. Their cD galaxies show current star formation, and host compact radio sources. The hot ICM at both their centers has nonhomogeneities on kiloparsec scales. These finer structures are likely to be signatures of the formation of clusters through infall of smaller, cooler subclusters.
Tracing the Energetics of the Universe with Constellation-X: Example Scientific Investigations
NASA Technical Reports Server (NTRS)
Hornschemeier, Ann
2008-01-01
Constellation-X will enable us to trace the energetics of a broad range of astrophysical phenomena owing to its capabilities for high spectral resolution X-ray spectroscopy. The dominant baryonic component of galaxy clusters and groups resides in the X-ray bandpass, and the hot phase of the ISM in galaxies harbors the heavy metal production from previous generation of stars. This talk will focus on a few example science questions that are expected to be important during the Constellation-X era. These include the nature of the missing baryons expected to reside in the hot portion of the Warm Hot Intergalactic Medium, which Constellation-X will address via absorption spectroscopy studies of background AGN. We will also discuss spatially resolved spectroscopy of metal enrichment and the effects of turbulence in clusters & groups and of starburst galaxy winds which deposit energy & metals into the Intergalactic Medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Nikhel; Saro, A.; Mohr, J. J.
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Gupta, Nikhel; Saro, A.; Mohr, J. J.; ...
2017-01-15
We study the overdensity of point sources in the direction of X-ray-selected galaxy clusters from the meta-catalogue of X-ray-detected clusters of galaxies (MCXC; < z > = 0.14) at South Pole Telescope (SPT) and Sydney University Molonglo Sky Survey (SUMSS) frequencies. Flux densities at 95, 150 and 220 GHz are extracted from the 2500 deg 2 SPT-SZ survey maps at the locations of SUMSS sources, producing a multifrequency catalogue of radio galaxies. In the direction of massive galaxy clusters, the radio galaxy flux densities at 95 and 150 GHz are biased low by the cluster Sunyaev–Zel’dovich Effect (SZE) signal, whichmore » is negative at these frequencies. We employ a cluster SZE model to remove the expected flux bias and then study these corrected source catalogues. We find that the high-frequency radio galaxies are centrally concentrated within the clusters and that their luminosity functions (LFs) exhibit amplitudes that are characteristically an order of magnitude lower than the cluster LF at 843 MHz. We use the 150 GHz LF to estimate the impact of cluster radio galaxies on an SPT-SZ like survey. The radio galaxy flux typically produces a small bias on the SZE signal and has negligible impact on the observed scatter in the SZE mass–observable relation. If we assume there is no redshift evolution in the radio galaxy LF then 1.8 ± 0.7 per cent of the clusters with detection significance ξ ≥ 4.5 would be lost from the sample. As a result, allowing for redshift evolution of the form (1 + z) 2.5 increases the incompleteness to 5.6 ± 1.0 per cent. Improved constraints on the evolution of the cluster radio galaxy LF require a larger cluster sample extending to higher redshift.« less
Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; ...
2018-03-05
Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.
Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.
A cooling flow cluster at redshift Z = 0.2
NASA Astrophysics Data System (ADS)
Wolter, Anna; Schild, R.; Gioia, I. M.; Maccacaro, T.; Morris, S. L.; Nesci, R.; Perola, G. C.
The cluster of galaxies 1E0839.9 + 2938, discovered in X-ray observations by Nesci et al. (1988), is characterized on the basis of VLA 6-cm radio observations, Whipple Observatory CCD photometry, and spectroscopic observations obtained with the Multiple Mirror Telescope and the 88-inch University of Hawaii Telescope at Mauna Kea. The data are presented in tables, maps, and sample images and spectra and briefly characterized. The bright X-ray object is identified with a cluster at redshift z = 0.195; its central galaxy has radio emission of 1.1 x 10 exp 24 W/Hz as well as strong optical line emission which is not restricted to its nucleus. It is concluded that 1E0839.9 + 2938 is a cooling-flow cluster similar to 3C295 (found at z = 0.461 by Henry et al., 1986). The need for space observations (by Rosat or the AXAF) to determine the object's X-ray luminosity distribution is indicated.
A cooling flow cluster at redshift z = 0.2
NASA Technical Reports Server (NTRS)
Wolter, Anna; Schild, R.; Gioia, I. M.; Maccacaro, T.; Morris, S. L.; Nesci, R.; Perola, G. C.
1990-01-01
The cluster of galaxies 1E0839.9 + 2938, discovered in X-ray observations by Nesci et al. (1988), is characterized on the basis of VLA 6-cm radio observations, Whipple Observatory CCD photometry, and spectroscopic observations obtained with the Multiple Mirror Telescope and the 88-inch University of Hawaii Telescope at Mauna Kea. The data are presented in tables, maps, and sample images and spectra and briefly characterized. The bright X-ray object is identified with a cluster at redshift z = 0.195; its central galaxy has radio emission of 1.1 x 10 exp 24 W/Hz as well as strong optical line emission which is not restricted to its nucleus. It is concluded that 1E0839.9 + 2938 is a cooling-flow cluster similar to 3C295 (found at z = 0.461 by Henry et al., 1986). The need for space observations (by Rosat or the AXAF) to determine the object's X-ray luminosity distribution is indicated.
The evolution of active galactic nuclei in clusters of galaxies from the Dark Energy Survey
Bufanda, E.; Hollowood, D.; Jeltema, T. E.; ...
2016-12-13
The correlation between active galactic nuclei (AGN) and environment provides important clues to AGN fueling and the relationship of black hole growth to galaxy evolution. Here, we analyze the fraction of galaxies in clusters hosting AGN as a function of redshift and cluster richness for X-ray detected AGN associated with clusters of galaxies in Dark Energy Survey (DES) Science Verification data. The present sample includes 33 AGN with L_X > 10 43 ergs s -1 in non-central, host galaxies with luminosity greater than 0.5 L* from a total sample of 432 clusters in the redshift range of 0.10.7. Our resultmore » is in good agreement with previous work and parallels the increase in star formation in cluster galaxies over the same redshift range. But, the AGN fraction in clusters is observed to have no significant correlation with cluster mass. Future analyses with DES Year 1 through Year 3 data will be able to clarify whether AGN activity is correlated to cluster mass and will tightly constrain the relationship between cluster AGN populations and redshift.« less
Early Results from Swift AGN and Cluster Survey
NASA Astrophysics Data System (ADS)
Dai, Xinyu; Griffin, Rhiannon; Nugent, Jenna; Kochanek, Christopher S.; Bregman, Joel N.
2016-04-01
The Swift AGN and Cluster Survey (SACS) uses 125 deg^2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding gamma-ray bursts to provide a medium depth (4 × 10^-15 erg cm^-2 s^-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present the first two papers in a series of publications for SACS. In the first paper, we introduce our method and catalog of 22,563 point sources and 442 extended sources. SACS provides excellent constraints on the AGN and cluster number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. The depth and areal coverage of SACS is well suited for galaxy cluster surveys outside the local universe, reaching z > 1 for massive clusters. In the second paper, we use SDSS DR8 data to study the 203 extended SACS sources that are located within the SDSS footprint. We search for galaxy over-densities in 3-D space using SDSS galaxies and their photometric redshifts near the Swift galaxy cluster candidates. We find 103 Swift clusters with a > 3σ over-density. The remaining targets are potentially located at higher redshifts and require deeper optical follow-up observations for confirmations as galaxy clusters. We present a series of cluster properties including the redshift, BCG magnitude, BCG-to-X-ray center offset, optical richness, X-ray luminosity and red sequences. We compare the observed redshift distribution of the sample with a theoretical model, and find that our sample is complete for z ≤ 0.3 and 80% complete for z ≤ 0.4, consistent with the survey depth of SDSS. These analysis results suggest that our Swift cluster selection algorithm presented in our first paper has yielded a statistically well-defined cluster sample for further studying cluster evolution and cosmology. In the end, we will discuss our ongoing optical identification of z>0.5 cluster sample, using MDM, KPNO, CTIO, and Magellan data, and discuss SACS as a pilot for eROSITA deep surveys.
Warming rays in cluster cool cores
NASA Astrophysics Data System (ADS)
Colafrancesco, S.; Marchegiani, P.
2008-06-01
Context: Cosmic rays are confined in the atmospheres of galaxy clusters and, therefore, they can play a crucial role in the heating of their cool cores. Aims: We discuss here the thermal and non-thermal features of a model of cosmic ray heating of cluster cores that can provide a solution to the cooling-flow problems. To this aim, we generalize a model originally proposed by Colafrancesco, Dar & DeRujula (2004) and we show that our model predicts specific correlations between the thermal and non-thermal properties of galaxy clusters and enables various observational tests. Methods: The model reproduces the observed temperature distribution in clusters by using an energy balance condition in which the X-ray energy emitted by clusters is supplied, in a quasi-steady state, by the hadronic cosmic rays, which act as “warming rays” (WRs). The temperature profile of the intracluster (IC) gas is strictly correlated with the pressure distribution of the WRs and, consequently, with the non-thermal emission (radio, hard X-ray and gamma-ray) induced by the interaction of the WRs with the IC gas and the IC magnetic field. Results: The temperature distribution of the IC gas in both cool-core and non cool-core clusters is successfully predicted from the measured IC plasma density distribution. Under this contraint, the WR model is also able to reproduce the thermal and non-thermal pressure distribution in clusters, as well as their radial entropy distribution, as shown by the analysis of three clusters studied in detail: Perseus, A2199 and Hydra. The WR model provides other observable features of galaxy clusters: a correlation of the pressure ratio (WRs to thermal IC gas) with the inner cluster temperature (P_WR/P_th) ˜ (kT_inner)-2/3, a correlation of the gamma-ray luminosity with the inner cluster temperature Lγ ˜ (kT_inner)4/3, a substantial number of cool-core clusters observable with the GLAST-LAT experiment, a surface brightness of radio halos in cool-core clusters that recovers the observed one, a hard X-ray ICS emission from cool-core clusters that is systematically lower than the observed limits and yet observable with the next generation high-sensitivity and spatial resolution HXR experiments like Simbol-X. Conclusions: The specific theoretical properties and the multi-frequency distribution of the e.m. signals predicted in the WR model render it quite different from the other models so far proposed for the heating of clusters' cool-cores. Such differences make it possible to prove or disprove our model as an explanation for the cooling-flow problems on the basis of multi-frequency observations of galaxy clusters.
NASA Astrophysics Data System (ADS)
Burns, Jack
Galaxy clusters are assembled through large and small mergers which are the most energetic events ( bangs ) since the Big Bang. Cluster mergers stir the ICM creating shocks and turbulence which are illuminated by Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are clear signposts of recent mergers. Our recent cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray and radio relics/halos are clear candidates for very recent mergers. We propose to analyze a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (e 50 ksec) from Chandra and/or XMM. We will use a new x-ray data analysis pipeline, implemented on a parallelprocessor supercomputer, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. In addition, we will use a control sample of clusters from the HIFLUGCS catalog which do not show radio relics/halos or any significant x-ray surface brightness substructure, thus devoid of recent mergers. The temperature maps will be made using 3 different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. We also plan to use archival Suzaku data for 22 clusters in our sample and study the x-ray temperatures at the outskirts of the clusters. All 48 clusters have archival radio data at d1.4 GHz which will be re-analyzed using advanced algorithms in NRAO s CASA software. We also have new radio data on a subset of these clusters and have proposed to observe more of them with the increased sensitivity of the JVLA and GMRT at 0.25-1.4 GHz. Using the systematically analyzed x-ray and radio data, we propose to pursue the detailed link between cluster mergers and the formation of radio relics/halos. (a) How do radio relics form? Radio relics are believed to be created via re-acceleration of cosmic ray electrons through diffusive shock acceleration, a 1st order Fermi mechanism. Hence, there should be a correlation between shocks detected in the x-ray and radio. We plan to use our newly developed 2-D shock-finder using jumps within xray temperature maps, and complement the results with radio Mach numbers derived from radio spectral indices. Shocks detected in our simulations using a 3-D shock-finder will be used to understand the effects of projections in observations. (b) How do radio halos form? It is not clear if the formation of radio halos is due to turbulent acceleration (2nd order Fermi process) or due to more efficient 1st order Fermi mechanism via distributed small-scale shocks. Since radio halos reside in merging clusters, the x-ray temperature structure should show the un-relaxed nature of the cluster. We will study this through temperature asymmetry and power ratios (between two multipoles). We also propose to use pressure maps to derive a 2-D power spectrum of pressure fluctuations and deduce the turbulent velocity field. We will then derive the associated radio power and spectral indices to compare with the radio observations. We will test our results using clusters with and without radio halos. We will make these high fidelity temperature, surface brightness, pressure and entropy maps available to the astronomical community via the National Virtual Observatory. We will also make our x-ray temperature map-making scripts implemented on parallel supercomputers available for community use.
X-ray and optical substructures of the DAFT/FADA survey clusters
NASA Astrophysics Data System (ADS)
Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.
2013-04-01
We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.
NGC 3312: A victim of ram pressure sweeping
NASA Technical Reports Server (NTRS)
Mcmahon, P. M.; Richter, O.-G.; Vangorkom, Jacqueline H.; Ferguson, H. C.
1990-01-01
Researchers are undertaking a volume limited survey of the Hydra I cluster in neutral hydrogen using the National Radio Astronomy Observatory's Very Large Array (VLA). The main purpose is to study the effects of a dense environment on the gaseous component of the galaxies. Observational evidence has been accumulating recently that ram pressure sweeping does occur in the centers of clusters, but it is possible that tidal interactions play a role as well. Results of high resolution HI imaging of NGC 3312, the large peculiar spiral near the cluster center are presented. Hydra I (= A1060) is the nearest rich cluster beyond Virgo and, as such, presents a unique opportunity to do a complete survey of a cluster. It is similar to the Virgo cluster in many of its general physical characteristics, such as size, x ray luminosity, velocity dispersion, and galaxy content (high spiral fraction). However, Hydra I appears to be more regular and relaxed. This is evident in the x ray distribution in its central region, which is radially symmetric and centered on the dominant galaxy, NGC 3311, a cD-like elliptical. The observed x ray luminosity implies a central gas density of 4.5 x 10 to the 3rd power cm(-3). Gallagher (1978) argued from optical images of NGC 3312 that this galaxy might be an ideal candidate to directly study effects of the ram pressure process; it might currently be undergoing stripping of its interstellar medium. The researchers' data are consistent with this suggestion, but other origins of the peculiar appearance cannot yet be ruled out.
An Unlikely Radio Halo in the Low X-Ray Luminosity Galaxy Cluster RXCJ1514.9-1523
NASA Technical Reports Server (NTRS)
Marketvitch, M.; ZuHone, J. A.; Lee, D.; Giacintucci, S.; Dallacasa, D.; Venturi, T.; Brunetti, G.; Cassano, R.; Markevitch, M.; Athreya, R. M.
2011-01-01
Aims: We report the discovery of a giant radio halo in the galaxy cluster RXCJ1514,9-1523 at z=0.22 with a relatively low X-ray luminosity, L(sub X) (0.1-2.4kev) approx. 7 x 10(exp 44) ergs/s. Methods: This faint, diffuse radio source is detected with the Giant Meterwave Radio Telescope at 327 MHz. The source is barely detected at 1.4 GHz in a NVSS pointing that we have reanalyzed. Results: The integrated radio spectrum of the halo is quite steep, with a slope alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are common in more X-ray luminous cluster mergers, there is a less than 10% probability to detect a halo in systems with L(sub X) < 8 x 10(exp 44) ergs/s. The detection of a new giant halo in this borderline luminosity regime can be particularly useful for discriminating between the competing theories for the origin of ultrarelativistic electrons in clusters. Furthermore, if our steep radio spectral index is confirmed by future deeper radio observations, this cluster would provide another example of the very rare, new class of ultra-steep spectrum radio halos, predicted by the model in which the cluster cosmic ray electrons are produced by turbulent reacceleration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Song; Qiu, Yanli; Liu, Jifeng
Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm withmore » good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.« less
Dynamics of Galaxy Clusters and Expectations from Astro-H
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
Galaxy clusters span a range of dynamical states, from violent mergers -- the most energetic events in the Universe -- to systems near hydrostatic equilibrium that allow us to map their dark matter distribution using X-ray observations of the intracluster gas. Accurate knowledge of the cluster physics, and in particular, the physics of the hot intracluster gas, is required to realize the full potential of clusters as cosmological probes. So far, we have been studying the cluster dynamics indirectly, deducing merger geometries, cluster masses, etc., using X-ray brightness and gas temperature mapping. For the first time, the calorimeter onboard Astro-H will provide direct measurements of line-of-sight velocities and turbulent broadening in the intracluster gas, testing many of our key assumptions about clusters. This talk will summarize expectations for cluster dynamic studies with this new instrument.
ROSAT PSPC Observations of CL0016+16
NASA Technical Reports Server (NTRS)
Hughes, John P. (Principal Investigator)
1996-01-01
Several ROSAT observations concerning with complex spatial structures in Sunyaev-Zel'dovich decrement clusters Abell 665 and CL0016+16, discovery of Be/X-ray stars in two supernova remnants in the Small Magellanic Cloud, a new transient pulsar in the Small Magellanic Cloud with an unusual x-ray spectrum, a new x-ray-discovered cluster of galaxies associated with CL0016+16, and the distance to CL0016+16 vs. the Hubble constant, are presented.
Are Large Core Radius Clusters Merging Systems?
NASA Technical Reports Server (NTRS)
Forman, William R.
1997-01-01
We have analyzed observations for two lensing clusters of galaxies, A1689 and A2218. Our investigations have explored the implications of their X-ray properties for mass determinations both in X-rays and through both weak and strong gravitational lensing. The work on these two clusters is summarized below and copies of the two papers submitted to the Astrophysical Journal and accepted for publication are attached.
LOFAR discovery of radio emission in MACS J0717.5+3745
NASA Astrophysics Data System (ADS)
Bonafede, A.; Brüggen, M.; Rafferty, D.; Zhuravleva, I.; Riseley, C. J.; van Weeren, R. J.; Farnes, J. S.; Vazza, F.; Savini, F.; Wilber, A.; Botteon, A.; Brunetti, G.; Cassano, R.; Ferrari, C.; de Gasperin, F.; Orrú, E.; Pizzo, R. F.; Röttgering, H. J. A.; Shimwell, T. W.
2018-05-01
We present results from LOFAR and GMRT observations of the galaxy cluster MACS J0717.5+3745. The cluster is undergoing a violent merger involving at least four sub-clusters, and it is known to host a radio halo. LOFAR observations reveal new sources of radio emission in the Intra-Cluster Medium: (i) a radio bridge that connects the cluster to a head-tail radio galaxy located along a filament of galaxies falling into the main cluster, (ii) a 1.9 Mpc radio arc, that is located North West of the main mass component, (iii) radio emission along the X-ray bar, that traces the gas in the X-rays South West of the cluster centre. We use deep GMRT observations at 608 MHz to constrain the spectral indices of these new radio sources, and of the emission that was already studied in the literature at higher frequency. We find that the spectrum of the radio halo and of the relic at LOFAR frequency follows the same power law as observed at higher frequencies. The radio bridge, the radio arc, and the radio bar all have steep spectra, which can be used to constrain the particle acceleration mechanisms. We argue that the radio bridge could be caused by the re-acceleration of electrons by shock waves that are injected along the filament during the cluster mass assembly. Despite the sensitivity reached by our observations, the emission from the radio halo does not trace the emission of the gas revealed by X-ray observations. We argue that this could be due to the difference in the ratio of kinetic over thermal energy of the intra-cluster gas, suggested by X-ray observations.
LoCuSS: comparison of observed X-ray and lensing galaxy cluster scaling relations with simulations
NASA Astrophysics Data System (ADS)
Zhang, Y.-Y.; Finoguenov, A.; Böhringer, H.; Kneib, J.-P.; Smith, G. P.; Kneissl, R.; Okabe, N.; Dahle, H.
2008-05-01
The Local Cluster Substructure Survey (LoCuSS, Smith et al.) is a systematic multi-wavelength survey of more than 100 X-ray luminous galaxy clusters in the redshift range 0.14-0.3 selected from the ROSAT All Sky Survey. We used data on 37 LoCuSS clusters from the XMM-Newton archive to investigate the global scaling relations of galaxy clusters. The scaling relations based solely on the X-ray data (S-T, S-Y_X, P-Y_X, M-T, M-Y_X, M-M_gas, M_gas-T, L-T, L-Y_X, and L-M) obey empirical self-similarity and reveal no additional evolution beyond the large-scale structure growth. They also reveal up to 17 per cent segregation between all 37 clusters and non-cool core clusters. Weak lensing mass measurements are also available in the literature for 19 of the clusters with XMM-Newton data. The average of the weak lensing mass to X-ray based mass ratio is 1.09± 0.08, setting the limit of the non-thermal pressure support to 9 ± 8 per cent. The mean of the weak lensing mass to X-ray based mass ratio of these clusters is ~1, indicating good agreement between X-ray and weak lensing masses for most clusters, although with 31-51 per cent scatter. The scatter in the mass-observable relations (M-Y_X, M-M_gas, and M-T) is smaller using X-ray based masses than using weak lensing masses by a factor of 2. With the scaled radius defined by the YX profile - r500 Y_X,X, r500YX,wl, and r500Y_X,si, we obtain lower scatter in the weak lensing mass based mass-observable relations, which means the origin of the scatter is M^wl and MX instead of Y_X. The normalization of the M-YX relation using X-ray mass estimates is lower than the one from simulations by up to 18-24 per cent at 3σ significance. This agrees with the M-YX relation based on weak lensing masses, the normalization of the latter being ~20 per cent lower than the one from simulations at ~2σ significance. This difference between observations and simulations is also indicated in the M-M_gas and M-T relations. Despite the large scatter in the comparison of X-ray to lensing, the agreement between these two completely independent observational methods is an important step towards controlling astrophysical and measurement systematics in cosmological scaling relations. This work is based on observations made with the XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA member states and the USA (NASA). Appendices A-C are only available in electronic form at http://www.aanda.org
MC 2 : galaxy imaging and redshift analysis of the merging cluster Ciza J2242.8+5301
Dawson, William A.; Jee, M. James; Stroe, Andra; ...
2015-05-28
X-ray and radio observations of CIZA J2242.8+5301 suggest that it is a major cluster merger. Despite being well studied in the X-ray, and radio, little has been presented on the cluster structure and dynamics inferred from its galaxy population. We carried out a deep (i < 25) broad band imaging survey of the system with Subaru SuprimeCam (g & i bands) and the Canada France Hawaii Telescope (r band) as well as a comprehensive spectroscopic survey of the cluster area (505 redshifts) using Keck DEIMOS. We use this data to perform a comprehensive galaxy/redshift analysis of the system, which ismore » the first step to a proper understanding the geometry and dynamics of the merger, as well as using the merger to constrain self-interacting dark matter.« less
Monsters in the sky. I mostri del cielo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maffei, P.
1980-01-01
The book treats astronomical objects and phenomena which remain unexplained or unproven by current investigators. Specific objects discussed include comets, satellite clouds surrounding the earth, tektites, the planet Vulcan (within the orbit of Mercury), Planet X (beyond Pluto), the Gum Nebula, planetary nebulae, supernovae, supernova remnants, transient X-ray sources, the possible extinction of the dinosaurs by an X-ray explosion and super-supernovae. Attention is also given to the star Eta Carinae, black holes, BL Lacertae objects, active galaxies, Markarian galaxies, N and compact galaxies, Seyfert galaxies, quasars, redshift anomalies, Stephan's quintet of galaxies, and intergalactic black holes or black dwarfs whichmore » may account for the mass necessary to bind together clusters of galaxies.« less
DARK MATTER SUBHALOS AND THE X-RAY MORPHOLOGY OF THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade-Santos, Felipe; Nulsen, Paul E. J.; Kraft, Ralph P.
2013-04-01
Structure formation models predict that clusters of galaxies contain numerous massive subhalos. The gravity of a subhalo in a cluster compresses the surrounding intracluster gas and enhances its X-ray emission. We present a simple model, which treats subhalos as slow moving and gasless, for computing this effect. Recent weak lensing measurements by Okabe et al. have determined masses of {approx}10{sup 13} M{sub Sun} for three mass concentrations projected within 300 kpc of the center of the Coma Cluster, two of which are centered on the giant elliptical galaxies NGC 4889 and NGC 4874. Adopting a smooth spheroidal {beta}-model for themore » gas distribution in the unperturbed cluster, we model the effect of these subhalos on the X-ray morphology of the Coma Cluster, comparing our results to Chandra and XMM-Newton X-ray data. The agreement between the models and the X-ray morphology of the central Coma Cluster is striking. With subhalo parameters from the lensing measurements, the distances of the three subhalos from the Coma Cluster midplane along our line of sight are all tightly constrained. Using the model to fit the subhalo masses for NGC 4889 and NGC 4874 gives 9.1 Multiplication-Sign 10{sup 12} M{sub Sun} and 7.6 Multiplication-Sign 10{sup 12} M{sub Sun }, respectively, in good agreement with the lensing masses. These results lend strong support to the argument that NGC 4889 and NGC 4874 are each associated with a subhalo that resides near the center of the Coma Cluster. In addition to constraining the masses and 3-d location of subhalos, the X-ray data show promise as a means of probing the structure of central subhalos.« less
An astrophysics data program investigation of cluster evolution
NASA Technical Reports Server (NTRS)
Kellogg, Edwin M.
1990-01-01
A preliminary status report is given on studies using the Einstein x ray observations of distant clusters of galaxies that are also candidates for gravitational lenses. The studies will determine the location and surface brightness distribution of the x ray emission from clusters associated with selected gravitational lenses. The x ray emission comes from hot gas that traces out the total gravitational potential in the cluster, so its distribution is approximately the same as the mass distribution causing gravitational lensing. Core radii and x ray virial masses can be computed for several of the brighter Einstein sources, and preliminary results are presented on A2218. Preliminary status is also reported on a study of the optical data from 0024+16. A provisional value of 1800 to 2200 km/s for the equivalent velocity dispersion is obtained. The ultimate objective is to extract the mass of the gravitational lens, and perhaps more detailed information on the distribution of matter as warranted. A survey of the Einstein archive shows that the clusters A520, A1704, 3C295, A2397, A1722, SC5029-247, A3186 and A370 have enough x ray counts observed to warrant more detailed optical observations of arcs for comparison. Mass estimates for these clusters can therefore be obtained from three independent sources: the length scale (core radius) that characterizes the density dropoff of the x ray emitting hot gas away from its center, the velocity dispersion of the galaxies moving in the cluster potential, and gravitational bending of light by the total cluster mass. This study will allow the comparison of these three techniques and ultimately improve the knowledge of cluster masses.
Galaxy Infall by Interacting with Its Environment: A Comprehensive Study of 340 Galaxy Clusters
NASA Astrophysics Data System (ADS)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak; Inada, Naohisa; Kawaharada, Madoka; Kodama, Tadayuki; Konami, Saori; Nakazawa, Kazuhiro; Xu, Haiguang; Makishima, Kazuo
2016-07-01
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra/XMM-Newton. For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxy number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 1044-45 erg s-1 per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.
The SWIFT AGN and Cluster Survey. I. Number Counts of AGNs and Galaxy Clusters
NASA Astrophysics Data System (ADS)
Dai, Xinyu; Griffin, Rhiannon D.; Kochanek, Christopher S.; Nugent, Jenna M.; Bregman, Joel N.
2015-05-01
The Swift active galactic nucleus (AGN) and Cluster Survey (SACS) uses 125 deg2 of Swift X-ray Telescope serendipitous fields with variable depths surrounding γ-ray bursts to provide a medium depth (4× {{10}-15} erg cm-2 s-1) and area survey filling the gap between deep, narrow Chandra/XMM-Newton surveys and wide, shallow ROSAT surveys. Here, we present a catalog of 22,563 point sources and 442 extended sources and examine the number counts of the AGN and galaxy cluster populations. SACS provides excellent constraints on the AGN number counts at the bright end with negligible uncertainties due to cosmic variance, and these constraints are consistent with previous measurements. We use Wide-field Infrared Survey Explorer mid-infrared (MIR) colors to classify the sources. For AGNs we can roughly separate the point sources into MIR-red and MIR-blue AGNs, finding roughly equal numbers of each type in the soft X-ray band (0.5-2 keV), but fewer MIR-blue sources in the hard X-ray band (2-8 keV). The cluster number counts, with 5% uncertainties from cosmic variance, are also consistent with previous surveys but span a much larger continuous flux range. Deep optical or IR follow-up observations of this cluster sample will significantly increase the number of higher-redshift (z\\gt 0.5) X-ray-selected clusters.
ESA's XMM-Newton gains deep insights into the distant Universe
NASA Astrophysics Data System (ADS)
2003-07-01
First image from the XMM-LSS survey hi-res Size hi-res: 87 kb Credits: ESA First image from the XMM-LSS survey The first image from the XMM-LSS survey is actually a combination of fourteen separate 'pointings' of the space observatory. It represents a region of the sky eight times larger than the full Moon and contains around 25 clusters. The circles represent the sources previously known from the 1991 ROSAT All-Sky Survey. A computer programme zooms in on an interesting region hi-res Size hi-res: 86 kb Credits: ESA A computer programme zooms in on an interesting region A computer programme zooms in on an interesting region of the image and identifies the possible cluster. Each point on this graph represents a single X-ray photons detected by XMM-Newton. Most come from distant actie galaxies and the computer must perform a sophisticated, statistical computation to determine which X-ray come from clusters. Contour map of clusters hi-res Size hi-res: 139 kb Credits: ESA Contour map of clusters The computer programme transforms the XMM-Newton data into a contour map of the cluster's probable extent and superimposes it over the CFHT snapshot, allowing the individual galaxies in the cluster to be targeted for further observations with ESO's VLT, to measure its distance and locate the cluster in the universe. Unlike grains of sand on a beach, matter is not uniformly spread throughout the Universe. Instead, it is concentrated into galaxies like our own which themselves congregate into clusters. These clusters are 'strung' throughout the Universe in a web-like structure. Astronomers have studied this large-scale structure of the nearby Universe but have lacked the instruments to extend the search to the large volumes of the distant Universe. Thanks to its unrivalled sensitivity, in less than three hours, ESA's X-ray observatory XMM-Newton can see back about 7000 million years to a cosmological era when the Universe was about half its present size, and clusters of galaxies more tightly packed. Marguerite Pierre, CEA Saclay, France, with a European and Chilean team, used this ability to search for remote clusters of galaxies and map out their distribution. The work heralds a new era of studying the distant Universe. The optical identification of clusters shows only the galaxies themselves. However, X-rays show the gas in between the galaxies - which is where most of the matter in a cluster resides. This is like going from seeing a city at night, where you only see the lighted windows, to seeing it during the daytime, when you finally get to see the buildings themselves. Tracking down the clusters is a painstaking, multi-step process. In tandem with XMM-Newton, the team uses the four-metre Canada-France-Hawaii Telescope (CFHT), on Mauna Kea, Hawaii, to take an optical snapshot of the same region of space. A tailor-made computer programme combs the XMM-Newton data looking for concentrations of X-rays that suggest large, extended structures. These are the clusters and they represent only about 10% of the detected X-ray sources (the others are mostly distant active galaxies). When the program finds a cluster, it zooms in on that region and converts the XMM-Newton data into a contour map of X-ray intensity, which it then superimposes on the CFHT optical image. The astronomers use this to check if anything is visible within the X-ray emission. If it is, the work then shifts to one of the world's largest telescopes, the European Southern Observatory (ESO) Very Large Telescope where the astronomers identify the individual galaxies in the cluster and take 'redshift' measurements. These give a measurement of the cluster's distance. In this way, Pierre and colleagues are mapping the distribution of galaxy clusters of the distant Universe, for the first time in astronomy. "Galaxy clusters are the largest concentrations of matter in the Universe and XMM-Newton is extremely efficient at finding them," says Pierre. Although the task is still a work in progress, first results seem to confirm that the number of clusters 7000 million years ago is little different from that of today. This behaviour is predicted by models of the Universe that expand forever and drive the galaxy clusters further and further apart. Eventually, it will be possible for the team to use their results to determine whether the expansion of the Universe is accelerating, as indicated by some other recent observations, or decelerating, as traditionally thought. Note to Editors: This is a coordinated ESA/ESO release. The presented results have been obtained by the XMM-LSS consortium, led by Service d'Astrophysique du CEA (France) and consisting of Co-I institutes from the United Kingdom, Ireland, Denmark, The Netherlands, Belgium, France, Italy, Germany, Spain and Chile. The home page of the XMM-LSS project can be found at: http://vela.astro.ulg.ac.be/themes/spatial/xmm/LSS/index_e.html This work is based on two papers to be published in the professional astronomy journal, Astronomy and Astrophysics (The XMM-LSS survey:I. Scientific motivations, design and first results by Marguerite Pierre et al., astro-ph/0305191 and The XMM-LSS survey:II. First high redshift galaxy clusters: relaxed and collapsing systems by Ivan Valtchanov et al.,astro-ph/0305192). More about XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
Chandra X-ray observations of the hyper-luminous infrared galaxy IRAS F15307+3252
NASA Astrophysics Data System (ADS)
Hlavacek-Larrondo, J.; Gandhi, P.; Hogan, M. T.; Gendron-Marsolais, M.-L.; Edge, A. C.; Fabian, A. C.; Russell, H. R.; Iwasawa, K.; Mezcua, M.
2017-01-01
Hyper-luminous infrared galaxies (HyLIRGs) lie at the extreme luminosity end of the IR galaxy population with LIR > 1013 L⊙. They are thought to be closer counterparts of the more distant sub-millimeter galaxies, and should therefore be optimal targets to study the most massive systems in formation. We present deep Chandra observations of IRAS F15307+3252 (100 ks), a classical HyLIRG located at z = 0.93 and hosting a radio-loud AGN (L1.4 GHz ˜ 3.5 × 1025 W Hz-1). The Chandra images reveal the presence of extended (r = 160 kpc), asymmetric X-ray emission in the soft 0.3-2.0 keV band that has no radio counterpart. We therefore argue that the emission is of thermal origin originating from a hot intragroup or intracluster medium virializing in the potential. We find that the temperature (˜2 keV) and bolometric X-ray luminosity (˜3 × 1043 erg s-1) of the gas follow the expected LX-ray-T correlation for groups and clusters, and that the gas has a remarkably short cooling time of 1.2 Gyr. In addition, VLA radio observations reveal that the galaxy hosts an unresolved compact steep-spectrum (CSS) source, most likely indicating the presence of a young radio source similar to 3C186. We also confirm that the nucleus is dominated by a redshifted 6.4 keV Fe Kα line, strongly suggesting that the AGN is Compton-thick. Finally, Hubble images reveal an overdensity of galaxies and sub-structure in the galaxy that correlates with soft X-ray emission. This could be a snapshot view of on-going groupings expected in a growing cluster environment. IRAS F15307+3252 might therefore be a rare example of a group in the process of transforming into a cluster.
Suzaku observations of low surface brightness cluster Abell 1631
NASA Astrophysics Data System (ADS)
Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori
2018-04-01
We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.
Suzaku observations of low surface brightness cluster Abell 1631
NASA Astrophysics Data System (ADS)
Babazaki, Yasunori; Mitsuishi, Ikuyuki; Ota, Naomi; Sasaki, Shin; Böhringer, Hans; Chon, Gayoung; Pratt, Gabriel W.; Matsumoto, Hironori
2018-06-01
We present analysis results for a nearby galaxy cluster Abell 1631 at z = 0.046 using the X-ray observatory Suzaku. This cluster is categorized as a low X-ray surface brightness cluster. To study the dynamical state of the cluster, we conduct four-pointed Suzaku observations and investigate physical properties of the Mpc-scale hot gas associated with the A 1631 cluster for the first time. Unlike relaxed clusters, the X-ray image shows no strong peak at the center and an irregular morphology. We perform spectral analysis and investigate the radial profiles of the gas temperature, density, and entropy out to approximately 1.5 Mpc in the east, north, west, and south directions by combining with the XMM-Newton data archive. The measured gas density in the central region is relatively low (a few ×10-4 cm-3) at the given temperature (˜2.9 keV) compared with X-ray-selected clusters. The entropy profile and value within the central region (r < 0.1 r200) are found to be flatter and higher (≳400 keV cm2). The observed bolometric luminosity is approximately three times lower than that expected from the luminosity-temperature relation in previous studies of relaxed clusters. These features are also observed in another low surface brightness cluster, Abell 76. The spatial distributions of galaxies and the hot gas appear to be different. The X-ray luminosity is relatively lower than that expected from the velocity dispersion. A post-merger scenario may explain the observed results.
Joining X-Ray to Lensing: An Accurate Combined Analysis of MACS J0416.1-2403
NASA Astrophysics Data System (ADS)
Bonamigo, M.; Grillo, C.; Ettori, S.; Caminha, G. B.; Rosati, P.; Mercurio, A.; Annunziatella, M.; Balestra, I.; Lombardi, M.
2017-06-01
We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1-2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of the X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1-2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.
Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations
NASA Astrophysics Data System (ADS)
Walker, S. A.; Fabian, A. C.; Kosec, P.
2014-12-01
We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Amruta J.; Hughes, John P.; Wittman, David, E-mail: amrejd@physics.rutgers.edu, E-mail: jph@physics.rutgers.edu, E-mail: dwittman@physics.ucdavis.edu
We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shearmore » peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L {sub X} − T {sub X} relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (∼48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined.« less
The AGN-driven shock in NGC 4472
NASA Astrophysics Data System (ADS)
Gendron-Marsolais, Marie-Lou; Kraft, Ralph P.; Bogdan, Akos; Forman, William R.; Hlavacek-Larrondo, Julie; Jones, Christine; Nulsen, Paul; Randall, Scott W.; Roediger, Elke
2016-04-01
Chandra observations of most cool core clusters of galaxies have revealed large cavities where the inflation of the jet-driven radio bubbles displace the cluster gas. In a few cases, outburst shocks, likely driven by cavity inflation, are detected in the ambient gas. AGN-driven shocks may be key to balancing the radiative losses as shocks will increase the entropy of, and thereby heat, the diffuse gas. We will present initial results on deep Chandra observations of the nearby (D=17 Mpc) early-type massive elliptical galaxy NGC 4472, the most optically luminous galaxy in the local Universe, lying on the outskirts of the Virgo cluster. The X-ray observations show clear cavities in the X-ray emission at the position of the radio lobes, and rings of enhanced X-ray emission just beyond the lobes. We will present results from our analysis to determine whether the lobes are inflating supersonically or are rising buoyantly. We will compare the energy and power of this AGN outburst with previous powerful radio outbursts in clusters and groups to determine whether this outburst lies on the same scaling relations or whether it represents a new category of outburst.
Observations of rich clusters of galaxies at metre wavelengths
NASA Technical Reports Server (NTRS)
Cane, H. V.; Erickson, W. C.; Hanisch, R. J.; Turner, P. J.
1981-01-01
Observations have been made at 10 frequencies between 50 and 120 MHz of 17 rich, X-ray emitting clusters of galaxies with the 78 x 156 m dipole array al Llanherne. The observed flux densities were compared to the flux densities expected on the basis of the known discrete sources in the fields. In no case was a significant flux excess found that might have indicated the presence of a diffuse halo component of radio emission in the cluster. For those clusters in which spectral indices could be determined, the spectra all tend to be much steeper than is normal for extragalactic radio sources, although a strict correlation between the X-ray luminosity and the low-frequency radio luminosity or spectral index is not found. The occurrence of large halo sources such as that which is present in the Coma cluster seems to be quite unusual.
Chandra X-ray Observatory - NASA's flagship X-ray telescope
astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this
Cooling Flow Spectra in Ginga Galaxy Clusters
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1997-01-01
The primary focus of this research project has been a joint analysis of Ginga LAC and Einstein SSS X-ray spectra of the hot gas in galaxy clusters with cooling flows is reported. We studied four clusters (A496, A1795, A2142 & A2199) and found their central temperatures to be cooler than in the exterior, which is expected from their having cooling flows. More interestingly, we found central metal abundance enhancements in two of the clusters, A496 and A2142. We have been assessing whether the abundance gradients (or lack thereof) in intracluster gas is correlated with galaxy morphological gradients in the host clusters. In rich, dense galaxy clusters, elliptical and SO galaxies are generally found in the cluster cores, while spiral galaxies are found in the outskirts. If the metals observed in clusters came from proto-ellipticals and proto-S0s blowing winds, then the metal distribution in intracluster gas may still reflect the distribution of their former host galaxies. In a research project which was inspired by the success of the Ginga LAC/Einstein SSS work, we analyzed X-ray spectra from the HEAO-A2 MED and the Einstein SSS to look for temperature gradients in cluster gas. The HEAO-A2 MED was also a non-imaging detector with a large field of view compared to the SSS, so we used the differing fields of view of the two instruments to extract spatial information. We found some evidence of cool gas in the outskirts of clusters, which may indicate that the nominally isothermal mass density distributions in these clusters are steepening in the outer parts of these clusters.
SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV
Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...
2016-09-05
SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg 2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~10 14–10 15 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precisemore » (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less
SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV
NASA Astrophysics Data System (ADS)
Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.
2016-12-01
SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.
GALAXY INFALL BY INTERACTING WITH ITS ENVIRONMENT: A COMPREHENSIVE STUDY OF 340 GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Liyi; Wen, Zhonglue; Gandhi, Poshak
To study systematically the evolution of the angular extents of the galaxy, intracluster medium (ICM), and dark matter components in galaxy clusters, we compiled the optical and X-ray properties of a sample of 340 clusters with redshifts <0.5, based on all the available data from the Sloan Digital Sky Survey and Chandra / XMM-Newton . For each cluster, the member galaxies were determined primarily with photometric redshift measurements. The radial ICM mass distribution, as well as the total gravitational mass distribution, was derived from a spatially resolved spectral analysis of the X-ray data. When normalizing the radial profile of galaxymore » number to that of the ICM mass, the relative curve was found to depend significantly on the cluster redshift; it drops more steeply toward the outside in lower-redshift subsamples. The same evolution is found in the galaxy-to-total mass profile, while the ICM-to-total mass profile varies in an opposite way. The behavior of the galaxy-to-ICM distribution does not depend on the cluster mass, suggesting that the detected redshift dependence is not due to mass-related effects, such as sample selection bias. Also, it cannot be ascribed to various redshift-dependent systematic errors. We interpret that the galaxies, the ICM, and the dark matter components had similar angular distributions when a cluster was formed, while the galaxies traveling in the interior of the cluster have continuously fallen toward the center relative to the other components, and the ICM has slightly expanded relative to the dark matter although it suffers strong radiative loss. This cosmological galaxy infall, accompanied by an ICM expansion, can be explained by considering that the galaxies interact strongly with the ICM while they are moving through it. The interaction is considered to create a large energy flow of 10{sup 4445} erg s{sup 1} per cluster from the member galaxies to their environment, which is expected to continue over cosmological timescales.« less
A HYDRODYNAMICAL SOLUTION FOR THE ''TWIN-TAILED'' COLLIDING GALAXY CLUSTER ''EL GORDO''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molnar, Sandor M.; Broadhurst, Tom, E-mail: sandor@phys.ntu.edu.tw
The distinctive cometary X-ray morphology of the recently discovered massive galaxy cluster ''El Gordo'' (ACT-CT J0102–4915; z = 0.87) indicates that an unusually high-speed collision is ongoing between two massive galaxy clusters. A bright X-ray ''bullet'' leads a ''twin-tailed'' wake, with the Sunyaev-Zel'dovich (SZ) centroid at the end of the northern tail. We show how the physical properties of this system can be determined using our FLASH-based, N-body/hydrodynamic model, constrained by detailed X-ray, SZ, and Hubble lensing and dynamical data. The X-ray morphology and the location of the two dark matter components and the SZ peak are accurately described by amore » simple binary collision viewed about 480 million years after the first core passage. We derive an impact parameter of ≅300 kpc, and a relative initial infall velocity of ≅2250 km s{sup –1} when separated by the sum of the two virial radii assuming an initial total mass of 2.15 × 10{sup 15} M {sub ☉} and a mass ratio of 1.9. Our model demonstrates that tidally stretched gas accounts for the northern X-ray tail along the collision axis between the mass peaks, and that the southern tail lies off axis, comprising compressed and shock heated gas generated as the less massive component plunges through the main cluster. The challenge for ΛCDM will be to find out if this physically extreme event can be plausibly accommodated when combined with the similarly massive, high-infall-velocity case of the Bullet cluster and other such cases being uncovered in new SZ based surveys.« less
X-ray aspects of the DAFT/FADA clusters
NASA Astrophysics Data System (ADS)
Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.
2012-12-01
We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.
Detection and Characterization of Galaxy Systems at Intermediate Redshift.
NASA Astrophysics Data System (ADS)
Barrena, Rafael
2004-11-01
This thesis is divided into two very related parts. In the first part we implement and apply a galaxy cluster detection method, based on multiband observations in visible. For this purpose, we use a new algorithm, the Voronoi Galaxy Cluster Finder, which identifies overdensities over a Poissonian field of objects. By applying this algorithm over four photometric bands (B, V, R and I) we reduce the possibility of detecting galaxy projection effects and spurious detections instead of real galaxy clusters. The B, V, R and I photometry allows a good characterization of galaxy systems. Therefore, we analyze the colour and early-type sequences in the colour-magnitude diagrams of the detected clusters. This analysis helps us to confirm the selected candidates as actual galaxy systems. In addition, by comparing observational early-type sequences with a semiempirical model we can estimate a photometric redshift for the detected clusters. We will apply this detection method on four 0.5x0.5 square degrees areas, that partially overlap the Postman Distant Cluster Survey (PDCS). The observations were performed as part of the International Time Programme 1999-B using the Wide Field Camera mounted at Isaac Newton Telescope (Roque de los Muchachos Observatory, La Palma island, Spain). The B and R data obtained were completed with V and I photometry performed by Marc Postman. The comparison of our cluster catalogue with that of PDCS reveals that our work is a clear improvement in the cluster detection techniques. Our method efficiently selects galaxy clusters, in particular low mass galaxy systems, even at relative high redshift, and estimate a precise photometric redshift. The validation of our method comes by observing spectroscopically several selected candidates. By comparing photometric and spectroscopic redshifts we conclude: 1) our photometric estimation method gives an precision lower than 0.1; 2) our detection technique is even able to detect galaxy systems at z~0.7 using visible photometric bands. In the second part of this thesis we analyze in detail the dynamical state of 1E0657-56 (z=0.296), a hot galaxy cluster with strong X-ray and radio emissions. Using spectroscopic and photometric observations in visible (obtained with the New Technology Telescope and the Very Large Telescope, both located at La Silla Observatory, Chile) we analyze the velocity field, morphology, colour and star formation in the galaxy population of this cluster. 1E0657-56 is involved in a collision event. We identify the substructure involved in this collision and we propose a dynamical model that allows us to investigate the origins of X-ray and radio emissions and the relation between them. The analysis of 1E0657-56 presented in this thesis constitutes a good example of what kind of properties could be studied in some of the clusters catalogued in first part of this thesis. In addition, the detailed analysis of this cluster represents an improvement in the study of the origin of X-ray and radio emissions and merging processes in galaxy clusters.
Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn; ...
2017-10-02
The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. Here in this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (L ce), which previous work suggests correlates tightly with total mass. Ourmore » data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using L ce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. Lastly, we also explore the potential impact of Chandra and XMM–Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.« less
Centre-excised X-ray luminosity as an efficient mass proxy for future galaxy cluster surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, Adam B.; Allen, Steven W.; Morris, R. Glenn
The cosmological constraining power of modern galaxy cluster catalogues can be improved by obtaining low-scatter mass proxy measurements for even a small fraction of sources. In the context of large upcoming surveys that will reveal the cluster population down to the group scale and out to high redshifts, efficient strategies for obtaining such mass proxies will be valuable. Here in this work, we use high-quality weak-lensing and X-ray mass estimates for massive clusters in current X-ray-selected catalogues to revisit the scaling relations of the projected, centre-excised X-ray luminosity (L ce), which previous work suggests correlates tightly with total mass. Ourmore » data confirm that this is the case with Lce having an intrinsic scatter at fixed mass comparable to that of gas mass, temperature or YX. Compared to the other proxies, however, Lce is less susceptible to systematic uncertainties due to background modelling, and can be measured precisely with shorter exposures. This opens up the possibility of using L ce to estimate masses for large numbers of clusters discovered by new X-ray surveys (e.g. eROSITA) directly from the survey data, as well as for clusters discovered at other wavelengths with relatively short follow-up observations. We describe a simple procedure for making such estimates from X-ray surface brightness data, and comment on the spatial resolution required to apply this method as a function of cluster mass and redshift. Lastly, we also explore the potential impact of Chandra and XMM–Newton follow-up observations over the next decade on dark energy constraints from new cluster surveys.« less
Ram Pressure Stripping: Observations Meet Simulations
NASA Astrophysics Data System (ADS)
Past, Matthew; Ruszkowski, Mateusz; Sharon, Keren
2017-01-01
Ram pressure stripping occurs when a galaxy falls into the potential well of a cluster, removing gas and dust as the galaxy travels through the intracluster medium. This interaction leads to filamentary gas tails stretching behind the galaxy and plays an important role in galaxy evolution. Previously, these “jellyfish” galaxies had only been observed in nearby clusters, but recently, higher redshift (z > 0.3) examples have been found from HST data imaging.Recent work has shown that cosmic rays injected by supernovae can cause galactic disks to thicken due to cosmic ray pressure. We run three-dimensional magneto-hydrodynamical simulations of ram pressure stripping including cosmic rays to compare to previous models. We study how the efficiency of the ram pressure stripping of the gas, and the morphology of the filamentary tails, depend on the magnitude of the cosmic ray pressure support. We generate mock X-ray images and radio polarization data. Simultaneously, we perform an exhaustive search of the HST archive to increase the sample of jellyfish galaxies and compare selected cases to simulations.
VizieR Online Data Catalog: Galaxy properties in clusters. II. (Muriel+, 2014)
NASA Astrophysics Data System (ADS)
Muriel, H.; Coenda, V.
2014-06-01
In paper I (Coenda & Muriel, 2009A&A...504..347C, Cat. J/A+A/504/347), we selected an X-ray sample of 49 clusters of galaxies from Popesso et al. (2004A&A...423..449P, Cat. J/A+A/423/449, hereafter P04) in the redshift range 0.05
NASA Astrophysics Data System (ADS)
Nastasi, A.; Fassbender, R.; Böhringer, H.; Šuhada, R.; Rosati, P.; Pierini, D.; Verdugo, M.; Santos, J. S.; Schwope, A. D.; de Hoon, A.; Kohnert, J.; Lamer, G.; Mühlegger, M.; Quintana, H.
2011-08-01
We report the discovery of a galaxy cluster at z = 1.490 originally selected as an extended X-ray source in the XMM-Newton Distant Cluster Project. Further observations carried out with the VLT-FORS2 spectrograph allowed the spectroscopic confirmation of seven secure cluster members, providing a median system redshift of z = 1.490 ± 0.009. The color-magnitude diagram of XMMU J0338.8+0021 reveals the presence of a well-populated red sequence with z - H ≈ 3, albeit with an apparent significant scatter in color. Since we do not detect indications of any strong star formation activity in these objects, the color spread could represent the different stellar ages of the member galaxies. In addition, we found the brightest cluster galaxy in a very active dynamical state, with an interacting, merging companion located at a physical projected distance of d ≈ 20 kpc. From the X-ray luminosity, we estimate a cluster mass of M200 ~ 1.2 × 1014 M⊙. The data appear to be consistent with a scenario in which XMMU J0338.8+0021 is a young system, possibly caught in a moment of active ongoing mass assembly. Based on observations under programme ID 084.A-0844 collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, and observations collected at the Centro Astronómico Hispano Alemán at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).Tables 1, 2 and Figs. 3-6 are available in electronic form at http://www.aanda.org
Simulations of the galaxy cluster CIZA J2242.8+5301 - I. Thermal model and shock properties
NASA Astrophysics Data System (ADS)
Donnert, J. M. F.; Beck, A. M.; Dolag, K.; Röttgering, H. J. A.
2017-11-01
The giant radio relic in CIZA J2242.8+5301 provides clear evidence of an Mpc-sized shock in a massive merging galaxy cluster. Here, we present idealized SPH hydrodynamical and collisionless dark matter simulations, aiming to find a model that is consistent with that large range of observations of this galaxy cluster. We first show that in the northern shock, the observed radio spectral index profile and integrated radio spectrum are consistent with the observed upstream X-ray temperature. Using simulations, we first find that only a cool-core versus non-cool-core merger can lead to the observed elongated X-ray morphology. We then carry out simulations for two merging clusters assuming a range of NFW and β-model density profiles and hydrostatic equilibrium. We find a fiducial model that mimics the overall morphology of the shock structures, has a total mass of 1.6 × 1015 M⊙ and a mass ratio of 1.76. For this model, the derived Mach number for the northern shock is 4.5. This is almost a factor 2 higher compared to the observational determination of the Mach number using X-ray observations or measurements of the radio injection spectral index. We could not find numerical models that both fit the X-ray properties and yielded such low Mach numbers. We discuss various ways of understanding this difference and argue that deep X-ray observations of CIZA J2242.8+5301 will be able to test our model and reconcile the differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Liyi; Makishima, Kazuo; Yagi, Masafumi
We report the detection of an X-ray absorption feature near the galaxy M86 in the Virgo cluster. The absorber has a column density of 2-3 × 10{sup 20} cm{sup –2}, and its position coincides with the peak of an intracluster H I cloud which was removed from the galaxy NGC 4388 presumably by ram pressure. These results indicate that the H I cloud is located in front of M86 along the line-of-sight, and suggest that the stripping was primarily created by an interaction between NGC 4388 and the hot plasmas of the Virgo cluster, not the M86 halo. By calculatingmore » an X-ray temperature map, we further detected an X-ray counterpart of the H I cloud up to ≈3' south of M86. It has a temperature of 0.89 keV and a mass of ∼4.5 × 10{sup 8} M {sub ☉}, exceeding the estimated H I gas mass. The high hot-to-cold gas ratio in the cloud indicates a significant evaporation of the H I gas, probably by thermal conduction from the hotter cluster plasma with a sub-Spitzer rate.« less
Cosmological constraints from strong gravitational lensing in clusters of galaxies.
Jullo, Eric; Natarajan, Priyamvada; Kneib, Jean-Paul; D'Aloisio, Anson; Limousin, Marceau; Richard, Johan; Schimd, Carlo
2010-08-20
Current efforts in observational cosmology are focused on characterizing the mass-energy content of the universe. We present results from a geometric test based on strong lensing in galaxy clusters. Based on Hubble Space Telescope images and extensive ground-based spectroscopic follow-up of the massive galaxy cluster Abell 1689, we used a parametric model to simultaneously constrain the cluster mass distribution and dark energy equation of state. Combining our cosmological constraints with those from x-ray clusters and the Wilkinson Microwave Anisotropy Probe 5-year data gives Omega(m) = 0.25 +/- 0.05 and w(x) = -0.97 +/- 0.07, which are consistent with results from other methods. Inclusion of our method with all other available techniques brings down the current 2sigma contours on the dark energy equation-of-state parameter w(x) by approximately 30%.
NASA Technical Reports Server (NTRS)
Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.
2002-01-01
We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster candidates, and examine the prominence of the red sequence in each. We find that the X-ray clusters in our survey do not all have a prominent red sequence. We conclude that while the red sequence may be a distinct feature in the color-magnitude plots for virialized massive clusters, it may be less distinct in lower mass clusters of galaxies at even moderate redshifts. Multiple, complementary methods of selecting and defining clusters may be essential, particularly at high redshift where all methods start to run into completeness limits, incomplete understanding of physical evolution, and projection effects.
NASA Technical Reports Server (NTRS)
David, L. P.; Arnaud, K. A.; Forman, W.; Jones, C.
1990-01-01
The Einstein imaging proportional counter observations of the poor cluster of galaxies centered on the radio galaxy Hydra A are examined. From the surface brightness profile, it is found that the X-ray-emitting gas in the Hydra A cluster must be condensing out of the intracluster medium at a rate of 600 solar masses/yr. This is one of the largest mass deposition rates observed in a cluster of galaxies. The ratio of gas mass to stellar mass is compared for a variety of systems, showing that this ratio correlates with the gas temperature.
Chandra Finds Surprising Black Hole Activity In Galaxy Cluster
NASA Astrophysics Data System (ADS)
2002-09-01
Scientists at the Carnegie Observatories in Pasadena, California, have uncovered six times the expected number of active, supermassive black holes in a single viewing of a cluster of galaxies, a finding that has profound implications for theories as to how old galaxies fuel the growth of their central black holes. The finding suggests that voracious, central black holes might be as common in old, red galaxies as they are in younger, blue galaxies, a surprise to many astronomers. The team made this discovery with NASA'S Chandra X-ray Observatory. They also used Carnegie's 6.5-meter Walter Baade Telescope at the Las Campanas Observatory in Chile for follow-up optical observations. "This changes our view of galaxy clusters as the retirement homes for old and quiet black holes," said Dr. Paul Martini, lead author on a paper describing the results that appears in the September 10 issue of The Astrophysical Journal Letters. "The question now is, how do these black holes produce bright X-ray sources, similar to what we see from much younger galaxies?" Typical of the black hole phenomenon, the cores of these active galaxies are luminous in X-ray radiation. Yet, they are obscured, and thus essentially undetectable in the radio, infrared and optical wavebands. "X rays can penetrate obscuring gas and dust as easily as they penetrate the soft tissue of the human body to look for broken bones," said co-author Dr. Dan Kelson. "So, with Chandra, we can peer through the dust and we have found that even ancient galaxies with 10-billion-year-old stars can have central black holes still actively pulling in copious amounts of interstellar gas. This activity has simply been hidden from us all this time. This means these galaxies aren't over the hill after all and our theories need to be revised." Scientists say that supermassive black holes -- having the mass of millions to billions of suns squeezed into a region about the size of our Solar System -- are the engines in the cores of bright active galaxies, often referred to as Active Galactic Nuclei, or AGN. Many astronomers think that all galaxies have central, supermassive black holes, yet only a small percent show activity. What is needed to power the AGN is fuel in the form of a nearby reservoir of gas and dust. Galaxy clusters contain hundreds to thousands of galaxies. They are the largest known structures in the universe and serve as a microcosm for the mechanics of the Universe at large. The galaxies in clusters are often old, reddish elliptically shaped galaxies, distinct from blue, spiral galaxies like our own. These old galaxies also do not have many young stars. The theory now in question is that as galaxies enter into clusters at high speeds, they are stripped of their interstellar gas, much as a strong wind strips leaves from a tree. Galaxies may also collide with one another and use up all of their gas in one huge burst of star formation triggered by this interaction. These processes remove most, if not all, of the gas that isn't locked up in stars. As they no longer have the raw material to form new stars, the stellar population slowly gets old and the Galaxy appears red. No gas is left to fuel an AGN. Previous surveys of galaxy clusters with optical telescopes have found that about only one percent of the galaxies in a cluster have AGN. This latest Chandra observation if typical, however, bumps the count up to about 5 percent. The team found six red galaxies with high X-ray activity during a nearly 14-hour Chandra observation of a galaxy cluster named Abell 2104, over 700 million light years from Earth. Based on previous optical surveys, only one was expected. "If we relied on optical data alone, we would have missed these hidden monsters," said co-author Dr. John Mulchaey. Only one of the six AGN, in fact, had the optical spectral properties typical of AGN activity. "The presence of these AGN indicate that supermassive black holes have somehow retained a fuel source, despite the harsh treatment galaxies suffer in clusters, and are now coming out of retirement," said Martini. This could imply that galaxies are better at holding onto a supply of gas and dust than previously thought, particularly deep down at their cores near the supermassive black hole. This gas and dust may also be the same material that obscures the AGN at other wavelengths. The presence of so many AGN could also contribute to the radio and infrared radiation from the clusters, which until now was thought to be almost exclusively a product of star formation. Thus, scientists may be overestimating the amount of star formation taking place in clusters. The Carnegie group has begun a study of other galaxy clusters with Chandra. Martini and Kelson are postdoctoral researchers at the Carnegie Observatories in Pasadena; Mulchaey is a staff astronomer. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625
NASA Astrophysics Data System (ADS)
Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.
2004-06-01
We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.
NASA Technical Reports Server (NTRS)
White, S. D. M.; Silk, J.; Henry, J. P.
1981-01-01
High-resolution X-ray observations of the rich cluster 0016+16 at a redshift of 0.541 are presented. The emitting gas in this cluster is hot and extremely luminous, and its structure resembles that seen in the brightest nearby cluster sources. In most of its properties, 0016+16 resembles a richer version of the Coma cluster, and it offers little support to the hypothesis that clusters at z greater than 0.5 differ fundamentally from nearer objects.
A Survey of Distant Clusters of Galaxies Selected by X-Rays
NASA Technical Reports Server (NTRS)
McNamara, Brian
1997-01-01
I will discuss the results of a new survey of X-ray selected, distant clusters of galaxies that has been undertaken by our group at.CfA (Vikhlinin, McNamara, Forman, Jones). We have analyzed the inner 17.5 arcminute region of roughly 650 ROSAT PSPC images of high latitude fields to compile a complete, flux-limited sample of clusters with a mean flux limit roughly 20 times more sensitive than the Einstein Medium Sensitivity Survey. The goal of our survey, which presently contains 233 extended X-ray sources, is to study cluster evolution over cosmological timescales. We have obtained optical images for nearly all of the faintest sources using the 1.2 m telescope of the Fred L. Whipple Observatory, and when including POSS images of the brighter sources, we have nearly completed the identification of all of the extended sources. Roughly 80% of the sources were identified as clusters of galaxies. We have measured redshifts for 42 clusters using the MMT, and including additional measurements from the literature, roughly 70 clusters in our catalog have spectroscopic redshifts. Using CCD photometry and spectroscopic redshifts, we have determined a magnitude-redshift relation which will allow redshifts of the remaining clusters in our sample to be determined photometrically to within a delta z over z of roughly ten percent. I will discuss the Log(N)-Log(S) relation for our sample and compare it to other determinations. In addition, I will discuss the evolution of core radii of clusters.
A Search for Low-Luminosity BL Lacertae Objects
NASA Astrophysics Data System (ADS)
Rector, Travis A.; Stocke, John T.; Perlman, Eric S.
1999-05-01
Many properties of BL Lacs have become explicable in terms of the ``relativistic beaming'' hypothesis, whereby BL Lacs are FR 1 radio galaxies viewed nearly along the jet axis. However, a possible problem with this model is that a transition population between beamed BL Lacs and unbeamed FR 1 galaxies has not been detected. A transition population of ``low-luminosity BL Lacs'' was predicted to exist in abundance in X-ray-selected samples such as the Einstein Extended Medium Sensitivity Survey (EMSS) by Browne & Marcha. However, these BL Lacs may have been misidentified as clusters of galaxies. We have conducted a search for such objects in the EMSS with the ROSAT High-Resolution Imager (HRI) here we present ROSAT HRI images, optical spectra, and VLA radio maps for a small number of BL Lacs that were previously misidentified in the EMSS catalog as clusters of galaxies. While these objects are slightly lower in luminosity than other EMSS BL Lacs, their properties are too similar to the other BL Lacs in the EMSS sample to ``bridge the gap'' between BL Lacs and FR 1 radio galaxies. Also, the number of new BL Lacs found is too low to alter significantly the X-ray luminosity function or
The X-CLASS-redMaPPer galaxy cluster comparison. I. Identification procedures
NASA Astrophysics Data System (ADS)
Sadibekova, T.; Pierre, M.; Clerc, N.; Faccioli, L.; Gastaud, R.; Le Fevre, J.-P.; Rozo, E.; Rykoff, E.
2014-11-01
Context. This paper is the first in a series undertaking a comprehensive correlation analysis between optically selected and X-ray-selected cluster catalogues. The rationale of the project is to develop a holistic picture of galaxy clusters utilising optical and X-ray-cluster-selected catalogues with well-understood selection functions. Aims: Unlike most of the X-ray/optical cluster correlations to date, the present paper focuses on the non-matching objects in either waveband. We investigate how the differences observed between the optical and X-ray catalogues may stem from (1) a shortcoming of the detection algorithms; (2) dispersion in the X-ray/optical scaling relations; or (3) substantial intrinsic differences between the cluster populations probed in the X-ray and optical bands. The aim is to inventory and elucidate these effects in order to account for selection biases in the further determination of X-ray/optical cluster scaling relations. Methods: We correlated the X-CLASS serendipitous cluster catalogue extracted from the XMM archive with the redMaPPer optical cluster catalogue derived from the Sloan Digital Sky Survey (DR8). We performed a detailed and, in large part, interactive analysis of the matching output from the correlation. The overlap between the two catalogues has been accurately determined and possible cluster positional errors were manually recovered. The final samples comprise 270 and 355 redMaPPer and X-CLASS clusters, respectively. X-ray cluster matching rates were analysed as a function of optical richness. In the second step, the redMaPPer clusters were correlated with the entire X-ray catalogue, containing point and uncharacterised sources (down to a few 10-15 erg s-1 cm-2 in the [0.5-2] keV band). A stacking analysis was performed for the remaining undetected optical clusters. Results: We find that all rich (λ ≥ 80) clusters are detected in X-rays out to z = 0.6. Below this redshift, the richness threshold for X-ray detection steadily decreases with redshift. Likewise, all X-ray bright clusters are detected by redMaPPer. After correcting for obvious pipeline shortcomings (about 10% of the cases both in optical and X-ray), ~50% of the redMaPPer (down to a richness of 20) are found to coincide with an X-CLASS cluster; when considering X-ray sources of any type, this fraction increases to ~80%; for the remaining objects, the stacking analysis finds a weak signal within 0.5 Mpc around the cluster optical centres. The fraction of clusters totally dominated by AGN-type emission appears to be a few percent. Conversely, ~40% of the X-CLASS clusters are identified with a redMaPPer (down to a richness of 20) - part of the non-matches being due to the X-CLASS sample extending further out than redMaPPer (z< 1.5 vs. z< 0.6), but extending the correlation down to a richness of 5 raises the matching rate to ~65%. Conclusions: This state-of-the-art study involving two well-validated cluster catalogues has shown itself to be complex, and it points to a number of issues inherent to blind cross-matching, owing both to pipeline shortcomings and cluster peculiar properties. These can only been accounted for after a manual check. The combined X-ray and optical scaling relations will be presented in a subsequent article.
AXIS - Advanced X-ray Imaging Sarellite
NASA Astrophysics Data System (ADS)
Loewenstein, Michael; AXIS Team
2018-01-01
We present an overview of the Advanced X-ray Imaging Satellite (AXIS), a probe mission concept under study to the 2020 Decadal survey. AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band over a 15' field of view. These capabilities are designed to attain a wide range of science goals such as (i) measuring the event horizon scale structure in AGN accretion disks and the spin of supermassive black holes through monitoring of gravitationally microlensed quasars; (ii) understanding AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) probing the fueling of AGN by resolving the SMBH sphere of influence in nearby galaxies; (iv) investigating hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with LSST, ELTs, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS utilizes breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout detectors.
Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kettula, K.; Finoguenov, A.; Massey, R.
2013-11-20
The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation anmore » order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.« less
The XMM Cluster Outskirts Project (X-COP)
NASA Astrophysics Data System (ADS)
Eckert, D.
2017-10-01
The outskirts of galaxy clusters (typically the regions located beyond R500) are the regions where the transition between the virialized ICM and the infalling material from the large-scale structure takes place. As such, they play a central role in our understanding of the processes leading to the virialization of the accreting gas within the central dark-matter halo. I will give an overview of the XMM cluster outskirts project (X-COP), a very large program on XMM to study the virial region of galaxy clusters with unprecedented details. I will show how X-ray observations can be combined with the Sunyaev-Zeldovich signal to recover the thermodynamic properties and hydrostatic mass of the ICM, bypassing the need for expensive X-ray spectroscopic observations. I will discuss the results obtained using this technique on Abell 2142 and Abell 2319 and give prospects for the results expected using the full X-COP sample. I will also present recent results on the search for warm-hot baryons in the filaments connected to clusters, emphasizing on the discovery of 3 filaments of 10-million-degree gas connected to the massive cluster Abell 2744.
NASA Astrophysics Data System (ADS)
Abdulla, Zubair M.
We use Sunyaev Zel'dovich Effect observations at 30 GHz with the Combined Array for Research in Millimeter Astronomy (CARMA) to probe the thermal contents of X-ray cavities in the galaxy cluster MS 0735+741 (MS0735). The hot (3-10 keV), diffuse X-ray emitting atmospheres of galaxy clusters should quickly radiate away its thermal energy via radiative cooling. However, high-resolution X-ray observations from Chandra and XMM have shown that the gas is not cooling to low temperatures at the rates expected, suggesting that the radiative cooling is being balanced by non-gravitational sources of heating. Of primary interest is the energy output from active galactic nuclei (AGN), outbursts from accreting super massive black holes at the center of clusters, which drive radio jets into the atmospheres of clusters and terminate in spectacular radio lobes. High resolution X-ray images have revealed giant cavities produced by the radio lobes displacing the X-ray emitting gas, providing a gauge for the mean mechanical power output of the AGN. These measured powers are enough to offset radiative cooling at the center of relaxed clusters, however, little beyond the energetics of the outbursts is known. The relative balance and efficiency of heating mechanisms for converting the mechanical energy from the AGN into thermal energy in the cluster atmosphere is not well understood, nor are the details of the jets whose contents inflate and support the X-ray cavities. The Sunyaev-Zel'dovich (SZ) effect, which is proportional to the line-of-sight pressure of the electrons of the hot gas in galaxy clusters, can shed light on these outstanding issues by directly constraining the thermal contents of the radio-filled X-ray cavities. In this work, we describe the assembly and commissioning of 1-cm cryogenic receivers for CARMA, which are vital for the high-fidelity SZ observations required for the proposed measurements. CARMA is a 23-element heterogeneous radio interferometer in Cedar Flat, CA. Receivers previously used on the Cosmic Background Imager (CBI) experiment were rebuilt with new low noise amplifiers and updated electronics and installed on the nine 6.1 m telescopes of CARMA, making all 23 CARMA telescopes capable of 1-cm observations. Commissioning observations of the CARMA-23 1-cm instrument took place in February to March of 2013. The upgraded CARMA-23 instrument is used to observe the SZ effect in the direction of the giant X-ray cavities of MS0735, the most energetic AGN outbursts known (˜ 1062 erg). We model the new CARMA data with a simple analytical model for the SZ signal produced by cavities embedded in an otherwise relaxed cluster, and supplement the model with X-ray and radio observations of MS0735 from Chandra and VLA. We find a sharp contrast in the SZ signal highly coincident with the X-ray identified cavities, suggesting a lack of SZ contributing material in the cavities and representing the first ever detection of these phenomena with the SZ effect. Our model strongly disfavors the cavities containing thermal gas of < 150 keV. If the pressure support in the bubbles is thermal, it is likely several hundreds to thousands of keV and very diffuse (<10-4 cm-3 ). Or alternatively, our findings are consistent with bubbles supported non-thermally by relativistic particles or magnetic fields.
Subaru Weak-Lensing Survey II: Multi-Object Spectroscopy and Cluster Masses
NASA Astrophysics Data System (ADS)
Hamana, Takashi; Miyazaki, Satoshi; Kashikawa, Nobunari; Ellis, Richard S.; Massey, Richard J.; Refregier, Alexandre; Taylor, James E.
2009-08-01
We present the first results of a multi-object spectroscopic campaign to follow up cluster candidates located via weak lensing. Our main goals are to search for spatial concentrations of galaxies that are plausible optical counterparts of the weak-lensing signals, and to determine the cluster redshifts from those of member galaxies. Around each of 36 targeted cluster candidates, we obtained 15-32 galaxy redshifts. For 28 of these targets, we confirmed a secure cluster identification, with more than five spectroscopic galaxies within a velocity of ±3000km s-1. This includes three cases where two clusters at different redshifts are projected along the same line-of-sight. In 6 of the 8 unconfirmed targets, we found multiple small galaxy concentrations at different redshifts, each containing at least three spectroscopic galaxies. The weak-lensing signal around those systems was thus probably created by the projection of groups or small clusters along the same line-of-sight. In both of the remaining two targets, a single small galaxy concentration was found. In some candidate super-cluster systems, we found additional evidence of filaments connecting the main density peak to an additional nearby structure. For a subsample of our most cleanly measured clusters, we investigated the statistical relation between their weak-lensing mass (MNFW, σSIS) and the velocity dispersion of their member galaxies (σv), comparing our sample with optically and X-ray selected samples from the literature. Our lensing-selected clusters are consistent with σv = σSIS, with a similar scatter to that of optically and X-ray selected clusters. We also derived an empirical relation between the cluster mass and the galaxy velocity dispersion, M200E(z) = 11.0 × 1014 × (σv/1000km s-1)3.0 h-1 Modot, which is in reasonable agreement with predictions of N-body simulations in the Λ CDM cosmology.
Cold Fronts in Clusters of Galaxies: Observations and Modeling
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.
Calibrating the Planck cluster mass scale with cluster velocity dispersions
NASA Astrophysics Data System (ADS)
Amodeo, S.; Mei, S.; Stanford, S. A.; Bartlett, J. G.; Lawrence, C. L.; Chary, R. R.; Shim, H.; Marleau, F.; Stern, D.
2017-12-01
The potential of galaxy clusters as cosmological probes critically depends on the capability to obtain accurate estimates of their mass. This will be a key measurement for the next generation of cosmological surveys, such as Euclid. The discrepancy between the cosmological parameters determined from anisotropies in the cosmic microwave background and those derived from cluster abundance measurements from the Planck satellite calls for careful evaluation of systematic biases in cluster mass estimates. For this purpose, it is crucial to use independent techniques, like analysis of the thermal emission of the intracluster medium (ICM), observed either in the X-rays or through the Sunyaev-Zeldovich (SZ) effect, dynamics of member galaxies or gravitational lensing. We discuss possible bias in the Planck SZ mass proxy, which is based on X-ray observations. Using optical spectroscopy from the Gemini Multi-Object Spectrograph of 17 Planck-selected clusters, we present new estimates of the cluster mass based on the velocity dispersion of the member galaxies and independently of the ICM properties. We show how the difference between the velocity dispersion of galaxy and dark matter particles in simulations is the primary factor limiting interpretation of dynamical cluster mass measurements at this time, and we give the first observational constraints on the velocity bias.
Shocks and Cool Cores: An ALMA View of Massive Galaxy Cluster Formation at High Redshifts
NASA Astrophysics Data System (ADS)
Basu, Kaustuv
2017-07-01
These slides present some recent results on the Sunyaev-Zel'dovich (SZ) effect imaging of galaxy cluster substructures. The advantage of SZ imaging at high redshifts or in the low density cluster outskirts is already well-known. Now with ALMA a combination of superior angular resolution and high sensitivity is available. One example is the first ALMA measurement of a merger shock at z=0.9 in the famous El Gordo galaxy cluster. Here comparison between SZ, X-ray and radio data enabled us to put constraints on the shock Mach number and magnetic field strength for a high-z radio relic. Second example is the ALMA SZ imaging of the core region of z=1.4 galaxy cluster XMMU J2235.2-2557. Here ALMA data provide an accurate measurement of the thermal pressure near the cluster center, and from a joint SZ/X-ray analysis we find clear evidence for a reduced core temperature. This result indicate that a cool core establishes itself early enough in the cluster formation history while the gas accumulation is still continuing. The above two ALMA measurements are among several other recent SZ results that shed light on the formation process of massive clusters at high redshifts.
A filament of dark matter between two clusters of galaxies.
Dietrich, Jörg P; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora
2012-07-12
It is a firm prediction of the concordance cold-dark-matter cosmological model that galaxy clusters occur at the intersection of large-scale structure filaments. The thread-like structure of this 'cosmic web' has been traced by galaxy redshift surveys for decades. More recently, the warm–hot intergalactic medium (a sparse plasma with temperatures of 10(5) kelvin to 10(7) kelvin) residing in low-redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying dark-matter skeleton, which should contain more than half of all matter, has remained elusive, because earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignments of dark and luminous matter. Here we report the detection of a dark-matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of galaxies and diffuse, soft-X-ray emission, and contributes a mass comparable to that of an additional galaxy cluster to the total mass of the supercluster. By combining this result with X-ray observations, we can place an upper limit of 0.09 on the hot gas fraction (the mass of X-ray-emitting gas divided by the total mass) in the filament.
The LAMAR: A high throughput X-ray astronomy facility for a moderate cost mission
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Schwartz, D.
1981-01-01
The performance of a large area modular array of reflectors (LAMAR) is considered in several hypothetical observations relevant to: (1) cosmology, the X-ray background, and large scale structure of the universe; (2) clusters of galaxies and their evolution; (3) quasars and other active galactic nuclei; (4) compact objects in our galaxy; (5) stellar coronae; and (6) energy input to the interstellar medium.
Chandra Observations of MS0440.5+0204 & MS0839.9+2938: Cooling Flow Clusters in Formation?
NASA Astrophysics Data System (ADS)
McNamara, Brian
2000-09-01
We propose to observe two redshift z~0.2 clusters, MS0839.9+2938 and MS0440+0204, discovered as bright X-ray sources in the Einstein Medium Sensitivity Survey. The cluster cores are structured in the X-ray and optical bands, and they harbor large cooling flows. Their central cluster galaxies contain luminous nebular emission systems, active star formation, and strong radio sources. Using the Chandra data, we will determine whether the large discrepancies between the X-ray cooling rates and optical star formation rates can be reconciled, and we will test the hypothesis that cooling flows form as cool, dense groups accrete into massive clusters.
X-ray emission from a complete sample of Abell clusters of galaxies
NASA Astrophysics Data System (ADS)
Briel, Ulrich G.; Henry, J. Patrick
1993-11-01
The ROSAT All-Sky Survey (RASS) is used to investigate the X-ray properties of a complete sample of Abell clusters with measured redshifts and accurate positions. The sample comprises the 145 clusters within a 561 square degree region at high galactic latitude. The mean redshift is 0.17. This sample is especially well suited to be studied within the RASS since the mean exposure time is higher than average and the mean galactic column density is very low. These together produce a flux limit of about 4.2 x 10-13 erg/sq cm/s in the 0.5 to 2.5 keV energy band. Sixty-six (46%) individual clusters are detected at a significance level higher than 99.7% of which 7 could be chance coincidences of background or foreground sources. At redshifts greater than 0.3 six clusters out of seven (86%) are detected at the same significance level. The detected objects show a clear X-ray luminosity -- galaxy count relation with a dispersion consistent with other external estimates of the error in the counts. By analyzing the excess of positive fluctuations of the X-ray flux at the cluster positions, compared with the fluctuations of randomly drawn background fields, it is possible to extend these results below the nominal flux limit. We find 80% of richness R greater than or = 0 and 86% of R greater than or = 1 clusters are X-ray emitters with fluxes above 1 x 10-13 erg/sq cm/s. Nearly 90% of the clusters meeting the requirements to be in Abell's statistical sample emit above the same level. We therefore conclude that almost all Abell clusters are real clusters and the Abell catalog is not strongly contaminated by projection effects. We use the Kaplan-Meier product limit estimator to calculate the cumulative X-ray luminosity function. We show that the shape of the luminosity functions are similiar for different richness classes, but the characteristic luminosities of richness 2 clusters are about twice those of richness 1 clusters which are in turn about twice those of richness 0 clusters. This result is another manifestation of the luminosity -- richness elation for Abell clusters.
NASA Astrophysics Data System (ADS)
Deshpande, Amruta J.; Hughes, John P.; Wittman, David
2017-04-01
We continue the study of the first sample of shear-selected clusters from the initial 8.6 square degrees of the Deep Lens Survey (DLS); a sample with well-defined selection criteria corresponding to the highest ranked shear peaks in the survey area. We aim to characterize the weak lensing selection by examining the sample’s X-ray properties. There are multiple X-ray clusters associated with nearly all the shear peaks: 14 X-ray clusters corresponding to seven DLS shear peaks. An additional three X-ray clusters cannot be definitively associated with shear peaks, mainly due to large positional offsets between the X-ray centroid and the shear peak. Here we report on the XMM-Newton properties of the 17 X-ray clusters. The X-ray clusters display a wide range of luminosities and temperatures; the L X -T X relation we determine for the shear-associated X-ray clusters is consistent with X-ray cluster samples selected without regard to dynamical state, while it is inconsistent with self-similarity. For a subset of the sample, we measure X-ray masses using temperature as a proxy, and compare to weak lensing masses determined by the DLS team. The resulting mass comparison is consistent with equality. The X-ray and weak lensing masses show considerable intrinsic scatter (˜48%), which is consistent with X-ray selected samples when their X-ray and weak lensing masses are independently determined. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Wang, Q. Daniel; Dong, Hui; Lang, Cornelia
2006-09-01
The Galactic centre (GC) provides a unique laboratory for a detailed examination of the interplay between massive star formation and the nuclear environment of our Galaxy. Here, we present a 100-ks Chandra Advanced CCD Imaging Spectrometer (ACIS) observation of the Arches and Quintuplet star clusters. We also report on a complementary mapping of the dense molecular gas near the Arches cluster made with the Owens Valley Millimeter Array. We present a catalogue of 244 point-like X-ray sources detected in the observation. Their number-flux relation indicates an overpopulation of relatively bright X-ray sources, which are apparently associated with the clusters. The sources in the core of the Arches and Quintuplet clusters are most likely extreme colliding wind massive star binaries. The diffuse X-ray emission from the core of the Arches cluster has a spectrum showing a 6.7-keV emission line and a surface intensity profile declining steeply with radius, indicating an origin in a cluster wind. In the outer regions near the Arches cluster, the overall diffuse X-ray enhancement demonstrates a bow shock morphology and is prominent in the Fe Kα 6.4-keV line emission with an equivalent width of ~1.4 keV. Much of this enhancement may result from an ongoing collision between the cluster and the adjacent molecular cloud, which have a relative velocity >~120km-1. The older and less-compact Quintuplet cluster contains much weaker X-ray sources and diffuse emission, probably originating from low-mass stellar objects as well as a cluster wind. However, the overall population of these objects, constrained by the observed total diffuse X-ray luminosities, is substantially smaller than expected for both clusters, if they have normal Miller & Scalo initial mass functions. This deficiency of low-mass objects may be a manifestation of the unique star formation environment of the GC, where high-velocity cloud-cloud and cloud-cluster collisions are frequent.
Internal dynamics of the radio-halo cluster A2219: A multi-wavelength analysis
NASA Astrophysics Data System (ADS)
Boschin, W.; Girardi, M.; Barrena, R.; Biviano, A.; Feretti, L.; Ramella, M.
2004-03-01
We present the results of the dynamical analysis of the rich, hot, and X-ray very luminous galaxy cluster A2219, containing a powerful diffuse radio-halo. Our analysis is based on new redshift data for 27 galaxies in the cluster region, measured from spectra obtained at the TNG, with the addition of other 105 galaxies recovered from reduction of CFHT archive data in a cluster region of ˜5 arcmin radius (˜ 0.8 h-1 Mpc ; at the cluster distance) centered on the cD galaxy. The investigation of the dynamical status is also performed using X-ray data stored in the Chandra archive. Further, valuable information comes from other bands - optical photometric, infrared, and radio data - which are analyzed and/or discussed, too. We find that A2219 appears as a peak in the velocity space at z=0.225, and select 113 cluster members. We compute a high value for the line-of-sight velocity dispersion, σv= 1438+109-86 km s-1, consistent with the high average X-ray temperature of 10.3 keV. If dynamical equilibrium is assumed, the virial theorem leads to M˜2.8× 1015 M⊙ ;sun for the global mass within the virial region. However, further investigation based on both optical and X-ray data shows significant signs of a young dynamical status. In fact, we find strong evidence for the elongation of the cluster in the SE-NW direction coupled with a significant velocity gradient, as well as for the presence of substructure both in optical data and X-ray data. Moreover, we point out the presence of several active galaxies. We discuss the results of our multi-wavelength investigation suggesting a complex merging scenario where the main, original structure is subject to an ongoing merger with a few clumps aligned in a filament in the foreground oriented in an oblique direction with respect to the line-of-sight. Our conclusion supports the view of the connection between extended radio emission and merging phenomena in galaxy clusters. Based on observations made on the island of La Palma with the Italian Telescopio Nazionale Galileo (TNG) operated by the Centro Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) and with the 1.0 m Jacobus Kapteyn Telescope (JKT) operated by the Isaac Newton Group at the Spanish Observatorio de Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Table 1 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/416/839
Probing the Hot and Energetic Universe: X-rays and Astrophysics
NASA Astrophysics Data System (ADS)
Bautz, Marshall; Kraft, Ralph
2016-03-01
X-ray observations are a cornerstone of our understanding of the formation and evolution of structure in the Universe, from solar-system-sized supermassive black holes (SMBH) to the largest galaxy clusters. At the most basic level, a significant fraction of the energy output in the Universe is in X-rays, and much of this emission traces the response of baryonic matter to the inexorable, gravity-driven growth of cosmic structure. At present, for example, half or more of the baryons in the Universe reside in a hot (>1 MK) X-ray-emitting phase. We discuss some of the remarkable progress that has been made in understanding the broad outlines of these processes with the current generation of X-ray observatories. We summarize the potential of recently launched and forthcoming X-ray observatories to track the development of large-scale cosmic structure and to understand the physics linking the growth of SMBH with that of the (many orders of magnitude larger) galaxies and clusters which host them. We briefly review nearer-term prospects for smaller, focussed missions, including one that will soon exploit pulsating X-ray emission from neutron stars to probe the equation of state of matter at nuclear densities.
STRONG GRAVITATIONAL LENSING BY THE SUPER-MASSIVE cD GALAXY IN ABELL 3827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco, E. R.; Gomez, P. L.; Lee, H.
2010-06-01
We have discovered strong gravitational lensing features in the core of the nearby cluster Abell 3827 by analyzing Gemini South GMOS images. The most prominent strong lensing feature is a highly magnified, ring-shaped configuration of four images around the central cD galaxy. GMOS spectroscopic analysis puts this source at z {approx} 0.2. Located {approx}20'' away from the central galaxy is a secondary tangential arc feature which has been identified as a background galaxy with z {approx} 0.4. We have modeled the gravitational potential of the cluster core, taking into account the mass from the cluster, the brightest cluster galaxy (BCG),more » and other galaxies. We derive a total mass of (2.7 {+-} 0.4) x 10{sup 13} M {sub sun} within 37 h {sup -1} kpc. This mass is an order of magnitude larger than that derived from X-ray observations. The total mass derived from lensing data suggests that the BCG in this cluster is perhaps the most massive galaxy in the nearby universe.« less
Substructures in DAFT/FADA survey clusters based on XMM and optical data
NASA Astrophysics Data System (ADS)
Durret, F.; DAFT/FADA Team
2014-07-01
The DAFT/FADA survey was initiated to perform weak lensing tomography on a sample of 90 massive clusters in the redshift range [0.4,0.9] with HST imaging available. The complementary deep multiband imaging constitutes a high quality imaging data base for these clusters. In X-rays, we have analysed the XMM-Newton and/or Chandra data available for 32 clusters, and for 23 clusters we fit the X-ray emissivity with a beta-model and subtract it to search for substructures in the X-ray gas. This study was coupled with a dynamical analysis for the 18 clusters with at least 15 spectroscopic galaxy redshifts in the cluster range, based on a Serna & Gerbal (SG) analysis. We detected ten substructures in eight clusters by both methods (X-rays and SG). The percentage of mass included in substructures is found to be roughly constant with redshift, with values of 5-15%. Most of the substructures detected both in X-rays and with the SG method are found to be relatively recent infalls, probably at their first cluster pericenter approach.
The role of penetrating gas streams in setting the dynamical state of galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, E.; Dekel, A.; Birnboim, Y.; Kravtsov, A.; Nagai, D.
2016-09-01
We utilize cosmological simulations of 16 galaxy clusters at redshifts z = 0 and z = 0.6 to study the effect of inflowing streams on the properties of the X-ray emitting intracluster medium. We find that the mass accretion occurs predominantly along streams that originate from the cosmic web and consist of heated gas. Clusters that are unrelaxed in terms of their X-ray morphology are characterized by higher mass inflow rates and deeper penetration of the streams, typically into the inner third of the virial radius. The penetrating streams generate elevated random motions, bulk flows and cold fronts. The degree of penetration of the streams may change over time such that clusters can switch from being unrelaxed to relaxed over a time-scale of several giga years.
Chandra Observation of the WAT Radio Source/ICM Interaction in Abell 623
NASA Astrophysics Data System (ADS)
Anand, Gagandeep; Blanton, Elizabeth L.; Randall, Scott W.; Paterno-Mahler, Rachel; Douglass, Edmund
2017-01-01
Galaxy clusters are important objects for studying the physics of the intracluster medium (ICM), galaxy formation and evolution, and cosmological parameters. Clusters containing wide-angle tail (WAT) radio sources are particularly valuable for studies of the interaction between these sources and the surrounding ICM. These sources are thought to form when the ram pressure from the ICM caused by the relative motion between the host radio galaxy and the cluster bends the radio lobes into a distinct wide-angle morphology. We present our results from the analysis of a Chandra observation of the nearby WAT hosting galaxy cluster Abell 623. A clear decrement in X-ray emission is coincident with the southern radio lobe, consistent with being a cavity carved out by the radio source. We present profiles of surface brightness, temperature, density, and pressure and find evidence for a possible shock. Based on the X-ray pressure in the vicinity of the radio lobes and assumptions about the content of the lobes, we estimate the relative ICM velocity required to bend the lobes into the observed angle. We also present spectral model fits to the overall diffuse cluster emission and see no strong signature for a cool core. The sum of the evidence indicates that Abell 623 may be undergoing a large scale cluster-cluster merger.
Star formation and galaxy evolution in different environments, from the field to massive clusters
NASA Astrophysics Data System (ADS)
Tyler, Krystal
This thesis focuses on how a galaxy's environment affects its star formation, from the galactic environment of the most luminous IR galaxies in the universe to groups and massive clusters of galaxies. Initially, we studied a class of high-redshift galaxies with extremely red optical-to-mid-IR colors. We used Spitzer spectra and photometry to identify whether the IR outputs of these objects are dominated by AGNs or star formation. In accordance with the expectation that the AGN contribution should increase with IR luminosity, we find most of our very red IR-luminous galaxies to be dominated by an AGN, though a few appear to be star-formation dominated. We then observed how the density of the extraglactic environment plays a role in galaxy evolution. We begin with Spitzer and HST observations of intermediate-redshift groups. Although the environment has clearly changed some properties of its members, group galaxies at a given mass and morphology have comparable amounts of star formation as field galaxies. We conclude the main difference between the two environments is the higher fraction of massive early-type galaxies in groups. Clusters show even more distinct trends. Using three different star-formation indicators, we found the mass-SFR relation for cluster galaxies can look similar to the field (A2029) or have a population of low-star-forming galaxies in addition to the field-like galaxies (Coma). We contribute this to differing merger histories: recently-accreted galaxies would not have time for their star formation to be quenched by the cluster environment (A2029), while an accretion event in the past few Gyr would give galaxies enough time to have their star formation suppressed by the cluster environment. Since these two main quenching mechanisms depend on the density of the intracluster gas, we turn to a group of X-ray underluminous clusters to study how star-forming galaxies have been affected in clusters with lower than expected X-ray emission. We find the distribution of star-forming galaxies with respect to stellar mass varies from cluster to cluster, echoing what we found for Coma and A2029. In other words, while some preprocessing occurs in groups, the cluster environment still contributes to the quenching of star formation.
NASA Astrophysics Data System (ADS)
Rodrigo Carrasco Damele, Eleazar; Verdugo, Tomas
2018-01-01
The galaxy cluster Abell 3827 is one of the most massive clusters know at z ≦ 0.1 (Richness class 2, BM typeI, X-ray LX = 2.4 x 1044 erg s-1). The Brightest Cluster Galaxy (BCG) in Abell 3827 is perhaps the most extreme example of ongoing galaxy cannibalism. The multi-component BCG hosts the stellar remnants nuclei of at least four bright elliptical galaxies embedded in a common assymetric halo extended up to 15 kpc. The most notorious characteristic of the BCG is the existence of a unique strong gravitational lens system located within the inner 15 kpc region. A mass estimation of the galaxy based on strong lensing model was presented in Carrasco et al (2010, ApJL, 715, 160). Moreover, the exceptional strong lensing lens system in Abell 3827 and the location of the four bright galaxies has been used to measure for the first time small physical separations between dark and ordinary matter (Williams et al. 2011, MNRAS, 415, 448, Massey et al. 2015, MNRAS, 449, 3393). In this contribution, we present a detailed strong lensing and dynamical analysis of the cluster Abell 3827 based on spectroscopic redshift of the lensed features and from ~70 spectroscopically confirmed member galaxies inside 0.5 x 0.5 Mpc from the cluster center.
NASA Astrophysics Data System (ADS)
Lanz, L.; Ogle, P. M.; Evans, D.; Appleton, P. N.; Guillard, P.; Emonts, B.
2015-03-01
We present a 70 ks Chandra observation of the radio galaxy 3C 293. This galaxy belongs to the class of molecular hydrogen emission galaxies (MOHEGs) that have very luminous emission from warm molecular hydrogen. In radio galaxies, the molecular gas appears to be heated by jet-driven shocks, but exactly how this mechanism works is still poorly understood. With Chandra, we observe X-ray emission from the jets within the host galaxy and along the 100 kpc radio jets. We model the X-ray spectra of the nucleus, the inner jets, and the X-ray features along the extended radio jets. Both the nucleus and the inner jets show evidence of 107 K shock-heated gas. The kinetic power of the jets is more than sufficient to heat the X-ray emitting gas within the host galaxy. The thermal X-ray and warm H2 luminosities of 3C 293 are similar, indicating similar masses of X-ray hot gas and warm molecular gas. This is consistent with a picture where both derive from a multiphase, shocked interstellar medium (ISM). We find that radio-loud MOHEGs that are not brightest cluster galaxies (BCGs), like 3C 293, typically have LH2/LX˜ 1 and MH2/MX˜ 1, whereas MOHEGs that are BCGs have LH2/LX˜ 0.01 and MH2/MX˜ 0.01. The more massive, virialized, hot atmosphere in BCGs overwhelms any direct X-ray emission from current jet-ISM interaction. On the other hand, LH2/LX˜ 1 in the Spiderweb BCG at z = 2, which resides in an unvirialized protocluster and hosts a powerful radio source. Over time, jet-ISM interaction may contribute to the establishment of a hot atmosphere in BCGs and other massive elliptical galaxies.
Stirred, Not Clumped: Evolution of Temperature Profiles in the Outskirts of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T.
2016-12-01
Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the use of galaxy clusters as cosmological probes.
Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers
NASA Astrophysics Data System (ADS)
Paterno-Mahler, Rachel Beth
Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on measurements of excess galaxy counts surrounding the radio sources in Spitzer infrared images.
NASA Technical Reports Server (NTRS)
Maoz, Eyal; Grindlay, Jonathan E.
1995-01-01
The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the possible nature of these soures, including their being subdwarfs, low mass x-ray binaries (LMXBs), massive black holes, and old neutron stars. We argue that the inferred X-ray and optical luminosities of these sources, the slope of their energy spectrum, and the derived local number density and spatial distribution are all consistent with their being intrinsically faint cataclysmic variables with low accretion rates. We suggest a few possibilities for the origin of such population, including an origin from disrupted globular clusters or dark clusters. We make predictions and suggest tests that could either confirm or rule out our proposal in the near future.
Classification of X-ray sources in the direction of M31
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.
2012-01-01
M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.
Construcción de un catálogo de cúmulos de galaxias en proceso de colisión
NASA Astrophysics Data System (ADS)
de los Ríos, M.; Domínguez, M. J.; Paz, D.
2015-08-01
In this work we present first results of the identification of colliding galaxy clusters in galaxy catalogs with redshift measurements (SDSS, 2DF), and introduce the methodology. We calibrated a method by studying the merger trees of clusters in a mock catalog based on a full-blown semi-analytic model of galaxy formation on top of the Millenium cosmological simulation. We also discuss future actions for studding our sample of colliding galaxy clusters, including x-ray observations and mass reconstruction obtained by using weak gravitational lenses.
The Environmental Impact of Intra-Cluster Medium on the Interstellar Medium in Early Type Galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, Ginevra
1993-01-01
Draft versions of three articles submitted for publication are presented. The first two articles address high resolution X-ray images of early type galaxies observed with the ROSAT HRI and PSPC. Data for NGC 1553 and NGC 5846 indicate that the emission is highly irregular, with interesting features at different scales. The gas temperatures also vary both with the galactocentric radius and in correspondence to regions of higher emission and denser material. Strikingly similar features are observed in the X-ray and H-alpha morphologies of NGC 1553 and NGC 5846, while smooth, regular isophotes are observed in NGC 4649 at both wavelengths. The third article addresses ROSAT PSPC observations of 5 X-ray bright early type galaxies.
Pandora Cluster Seen by Spitzer
2016-09-28
This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing. The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy. The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns. http://photojournal.jpl.nasa.gov/catalog/PIA20920
Merging and Clustering of the Swift BAT AGN Sample
NASA Astrophysics Data System (ADS)
Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa
2010-06-01
We discuss the merger rate, close galaxy environment, and clustering on scales up to an Mpc of the Swift BAT hard X-ray sample of nearby (z<0.05), moderate-luminosity active galactic nuclei (AGNs). We find a higher incidence of galaxies with signs of disruption compared to a matched control sample (18% versus 1%) and of close pairs within 30 kpc (24% versus 1%). We also find a larger fraction with companions compared to normal galaxies and optical emission line selected AGNs at scales up to 250 kpc. We hypothesize that these merging AGNs may not be identified using optical emission line diagnostics because of optical extinction and dilution by star formation. In support of this hypothesis, in merging systems we find a higher hard X-ray to [O III] flux ratio, as well as emission line diagnostics characteristic of composite or star-forming galaxies, and a larger IRAS 60 μm to stellar mass ratio.
The Remarkable Similarity of Massive Galaxy Clusters from z ~ 0 to z ~ 1.9
McDonald, M.; Allen, S. W.; Bayliss, M.; ...
2017-06-28
We present the results of a Chandra X-ray survey of the 8 most massive galaxy clusters at z>1.2 in the South Pole Telescope 2500 deg^2 survey. We combine this sample with previously-published Chandra observations of 49 massive X-ray-selected clusters at 00.2R500 scaling like E(z)^2. In the centers of clusters (r<0.1R500), we find significant deviations from self similarity (n_e ~ E(z)^{0.1+/-0.5}), consistent with no redshift dependence. When we isolate clusters with over-dense cores (i.e., cool cores), we find that the average over-density profile has not evolved with redshift -- that is, cool cores have not changed in size, density, or totalmore » mass over the past ~9-10 Gyr. We show that the evolving "cuspiness" of clusters in the X-ray, reported by several previous studies, can be understood in the context of a cool core with fixed properties embedded in a self similarly-evolving cluster. We find no measurable evolution in the X-ray morphology of massive clusters, seemingly in tension with the rapidly-rising (with redshift) rate of major mergers predicted by cosmological simulations. We show that these two results can be brought into agreement if we assume that the relaxation time after a merger is proportional to the crossing time, since the latter is proportional to H(z)^(-1).« less
Occurrence of Radio Minihalos in a Mass-Limited Sample of Galaxy Clusters
NASA Technical Reports Server (NTRS)
Giacintucci, Simona; Markevitch, Maxim; Cassano, Rossella; Venturi, Tiziana; Clarke, Tracy E.; Brunetti, Gianfranco
2017-01-01
We investigate the occurrence of radio minihalos-diffuse radio sources of unknown origin observed in the cores of some galaxy clusters-in a statistical sample of 58 clusters drawn from the Planck Sunyaev-Zeldovich cluster catalog using a mass cut (M(sub 500) greater than 6 x 10(exp 14) solar mass). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present. Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores-at least 12 out of 15 (80%)-in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or "warm cores." These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.
WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey
NASA Astrophysics Data System (ADS)
Cava, A.; Bettoni, D.; Poggianti, B. M.; Couch, W. J.; Moles, M.; Varela, J.; Biviano, A.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Fritz, J.; Kjærgaard, P.; Ramella, M.; Valentinuzzi, T.
2009-03-01
Aims: We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods: Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ~45 km s-1. Results: We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ~30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions: Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx ∝ σ_v^4. Table 4, containing the complete redshift catalog, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Mohr, J.; Saro, A.
2015-02-26
We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev-Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from similar to 6 deg(2) of the XMM-Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (>= 10(42) erg s(-1)) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y-500 mass relations. The former is inmore » good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8 sigma with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8 sigma significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y-500 signal that is (17 +/- 9) per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass-observable relations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, J.; Mohr, J.; Saro, A.
2015-02-25
We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev–Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg 2 of the XMM–Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥10 42 erg s -1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y_500 mass relations. The former is in good agreement with anmore » extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17 ± 9)per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass–observable relations.« less
1990-03-20
This photograph was taken during the integration of the Astro-1 mission payloads at the Kennedy Space Center on March 20, 1990, showing the Broad Band X-Ray Telescope (BBXRT) at the left, as three telescopes for the Astro-1 Observatory are settled into the Orbiter Columbia payload bay. Above Earth's atmospheric interference, Astro-1 would make precise measurements of objects such as planets, stars, and galaxies in relatively small fields of view and would observe and measure ultraviolet radiation from celestial objects. The Astro-1 used a Spacelab pallet system with an instrument pointing system and a cruciform structure for bearing the three ultraviolet instruments mounted in a parallel configuration. The three instruments were: The Hopkins Ultraviolet Telescope (HUT), which was designed to obtain far-ultraviolet spectroscopic data from white dwarfs, emission nebulae, active galaxies, and quasars; the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE) which was to study polarized ultraviolet light from magnetic white dwarfs, binary stars, reflection nebulae, and active galaxies; and the Ultraviolet Imaging Telescope (UIT), which was to record photographic images in ultraviolet light of galaxies, star clusters, and nebulae. The star trackers that supported the instrument pointing system, were also mounted on the cruciform. Also in the payload bay was the Broad Band X-Ray Telescope (BBXRT), which was designed to obtain high-resolution x-ray spectra from stellar corona, x-ray binary stars, active galactic nuclei, and galaxy clusters. Managed by the Marshall Space Flight Center, the Astro-1 observatory was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.
Enhancement of AGN Activity in Distant Galaxy Clusters
NASA Astrophysics Data System (ADS)
Krishnan, Charutha; Hatch, Nina; Almaini, Omar
2017-07-01
I present our recent study of the prevalence of X-ray AGN in the high-redshift protocluster Cl 0218.3-0510 at z=1.62, and review the implications for our understanding of galaxy evolution. There has long been a consensus that X-ray AGN avoid clusters in the local universe, particularly their cores. The high-redshift universe appears to not follow these trends, as there is a reversal in the local anti-correlation between galaxy density and AGN activity. In this z=1.62 protocluster, we find a large overdensity of AGN by a factor of 23, and an enhancement in the AGN fraction among massive galaxies relative to the field by a factor of 2. I will discuss the comparison of the properties of AGN in the protocluster to the field, and explain how our results point towards similar triggering mechanisms in the two environments. I will also describe how our study of the morphologies of these galaxies provide tentative evidence towards galaxy mergers and interactions being responsible for triggering AGN, and explain the reversal of the local anti-correlation between galaxy density and AGN activity.
The X-ray surface brightness distribution and spectral properties of six early-type galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Canizares, C. R.
1986-01-01
Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.
The SLUGGS Survey: HST/ACS Mosaic Imaging of the NGC 3115 Globular Cluster System
NASA Astrophysics Data System (ADS)
Jennings, Zachary G.; Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Arnold, Jacob A.; Lin, Dacheng; Irwin, Jimmy A.; Sivakoff, Gregory R.; Wong, Ka-Wah
2014-08-01
We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R h measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a "blue tilt" in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and blue subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ~10% larger R h than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R h measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.
The sluggs survey: HST/ACS mosaic imaging of the NGC 3115 globular cluster system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Zachary G.; Romanowsky, Aaron J.; Brodie, Jean P.
We present Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS) g and z photometry and half-light radii R {sub h} measurements of 360 globular cluster (GC) candidates around the nearby S0 galaxy NGC 3115. We also include Subaru/Suprime-Cam g, r, and i photometry of 421 additional candidates. The well-established color bimodality of the GC system is obvious in the HST/ACS photometry. We find evidence for a 'blue tilt' in the blue GC subpopulation, wherein the GCs in the blue subpopulation get redder as luminosity increases, indicative of a mass-metallicity relationship. We find a color gradient in both the red and bluemore » subpopulations, with each group of clusters becoming bluer at larger distances from NGC 3115. The gradient is of similar strength in both subpopulations, but is monotonic and more significant for the blue clusters. On average, the blue clusters have ∼10% larger R {sub h} than the red clusters. This average difference is less than is typically observed for early-type galaxies but does match that measured in the literature for the Sombrero Galaxy (M104), suggesting that morphology and inclination may affect the measured size difference between the red and blue clusters. However, the scatter on the R {sub h} measurements is large. We also identify 31 clusters more extended than typical GCs, which we term ultra-compact dwarf (UCD) candidates. Many of these objects are actually considerably fainter than typical UCDs. While it is likely that a significant number will be background contaminants, six of these UCD candidates are spectroscopically confirmed as NGC 3115 members. To explore the prevalence of low-mass X-ray binaries in the GC system, we match our ACS and Suprime-Cam detections to corresponding Chandra X-ray sources. We identify 45 X-ray-GC matches: 16 among the blue subpopulation and 29 among the red subpopulation. These X-ray/GC coincidence fractions are larger than is typical for most GC systems, probably due to the increased depth of the X-ray data compared to previous studies of GC systems.« less
The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity
NASA Technical Reports Server (NTRS)
Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu
1994-01-01
We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.
NASA Astrophysics Data System (ADS)
Parroni, Carolina; Mei, Simona; Erben, Thomas; Van Waerbeke, Ludovic; Raichoor, Anand; Ford, Jes; Licitra, Rossella; Meneghetti, Massimo; Hildebrandt, Hendrik; Miller, Lance; Côté, Patrick; Covone, Giovanni; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Ferrarese, Laura; Gwyn, Stephen D. J.; Puzia, Thomas H.
2017-10-01
We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters detected by the RedGOLD algorithm in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2< z< 0.5, in the optical richness range 10< λ < 70. This is the most comprehensive lensing study of a ˜ 100 % complete and ˜ 80 % pure optical cluster catalog in this redshift range. We test different mass models, and our final model includes a basic halo model with a Navarro Frenk and White profile, as well as correction terms that take into account cluster miscentering, non-weak shear, the two-halo term, the contribution of the Brightest Cluster Galaxy, and an a posteriori correction for the intrinsic scatter in the mass-richness relation. With this model, we obtain a mass-richness relation of {log}{M}200/{M}⊙ =(14.46+/- 0.02)+(1.04+/- 0.09){log}(λ /40) (statistical uncertainties). This result is consistent with other published lensing mass-richness relations. We give the coefficients of the scaling relations between the lensing mass and X-ray mass proxies, L X and T X, and compare them with previous results. When compared to X-ray masses and mass proxies, our results are in agreement with most previous results and simulations, and consistent with the expected deviations from self-similarity.
Galactic Starburst NGC 3603 from X-Rays to Radio
NASA Technical Reports Server (NTRS)
Moffat, A. F. J.; Corcoran, M. F.; Stevens, I. R.; Skalkowski, G.; Marchenko, S. V.; Muecke, A.; Ptak, A.; Koribalski, B. S.; Brenneman, L.; Mushotzky, R.;
2002-01-01
NGC 3603 is the most massive and luminous visible starburst region in the Galaxy. We present the first Chandra/ACIS-I X-ray image and spectra of this dense, exotic object, accompanied by deep cm-wavelength ATCA radio image at similar or less than 1 inch spatial resolution, and HST/ground-based optical data. At the S/N greater than 3 level, Chandra detects several hundred X-ray point sources (compared to the 3 distinct sources seen by ROSAT). At least 40 of these sources are definitely associated with optically identified cluster O and WR type members, but most are not. A diffuse X-ray component is also seen out to approximately 2 feet (4 pc) form the center, probably arising mainly from the large number of merging/colliding hot stellar winds and/or numerous faint cluster sources. The point-source X-ray fluxes generally increase with increasing bolometric brightnesses of the member O/WR stars, but with very large scatter. Some exceptionally bright stellar X-ray sources may be colliding wind binaries. The radio image shows (1) two resolved sources, one definitely non-thermal, in the cluster core near where the X-ray/optically brightest stars with the strongest stellar winds are located, (2) emission from all three known proplyd-like objects (with thermal and non-thermal components, and (3) many thermal sources in the peripheral regions of triggered star-formation. Overall, NGC 3603 appears to be a somewhat younger and hotter, scaled-down version of typical starbursts found in other galaxies.
NASA Technical Reports Server (NTRS)
Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.;
2014-01-01
We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
Chandra Observations of Hydra A
NASA Technical Reports Server (NTRS)
McNamara, Brian; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
We present Chandra X-ray Observations of the Hydra A cluster of galaxies, and we report the discovery of structure in the central 80 kpc of the cluster's X-ray-emitting gas. The most remarkable structures are depressions in the X-ray surface brightness, approx. 25 - 35 kpc diameter, that are coincident with Hydra A's radio lobes. The depressions are nearly devoid of X-ray-emitting gas, and there is no evidence for shock-heated gas surrounding the radio lobes. We suggest the gas within the surface brightness depressions was displaced as the radio lobes expanded subsonically, leaving cavities in the hot atmosphere. The gas temperature declines from 4 keV at 70 kpc to 3 keV in the inner 20 kpc of the brightest cluster galaxy (BCG), and the cooling time of the gas is approx. 600 Myr in the inner 10 kpc. These properties are consistent with the presence of a approx. 34 solar mass/yr cooling flow within a 70 kpc radius. Bright X-ray emission is present in the BCG surrounding a recently-accreted disk of nebular emission and young stars. The star formation rate is commensurate with the cooling rate of the hot gas within the volume of the disk, although the sink for the material that may be cooling at larger radii remains elusive.
NASA's Future X-ray Missions: From Constellation-X to Generation-X
NASA Technical Reports Server (NTRS)
Hornschemeier, A.
2006-01-01
Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.
Exploring Hot Gas at Junctions of Galaxy Filaments
NASA Astrophysics Data System (ADS)
Mitsuishi, Ikuyuki; Yamasaki, Noriko; Kawahara, Hajime; Sekiya, Norio; Sasaki, Shin; Sousbie, Thierry
Because galaxies are forced to follow the strong gravitational potential created by the underlying cosmic web of the dark matter, their distribution reflects its filamentary structures. By identifying the filamentary structures, one can therefore recover a map of the network that drives structure formation. Filamentary junctions are regions of particular interest as they identify places where mergers and other interesting astrophysical phenomena have high chances to occur. We identified the galaxy filaments by our original method (Sousbie (2011) & Sousbie et al. (2011)) and X-ray pointing observations were conducted for the six fields locating in the junctions of the galaxy filaments where no specific diffuse X-ray emissions had previously been detected so far. We discovered significant X-ray signals in their images and spectra of the all regions. Spectral analysis demonstrated that six sources originate from diffuse emissions associated with optically bright galaxies, group-scale, or cluster-scale X-ray halos with kT˜1-4 keV, while the others are compact object origin. Interestingly, all of the newly discovered three intracluster media show peculiar features such as complex or elongated morphologies in X-ray and/or optical and hot spot involved in ongoing merger events (Kawahara et al. (2011) & Mitsuishi et al. (2014)). In this conference, results of follow-up radio observations for the merging groups as well as the details of the X-ray observations will be reported.
VizieR Online Data Catalog: NORAS II. I. First results (Bohringer+, 2017)
NASA Astrophysics Data System (ADS)
Bohringer, H.; Chon, G.; Retzlaff, J.; Trumper, J.; Meisenheimer, K.; Schartel, N.
2017-08-01
The NOrthern ROSAT All-Sky (NORAS) galaxy cluster survey project is based on the ROSAT All-Sky Survey (RASS; Trumper 1993Sci...260.1769T), which is the only full-sky survey conducted with an imaging X-ray telescope. We have already used RASS for the construction of the cluster catalogs of the NORAS I project. While NORAS I was as a first step focused on the identification of galaxy clusters among the RASS X-ray sources showing a significant extent, the complementary REFLEX I sample in the southern sky was strictly constructed as a flux-limited cluster sample. A major extension of the REFLEX I sample, which roughly doubles the number of clusters, REFLEX II (Bohringer et al. 2013, Cat. J/A+A/555/A30), was recently completed. It is by far the largest high-quality sample of X-ray-selected galaxy clusters. The NORAS II survey now reaches a flux limit of 1.8*10-12erg/s/cm2 in the 0.1-2.4keV band. Redshifts have been obtained for all of the 860 clusters in the NORAS II catalog, except for 25 clusters for which observing campaigns are scheduled. Thus with 3% missing redshifts we can already obtain a very good view of the properties of the NORAS II cluster sample and obtain some first results. The NORAS II survey covers the sky region north of the equator outside the band of the Milky Way (|bII|>=20°). We also excise a region around the nearby Virgo cluster of galaxies that extends over several degrees on the sky, where the detection of background clusters is hampered by bright X-ray emission. This region is bounded in right ascension by R.A.=185°-191.25° and in declination by decl.=6°-15° (an area of ~53deg2). With this excision, the survey area covers 4.18 steradian (13519deg2, a fraction of 32.7% of the sky). NORAS II is based on the RASS product RASS III (Voges et al. 1999, Cat. IX/10), which was also used for REFLEX II. The NORAS II survey was constructed in a way identical to REFLEX II with a nominal flux limit of 1.8*10-12erg/s/cm2. (3 data files).
Astronomers Discover Spectacular Structure in Distant Galaxy
NASA Astrophysics Data System (ADS)
1999-01-01
Researchers using the National Science Foundation's Very Large Array (VLA) radio telescope have imaged a "spectacular and complex structure" in a galaxy 50 million light-years away. Their work both resolves a decades-old observational mystery and revises current theories about the origin of X-ray emission coming from gas surrounding the galaxy. The new VLA image is of the galaxy M87, which harbors at its core a supermassive black hole spewing out jets of subatomic particles at nearly the speed of light and also is the central galaxy of the Virgo Cluster of galaxies. The VLA image is the first to show detail of a larger structure that originally was detected by radio astronomers more than a half-century ago. Analysis of the new image indicates that astronomers will have to revise their ideas about the physics of what causes X-ray emission in the cores of many galaxy clusters. Frazer Owen of the National Radio Astronomy Observatory (NRAO) in Socorro, NM; Jean Eilek of the New Mexico Institute of Mining and Technology (NM Tech) in Socorro, NM; and Namir Kassim of the Naval Research Laboratory in Washington, DC, announced their discovery at the American Astronomical Society's meeting today in Austin, TX. The new observations show two large, bubble-like lobes, more than 200,000 light-years across, that emit radio waves. These lobes, which are intricately detailed, apparently are powered by gravitational energy released from the black hole at the galaxy's center. "We think that material is flowing outward from the galaxy's core into these large, bright, radio-emitting 'bubbles,'" Owen said. The newly-discovered "bubbles" sit inside a region of the galaxy known to be emitting X-rays. Theorists have speculated that this X-ray emission arises when gas that originally was part of the Virgo Cluster of galaxies, cools and falls inwards onto M87 itself, at the center of the cluster. Such "cooling flows" are commonly thought to be responsible for strong X-ray emission in many galaxy clusters. "The new structures that we found in M87 show that the story is much more complicated," Eilek said. "What we know about radio jets suggests that the energy being pumped into this region from the galaxy's central black hole exceeds the energy being lost in the X-ray emission. This system is more like a heating flow than a cooling flow. We're going to have to revise our ideas about the physics of what's going on in regions like this." M87, discovered by the French astronomer Charles Messier in 1781, is the strongest radio-emitting object in the constellation Virgo. Its jet was described by Lick Observatory astronomer Heber Curtis in 1918 as "a curious straight ray ... apparently connected with the nucleus by a thin line of matter." In 1954, Walter Baade reported that the jet's light is strongly polarized. M87's X-ray emission was discovered in 1966. M87 is the largest of the thousands of galaxies in the Virgo Cluster. The Local Group of galaxies, of which our own Milky Way is one, is part of the Virgo Cluster's outskirts. The galaxy's radio emissions first were observed by Australian astronomers in 1947, but the radio telescopes of that time were unable to discern much detail. They could, however, show that there is a structure more than 100,000 light-years across. Subsequent radio images, particularly those made using the sharp radio "vision" of the VLA, were primarily aimed at studying the inner 10,000 light-years or so, and showed great detail in the galaxy's jet. Astronomers even have followed the motions of concentrations of material within the jet over time. These observations, however, did not show much about the larger structure that was seen by earlier radio astronomers, leaving its details largely a mystery. Radio Images of M87 at Vastly Different Size Scales The mystery was solved by using the VLA to observe at longer radio wavelengths, thus revealing larger-scale structures. The processing speeds of modern computers and recently-developed imaging techniques also were necessary to show the exquisite details seen in the newest VLA image of M87. The result was spectacular. "Not only did we see beautiful details that we hadn't seen before, but we also got a new and more complicated idea of the physics of this region," Owen said. "The theories about cooling flows offered an explanation for the X-ray emission in galaxy clusters, but critics contended that other evidence we should see for this infalling matter, such as new stars forming in the denser parts of the flows, was absent," Owen said. "Now, in this case, we see that the inward flow can be counterbalanced by the energy coming outward from the galaxy's core, so the material may not become dense enough to trigger star formation." The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. This is a VLA image of the galaxy M87, showing details of the large-scale, radio-emitting "bubbles" believed to be powered by the black hole at the galaxy's center. The galaxy's center (and the black hole) lie deep within the bright, reddish region in this image. The structure in this image is approximately 200,000 light-years across. This image was made at a radio wavelength of 90 centimeters. CREDIT: F.N. Owen, J.A. Eliek and N.E. Kassim, National Radio Astronomy Observatory, Associated Universities, Inc.
NASA Astrophysics Data System (ADS)
Mountrichas, G.; Georgakakis, A.; Menzel, M.-L.; Fanidakis, N.; Merloni, A.; Liu, Z.; Salvato, M.; Nandra, K.
2016-04-01
The northern tile of the wide-area and shallow XMM-XXL X-ray survey field is used to estimate the average dark matter halo mass of relatively luminous X-ray-selected active galactic nucleus (AGN) [log {L}_X (2-10 keV)= 43.6^{+0.4}_{-0.4} erg s^{-1}] in the redshift interval z = 0.5-1.2. Spectroscopic follow-up observations of X-ray sources in the XMM-XXL field by the Sloan telescope are combined with the VIMOS Public Extragalactic Redshift Survey spectroscopic galaxy survey to determine the cross-correlation signal between X-ray-selected AGN (total of 318) and galaxies (about 20 000). We model the large scales (2-25 Mpc) of the correlation function to infer a mean dark matter halo mass of log M / (M_{{⊙}} h^{-1}) = 12.50 ^{+0.22} _{-0.30} for the X-ray-selected AGN sample. This measurement is about 0.5 dex lower compared to estimates in the literature of the mean dark matter halo masses of moderate-luminosity X-ray AGN [LX(2-10 keV) ≈ 1042-1043 erg s- 1] at similar redshifts. Our analysis also links the mean clustering properties of moderate-luminosity AGN with those of powerful ultraviolet/optically selected QSOs, which are typically found in haloes with masses few times 1012 M⊙. There is therefore evidence for a negative luminosity dependence of the AGN clustering. This is consistent with suggestions that AGN have a broad dark matter halo mass distribution with a high mass tail that becomes subdominant at high accretion luminosities. We further show that our results are in qualitative agreement with semi-analytic models of galaxy and AGN evolution, which attribute the wide range of dark matter halo masses among the AGN population to different triggering mechanisms and/or black hole fuelling modes.
Galaxy Clusters, Near and Far, Have a Lot in Common
NASA Astrophysics Data System (ADS)
2005-04-01
Using two orbiting X-ray telescopes, a team of international astronomers has examined distant galaxy clusters in order to compare them with their counterparts that are relatively close by. Speaking today at the RAS National Astronomy Meeting in Birmingham, Dr. Ben Maughan (Harvard-Smithsonian Center for Astrophysics), presented the results of this new analysis. The observations indicate that, despite the great expansion that the Universe has undergone since the Big Bang, galaxy clusters both local and distant have a great deal in common. This discovery could eventually lead to a better understanding of how to "weigh" these enormous structures, and, in so doing, answer important questions about the nature and structure of the Universe. Clusters of galaxies, the largest known gravitationally-bound objects, are the knots in the cosmic web of structure that permeates the Universe. Theoretical models make predictions about the number, distribution and properties of these clusters. Scientists can test and improve models of the Universe by comparing these predictions with observations. The most powerful way of doing this is to measure the masses of galaxy clusters, particularly those in the distant Universe. However, weighing galaxy clusters is extremely difficult. One relatively easy way to weigh a galaxy cluster is to use simple laws ("scaling relations") to estimate its weight from properties that are easy to observe, like its luminosity (brightness) or temperature. This is like estimating someone's weight from their height if you didn't have any scales. Over the last 3 years, a team of researchers, led by Ben Maughan, has observed 11 distant galaxy clusters with ESA's XMM-Newton and NASA's Chandra X-ray Observatory. The clusters have redshifts of z = 0.6-1.0, which corresponds to distances of 6 to 8 billion light years. This means that we see them as they were when the Universe was half its present age. The survey included two unusual systems, one in which two massive clusters are merging and another extremely massive cluster which appears very "relaxed" and undisturbed. The X-ray data allowed the scientists to measure the temperatures and luminosities of the gas in the clusters. They were then able to infer their total masses, which varied between 200 and 1,100 times the mass of our Milky Way galaxy. These measurements were then used to test whether galaxy clusters of different sizes and located at different distances from us are simply scaled versions of each other -- a condition known as being "self-similar." This is an important characteristic for astronomers to identify if they hope to get the true weights of galaxy clusters. "For example, chocolate bars are strongly self-similar," said Maughan. "If you shrank a king-size bar to a fun-size bar, they would be identical versions of each other but just different sizes." "However, if you shrank a castle to the size of a bungalow, they would be very different structures, despite being the same size. This means that they are not strongly self-similar objects." Another possible type of relationship between clusters is what scientists call "weakly self-similar." In this case, galaxy clusters in the distant universe and those nearby are almost identical to each other, but not exactly the same. (The only differences between them can be accounted for by the expansion of the Universe since the Big Bang.) Although astronomers have known for some time that galaxy clusters are not strongly self-similar, the question of whether or not they are weakly self-similar has remained open. The new results show that as long as astronomers take into account the continuous expansion of the Universe, then galaxy clusters are, in fact, weakly self-similar. This means that the same scaling relations used to weigh nearby galaxy clusters hold true for these very distant clusters. "Our results mean that weighing distant galaxy clusters could become as easy as converting from Fahrenheit to Celsius," said Maughan. "This will help to answer important questions about the nature and structure of the Universe." The other members of the team were: Laurence Jones (University of Birmingham, UK) Harald Ebeling (Institute for Astronomy, HI, USA), and Caleb Scharf (Columbia Astrophysics Laboratory, NY, USA). The observations were made with the European Photon Imaging Camera (EPIC) on XMM and the Advanced Camera for Imaging and Spectroscopy (ACIS) on Chandra. They were part of the WARPS survey of distant galaxy clusters detected by chance in observations made with the UK-US-Dutch ROSAT X-ray satellite. Additional information and images are available at: http://www.sr.bham.ac.uk/~habib/nampr/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdán, Ákos; Van Weeren, Reinout J.; Kraft, Ralph P.
Although the energetic feedback from active galactic nuclei (AGNs) is believed to have a profound effect on the evolution of galaxies and clusters of galaxies, details of AGN heating remain elusive. Here, we study NGC 193—a nearby lenticular galaxy—based on X-ray (Chandra) and radio (Very Large Array and Giant Meter-wave Radio Telescope) observations. These data reveal the complex AGN outburst history of the galaxy: we detect a pair of inner X-ray cavities, an outer X-ray cavity, a shock front, and radio lobes extending beyond the inner cavities. We suggest that the inner cavities were produced ∼78 Myr ago by a weakermore » AGN outburst, while the outer cavity, the radio lobes, and the shock front are due to a younger (13-26 Myr) and 4-8 times more powerful outburst. Combining this with the observed morphology of NGC 193, we conclude that NGC 193 likely represents the first example of a second, more powerful, AGN outburst overrunning an older, weaker outburst. These results help us to understand how the outburst energy is dissipated uniformly in the core of galaxies, and therefore may play a crucial role in resolving how AGN outbursts suppress the formation of large cooling flows at cluster centers.« less
Do X-ray dark or underluminous galaxy clusters exist?
NASA Astrophysics Data System (ADS)
Andreon, S.; Moretti, A.
2011-12-01
We study the X-ray properties of a color-selected sample of clusters at 0.1 < z < 0.3, to quantify the real aboundance of the population of X-ray dark or underluminous clusters and at the same time the spurious detection contamination level of color-selected cluster catalogs. Starting from a local sample of color-selected clusters, we restrict our attention to those with sufficiently deep X-ray observations to probe their X-ray luminosity down to very faint values and without introducing any X-ray bias. This allowed us to have an X-ray- unbiased sample of 33 clusters to measure the LX-richness relation. Swift 1.4 Ms X-ray observations show that at least 89% of the color-detected clusters are real objects with a potential well deep enough to heat and retain an intracluster medium. The percentage rises to 94% when one includes the single spectroscopically confirmed color-selected cluster whose X-ray emission is not secured. Looking at our results from the opposite perspective, the percentage of X-ray dark clusters among color-selected clusters is very low: at most about 11 per cent (at 90% confidence). Supplementing our data with those from literature, we conclude that X-ray- and color- cluster surveys sample the same population and consequently that in this regard we can safely use clusters selected with any of the two methods for cosmological purposes. This is an essential and promising piece of information for upcoming surveys in both the optical/IR (DES, EUCLID) and X-ray (eRosita). Richness correlates with X-ray luminosity with a large scatter, 0.51 ± 0.08 (0.44 ± 0.07) dex in lgLX at a given richness, when Lx is measured in a 500 (1070) kpc aperture. We release data and software to estimate the X-ray flux, or its upper limit, of a source with over-Poisson background fluctuations (found in this work to be ~20% on cluster angular scales) and to fit X-ray luminosity vs richness if there is an intrinsic scatter. These Bayesian applications rigorously account for boundaries (e.g., the X-ray luminosity and the richness cannot be negative).
A Distant, X-Ray Luminous Cluster of Galaxies at Redshift 0.83
NASA Technical Reports Server (NTRS)
Donahue, Megan
1999-01-01
We have observed the most distant (= 0.829) cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), with the ASCA and ROSAT satellites. We find an X-ray temperature of 12.3(sup 3.1, sub 2.2) keV for this cluster, and the ROSAT map reveals significant substructure. The high temperature of MS1054-0321 is consistent with both its approximate velocity dispersion, based on the redshifts of 12 cluster members we have obtained at the Keck and the Canada-France-Hawaii telescopes, and with its weak lensing signature. The X-ray temperature of this cluster implies a virial mass approximately 7.4 x 10(exp 14) /h solar mass, if the mean matter density in the universe equals the critical value (OMEGA(sub 0) = 1), or larger if OMEGA(sub 0) < 1. Finding such a hot, massive cluster in the EMSS is extremely improbable if clusters grew from Gaussian perturbations in an OMEGA(sub 0) = 1 universe. Combining the assumptions that OMEGA(sub 0) = 1 and that the initial perturbations were Gaussian with the observed X-ray temperature function at low redshift, we show that this probability of this cluster occurring in the volume sampled by the EMSS is less than a few times 10(exp -5). Nor is MS1054-0321 the only hot cluster at high redshift; the only two other z > 0.5 EMSS clusters already observed with ASCA also have temperatures exceeding 8 keV. Assuming again that the initial perturbations were Gaussian and OMEGA(sub 0) = 1, we find that each one is improbable at the < 10(exp -2) level. These observations, along with the fact that these luminosities and temperatures of the high-z clusters all agree with the low-z L(sub x) - T(sub x) relation, argue strongly that OMEGA(sub 0) < 1. Otherwise, the initial perturbations must be non-Gaussian, if these clusters' temperatures do indeed reflect their gravitational potentials.
Chandra Finds Ghosts Of Eruption In Galaxy Cluster
NASA Astrophysics Data System (ADS)
2002-01-01
"Ghostly" relics of an ancient eruption that tore through a cluster of galaxies were recently uncovered by NASA's Chandra X-ray Observatory. The discovery implies that galaxy clusters are the sites of enormously energetic and recurring explosions, and may provide an explanation why galaxy clusters behave like giant cosmic magnets. "Chandra's image revealed vast regions in the galaxy cluster Abell 2597 that contain almost no X-ray or radio emission. We call them ghost cavities," said Brian McNamara of Ohio University in Athens today during a press conference at the American Astronomical Society meeting in Washington. "They appear to be remnants of an old explosion where the radio emission has faded away over millions of years." The ghost cavities were likely created by extremely powerful explosions, due to material falling toward a black hole millions of times more massive than the Sun. As the matter swirled around the black hole, located in a galaxy near the center of the cluster, it generated enormous electromagnetic fields that expelled material from the vicinity of the black hole at high speeds. This explosive activity in Abell 2597 created jets of highly energetic particles that cleared out voids in the hot gas. Because they are lighter than the surrounding material, the cavities will eventually push their way to the edge of the cluster, just as air bubbles in water make their way to the surface. Researchers also found evidence that this explosion was not a one-time event. "We detected a small, bright radio source near the center of the cluster that indicates a new explosion has occurred recently," said team member Michael Wise of the Massachusetts Institute of Technology in Cambridge, "so the cycle of eruption is apparently continuing." Though dim, the ghost cavities are not completely empty. They contain a mixture of very hot gas, high-energy particles and magnetic fields -- otherwise the cavities would have collapsed under the pressure of the surrounding hot gas. "Ghost cavities may be the vessels that transport magnetic fields generated in a disk surrounding a giant black hole to the cluster gas that is spread over a region a billion times larger," said McNamara. If dozens of these cavities were created over the life of the cluster, they could explain the surprisingly strong magnetic field of the multimillion-degree gas that pervades the cluster. Galaxy clusters are the largest known gravitationally bound structures in the universe. Hundreds of galaxies swarm in giant reservoirs of multimillion-degree gas that radiates most of its energy in X-rays. Over the course of billions of years some of the gas should cool and sink toward a galaxy in the center of the cluster where it could trigger an outburst in the vicinity of the central massive black hole. Chandra observed Abell 2597 on July 28, 2000,for 40,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS) instrument. Pennsylvania State University, University Park, and MIT developed the instrument for NASA. In addition to a group of astronomers from the Space Telescope Science Institute, Baltimore, and the University of Virginia, Charlottesville, the team included: Paul Nulsen, University of Wollagong, Australia; Larry David, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Chris Carilli, National Radio Astronomy Observatory, Socorro, N.M.; and Craig Sarazin, University of Virginia. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
ISM stripping from cluster galaxies and inhomogeneities in cooling flows
NASA Technical Reports Server (NTRS)
Soker, Noam; Bregman, Joel N.; Sarazin, Craig L.
1990-01-01
Analyses of the x ray surface brightness profiles of cluster cooling flows suggest that the mass flow rate decreases towards the center of the cluster. It is often suggested that this decrease results from thermal instabilities, in which denser blobs of gas cool rapidly and drop below x ray emitting temperatures. If the seeds for the thermal instabilities are entropy perturbations, these perturbations must enter the flow already in the nonlinear regime. Otherwise, the blobs would take too long to cool. Here, researchers suggest that such nonlinear perturbations might start as blobs of interstellar gas which are stripped out of cluster galaxies. Assuming that most of the gas produced by stellar mass loss in cluster galaxies is stripped from the galaxies, the total rate of such stripping is roughly M sub Interstellar Matter (ISM) approx. 100 solar mass yr(-1). It is interesting that the typical rates of cooling in cluster cooling flows are M sub cool approx. 100 solar mass yr(-1). Thus, it is possible that a substantial portion of the cooling gas originates as blobs of interstellar gas stripped from galaxies. The magnetic fields within and outside of the low entropy perturbations can help to maintain their identities, both by suppressing thermal conduction and through the dynamical effects of magnetic tension. One significant question concerning this scenario is: Why are cooling flows seen only in a fraction of clusters, although one would expect gas stripping to be very common. It may be that the density perturbations only survive and cool efficiently in clusters with a very high intracluster gas density and with the focusing effect of a central dominant galaxy. Inhomogeneities in the intracluster medium caused by the stripping of interstellar gas from galaxies can have a number of other effects on clusters. For example, these density fluctuations may disrupt the propagation of radio jets through the intracluster gas, and this may be one mechanism for producing Wide-Angle-Tail radio galaxies.
A POWERFUL AGN OUTBURST IN RBS 797
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavagnolo, K. W.; McNamara, B. R.; Wise, M. W.
2011-05-10
Utilizing {approx}50 ks of Chandra X-Ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large and are consistent with elongated cavities lying close to our line of sight. We estimate a total AGN outburst energy and mean jet power of {approx}(3-6) x 10{sup 60} erg and {approx}(3-6) x 10{supmore » 45} erg s{sup -1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is {approx}1 M{sub sun} yr{sup -1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The brightest cluster galaxy (BCG) harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of {approx}2 x 10{sup 44} erg s{sup -1}. The nuclear emission is probably associated with a rapidly accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M {approx} 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.« less
NASA Technical Reports Server (NTRS)
2006-01-01
This false-color composite image shows the Cartwheel galaxy as seen by the Galaxy Evolution Explorer's far ultraviolet detector (blue); the Hubble Space Telescope's wide field and planetary camera 2 in B-band visible light (green); the Spitzer Space Telescope's infrared array camera at 8 microns (red); and the Chandra X-ray Observatory's advanced CCD imaging spectrometer-S array instrument (purple). Approximately 100 million years ago, a smaller galaxy plunged through the heart of Cartwheel galaxy, creating ripples of brief star formation. In this image, the first ripple appears as an ultraviolet-bright blue outer ring. The blue outer ring is so powerful in the Galaxy Evolution Explorer observations that it indicates the Cartwheel is one of the most powerful UV-emitting galaxies in the nearby universe. The blue color reveals to astronomers that associations of stars 5 to 20 times as massive as our sun are forming in this region. The clumps of pink along the outer blue ring are regions where both X-rays and ultraviolet radiation are superimposed in the image. These X-ray point sources are very likely collections of binary star systems containing a blackhole (called massive X-ray binary systems). The X-ray sources seem to cluster around optical/ultraviolet-bright supermassive star clusters. The yellow-orange inner ring and nucleus at the center of the galaxy result from the combination of visible and infrared light, which is stronger towards the center. This region of the galaxy represents the second ripple, or ring wave, created in the collision, but has much less star formation activity than the first (outer) ring wave. The wisps of red spread throughout the interior of the galaxy are organic molecules that have been illuminated by nearby low-level star formation. Meanwhile, the tints of green are less massive, older visible-light stars. Although astronomers have not identified exactly which galaxy collided with the Cartwheel, two of three candidate galaxies can be seen in this image to the bottom left of the ring, one as a neon blob and the other as a green spiral. Previously, scientists believed the ring marked the outermost edge of the galaxy, but the latest GALEX observations detect a faint disk, not visible in this image, that extends to twice the diameter of the ring.Baryon content of massive galaxy clusters at 0.57 < z < 1.33
Chiu, I.; Mohr, J.; McDonald, M.; ...
2015-11-02
Here, we study the stellar, Brightest Cluster Galaxy (BCG) and intracluster medium (ICM) masses of 14 South Pole Telescope (SPT) selected galaxy clusters with median redshift z = 0.9 and median mass M 500 = 6 x 10 14M ⊙. We estimate stellar masses for each cluster and BCG using six photometric bands spanning the range from the ultraviolet to the near-infrared observed with the VLT, HST and Spitzer. The ICM masses are derived from Chandra and XMM-Newton X-ray observations, and the virial masses are derived from the SPT Sunyaev-Zel'dovich Effect signature. At z = 0.9 the BCG mass Mmore » * BCG constitutes 0.12 ± 0.01% of the halo mass for a 6 x 10 14M ⊙ cluster, and this fraction falls as M 500 -0.58±0.007. The cluster stellar mass function has a characteristic mass M 0 = 10 11.0±0.1M ⊙, and the number of galaxies per unit mass in clusters is larger than in the field by a factor 1.65 ± 0.2. Both results are consistent with measurements on group scales and at lower redshift.« less
ASCA observations of distant clusters of galaxies.
NASA Astrophysics Data System (ADS)
Tsuru, T.; Koyama, K.; Hughes, J. P.; Arimoto, N.; Kii, T.; Hattori, M.
It is important not only in studies of clusters of galaxies but also in cosmological aspects to investigate the evolution of X-ray properties of clusters of galaxies. ASCA enables detailed spectral studies on distant clusters and the evolution of temperature for the first time. The authors present here "preliminary" results of ASCA observation of 17 distant (z = 0.14 - 0.55) clusters of galaxies. The sample includes: Cl0016+16 Abell 370, Abell 1995, Abell 959, ACGG 118, Zw 3136, EMSS 1305.4+2941, Abell 1851, Abell 963, Abell 2163, EMSS 0839.8+2938, Abell 665, Abell 1689, Abell 2218, Abell 586, Abell 1413, Abell 1895. The cosmological constants of H0 = 50 km/s/Mpc and q0 = 0.5 are adopted in this paper.
STIRRED, NOT CLUMPED: EVOLUTION OF TEMPERATURE PROFILES IN THE OUTSKIRTS OF GALAXY CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avestruz, Camille; Nagai, Daisuke; Lau, Erwin T., E-mail: avestruz@uchicago.edu
Recent statistical X-ray measurements of the intracluster medium (ICM) indicate that gas temperature profiles in the outskirts of galaxy clusters deviate from self-similar evolution. Using a mass-limited sample of galaxy clusters from cosmological hydrodynamical simulations, we show that the departure from self-similarity can be explained by non-thermal gas motions driven by mergers and accretion. Contrary to previous claims, gaseous substructures only play a minor role in the temperature evolution in cluster outskirts. A careful choice of halo overdensity definition in self-similar scaling mitigates these departures. Our work highlights the importance of non-thermal gas motions in ICM evolution and the usemore » of galaxy clusters as cosmological probes.« less
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Gallagher, S. C.; Hornschemeier, A. E.; Fedotov, K.; Eracleous, M.; Brandt, W. N.; Desjardins, T. D.; Charlton, J. C.; Gronwall, C.
2014-01-01
We present Chandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances of 34-89 Mpc. We perform detailed X-ray point source detection and photometry and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (L(sub x)) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (gamma), hardness ratios, and L(sub X), in the full (0.5-8.0 keV), soft (0.5-2.0 keV), and hard (2.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions. Two-thirds of our galaxies have nuclear X-ray sources with Swift/UVOT counterparts. Two nuclei have L(sub X),0.5-8.0 keV > 10(exp 42) erg s-1, are strong multi-wavelength active galactic nuclei (AGNs), and follow the known alpha OX-?L? (nearUV) correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the 'non-AGN locus' in alpha OX-?L? (nearUV) space, which also hosts other normal galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR (is) less than -20 and L(sub X),0.5-8.0 keV (is) greater than 10(exp 41) erg s-1 is 0.08+0.35 -0.01, somewhat higher than the 5% fraction in galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrone, Daniel P.; Culverhouse, Thomas; Carlstrom, John E.
2009-08-20
We present the first measurement of the relationship between the Sunyaev-Zel'dovich effect (SZE) signal and the mass of galaxy clusters that uses gravitational lensing to measure cluster mass, based on 14 X-ray luminous clusters at z {approx_equal} 0.2 from the Local Cluster Substructure Survey. We measure the integrated Compton y-parameter, Y, and total projected mass of the clusters (M {sub GL}) within a projected clustercentric radius of 350 kpc, corresponding to mean overdensities of 4000-8000 relative to the critical density. We find self-similar scaling between M {sub GL} and Y, with a scatter in mass at fixed Y of 32%.more » This scatter exceeds that predicted from numerical cluster simulations, however, it is smaller than comparable measurements of the scatter in mass at fixed T{sub X} . We also find no evidence of segregation in Y between disturbed and undisturbed clusters, as had been seen with T{sub X} on the same physical scales. We compare our scaling relation to the Bonamente et al. relation based on mass measurements that assume hydrostatic equilibrium, finding no evidence for a hydrostatic mass bias in cluster cores (M {sub GL} = 0.98 {+-} 0.13 M {sub HSE}), consistent with both predictions from numerical simulations and lensing/X-ray-based measurements of mass-observable scaling relations at larger radii. Overall our results suggest that the SZE may be less sensitive than X-ray observations to the details of cluster physics in cluster cores.« less
Nonthermal emission from clusters of galaxies
NASA Astrophysics Data System (ADS)
Kushnir, Doron; Waxman, Eli
2009-08-01
We show that the spectral and radial distribution of the nonthermal emission of massive, M gtrsim 1014.5Msun, galaxy clusters may be approximately described by simple analytic expressions, which depend on the cluster thermal X-ray properties and on two model parameter, βcore and ηe. βcore is the ratio of the cosmic-ray (CR) energy density (within a logarithmic CR energy interval) and the thermal energy density at the cluster core, and ηe(p) is the fraction of the thermal energy generated in strong collisionless shocks, which is deposited in CR electrons (protons). Using a simple analytic model for the evolution of intra-cluster medium CRs, which are produced by accretion shocks, we find that βcore simeq ηp/200, nearly independent of cluster mass and with a scatter Δln βcore simeq 1 between clusters of given mass. We show that the hard X-ray (HXR) and γ-ray luminosities produced by inverse Compton scattering of CMB photons by electrons accelerated in accretion shocks (primary electrons) exceed the luminosities produced by secondary particles (generated in hadronic interactions within the cluster) by factors simeq 500(ηe/ηp)(T/10 keV)-1/2 and simeq 150(ηe/ηp)(T/10 keV)-1/2 respectively, where T is the cluster temperature. Secondary particle emission may dominate at the radio and very high energy (gtrsim 1 TeV) γ-ray bands. Our model predicts, in contrast with some earlier work, that the HXR and γ-ray emission from clusters of galaxies are extended, since the emission is dominated at these energies by primary (rather than by secondary) electrons. Our predictions are consistent with the observed nonthermal emission of the Coma cluster for ηp ~ ηe ~ 0.1. The implications of our predictions to future HXR observations (e.g. by NuStar, Simbol-X) and to (space/ground based) γ-ray observations (e.g. by Fermi, HESS, MAGIC, VERITAS) are discussed. In particular, we identify the clusters which are the best candidates for detection in γ-rays. Finally, we show that our model's results agree with results of detailed numerical calculations, and that discrepancies between the results of various numerical simulations (and between such results and our model) are due to inaccuracies in the numerical calculations.
Constraints on the Energy Content of the Universe from a Combination of Galaxy Cluster Observables
NASA Technical Reports Server (NTRS)
Molnar, Sandor M.; Haiman, Zoltan; Birkinshaw, Mark; Mushotzky, Richard F.
2003-01-01
We demonstrate that constraints on cosmological parameters from the distribution of clusters as a function of redshift (dN/dz) are complementary to accurate angular diameter distance (D(sub A)) measurements to clusters, and their combination significantly tightens constraints on the energy density content of the Universe. The number counts can be obtained from X-ray and/or SZ (Sunyaev-Ze'dovich effect) surveys, and the angular diameter distances can be determined from deep observations of the intra-cluster gas using their thermal bremsstrahlung X-ray emission and the SZ effect. We combine constraints from simulated cluster number counts expected from a 12 deg(sup 2) SZ cluster survey and constraints from simulated angular diameter distance measurements based on the X-ray/SZ method assuming a statistical accuracy of 10% in the angular diameter distance determination of 100 clusters with redshifts less than 1.5. We find that Omega(sub m), can be determined within about 25%, Omega(sub lambda) within 20% and w within 16%. We show that combined dN/dz+(sub lambda) constraints can be used to constrain the different energy densities in the Universe even in the presence of a few percent redshift dependent systematic error in D(sub lambda). We also address the question of how best to select clusters of galaxies for accurate diameter distance determinations. We show that the joint dN/dz+ D(lambda) constraints on cosmological parameters for a fixed target accuracy in the energy density parameters are optimized by selecting clusters with redshift upper cut-offs in the range 0.55 approx. less than 1. Subject headings: cosmological parameters - cosmology: theory - galaxies:clusters: general
Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)
NASA Astrophysics Data System (ADS)
Fuse, Christopher R.; Malespina, Alysa
2017-01-01
Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.
Jee, M. James; Dawson, William A.; Stroe, Andra; ...
2016-02-01
The galaxy cluster RX J0603.3+4214 at z = 0:225 is one of the rarest clusters boasting an extremely large ( 2 Mpc) radio relic. Because of the remarkable morphology of the relic, the cluster is nicknamed the \\Toothbrush Cluster". Although the cluster's underlying mass distribution is one of the critical pieces of information needed to reconstruct the merger scenario responsible for the puzzling radio relic morphology, its proximity to the Galactic plane b 10 has imposed signi cant observational challenges. We present a high-resolution weak-lensing study of the cluster with Subaru/Suprime Cam and Hubble Space Telescope imaging data. Our massmore » reconstruction reveals that the cluster is composed of complicated dark matter substructures closely tracing the galaxy distribution, in contrast, however, with the relatively simple binary X-ray morphology. Nevertheless, we nd that the cluster mass is still dominated by the two most massive clumps aligned north-south with a 3:1 mass ratio (M 200 = 6:29 +2:24 -1:62 X 10 14M⊙ and 1:98 +1:24 -0:74 X 10 14M⊙ for the northern and southern clumps, respectively). The southern mass peak is 20 o set toward the south with respect to the corresponding X-ray peak, which has a \\bullet"-like morphology pointing south. Comparison of the current weak- lensing result with the X-ray, galaxy, and radio relic suggests that perhaps the dominant mechanism responsible for the observed relic may be a high-speed collision of the two most massive subclusters, although the peculiarity of the morphology necessitates involvement of additional subclusters. Careful numerical simulations should follow in order to obtain more complete understanding of the merger scenario utilizing all existing observations.« less
Cluster Dynamical Mass from Magellan Multi-Object Spectroscopy for SGAS Clusters
NASA Astrophysics Data System (ADS)
Murray, Katherine; Sharon, Keren; Johnson, Traci; Gifford, Daniel; Gladders, Michael; Bayliss, Matthew; Florian, Michael; Rigby, Jane R.; Miller, Christopher J.
2016-01-01
Galaxy clusters are giant structures in space consisting of hundreds or thousands of galaxies, interstellar matter, and dark matter, all bound together by gravity. We analyze the spectra of the cluster members of several strong lensing clusters from a large program, the Sloan Giant Arcs Survey, to determine the total mass of the lensing clusters. From spectra obtained with the LDSS3 and IMACS cameras on the Magellan 6.5m telescopes, we measure the spectroscopic redshifts of about 50 galaxies in each cluster, and calculate the velocity distributions within the galaxy clusters, as well as their projected cluster-centric radii. From these two pieces of information, we measure the size and total dynamical mass of each cluster. We can combine this calculation with other measurements of mass of the same galaxy clusters (like measurements from strong lensing or X-ray) to determine the spatial distribution of luminous and dark matter out to the virial radius of the cluster.
LoCuSS: pre-processing in galaxy groups falling into massive galaxy clusters at z = 0.2
NASA Astrophysics Data System (ADS)
Bianconi, M.; Smith, G. P.; Haines, C. P.; McGee, S. L.; Finoguenov, A.; Egami, E.
2018-01-01
We report direct evidence of pre-processing of the galaxies residing in galaxy groups falling into galaxy clusters drawn from the Local Cluster Substructure Survey (LoCuSS). 34 groups have been identified via their X-ray emission in the infall regions of 23 massive (
Relativistic Particle Population and Magnetic Fields in Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Kushnir, Doron
2011-08-01
We derive constrains on the cosmic ray (CR) population and magnetic fields (MF) in clusters of galaxies, based on: 1. The correlation between the radio and the X-ray luminosities: the former emitted by synchrotron of secondary electrons in a strong MF, >˜3 muG; In the core, the CR energy is ˜10^{-3} of the thermal energy; The source of CR is the accretion shock (AS), which accelerate CR with efficiency >˜1%. 2. The HXR luminosity: emitted by IC of CMB photons by electrons accelerated in AS with efficiency >˜1%. The constrains imply that gamma-ray emission from secondaries will be difficult to detect with existing/planned instruments. However, the extended emission from primary electrons might be detected by future HXR (NuStar, Simbol-X) and gamma-ray observations (Fermi, HESS, VERITAS).
A catalogue of clusters of galaxies identified from all sky surveys of 2MASS, WISE, and SuperCOSMOS
NASA Astrophysics Data System (ADS)
Wen, Z. L.; Han, J. L.; Yang, F.
2018-03-01
We identify 47 600 clusters of galaxies from photometric data of Two Micron All Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), and SuperCOSMOS, among which 26 125 clusters are recognized for the first time and mostly in the sky outside the Sloan Digital Sky Survey (SDSS) area. About 90 per cent of massive clusters of M500 > 3 × 1014 M⊙ in the redshift range of 0.025 < z < 0.3 have been detected from such survey data, and the detection rate drops down to 50 per cent for clusters with a mass of M500 ˜ 1 × 1014 M⊙. Monte Carlo simulations show that the false detection rate for the whole cluster sample is less than 5 per cent. By cross-matching with ROSAT and XMM-Newton sources, we get 779 new X-ray cluster candidates which have X-ray counterparts within a projected offset of 0.2 Mpc.
X-Ray Spectroscopy of the Cluster of Galaxies Abell 1795 with XMM-Newton
NASA Technical Reports Server (NTRS)
Tamura, T.; Kaastra, J. S.; Peterson, J. R.; Paerels, F.; Mittaz, J. P. D.; Trudolyubov, S. P.; Stewart, G.; Fabian, A. C.; Mushotzky, R. F.; Lumb, D. H.
2000-01-01
The initial results from XMM-Newton observations of the rich cluster of galaxies Abell 1795 are presented. The spatially-resolved X-ray spectra taken by the European Photon Imaging Cameras (EPIC) show a temperature drop at a radius of - 200 kpc from the cluster center, indicating that the ICM is cooling. Both the EPIC and the Reflection Grating Spectrometers (RGS) spectra extracted from the cluster center can be described by an isothermal model with a temperature of approx. 4 keV. The volume emission measure of any cool component (less than 1 keV) is less than a few % of the hot component at the cluster center. A strong O VIII Lyman alpha line was detected with the RGS from the cluster core. The O abundance of the ICM is 0.2-0.5 times the solar value. The O to Fe ratio at the cluster center is 0.5 - 1.5 times the solar ratio.
NASA Astrophysics Data System (ADS)
Russell, Brock Richard
X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 1038 erg s-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10-6 solar masses per year x (vw)/(10 km s -1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain the thermal conductivity. Our results suggest that conduction factors are not higher than 10% of full Spitzer conduction for hot, relaxed clusters.
Stellar Clusters in the NGC 6334 Star-Forming Complex
NASA Astrophysics Data System (ADS)
Feigelson, Eric D.; Martin, Amanda L.; McNeill, Collin J.; Broos, Patrick S.; Garmire, Gordon P.
2009-07-01
The full stellar population of NGC 6334, one of the most spectacular regions of massive star formation in the nearby Galaxy, has not been well sampled in past studies. We analyze here a mosaic of two Chandra X-ray Observatory images of the region using sensitive data analysis methods, giving a list of 1607 faint X-ray sources with arcsecond positions and approximate line-of-sight absorption. About 95% of these are expected to be cluster members, most lower mass pre-main-sequence stars. Extrapolating to low X-ray levels, the total stellar population is estimated to be 20,000-30,000 pre-main-sequence stars. The X-ray sources show a complicated spatial pattern with ~10 distinct star clusters. The heavily obscured clusters are mostly associated with previously known far-infrared sources and radio H II regions. The lightly obscured clusters are mostly newly identified in the X-ray images. Dozens of likely OB stars are found, both in clusters and dispersed throughout the region, suggesting that star formation in the complex has proceeded over millions of years. A number of extraordinarily heavily absorbed X-ray sources are associated with the active regions of star formation.
An HST Survey of Intermediate Luminosity X-ray Objects
NASA Astrophysics Data System (ADS)
Roye, E. W.; Colbert, E. J. M.; Heckman, T.; Ptak, R. F.; van der Marel, R. P.
2003-03-01
We searched for optical counterparts to 54 Intermediate-luminosity X-ray Objects (IXOs, a.k.a. ULXs) using HST WFPC2 archive data, and have uncovered a high yield of intriguing possible correlations. A total of 124 IXOs were identified from searching all of the Chandra ACIS archival galaxy data as of July 17, 2002. Archival WFPC2 data were available for 54 of these IXOs. The optical data utilized in this study consisted of 121 HST WFPC2 associations (stacked images). We will discuss the various methods used to register the HST WFPC2 images with the Chandra X-ray images. Our preliminary analysis indicates that 37 ( ˜70%) of the 54 IXOs have at least one 4 sigma counterpart within 1" of the IXO position, and ˜25% have unique counterparts (mostly in elliptical galaxies). The detection limit of the counterparts was typically 24-25 magnitudes in B, V, and R. The absolute magnitudes of many of the found counterparts appeared to correspond roughly to either the expected magnitudes for globular clusters, or the expected magnitudes for the brightest stars. Initial results illustrate that of the 37 IXOs with counterparts, 25 ( ˜70%) were in spiral, irregular, and merger galaxies, where the counterparts were often diffuse or clump-like sources. The counterparts found in elliptical galaxies were primarily single luminous point-sources, most likely globular clusters. We will discuss the results of color analysis for fields where counterparts in multiple bands exist, particularly for cases where a single counterpart is found. A preliminary finding in elliptical galaxies is that globular clusters associated with IXOs tend to be red, suggesting that IXOs are not found in metal-poor globular clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applegate, D. E; Mantz, A.; Allen, S. W.
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r 2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c 200 = 3.0 +4.4 –1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ω m from the cluster gas mass fraction.« less
Applegate, D. E; Mantz, A.; Allen, S. W.; ...
2016-02-04
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within amore » characteristic radius (r 2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9% (stat) ± 9% (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c 200 = 3.0 +4.4 –1.8. In conclusion, anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30–50%, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ω m from the cluster gas mass fraction.« less
NASA Astrophysics Data System (ADS)
Applegate, D. E.; Mantz, A.; Allen, S. W.; von der Linden, A.; Morris, R. Glenn; Hilbert, S.; Kelly, Patrick L.; Burke, D. L.; Ebeling, H.; Rapetti, D. A.; Schmidt, R. W.
2016-04-01
This is the fourth in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here, we use measurements of weak gravitational lensing from the Weighing the Giants project to calibrate Chandra X-ray measurements of total mass that rely on the assumption of hydrostatic equilibrium. This comparison of X-ray and lensing masses measures the combined bias of X-ray hydrostatic masses from both astrophysical and instrumental sources. While we cannot disentangle the two sources of bias, only the combined bias is relevant for calibrating cosmological measurements using relaxed clusters. Assuming a fixed cosmology, and within a characteristic radius (r2500) determined from the X-ray data, we measure a lensing to X-ray mass ratio of 0.96 ± 9 per cent (stat) ± 9 per cent (sys). We find no significant trends of this ratio with mass, redshift or the morphological indicators used to select the sample. Our results imply that any departures from hydrostatic equilibrium at these radii are offset by calibration errors of comparable magnitude, with large departures of tens-of-percent unlikely. In addition, we find a mean concentration of the sample measured from lensing data of c_{200} = 3.0_{-1.8}^{+4.4}. Anticipated short-term improvements in lensing systematics, and a modest expansion of the relaxed lensing sample, can easily increase the measurement precision by 30-50 per cent, leading to similar improvements in cosmological constraints that employ X-ray hydrostatic mass estimates, such as on Ωm from the cluster gas mass fraction.
X-ray astronomy from Uhuru to HEAO-1
NASA Technical Reports Server (NTRS)
Clark, G. W.
1981-01-01
The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.
Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Elvis, Martin
2005-01-01
A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.
Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Burns, Jack O.; Loken, Chris; Norman, Michael L.; Bryan, Greg
2004-05-01
We present a new scenario for the formation of cool cores in rich galaxy clusters, based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow on the basis of its X-ray luminosity excess and temperature profile, are built from the accretion of discrete stable subclusters. Any ``cooling flow'' present is overwhelmed by the velocity field within the cluster; the bulk flow of gas through the cluster typically has speeds up to about 2000 km s-1, and significant rotation is frequently present in the cluster core. The inclusion of consistent initial cosmological conditions for the cluster within its surrounding supercluster environment is crucial when the evolution of cool cores in rich galaxy clusters is simulated. This new model for the hierarchical assembly of cool gas naturally explains the high frequency of cool cores in rich galaxy clusters, despite the fact that a majority of these clusters show evidence of substructure that is believed to arise from recent merger activity. Furthermore, our simulations generate complex cluster cores in concordance with recent X-ray observations of cool fronts, cool ``bullets,'' and filaments in a number of galaxy clusters. Our simulations were computed with a coupled N-body, Eulerian, adaptive mesh refinement, hydrodynamics cosmology code that properly treats the effects of shocks and radiative cooling by the gas. We employ up to seven levels of refinement to attain a peak resolution of 15.6 kpc within a volume 256 Mpc on a side and assume a standard ΛCDM cosmology.
VizieR Online Data Catalog: Chandra ACIS survey in nearby galaxies. II (Wang+, 2016)
NASA Astrophysics Data System (ADS)
Wang, S.; Qiu, Y.; Liu, J.; Bregman, J. N.
2018-03-01
Based on the recently completed Chandra/ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular (α{\\sim}1.50{\\pm}0.07) to elliptical ({\\sim}1.21{\\pm}0.02), to spirals ({\\sim}0.80{\\pm}0.02), to peculiars ({\\sim}0.55{\\pm}0.30), and to irregulars ({\\sim}0.26{\\pm}0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D25 and 2D25, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24{\\pm}0.05 ULXs per surveyed galaxy, on a 5σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4x1040erg/s, and this break may suggest a mild boundary between the stellar black hole population possibly including 30M{\\sun} black holes with super-Eddington radiation and intermediate mass black holes. (1 data file).
Quenching of satellite galaxies at the outskirts of galaxy clusters
NASA Astrophysics Data System (ADS)
Zinger, Elad; Dekel, Avishai; Kravtsov, Andrey V.; Nagai, Daisuke
2018-04-01
We find, using cosmological simulations of galaxy clusters, that the hot X-ray emitting intracluster medium (ICM) enclosed within the outer accretion shock extends out to Rshock ˜ (2-3)Rvir, where Rvir is the standard virial radius of the halo. Using a simple analytic model for satellite galaxies in the cluster, we evaluate the effect of ram-pressure stripping on the gas in the inner discs and in the haloes at different distances from the cluster centre. We find that significant removal of star-forming disc gas occurs only at r ≲ 0.5Rvir, while gas removal from the satellite halo is more effective and can occur when the satellite is found between Rvir and Rshock. Removal of halo gas sets the stage for quenching of the star formation by starvation over 2-3 Gyr, prior to the satellite entry to the inner cluster halo. This scenario explains the presence of quenched galaxies, preferentially discs, at the outskirts of galaxy clusters, and the delayed quenching of satellites compared to central galaxies.
Elemental abundances via X-ray observations of galaxy clusters and the InFOCmuS hard X-ray telescope
NASA Astrophysics Data System (ADS)
Baumgartner, Wayne H.
2004-08-01
The first part of this dissertation deals with the oxygen abundance of the Milky Way interstellar medium. Previous measurements had shown that oxygen in the ISM was depleted compared to its abundance in the sun. This dissertation presents new measurements of the ISM oxygen abundance taken in the X-ray band by observing the oxygen 0.6 keV photoionization K-edge in absorption towards 10 galaxy clusters. These measurements show that the ISM oxygen abundance is 0.9 solar, much greater than earlier depleted values. The oxygen abundance is found to be uniform across our 10 lines of sight, showing that it is not dependent on the depth of the hydrogen column. This implies that the galactic oxygen abundance does not depend on density, and that it is the same in dense clouds and in the more diffuse ISM. The next part of the dissertation measures elemental abundances in the galaxy clusters themselves. The abundances of the elements iron, silicon, sulfur, calcium, argon, and nickel are measured using the strong resonance K-shell emission lines in the X-ray band. Over 300 clusters from the ASCA archives are analyzed with a joint fitting procedure to improve the S/N ratio and provide the first average abundance results for clusters as a function of mass. The α elements silicon, sulfur, argon and calcium are not found to have similar abundances as expected from their supposed common origin. Also, no combination of SN Ia and SN II yields can account for the cluster abundance ratios, perhaps necessitating a contribution from a cosmologically early generation of massive population III stars. The last part of this dissertation details the development of the Cadmium Zinc Telluride (CZT) detectors on the InFOCμS hard X-ray telescope. InFOCμS is a balloon-borne imaging spectrometer that incorporates multi-layer coated grazing-incidence optics and CZT detectors. These detectors are well suited for hard X-ray astronomy because their large bandgap and high atomic number allow for efficient room temperature detection of photons in the 20 150 keV band. The InFOCμS CZT detectors achieve an energy resolution of 4.8 keV. A 2000 flight to measure the inflight background is discussed, as well as the results of a 2001 flight to observe Cyg X- 1.
HICOSMO - X-ray analysis of a complete sample of galaxy clusters
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T.
2017-10-01
Galaxy clusters are known to be the largest virialized objects in the Universe. Based on the theory of structure formation one can use them as cosmological probes, since they originate from collapsed overdensities in the early Universe and witness its history. The X-ray regime provides the unique possibility to measure in detail the most massive visible component, the intra cluster medium. Using Chandra observations of a local sample of 64 bright clusters (HIFLUGCS) we provide total (hydrostatic) and gas mass estimates of each cluster individually. Making use of the completeness of the sample we quantify two interesting cosmological parameters by a Bayesian cosmological likelihood analysis. We find Ω_{M}=0.3±0.01 and σ_{8}=0.79±0.03 (statistical uncertainties) using our default analysis strategy combining both, a mass function analysis and the gas mass fraction results. The main sources of biases that we discuss and correct here are (1) the influence of galaxy groups (higher incompleteness in parent samples and a differing behavior of the L_{x} - M relation), (2) the hydrostatic mass bias (as determined by recent hydrodynamical simulations), (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other cosmological (non-negligible neutrino mass), and instrumental (calibration) effects.
Chandra Reviews Black Hole Musical: Epic But Off-Key
NASA Astrophysics Data System (ADS)
2006-10-01
A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also give the strongest evidence to date of a shock wave produced by the supermassive black hole, a clear sign of a powerful explosion. This shock wave appears as a nearly circular ring of high-energy X-rays that is 85,000 light years in diameter and centered on the black hole. Other remarkable features are seen in M87 for the first time including narrow filaments of X-ray emission -- some over 100,000 light years long -- that may be due hot gas trapped by magnetic fields. Also, a large, previously unknown cavity in the hot gas, created by an outburst from the black hole about 70 million years ago, is seen in the X-ray image. Animation Showing a Supermassive Black Hole Outburst in M87 Animation Showing a Supermassive Black Hole Outburst in M87 "We can explain some of what we see, like the shock wave, with textbook physics," said team member Christine Jones, also of the CfA. "However, other details, like the filaments we find, leave us scratching our heads." Sound has been detected from another black hole in the Perseus cluster, which was calculated to have a note some 57 octaves below middle C. However, the sound in M87 appears to be more discordant and complex. A series of unevenly spaced loops in the hot gas gives evidence for small outbursts from the black hole about every 6 million years. These loops imply the presence of sound waves, not visible in the Chandra image, which are about 56 octaves below middle C. The presence of the large cavity and the sonic boom gives evidence for even deeper notes -- 58 or 59 octaves below middle C -- powered by large outbursts. These new results on M87 were presented at the High-Energy Astrophysics Division meeting being held in San Francisco. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Images From Hubbles's ACS Tell A Tale Of Two Record-Breaking Galaxy Clusters
NASA Astrophysics Data System (ADS)
2004-01-01
Looking back in time nearly 9 billion years, an international team of astronomers found mature galaxies in a young universe. The galaxies are members of a cluster of galaxies that existed when the universe was only 5 billion years old, or about 35 percent of its present age. This compelling evidence that galaxies must have started forming just after the big bang was bolstered by observations made by the same team of astronomers when they peered even farther back in time. The team found embryonic galaxies a mere 1.5 billion years after the birth of the cosmos, or 10 percent of the universe's present age. The "baby galaxies" reside in a still-developing cluster, the most distant proto-cluster ever found. The Advanced Camera for Surveys (ACS) aboard NASA's Hubble Space Telescope was used to make observations of the massive cluster, RDCS 1252.9-2927, and the proto-cluster, TN J1338-1942. Observations by NASA's Chandra X-ray Observatory yielded the mass and heavy element content of RDCS 1252, the most massive known cluster for that epoch. These observations are part of a coordinated effort by the ACS science team to track the formation and evolution of clusters of galaxies over a broad range of cosmic time. The ACS was built especially for studies of such distant objects. These findings further support observations and theories that galaxies formed relatively early in the history of the cosmos. The existence of such massive clusters in the early universe agrees with a cosmological model wherein clusters form from the merger of many sub-clusters in a universe dominated by cold dark matter. The precise nature of cold dark matter, however, is still not known. The first Hubble study estimated that galaxies in RDCS 1252 formed the bulk of their stars more than 11 billion years ago (at redshifts greater than 3). The results were published in the Oct. 20, 2003 issue of the Astrophysical Journal. The paper's lead author is John Blakeslee of the Johns Hopkins University in Baltimore, Md. Optical Image of RDCS 1252.9-2927 HST Optical Image of RDCS 1252.9-2927 The second Hubble study uncovered, for the first time, a proto-cluster of "infant galaxies" that existed more than 12 billion years ago (at redshift 4.1). These galaxies are so young that astronomers can still see a flurry of stars forming within them. The galaxies are grouped around one large galaxy. These results will be published in the Jan. 1, 2004 issue of Nature. The paper's lead author is George Miley of Leiden Observatory in the Netherlands. "Until recently people didn't think that clusters existed when the universe was only about 5 billion years old," Blakeslee explained. "Even if there were such clusters," Miley added, "until recently astronomers thought it was almost impossible to find clusters that existed 8 billion years ago. In fact, no one really knew when clustering began. Now we can witness it." Both studies led the astronomers to conclude that these systems are the progenitors of the galaxy clusters seen today. "The cluster RDCS 1252 looks like a present-day cluster," said Marc Postman of the Space Telescope Science Institute in Baltimore, Md., and co-author of both research papers. "In fact, if you were to put it next to a present-day cluster, you wouldn't know which is which." A Tale of Two Clusters How can galaxies grow so fast after the big bang? "It is a case of the rich getting richer," Blakeslee said. "These clusters grew quickly because they are located in very dense regions, so there is enough material to build up the member galaxies very fast." This idea is strengthened by X-ray observations of the massive cluster RDCS 1252. Chandra and the European Space Agency's XMM-Newton provided astronomers with the most accurate measurements to date of the properties of an enormous cloud of hot gas that pervades the massive cluster. This 160-million-degree Fahrenheit (70-million-degree Celsius) gas is a reservoir of most of the heavy elements in the cluster and an accurate tracer of its total mass. A paper by Piero Rosati of the European Southern Observatory (ESO) and colleagues that presents the X-ray observations of RDCS 1252 will be published in January 2004 in the Astronomical Journal. "Chandra's sharp vision resolved the shape of the hot gas halo and showed that RDCS 1252 is very mature for its age," said Rosati, who discovered the cluster with the ROSAT X-ray telescope. RDCS 1252 may contain many thousands of galaxies. Most of these galaxies, however, are too faint to detect. But the powerful "eyes" of the ACS pinpointed several hundred of them. Observations using ESO's Very Large Telescope (VLT) provided a precise measurement of the distance to the cluster. The ACS enabled the researchers to accurately determine the shapes and colors of the 100 galaxies, providing information on the ages of the stars residing in them. The ACS team estimated that most of the stars in the cluster were already formed when the universe was about 2 billion years old. X-ray observations, furthermore, showed that 5 billion years after the big bang the surrounding hot gas had been enriched with heavy elements from these stars and had been swept away from the galaxies. If most of the galaxies in RDCS 1252 have reached maturity and are settling into a quiet adulthood, the forming galaxies in the distant proto-cluster are in their energetic, unruly youth. The proto-cluster TN J1338 contains a massive embryonic galaxy surrounded by smaller developing galaxies, which look like dots in the Hubble image. The dominant galaxy is producing spectacular radio-emitting jets, fueled by a supermassive black hole deep within the galaxy's nucleus. Interaction between these jets and the gas can stimulate a torrent of star birth. The energetic radio galaxy's discovery by radio telescopes prompted astronomers to hunt for the smaller galaxies that make up the bulk of the cluster. "Massive clusters are the cities of the universe, and the radio galaxies within them are the smokestacks we can use for finding them when they are just beginning to form," Miley said. The two findings underscore the power of combining observations from many different telescopes that provided views of the distant universe in a range of wavelengths. Hubble's advanced camera provided critical information on the structure of both distant galaxy clusters. Chandra's and XMM-Newton's X-ray vision furnished the essential measurements of the primordial gas in which the galaxies in RDCS 1252 are embedded, and accurate estimates of the total mass contained within that cluster. Large ground-based telescopes, like the VLT, provided precise measurements of the distance of both clusters as well as the chemical composition of the galaxies in them. The ACS team is conducting further observations of distant clusters to solidify our understanding of how these young clusters and their galaxies evolve into the shape of things seen today. Their planned observations include using near-infrared observations to analyze the star-formation rates in some of the target clusters, including RDCS 1252, to measure the cosmic history of star formation in these massive structures. The team is also searching the regions around several ultra-distant radio galaxies for additional examples of proto-clusters. The team's ultimate scientific goal is to establish a complete picture of cluster evolution beginning with the formation at the earliest epochs and detailing the evolution up to today. Electronic image files and additional information are available at http://hubblesite.org/newscenter/newsdesk/archive/releases/2004/01/ The Space Telescope Science Institute (STScI) is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), for NASA, under contract with the Goddard Space Flight Center, Greenbelt, MD. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA).
An X-Ray Flux-Limited Sample of Galaxy Clusters: Physical Properties and Cosmological Implications
NASA Astrophysics Data System (ADS)
Reiprich, Thomas H.
2001-07-01
An X-ray selected and X-ray flux-limited sample comprising the 63 X-ray brightest galaxy clusters in the sky (excluding the galactic band, called HIFLUGCS) has been constructed based on the ROSAT All-Sky Survey. The flux limit has been set at 2x10^-11 erg/s/cm^2 in the energy band 0.1-2.4 keV. It has been shown that a high completeness is indicated by several tests. Due to the high flux limit this sample can be used for a variety of applications requiring a statistical cluster sample without any corrections to the effective survey volume. Mainly high quality pointed observations have been used to determine fluxes and physical cluster parameters. It has been shown that a tight correlation exists between the X-ray luminosity and the gravitational mass using HIFLUGCS and an extended sample of 106 galaxy clusters. The relation and its scatter have been quantified using different fitting methods. A comparison to theoretical and numerical predictions shows an overall agreement. This relation may be directly applied in large X-ray cluster surveys or dark matter simulations for conversions between X-ray luminosity and gravitating mass. Data from the performance verification phase of the recently launched X-ray satellite observatory XMM-Newton on the galaxy cluster Abell 1835 has been analyzed, in order to test the assumption of isothermality of the cluster gas in the outer parts applied throughout the work. It has been found that the measured outer temperature profile is consistent with being isothermal. In the inner regions a clear drop of the temperature by a factor of two has been found. Physical properties of the cluster sample have been studied by analyzing relations between different cluster parameters. The overall properties are well understood but in detail deviations from simple expectations have been found. It has been found that the gas mass fraction (fgas) does not vary as a function of intracluster gas temperature. For galaxy groups (kTx < 2 keV), however, a steep drop of fgas has been observed. No clear trend of a variation of the shape of the surface brightness profile, i.e. beta, has been observed as a function of temperature. The Lx-Tx relation has been found to be steeper than expected from simple self similar models, as has been found by previous authors. But no clear deviations from a power law shape down to kTx = 0.7 keV have been found. The Mt-Tx relation found here is steeper than expected from self similar models and its normalization is lower compared to hydrodynamic simulations, in agreement with previous findings. Suggested scenarios to account for these deviations, including heating and cooling processes, and observational difficulties have been described. It appears that a blend of different effects, possibly including a variation of mean formation redshift with system mass, is needed to account for the observations presented here. Using HIFLUGCS the gravitational mass function has been determined for the mass interval 3.5x10^13 < M200 < 5.2x10^15 h50^-1 Msun. Comparison with Press-Schechter mass functions has yielded tight constraints on the mean matter density in the universe and the amplitude of density fluctuations. The large covered mass range has allowed to put constraints on the parameters individually. Specifically it has been found that OmegaM = 0.12^{+0.06}_{-0.04} and sigma8 = 0.96^{+0.15}_{-0.12} (90% c.l. statistical uncertainty). This result is consistent with two more estimates of OmegaM obtained in this work using different methods. The mean intracluster gas fraction of the 106 clusters in the extended sample combined with predictions from the theory of nucleosynthesis indicates OmegaM < 0.34. The cluster mass to light ratio multiplied by the mean luminosity density implies OmegaM 0.15. Various tests for systematic uncertainties have been performed, including comparison of the Press-Schechter mass function with the most recent results from large N-body simulations, yielding deviations smaller than the statistical uncertainties. For comparison the best fit OmegaM values for fixed sigma8 values have been determined yielding the relation sigma8 = 0.43OmegaM^-0.38. The mass function has been integrated to obtain the fraction of the total gravitating mass in the universe contained in galaxy clusters. Normalized to the critical density it has been found that Omega_Cluster = 0.012^{+0.003}_{-0.004} for cluster masses larger than 6.4^{+0.7}_{-0.6}x10^13 h50^-1 Msun. With the value for OmegaM determined here this implies that about 90% of the mass in the universe resides outside virialized cluster regions. Similarly it has been found that the fraction of the total gravitating mass which is contained in the intracluster gas, Omega_b,Cluster = 0.0015^{+0.0002}_{-0.0001} h50^-1.5 for gas masses larger than 6.9^{+1.4}_{-1.5}x10^12 h50^{-5/2}Msun, is very small.
A non cool-core 4.6-keV cluster around the bright nearby radio galaxy PKS B1416-493
NASA Astrophysics Data System (ADS)
Worrall, D. M.; Birkinshaw, M.
2017-05-01
We present new X-ray (Chandra) and radio (ATCA) observations of the z = 0.09 radio galaxy PKS B1416-493, a member of the southern equivalent of the 3CRR sample. We find the source to be embedded in a previously unrecognized bright kT = 4.6-keV non cool-core cluster. The discovery of new clusters of such high temperature and luminosity within z = 0.1 is rare. The radio source was chosen for observation based on its intermediate FR I/II morphology. We identify a cavity coincident with the northeast lobe, and excess counts associated with the southwest lobe that we interpret as inverse-Compton X-ray emission. The jet power, at 5.3 × 1044 erg s-1, when weighted by radio source density, supports suggestions that radio sources of intermediate morphology and radio power may dominate radio-galaxy heating in the local Universe.
NASA Astrophysics Data System (ADS)
Tzanavaris, P.; Gallagher, S. C.; Hornschemeier, A. E.; Fedotov, K.; Eracleous, M.; Brandt, W. N.; Desjardins, T. D.; Charlton, J. C.; Gronwall, C.
2014-05-01
We present Chandra X-ray point source catalogs for 9 Hickson Compact Groups (HCGs, 37 galaxies) at distances of 34-89 Mpc. We perform detailed X-ray point source detection and photometry and interpret the point source population by means of simulated hardness ratios. We thus estimate X-ray luminosities (LX ) for all sources, most of which are too weak for reliable spectral fitting. For all sources, we provide catalogs with counts, count rates, power-law indices (Γ), hardness ratios, and LX , in the full (0.5-8.0 keV), soft (0.5-2.0 keV), and hard (2.0-8.0 keV) bands. We use optical emission-line ratios from the literature to re-classify 24 galaxies as star-forming, accreting onto a supermassive black hole (AGNs), transition objects, or low-ionization nuclear emission regions. Two-thirds of our galaxies have nuclear X-ray sources with Swift/UVOT counterparts. Two nuclei have L X, 0.5-8.0 keV >1042 erg s-1, are strong multi-wavelength active galactic nuclei (AGNs), and follow the known αOX-νL ν (nearUV) correlation for strong AGNs. Otherwise, most nuclei are X-ray faint, consistent with either a low-luminosity AGN or a nuclear X-ray binary population, and fall in the "non-AGN locus" in αOX-νL ν (nearUV) space, which also hosts other normal galaxies. Our results suggest that HCG X-ray nuclei in high specific star formation rate spiral galaxies are likely dominated by star formation, while those with low specific star formation rates in earlier types likely harbor a weak AGN. The AGN fraction in HCG galaxies with MR <= -20 and L X, 0.5-8.0 keV >=1041 erg s-1 is 0.08^{+0.35}_{-0.01}, somewhat higher than the ~5% fraction in galaxy clusters.
NASA Astrophysics Data System (ADS)
Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.
2008-05-01
We use the previously identified 15 infrared star cluster counterparts to X-ray point sources in the interacting galaxies NGC 4038/4039 (the Antennae) to study the relationship between total cluster mass and X-ray binary number. This significant population of X-Ray/IR associations allows us to perform, for the first time, a statistical study of X-ray point sources and their environments. We define a quantity, η, relating the fraction of X-ray sources per unit mass as a function of cluster mass in the Antennae. We compute cluster mass by fitting spectral evolutionary models to Ks luminosity. Considering that this method depends on cluster age, we use four different age distributions to explore the effects of cluster age on the value of η and find it varies by less than a factor of 4. We find a mean value of η for these different distributions of η = 1.7 × 10-8 M-1⊙ with ση = 1.2 × 10-8 M-1⊙. Performing a χ2 test, we demonstrate η could exhibit a positive slope, but that it depends on the assumed distribution in cluster ages. While the estimated uncertainties in η are factors of a few, we believe this is the first estimate made of this quantity to "order of magnitude" accuracy. We also compare our findings to theoretical models of open and globular cluster evolution, incorporating the X-ray binary fraction per cluster.
The X-Ray Luminosity-Mass Relation for Local Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Stanek, Rebecca; Evrard, A.; Boehringer, H.; Schuecker, P.; Nord, B.
2006-12-01
My thesis is centered on investigating scaling relations of galaxy clusters. Focusing on the relationship between soft X-ray luminosity and mass (L-M) for low-redshift clusters of galaxies, I have determined the mean parameters to 5%, and calculated a formal measure of the scatter in the L-M relation. I model the L-M relation with a conditional probability function including a mean power-law scaling relation, L Mpρsc(z), and log-normal scatter in mass at fixed luminosity, σlnM. Convolving with the halo mass function, I compute expected counts in redshift and flux that, after appropriate survey effects are included, are compared to REFLEX survey data. Combining the likelihood analysis with the measured variance in L-T relation from HIFLUGCS, I obtain fit parameters p=1.59+/-0.05, lnL15,0=1.34+/-0.09, and σlnM=0.37+/-0.05 for self-similar redshift evolution (s = 7/6) in a concordance (Ωm=0.3, ΩΛ=0.7, σ8=0.9) universe. I find a substantially (factor 2) dimmer intercept and slightly steeper slope than the values published using hydrostatic mass estimates of the HIFLUGCS sample and show that a Malmquist bias of the X-ray flux-limited sample accounts for this effect. I accommodate the new WMAP constraints with a compromise model with Ωm=0.24, σ8=0.85, and somewhat lower scatter σlnM=0.25. I will also present work in progress from galaxy cluster population statistics in the Millennium Simulation with Gas (MSG), specifically focusing on the scatter and covariance between cluster properties at a fixed epoch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonamigo, M.; Grillo, C.; Ettori, S.
We present a novel approach for a combined analysis of X-ray and gravitational lensing data and apply this technique to the merging galaxy cluster MACS J0416.1–2403. The method exploits the information on the intracluster gas distribution that comes from a fit of the X-ray surface brightness and then includes the hot gas as a fixed mass component in the strong-lensing analysis. With our new technique, we can separate the collisional from the collision-less diffuse mass components, thus obtaining a more accurate reconstruction of the dark matter distribution in the core of a cluster. We introduce an analytical description of themore » X-ray emission coming from a set of dual pseudo-isothermal elliptical mass distributions, which can be directly used in most lensing softwares. By combining Chandra observations with Hubble Frontier Fields imaging and Multi Unit Spectroscopic Explorer spectroscopy in MACS J0416.1–2403, we measure a projected gas-to-total mass fraction of approximately 10% at 350 kpc from the cluster center. Compared to the results of a more traditional cluster mass model (diffuse halos plus member galaxies), we find a significant difference in the cumulative projected mass profile of the dark matter component and that the dark matter over total mass fraction is almost constant, out to more than 350 kpc. In the coming era of large surveys, these results show the need of multiprobe analyses for detailed dark matter studies in galaxy clusters.« less
Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies
NASA Astrophysics Data System (ADS)
Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank
2017-04-01
Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.
A novel mechanism for creating double pulsars
NASA Technical Reports Server (NTRS)
Sigurdsson, Steinn; Hernquist, Lars
1992-01-01
Simulations of encounters between pairs of hard binaries, each containing a neutron star and a main-sequence star, reveal a new formation mechanism for double pulsars in dense cores of globular clusters. In many cases, the two normal stars are disrupted to form a common envelope around the pair of neutron stars, both of which will be spun up to become millisecond pulsars. We predict that a new class of pulsars, double millisecond pulsars, will be discovered in the cores of dense globular clusters. The genesis proceeds through a short-lived double-core common envelope phase, with the envelope ejected in a fast wind. It is possible that the progenitor may also undergo a double X-ray binary phase. Any circular, short-period double pulsar found in the galaxy would necessarily come from disrupted disk clusters, unlike Hulse-Taylor class pulsars or low-mass X-ray binaries which may be ejected from clusters or formed in the galaxy.
NASA Astrophysics Data System (ADS)
Sabirli, Kivanc; Romer, A. K.; Davidson, M.; Stanford, S. A.; Viana, P. T.; Hilton, M.; Collins, C. A.; Kay, S. T.; Liddle, A. R.; Mann, R. G.; Miller, C. J.; Nichol, R. C.; West, M. J.; Conselice, C. J.; Spinrad, H.; Stern, D.; XCS Collaboration
2006-06-01
We report the discovery of the hottest cluster known at z > 1. It was identified as an extended X-ray source in the XMM Cluster Survey (XCS, Romer et al., 2001) and optical spectroscopy shows that 6 galaxies within a 60 arcsec diameter region lie at z = 1.45 ± 0.01. Hence its redshift is the highest currently known for a spectroscopically-confirmed cluster. Analysis of the X-ray spectra yields kT = 7.9+2.8-1.8 keV (90% confidence) and suggests that it is relatively massive for such a high redshift cluster.We acknowledge financial support from NASA grant NAG-11634 (AKR, RCN, KS, MD, PTPV), The Royal Astronomical Society's Hosie Request (MD, KS), PPARC (ARL, STK, RGM), the NASA XMM program (KS), the Institute of Astronomy at the University of Edinburgh (MD), Liverpool John Moores University (MH), Carnegie Mellon University (KS, AKR), and NSF grant AST-0205960 (MJW).
New Constraints on Dark Energy from the ObservedGrowth of the Most X-ray Luminous Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mantz, A.; Allen, S.W.; Ebeling, H.
We present constraints on the mean matter density, {Omega}{sub m}, normalization of the density fluctuation power spectrum, {sigma}{sub 8}, and dark energy equation of state parameter, w, obtained from the X-ray luminosity function of the Massive Cluster Survey (MACS) in combination with the local BCS and REFLEX galaxy cluster samples. Our analysis incorporates the mass function predictions of Jenkins et al. (2001), a mass-luminosity relation calibrated using the data of Reiprich and Bohringer (2002), and standard priors on the Hubble constant, H{sub 0}, and mean baryon density, {Omega}{sub b} h{sup 2}. We find {Omega}{sub m}=0.27 {sup +0.06} {sub -0.05} andmore » {sigma}{sub 8}=0.77 {sup +0.07} {sub -0.06} for a spatially flat, cosmological constant model, and {Omega}{sub m}=0.28 {sup +0.08} {sub -0.06}, {sigma}{sub 8}=0.75 {+-} 0.08 and w=-0.97 {sup +0.20} {sub -0.19} for a flat, constant-w model. Our findings constitute the first precise determination of the dark energy equation of state from measurements of the growth of cosmic structure in galaxy clusters. The consistency of our result with w=-1 lends strong additional support to the cosmological constant model. The constraints are insensitive to uncertainties at the 10-20 percent level in the mass function and in the redshift evolution o the mass-luminosity relation; the constraint on dark energy is additionally robust against our choice of priors and known X-ray observational biases affecting the mass-luminosity relation. Our results compare favorably with those from recent analyses of type Ia supernovae, cosmic microwave background anisotropies, the X-ray gas mass fraction of relaxed galaxy clusters and cosmic shear. A simplified combination of the luminosity function data with supernova, cosmic microwave background and cluster gas fraction data using importance sampling yields the improved constraints {Omega}{sub m}=0.263 {+-} 0.014, {sigma}{sub 8}=0.79 {+-} 0.02 and w=-1.00 +- 0.05.« less
Active galactic nucleus feedback in clusters of galaxies
Blanton, Elizabeth L.; Clarke, T. E.; Sarazin, Craig L.; Randall, Scott W.; McNamara, Brian R.
2010-01-01
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves. PMID:20351250
Large Scale Structures in the GOODS-SOUTH Field up to z~2.5
NASA Astrophysics Data System (ADS)
Trevese, D.; Castellano, M.; Salimbeni, S.; Pentericci, L.; Fiore, F.
2009-05-01
We apply a density evaluation technique based on photometric redshifts, developed by our group, to estimate galaxy space density on the deep (z450~26) multi-wavelength GOODS-MUSIC catalogue. We find several groups and clusters in the redshift range 0.4-2.5. We present here an outline of the X-ray properties of our cluster sample as computed from the Chandra 2Ms data. A group at z = 0.96 could be associated to an extended X-ray source, while two clusters with masses of few times 1014Msolar have upper limits on their X-ray emission significantly lower than expected from their optical properties.
Active Optical Devices and Applications. Volume 228
1980-04-01
Research Center, Minneapolis, Minnesota 55413 Abstract In this paper a control engineer’s point of view of the Large Space Structure (LSS) problem is...CASSIOPEIA SUPERNOVA REMNANT GALAXIES IN VIRGO CLUSTER QUASAR 3C273 CRAB PULSAR Figure 2. A collage of images of X-ray sources obtained with the HEAO...Telescope. Yet ST will not be able to study vari- able stars (primary distance indicators) to the Virgo cluster of galaxies and beyond. This cluster is
KINEMATICS OF SUPERBUBBLES AND SUPERSHELLS IN THE IRREGULAR GALAXY, NGC 1569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sánchez-Cruces, M.; Rosado, M.; Rodríguez-González, A.
We present observations in the optical lines of Hα and [S II] (λλ6717, 6731 Å) and in X-rays of the irregular galaxy, NGC 1569. The observations in Hα and [S II] were made with the UNAM scanning Fabry-Perot interferometer (PUMA) and the X-ray data were obtained from the Chandra data archive. We detected several superbubbles, filaments, and supershells in NGC 1569 for which we determined size as well as their kinematic properties. We present a catalog of expansion velocities of 12 superbubbles, listing their positions, diameters, and physical parameters. Likewise, we present a catalog of 15 filaments and 4 supershells. In order tomore » identify possible X-ray emission from the superbubbles in this galaxy, we analyzed the X-ray emission of NGC 1569 in two energy bands: 0.2-2.0 keV (soft X-rays) and 2.0-8.0 keV (hard X-rays). Based on X-ray images, we detected X-ray emission that could possibly be related to some of the superbubbles. The spectrum of the X-ray superbubbles can be described by an optically thin thermal plasma model. In order to identify the possible coexistence of galactic super winds and superbubbles we have performed adiabatic three-dimensional N-body/smoothed particle hydrodynamics simulations to follow the evolution of the most important stellar clusters in this galaxy, SSC A and SSC B, using the GADGET-2 code. Those simulations demonstrate that depending on the specific initial conditions, the formation of superbubbles or a galactic superwind can result in NGC 1569.« less
X-ray spectral observations of clusters of galaxies undergoing merger events
NASA Astrophysics Data System (ADS)
Henriksen, Mark J.
1993-09-01
We have analyzed the HEAO 1 A2 observations of two clusters whose optical and X-ray isophotes are suggestive of merging subclusters, A119 and A754, and find evidence of nonisothermal X-ray emission from both clusters. The X-ray spectrum of both clusters, when fitted with a single isothermal model, shows residual soft X-ray emission. There is a statistically significant reduction in chi-squared (98 percent probability based on the F-test) when a second temperature component is added. If the asymmetric isophotes seen in the soft X-ray image are indicative of merging subclusters, then our analysis of the Einstein IPC spectra and Solid State Spectrometer observations of A754, which provide some spatial and spectral resolution, suggests that the two temperature components seen in the HEAO 1 A2 spectra are associated with gas trapped in the subcluster potential wells. The implied subcluster isothermal masses suggest that a more massive cluster is accreting a less massive companion in A754. The present observations cannot rule out the alternative possibility that the cooler gas is associated with the outer cluster atmosphere rather than individual subclusters, as appears to be the case for A119. Astro D observations will be necessary to distinguish between these two possibilities for both clusters.
NASA Astrophysics Data System (ADS)
Koulouridis, E.; Poggianti, B.; Altieri, B.; Valtchanov, I.; Jaffé, Y.; Adami, C.; Elyiv, A.; Melnyk, O.; Fotopoulou, S.; Gastaldello, F.; Horellou, C.; Pierre, M.; Pacaud, F.; Plionis, M.; Sadibekova, T.; Surdej, J.
2016-06-01
Context. This article belongs to the first series of XXL publications. It presents multifibre spectroscopic observations of three 0.55 deg2 fields in the XXL Survey, which were selected on the basis of their high density of X-ray-detected clusters. The observations were obtained with the AutoFib2+WYFFOS (AF2) wide-field fibre spectrograph mounted on the 4.2 m William Herschel Telescope. Aims: The paper first describes the scientific rationale, the preparation, the data reduction, and the results of the observations, and then presents a study of active galactic nuclei (AGN) within three superclusters. Methods: To determine the redshift of galaxy clusters and AGN, we assign high priority to a) the brightest cluster galaxies (BCGs), b) the most probable cluster galaxy candidates, and c) the optical counterparts of X-ray point-like sources. We use the outcome of the observations to study the projected (2D) and the spatial (3D) overdensity of AGN in three superclusters. Results: We obtained redshifts for 455 galaxies in total, 56 of which are counterparts of X-ray point-like sources. We were able to determine the redshift of the merging supercluster XLSSC-e, which consists of six individual clusters at z ~ 0.43, and we confirmed the redshift of supercluster XLSSC-d at z ~ 0.3. More importantly, we discovered a new supercluster, XLSSC-f, that comprises three galaxy clusters also at z ~ 0.3. We find a significant 2D overdensity of X-ray point-like sources only around the supercluster XLSSC-f. This result is also supported by the spatial (3D) analysis of XLSSC-f, where we find four AGN with compatible spectroscopic redshifts and possibly one more with compatible photometric redshift. In addition, we find two AGN (3D analysis) at the redshift of XLSSC-e, but no AGN in XLSSC-d. Comparing these findings with the optical galaxy overdensity we conclude that the total number of AGN in the area of the three superclusters significantly exceeds the field expectations. All of the AGN found have luminosities below 7 × 1042 erg s-1. Conclusions: The difference in the AGN frequency between the three superclusters cannot be explained by the present study because of small number statistics. Further analysis of a larger number of superclusters within the 50 deg2 of the XXL is needed before any conclusions on the effect of the supercluster environment on AGN can be reached. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. Based on observations obtained with the William Herschel telescope during semester 13B.The Master Catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A2
Proto Supermassive Binary Black Hole Detected in X-rays
NASA Astrophysics Data System (ADS)
2006-04-01
An international team of astrophysicists, led by D. Hudson from the University of Bonn and including the U.S. Naval Research Laboratory and the University of Virginia, presents their X-ray detection of a proto supermassive binary black hole. Their results will be published in an upcoming issue of Astronomy & Astrophysics. The image of this proto binary black hole was obtained with NASA's Chandra X-ray Observatory. The two black holes have already been seen in radio images. The new X-ray images provide unique evidence that these two black holes are in the process of forming a binary system; that is, they are gravitationally bound and orbit each other. Chandra X-ray Image of 3C 75 Chandra X-ray Image of 3C 75 The two black holes are located in the nearby galaxy cluster Abell 400. With high-resolution Chandra data, the team was able to spatially resolve the two supermassive black holes (separated by 15") at the centre of the cluster. Each black hole is located at the centre of its respective host galaxy and the host galaxies appear to be merging. It is not, however, just the two host galaxies that are colliding - the whole cluster in which they live is merging into another neighbouring galaxy cluster. Using these new data, the team show that the two black holes are moving through the intracluster medium at the supersonic speed of about 1200 km/s. The wind from such a motion would cause the radio plasma emitted from these two black holes to bend backwards. Although this bending had been observed previously, the cause of it was still being debated. Since the bending of the jets due to this motion is in the same direction, it suggests that the two black holes are travelling along the same path within the cluster and are therefore gravitationally bound. Black Hole Merger Animation Black Hole Merger Animation These two black holes became gravitationally bound when their host galaxies collided. In several million years, the two black holes will probably coalesce causing a burst of gravitational waves, as predicted by Einstein's theory of relativity. This event will produce one of the brightest sources of gravitational radiation in the Universe. Although we will not be around to see this particular one, the observations provide additional evidence that such bound systems exist and are currently merging. The gravitational waves produced by these mergers are believed to be the biggest source of gravitational waves to be detected by the future Laser Interferometer Space Antenna (LISA). Notes to the Editors The team includes D.S. Hudson (AIfA,Germany), T.H. Reiprich (AIfA,Germany), T.E. Clarke (NRL & Interferometrics Inc.,USA), and C.L. Sarazin (UVa,USA). X-ray detection of the proto supermassive binary black hole at the centre of Abell 400 by D.S Hudson, T.H. Reiprich, T.E. Clarke, and C.L. Sarazin. To be published in Astronomy & Astrophysics (DOI number: 10.1051/0004-6361:20064955) Full article available in PDF format. Electronic edition of the press release available at http://www.edpsciences.org/aa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doria, Alberto; Gitti, Myriam; Brighenti, Fabrizio
2012-07-01
We present a study of the cavity system in the galaxy cluster RBS 797 based on Chandra and Very Large Array (VLA) data. RBS 797 (z = 0.35) is one of the most distant galaxy clusters in which two pronounced X-ray cavities have been discovered. The Chandra data confirm the presence of a cool core and indicate a higher metallicity along the cavity directions. This is likely due to the active galactic nucleus outburst, which lifts cool metal-rich gas from the center along the cavities, as seen in other systems. We find indications that the cavities are hotter than themore » surrounding gas. Moreover, the new Chandra images show bright rims contrasting with the deep, X-ray deficient cavities. The likely cause is that the expanding 1.4 GHz radio lobes have displaced the gas, compressing it into a shell that appears as bright cool arms. Finally, we show that the large-scale radio emission detected with our VLA observations may be classified as a radio mini-halo, powered by the cooling flow, as it nicely follows the trend P{sub radio} versus P{sub CF} predicted by the reacceleration model.« less
Modified Gravity and its test on galaxy clusters
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theodorus M.; Morandi, Andrea; Limousin, Marceau
2018-05-01
The MOdified Gravity (MOG) theory of J. Moffat assumes a massive vector particle which causes a repulsive contribution to the tensor gravitation. For the galaxy cluster A1689 new data for the X-ray gas and the strong lensing properties are presented. Fits to MOG are possible by adjusting the galaxy density profile. However, this appears to work as an effective dark matter component, posing a serious problem for MOG. New gas and strong lensing data for the cluster A1835 support these conclusions and point at a tendency of the gas alone to overestimate the lensing effects in MOG theory.
NASA Astrophysics Data System (ADS)
Lubin, Lori M.; Oke, J. B.; Postman, Marc
2002-10-01
We have carried out additional spectroscopic observations in the field of cluster Cl 1324+3011 at z=0.76. Combined with the spectroscopy recently presented by Postman, Lubin, & Oke, we now have spectroscopically confirmed 47 cluster members. With this significant number of redshifts, we measure accurately the cluster velocity dispersion to be 1016+126-93 km s-1. The distribution of velocity offsets is consistent with a Gaussian, indicating no substantial velocity substructure. As previously noted for other optically selected clusters at redshifts of z>~0.5, a comparison between the X-ray luminosity (LX) and the velocity dispersion (σ) of Cl 1324+3011 implies that this cluster is underluminous in X-rays by a factor of ~3-40 when compared with the LX-σ relation for local and moderate-redshift clusters. We also examine the morphologies of those cluster members that have available high angular resolution imaging with the Hubble Space Telescope (HST). There are 22 spectroscopically confirmed cluster members within the HST field of view. Twelve of these are visually classified as early-type (elliptical or S0) galaxies, implying an early-type fraction of 0.55+0.17-0.14 in this cluster. This fraction is a factor of ~1.5 lower than that observed in nearby rich clusters. Confirming previous cluster studies, the results for cluster Cl 1324+3011, combined with morphological studies of other massive clusters at redshifts of 0<=z<~1, suggest that the galaxy population in massive clusters is strongly evolving with redshift. This evolution implies that early-type galaxies are forming out of the excess of late-type (spiral, irregular, and peculiar) galaxies over the ~7 Gyr timescale.
Globular cluster x-ray sources
Pooley, David
2010-01-01
Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204
Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408
NASA Astrophysics Data System (ADS)
Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.
2016-06-01
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.
MULTI-WAVELENGTH OBSERVATIONS OF THE DISSOCIATIVE MERGER IN THE GALAXY CLUSTER CIZA J0107.7+5408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, S. W.; Weeren, R. J. van; Clarke, T. E.
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less
Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, S. W.; Clarke, T. E.; Weeren, R. J. van
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less
Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408
Randall, S. W.; Clarke, T. E.; Weeren, R. J. van; ...
2016-05-25
We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for amore » temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. Here, we suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.« less
http://www.esa.int/esaSC/Pr_21_2004_s_en.html
NASA Astrophysics Data System (ADS)
2004-09-01
X-ray brightness map hi-res Size hi-res: 38 Kb Credits: ESA/ XMM-Newton/ Patrick Henry et al. X-ray brightness map This map shows "surface brightness" or how luminous the region is. The larger of the two galaxy clusters is brighter, shown here as a white and red spot. A second cluster resides about "2 o'clock" from this, shown by a batch of yellow surrounded by green. Luminosity is related to density, so the densest regions (cluster cores) are the brightest regions. The white color corresponds to regions of the highest surface brightness, followed by red, orange, yellow, green, blue and purple. High resolution version (JPG format) 38 Kb High resolution version (TIFF format) 525 Kb Temperature map Credits: NASA Artist’s impression of cosmic head on collision The event details what the scientists are calling the perfect cosmic storm: galaxy clusters that collided like two high-pressure weather fronts and created hurricane-like conditions, tossing galaxies far from their paths and churning shock waves of 100-million-degree gas through intergalactic space. The tiny dots in this artist's concept are galaxies containing thousand million of stars. Animated GIF version Temperature map hi-res Size hi-res: 57 Kb Credits: ESA/ XMM-Newton/ Patrick Henry et al. Temperature map This image shows the temperature of gas in and around the two merging galaxy clusters, based directly on X-ray data. The galaxies themselves are difficult to identify; the image highlights the hot ‘invisible’ gas between the clusters heated by shock waves. The white colour corresponds to regions of the highest temperature - million of degrees, hotter than the surface of the Sun - followed by red, orange, yellow and blue. High resolution version (JPG format) 57 Kb High resolution version (TIFF format) 819 Kb The event details what the scientists are calling the ‘perfect cosmic storm’: galaxy clusters that collided like two high-pressure weather fronts and created hurricane-like conditions, tossing galaxies far from their paths and churning shock waves of 100-million-degree gas through intergalactic space. This unprecedented view of a merger in action crystallises the theory that the Universe built its magnificent hierarchal structure from the ‘bottom up’ - essentially through mergers of smaller galaxies and galaxy clusters into bigger ones. "Here before our eyes we see the making of one of the biggest objects in the Universe," said Dr Patrick Henry of the University of Hawaii, who led the study. "What was once two distinct but smaller galaxy clusters 300 million years ago is now one massive cluster in turmoil.” Henry and his colleagues, Alexis Finoguenov and Ulrich Briel of the Max-Planck Institute for Extraterrestrial Physics in Germany, present these results in an upcoming issue of the Astrophysical Journal. The forecast for the new super-cluster, they said, is 'clear and calm' now that the worst of the storm has passed. Galaxy clusters are the largest gravitationally bound structures in Universe, containing hundreds to thousands of galaxies. Our Milky Way galaxy is part of a small group of galaxies but is not gravitationally bound to the closest cluster, the Virgo Cluster. We are destined for a collision in a few thousand million years, though. The cluster named Abell 754 in the constellation Hydra has been known for decades. However, to the scientists' surprise, the new observation reveals that the merger may have occurred from the opposite direction than what was thought. They found evidence for this by tracing the wreckage today left in the merger's wake, spanning a distance of millions of light years. While other large mergers are known, none has been measured in such detail as Abell 754. For the first time, the scientists could create a complete ‘weather map’ of Abell 754 and thus determine a forecast. This map contains information about the temperature, pressure and density of the new cluster. As in all clusters, most the ordinary matter is in the form of gas between the galaxies and not locked up in the galaxies or stars themselves. The massive forces of the merging clusters accelerated intergalactic gas to great speeds. This resulted in shock waves that heat the gas to very high temperatures, which then radiated X-ray light, far more energetic than the visible light our eyes can detect. XMM-Newton, in orbit, detects this type of high-energy light. The dynamics of the merger revealed by XMM-Newton point to a cluster in transition. "One cluster has apparently smashed into the other from the 'north-west' and has since made one pass through," said Finoguenov. "Now, gravity will pull the remnants of this first cluster back towards the core of the second. Over the next few thousand million of years, the remnants of the clusters will settle and the merger will be complete." The observation implies that the largest structures in the Universe are essentially still forming in the modern era. Abell 754 is relatively close, about 800 million light years away. The construction boom may soon be over in a few more thousand million years though. A mysterious substance dubbed 'dark energy' appears to be accelerating the Universe's expansion rate. This means that objects are flying apart from each other at an ever-increasing speed and that clusters may eventually never have the opportunity to collide with each other. X-ray observations of galaxy clusters such as Abell 754 will help to better define dark energy and also dark matter, an ‘invisible’ and mysterious substance that appears to comprise over 80 percent of a galaxy cluster's mass. Notes for editors: This observation was announced at a NASA Internet press conference today. A paper describing these results, by Patrick Henry and his collaborators, will be published in the Astrophysical Journal. Images and other visual material are available at: http://www.gsfc.nasa.gov/topstory/2004/0831galaxymerger_media.html More about XMM-Newton ESA's XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket, from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects.
A good mass proxy for galaxy clusters with XMM-Newton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hai-Hui; Jia, Shu-Mei; Chen, Yong
2013-12-01
We use a sample of 39 galaxy clusters at redshift z < 0.1 observed by XMM-Newton to investigate the relations between X-ray observables and total mass. Based on central cooling time and central temperature drop, the clusters in this sample are divided into two groups: 25 cool core clusters and 14 non-cool core clusters, respectively. We study the scaling relations of L {sub bol}-M {sub 500}, M {sub 500}-T, M {sub 500}-M {sub g}, and M {sub 500}-Y {sub X}, and also the influences of cool core on these relations. The results show that the M {sub 500}-Y {sub X}more » relation has a slope close to the standard self-similar value, has the smallest scatter and does not vary with the cluster sample. Moreover, the M {sub 500}-Y {sub X} relation is not affected by the cool core. Thus, the parameter of Y{sub X} may be the best mass indicator.« less
Galaxy Kinematics and Mass Calibration in Massive SZE Selected Galaxy Clusters to z=1.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capasso, R.; et al.
The galaxy phase-space distribution in galaxy clusters provides insights into the formation and evolution of cluster galaxies, and it can also be used to measure cluster mass profiles. We present a dynamical study based onmore » $$\\sim$$3000 passive, non-emission line cluster galaxies drawn from 110 galaxy clusters. The galaxy clusters were selected using the Sunyaev-Zel'dovich effect (SZE) in the 2500 deg$^2$ SPT-SZ survey and cover the redshift range $0.2 < z < 1.3$. We model the clusters using the Jeans equation, while adopting NFW mass profiles and a broad range of velocity dispersion anisotropy profiles. The data prefer velocity dispersion anisotropy profiles that are approximately isotropic near the center and increasingly radial toward the cluster virial radius, and this is true for all redshifts and masses we study. The pseudo-phase-space density profile of the passive galaxies is consistent with expectations for dark matter particles and subhalos from cosmological $N$-body simulations. The dynamical mass constraints are in good agreement with external mass estimates of the SPT cluster sample from either weak lensing, velocity dispersions, or X-ray $$Y_X$$ measurements. However, the dynamical masses are lower (at the 2.2$$\\sigma$$ level) when compared to the mass calibration favored when fitting the SPT cluster data to a LCDM model with external cosmological priors, including CMB anisotropy data from Planck. The tension grows with redshift, where in the highest redshift bin the ratio of dynamical to SPT+Planck masses is $$\\eta=0.63^{+0.13}_{-0.08}\\pm0.05$$ (statistical and systematic), corresponding to 2.6$$\\sigma$$ tension.« less
The Physical Properties of Intracluster Gas at z > 1
NASA Technical Reports Server (NTRS)
Rosati, Piero; Ford, Holland C.
2004-01-01
We have used XMM-Newton, Chandra and HST/ACS data on one of the most distant clusters known to date, RDCS1252-29 at z= 1.24, to measure the mass of its baryonic and dark components for the first time at these large redshifts. By comparing physical properties of cluster galaxies and of the X-ray emitting intra-cluster medium (including the iron abundance) with those in low-redshift clusters, we have found that little evolution has taken place over 60% of the lifetime of the Universe. This suggests that most of the stars formed at z>approx.3 and metal enrichment processes took place early in the evolutionary history of galaxy clusters. These findings have a strong bearing on galaxy and cluster evolution models.
NASA Astrophysics Data System (ADS)
Yagi, Masafumi; Yoshida, Michitoshi; Komiyama, Yutaka; Kashikawa, Nobunari; Furusawa, Hisanori; Okamura, Sadanori; Graham, Alister W.; Miller, Neal A.; Carter, David; Mobasher, Bahram; Jogee, Shardha
2010-12-01
We present images of extended Hα clouds associated with 14 member galaxies in the Coma cluster obtained from deep narrowband imaging observations with the Suprime-Cam at the Subaru Telescope. The parent galaxies of the extended Hα clouds are distributed farther than 0.2 Mpc from the peak of the X-ray emission of the cluster. Most of the galaxies are bluer than g - r ≈ 0.5 and they account for 57% of the blue (g - r < 0.5) bright (r < 17.8 mag) galaxies in the central region of the Coma cluster. They reside near the red- and blueshifted edges of the radial velocity distribution of Coma cluster member galaxies. Our findings suggest that most of the parent galaxies were recently captured by the Coma cluster potential and are now infalling toward the cluster center with their disk gas being stripped off and producing the observed Hα clouds. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, J.O.; White, R.A.; Hough, D.H.
1981-01-01
VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approx.70%). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approx.25% of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies ismore » seen from rich to poor clusters. We speculate that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. We briefly discuss galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and x-ray emission.« less
NASA Technical Reports Server (NTRS)
Burns, J. O.; White, R. A.; Hough, D. H.
1981-01-01
VLA radio maps and optical identifications of a sample of sources in the directions of 21 Yerkes poor cluster fields are presented. The majority of the cluster radio sources are associated with the dominant D or cD galaxies (approximately 70 percent). Our analysis of dominant galaxies in rich and poor clusters indicates that these giant galaxies are much more often radio emitters (approximately 25 percent of cD's are radio active in the poor clusters), have steeper radio spectra, and have simpler radio morphologies (i.e., double or other linear structure) than other less bright ellipticals. A strong continuum of radio properties in cD galaxies is seen from rich to poor clusters. It is speculated that the location of these dominant galaxies at the cluster centers (i.e., at the bottom of a deep, isolated gravitational potential well) is the crucial factor in explaining their multifrequency activity. Galaxy cannibalism and gas infall models as fueling mechanisms for the observed radio and X-ray emission are discussed
Wavelet transform analysis of the small-scale X-ray structure of the cluster Abell 1367
NASA Technical Reports Server (NTRS)
Grebeney, S. A.; Forman, W.; Jones, C.; Murray, S.
1995-01-01
We have developed a new technique based on a wavelet transform analysis to quantify the small-scale (less than a few arcminutes) X-ray structure of clusters of galaxies. We apply this technique to the ROSAT position sensitive proportional counter (PSPC) and Einstein high-resolution imager (HRI) images of the central region of the cluster Abell 1367 to detect sources embedded within the diffuse intracluster medium. In addition to detecting sources and determining their fluxes and positions, we show that the wavelet analysis allows a characterization of the sources extents. In particular, the wavelet scale at which a given source achieves a maximum signal-to-noise ratio in the wavelet images provides an estimate of the angular extent of the source. To account for the widely varying point response of the ROSAT PSPC as a function of off-axis angle requires a quantitative measurement of the source size and a comparison to a calibration derived from the analysis of a Deep Survey image. Therefore, we assume that each source could be described as an isotropic two-dimensional Gaussian and used the wavelet amplitudes, at different scales, to determine the equivalent Gaussian Full Width Half-Maximum (FWHM) (and its uncertainty) appropriate for each source. In our analysis of the ROSAT PSPC image, we detect 31 X-ray sources above the diffuse cluster emission (within a radius of 24 min), 16 of which are apparently associated with cluster galaxies and two with serendipitous, background quasars. We find that the angular extents of 11 sources exceed the nominal width of the PSPC point-spread function. Four of these extended sources were previously detected by Bechtold et al. (1983) as 1 sec scale features using the Einstein HRI. The same wavelet analysis technique was applied to the Einstein HRI image. We detect 28 sources in the HRI image, of which nine are extended. Eight of the extended sources correspond to sources previously detected by Bechtold et al. Overall, using both the PSPC and the HRI observations, we detect 16 extended features, of which nine have galaxies coincided with the X-ray-measured positions (within the positional error circles). These extended sources have luminosities lying in the range (3 - 30) x 10(exp 40) ergs/s and gas masses of approximately (1 - 30) x 10(exp 9) solar mass, if the X-rays are of thermal origin. We confirm the presence of extended features in A1367 first reported by Bechtold et al. (1983). The nature of these systems remains uncertain. The luminosities are large if the emission is attributed to single galaxies, and several of the extended features have no associated galaxy counterparts. The extended features may be associated with galaxy groups, as suggested by Canizares, Fabbiano, & Trinchieri (1987), although the number required is large.
A Unique Sample of Extreme-BCG Clusters at 0.2 < z < 0.5
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2017-09-01
The recently-discovered Phoenix cluster harbors the most extreme BCG in the known universe. Despite the cluster's high mass and X-ray luminosity, it was consistently identified by surveys as an isolated AGN, due to the bright central point source and the compact cool core. Armed with hindsight, we have undertaken an all-sky survey based on archival X-ray, OIR, and radio data to identify other similarly-extreme systems that were likewise missed. A pilot study demonstrated that this strategy works, leading to the discovery of a new, massive cluster at z 0.2 which was missed by previous X-ray surveys due to the presence of a bright central QSO. We propose here to observe 6 new clusters from our complete northern-sky survey, which harbor some of the most extreme central galaxies known.
XMM-Subaru:Complete High Precision Study of Galaxy Clusters for Modern Cosmology
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying
2011-10-01
We request 382 ks data for 12 clusters to complete our survey of a volume-limited sample of 55 clusters. We investigated the existing data, which hints a mass dependent bias in the X-ray to weak lensing mass ratios for disturbed ones. X-ray mass proxies, e.g., Yx, show low scatter, but the best fits, particularly the slopes, of the mass-observable relations may be biased due to this mass dependence. Our program will quantify any mass/radial dependent bias based on three independent probes (X-ray/lensing/velocity dispersion) for such a volume-limited sample, and deliver definitive constraints on systematics for upcoming cluster cosmology surveys. The dataset will be a major asset for programs aiming to measure dark energy and programs adding a multi-wavelength focus to studies of cluster physics.
Structure of the X-ray source in the Virgo cluster of galaxies
NASA Technical Reports Server (NTRS)
Gorenstein, P.; Fabricant, D.; Topka, K.; Tucker, W.; Harnden, F. R., Jr.
1977-01-01
High-angular-resolution observations in the 0.15-1.5-keV band with an imaging X-ray telescope shows the extended X-ray source in the Virgo cluster of galaxies to be a diffuse halo of about 15 arcmin core radius surrounding M87. The angular structure of the surface brightness is marginally consistent with either of two simple models: (1) an isothermal (or adiabatic or hydrostatic) sphere plus a point source at M87 accounting for 12% of the total 0.5-1.5-keV intensity or (2) a power-law function without a discrete point source. No evidence for a point source is seen in the 0.15-0.28-keV band, which is consistent with self-absorption by about 10 to the 21st power per sq cm of matter having a cosmic abundance. The power-law models are motivated by the idea that radiation losses regulate the accretion of matter onto M87 and can account for the observed difference in the size of the X-ray source as seen in the present measurements and at higher energies.
NASA Astrophysics Data System (ADS)
Krumpe, Mirko; Miyaji, Takamitsu; Coil, Alison L.; Aceves, Hector
2018-02-01
We present the clustering properties and halo occupation distribution (HOD) modelling of very low redshift, hard X-ray-detected active galactic nuclei (AGN) using cross-correlation function measurements with Two-Micron All Sky Survey galaxies. Spanning a redshift range of 0.007 < z < 0.037, with a median z = 0.024, we present a precise AGN clustering study of the most local AGN in the Universe. The AGN sample is drawn from the SWIFT/BAT 70-month and INTEGRAL/IBIS eight year all-sky X-ray surveys and contains both type I and type II AGN. We find a large-scale bias for the full AGN sample of b=1.04^{+0.10}_{-0.11}, which corresponds to a typical host dark matter halo mass of M_h^typ=12.84^{+0.22}_{-0.30} h^{-1} M_{⊙}. When split into low and high X-ray luminosity and type I and type II AGN subsamples, we detect no statistically significant differences in the large-scale bias parameters. However, there are differences in the small-scale clustering, which are reflected in the full HOD model results. We find that low and high X-ray luminosity AGN, as well as type I and type II AGN, occupy dark matter haloes differently, with 3.4σ and 4.0σ differences in their mean halo masses, respectively, when split by luminosity and type. The latter finding contradicts a simple orientation-based AGN unification model. As a by-product of our cross-correlation approach, we also present the first HOD model of 2MASS galaxies.
Cosmological Simulations of Galaxy Clusters
NASA Astrophysics Data System (ADS)
Borgani, Stefano; Kravtsov, Andrey
2011-02-01
We review recent progress in the description of the formation and evolution of galaxy clusters in a cosmological context by using state-of-art numerical simulations. We focus our presentation on the comparison between simulated and observed X-ray properties, while we will also discuss numerical predictions on properties of the galaxy population in clusters, as observed in the optical band. Many of the salient observed properties of clusters, such as scaling relations between X-ray observables and total mass, radial profiles of entropy and density of the intracluster gas, and radial distribution of galaxies are reproduced quite well. In particular, the outer regions of cluster at radii beyond about 10 per cent of the virial radius are quite regular and exhibit scaling with mass remarkably close to that expected in the simplest case in which only the action of gravity determines the evolution of the intra-cluster gas. However, simulations generally fail at reproducing the observed "cool core" structure of clusters: simulated clusters generally exhibit a significant excess of gas cooling in their central regions, which causes both an overestimate of the star formation in the cluster centers and incorrect temperature and entropy profiles. The total baryon fraction in clusters is below the mean universal value, by an amount which depends on the cluster-centric distance and the physics included in the simulations, with interesting tensions between observed stellar and gas fractions in clusters and predictions of simulations. Besides their important implications for the cosmological application of clusters, these puzzles also point towards the important role played by additional physical processes, beyond those already included in the simulations. We review the role played by these processes, along with the difficulty for their implementation, and discuss the outlook for the future progress in numerical modeling of clusters.
Through the X-ray looking glass, and what plasma physics found there
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul; Forman, William R.; Jones, Christine; Roediger, Elke
2017-08-01
How energy is transported and dissipated is the most fundamental process in the thermalization and evolution of galaxy clusters. At temperatures of 1--10 keV, intracluster medium (ICM) approximates a highly ionized plasma. Contemporary X-ray observations have revealed a wealth of substructures in the ICM, even in relatively relaxed clusters. Of particular interest is the ubiquitous presence of cold fronts, resulting from the shear interface between gaseous regions of different entropies. This configuration inevitably leads to the Kelvin-Helmholtz Instability (KHI), appearing as “horn” or “roll” features in X-ray images. Both viscosity and ordered magnetic field can suppress the growth of KHI. We present results of Chandra, XMM-Newton, and Suzaku observations of Fornax and Virgo. We probe the cluster plasma physics through the gas properties of the sloshing cold fronts, merging cold fronts, AGN bubbles, and gaseous stripped tails in these systems. We found that the ICM ought to be inviscous and we can put an upper limit on the intracluster magnetic field. Our results have also provided insights into the merging history of galaxy clusters, which have been reproduced in tailored simulations.
How Supermassive Black Hole Feedback Might Work
NASA Astrophysics Data System (ADS)
Donahue, Megan
2017-01-01
How black holes regulate their own growth and the growth of their host galaxy is an unsolved problem in galaxy evolution. The problem is particularly acute in the centers of clusters of galaxies, where the largest and most massive galaxies in the universe are found. That is, coincidentally, also where the interaction between the black hole and the surrounding gas is the easiest to study because the gas is sufficiently hot and dense to emit X-rays. The massive central galaxies of clusters of galaxies (BCGs) exhibit striking patterns in their relationships between star formation, radio AGN activity, and the thermodynamic state of the hot, X-ray emitting intracluster gas (ICM) surrounding the galaxies. The AGN jets excavate giant, kpc-scale cavities in the hot gas, in principle, supplying enough heat to the ICM to replace energy lost to radiative cooling. Simulations suggest (by elimination) that AGN feedback must be required to explain the luminosity and colors of these galaxies, but cosmological simulations still struggle with modeling how AGN feedback works in detail. In clusters of galaxies with active AGN and star-forming BCGs, the AGN somehow regulates the gaseous atmosphere to be marginally critical, with a ratio of the cooling time to the free fall time of ~ 5-20. This behavior is also seen in elliptical galaxies, where the feedback is mostly coming from stars. I will discuss the observations that motivated this model. The precipitation model in BCGs is a class of models known as "preventative" feedback, regulated by jets in BCGs. Further, the complex behaviour seen in recent idealized simulations seem to follow emergent patterns predicted by this model, while reproducing the scatter and the time scales inferred from the observations. The link between the thermal instabilities and the depth of the gravitational potential may explain scaling laws such as the black hole mass-velocity dispersion relation, the galaxy mass-metallicity relation and the baryonic Tully-Fisher relation. I will discuss how future X-ray and UV telescopes could be used to test and inform this class of models.
Galaxy Cluster Takes It to the Extreme
NASA Astrophysics Data System (ADS)
2007-05-01
Evidence for an awesome upheaval in a massive galaxy cluster was discovered in an image made by NASA's Chandra X-ray Observatory. The origin of a bright arc of ferociously hot gas extending over two million light years requires one of the most energetic events ever detected. The cluster of galaxies is filled with tenuous gas at 170 million degree Celsius that is bound by the mass equivalent of a quadrillion, or 1,000 trillion, suns. The temperature and mass make this cluster a giant among giants. VLA Radio Image of 3C438 VLA Radio Image of 3C438 "The huge feature detected in the cluster, combined with the high temperature, points to an exceptionally dramatic event in the nearby Universe," said Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and leader of a team of astronomers involved in this research. "While we're not sure what caused it, we've narrowed it down to a couple of exciting possibilities." The favored explanation for the bright X-ray arc is that two massive galaxy clusters are undergoing a collision at about 4 million miles per hour. Shock waves generated by the violent encounter of the clusters' hot gas clouds could produce a sharp change in pressure along the boundary where the collision is occurring, giving rise to the observed arc-shaped structure which resembles a titanic weather front. "Although this would be an extreme collision, one of the most powerful ever seen, we think this may be what is going on," said team member Martin Hardcastle, of the University of Hertfordshire, United Kingdom. Images of 3C438 and Surrounding Galaxy Cluster Images of 3C438 and Surrounding Galaxy Cluster A problem with the collision theory is that only one peak in the X-ray emission is seen, whereas two are expected. Longer observations with Chandra and the XMM-Newton X-ray observatories should help determine how serious this problem is for the collision hypothesis. Another possible explanation is that the disturbance was caused by an outburst generated by the infall of matter into a supermassive black hole located in a central galaxy. The black hole inhales much of the matter but expels some of it outward in a pair of high-speed jets, heating and pushing aside the surrounding gas. Such events are known to occur in this cluster. The galaxy 3C438 in the central region of the cluster is known to be a powerful source of explosive activity, which is presumably due to a central supermassive black hole. But the energy in these outbursts is not nearly large enough to explain the Chandra data. "If this event was an outburst from a supermassive black hole, then it's by far the most powerful one ever seen," said team member Bill Forman, also of CfA. The phenomenal amount of energy involved implies a very large amount of mass would have been swallowed by the black hole, about 30 billion times the Sun's mass over a period of 200 million years. The authors consider this rate of black hole growth implausible. "These values have never been seen before and, truthfully, are hard to believe," said Kraft. These results were presented at the American Astronomical Society meeting in Honolulu, HI, and will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Technical Reports Server (NTRS)
Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.;
2012-01-01
Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E greater than100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99 confidence level were measured to be on the order of (2-5) x 10(sup -8) photons m(sup -2) s(sup -1) (VERITAS,greater than 220 GeV) and approximately 2 x 10(sup -6) photons m(sup -2) s(sup -1) (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be less than 16% from VERITAS data and less than 1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be 50. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of approximately (2-5.5)microG, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, (sigma upsilon)
The Second Most Distant Cluster of Galaxies in the Extended Medium Sensitivity Survey
NASA Technical Reports Server (NTRS)
Donahue, Megan; Voit, G. Mark; Scharf, Caleb A.; Gioia, Isabella M.; Mullis, Christopher R.; Hughes, John P.; Stocke, John T.
1999-01-01
We report on our ASCA, Keck, and ROSAT observations of MS 1137.5+6625, the second most distant cluster of galaxies in the Einstein Extended Medium Sensitivity Survey (EMSS), at redshift 0.78. We now have a full set of X-ray temperatures, optical velocity dispersions, and X-ray images for a complete, high-redshift sample of clusters of galaxies drawn from the EMSS. Our ASCA observations of MS 1137.5 +6625 yield a temperature of 5.7 (+2.1)(-1.1) keV and a metallicity of 0.43 (+40)(-3.7) solar, with 90% confidence limits. Keck II spectroscopy of 22 cluster members reveals a velocity dispersion of 884 (+185)(-124) km 24/s. This cluster is the most distant in the sample with a detected iron line. We also derive a mean abundance at z = 0.8 by simultaneously fitting X-ray data for the two z = 0.8 clusters, and obtain an abundance of Z(sub Fe) = 0.33 (+.26)(-.23). Our ROSAT observations show that MS 1137.5+6625 is regular and highly centrally concentrated. Fitting of a Beta model to the X-ray surface brightness yields a core radius of only 71/h kpc (q(sub o) = 0.1) with Beta = 0.70(+.45)(-.15) The gas mass interior to 0.5/h Mpc is thus 1.2 (+0.2)(-0.3) X 10(exp 13) h(exp - 5/2) Solar Mass (q(sub o) = 0.1). If the cluster's gas is nearly isothermal and in hydrostatic equilibrium with the cluster potential, the total mass of the cluster within this same region is 2.1(+1.5)(-0.8) X 10exp 14)/h Solar Mass, giving a gas fraction of 0.06 +/-0.04 h (exp -3/2). This cluster is the highest redshift EMSS cluster showing evidence for a possible cooling flow (about 20-400 Solar Mass/yr). The velocity dispersion, temperature, gas fraction, and iron abundance of MS 1137.5+6625 are all statistically the same as those properties in lower red- shift clusters of similar luminosity. With this cluster's temperature now in hand, we derive a high-redshift temperature function for EMSS clusters at 0.5 < z < 0.9 and compare it with temperature functions at lower redshifts, showing that the evolution of the temperature function is relatively modest. Supplementing our high-redshift sample with other data from the literature, we demonstrate that neither the cluster luminosity-temperature relation, nor cluster metallicities, nor the cluster gas evolved with redshift. The very modest degree of evolution in the luminosity-temperature relation inferred from these data is inconsistent with the absence of evolution in the X-ray luminosity functions derived from ROSAT cluster surveys if a critical density structure formation model is assumed.
NASA Technical Reports Server (NTRS)
Sehgal, Neelima; Addison, Graeme; Battaglia, Nick; Battistelli, Elia S.; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Dunkley, Joanna; Duenner, Rolando; Gralla, Megan;
2012-01-01
We present the measured Sunyaev-Zel'dovich (SZ) flux from 474 optically-selected MaxBCG clusters that fall within the Atacama Cosmology Telescope (ACT) Equatorial survey region. The ACT Equatorial region used in this analysis covers 510 square degrees and overlaps Stripe 82 of the Sloan Digital Sky Survey. We also present the measured SZ flux stacked on 52 X-ray-selected MCXC clusters that fall within the ACT Equatorial region and an ACT Southern survey region covering 455 square degrees. We find that the measured SZ flux from the X-ray-selected clusters is consistent with expectations. However, we find that the measured SZ flux from the optically-selected clusters is both significantly lower than expectations and lower than the recovered SZ flux measured by the Planck satellite. Since we find a lower recovered SZ signal than Planck, we investigate the possibility that there is a significant offset between the optically-selected brightest cluster galaxies (BCGs) and the SZ centers, to which ACT is more sensitive due to its finer resolution. Such offsets can arise due to either an intrinsic physical separation between the BCG and the center of the gas concentration or from misidentification of the cluster BCG. We find that the entire discrepancy for both ACT and Planck can be explained by assuming that the BCGs are offset from the SZ maxima with a uniform random distribution between 0 and 1.5 Mpc. In contrast, the physical separation between BCGs and X-ray peaks for an X-ray-selected subsample of MaxBCG clusters shows a much narrower distribution that peaks within 0.2 Mpc. We conclude that while offsets between BCGs and SZ peaks may be an important component in explaining the discrepancy, it is likely that a combination of factors is responsible for the ACT and Planck measurements. Several effects that can lower the SZ signal equally for both ACT and Planck, but not explain the difference in measured signals, include a larger percentage of false detections in the MaxBCG sample, a lower normalization of the mass-richness relation, radio or infrared galaxy contamination of the SZ flux, and a low intrinsic SZ signal. In the latter two cases, the effects would need to be preferentially more significant in the optically-selected MaxBCG sample than in the MCXC X-ray sample.
Large-Scale Structure Studies with the REFLEX Cluster Survey
NASA Astrophysics Data System (ADS)
Schuecker, P.; Bohringer, H.; Guzzo, L.; Collins, C.; Neumann, D. M.; Schindler, S.; Voges, W.
1998-12-01
First preliminary results of the ROSAT ESO Flux-Limited X-Ray (REFLEX) Cluster Survey are described. The survey covers 13,924 square degrees of the southern hemisphere. The present sample consists of about 470 rich clusters (1/3 non Abell/ACO clusters) with X-ray fluxes S >= 3.0 times 10^{-12} erg s^{-1} cm^{-2} (0.1-2.4 keV) and redshifts z <= 0.3. In contrast to other low-redshift surveys, the cumulative flux-number counts have an almost Euclidean slope. Comoving cluster number densities are found to be almost redshift-independent throughout the total survey volume. The X-ray luminosity function is well described by a Schechter function. The power spectrum of the number density fluctuations could be measured on scales up to 400 h^{-1} Mpc. A deeper survey with about 800 galaxy clusters in the same area is in progress.
The Discovery of a Second Luminous Low Mass X-Ray Binary System in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
Using the Chandra X-ray Observatory we have discovered a second bright X-ray source in the globular cluster M15 that is 2.7" to the west of AC211, the previously known low mass X-ray binary (LMXB) in this system. Prior to the 0.5" imaging capability of Chandra this second source could not have been resolved from AC211. The luminosity and spectrum of this new source, which we call M15-X2, are consistent with it also being a LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The new source, M15-X2, is coincident with a 18th U magnitude very blue star. The discovery of a second LMXB in M15 clears up a long standing puzzle where the X-ray and optical properties of AC211 appear consistent with the central source being hidden behind an accretion disk corona, and yet also showed a luminous X-ray burst suggesting the neutron star is directly visible. This discovery suggests instead that the X-ray burst did not come from AC211, but rather from the newly discovered X-ray source. We discuss the implications of this discovery for X-ray observations of globular clusters in nearby galaxies.
Too Fast, Too Furious: A Galaxy's Fatal Plunge
NASA Astrophysics Data System (ADS)
2004-01-01
Trailing 200,000-light-year-long streamers of seething gas, a galaxy that was once like our Milky Way is being shredded as it plunges at 4.5 million miles per hour through the heart of a distant cluster of galaxies. In this unusually violent collision with ambient cluster gas, the galaxy is stripped down to its skeletal spiral arms as it is eviscerated of fresh hydrogen for making new stars. The galaxy's untimely demise is offering new clues to solving the mystery of what happens to spiral galaxies in a violent universe. Views of the early universe show that spiral galaxies were once much more abundant in rich clusters of galaxies. But they seem to have been vanishing over cosmic time. Where have these "missing bodies" gone? Astronomers are using a wide range of telescopes and analysis techniques to conduct a "CSI" or Crime Scene Investigator-style look at what is happening to this galaxy inside its cluster's rough neighborhood. "It's a clear case of galaxy assault and battery," says William Keel of the University of Alabama. "This is the first time we have a full suite of results from such disparate techniques showing the crime being committed, and the modus operandi." Keel and colleagues are laying out the "forensic evidence" of the galaxy's late life, in a series of presentations today in Atlanta, Ga., at the 203rd meeting of the American Astronomical Society. Astronomers have assembled the evidence by combining a variety of diagnostic observations from telescopes analyzing the galaxy's appearance in X-ray, optical, and radio light. Parallel observations at different wavelengths trace how stars, gas, and dust are being tossed around and torn from the fragile galaxy, called C153. Though such "distressed" galaxies have been seen before, this one's demise is unusually swift and violent. The galaxy belongs to a cluster of galaxies that slammed into another cluster about 100 million years ago. This galaxy took the brunt of the beating as it fell along a trajectory straight through the dense core of the colliding cluster. "This helps explain the weird X-ray and radio emissions we see," says Keel. "The galaxy is a laboratory for studying how gas can be stripped away when it flies through the hot cluster gas, shutting down star birth and transforming the galaxy." The first suggestion of galactic mayhem in this cluster came in 1994 when the Very Large Array radio telescope near Socorro, N.M., detected an unusual number of radio galaxies in the cluster, called Abell 2125. Radio sources trace both star formation and the feeding of central black holes in galaxy clusters. The radio observations also showed that C153 stood out from the other galaxies as an exceptionally powerful radio source. Keel's team began an extensive program of further observations to uncover details about the galaxies. "This was designed to see what the connection could possibly be between events on the 10-million-light-year scale of the cluster merger and what happens deep inside individual galaxies," says Keel. X-ray observations from the ROSAT satellite (an acronym for the Roentgen Satellite) demonstrated that the cluster contains vast amounts of 36-million-degree Fahrenheit (20-million-degree Kelvin) gas that envelops the galaxies. The gas is concentrated into two main lumps rather than smoothly distributed across the cluster, as is more commonly the case. This bolstered the suspicion that two galaxy clusters are actually colliding. In the mid-to-late 1990s astronomers turned the Mayall 4-meter telescope and the WIYN 3.5-meter telescope at the Kitt Peak National Observatory on the cluster to analyze the starlight via spectroscopy. They found many star-forming systems and even active galactic black holes fueled by the collision. The disintegrating galaxy C153 stood out dramatically when the KPNO telescopes were used to photomap the cluster in color. Astronomers then trained NASA's Hubble Space Telescope (HST) onto C153 and resolved a bizarre shape. They found that the galaxy looks unusually clumpy with many young star clusters and chaotic dust features. Besides the disrupted features in the galaxy's disk, HST also showed that the light in the tail is mostly attributed to recent star formation, providing a direct link to the stripping of the galaxy as it passed through the cluster core. Gas compressed along the galaxy's leading edge, like snow before a plow, ignited a firestorm of new star birth. Evidence of recent star formation also comes from the optical spectrum obtained at the 10-meter Gemini North telescope in Hawaii. The spectrum allows the researchers to estimate the time since the most recent burst of star formation. This conclusion was further bolstered when the Mosaic camera on Kitt Peak's Mayall telescope found a very long tail of extended gas coming off the galaxy. The tail was apparently generated in part by a hurricane of stellar winds boiling off the new star-birth regions and being blown backwards as the galaxy streaks through the surrounding hot gas of the cluster. Spectroscopic observations with the Gemini telescope allowed astronomers to age-date the starburst. They find that 90 percent of C153's blue light is from a population of stars that are 100 million years old. This age corresponds to the time the galaxy should have gone careening through the densest gas in the cluster core. The Gemini spectroscopic observations show the stars are in a regular pattern of orbital motion around the center, as usual for disk galaxies. However, there are multiple widespread clouds of gas moving independently of the stars. "This is an important clue that something beyond gravitational forces must be at work, since stars and gas respond the same way to purely gravitational forces," says Keel. "In other words, the galaxy's gas doesn't know what the stars are doing." NASA's Chandra X-ray Observatory discovered that the cooler clouds detected with optical telescopes and an associated radio feature are embedded in a much larger multimillion-degree trail of gas. Chandra's data indicate that this hot gas was probably enriched in heavy elements by the starburst and driven out of the galaxy by its supersonic motion through the much larger cloud of gas that pervades the cluster. Collectively, these observations offer evidence that the ram pressure of external gas in the cluster is stripping away the galaxy's own gas. This process has long been hypothesized to account for the forced evolution of cluster galaxies. Its aftermath has been seen in several ways. Some nearby examples, Seyfert's Sextet and Stefan's Quintet, are tight clusters that show the aftermath of high-velocity collisions. The galaxy C153 is destined to lose the last vestiges of its spiral arms and become a bland S0-type galaxy having a central bulge and disk, but no spiral-arm structure. These types of galaxies are common in the dense galaxy clusters seen today. Astronomers plan to make new observations with Gemini again in 2004 to study the dynamics of the gas and stars in the tail. The science team members are William Keel (University of Alabama), Frazer Owen (National Radio Astronomy Observatory), Michael Ledlow (Gemini Observatory), and Daniel Wang (University of Massachusetts). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Holanda, R. F. L.
2018-05-01
In this paper, we propose a new method to obtain the depletion factor γ(z), the ratio by which the measured baryon fraction in galaxy clusters is depleted with respect to the universal mean. We use exclusively galaxy cluster data, namely, X-ray gas mass fraction (fgas) and angular diameter distance measurements from Sunyaev-Zel'dovich effect plus X-ray observations. The galaxy clusters are the same in both data set and the non-isothermal spherical double β-model was used to describe their electron density and temperature profiles. In order to compare our results with those from recent cosmological hydrodynamical simulations, we suppose a possible time evolution for γ(z), such as, γ(z) =γ0(1 +γ1 z) . As main conclusions we found that: the γ0 value is in full agreement with the simulations. On the other hand, although the γ1 value found in our analysis is compatible with γ1 = 0 within 2σ c.l., our results show a non-negligible time evolution for the depletion factor, unlike the results of the simulations. However, we also put constraints on γ(z) by using the fgas measurements and angular diameter distances obtained from the flat ΛCDM model (Planck results) and from a sample of galaxy clusters described by an elliptical profile. For these cases no significant time evolution for γ(z) was found. Then, if a constant depletion factor is an inherent characteristic of these structures, our results show that the spherical double β-model used to describe the galaxy clusters considered does not affect the quality of their fgas measurements.
The Complete Local-Volume Groups Sample (CLoGS): Early results from X-ray and radio observations
NASA Astrophysics Data System (ADS)
Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Kolokythas, Konstantinos
2017-08-01
Although the group environment is the dominant locus of galaxy evolution (in contrast to rich clusters, which contain only a few percent of galaxies), there has been a lack of reliable, representative group samples in the local Universe. In particular, X-ray selected samples are strongly biased in favor of the X-ray bright, centrally-concentrated cool-core systems. In response, we have designed the Complete Local-Volume Groups Sample (CLoGS), an optically-selected statistically-complete sample of 53 groups within 80 Mpc which is intended to overcome the limitations of X-ray selected samples and serve as a representative survey of groups in the local Universe. We have supplemented X-ray data from Chandra and XMM (70% complete to date, using both archival and new observations, with a 26-group high richness subsample 100% complete) with GMRT radio continuum observations (at 235 and 610 MHz, complete for the entire sample). CLoGS includes groups with a wide variety of properties in terms of galaxy population, hot gas content, and AGN power. We here describe early results from the survey, including the range of AGN activity observed in the dominant galaxies, the relative fraction of cool-core and non-cool-core groups in our sample, and the degree of disturbance observed in the IGM.
Ultraluminous X-ray bursts in two ultracompact companions to nearby elliptical galaxies.
Irwin, Jimmy A; Maksym, W Peter; Sivakoff, Gregory R; Romanowsky, Aaron J; Lin, Dacheng; Speegle, Tyler; Prado, Ian; Mildebrath, David; Strader, Jay; Liu, Jifeng; Miller, Jon M
2016-10-20
A flaring X-ray source was found near the galaxy NGC 4697 (ref. 1). Two brief flares were seen, separated by four years. During each flare, the flux increased by a factor of 90 on a timescale of about one minute. There is no associated optical source at the position of the flares, but if the source was at the distance of NGC 4697, then the luminosities of the flares were greater than 10 39 erg per second. Here we report the results of a search of archival X-ray data for 70 nearby galaxies looking for similar flares. We found two ultraluminous flaring sources in globular clusters or ultracompact dwarf companions of parent elliptical galaxies. One source flared once to a peak luminosity of 9 × 10 40 erg per second; the other flared five times to 10 40 erg per second. The rise times of all of the flares were less than one minute, and the flares then decayed over about an hour. When not flaring, the sources appear to be normal accreting neutron-star or black-hole X-ray binaries, but they are located in old stellar populations, unlike the magnetars, anomalous X-ray pulsars or soft γ repeaters that have repetitive flares of similar luminosities.
Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources
NASA Astrophysics Data System (ADS)
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Feroz, F.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rozo, E.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Rykoff, E. S.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savelainen, M.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Wright, E. L.; Yvon, D.; Zacchei, A.; Zonca, A.
2016-09-01
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.
Planck 2015 results: XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...
2016-09-20
Here, we present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that themore » estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.« less
Constraints on the optical depth of galaxy groups and clusters
Flender, Samuel; Nagai, Daisuke; McDonald, Michael
2017-03-10
Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less
Constraints on the optical depth of galaxy groups and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flender, Samuel; Nagai, Daisuke; McDonald, Michael
Here, future data from galaxy redshift surveys, combined with high-resolutions maps of the cosmic microwave background, will enable measurements of the pairwise kinematic Sunyaev–Zel'dovich (kSZ) signal with unprecedented statistical significance. This signal probes the matter-velocity correlation function, scaled by the average optical depth (τ) of the galaxy groups and clusters in the sample, and is thus of fundamental importance for cosmology. However, in order to translate pairwise kSZ measurements into cosmological constraints, external constraints on τ are necessary. In this work, we present a new model for the intracluster medium, which takes into account star formation, feedback, non-thermal pressure, and gas cooling. Our semi-analytic model is computationally efficient and can reproduce results of recent hydrodynamical simulations of galaxy cluster formation. We calibrate the free parameters in the model using recent X-ray measurements of gas density profiles of clusters, and gas masses of groups and clusters. Our observationally calibrated model predicts the averagemore » $${\\tau }_{500}$$ (i.e., the integrated τ within a disk of size R 500) to better than 6% modeling uncertainty (at 95% confidence level). If the remaining uncertainties associated with other astrophysical uncertainties and X-ray selection effects can be better understood, our model for the optical depth should break the degeneracy between optical depth and cluster velocity in the analysis of future pairwise kSZ measurements and improve cosmological constraints with the combination of upcoming galaxy and CMB surveys, including the nature of dark energy, modified gravity, and neutrino mass.« less
Gigantic Wave Discovered in Perseus Galaxy Cluster
2017-12-08
Combining data from NASA's Chandra X-ray Observatory with radio observations and computer simulations, an international team of scientists has discovered a vast wave of hot gas in the nearby Perseus galaxy cluster. Spanning some 200,000 light-years, the wave is about twice the size of our own Milky Way galaxy. The researchers say the wave formed billions of years ago, after a small galaxy cluster grazed Perseus and caused its vast supply of gas to slosh around an enormous volume of space. "Perseus is one of the most massive nearby clusters and the brightest one in X-rays, so Chandra data provide us with unparalleled detail," said lead scientist Stephen Walker at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The wave we've identified is associated with the flyby of a smaller cluster, which shows that the merger activity that produced these giant structures is still ongoing." Read more at nasa.gov Credit: NASA's Goddard Space Flight Center/Stephen Walker href="http://www.nasa.gov/audience/formedia/features/MP_Photo_Guidelines.html" rel="nofollow">NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
The Low-Power Nucleus of PKS 1246-410 in the Centaurus Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, G.B.; /KIPAC, Menlo Park /NRAO, Socorro /New Mexico U.; Sanders, J.S.
2005-10-21
We present Chandra, Very Large Array (VLA), and Very Long Baseline Array (VLBA) observations of the nucleus of NGC 4696, a giant elliptical in the Centaurus cluster of galaxies. Like M87 in the Virgo cluster, PKS 1246-410 in the Centaurus cluster is a nearby example of a radio galaxy in a dense cluster environment. In analyzing the new X-ray data we have found a compact X-ray feature coincident with the optical and radio core. While nuclear emission from the X-ray source is expected, its luminosity is low, < 10{sup 40} erg s{sup -1}. We estimate the Bondi accretion radius tomore » be 30 pc and the accretion rate to be 0.01 M{sub {circle_dot}} y{sup -1} which under the canonical radiative efficiency of 10% would overproduce by 3.5 orders of magnitude the radiative luminosity. Much of this energy can be directed into the kinetic energy of the jet, which over time inflates the observed cavities seen in the thermal gas. The VLBA observations reveal a weak nucleus and a broad, one-sided jet extending over 25 parsecs in position angle -150 degrees. This jet is deflected on the kpc-scale to a more east-west orientation (position angle of -80 degrees).« less
A hot X-ray filament associated with A3017 galaxy cluster
NASA Astrophysics Data System (ADS)
Parekh, V.; Durret, F.; Padmanabh, P.; Pandge, M. B.
2017-09-01
Recent simulations and observations have shown large-scale filaments in the cosmic web connecting nodes, with accreting materials (baryonic and dark matter) flowing through them. Current high-sensitivity observations also show that the propagation of shocks through filaments can heat them up and make filaments visible between two or more galaxy clusters or around massive clusters, based on optical and/or X-ray observations. We are reporting here the special case of the cluster A3017 associated with a hot filament. The temperature of the filament is 3.4^{-0.77}_{+1.30} keV and its length is ∼1 Mpc. We have analysed its archival Chandra data and report various properties. We also analysed GMRT 235/610 MHz radio data. Radio observations have revealed symmetric two-sided lobes that fill cavities in the A3017 cluster core region, associated with central active galactic nucleus. In the radio map, we also noticed a peculiar linear vertical radio structure in the X-ray filament region which might be associated with a cosmic filament shock. This radio structure could be a radio phoenix or old plasma where an old relativistic population is re-accelerated by shock propagation. Finally, we put an upper limit on the radio luminosity of the filament region.
The Merging Galaxy Cluster A520 - A Broken-Up Cool Core, A Dark Subcluster, and an X-Ray Channel
NASA Technical Reports Server (NTRS)
Wang, Qian H.S.; Markevitch, Maxim; Giacintucci, Simona
2016-01-01
We present results from a deep Chandra X-ray observation of a merging galaxy cluster A520. A high-resolution gas temperature map reveals a long trail of dense, cool clumpsapparently the fragments of a cool core that has been stripped from the infalling subcluster by ram pressure. The clumps should still be connected by the stretched magnetic field lines. The observed temperature variations imply that thermal conductivity is suppressed by a factor greater than 100 across the presumed direction of the magnetic field (as found in other clusters), and is also suppressed along the field lines by a factor of several. Two massive clumps in the periphery of A520, visible in the weak-lensing mass map and the X-ray image, have apparently been completely stripped of gas during the merger, but then re-accreted the surrounding high-entropy gas upon exit from the cluster. The mass clump that hosted the stripped cool core is also re-accreting hotter gas. An X-ray hydrostatic mass estimate for the clump that has the simplest geometry agrees with the lensing mass. Its current gas mass to total mass ratio is very low, 1.5 percent to 3 percent, which makes it a "dark subcluster." We also found a curious low X-ray brightness channel (likely a low-density sheet in projection) going across the cluster along the direction of an apparent secondary merger. The channel may be caused by plasma depletion in a region of an amplified magnetic field (with plasma Beta approximately equal to 10-20). The shock in A520 will be studied in a separate paper.
Complete Temperatures for the Z=0.3 - 0.9 EMSS Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Donahue, Megan
2003-01-01
The MS0302 supercluster is comprised of three massive clusters at z=0.42 (GHO 0303+170, MS 0302.7+1658, and MS0302.5+1717). While this supercluster has been the subject of deep photometric and lensing studies, it has been rather poorly observed in the X-rays. We conducted an investigation of the MS0302 supercluster using several ASCA observations of the region. We combined the three archival ASCA observations with our observation centered on MS0302.5+1717 to create an exposure corrected, background subtracted mosaic of the MS0302. This is the largest area and deepest X-ray image of the region produced to date. We see no evidence of filaments although there is some (possibly) diffuse emission around two of the clusters. We also extracted spectra from the observations to obtain X-ray temperatures for the three clusters. Our temperature for MS 0302.7+1658 agrees well with a previously reported ASCA temperature. We derived the first temperature estimates for GHO 0303+170 and MS0302.5+1717 which have not been previously reported in the literature. Using the temperatures, we can estimate the masses of the clusters. We presented initial results from this project at the conference "Matter and Energy in Clusters of Galaxies" in April 2002, which should appear in the conference proceedings shortly. A longer paper, including data from ROSAT and Chandra, is being readied for publication and should be submitted in April 2003. We expect to carry out future observations of the supercluster using a variety of optical and X-ray instruments.
Hydrodynamic Simulation of the Cosmological X-Ray Background
NASA Astrophysics Data System (ADS)
Croft, Rupert A. C.; Di Matteo, Tiziana; Davé, Romeel; Hernquist, Lars; Katz, Neal; Fardal, Mark A.; Weinberg, David H.
2001-08-01
We use a hydrodynamic simulation of an inflationary cold dark matter model with a cosmological constant to predict properties of the extragalactic X-ray background (XRB). We focus on emission from the intergalactic medium (IGM), with particular attention to diffuse emission from warm-hot gas that lies in relatively smooth filamentary structures between galaxies and galaxy clusters. We also include X-rays from point sources associated with galaxies in the simulation, and we make maps of the angular distribution of the emission. Although much of the X-ray luminous gas has a filamentary structure, the filaments are not evident in the simulated maps because of projection effects. In the soft (0.5-2 keV) band, our calculated mean intensity of radiation from intergalactic and cluster gas is 2.3×10-12 ergs-1 cm-2 deg-2, 35% of the total softband emission. This intensity is compatible at the ~1 σ level with estimates of the unresolved soft background intensity from deep ROSAT and Chandra measurements. Only 4% of the hard (2-10 keV) emission is associated with intergalactic gas. Relative to active galactic nuclei flux, the IGM component of the XRB peaks at a lower redshift (median z~0.45) and spans a narrower redshift range, so its clustering makes an important contribution to the angular correlation function of the total emission. The clustering on the scales accessible to our simulation (0.1‧-10') is significant, with an amplitude roughly consistent with an extrapolation of recent ROSAT results to small scales. A cross-correlation analysis of the XRB against nearby galaxies taken from a simulated redshift survey also yields a strong signal from the IGM. Our conclusions about the soft background intensity differ from those of some recent papers that have argued that the expected emission from gas in galaxy, group, and cluster halos would exceed the observed background unless much of the gas is expelled by supernova feedback. We obtain reasonable compatibility with current observations in a simulation that incorporates cooling, star formation, and only modest feedback. A clear prediction of our model is that the unresolved portion of the soft XRB will remain mostly unresolved even as observations reach deeper point-source sensitivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Y.; Miller, C.; McKay, T.
2016-01-10
Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z similar to 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, m(*) proportional to (M-200/1.5 x 10(14)M(circle dot))(0.24 +/- 0.08)(1+z)(-0.19 +/- 0.34), and compare the observed relation to themore » model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M-200,M-z = 10(13.8)M(circle dot); at z = 1.0: m(*, BCG) appears to have grown by 0.13 +/- 0.11 dex, in tension at the similar to 2.5 sigma significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.« less
NGC 741—Mergers and AGN Feedback on a Galaxy-group Scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schellenberger, G.; Vrtilek, J. M.; David, L.
Low-mass galaxy cluster systems and groups will play an essential role in upcoming cosmological studies, such as those to be carried out with eROSITA. Though the effects of active galactic nuclei (AGNs) and merging processes are of special importance to quantify biases like selection effects or deviations from hydrostatic equilibrium, they are poorly understood on the galaxy-group scale. We present an analysis of recent deep Chandra and XMM-Newton integrations of NGC 741 that provides an excellent example of a group with multiple concurrent phenomena: both an old central radio galaxy and a spectacular infalling head-tail source, strongly bent jets, amore » 100-kpc radio trail, intriguing narrow X-ray filaments, and gas-sloshing features. Supported principally by X-ray and radio continuum data, we address the merging history of the group, the nature of the X-ray filaments, the extent of gas-stripping from NGC 742, the character of cavities in the group, and the roles of the central AGN and infalling galaxy in heating the intra-group medium.« less
Xenia: A Probe of Cosmic Chemical Evolution
NASA Technical Reports Server (NTRS)
Kouveliotou, Chryssa; Piro, L.
2008-01-01
Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and y-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.
Xenia: A Probe of Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Kouveliotou, Chryssa; Piro, L.; Xenia Collaboration
2008-03-01
Xenia is a concept study for a medium-size astrophysical cosmology mission addressing the Cosmic Origins key objective of NASA's Science Plan. The fundamental goal of this objective is to understand the formation and evolution of structures on various scales from the early Universe to the present time (stars, galaxies and the cosmic web). Xenia will use X-and γ-ray monitoring and wide field X-ray imaging and high-resolution spectroscopy to collect essential information from three major tracers of these cosmic structures: the Warm Hot Intergalactic Medium (WHIM), Galaxy Clusters and Gamma Ray Bursts (GRBs). Our goal is to trace the chemo-dynamical history of the ubiquitous warm hot diffuse baryon component in the Universe residing in cosmic filaments and clusters of galaxies up to its formation epoch (at z =0-2) and to map star formation and galaxy metal enrichment into the re-ionization era beyond z 6. The concept of Xenia (Greek for "hospitality") evolved in parallel with the Explorer of Diffuse Emission and GRB Explosions (EDGE), a mission proposed by a multinational collaboration to the ESA Cosmic Vision 2015. Xenia incorporates the European and Japanese collaborators into a U.S. led mission that builds on the scientific objectives and technological readiness of EDGE.
Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters
NASA Astrophysics Data System (ADS)
ZuHone, J. A.; Miller, E. D.; Simionescu, A.; Bautz, M. W.
2016-04-01
Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clusters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of point-spread function scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.
Has ESA's XMM-Newton cast doubt over dark energy?
NASA Astrophysics Data System (ADS)
2003-12-01
Galaxy cluster RXJ0847 hi-res Size hi-res: 100k Galaxy cluster RXJ0847 The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Observations of eight distant clusters of galaxies, the furthest of which is around 10 thousand million light years away, were studied by an international group of astronomers led by David Lumb of ESA's Space Research and Technology Centre (ESTEC) in the Netherlands. They compared these clusters to those found in the nearby Universe. This study was conducted as part of the larger XMM-Newton Omega Project, which investigates the density of matter in the Universe under the lead of Jim Bartlett of the College de France. Clusters of galaxies are prodigious emitters of X-rays because they contain a large quantity of high-temperature gas. This gas surrounds galaxies in the same way as steam surrounds people in a sauna. By measuring the quantity and energy of X-rays from a cluster, astronomers can work out both the temperature of the cluster gas and also the mass of the cluster. Theoretically, in a Universe where the density of matter is high, clusters of galaxies would continue to grow with time and so, on average, should contain more mass now than in the past. Most astronomers believe that we live in a low-density Universe in which a mysterious substance known as 'dark energy' accounts for 70% of the content of the cosmos and, therefore, pervades everything. In this scenario, clusters of galaxies should stop growing early in the history of the Universe and look virtually indistinguishable from those of today. In a paper soon to be published by the European journal Astronomy and Astrophysics, astronomers from the XMM-Newton Omega Project present results showing that clusters of galaxies in the distant Universe are not like those of today. They seem to give out more X-rays than today. So clearly, clusters of galaxies have changed their appearance with time. In an accompanying paper, Alain Blanchard of the Laboratoire d'Astrophysique de l'Observatoire Midi-Pyrénées and his team use the results to calculate how the abundance of galaxy clusters changes with time. Blanchard says, "There were fewer galaxy clusters in the past." Such a result indicates that the Universe must be a high-density environment, in clear contradiction to the 'concordance model,' which postulates a Universe with up to 70% dark energy and a very low density of matter. Blanchard knows that this conclusion will be highly controversial, saying, "To account for these results you have to have a lot of matter in the Universe and that leaves little room for dark energy." To reconcile the new XMM-Newton observations with the concordance models, astronomers would have to admit a fundamental gap in their knowledge about the behaviour of the clusters and, possibly, of the galaxies within them. For instance, galaxies in the faraway clusters would have to be injecting more energy into their surrounding gas than is currently understood. That process should then gradually taper off as the cluster and the galaxies within it grow older. No matter which way the results are interpreted, XMM-Newton has given astronomers a new insight into the Universe and a new mystery to puzzle over. As for the possibility that the XMM-Newton results are simply wrong, they are in the process of being confirmed by other X-ray observations. Should these return the same answer, we might have to rethink our understanding of the Universe. Notes for editors The two papers, The XMM-Newton Omega Project: I. The X-ray Luminosity-Temperature Relationship at z>0.4 by D.H. Lumb et al. and The XMM-Newton Omega Project: II. Cosmological implications from the high redshift L-T relation of X-ray clusters by S.C. Vauclair, A. Blanchard et al. will be published shortly in Astronomy and Astrophysics. The contents of the Universe The content of the Universe is widely thought to consist of three types of substance: normal matter, dark matter and dark energy. Normal matter consists of the atoms that make up stars, planets, human beings and every other visible object in the Universe. As humbling as it sounds, normal matter almost certainly accounts for a small proportion of the Universe, somewhere between 1% and 10%. The more astronomers observed the Universe, the more matter they needed to find to explain it all. This matter could not be made of normal atoms, however, otherwise there would be more stars and galaxies to be seen. Instead, they coined the term dark matter for this peculiar substance precisely because it escapes our detection. At the same time, physicists trying to further the understanding of the forces of nature were starting to believe that new and exotic particles of matter must be abundant in the Universe. These would hardly ever interact with normal matter and many now believe that these particles are the dark matter. At the present time, even though many experiments are underway to detect dark matter particles, none have been successful. Nevertheless, astronomers still believe that somewhere between 30% and 99% of the Universe may consist of dark matter. Dark energy is the latest addition to the contents of the Universe. Originally, Albert Einstein introduced the idea of an all-pervading 'cosmic energy' before he knew that the Universe is expanding. The expanding Universe did not need a 'cosmological constant' as Einstein had called his energy. However, in the 1990s observations of exploding stars in the distant Universe suggested that the Universe was not just expanding but accelerating as well. The only way to explain this was to reintroduce Einstein's cosmic energy in a slightly altered form, called dark energy. No one knows what the dark energy might be. In the currently popular 'concordance model' of the Universe, 70% of the cosmos is thought to be dark energy, 25% dark matter and 5% normal matter. XMM-Newton XMM-Newton can detect more X-ray sources than any previous satellite and is helping to solve many cosmic mysteries of the violent Universe, from black holes to the formation of galaxies. It was launched on 10 December 1999, using an Ariane-5 rocket from French Guiana. It is expected to return data for a decade. XMM-Newton's high-tech design uses over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects. Image caption The fuzzy object at the centre of the frame is one of the galaxy clusters observed by XMM-Newton in its investigation of the distant Universe. The cluster, designated RXJ0847.2+3449, is about 7 000 million light years away, so we see it here as it was 7 000 million years ago, when the Universe was only about half of its present age. This cluster is made up of several dozen galaxies. Credits: ESA
A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen
2017-03-01
We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.
Simulating The Dynamical Evolution Of Galaxies In Group And Cluster Environments
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Rukmani
2015-07-01
Galaxy clusters are harsh environments for their constituent galaxies. A variety of physical processes effective in these dense environments transform gas-rich, spiral, star-forming galaxies to elliptical or spheroidal galaxies with very little gas and therefore minimal star formation. The consequences of these processes are well understood observationally. Galaxies in progressively denser environments have systematically declining star formation rates and gas content. However, a theoretical understanding of of where, when, and how these processes act, and the interplay between the various galaxy transformation mechanisms in clusters remains elusive. In this dissertation, I use numerical simulations of cluster mergers as well as galaxies evolving in quiescent environments to develop a theoretical framework to understand some of the physics of galaxy transformation in cluster environments. Galaxies can be transformed in smaller groups before they are accreted by their eventual massive cluster environments, an effect termed `pre-processing'. Galaxy cluster mergers themselves can accelerate many galaxy transformation mechanisms, including tidal and ram pressure stripping of galaxies and galaxy-galaxy collisions and mergers that result in reassemblies of galaxies' stars and gas. Observationally, cluster mergers have distinct velocity and phase-space signatures depending on the observer's line of sight with respect to the merger direction. Using dark matter only as well as hydrodynamic simulations of cluster mergers with random ensembles of particles tagged with galaxy models, I quantify the effects of cluster mergers on galaxy evolution before, during, and after the mergers. Based on my theoretical predictions of the dynamical signatures of these mergers in combination with galaxy transformation signatures, one can observationally identify remnants of mergers and quantify the effect of the environment on galaxies in dense group and cluster environments. The presence of long-lived, hot X-ray emitting coronae observed in a large fraction of group and cluster galaxies is not well-understood. These coronae are not fully stripped by ram pressure and tidal forces that are efficient in these environments. Theoretically, this is a fascinating and challenging problem that involves understanding and simulating the multitude of physical processes in these dense environments that can remove or replenish galaxies' hot coronae. To solve this problem, I have developed and implemented a robust simulation technique where I simulate the evolution of a realistic cluster environment with a population of galaxies and their gas. With this technique, it is possible to isolate and quantify the importance of the various cluster physical processes for coronal survival. To date, I have performed hydrodynamic simulations of galaxies being ram pressure stripped in quiescent group and cluster environments. Using these simulations, I have characterized the physics of ram pressure stripping and investigated the survival of these coronae in the presence of tidal and ram pressure stripping. I have also generated synthetic X-ray observations of these simulated systems to compare with observed coronae. I have also performed magnetohydrodynamic simulations of galaxies evolving in a magnetized intracluster medium plasma to isolate the effect of magnetic fields on coronal evolution, as well the effect of orbiting galaxies in amplifying magnetic fields. This work is an important step towards understanding the effect of cluster environments on galactic gas, and consequently, their long term evolution and impact on star formation rates.
Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*
NASA Technical Reports Server (NTRS)
Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva
2017-01-01
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.
LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel
2017-01-20
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image ofmore » the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Fernandez, Jonathan D.; Iglesias-Paramo, J.; Vilchez, J. M., E-mail: jonatan@iaa.es
2012-03-01
In this paper, we present a sample of cluster galaxies devoted to study the environmental influence on the star formation activity. This sample of galaxies inhabits in clusters showing a rich variety in their characteristics and have been observed by the SDSS-DR6 down to M{sub B} {approx} -18, and by the Galaxy Evolution Explorer AIS throughout sky regions corresponding to several megaparsecs. We assign the broadband and emission-line fluxes from ultraviolet to far-infrared to each galaxy performing an accurate spectral energy distribution for spectral fitting analysis. The clusters follow the general X-ray luminosity versus velocity dispersion trend of L{sub X}more » {proportional_to} {sigma}{sup 4.4}{sub c}. The analysis of the distributions of galaxy density counting up to the 5th nearest neighbor {Sigma}{sub 5} shows: (1) the virial regions and the cluster outskirts share a common range in the high density part of the distribution. This can be attributed to the presence of massive galaxy structures in the surroundings of virial regions. (2) The virial regions of massive clusters ({sigma}{sub c} > 550 km s{sup -1}) present a {Sigma}{sub 5} distribution statistically distinguishable ({approx}96%) from the corresponding distribution of low-mass clusters ({sigma}{sub c} < 550 km s{sup -1}). Both massive and low-mass clusters follow a similar density-radius trend, but the low-mass clusters avoid the high density extreme. We illustrate, with ABELL 1185, the environmental trends of galaxy populations. Maps of sky projected galaxy density show how low-luminosity star-forming galaxies appear distributed along more spread structures than their giant counterparts, whereas low-luminosity passive galaxies avoid the low-density environment. Giant passive and star-forming galaxies share rather similar sky regions with passive galaxies exhibiting more concentrated distributions.« less
Green valley galaxies as a transition population in different environments
NASA Astrophysics Data System (ADS)
Coenda, Valeria; Martínez, Héctor J.; Muriel, Hernán
2018-02-01
We present a comparative analysis of the properties of passive, star-forming and transition (green valley) galaxies in four discrete environments: field, groups, the outskirts and the core of X-ray clusters. We construct samples of galaxies from the Sloan Digital Sky Survey in these environments so that they are bound to have similar redshift distributions. The classification of galaxies into the three sequences is based on the UV-optical colour NUV - r. We study a number of galaxy properties: stellar mass, morphology, specific star formation rate and the history of star formation. The analysis of green valley (GV) galaxies reveals that the physical mechanisms responsible for external quenching become more efficient moving from the field to denser environments. We confirm previous findings that GV galaxies have intermediate morphologies; moreover, we find that this appears to be independent of the environment. Regarding the stellar mass of GV galaxies, we find that they tend to be more massive in the field than in denser environments. On average, GV galaxies account for ∼ 20 per cent of all galaxies in groups and X-ray clusters. We find evidence that the field environment is inefficient in transforming low-mass galaxies. GV galaxies have average star formation histories intermediate between passive and star-forming galaxies, and have a clear and consistent dependence on the environment: both, the quenching time and the amplitude of the star formation rate, decrease towards higher density environments.
The Mpc-scale radio source associated with the GPS galaxy B1144+352
NASA Astrophysics Data System (ADS)
Schoenmakers, A. P.; de Bruyn, A. G.; Röttgering, H. J. A.; van der Laan, H.
1999-01-01
We present the results of new observations of the enigmatic radio source B1144+352 with the WSRT at 1.4 GHz. This source is hosted by an m_r = 14.3 +/- 0.1 galaxy at a redshift of z=0.063 +/- 0.002 and is one of the lowest redshift Gigahertz Peaked Spectrum (GPS) sources known. It has been known to show radio structure on pc-scale in the radio core and on 20-60 kpc-scale in two jet-like radio structures. The WENSS and NVSS surveys have now revealed faint extended radio structures on an even much larger scale. We have investiga ted these large-scale radio components with new 1.4-GHz WSRT observations. Our radio data indicate that the eastern radio structure has a leading hotspot and we conclude that this structure is a radio lobe originating in the galaxy hosting the GPS source. The western radio structure contains two separate radio sources which are superposed on the sky. The first is a low-power radio source, hosted by a m_R = 15.3 +/- 0.5 galaxy at a similar redshift (z=0.065+/-0.001) to the GPS host galaxy; the second is an extended radio lobe, which we believe is associated with the GPS host galaxy and which contains an elongated tail. The total projected linear size of the extended radio structure associated with B1144+352 is ~ 1.2 Mpc. The core of B1144+353 is a known variable radio source: its flux density at 1.4 GHz has increased continuously between 1974 and 1994. We have measured the flux density of the core in our WSRT observations (epoch 1997.7) and find a value of 541+/-10 mJy This implies that its flux density has decreased by ~ 70 mJy between 1994 and 1997. Further, we have retrieved unpublished archival ROSAT HRI data of B1144+352. The source has been detected and appears to be slightly extended in X-rays. We find a luminosity of (1.26 +/- 0.15)*E(43) erg s(-1) between 0.1 and 2.4 keV, assumin that the X-ray emission is due to an AGN with a powerlaw spectrum with photon index 1.8, or (0.95 +/- 0.11) *E(43) erg s(-1) if it is due to thermal bremsstrahlung at T=10(7) K. The detection of the X-ray source suggests that the intrinsic Hi column density cannot be much larger than a few times 10(21) cm(-2) . The non-detection of an extended X-ray halo in a radius of 250 kpc around the host galaxy limits the X-ray luminosity of an intra-cluster gas component within this radius to <~2.3 x 10(42) erg s(-1) (1sigma upper limit). This is below the luminosity of an X-ray luminous cluster and is more comparable to that of poor groups of galaxies. Also the optical data show no evidence for a rich cluster around the host galaxy. B1144+352 is the second GPS galaxy known to be associated with a Mpc-sized radio source, the other being B1245+676. We argue that the observed structure in both these GPS radio sources must be the result of an interrupted central jet-activity, and that a such they may well be the progenitors of sources belonging to the class of double-double radio galaxy.
Occurrence of Radio Minihalos in a Mass-limited Sample of Galaxy Clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacintucci, Simona; Clarke, Tracy E.; Markevitch, Maxim
2017-06-01
We investigate the occurrence of radio minihalos—diffuse radio sources of unknown origin observed in the cores of some galaxy clusters—in a statistical sample of 58 clusters drawn from the Planck Sunyaev–Zel’dovich cluster catalog using a mass cut ( M {sub 500} > 6 × 10{sup 14} M {sub ⊙}). We supplement our statistical sample with a similarly sized nonstatistical sample mostly consisting of clusters in the ACCEPT X-ray catalog with suitable X-ray and radio data, which includes lower-mass clusters. Where necessary (for nine clusters), we reanalyzed the Very Large Array archival radio data to determine whether a minihalo is present.more » Our total sample includes all 28 currently known and recently discovered radio minihalos, including six candidates. We classify clusters as cool-core or non-cool-core according to the value of the specific entropy floor in the cluster center, rederived or newly derived from the Chandra X-ray density and temperature profiles where necessary (for 27 clusters). Contrary to the common wisdom that minihalos are rare, we find that almost all cool cores—at least 12 out of 15 (80%)—in our complete sample of massive clusters exhibit minihalos. The supplementary sample shows that the occurrence of minihalos may be lower in lower-mass cool-core clusters. No minihalos are found in non-cool cores or “warm cores.” These findings will help test theories of the origin of minihalos and provide information on the physical processes and energetics of the cluster cores.« less
The dark matter distribution of M87 and NGC 1399
NASA Technical Reports Server (NTRS)
Tsai, John C.
1993-01-01
Recent X-ray observations of clusters of galaxies indicate that, outside the innermost about 100 kpc region, the ratio of dark matter density to baryonic matter density declines with radius. We show that this result is consistent with a cold dark matter simulation, suggesting the presence of dissipationless dark matter in the observed clusters. This is contrary to previous suggestions that dissipational baryonic dark matter is required to explain the decline in the density ratio. The simulation further shows that, in the inner 100 kpc region, the density ratio should rise with radius. We confirm this property in M87 and NGC 1399, which are close enough to allow the determination of the density ratio in the required inner region. X-ray mappings of the dark matter distribution in clusters of galaxies are therefore consistent with the presence of dissipationless dark matter.
DYNAMICS AND MAGNETIZATION IN GALAXY CLUSTER CORES TRACED BY X-RAY COLD FRONTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keshet, Uri; Markevitch, Maxim; Birnboim, Yuval
2010-08-10
Cold fronts (CFs)-density and temperature plasma discontinuities-are ubiquitous in cool cores of galaxy clusters, where they appear as X-ray brightness edges in the intracluster medium, nearly concentric with the cluster center. We analyze the thermodynamic profiles deprojected across core CFs found in the literature. While the pressure appears continuous across these CFs, we find that all of them require significant centripetal acceleration beneath the front. This is naturally explained by a tangential, nearly sonic bulk flow just below the CF, and a tangential shear flow involving a fair fraction of the plasma beneath the front. Such shear should generate near-equipartitionmore » magnetic fields on scales {approx}<50pc from the front and could magnetize the entire core. Such fields would explain the apparent stability of cool core CFs and the recently reported CF-radio minihalo association.« less
SUZAKU OBSERVATIONS OF SUBHALOS IN THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sasaki, Toru; Matsushita, Kyoko; Sato, Kosuke
2015-06-10
We observed three massive subhalos in the Coma cluster with Suzaku. These subhalos, labeled “ID 1,” “ID 2,” and “ID 32,” were detected with a weak-lensing survey using Subaru/Suprime-Cam, and are located at the projected distances of 1.4 r{sub 500}, 1.2 r{sub 500}, and 1.6 r{sub 500} from the center of the Coma cluster, respectively. The subhalo “ID 1” has a compact X-ray excess emission close to the center of the weak-lensing mass contour, and the gas mass to weak-lensing mass ratio is about 0.001. The temperature of the emission is about 3 keV, which is slightly lower than thatmore » of the surrounding intracluster medium (ICM) and that expected for the temperature versus mass relation of clusters of galaxies. The subhalo “ID 32” shows an excess emission whose peak is shifted toward the opposite direction from the center of the Coma cluster. The gas mass to weak-lensing mass ratio is also about 0.001, which is significantly smaller than regular galaxy groups. The temperature of the excess is about 0.5 keV and significantly lower than that of the surrounding ICM and far from the temperature versus mass relation of clusters. However, there is no significant excess X-ray emission in the “ID 2” subhalo. Assuming an infall velocity of about 2000 km s{sup −1}, at the border of the excess X-ray emission, the ram pressures for “ID 1” and “ID 32” are comparable to the gravitational restoring force per area. We also studied the effect of the Kelvin–Helmholtz instability to strip the gas. Although we found X-ray clumps associated with the weak-lensing subhalos, their X-ray luminosities are much lower than the total ICM luminosity in the cluster outskirts.« less
The case for electron re-acceleration at galaxy cluster shocks
NASA Astrophysics Data System (ADS)
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; Golovich, Nathan; Lal, Dharam V.; Kang, Hyesung; Ryu, Dongsu; Brìggen, Marcus; Ogrean, Georgiana A.; Forman, William R.; Jones, Christine; Placco, Vinicius M.; Santucci, Rafael M.; Wittman, David; Jee, M. James; Kraft, Ralph P.; Sobral, David; Stroe, Andra; Fogarty, Kevin
2017-01-01
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found1,2 . Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster-cluster merger events 3 . A long-standing problem is how low-Mach-number shocks can accelerate electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411-3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. It also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.
A Detailed Study of Chemical Enrichment History of Galaxy Clusters out to Virial Radius
NASA Astrophysics Data System (ADS)
Loewenstein, Michael
The origin of the metal enrichment of the intracluster medium (ICM) represents a fundamental problem in extragalactic astrophysics, with implications for our understanding of how stars and galaxies form, the nature of Type Ia supernova (SNIa) progenitors, and the thermal history of the ICM. These heavy elements are ultimately synthesized by supernova (SN) explosions; however, the details of the sites of metal production and mechanisms that transport metals to the ICM remain unclear. To make progress, accurate abundance profiles for multiple elements extending from the cluster core out to the virial radius (r180) are required for a significant cluster sample. We propose an X-ray spectroscopic study of a carefully-chosen sample of archival Suzaku and XMM-Newton observations of 23 clusters: XMM-Newton data probe the cluster temperature and abundances out to (0.5-1)r500, while Suzaku data probe the cluster outskirts. A method devised by our team to utilize all elements with emission lines in the X-ray bandpass to measure the relative contributions of supernova explosions by direct modeling of their X-ray spectra will be applied in order to constrain the demographics of the enriching supernova population. In addition we will conduct a stacking analysis of our already existing Suzaku and XMM-Newton cluster spectra to search for weak emssion lines that are important SN diagnostics, and to look for trends with cluster mass and redshift. The funding we propose here will also support the data analysis of our recent Suzaku observations of the archetypal cluster A3112 (200 ks each on the core and outskirts). Our data analysis, intepreted using theoretical models we have developed, will enable us to constrain the star formation history, SN demographics, and nature of SNIa progenitors associated with galaxy cluster stellar populations - and, hence, directly addresess NASA s Strategic Objective 2.4.2 in Astrophysics that aims to improve the understanding of how the Universe works, and explore how it began and evolved.
GeV gamma-ray flux upper limits from clusters of galaxies
Ackermann, M.; Ajello, M.; Allafort, A.; ...
2010-06-16
The detection of diffuse radio emission associated with clusters of galaxies indicates populations of relativistic leptons infusing the intracluster medium (ICM). Those electrons and positrons are either injected into and accelerated directly in the ICM, or produced as secondary pairs by cosmic-ray ions scattering on ambient protons. Radiation mechanisms involving the energetic leptons together with the decay of neutral pions produced by hadronic interactions have the potential to produce abundant GeV photons. Here in this paper, we report on the search for GeV emission from clusters of galaxies using data collected by the Large Area Telescope on the Fermi Gamma-raymore » Space Telescope from 2008 August to 2010 February. Thirty-three galaxy clusters have been selected according to their proximity and high mass, X-ray flux and temperature, and indications of non-thermal activity for this study. We report upper limits on the photon flux in the range 0.2-100 GeV toward a sample of observed clusters (typical values (1-5) ×10 –9 photon cm –2 s –1) considering both point-like and spatially resolved models for the high-energy emission and discuss how these results constrain the characteristics of energetic leptons and hadrons, and magnetic fields in the ICM. The volume-averaged relativistic-hadron-to-thermal energy density ratio is found to be <5%-10% in several clusters.« less
X-ray constraints on the shape of the dark matter in five Abell clusters
NASA Technical Reports Server (NTRS)
Buote, David A.; Canizares, Claude R.
1992-01-01
X-ray observations obtained with the Einstein Observatory are used to constrain the shape of the dark matter in the inner regions of Abell clusters A401, A426, A1656, A2029, and A2199, each of which exhibits highly flattened optical isopleths. The dark matter is modeled as an ellipsoid with a mass density of about r exp -2. The possible shapes of the dark matter is constrained by comparing these model isophotes to the image isophotes. The X-ray isophotes, and therefore the gravitational potentials, have ellipticities of about 0.1-0.2. The dark matter within the central 1 Mpc is found to be substantially rounder for all the clusters. It is concluded that the shape of the galaxy distributions in these clusters traces neither the gravitational potential nor the gravitating matter.
PREDICTED SIZES OF PRESSURE-SUPPORTED HI CLOUDS IN THE OUTSKIRTS OF THE VIRGO CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burkhart, Blakesley; Loeb, Abraham
Using data from the ALFALFA AGES Arecibo HI survey of galaxies and the Virgo cluster X-ray pressure profiles from XMM-Newton , we investigate the possibility that starless dark HI clumps, also known as “dark galaxies,” are supported by external pressure in the surrounding intercluster medium. We find that the starless HI clump masses, velocity dispersions, and positions allow these clumps to be in pressure equilibrium with the X-ray gas near the virial radius of the Virgo cluster. We predict the sizes of these clumps to range from 1 to 10 kpc, in agreement with the range of sizes found formore » spatially resolved HI starless clumps outside of Virgo. Based on the predicted HI surface density of the Virgo sources, as well as a sample of other similar resolved ALFALFA HI dark clumps with follow-up optical/radio observations, we predict that most of the HI dark clumps are on the cusp of forming stars. These HI sources therefore mark the transition between starless HI clouds and dwarf galaxies with stars.« less
NASA Astrophysics Data System (ADS)
Takizawa, Motokazu; Naito, Tsuguya
2000-06-01
We have investigated evolution of nonthermal emission from relativistic electrons accelerated around the shock fronts during mergers of clusters of galaxies. We estimate synchrotron radio emission and inverse Compton scattering of cosmic microwave background photons from extreme ultraviolet (EUV) to hard X-ray range. The hard X-ray emission is most luminous in the later stage of a merger. Both hard X-ray and radio emissions are luminous only while signatures of merging events are clearly seen in the thermal intracluster medium (ICM). On the other hand, EUV radiation is still luminous after the system has relaxed. Propagation of shock waves and bulk-flow motion of ICM play crucial roles in extending radio halos. In the contracting phase, radio halos are located at the hot region of ICM or between two substructures. In the expanding phase, on the other hand, radio halos are located between two ICM hot regions and show rather diffuse distribution.
Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra
NASA Astrophysics Data System (ADS)
Botteon, A.; Gastaldello, F.; Brunetti, G.
2018-06-01
A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have M< 2 derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.
Suzaku and Chandra observations of CIZA J1700.8-3144, a cluster of galaxies in the Zone of Avoidance
NASA Astrophysics Data System (ADS)
Mori, Hideyuki; Maeda, Yoshitomo; Ueda, Yoshihiro; Nakazawa, Kazuhiro; Tawara, Yuzuru
2017-02-01
We present the Chandra and Suzaku observations of 1RXS J170047.8-314442, located towards the Galactic bulge, to reveal a wide-band (0.3-10 keV) X-ray morphology and spectrum of this source. With the Chandra observation, no point source was found at the position of 1RXS J170047.8-314442. Instead, we revealed the presence of diffuse X-ray emission, via the wide-band X-ray image obtained from the Suzaku XIS. Although the X-ray emission had a nearly circular shape with a spatial extent of ˜3{^'.}5, the surface brightness profile was not axisymmetric; a bright spot-like emission was found at ˜ 1' away in the northwestern direction from the center. The radial profile of the surface brightness, except for this spot-like emission, was reproduced with a single β-model; β and the core radius were found to be 1.02 and 1{^'.}51, respectively. The X-ray spectrum of the diffuse emission showed an emission line at ˜6 keV, indicating an origin of a thermal plasma. The spectrum was well explained with an absorbed, optically-thin thermal plasma model with a temperature of 6.2 keV and a redshift parameter of z = 0.14 ± 0.01. Hence, the X-ray emission was considered to arise from the hot gas associated with a cluster of galaxies. Our spectroscopic result confirmed the optical identification of 1RXS J170047.8-314442 by Kocevski et al. (2007, ApJ, 662, 224): CIZA J1700.8-3144, a member of the cluster catalogue in the Zone of Avoidance. The estimated bolometric X-ray luminosity of 5.9 × 1044 erg s-1 was among the lowest with this temperature, suggesting that this cluster is far from relaxed.
NASA Astrophysics Data System (ADS)
Vikhlinin, Alexey
2018-01-01
Lynx is an observatory-class mission, featuring high throughput, exquisite angular resolution over a substantial field of view, and high spectral resolution for point and extended X-ray sources. The design requirements provide a tremendous leap in capabilities relative to missions such as Chandra and Athena. Lynx will observe the dawn of supermassive black holes through detection of very faint X-ray sources in the early universe and will reveal the "invisible drivers" of galaxy and structure formation through observations of hot, diffuse baryons in and around the galaxies. Lynx will enable breakthroughs across all of astrophysics, ranging from detailed understanding of stellar activity including effects on habitability of associated planets to population statistics of neutron stars and black holes in the Local Group galaxies, to earliest groups and clusters of galaxies, and to cosmology
Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS
NASA Astrophysics Data System (ADS)
Pinzke, Anders
The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.
X-Ray spectroscopy of cooling flows
NASA Technical Reports Server (NTRS)
Prestwich, Andrea
1996-01-01
Cooling flows in clusters of galaxies occur when the cooling time of the gas is shorter than the age of the cluster; material cools and falls to the center of the cluster potential. Evidence for short X-ray cooling times comes from imaging studies of clusters and X-ray spectroscopy of a few bright clusters. Because the mass accretion rate can be high (a few 100 solar mass units/year) the mass of material accumulated over the lifetime of a cluster can be as high as 10(exp 12) solar mass units. However, there is little evidence for this material at other wavelengths, and the final fate of the accretion material is unknown. X-ray spectra obtained with the Einstein SSS show evidence for absorption; if confirmed this result would imply that the accretion material is in the form of cool dense clouds. However ice on the SSS make these data difficult to interpret. We obtained ASCA spectra of the cooling flow cluster Abell 85. Our primary goals were to search for multi-temperature components that may be indicative of cool gas; search for temperature gradients across the cluster; and look for excess absorption in the cooling region.
Searching for Primordial Antimatter
NASA Astrophysics Data System (ADS)
2008-10-01
Scientists are on the hunt for evidence of antimatter - matter's arch nemesis - leftover from the very early Universe. New results using data from NASA's Chandra X-ray Observatory and Compton Gamma Ray Observatory suggest the search may have just become even more difficult. Antimatter is made up of elementary particles, each of which has the same mass as their corresponding matter counterparts --protons, neutrons and electrons -- but the opposite charges and magnetic properties. When matter and antimatter particles collide, they annihilate each other and produce energy according to Einstein's famous equation, E=mc2. According to the Big Bang model, the Universe was awash in particles of both matter and antimatter shortly after the Big Bang. Most of this material annihilated, but because there was slightly more matter than antimatter - less than one part per billion - only matter was left behind, at least in the local Universe. Trace amounts of antimatter are believed to be produced by powerful phenomena such as relativistic jets powered by black holes and pulsars, but no evidence has yet been found for antimatter remaining from the infant Universe. How could any primordial antimatter have survived? Just after the Big Bang there was believed to be an extraordinary period, called inflation, when the Universe expanded exponentially in just a fraction of a second. "If clumps of matter and antimatter existed next to each other before inflation, they may now be separated by more than the scale of the observable Universe, so we would never see them meet," said Gary Steigman of The Ohio State University, who conducted the study. "But, they might be separated on smaller scales, such as those of superclusters or clusters, which is a much more interesting possibility." X-rayChandra X-ray Image In that case, collisions between two galaxy clusters, the largest gravitationally-bound structures in the Universe, might show evidence for antimatter. X-ray emission shows how much hot gas is involved in such a collision. If some of the gas from either cluster has particles of antimatter, then there will be annihilation and the X-rays will be accompanied by gamma rays. Steigman used data obtained by Chandra and Compton to study the so-called Bullet Cluster, where two large clusters of galaxies have crashed into one another at extremely high velocities. At a relatively close distance and with a favorable side-on orientation as viewed from Earth, the Bullet Cluster provides an excellent test site to search for the signal for antimatter. People Who Read This Also Read... Jet Power and Black Hole Assortment Revealed in New Chandra Image Chandra Data Reveal Rapidly Whirling Black Holes Black Holes Have Simple Feeding Habits Galaxies Coming of Age in Cosmic Blobs "This is the largest scale over which this test for antimatter has ever been done," said Steigman, whose paper was published in the Journal of Cosmology and Astroparticle Physics. "I'm looking to see if there could be any clusters of galaxies which are made of large amounts of antimatter." The observed amount of X-rays from Chandra and the non-detection of gamma rays from the Compton data show that the antimatter fraction in the Bullet Cluster is less than three parts per million. Moreover, simulations of the Bullet Cluster merger show that these results rule out any significant amounts of antimatter over scales of about 65 million light years, an estimate of the original separation of the two colliding clusters. "The collision of matter and antimatter is the most efficient process for generating energy in the Universe, but it just may not happen on very large scales," said Steigman. "But, I'm not giving up yet as I'm planning to look at other colliding galaxy clusters that have recently been discovered." Finding antimatter in the Universe might tell scientists about how long the period of inflation lasted. "Success in this experiment, although a long shot, would teach us a lot about the earliest stages of the Universe," said Steigman. Tighter constraints have been placed by Steigman on the presence of antimatter on smaller scales by looking at single galaxy clusters that do not involve such large, recent collisions. The Compton Gamma Ray Observatory was in orbit from 1991 until 2000 when it was safely de-orbited. The data used in this result came from Compton's Energetic Gamma Ray Telescope, or EGRET, instrument. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.
A luminous X-ray outburst from an intermediate-mass black hole in an off-centre star cluster
NASA Astrophysics Data System (ADS)
Lin, Dacheng; Strader, Jay; Carrasco, Eleazar R.; Page, Dany; Romanowsky, Aaron J.; Homan, Jeroen; Irwin, Jimmy A.; Remillard, Ronald A.; Godet, Olivier; Webb, Natalie A.; Baumgardt, Holger; Wijnands, Rudy; Barret, Didier; Duc, Pierre-Alain; Brodie, Jean P.; Gwyn, Stephen D. J.
2018-06-01
A unique signature for the presence of massive black holes in very dense stellar regions is occasional giant-amplitude outbursts of multi-wavelength radiation from tidal disruption and subsequent accretion of stars that make a close approach to the black holes1. Previous strong tidal disruption event (TDE) candidates were all associated with the centres of largely isolated galaxies2-6. Here, we report the discovery of a luminous X-ray outburst from a massive star cluster at a projected distance of 12.5 kpc from the centre of a large lenticular galaxy. The luminosity peaked at 1043 erg s-1 and decayed systematically over 10 years, approximately following a trend that supports the identification of the event as a TDE. The X-ray spectra were all very soft, with emission confined to be ≲3.0 keV, and could be described with a standard thermal disk. The disk cooled significantly as the luminosity decreased—a key thermal-state signature often observed in accreting stellar-mass black holes. This thermal-state signature, coupled with very high luminosities, ultrasoft X-ray spectra and the characteristic power-law evolution of the light curve, provides strong evidence that the source contains an intermediate-mass black hole with a mass tens of thousand times that of the solar mass. This event demonstrates that one of the most effective means of detecting intermediate-mass black holes is through X-ray flares from TDEs in star clusters.
Radio morphology and parent population of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Laurent-Muehleisen, S. A.; Kollgaard, R. I.; Moellenbrock, G. A.; Feigelson, E. D.
1993-01-01
High-dynamic range (typically 1700:1) radio maps of 15 X-ray BL Lac (XBL) objects from the HEAO-1 Large Area Sky Survey are presented. Morphological characteristics of these sources are compared with Fanaroff-Riley (FR) class I radio galaxies in the context of unified schemes, with reference to one-sided kiloparsec-scale emission. Evidence that cluster membership of XBLs is significantly higher than previously thought is also presented. It is shown that the extended radio powers, X-ray emission, core-to-lobe ratios, and linear sizes of the radio selected BL Lac (RBL) and XBL populations are consistent with an FR I radio galaxy parent population. A source list and VLA observing log and map parameters are provided.
"Survivor" Black Holes May Be Mid-Sized
NASA Astrophysics Data System (ADS)
2010-04-01
New evidence from NASA's Chandra X-ray Observatory and ESA's XMM-Newton strengthens the case that two mid-sized black holes exist close to the center of a nearby starburst galaxy. These "survivor" black holes avoided falling into the center of the galaxy and could be examples of the seeds required for the growth of supermassive black holes in galaxies, including the one in the Milky Way. For several decades, scientists have had strong evidence for two distinct classes of black hole: the stellar-mass variety with masses about ten times that of the Sun, and the supermassive ones, located at the center of galaxies, that range from hundreds of thousands to billions of solar masses. But a mystery has remained: what about black holes that are in between? Evidence for these objects has remained controversial, and until now there were no strong claims of more than one such black hole in a single galaxy. Recently, a team of researchers has found signatures in X-ray data of two mid-sized black holes in the starburst galaxy M82 located 12 million light years from Earth. "This is the first time that good evidence for two mid-sized black holes has been found in one galaxy," said Hua Feng of the Tsinghua University in China, who led two papers describing the results. "Their location near the center of the galaxy might provide clues about the origin of the Universe's largest black holes - supermassive black holes found in the centers of most galaxies." One possible mechanism for the formation of supermassive black holes involves a chain reaction of collisions of stars in compact star clusters that results in the buildup of extremely massive stars, which then collapse to form intermediate-mass black holes. The star clusters then sink to the center of the galaxy, where the intermediate-mass black holes merge to form a supermassive black hole. In this picture, clusters that were not massive enough or close enough to the center of the galaxy to fall in would survive, as would any black holes they contain. "We can't say whether this process actually occurred in M82, but we do know that both of these possible mid-sized black holes are located in or near star clusters," said Phil Kaaret from the University of Iowa, who co-authored both papers. "Also, M82 is the nearest place to us where the conditions are similar to those in the early Universe, with lots of stars forming." The evidence for these two "survivor" black holes comes from how their X-ray emission varies over time and analysis of their X-ray brightness and spectra, i.e., the distribution of X-rays with energy. Chandra and XMM-Newton data show that the X-ray emission for one of these objects changes in a distinctive manner similar to stellar-mass black holes found in the Milky Way. Using this information and theoretical models, the team estimated this black hole's mass is between 12,000 and 43,000 times the mass of the Sun. This mass is large enough for the black hole to generate copious X-rays by pulling gas directly from its surroundings, rather than from a binary companion, like with stellar-mass black holes. The black hole is located at a projected distance of 290 light years from the center of M82. The authors estimate that, at this close distance, if the black hole was born at the same time as the galaxy and its mass was more than about 30,000 solar masses it would have been pulled into the center of the galaxy. That is, it may have just escaped falling into the supermassive black hole that is presumably located in the center of M82. The second object, located 600 light years in projection away from the center of M82, was observed by both Chandra and XMM-Newton. During X-ray outbursts, periodic and random variations normally present in the X-ray emission disappear, a strong indication that a disk of hot gas dominates the X-ray emission. A detailed fit of the X-ray data indicates that the disk extends all the way to the innermost stable orbit around the black hole. Similar behavior has been seen from stellar-mass black holes in our Galaxy, but this is the first likely detection in a candidate intermediate-mass black hole. The radius of the innermost stable orbit depends only on the mass and spin of the black hole. The best model for the X-ray emission implies a rapidly spinning black hole with mass in the range 200 to 800 times the mass of the Sun. The mass agrees with theoretical estimates for a black hole created in a star cluster by runaway collisions of stars. "This result is one of the strongest pieces of evidence to date for the existence of an intermediate-mass black hole," said Feng. "This looks just like well-studied examples of stellar-mass black holes, except for being more than 20 times as massive." The two papers describing these results recently appeared in The Astrophysical Journal. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. The XMM-Newton spacecraft is controlled by the European Space Operations Center. The XMM-Newton Science Operations Center situated at ESAC in Villafranca, Spain, manages observation requests and receives XMM-Newton data. The XMM-Newton Survey Science Centre at Leicester University, UK, processes and correlates all XMM-Newton observations with existing sky data held elsewhere in the world. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov and http://www.esa.int/esaSC/
The case for electron re-acceleration at galaxy cluster shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less
The case for electron re-acceleration at galaxy cluster shocks
van Weeren, Reinout J.; Andrade-Santos, Felipe; Dawson, William A.; ...
2017-01-04
On the largest scales, the Universe consists of voids and filaments making up the cosmic web. Galaxy clusters are located at the knots in this web, at the intersection of filaments. Clusters grow through accretion from these large-scale filaments and by mergers with other clusters and groups. In a growing number of galaxy clusters, elongated Mpc-sized radio sources have been found. Also known as radio relics, these regions of diffuse radio emission are thought to trace relativistic electrons in the intracluster plasma accelerated by low-Mach-number shocks generated by cluster–cluster merger events. A long-standing problem is how low-Mach-number shocks can acceleratemore » electrons so efficiently to explain the observed radio relics. Here, we report the discovery of a direct connection between a radio relic and a radio galaxy in the merging galaxy cluster Abell 3411–3412 by combining radio, X-ray and optical observations. This discovery indicates that fossil relativistic electrons from active galactic nuclei are re-accelerated at cluster shocks. Lastly, it also implies that radio galaxies play an important role in governing the non-thermal component of the intracluster medium in merging clusters.« less
Resonant scattering as a sensitive diagnostic of current collisional plasma models
NASA Astrophysics Data System (ADS)
Ogorzalek, Anna; Zhuravleva, Irina; Allen, Steven W.; Pinto, Ciro; Werner, Norbert; Mantz, Adam; Canning, Rebecca; Fabian, Andrew C.; Kaastra, Jelle S.; de Plaa, Jelle
2017-08-01
Resonant scattering is a subtle process that suppresses fluxes of some of the brightest optically thick X-ray emission lines produced by collisional plasmas in galaxy clusters and massive early-type galaxies. The amplitude of the effect depends on the turbulent structure of the hot gas, making it a sensitive velocity probe. It is therefore crucial to properly model this effect in order to correctly interpret high resolution X-ray spectra. Our measurements of resonant scattering with XMM-Newton Reflection Grating Spectrometer in giant elliptical galaxies and with Hitomi in the center of Perseus Cluster show that the potentially rich inference from this effect is limited by the uncertainties in the atomic data underlying plasma codes such as APEC and SPEX. Typically, the effect is of the order of 10-20%, while the discrepancy between the two codes is of similar order or even higher. Precise knowledge of the emissivity and oscillator strengths of lines emitted by Fe XVII and Fe XXV, as well as their respective uncertainties propagated through plasma codes are key to understanding gas dynamics and microphysics in giant galaxies and cluster ICM, respectively. This is especially crucial for massive ellipticals, where sub-eV resolution would be needed to measure line broadening precisely, making resonant scattering an important velocity diagnostic in these systems for the foreseeable future. In this poster, I will summarize current status of resonant scattering measurements and show how they depend on the assumed atomic data. I will also discuss which improvements are essential to maximize scientific inference from future high resolution X-ray spectra.
Extended X-Ray Jet in Nearby Galaxy Reveals Energy Source
NASA Astrophysics Data System (ADS)
1999-10-01
NASA's Chandra X-ray Observatory has made an extraordinary image of Centaurus A, a nearby galaxy noted for its explosive activity. The image shows X-ray jets erupting from the center of the galaxy over a distance of 25,000 light years. Also detected are a group of X-ray sources clustered around the nucleus, which is believed to harbor a supermassive black hole. The X-ray jets and the cluster of sources may be a byproduct of a titanic collision between galaxies several hundred million years ago. "This image is great," said Dr. Ethan Schreier of the Space Telescope Science Institute, "For twenty years we have been trying to understand what produced the X rays seen in the Centaurus A jet. Now we at last know that the X-ray emission is produced by extremely high-energy electrons spiraling around a magnetic field." Schreier explained that the length and shape of the X-ray jet pinned down the source of the radiation. The entire length of the X-ray jet is comparable to the diameter of the Milky Way Galaxy. Other features of the image excite scientists. "Besides the jets, one of the first things I noticed about the image was the new population of sources in the center of the galaxy," said Dr. Christine Jones from the Harvard-Smithsonian Center for Astrophysics . "They are grouped in a sphere around the nucleus, which must be telling us something very fundamental about how the galaxy, and the supermassive black hole in the center, were formed." Astronomers have accumulated evidence with optical and infrared telescopes that Centaurus A collided with a small spiral galaxy several hundred million years ago. This collision is believed to have triggered a burst of star formation and supplied gas to fuel the activity of the central black hole. more - According to Dr. Giuseppina Fabbiano, of Harvard-Smithsonian, "The Chandra image is like having a whole new laboratory to work in. Now we can see the main jet, the counter jet, and the extension of the jets beyond the galaxy. It is gorgeous in the detail it reveals," she said. Dr. Allyn Tennnant of NASA's Marshall Space Flight Center agreed. "It's incredible, being able to see all that structure in the jet," he said. "We have one fine X-ray telescope." Indeed at a distance of eleven million light years from Earth, Centaurus A has long been a favorite target of astronomers because it is the nearest example of a class of galaxies called active galaxies. Active galaxies are noted for their explosive activity, which is presumed to be due to a supermassive black hole in their center. The energy output due to the huge central black hole can in many cases affect the appearance of the entire galaxy. The Chandra X-ray image of Cen A, made with the High Resolution Camera, shows a bright source in the nucleus of the galaxy at the location of the suspected supermassive black hole. The bright jet extending out from the nucleus to the upper left is due to explosive activity around the black hole which ejects matter at high speeds from the vicinity of the black hole. A "counter jet" extending to the lower right can also be seen. This jet is probably pointing away from us, which accounts for its faint appearance. One of the most intriguing features of supermassive black holes is that they do not suck up all the matter that falls within their sphere of influence. Some of the matter falls inexorably toward the black hole, and some explodes away from the black hole in high-energy jets that move at near the speed of light. The presence of bright X-ray jets in the Chandra image means that electric fields are continually accelerating electrons to extremely high energies over enormous distances. Exactly how this happens is a major puzzle that Chandra may help to solve. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov Dr. Stephen Murray of the Harvard-Smithsonian Center for Astrophysics is the principal investigator for the High Resolution Camera. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/0157/index.html or via links in: http://chandra.harvard.edu
NASA Astrophysics Data System (ADS)
Banerjee, P.; Szabo, T.; Pierpaoli, E.; Franco, G.; Ortiz, M.; Oramas, A.; Tornello, B.
2018-01-01
We present a new galaxy cluster catalog constructed from the Sloan Digital Sky Survey Data Release 9 (SDSS DR9) using an Adaptive Matched Filter (AMF) technique. Our catalog has 46,479 galaxy clusters with richness Λ200 > 20 in the redshift range 0.045 ≤ z < 0.641 in ∼11,500 deg2 of the sky. Angular position, richness, core and virial radii and redshift estimates for these clusters, as well as their error analysis, are provided as part of this catalog. In addition to the main version of the catalog, we also provide an extended version with a lower richness cut, containing 79,368 clusters. This version, in addition to the clusters in the main catalog, also contains those clusters (with richness 10 < Λ200 < 20) which have a one-to-one match in the DR8 catalog developed by Wen et al.(WHL). We obtain probabilities for cluster membership for each galaxy and implement several procedures for the identification and removal of false cluster detections. We cross-correlate the main AMF DR9 catalog with a number of cluster catalogs in different wavebands (Optical, X-ray). We compare our catalog with other SDSS-based ones such as the redMaPPer (26,350 clusters) and the Wen et al. (WHL) (132,684 clusters) in the same area of the sky and in the overlapping redshift range. We match 97% of the richest Abell clusters (Richness group 3), the same as WHL, while redMaPPer matches ∼ 90% of these clusters. Considering AMF DR9 richness bins, redMaPPer does not have one-to-one matches for 70% of our lowest richness clusters (20 < Λ200 < 40), while WHL matches 54% of these missed clusters (not present in redMaPPer). redMaPPer consistently does not possess one-to-one matches for ∼ 20% AMF DR9 clusters with Λ200 > 40, while WHL matches ≥ 70% of these missed clusters on average. For comparisons with X-ray clusters, we match the AMF catalog with BAX, MCXC and a combined catalog from NORAS and REFLEX. We consistently obtain a greater number of one-to-one matches for X-ray clusters across higher luminosity bins (Lx > 6 × 1044 ergs/sec) than redMaPPer while WHL matches the most clusters overall. For the most luminous clusters (Lx > 8), our catalog performs equivalently to WHL. This new catalog provides a wider sample than redMaPPer while retaining many fewer objects than WHL.
SZ observations to study the physics of the intra-cluster medium
NASA Astrophysics Data System (ADS)
Pointecouteau, E.
2017-10-01
Recent Sunyaev-Zeldovich surveys have delivered new catalogues of galaxy clusters over the whole sky and out to distant redshifts. The new generation of SZ facilities (NIKA, MUSTANG, ALMA) now focuses on high angular resolution and high sensitivity. I will discuss the current status of SZ observations and the perspective with the future instruments for the measurement of physical properties of galaxy clusters, and their relevance to the study of the ICM physics. I will also discuss the natural synergy between the SZ signal and the X-ray emission from the hot intra-cluster medium.
Characterizing the Small Scale Structure in Clusters of Galaxies
NASA Technical Reports Server (NTRS)
Forman, William R.
2001-01-01
We studied galaxy clusters Abell 119, Abell 754, and Abell 1750, using data from the ASCA and ROSAT satellites. In addition, we completed the paper "Merging Binary Clusters". In this paper we study three prominent bi-modal X-ray clusters: A3528, A1750 and A3395. Since the sub-clusters in these systems have projected separations of 0.93, 1.00 and 0.67 Mpc respectively, we examine their X-ray and optical observations to investigate the dynamics and possible merging of these sub-clusters. Using data taken with ROSAT and ASCA, we analyze the temperature and surface brightness distributions. We also analyze the velocity distributions of the three clusters using new measurements supplemented with previously published data. We examined both the overall cluster properties as well as the two sub-cluster elements in each. These results were then applied to the determination of the overall cluster masses, that demonstrate excellent consistency between the various methods used. While the characteristic parameters of the sub-clusters are typical of isolated objects, our temperature results for the regions between the two sub-clusters clearly confirm the presence of merger activity that is suggested by the surface brightness distributions. These three clusters represent a progression of equal-sized sub-cluster mergers, starting from initial contact to immediately before first core passage.
Evolution of the X-ray luminosity in young HII galaxies
NASA Astrophysics Data System (ADS)
Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.
2009-10-01
In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.
The Discovery of a Second Luminous Low-Mass X-Ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-Ray Observatory of 4U 2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U 2127+119 is in fact two bright sources, separated by 2.7 arcsec. One source is associated with AC 211, the previously identified optical counterpart to 4U 2127+119, a low-mass X-ray binary (LMXB). The second source, M15 X-2, is coincident with a 19th U magnitude blue star that is 3.3 arcsec from the cluster core. The Chandra count rate of M15 X-2 is 2.5 times higher than that of AC 211. Prior to the 0.5 arcsec imaging capability of Chandra, the presence of two so closely separated bright sources would not have been resolved. The optical counterpart, X-ray luminosity, and spectrum of M15 X-2 are consistent with it also being an LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long-standing puzzle where the properties of AC 211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U 2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U 2127+119 into two sources suggests that the X-ray bursts did not come from AC 211 but rather from M15 X-2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in globular clusters as well as X-ray observations of globular clusters in nearby galaxies.
NASA Astrophysics Data System (ADS)
Ebeling, H.; Qi, J.; Richard, J.
2017-11-01
We present the results of a multiwavelength investigation of the very X-ray luminous galaxy cluster MACSJ0553.4-3342 (z = 0.4270; hereafter MACSJ0553). Combining high-resolution data obtained with the Hubble Space Telescope and the Chandra X-ray Observatory with ground-based galaxy spectroscopy, our analysis establishes the system unambiguously as a binary, post-collision merger of massive clusters. Key characteristics include perfect alignment of luminous and dark matter for one component, a separation of almost 650 kpc (in projection) between the dark-matter peak of the other subcluster and the second X-ray peak, extremely hot gas (kT > 15 keV) at either end of the merger axis, a potential cold front in the east, an unusually low gas mass fraction of approximately 0.075 for the western component, a velocity dispersion of 1490_{-130}^{+104} km s-1, and no indication of significant substructure along the line of sight. We propose that the MACSJ0553 merger proceeds not in the plane of the sky, but at a large inclination angle, is observed very close to turnaround, and that the eastern X-ray peak is the cool core of the slightly less massive western component that was fully stripped and captured by the eastern subcluster during the collision. If correct, this hypothesis would make MACSJ0553 a superb target for a competitive study of ram-pressure stripping and the collisional behaviour of luminous and dark matter during cluster formation.
NASA Astrophysics Data System (ADS)
Steinhardt, Charles; Jauzac, Mathilde; Capak, Peter; Koekemoer, Anton; Oesch, Pascal; Richard, Johan; Sharon, Keren q.; BUFFALO
2018-01-01
Beyond Ultra-deep Frontier Fields And Legacy Observations (BUFFALO) is an astronomical survey built around the six Hubble Space Telescope (HST) Frontier Fields clusters designed to learn about early galactic assembly and clustering and prepare targets for observations with the James Webb Space Telescope. BUFFALO will place significant new constraints on how and when the most massive and luminous galaxies in the universe formed and how early galaxy formation is linked to dark matter assembly. The same data will also probe the temperature and cross section of dark matter in the massive Frontier Fields galaxy clusters, and tell us how the dark matter, cluster gas, and dynamics of the clusters influence the galaxies in and around them. These studies are possible because the Spitzer Space Telescope, Chandra X-ray Observatory, XMM-Newton, and ground based telescopes have already invested heavily in deep observations around the Frontier Fields, so that the addition of HST observations can yield significant new results.
The most massive black holes on the Fundamental Plane of black hole accretion
NASA Astrophysics Data System (ADS)
Mezcua, M.; Hlavacek-Larrondo, J.; Lucey, J. R.; Hogan, M. T.; Edge, A. C.; McNamara, B. R.
2018-02-01
We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the Fundamental Plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models of accretion. The sample comprises 72 BCGs out to z ˜ 0.3 and with reliable nuclear X-ray and radio luminosities. These are found to correlate as L_X ∝ L_R^{0.75 ± 0.08}, favouring an advection-dominated accretion flow as the origin of the X-ray emission. BCGs are found to be on average offset from the Fundamental Plane such that their BH masses seem to be underestimated by the MBH-MK relation a factor ˜10. The offset is not explained by jet synchrotron cooling and is independent of emission process or amount of cluster gas cooling. Those core-dominated BCGs are found to be more significantly offset than those with weak core radio emission. For BCGs to on average follow the Fundamental Plane, a large fraction ( ˜ 40 per cent) should have BH masses >1010 M⊙ and thus host ultramassive BHs. The local BH-galaxy scaling relations would not hold for these extreme objects. The possible explanations for their formation, either via a two-phase process (the BH formed first, the galaxy grows later) or as descendants of high-z seed BHs, challenge the current paradigm of a synchronized galaxy-BH growth.
XMM-Newton Observations of the Southeastern Radio Relic in Abell 3667
NASA Astrophysics Data System (ADS)
Storm, Emma; Vink, Jacco; Zandanel, Fabio; Akamatsu, Hiroki
2018-06-01
Radio relics, elongated, non-thermal, structures located at the edges of galaxy clusters, are the result of synchrotron radiation from cosmic-ray electrons accelerated by merger-driven shocks at the cluster outskirts. However, X-ray observations of such shocks in some clusters suggest that they are too weak to efficiently accelerate electrons via diffusive shock acceleration to energies required to produce the observed radio power. We examine this issue in the merging galaxy cluster Abell 3667 (A3667), which hosts a pair of radio relics. While the Northwest relic in A3667 has been well studied in the radio and X-ray by multiple instruments, the Southeast relic region has only been observed so far by Suzaku, which detected a temperature jump across the relic, suggesting the presence of a weak shock. We present observations of the Southeastern region of A3667 with XMM-Newton centered on the radio relic. We confirm the existence of an X-ray shock with Mach number of about 1.8 from a clear detection of temperature jump and a tentative detection of a density jump, consistent with previous measurements by Suzaku. We discuss the implications of this measurement for diffusive shock acceleration as the main mechanism for explaining the origin of radio relics. We then speculate on the plausibility of alternative scenarios, including re-acceleration and variations in the Mach number along shock fronts.
The First Non-Dispersive High-Resolution Spectroscopy of an X-ray-bright Galaxy Cluster
NASA Astrophysics Data System (ADS)
Yamaguchi, Hiroya; Hitomi Collaboration
2018-06-01
The Hitomi X-ray Observatory was equipped with the Soft X-ray Spectrometer (SXS), an X-ray microcalorimeter that achieved an energy resolution of 5 eV (@0.5-10 keV) for extended objects. This offered an unprecedented benchmark of atomic modeling and database for hot collisional plasmas, revealing both successes and challenges in the current atomic codes that are widely used by the X-ray astronomy community. I will review the Hitomi observations of the brightest part of the Perseus Cluster, whose X-ray spectrum is dominated by thermal emission from the intra-cluster medium (ICM). The SXS successfully measured the turbulent velocities and metal abundances of the ICM, which radically altered our understanding of the dynamics and chemical enrichment in this object. At the same time, the high-resolution X-ray data led to significant improvement in the atomic models, such as AtomDB and SPEX -- I will briefly overview how this improvement was made. Nevertheless, there are still significant discrepancies among the public atomic models, causing systematic uncertainties in measurements of the temperature, abundance, and degree of the resonance scattering. Requirements for future improvements will be summarized in this context.
Low-temperature transonic cooling flows in galaxy clusters
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.
1989-01-01
Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.
NASA Technical Reports Server (NTRS)
Clowe, Douglas; Markevitch, Maxim; Bradac, Marusa; Gonzalez, Anthony H.; Chung, Sun Mi
2012-01-01
Merging clusters of galaxies are unique in their power to directly probe and place limits on the self-interaction cross-section of dark matter. Detailed observations of several merging clusters have shown the intracluster gas to be displaced from the centroids of dark matter and galaxy density by ram pressure, while the latter components are spatially coincident, consistent with collisionless dark matter. This has been used to place upper limits on the dark matter particle self-interaction cross-section of order 1 sq cm/g. The cluster A520 has been seen as a possible exception. We revisit A520 presenting new Hubble Space Telescope Advanced Camera for Surveys mosaic images and a Magellan image set. We perform a detailed weak-lensing analysis and show that the weak-lensing mass measurements and morphologies of the core galaxy-filled structures are mostly in good agreement with previous works. There is, however, one significant difference: We do not detect the previously claimed "dark core" that contains excess mass with no significant galaxy overdensity at the location of the X-ray plasma. This peak has been suggested to be indicative of a large self-interaction cross-section for dark matter (at least approx 5alpha larger than the upper limit of 0.7 sq cm/g determined by observations of the Bullet Cluster). We find no such indication and instead find that the mass distribution of A520, after subtraction of the X-ray plasma mass, is in good agreement with the luminosity distribution of the cluster galaxies.We conclude that A520 shows no evidence to contradict the collisionless dark matter scenario.
Baryon Distribution in Galaxy Clusters as a Result of Sedimentation of Helium Nuclei.
Qin; Wu
2000-01-20
Heavy particles in galaxy clusters tend to be more centrally concentrated than light ones according to the Boltzmann distribution. An estimate of the drift velocity suggests that it is possible that the helium nuclei may have entirely or partially sedimented into the cluster core within the Hubble time. We demonstrate this scenario using the Navarro-Frenk-White profile as the dark matter distribution of clusters and assuming that the intracluster gas is isothermal and in hydrostatic equilibrium. We find that a greater fraction of baryonic matter is distributed at small radii than at large radii, which challenges the prevailing claim that the baryon fraction increases monotonically with cluster radius. It shows that the conventional mass estimate using X-ray measurements of intracluster gas along with a constant mean molecular weight may have underestimated the total cluster mass by approximately 20%, which in turn leads to an overestimate of the total baryon fraction by the same percentage. Additionally, it is pointed out that the sedimentation of helium nuclei toward cluster cores may at least partially account for the sharp peaks in the central X-ray emissions observed in some clusters.
The XMM Cluster Survey: X-ray analysis methodology
NASA Astrophysics Data System (ADS)
Lloyd-Davies, E. J.; Romer, A. Kathy; Mehrtens, Nicola; Hosmer, Mark; Davidson, Michael; Sabirli, Kivanc; Mann, Robert G.; Hilton, Matt; Liddle, Andrew R.; Viana, Pedro T. P.; Campbell, Heather C.; Collins, Chris A.; Dubois, E. Naomi; Freeman, Peter; Harrison, Craig D.; Hoyle, Ben; Kay, Scott T.; Kuwertz, Emma; Miller, Christopher J.; Nichol, Robert C.; Sahlén, Martin; Stanford, S. A.; Stott, John P.
2011-11-01
The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMM-Newton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5776 XMM observations used to construct the current XCS source catalogue. A total of 3675 > 4σ cluster candidates with >50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg2. Of these, 993 candidates are detected with >300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of <40 (<10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMMimages. These tests show that the simple isothermal β-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically confirmed clusters.
Astronomers Trace Microquasar's Path Back in Time
NASA Astrophysics Data System (ADS)
2003-01-01
Astronomers have traced the orbit through our Milky Way Galaxy of a voracious neutron star and a companion star it is cannibalizing, and conclude that the pair joined more than 30 million years ago and probably were catapulted out of a cluster of stars far from the Galaxy's center. Path of Microquasar and Sun Path of Microquasar (red) and Sun (yellow) through the Milky Way Galaxy for the past 230 million years. Animations: GIF Version MPEG Version CREDIT: Mirabel & Rodrigues, NRAO/AUI/NSF The pair of stars, called Scorpius X-1, form a "microquasar," in which material sucked from the "normal" star forms a rapidly-rotating disk around the superdense neutron star. The disk becomes so hot it emits X-rays, and also spits out "jets" of subatomic particles at nearly the speed of light. Using precise positional data from the National Science Foundation's Very Long Baseline Array (VLBA) and from optical telescopes, Felix Mirabel, an astrophysicist at the Institute for Astronomy and Space Physics of Argentina and French Atomic Energy Commission, and Irapuan Rodrigues, also of the French Atomic Energy Commission, calculated that Scorpius X-1 is not orbiting the Milky Way's center in step with most other stars, but instead follows an eccentric path far above and below the Galaxy's plane. Scorpius X-1, discovered with a rocket-borne X-ray telescope in 1962, is about 9,000 light-years from Earth. It is the brightest continuous source of X-rays beyond the Solar System. The 1962 discovery and associated work earned a share of the 2002 Nobel Prize in physics for Riccardo Giacconi. Mirabel and Rodrigues used a number of published observations to calculate the path of Scorpius X-1 over the past few million years. "This is the most accurate determination we have made of the path of an X-ray binary," said Mirabel. By tracing the object's path backward in time, the scientists were able to conclude that the neutron star and its companion have been traveling together for more than 30 million years. They also speculated on the birthplace of Scorpius X-1. "The neutron star, which is the remnant left over from the supernova explosion of an even more massive star, either came from the Milky Way's disk, or from a globular cluster at a considerable distance from the disk," said Rodrigues. Globular clusters are clumps of millions of stars in the outskirts of the Galaxy. If it came from the Galaxy's disk, the scientists say, it would have had to receive a powerful one-sided "kick" from the supernova explosion to get into its present eccentric orbit. While this is possible, they conclude that a more likely scenario is that the neutron star came from a globular cluster. "Probably, this neutron star picked up its companion and was thrown out of its globular cluster by a close encounter with other stars at the cluster's core," Mirabel said. The scientists published their results in the January 30 issue of the journal Astronomy and Astrophysics. The same pair of researchers traced a similar path of a black hole and its companion star in 2001. Also that year, other astronomers produced a "movie" showing motions in the jet of material ejected from the disk around Scorpius X-1's neutron star. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
A black hole in a globular cluster.
Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L
2007-01-11
Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.
Absolute Effective Area of the Chandra High-Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.
2000-01-01
The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balestra, I.; Sartoris, B.; Girardi, M.
2016-06-01
We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 ( z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ∼600 arcmin{sup 2}, including ∼800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ∼2.2 r {sub 200} (∼4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster ( M {sub 200} ∼ 0.9 × 10{sup 15} M {sub ⊙} and σ{sub V,r200} ∼ 1000 km s{supmore » −1}) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by Δ V {sub rf} ∼ 1100 km s{sup −1} with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE–SW direction, with a prominent sub-clump ∼600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z ∼ 0.390, ∼10′ south of the cluster center, projected at ∼3 Mpc, with a relative line-of-sight velocity of Δ V{sub rf} ∼ −1700 km s{sup −1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60 identified Chandra X-ray sources and 105 JVLA radio sources.« less