Sample records for x-ray microtomography description

  1. X-ray Micro-Tomography of Ablative Heat Shield Materials

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Ferguson, Joseph; Borner, Arnaud; Mansour, Nagi N.; Barnard, Harold S.; MacDowell, Alastair A.; Parkinson, Dilworth Y.

    2016-01-01

    X-ray micro-tomography is a non-destructive characterization technique that allows imaging of materials structures with voxel sizes in the micrometer range. This level of resolution makes the technique very attractive for imaging porous ablators used in hypersonic entry systems. Besides providing a high fidelity description of the material architecture, micro-tomography enables computations of bulk material properties and simulations of micro-scale phenomena. This presentation provides an overview of a collaborative effort between NASA Ames Research Center and Lawrence Berkeley National Laboratory, aimed at developing micro-tomography experiments and simulations for porous ablative materials. Measurements are carried using x-rays from the Advanced Light Source at Berkeley Lab on different classes of ablative materials used in NASA entry systems. Challenges, strengths and limitations of the technique for imaging materials such as lightweight carbon-phenolic systems and woven textiles are discussed. Computational tools developed to perform numerical simulations based on micro-tomography are described. These enable computations of material properties such as permeability, thermal and radiative conductivity, tortuosity and other parameters that are used in ablator response models. Finally, we present the design of environmental cells that enable imaging materials under simulated operational conditions, such as high temperature, mechanical loads and oxidizing atmospheres.Keywords: Micro-tomography, Porous media, Ablation

  2. About microcracking due to leaching in cementitious composites: X-ray microtomography description and numerical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rougelot, Thomas; Burlion, Nicolas, E-mail: nicolas.burlion@polytech-lille.f; Bernard, Dominique

    2010-02-15

    Chemical shock of cement based materials leads to significant degradation of their physical properties. A typical scenario is a calcium leaching due to water (water with very low pH compared with that of pore fluid). The main objective of this paper is to evaluate the evolution of microstructure induced by leaching of a cementitious composite using synchrotron X-ray micro tomography, mainly from an experimental point of view. In this particular case, it was possible to identify cracking induced by leaching. After a description of the degradation mechanism and the X-ray synchrotron microtomographic analysis, numerical simulations are performed in order tomore » show that cracking is induced by an initial pre-stressing of the composite, coupled with decalcification shrinkage and dramatic decrease in tensile strength during leaching. X-ray microtomography analysis allowed to make evidence of an induced microcracking in cementitious material submitted to leaching.« less

  3. Accuracy evaluation of an X-ray microtomography system.

    PubMed

    Fernandes, Jaquiel S; Appoloni, Carlos R; Fernandes, Celso P

    2016-06-01

    Microstructural parameter evaluation of reservoir rocks is of great importance to petroleum production companies. In this connection, X-ray computed microtomography (μ-CT) has proven to be a quite useful method for the assessment of rocks, as it provides important microstructural parameters, such as porosity, permeability, pore size distribution and porous phase of the sample. X-ray computed microtomography is a non-destructive technique that enables the reuse of samples already measured and also yields 2-D cross-sectional images of the sample as well as volume rendering. This technique offers an additional advantage, as it does not require sample preparation, of reducing the measurement time, which is approximately one to three hours, depending on the spatial resolution used. Although this technique is extensively used, accuracy verification of measurements is hard to obtain because the existing calibrated samples (phantoms) have large volumes and are assessed in medical CT scanners with millimeter spatial resolution. Accordingly, this study aims to determine the accuracy of an X-ray computed microtomography system using a Skyscan 1172 X-ray microtomograph. To accomplish this investigation, it was used a nylon thread set with known appropriate diameter inserted into a glass tube. The results for porosity size and phase distribution by X-ray microtomography were very close to the geometrically calculated values. The geometrically calculated porosity and the porosity determined by the methodology using the μ-CT was 33.4±3.4% and 31.0±0.3%, respectively. The outcome of this investigation was excellent. It was also observed a small variability in the results along all 401 sections of the analyzed image. Minimum and maximum porosity values between the cross sections were 30.9% and 31.1%, respectively. A 3-D image representing the actual structure of the sample was also rendered from the 2-D images. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Overview of machine vision methods in x-ray imaging and microtomography

    NASA Astrophysics Data System (ADS)

    Buzmakov, Alexey; Zolotov, Denis; Chukalina, Marina; Nikolaev, Dmitry; Gladkov, Andrey; Ingacheva, Anastasia; Yakimchuk, Ivan; Asadchikov, Victor

    2018-04-01

    Digital X-ray imaging became widely used in science, medicine, non-destructive testing. This allows using modern digital images analysis for automatic information extraction and interpretation. We give short review of scientific applications of machine vision in scientific X-ray imaging and microtomography, including image processing, feature detection and extraction, images compression to increase camera throughput, microtomography reconstruction, visualization and setup adjustment.

  5. X-ray microtomography of porous media at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowd, B.

    This session is comprised of pertinent information about the historical aspects, current status of research, technical achievements, and future plans in X-ray computed microtomography at Brookhaven National Laboratories. An explanation with specifications and diagrams of X-ray instrumentation is provided. Several high resolution 3-D color images of reservoir rock drill cores and other materials are included.

  6. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  7. 3D-analysis of plant microstructures: advantages and limitations of synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.

    2013-01-01

    Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials

  8. Imaging connected porosity of crystalline rock by contrast agent-aided X-ray microtomography and scanning electron microscopy.

    PubMed

    Kuva, J; Sammaljärvi, J; Parkkonen, J; Siitari-Kauppi, M; Lehtonen, M; Turpeinen, T; Timonen, J; Voutilainen, M

    2018-04-01

    We set out to study connected porosity of crystalline rock using X-ray microtomography and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X-ray microtomography and SEM-EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X-ray microtomography and SEM-EDS. The samples were imaged with X-ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X-ray microtomography. CsCl inside the samples was successfully detected with X-ray microtomography and it had completely penetrated all six samples. SEM-EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X-ray microtomography. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. Application of X-ray computed microtomography to soil craters formed by raindrop splash

    NASA Astrophysics Data System (ADS)

    Beczek, Michał; Ryżak, Magdalena; Lamorski, Krzysztof; Sochan, Agata; Mazur, Rafał; Bieganowski, Andrzej

    2018-02-01

    The creation of craters on the soil surface is part of splash erosion. Due to the small size of these craters, they are difficult to study. The main aim of this paper was to test X-ray computed microtomography to investigate craters formed by raindrop impacts. Measurements were made on soil samples moistened to three different levels corresponding with soil water potentials of 0.1, 3.16 and 16 kPa. Using images obtained by X-ray microtomography, geometric parameters of the craters were recorded and analysed. X-ray computed microtomography proved to be a useful and efficient tool for the investigation of craters formed on the soil surface after the impact of water drops. The parameters of the craters changed with the energy of the water drops and were dependent on the initial moisture content of the soil. Crater depth is more dependent on the increased energy of the water drop than crater diameter.

  10. Quantifying Mesoscale Neuroanatomy Using X-Ray Microtomography

    PubMed Central

    Gray Roncal, William; Prasad, Judy A.; Fernandes, Hugo L.; Gürsoy, Doga; De Andrade, Vincent; Fezzaa, Kamel; Xiao, Xianghui; Vogelstein, Joshua T.; Jacobsen, Chris; Körding, Konrad P.

    2017-01-01

    Methods for resolving the three-dimensional (3D) microstructure of the brain typically start by thinly slicing and staining the brain, followed by imaging numerous individual sections with visible light photons or electrons. In contrast, X-rays can be used to image thick samples, providing a rapid approach for producing large 3D brain maps without sectioning. Here we demonstrate the use of synchrotron X-ray microtomography (µCT) for producing mesoscale (∼1 µm 3 resolution) brain maps from millimeter-scale volumes of mouse brain. We introduce a pipeline for µCT-based brain mapping that develops and integrates methods for sample preparation, imaging, and automated segmentation of cells, blood vessels, and myelinated axons, in addition to statistical analyses of these brain structures. Our results demonstrate that X-ray tomography achieves rapid quantification of large brain volumes, complementing other brain mapping and connectomics efforts. PMID:29085899

  11. X-ray micro-Tomography at the Advanced Light Source

    USDA-ARS?s Scientific Manuscript database

    The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 10.5KeV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 KeV. A...

  12. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  13. X-ray microtomography study of otic capsule deficiencies: three-dimensional modelling of the fissula ante fenestram.

    PubMed

    Lee, J W; Sale, P; Patel, N P

    2015-09-01

    The postulated sites of perilymph fistulae involve otic capsule deficiencies, in particular, at the fissula ante fenestram. Histological studies have revealed this to be a channel extending from the middle ear, and becoming continuous with the inner ear medial to the anterior limit of the oval window. The relationship between a patent fissula and symptoms of perilymph fistula is contentious. The understanding of the anatomy of the fissula ante fenestram is incomplete. Histopathology is inherently destructive to the delicate ultrastructure of the middle and inner ear. Conversely, X-ray microtomography allows non-destructive examination of the otic capsule. In this study, we used X-ray microtomography to characterise the fissula ante fenestram. We imaged cadaveric temporal bones with X-ray microtomography. We used the Avizo Fire (Visualization Science Group, Merignac Cedex, France) software to perform post-processing and image analysis. Three-dimensional modelling of the fissula ante fenestram allowed stratification into four forms: rudimentary pit; partial fissula; complete occluded fissula; and complete patent fissula. X-ray microtomography showed that the fissula ante fenestram is present in various forms from rudimentary pit to complete deficiency of the otic capsule. This understanding may have implications for otologic surgery and clinical diagnosis of perilymph fistula.

  14. Microstructural characterization of multiphase chocolate using X-ray microtomography.

    PubMed

    Frisullo, Pierangelo; Licciardello, Fabio; Muratore, Giuseppe; Del Nobile, Matteo Alessandro

    2010-09-01

    In this study, X-ray microtomography (μCT) was used for the image analysis of the microstructure of 12 types of Italian aerated chocolate chosen to exhibit variability in terms of cocoa mass content. Appropriate quantitative 3-dimensional parameters describing the microstructure were calculated, for example, the structure thickness (ST), object structure volume ratio (OSVR), and the percentage object volume (POV). Chemical analysis was also performed to correlate the microstructural data to the chemical composition of the samples. Correlation between the μCT parameters acquired for the pore microstructure evaluation and the chemical analysis revealed that the sugar crystals content does not influence the pore structure and content. On the other hand, it revealed that there is a strong correlation between the POV and the sugar content obtained by chemical analysis. The results from this study show that μCT is a suitable technique for the microstructural analysis of confectionary products such as chocolates and not only does it provide an accurate analysis of the pores and microstructure but the data obtained could also be used to aid in the assessment of its composition and consistency with label specifications. X-ray microtomography (μCT) is a noninvasive and nondestructive 3-D imaging technique that has several advantages over other methods, including the ability to image low-moisture materials. Given the enormous success of μCT in medical applications, material science, chemical engineering, geology, and biology, it is not surprising that in recent years much attention has been focused on extending this imaging technique to food science as a useful technique to aid in the study of food microstructure. X-ray microtomography provides in-depth information on the microstructure of the food product being tested; therefore, a better understanding of the physical structure of the product and from an engineering perspective, knowledge about the microstructure of

  15. Multi-species beam hardening calibration device for x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Evershed, Anthony N. Z.; Mills, David; Davis, Graham

    2012-10-01

    Impact-source X-ray microtomography (XMT) is a widely-used benchtop alternative to synchrotron radiation microtomography. Since X-rays from a tube are polychromatic, however, greyscale `beam hardening' artefacts are produced by the preferential absorption of low-energy photons in the beam path. A multi-material `carousel' test piece was developed to offer a wider range of X-ray attenuations from well-characterised filters than single-material step wedges can produce practically, and optimization software was developed to produce a beam hardening correction by use of the Nelder-Mead optimization method, tuned for specimens composed of other materials (such as hydroxyapatite [HA] or barium for dental applications.) The carousel test piece produced calibration polynomials reliably and with a significantly smaller discrepancy between the calculated and measured attenuations than the calibration step wedge previously in use. An immersion tank was constructed and used to simplify multi-material samples in order to negate the beam hardening effect of low atomic number materials within the specimen when measuring mineral concentration of higher-Z regions. When scanned in water at an acceleration voltage of 90 kV a Scanco AG hydroxyapatite / poly(methyl methacrylate) calibration phantom closely approximates a single-material system, producing accurate hydroxyapatite concentration measurements. This system can then be corrected for beam hardening for the material of interest.

  16. High temperature x-ray micro-tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDowell, Alastair A., E-mail: aamacdowell@lbl.gov; Barnard, Harold; Parkinson, Dilworth Y.

    2016-07-27

    There is increasing demand for 3D micro-scale time-resolved imaging of samples in realistic - and in many cases extreme environments. The data is used to understand material response, validate and refine computational models which, in turn, can be used to reduce development time for new materials and processes. Here we present the results of high temperature experiments carried out at the x-ray micro-tomography beamline 8.3.2 at the Advanced Light Source. The themes involve material failure and processing at temperatures up to 1750°C. The experimental configurations required to achieve the requisite conditions for imaging are described, with examples of ceramic matrixmore » composites, spacecraft ablative heat shields and nuclear reactor core Gilsocarbon graphite.« less

  17. X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids

    NASA Technical Reports Server (NTRS)

    Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.

    2017-01-01

    X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.

  18. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  19. Monochromatic-beam-based dynamic X-ray microtomography based on OSEM-TV algorithm.

    PubMed

    Xu, Liang; Chen, Rongchang; Yang, Yiming; Deng, Biao; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2017-01-01

    Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.

  20. Magnified hard x-ray microtomography: toward tomography with submicron resolution

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Benner, Boris; Guenzler, Til F.; Kuhlmann, Marion; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly A.; Snigireva, Irina

    2002-01-01

    Parabolic compound refractive lenses (PCRLs) are high quality imaging optics for hard x-rays that can be used as an objective lens in a new type of hard x-ray full field microscope. Using an aluminium PCRL, this new type of microscope has been shown to have a resolution of 350 nm. Further improvement of the resolution down to 50 nm can be expected using beryllium as a lens material. The large depth of field (several mm) of the microscope results in sharp projection images for samples that fit into the field of view of about 300 micrometers. This allows to combine magnified imaging with tomographic techniques. First results of magnified microtomography are shown. Contrast formation in the microscope and the consequences for tomographic reconstruction are discussed. An outlook on further developments is given.

  1. Upgraded X-ray topography and microtomography beamline at the Kurchatov synchrotron radiation source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senin, R. A., E-mail: senin_ra@rrcki.ru; Khlebnikov, A. S.; Vyazovetskova, A. E.

    2013-05-15

    An upgraded X-ray Topography and Microtomography (XRT-MT) station is described, the parameters of the optical schemes and detectors are given, and the experimental possibilities of the station are analyzed. Examples of tomographic reconstructions are reported which demonstrate spatial resolutions of 2.5 and 10 {mu}m at fields of view of 2.5 and 10 mm, respectively.

  2. 3-D characterization of weathered building limestones by high resolution synchrotron X-ray microtomography.

    PubMed

    Rozenbaum, O

    2011-04-15

    Understanding the weathering processes of building stones and more generally of their transfer properties requires detailed knowledge of the porosity characteristics. This study aims at analyzing three-dimensional images obtained by X-ray microtomography of building stones. In order to validate these new results a weathered limestone previously characterised (Rozenbaum et al., 2007) by two-dimensional image analysis was selected. The 3-D images were analysed by a set of mathematical tools that enable the description of the pore and solid phase distribution. Results show that 3-D image analysis is a powerful technique to characterise the morphological, structural and topological differences due to weathering. The paper also discusses criteria for mathematically determining whether a stone is weathered or not. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Marton, Z.; Bhandari, H. B.; Brecher, C.; Miller, S. R.; Singh, B.; Nagarkar, V. V.

    2013-03-01

    We have developed microstructured Lu2O3:Eu scintillator films capable of providing spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their extraordinary resolution, Lu2O3:Eu films simultaneously provide high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission, with intensity rivalling that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays, resulting in excessive measurement time and exposure to the specimen. Lu2O3:Eu would significantly improve that (99.9% @12 keV and 30% @ 70 keV). Important properties and features of our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapour deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, microcolumnar structure emitting 48000 photons/MeV whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films measuring 5-50μm in thickness as well as covering areas up to 5 × 5 cm2 which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT).

  4. A simple and robust method for artifacts correction on X-ray microtomography images

    NASA Astrophysics Data System (ADS)

    Timofey, Sizonenko; Marina, Karsanina; Dina, Gilyazetdinova; Irina, Bayuk; Kirill, Gerke

    2017-04-01

    X-ray microtomography images of rock material often have some kinds of distortion due to different reasons such as X-ray attenuation, beam hardening, irregularity of distribution of liquid/solid phases. Several kinds of distortion can arise from further image processing and stitching of images from different measurements. Beam-hardening is a well-known and studied distortion which is relative easy to be described, fitted and corrected using a number of equations. However, this is not the case for other grey scale intensity distortions. Shading by irregularity of distribution of liquid phases, incorrect scanner operating/parameters choosing, as well as numerous artefacts from mathematical reconstructions from projections, including stitching from separate scans cannot be described using single mathematical model. To correct grey scale intensities on large 3D images we developed a package Traditional method for removing the beam hardening [1] has been modified in order to find the center of distortion. The main contribution of this work is in development of a method for arbitrary image correction. This method is based on fitting the distortion by Bezier curve using image histogram. The distortion along the image is represented by a number of Bezier curves and one base line that characterizes the natural distribution of gray value along the image. All of these curves are set manually by the operator. We have tested our approaches on different X-ray microtomography images of porous media. Arbitrary correction removes all principal distortion. After correction the images has been binarized with subsequent pore-network extracted. Equal distribution of pore-network elements along the image was the criteria to verify the proposed technique to correct grey scale intensities. [1] Iassonov, P. and Tuller, M., 2010. Application of segmentation for correction of intensity bias in X-ray computed tomography images. Vadose Zone Journal, 9(1), pp.187-191.

  5. X-ray Computed Microtomography technique applied for cementitious materials: A review.

    PubMed

    da Silva, Ítalo Batista

    2018-04-01

    The main objective of this article is to present a bibliographical review about the use of the X-ray microtomography method in 3D images processing of cementitious materials microstructure, analyzing the pores microstructure and connectivity network, enabling tthe possibility of building a relationship between permeability and porosity. The use of this technique enables the understanding of physical, chemical and mechanical properties of cementitious materials by publishing good results, considering that the quality and quantity of accessible information were significant and may contribute to the study of cementitious materials development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Recent progress of hard x-ray imaging microscopy and microtomography at BL37XU of SPring-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Yoshio, E-mail: yoshio@spring8.or.jp; Takeuchi, Akihisa; Terada, Yasuko

    2016-01-28

    A hard x-ray imaging microscopy and microtomography system is now being developed at the beamline 37XU of SPring-8. In the latest improvement, a spatial resolution of about 50 nm is achieved in two-dimensional imaging at 6 keV x-ray energy using a Fresnel zone plate objective with an outermost zone width of 35 nm. In the tomographic measurement, a spatial resolution of about 100 nm is achieved at 8 keV using an x-ray guide tube condenser optic and a Fresnel zone plate objective with an outermost zone width of 50 nm.

  7. 3D investigation of inclusions in diamonds using X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.

    2012-04-01

    The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-μCT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-μCT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-μCT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia

  8. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.

    PubMed

    Lauridsen, Torsten; Glavina, Kyriaki; Colmer, Timothy David; Winkel, Anders; Irvine, Sarah; Lefmann, Kim; Feidenhans'l, Robert; Pedersen, Ole

    2014-10-01

    Floods can completely submerge terrestrial plants but some wetland species can sustain O2 and CO2 exchange with the environment via gas films forming on superhydrophobic leaf surfaces. We used high resolution synchrotron X-ray phase contrast micro-tomography in a novel approach to visualise gas films on submerged leaves of common cordgrass (Spartina anglica). 3D tomograms enabled a hitherto unmatched level of detail regarding the micro-topography of leaf gas films. Gas films formed only on the superhydrophobic adaxial leaf side (water droplet contact angle, Φ=162°) but not on the abaxial side (Φ=135°). The adaxial side of the leaves of common cordgrass is plicate with a longitudinal system of parallel grooves and ridges and the vast majority of the gas film volume was found in large ∼180μm deep elongated triangular volumes in the grooves and these volumes were connected to each neighbouring groove via a fine network of gas tubules (∼1.7μm diameter) across the ridges. In addition to the gas film retained on the leaf exterior, the X-ray phase contrast micro-tomography also successfully distinguished gas spaces internally in the leaf tissues, and the tissue porosity (gas volume per unit tissue volume) ranged from 6.3% to 20.3% in tip and base leaf segments, respectively. We conclude that X-ray phase contrast micro-tomography is a powerful tool to obtain quantitative data of exterior gas features on biological samples because of the significant difference in electron density between air, biological tissues and water. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  10. Optimization of image quality and acquisition time for lab-based X-ray microtomography using an iterative reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Andrew, Matthew; Thompson, William; Blunt, Martin J.; Bijeljic, Branko

    2018-05-01

    Non-invasive laboratory-based X-ray microtomography has been widely applied in many industrial and research disciplines. However, the main barrier to the use of laboratory systems compared to a synchrotron beamline is its much longer image acquisition time (hours per scan compared to seconds to minutes at a synchrotron), which results in limited application for dynamic in situ processes. Therefore, the majority of existing laboratory X-ray microtomography is limited to static imaging; relatively fast imaging (tens of minutes per scan) can only be achieved by sacrificing imaging quality, e.g. reducing exposure time or number of projections. To alleviate this barrier, we introduce an optimized implementation of a well-known iterative reconstruction algorithm that allows users to reconstruct tomographic images with reasonable image quality, but requires lower X-ray signal counts and fewer projections than conventional methods. Quantitative analysis and comparison between the iterative and the conventional filtered back-projection reconstruction algorithm was performed using a sandstone rock sample with and without liquid phases in the pore space. Overall, by implementing the iterative reconstruction algorithm, the required image acquisition time for samples such as this, with sparse object structure, can be reduced by a factor of up to 4 without measurable loss of sharpness or signal to noise ratio.

  11. 3D synchrotron x-ray microtomography of paint samples

    NASA Astrophysics Data System (ADS)

    Ferreira, Ester S. B.; Boon, Jaap J.; van der Horst, Jerre; Scherrer, Nadim C.; Marone, Federica; Stampanoni, Marco

    2009-07-01

    Synchrotron based X-ray microtomography is a novel way to examine paint samples. The three dimensional distribution of pigment particles, binding media and their deterioration products as well as other features such as voids, are made visible in their original context through a computing environment without the need of physical sectioning. This avoids manipulation related artefacts. Experiments on paint chips (approximately 500 micron wide) were done on the TOMCAT beam line (TOmographic Microscopy and Coherent rAdiology experimenTs) at the Paul Scherrer Institute in Villigen, CH, using an x-ray energy of up to 40 keV. The x-ray absorption images are obtained at a resolution of 350 nm. The 3D dataset was analysed using the commercial 3D imaging software Avizo 5.1. Through this process, virtual sections of the paint sample can be obtained in any orientation. One of the topics currently under research are the ground layers of paintings by Cuno Amiet (1868- 1961), one of the most important Swiss painters of classical modernism, whose early work is currently the focus of research at the Swiss Institute for Art Research (SIK-ISEA). This technique gives access to information such as sample surface morphology, porosity, particle size distribution and even particle identification. In the case of calcium carbonate grounds for example, features like microfossils present in natural chalks, can be reconstructed and their species identified, thus potentially providing information towards the mineral origin. One further elegant feature of this technique is that a target section can be selected within the 3D data set, before exposing it to obtain chemical data. Virtual sections can then be compared with cross sections of the same samples made in the traditional way.

  12. Investigating biofilm structure using x-ray microtomography and gratings-based phase contrast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Xiao, Xianghui; Miller, Micah D.

    2012-10-17

    Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100’s of nm to 10’s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm’s internal structure, but the obtaining sufficient contrast to image low-Zmore » biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 13-15.4 keV and pixel sizes of 0.7 and 1.3 μm/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 μm, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging.« less

  13. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    NASA Astrophysics Data System (ADS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  14. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique overmore » conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.« less

  15. Live small-animal X-ray lung velocimetry and lung micro-tomography at the Australian Synchrotron Imaging and Medical Beamline.

    PubMed

    Murrie, Rhiannon P; Morgan, Kaye S; Maksimenko, Anton; Fouras, Andreas; Paganin, David M; Hall, Chris; Siu, Karen K W; Parsons, David W; Donnelley, Martin

    2015-07-01

    The high flux and coherence produced at long synchrotron beamlines makes them well suited to performing phase-contrast X-ray imaging of the airways and lungs of live small animals. Here, findings of the first live-animal imaging on the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron are reported, demonstrating the feasibility of performing dynamic lung motion measurement and high-resolution micro-tomography. Live anaesthetized mice were imaged using 30 keV monochromatic X-rays at a range of sample-to-detector propagation distances. A frame rate of 100 frames s(-1) allowed lung motion to be determined using X-ray velocimetry. A separate group of humanely killed mice and rats were imaged by computed tomography at high resolution. Images were reconstructed and rendered to demonstrate the capacity for detailed, user-directed display of relevant respiratory anatomy. The ability to perform X-ray velocimetry on live mice at the IMBL was successfully demonstrated. High-quality renderings of the head and lungs visualized both large structures and fine details of the nasal and respiratory anatomy. The effect of sample-to-detector propagation distance on contrast and resolution was also investigated, demonstrating that soft tissue contrast increases, and resolution decreases, with increasing propagation distance. This new capability to perform live-animal imaging and high-resolution micro-tomography at the IMBL enhances the capability for investigation of respiratory diseases and the acceleration of treatment development in Australia.

  16. X-ray Synchrotron Microtomography of a silicified Jurassic Cheirolepidiaceae (Conifer) cone: histology and morphology of Pararaucaria collinsonae sp. nov.

    PubMed Central

    Steart, David C.; Spencer, Alan R.T.; Garwood, Russell J.; Hilton, Jason; Munt, Martin C.; Needham, John

    2014-01-01

    We document a new species of ovulate cone (Pararaucaria collinsonae) on the basis of silicified fossils from the Late Jurassic Purbeck Limestone Group of southern England (Tithonian Stage: ca. 145 million years). Our description principally relies on the anatomy of the ovuliferous scales, revealed through X-ray synchrotron microtomography (SRXMT) performed at the Diamond Light Source (UK). This study represents the first application of SRXMT to macro-scale silicified plant fossils, and demonstrates the significant advantages of this approach, which can resolve cellular structure over lab-based X-ray computed microtomography (XMT). The method enabled us to characterize tissues and precisely demarcate their boundaries, elucidating organ shape, and thus allowing an accurate assessment of affinities. The cones are broadly spherical (ca. 1.3 cm diameter), and are structured around a central axis with helically arranged bract/scale complexes, each of which bares a single ovule. A three-lobed ovuliferous scale and ovules enclosed within pocket-forming tissue, demonstrate an affinity with Cheirolepidiaceae. Details of vascular sclerenchyma bundles, integument structure, and the number and attachment of the ovules indicate greatest similarity to P. patagonica and P. carrii. This fossil develops our understanding of the dominant tree element of the Purbeck Fossil Forest, providing the first evidence for ovulate cheirolepidiaceous cones in Europe. Alongside recent discoveries in North America, this significantly extends the known palaeogeographic range of Pararaucaria, supporting a mid-palaeolatitudinal distribution in both Gondwana and Laurasia during the Late Jurassic. Palaeoclimatic interpretations derived from contemporaneous floras, climate sensitive sediments, and general circulation climate models indicate that Pararaucaria was a constituent of low diversity floras in semi-arid Mediterranean-type environments. PMID:25374776

  17. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  18. High resolution x-ray microtomography of biological samples: Requirements and strategies for satisfying them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loo, B.W. Jr.

    High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetrationmore » depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography

  19. Non-destructive imaging of fragments of historical beeswax seals using high-contrast X-ray micro-radiography and micro-tomography with large area photon-counting detector array.

    PubMed

    Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek

    2016-12-01

    Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies

  20. Coupling of in-situ X-ray Microtomography Observations with Discrete Element Simulations-Application to Powder Sintering

    NASA Astrophysics Data System (ADS)

    Olmos, L.; Bouvard, D.; Martin, C. L.; Bellet, D.; Di Michiel, M.

    2009-06-01

    The sintering of both a powder with a wide particle size distribution (0-63 μm) and of a powder with artificially created pores is investigated by coupling in situ X-ray microtomography observations with Discrete Element simulations. The micro structure evolution of the copper particles is observed by microtomography all along a typical sintering cycle at 1050° C at the European Synchrotron Research Facilities (ESRF, Grenoble, France). A quantitative analysis of the 3D images provides original data on interparticle indentation, coordination and particle displacements throughout sintering. In parallel, the sintering of similar powder systems has been simulated with a discrete element code which incorporates appropriate sintering contact laws from the literature. The initial numerical packing is generated directly from the 3D microtomography images or alternatively from a random set of particles with the same size distribution. The comparison between the information drawn from the simulations and the one obtained by tomography leads to the conclusion that the first method is not satisfactory because real particles are not perfectly spherical as the numerical ones. On the opposite the packings built with the second method show sintering behaviors close to the behaviors of real materials, although particle rearrangement is underestimated by DEM simulations.

  1. Density of jadeite melt under upper mantle conditions from in-situ X-ray micro-tomography measurements

    NASA Astrophysics Data System (ADS)

    Jing, Z.; Xu, M.; Jiang, P.; Yu, T.; Wang, Y.

    2017-12-01

    Knowledge of the density of silicate melts under high pressure conditions is important to our understanding of the stability and migration of melt layers in the Earth's deep mantle. A wide range of silicate melts have been studied at high pressures using the sink/float technique (e.g., Agee and Walker, 1988) and the X-ray absorption technique (e.g., Sakamaki et al, 2009). However, the effect of the Na2O component on high-pressure melt density has not been fully quantified, despite its likely presence in mantle melts. This is partly due to the experimental challenges that the Na-bearing melts often have relatively low density but high viscosity, both of which make it difficult to study using the above-mentioned techniques. In this study, we have developed a new technique based on X-ray micro-tomography to determine the density of melts at high pressures. In this technique, the volume of a melt is directly measured from the reconstructed 3-D images of the sample using computed X-ray micro-tomography. If the mass of the sample is measured using a balance or estimated from a reference density, then the density of the melt at high pressures can be calculated. Using this technique, we determined the density of jadeite melt (NaAlSi2O6) at high pressures up to 4 GPa in a Paris-Edinburg cell that can be rotated for 180 degrees under pressure. Results show that the Na2O component significantly decreases both the density and bulk modulus of silicate melts at high pressures. These data can be incorporated into a hard-sphere equation of state (Jing and Karato, 2011) to model the effect of the Na2O component on the potential density crossovers between melts produced in the mantle and the residual solid.

  2. Automated contact angle estimation for three-dimensional X-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Moriarty, Dylan; Yoon, Hongkyu

    2015-11-10

    Multiphase flow in capillary regimes is a fundamental process in a number of geoscience applications. The ability to accurately define wetting characteristics of porous media can have a large impact on numerical models. In this paper, a newly developed automated three-dimensional contact angle algorithm is described and applied to high-resolution X-ray microtomography data from multiphase bead pack experiments with varying wettability characteristics. The algorithm calculates the contact angle by finding the angle between planes fit to each solid/fluid and fluid/fluid interface in the region surrounding each solid/fluid/fluid contact point. Results show that the algorithm is able to reliably compute contactmore » angles using the experimental data. The in situ contact angles are typically larger than flat surface laboratory measurements using the same material. Furthermore, wetting characteristics in mixed-wet systems also change significantly after displacement cycles.« less

  3. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

    PubMed Central

    Harry, Katherine J.; Parkinson, Dilworth Y.; Balsara, Nitash P.

    2015-01-01

    Imaging morphological changes that occur during the lifetime of rechargeable batteries is necessary to understand how these devices fail. Since the advent of lithium-ion batteries, researchers have known that the lithium metal anode has the highest theoretical energy density of any anode material. However, rechargeable batteries containing a lithium metal anode are not widely used in consumer products because the growth of lithium dendrites from the anode upon charging of the battery causes premature cell failure by short circuit. Lithium dendrites can also form in commercial lithium-ion batteries with graphite anodes if they are improperly charged. We demonstrate that lithium dendrite growth can be studied using synchrotron-based hard X-ray microtomography. This non-destructive imaging technique allows researchers to study the growth of lithium dendrites, in addition to other morphological changes inside batteries, and subsequently develop methods to extend battery life. PMID:26382323

  4. Interconnected porosity analysis by 3D X-ray microtomography and mechanical behavior of biomimetic organic-inorganic composite materials.

    PubMed

    Alonso-Sierra, S; Velázquez-Castillo, R; Millán-Malo, B; Nava, R; Bucio, L; Manzano-Ramírez, A; Cid-Luna, H; Rivera-Muñoz, E M

    2017-11-01

    Hydroxyapatite-based materials have been used for dental and biomedical applications. They are commonly studied due to their favorable response presented when used for replacement of bone tissue. Those materials should be porous enough to allow cell penetration, internal tissue growth, vascular incursion and nutrient supply. Furthermore, their morphology should be designed to guide the growth of new bone tissue in anatomically applicable ways. In this work, the mechanical performance and 3D X-ray microtomography (X-ray μCT) study of a biomimetic, organic-inorganic composite material, based on hydroxyapatite, with physicochemical, structural, morphological and mechanical properties very similar to those of natural bone tissue is reported. Ceramic pieces in different shapes and several porous sizes were produced using a Modified Gel Casting Method. Pieces with a controlled and 3D hierarchical interconnected porous structure were molded by adding polymethylmethacrylate microspheres. Subsequently, they were subject to a thermal treatment to remove polymers and to promote a sinterization of the ceramic particles, obtaining a HAp scaffold with controlled porosity. Then, two different organic phases were used to generate an organic-inorganic composite material, so gelatin and collagen, which was extracted from bovine tail, were used. The biomimetic organic-inorganic composite material was characterized by Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, X-ray Diffraction, Fourier Transform Infrared Spectroscopy and 3D X-ray microtomography techniques. Mechanical properties were characterized in compression tests, obtaining a dramatic and synergic increment in the mechanical properties due to the chemical and physical interactions between the two phases and to the open-cell cellular behavior of the final composite material; the maximum compressive strength obtained corresponds to about 3 times higher than that reported for natural cancellous bone. The

  5. Approaches to 3D printing teeth from X-ray microtomography.

    PubMed

    Cresswell-Boyes, A J; Barber, A H; Mills, D; Tatla, A; Davis, G R

    2018-06-28

    Artificial teeth have several advantages in preclinical training. The aim of this study is to three-dimensionally (3D) print accurate artificial teeth using scans from X-ray microtomography (XMT). Extracted and artificial teeth were imaged at 90 kV and 40 kV, respectively, to create detailed high contrast scans. The dataset was visualised to produce internal and external meshes subsequently exported to 3D modelling software for modification before finally sending to a slicing program for printing. After appropriate parameter setting, the printer deposited material in specific locations layer by layer, to create a 3D physical model. Scans were manipulated to ensure a clean model was imported into the slicing software, where layer height replicated the high spatial resolution that was observed in the XMT scans. The model was then printed in two different materials (polylactic acid and thermoplastic elastomer). A multimaterial print was created to show the different physical characteristics between enamel and dentine. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  6. X-ray microtomography study of the spallation response in Ta-W

    NASA Astrophysics Data System (ADS)

    McDonald, Samuel; Cotton, Matthew; Millett, Jeremy; Bourne, Neil; Withers, Philip

    2013-06-01

    The response of metallic materials to high strain-rate (impact) loading is of interest to a number of communities. Traditionally, the largest driver has been the military, in its need to understand armour and resistance to ballistic attack. More recently, industries such as aerospace (foreign object damage, bird strike, etc.), automotive (crash-worthiness) and satellite protection (orbital debris) have all appreciated the necessity of such information. It is therefore important to understand the dynamic tensile or spallation response, and in particular to be able to observe in three-dimensions, and in a non-invasive manner, the physical damage present in the spalled region post-impact. The current study presents plate impact experiments investigating the spallation damage response of recovered targets of the tantalum alloy Ta-2.5%W. Using X-ray microtomography the damage resulting from differing impact conditions (impact velocity/stress, pulse duration) is compared and characterised in 3-D. Combined with free surface velocity measurements, the tensile failure mechanisms during dynamic loading have been identified.

  7. Characterization of fatigue crack growth behavior in LENS fabricated Ti-6Al-4V using high-energy synchrotron x-ray microtomography

    DOE PAGES

    Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.; ...

    2016-09-28

    Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less

  8. Characterization of fatigue crack growth behavior in LENS fabricated Ti-6Al-4V using high-energy synchrotron x-ray microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandgren, Hayley R.; Zhai, Yuwei; Lados, Diana A.

    Laser Engineered Net Shaping (LENS) is an additive manufacturing technique that belongs to the ASTM standardized directed energy deposition category. To date, very limited work has been conducted towards understanding the fatigue crack growth behavior of LENS fabricated materials, which hinders the widespread adoption of this technology for high-integrity structural applications. In this study, the propagation of a 20 μm initial crack in LENS fabricated Ti-6Al-4V was captured in-situ, using high-energy synchrotron x-ray microtomography. Fatigue crack growth (FCG) data were then determined from 2D and 3D tomography reconstructions, as well as from fracture surface striation measurements using SEM. The generatedmore » data were compared to those obtained from conventional FCG tests that used compliance and direct current potential drop (DCPD) techniques to measure long and small crack growth. In conclusion, the observed agreement demonstrates that x-ray microtomography and fractographic analysis using SEM can be successfully combined to study the propagation behavior of fatigue cracks.« less

  9. X-ray micro-tomography investigation of the foaming process in the system of waste glass–silica mud–MnO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ducman, V., E-mail: vilma.ducman@zag.si; Korat, L.; Legat, A.

    2013-12-15

    In case of foamed lightweight aggregates (LWAs), porosity is introduced by the addition of a foaming agent to the glassy matrix, which degasses at an elevated temperature, so that the resulting gases remain trapped inside the glassy structure. The efficiency of action of MnO{sub 2} as a foaming agent in waste glass and waste glass/silica mud systems was studied. Samples were fired at different temperatures and with different dwelling times at a certain temperature, and the development of porosity was investigated by means of X-ray micro-tomography. It was found that, with the prolongation in dwelling times, the number of poresmore » decreased, while, on the other hand, the volume of these pores increased, and that the addition of silica mud increases the foaming temperature and slows down the foaming process. - Highlights: • Preparation of lightweight aggregate from waste glass, silica sludge, and MnO{sub 2} • DTA/TG investigation of MnO{sub 2} • Characterization of pore-forming process by means of X-ray micro-tomography (μcT)« less

  10. Multi-scale X-ray Microtomography Imaging of Immiscible Fluids After Imbibition

    NASA Astrophysics Data System (ADS)

    Garing, C.; de Chalendar, J.; Voltolini, M.; Ajo Franklin, J. B.; Benson, S. M.

    2015-12-01

    A major issue for CO2 storage security is the efficiency and long-term reliability of the trapping mechanisms occurring in the reservoir where CO2 is injected. Residual trapping is one of the key processes for storage security beyond the primary stratigraphic seal. Although classical conceptual models of residual fluid trapping assume that disconnected ganglia are permanently immobilized, multiple mechanisms exist which could allow the remobilization of residually trapped CO2. The aim of this study is to quantify fluid phases saturation, connectivity and morphology after imbibition using x-ray microtomography in order to evaluate potential changes in droplets organization due to differences in capillary pressure between disconnected ganglia. Particular emphasis is placed on the effect of image resolution. Synchrotron-based x-ray microtomographic datasets of air-water spontaneous imbibition were acquired in sintered glass beads and sandstone samples with voxel sizes varying from 0.64 to 4.44 μm. The results show that for both sandstones the residual air phase is homogeneously distributed within the entire pore space and consists of disconnected clusters of multiple sizes and morphologies. The multi-scale analysis of subsamples of few pores and throats imaged at the same location of the sample reveals significant variations in the estimation of connectivity, size and shape of the fluid phases. This is particularly noticeable when comparing the results from the images with voxel sizes above 1 μm with the results from the images acquired with voxel sizes below 1 μm.

  11. Anisotropic shrinkage of insect air sacs revealed in vivo by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Chen, Rongchang; Du, Guohao; Yang, Yiming; Wang, Feixiang; Deng, Biao; Xie, Honglan; Xiao, Tiqiao

    2016-09-01

    Air sacs are thought to be the bellows for insect respiration. However, their exact mechanism of action as a bellows remains unclear. A direct way to investigate this problem is in vivo observation of the changes in their three-dimensional structures. Therefore, four-dimensional X-ray phase contrast microtomography is employed to solve this puzzle. Quantitative analysis of three-dimensional image series reveals that the compression of the air sac during respiration in bell crickets exhibits obvious anisotropic characteristics both longitudinally and transversely. Volumetric changes of the tracheal trunks in the prothorax further strengthen the evidence of this finding. As a result, we conclude that the shrinkage and expansion of the insect air sac is anisotropic, contrary to the hypothesis of isotropy, thereby providing new knowledge for further research on the insect respiratory system.

  12. Visualizing the impact of living roots on rhizosphere soil structure using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Menon, M.; Berli, M.; Ghezzehei, T. A.; Nico, P.; Young, M. H.; Tyler, S. W.

    2009-04-01

    The rhizosphere is an interface between bulk soil and plant root and plays a critical role in root water and nutrient uptake. In this study, we used X-ray Computerized Microtomography (microCT) to visualize soil structure around living roots non-destructively and with high spatial resolution. Four different plant species (Helianthus annuus, Lupinus hartwegii, Vigna radiata and Phaseolus lunatus), grown in four different porous materials (glass beads, medium and coarse sand, loam aggregates), were scanned with 10 μm spatial resolution, using the microtomography beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA. Sample cross section images clearly show contacts between roots and soil particles, connecting water films, air-water interfaces as well as some cellular features of the plants taproots. We found with a simulation experiment, inflating a cylindrical micro-balloon in a pack of air-dry loam aggregates, that soil fracturing rather than compaction might occur around a taproot growing in dry soil. Form these preliminary experiments, we concluded that microCT has potential as a tool for a more process-based understanding of the role of rhizosphere soil structure on soil fertility, plant growth and the water balance at the earth-atmosphere interface.

  13. Quantitative 3D comparison of biofilm imaged by X-ray micro-tomography and two-photon laser scanning microscopy.

    PubMed

    Larue, A E; Swider, P; Duru, P; Daviaud, D; Quintard, M; Davit, Y

    2018-06-21

    Optical imaging techniques for biofilm observation, like laser scanning microscopy, are not applicable when investigating biofilm formation in opaque porous media. X-ray micro-tomography (X-ray CMT) might be an alternative but it finds limitations in similarity of X-ray absorption coefficients for the biofilm and aqueous phases. To overcome this difficulty, barium sulphate was used in Davit et al. (2011) to enable high-resolution 3D imaging of biofilm via X-ray CMT. However, this approach lacks comparison with well-established imaging methods, which are known to capture the fine structures of biofilms, as well as uncertainty quantification. Here, we compare two-photon laser scanning microscopy (TPLSM) images of Pseudomonas Aeruginosa biofilm grown in glass capillaries against X-ray CMT using an improved protocol where barium sulphate is combined with low-gelling temperature agarose to avoid sedimentation. Calibrated phantoms consisting of mono-dispersed fluorescent and X-ray absorbent beads were used to evaluate the uncertainty associated with our protocol along with three different segmentation techniques, namely hysteresis, watershed and region growing, to determine the bias relative to image binarization. Metrics such as volume, 3D surface area and thickness were measured and comparison of both imaging modalities shows that X-ray CMT of biofilm using our protocol yields an accuracy that is comparable and even better in certain respects than TPLSM, even in a nonporous system that is largely favourable to TPLSM. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. Quantitative measurements of localized density variations in cylindrical tablets using X-ray microtomography.

    PubMed

    Busignies, Virginie; Leclerc, Bernard; Porion, Patrice; Evesque, Pierre; Couarraze, Guy; Tchoreloff, Pierre

    2006-08-01

    Direct compaction is a complex process that results in a density distribution inside the tablets which is often heterogeneous. Therefore, the density variations may affect the compact properties. A quantitative analysis of this phenomenon is still lacking. Recently, X-ray microtomography has been successfully used in pharmaceutical development to study qualitatively the impact of tablet shape and break-line in the density of pharmaceutical tablets. In this study, we evaluate the density profile in microcrystalline cellulose (Vivapur 12) compacts obtained at different mean porosity (ranging from 7.7% to 33.5%) using X-ray tomography technique. First, the validity of the Beer-Lambert law is studied. Then, density calibration is performed and density maps of cylindrical tablets are obtained and visualized using a process with colour-scale calibration plot which is explained. As expected, important heterogeneity in density is observed and quantified. The higher densities in peripheral region were particularly investigated and appraised in regard to the lower densities observed in the middle of the tablet. The results also underlined that in the case of pharmaceutical tablets, it is important to differentiate the mechanical properties representative of the total volume tablet and the mechanical properties that only characterize the tablet surface like the Brinell hardness measurements.

  15. High resolution microtomography for density and spatial infomation about wood structures

    Treesearch

    Barbara Illman; Betsy Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  16. Computed microtomography and X-ray fluorescence analysis for comprehensive analysis of structural changes in bone.

    PubMed

    Buzmakov, Alexey; Chukalina, Marina; Nikolaev, Dmitry; Schaefer, Gerald; Gulimova, Victoria; Saveliev, Sergey; Tereschenko, Elena; Seregin, Alexey; Senin, Roman; Prun, Victor; Zolotov, Denis; Asadchikov, Victor

    2013-01-01

    This paper presents the results of a comprehensive analysis of structural changes in the caudal vertebrae of Turner's thick-toed geckos by computer microtomography and X-ray fluorescence analysis. We present algorithms used for the reconstruction of tomographic images which allow to work with high noise level projections that represent typical conditions dictated by the nature of the samples. Reptiles, due to their ruggedness, small size, belonging to the amniote and a number of other valuable features, are an attractive model object for long-orbital experiments on unmanned spacecraft. Issues of possible changes in their bone tissue under the influence of spaceflight are the subject of discussions between biologists from different laboratories around the world.

  17. Structural investigation of spherical hollow excipient Mannit Q by X-ray microtomography.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Yasuda, Yuki; Segawa, Megumi; Itai, Shigeru

    2015-11-10

    The structure of Mannit Q particles, an excipient made by spray-drying a d-mannitol solution, and Mannit Q tablets were investigated by synchrotron X-ray microtomography. The Mannit Q particles had a spherical shape with a hollow core. The shells of the particles consisted of fine needle-shaped crystals, and columnar crystals were present in the hollows. These structural features suggested the following formation mechanism for the hollow particles:during the spray-drying process, the solvent rapidly evaporated from the droplet surface, resulting in the formation of shells made of fine needle-shaped crystals.Solvent remaining inside the shells then evaporated slowly and larger columnar crystals grew as the hollows formed. Although most of the Mannit Q particles were crushed on tableting, some of the particles retained their hollow structures, probably because the columnar crystals inside the hollows functioned as props. This demonstrated that the tablets with porous void spaces may be readily manufactured using Mannit Q. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High-contrast x-ray microtomography in dental research

    NASA Astrophysics Data System (ADS)

    Davis, Graham; Mills, David

    2017-09-01

    X-ray microtomography (XMT) is a well-established technique in dental research. The technique has been used extensively to explore the complex morphology of the root canal system, and to qualitatively and quantitatively evaluate root canal instrumentation and filling efficacy in extracted teeth; enabling different techniques to be compared. Densitometric information can be used to identify and map demineralized tissue resulting from tooth decay (caries) and, in extracted teeth, the method can be used to evaluate different methods of excavation. More recently, high contrast XMT is being used to investigate the relationship between external insults to teeth and the pulpal reaction. When such insults occur, fluid may flow through dentinal tubules as a result of cracking or porosity in enamel. Over time, there is an increase in mineralization along the paths of the tubules from the pulp to the damaged region in enamel and this can be visualized using high contrast XMT. The scanner used for this employs time-delay integration to minimize the effects of detector inhomogeneity in order to greatly increase the upper limit on signal-to-noise ratio that can be achieved with long exposure times. When enamel cracks are present in extracted teeth, the presence of these pathways indicates that the cracking occurred prior to extraction. At high contrast, growth lines are occasionally seen in deciduous teeth which may have resulted from periods of maternal illness. Various other anomalies in mineralization resulting from trauma or genetic abnormalities can also be investigated using this technique.

  19. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D

    2002-07-01

    Two noninvasive X-ray techniques, laboratory X-ray absorption microtomography (microCT) and X-ray diffraction mapping, were used to study teeth of the sea urchin Lytechinus variegatus. MicroCT revealed low attenuation regions at near the tooth's stone part and along the carinar process-central prism boundary; this latter observation appears to be novel. The expected variation of Mg fraction x in the mineral phase (calcite, Ca(1-x)Mg(x)CO(3)) cannot account for all of the linear attenuation coefficient decrease in the two zones: this suggested that soft tissue is localized there. Transmission diffraction mapping (synchrotron X-radiation, 80.8 keV, 0.1 x 0.1mm(2) beam area, 0.1mm translation grid, image plate area detector) simultaneously probed variations in 3-D and showed that the crystal elements of the "T"-shaped tooth were very highly aligned. Diffraction patterns from the keel (adaxial web) and from the abaxial flange (containing primary plates and the stone part) differed markedly. The flange contained two populations of identically oriented crystal elements with lattice parameters corresponding to x=0.13 and x=0.32. The keel produced one set of diffraction spots corresponding to the lower x. The compositions were more or less equivalent to those determined by others for camarodont teeth, and the high Mg phase is expected to be disks of secondary mineral epitaxially related to the underlying primary mineral element. Lattice parameter gradients were not noted in the keel or flange. Taken together, the microCT and diffraction results indicated that there was a band of relatively high protein content, of up to approximately 0.25 volume fraction, in the central part of the flange and paralleling its adaxial and abaxial faces. X-ray microCT and microdiffraction data used in conjunction with protein distribution data will be crucial for understanding the properties of various biocomposites and their mechanical functions.

  20. Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study.

    PubMed

    Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara

    2011-08-01

    The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.

  1. Fast X-Ray Fluorescence Microtomography of Hydrated Biological Samples

    PubMed Central

    Lombi, Enzo; de Jonge, Martin D.; Donner, Erica; Kopittke, Peter M.; Howard, Daryl L.; Kirkham, Robin; Ryan, Chris G.; Paterson, David

    2011-01-01

    Metals and metalloids play a key role in plant and other biological systems as some of them are essential to living organisms and all can be toxic at high concentrations. It is therefore important to understand how they are accumulated, complexed and transported within plants. In situ imaging of metal distribution at physiological relevant concentrations in highly hydrated biological systems is technically challenging. In the case of roots, this is mainly due to the possibility of artifacts arising during sample preparation such as cross sectioning. Synchrotron x-ray fluorescence microtomography has been used to obtain virtual cross sections of elemental distributions. However, traditionally this technique requires long data acquisition times. This has prohibited its application to highly hydrated biological samples which suffer both radiation damage and dehydration during extended analysis. However, recent advances in fast detectors coupled with powerful data acquisition approaches and suitable sample preparation methods can circumvent this problem. We demonstrate the heightened potential of this technique by imaging the distribution of nickel and zinc in hydrated plant roots. Although 3D tomography was still impeded by radiation damage, we successfully collected 2D tomograms of hydrated plant roots exposed to environmentally relevant metal concentrations for short periods of time. To our knowledge, this is the first published example of the possibilities offered by a new generation of fast fluorescence detectors to investigate metal and metalloid distribution in radiation-sensitive, biological samples. PMID:21674049

  2. X-ray microtomography study of the compaction process of rods under tapping.

    PubMed

    Fu, Yang; Xi, Yan; Cao, Yixin; Wang, Yujie

    2012-05-01

    We present an x-ray microtomography study of the compaction process of cylindrical rods under tapping. The process is monitored by measuring the evolution of the orientational order parameter, local, and overall packing densities as a function of the tapping number for different tapping intensities. The slow relaxation dynamics of the orientational order parameter can be well fitted with a stretched-exponential law with stretching exponents ranging from 0.9 to 1.6. The corresponding relaxation time versus tapping intensity follows an Arrhenius behavior which is reminiscent of the slow dynamics in thermal glassy systems. We also investigated the boundary effect on the ordering process and found that boundary rods order faster than interior ones. In searching for the underlying mechanism of the slow dynamics, we estimated the initial random velocities of the rods under tapping and found that the ordering process is compatible with a diffusion mechanism. The average coordination number as a function of the tapping number at different tapping intensities has also been measured, which spans a range from 6 to 8.

  3. Granule-by-granule reconstruction of a sandpile from x-ray microtomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidler, G. T.; Martinez, G.; Seeley, L. H.

    2000-12-01

    Mesoscale disordered materials are ubiquitous in industry and in the environment. Any fundamental understanding of the transport and mechanical properties of such materials must follow from a thorough understanding of their structure. However, in the overwhelming majority of cases, experimental characterization of such materials has been limited to first- and second-order structural correlation functions, i.e., the mean filling fraction and the structural autocorrelation function. We report here the successful combination of synchrotron x-ray microtomography and image processing to determine the full three-dimensional real-space structure of a model disordered material, a granular bed of relatively monodisperse glass spheres. Specifically, we determinemore » the center location and the local connectivity of each granule. This complete knowledge of structure can be used to calculate otherwise inaccessible high-order correlation functions. We analyze nematic order parameters for contact bonds to characterize the geometric anisotropy or fabric induced by the sample boundary conditions. Away from the boundaries we find short-range bond orientational order exhibiting characteristics of the underlying polytetrahedral structure.« less

  4. Phase contrast X-ray microtomography of the Rhodnius prolixus head: Comparison of direct reconstruction and phase retrieval approach

    NASA Astrophysics Data System (ADS)

    Almeida, A. P.; Braz, D.; Nogueira, L. P.; Colaço, M. V.; Soares, J.; Cardoso, S. C.; Garcia, E. S.; Azambuja, P.; Gonzalez, M. S.; Mohammadi, S.; Tromba, G.; Barroso, R. C.

    2014-02-01

    We have used phase-contrast X-ray microtomography (PPC-μCT) to study the head of the blood-feeding bug, Rhodnius prolixus, which is one of the most important insect vector of Trypanosoma cruzi, ethiologic agent of Chagas disease in Latin America. Images reconstructed from phase-retrieved projections processed by ANKA phase are compared to those obtained through direct tomographic reconstruction of the flat-field-corrected transmission radiographs. It should be noted that the relative locations of the important morphological internal structures are observable with a precision that is difficult to obtain without the phase retrieval approach.

  5. Synchrotron X-ray micro-tomography at the Advanced Light Source: Developments in high-temperature in-situ mechanical testing

    NASA Astrophysics Data System (ADS)

    Barnard, Harold S.; MacDowell, A. A.; Parkinson, D. Y.; Mandal, P.; Czabaj, M.; Gao, Y.; Maillet, E.; Blank, B.; Larson, N. M.; Ritchie, R. O.; Gludovatz, B.; Acevedo, C.; Liu, D.

    2017-06-01

    At the Advanced Light Source (ALS), Beamline 8.3.2 performs hard X-ray micro-tomography under conditions of high temperature, pressure, mechanical loading, and other realistic conditions using environmental test cells. With scan times of 10s-100s of seconds, the microstructural evolution of materials can be directly observed over multiple time steps spanning prescribed changes in the sample environment. This capability enables in-situ quasi-static mechanical testing of materials. We present an overview of our in-situ mechanical testing capabilities and recent hardware developments that enable flexural testing at high temperature and in combination with acoustic emission analysis.

  6. X-ray micro-tomography for investigations of brain tissues on cellular level

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Zanette, Irene; Zdora, Marie-Christine; Bikis, Christos; Hipp, Alexander; Hieber, Simone E.; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert

    2016-10-01

    X-ray imaging in absorption contrast mode is well established for hard tissue visualization. However, performance for lower density materials is limited due to a reduced contrast. Our aim is three-dimensional (3D) characterization of micro-morphology of human brain tissues down to (sub-)cellular resolution within a laboratory environment. Using the laboratory-based microtomography (μCT) system nanotom m (GE Sensing and Inspection Technologies GmbH, Wunstorf, Germany) and synchrotron radiation at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK), we have acquired 3D data with a resolution down to 0.45 μm for visualization of a human cerebellum specimen down to cellular level. We have shown that all selected modalities, namely laboratory-based absorption contrast micro-tomography (LBμCT), synchrotron radiation based in-line single distance phase contrast tomography (SDPR) and synchrotron radiation based single-grating interferometry (GI), can reach cellular resolution for tissue samples with a size in the mm-range. The results are discussed qualitatively in comparison to optical microscopy of haematoxylin and eosin (HE) stained sections. As phase contrast yields to a better data quality for soft tissues and in order to overcome restrictions of limited beamline access for phase contrast measurements, we have equipped the μCT system nanotom m with a double-grating phase contrast set-up. Preliminary experimental results of a knee sample consisting of a bony part and a cartilage demonstrate that phase contrast data exhibits better quality compared to absorption contrast. Currently, the set-up is under adjustment. It is expected that cellular resolution would also be achieved. The questions arise (1) what would be the quality gain of laboratory-based phase contrast in comparison to laboratory-based absorption contrast tomography and (2) could laboratory-based phase contrast data provide comparable results to synchrotron radiation based

  7. Imaging biofilms in porous media using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Davit, Y.; Debenest, G.; Quintard, M.

    2009-12-01

    In soils and rivers subsurface, bacterial biofilms growth induce modifications of mass and momentum transport dynamics. Evidence for these modifications have been developed essentially by inspection, that is, observation of the reduction of hydraulic conductivity, permeability, changes in porosity and anomalous transport. Deeper understanding of these sessile communities in porous media environments and of the multiscale/multiphase complexity of the system requires 3-D informations concerning the pore-scale/biofilm-scale geometry. Additionnally, breakthroughs in imaging techniques are likely to trigger breakthroughs in the theoretical analysis. In this study, we develop a new technique for direct observation and imaging of unstrained biofilms in porous media using X-ray computed micro-tomography. The biofilms are grown for ten days on polyamide and expanded polystyrene beads placed in small plastic columns. A circulation of water from the river Garonne (France) is imposed using peristaltic pumps. No particular bacterial strain is introduced, the micro-organisms being naturally present in the water from the river. The X-ray acquisition is performed by a Skyscan-1174 micro-CT. A special experimental technique, based on two different contrast agents, has been designed to solve the challenging problem of imaging 3 phases of initial similar absorption coefficients. On the one hand, we use a suspension of barium sulfate to enhance the contrast of the water-phase. On the other hand, the absorption of the biofilm-phase is increased using iodine which diffuses into the polymeric matrix. Examples of reconstructed images are given to illustrate the effectiveness of the method. We demonstrate how to combine the 3-D measurements with upscaling techniques such as volume averaging, by calculating the modifications of the permeability of the system when biofilms grow. At last, we aim to couple these 3-D measurements with upscaled reactive models to describe the Darcy

  8. A New Technique for In Situ X-ray Microtomography Under High Pressure

    NASA Astrophysics Data System (ADS)

    Uchida, T.; Wang, Y.; Westferro, F.; Gebhardt, J.; Rivers, M. L.; Sutton, S. R.

    2004-12-01

    We have developed a new technique for in situ synchrotron microtomography to study texture evolution in multi-phase specimens under high pressure and temperature. Two critical issues in performing tomography experiments under pressure are (1) the limited X-ray access to the sample because of the highly absorbing materials, such as tungsten carbide and tool steel, typically used in the pressure vessel and (2) a high pressure compatible rotation mechanism to collect projections of the sample continuously from 0 to 180° . We addressed these issues by (1) employing an opposed-anvil high pressure cell, known as the Drickamer cell, with an X-ray transparent containment ring, to allow panoramic X-ray access, and (2) rotating the Dricakmer cell by Harmonic DriveTM gear reducers, with thrust bearings supporting the hydraulic load. The design of the rotation mechanism benefited from the rotational deformation apparatus developed by Yamazaki and Karato (Rev. Sci. Instrum., 72, 4207, 2001). We report results obtained from a test run performed under pressure with monochromatic synchrotron radiation. A sapphire sphere (1.0 mm dia.) was embedded in a powdered mixture of Fe and 9 wt.% S alloy. The diameter of the sample chamber was 2 mm. Under pressure, the entire Drickamer cell was rotated to collect radiographs of the sample at various angles from 0 to 179.5° in 0.5° step size. Computational reconstruction of these projections provided three dimensional (3D) distribution of linear attenuation coefficient of the sample with a spatial resolution of 6 microns. The shape change in the sapphire sphere during compression was clearly observed. Using the program Blob3d, reconstructed 3D images of the sphere were separated from the surrounding Fe-S alloy. Volumes of the sphere were then accurately determined from the extracted images, by carefully defining the image intensity threshold. The errors in the volume measurement are about 0.3 to 0.7%, mostly due to shadowing by anvil

  9. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  10. Quantifying Electromigration Processes in Sn-0.7Cu Solder with Lab-Scale X-Ray Computed Micro-Tomography

    NASA Astrophysics Data System (ADS)

    Mertens, James Charles Edwin

    For decades, microelectronics manufacturing has been concerned with failures related to electromigration phenomena in conductors experiencing high current densities. The influence of interconnect microstructure on device failures related to electromigration in BGA and flip chip solder interconnects has become a significant interest with reduced individual solder interconnect volumes. A survey indicates that x-ray computed micro-tomography (muXCT) is an emerging, novel means for characterizing the microstructures' role in governing electromigration failures. This work details the design and construction of a lab-scale muXCT system to characterize electromigration in the Sn-0.7Cu lead-free solder system by leveraging in situ imaging. In order to enhance the attenuation contrast observed in multi-phase material systems, a modeling approach has been developed to predict settings for the controllable imaging parameters which yield relatively high detection rates over the range of x-ray energies for which maximum attenuation contrast is expected in the polychromatic x-ray imaging system. In order to develop this predictive tool, a model has been constructed for the Bremsstrahlung spectrum of an x-ray tube, and calculations for the detector's efficiency over the relevant range of x-ray energies have been made, and the product of emitted and detected spectra has been used to calculate the effective x-ray imaging spectrum. An approach has also been established for filtering 'zinger' noise in x-ray radiographs, which has proven problematic at high x-ray energies used for solder imaging. The performance of this filter has been compared with a known existing method and the results indicate a significant increase in the accuracy of zinger filtered radiographs. The obtained results indicate the conception of a powerful means for the study of failure causing processes in solder systems used as interconnects in microelectronic packaging devices. These results include the

  11. Magnetic resonance imaging and X-ray microtomography studies of a gel-forming tablet formulation.

    PubMed

    Laity, P R; Mantle, M D; Gladden, L F; Cameron, R E

    2010-01-01

    The capabilities of two methods for investigating tablet swelling are investigated, based on a study of a model gel-forming system. Results from magnetic resonance imaging (MRI) were compared with results from a novel application of X-ray microtomography (XmicroT) to track the movements of embedded glass microsphere tracers as the model tablets swelled. MRI provided information concerning the movement of hydration fronts into the tablets and the composition of the swollen gel layer, which formed at the tablet surface and progressively thickened with time. Conversely, XmicroT revealed significant axial expansion within the tablet core, at short times and ahead of the hydration fronts, where there was insufficient water to be observed by MRI (estimated to be around 15% by weight for the system used here). Thus, MRI and XmicroT may be regarded as complementary methods for studying the hydration and swelling behaviour of tablets. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Reservoir Condition Pore-scale Imaging of Multiple Fluid Phases Using X-ray Microtomography

    PubMed Central

    Andrew, Matthew; Bijeljic, Branko; Blunt, Martin

    2015-01-01

    X-ray microtomography was used to image, at a resolution of 6.6 µm, the pore-scale arrangement of residual carbon dioxide ganglia in the pore-space of a carbonate rock at pressures and temperatures representative of typical formations used for CO2 storage. Chemical equilibrium between the CO2, brine and rock phases was maintained using a high pressure high temperature reactor, replicating conditions far away from the injection site. Fluid flow was controlled using high pressure high temperature syringe pumps. To maintain representative in-situ conditions within the micro-CT scanner a carbon fiber high pressure micro-CT coreholder was used. Diffusive CO2 exchange across the confining sleeve from the pore-space of the rock to the confining fluid was prevented by surrounding the core with a triple wrap of aluminum foil. Reconstructed brine contrast was modeled using a polychromatic x-ray source, and brine composition was chosen to maximize the three phase contrast between the two fluids and the rock. Flexible flow lines were used to reduce forces on the sample during image acquisition, potentially causing unwanted sample motion, a major shortcoming in previous techniques. An internal thermocouple, placed directly adjacent to the rock core, coupled with an external flexible heating wrap and a PID controller was used to maintain a constant temperature within the flow cell. Substantial amounts of CO2 were trapped, with a residual saturation of 0.203 ± 0.013, and the sizes of larger volume ganglia obey power law distributions, consistent with percolation theory. PMID:25741751

  13. Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature.

    PubMed

    Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L

    2017-01-01

    X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

  14. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg

    2016-04-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  15. X-ray microtomography analysis of soil structure deformation caused by centrifugation

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.

    2016-01-01

    Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.

  16. Search for Fluid Inclusions in a Carbonaceous Chondrite Using a New X-Ray Micro-Tomography Technique Combined with FIB Sampling

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Miyake, A.; Zolensky, M. E.; Uesugi, K.; Nakano, T.; Takeuchi, A.; Suzuki, Y.; Yoshida, K.

    2014-01-01

    Early solar system aqueous fluids are preserved in some H chondrites as aqueous fluid inclusions in halite (e.g., [1]). Although potential fluid inclusions are also expected in carbonaceous chondrites [2], they have not been surely confirmed. In order to search for these fluid inclusions, we have developped a new X-ray micro-tomography technique combined with FIB sampling and applied this techniqu to a carbanaceous chondrite. Experimental: A polished thin section of Sutter's Mill meteorite (CM) was observed with an optical microscope and FE-SEM (JEOL 7001F) for chosing mineral grains of carbonates (mainly calcite) and sulfides (FeS and ZnS) 20-50 microns in typical size, which may have aqueous fluid inclusions. Then, a "house" similar to a cube with a roof (20-30 microns in size) is sampled from the mineral grain by using FIB (FEI Quanta 200 3DS). Then, the house was atached to a thin W-needle by FIB and imaged by a SR-based imaging microtomography system with a Fresnel zone plate at beamline BL47XU, SPring-8, Japan. One sample was imaged at two X-ray energies, 7 and 8 keV, to identify mineral phases (dual-enegy microtomography: [3]). The size of voxel (pixel in 3D) was 50-80 nm, which gave the effective spatial resolution of approx. 200 nm. A terrestrial quartz sample with an aqueous fluid inclusion with a bubble was also examined as a test sample by the same method. Results and discussion: A fluid inclusion of 5-8 microns in quartz was clearly identified in a CT image. A bubble of approx. 4 microns was also identified as refraction contrast although the X-ray absorption difference between fluid and bubble is small. Volumes of the fluid and bubble were obtained from the 3D CT images. Fourteen grains of calcite, two grains of iron sulfide and one grain of (Zn,Fe)S were examined. Ten calcite, one iron sulfide and one (Zn,Fe)S grains have inclusions >1 micron in size (the maximum: approx. 5 microns). The shapes are spherical or irregular. Tiny inclusions (<1 micron

  17. Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography.

    PubMed

    Choat, Brendan; Badel, Eric; Burlett, Regis; Delzon, Sylvain; Cochard, Herve; Jansen, Steven

    2016-01-01

    Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. © 2016 American Society of Plant Biologists. All Rights Reserved.

  18. True-3D Strain Mapping for Assessment of Material Deformation by Synchrotron X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Ahn, J. J.; Toda, H.; Niinomi, M.; Kobayashi, T.; Akahori, T.; Uesugi, K.

    2005-04-01

    Downsizing of products with complex shapes has been accelerated thanks to the rapid development of electrodevice manufacturing technology. Micro electromechanical systems (MEMS) are one of such typical examples. 3D strain measurement of such miniature products is needed to ensure their reliability. In the present study, as preliminary trial for it 3D tensile deformation behavior of a pure aluminum wire is examined using the synchrotron X-ray microtomography technique at Spring-8, Japan. Multipurpose in-situ tester is used to investigate real-time tensile deformation behavior of the Al wire. Tensile tests are carried out under strokes of 0, 0.005, 0.01 and 0.015mm. It measures 3D local deformation of a region of interest by tracking a relative movement of a pair of particles at each point. Local deformation behavior of the Al wire is identified to be different from macroscopic deformation behavior. It may be closely associated with underlying microstructure.

  19. True-3D Strain Mapping for Assessment of Material Deformation by Synchrotron X-Ray Microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, J.J.; Toda, H.; Niinomi, M.

    2005-04-09

    Downsizing of products with complex shapes has been accelerated thanks to the rapid development of electrodevice manufacturing technology. Micro electromechanical systems (MEMS) are one of such typical examples. 3D strain measurement of such miniature products is needed to ensure their reliability. In the present study, as preliminary trial for it 3D tensile deformation behavior of a pure aluminum wire is examined using the synchrotron X-ray microtomography technique at Spring-8, Japan. Multipurpose in-situ tester is used to investigate real-time tensile deformation behavior of the Al wire. Tensile tests are carried out under strokes of 0, 0.005, 0.01 and 0.015mm. It measuresmore » 3D local deformation of a region of interest by tracking a relative movement of a pair of particles at each point. Local deformation behavior of the Al wire is identified to be different from macroscopic deformation behavior. It may be closely associated with underlying microstructure.« less

  20. Noninvasive Measurement of Vulnerability to Drought-Induced Embolism by X-Ray Microtomography1

    PubMed Central

    Choat, Brendan; Cochard, Herve; Jansen, Steven

    2016-01-01

    Hydraulic failure induced by xylem embolism is one of the primary mechanisms of plant dieback during drought. However, many of the methods used to evaluate the vulnerability of different species to drought-induced embolism are indirect and invasive, increasing the possibility that measurement artifacts may occur. Here, we utilize x-ray computed microtomography (microCT) to directly visualize embolism formation in the xylem of living, intact plants with contrasting wood anatomy (Quercus robur, Populus tremula × Populus alba, and Pinus pinaster). These observations were compared with widely used centrifuge techniques that require destructive sampling. MicroCT imaging provided detailed spatial information regarding the dimensions and functional status of xylem conduits during dehydration. Vulnerability curves based on microCT observations of intact plants closely matched curves based on the centrifuge technique for species with short vessels (P. tremula × P. alba) or tracheids (P. pinaster). For ring porous Q. robur, the centrifuge technique significantly overestimated vulnerability to embolism, indicating that caution should be used when applying this technique to species with long vessels. These findings confirm that microCT can be used to assess the vulnerability to embolism on intact plants by direct visualization. PMID:26527655

  1. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT)

    PubMed Central

    Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    Abstract Background During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CTvlab) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. New information The Micro-CTvlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CTvlab can be accessed either on a normal computer or through a dedicated version for mobile devices. PMID:27956848

  2. Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT).

    PubMed

    Keklikoglou, Kleoniki; Faulwetter, Sarah; Chatzinikolaou, Eva; Michalakis, Nikitas; Filiopoulou, Irene; Minadakis, Nikos; Panteri, Emmanouela; Perantinos, George; Gougousis, Alexandros; Arvanitidis, Christos

    2016-01-01

    During recent years, X-ray microtomography (micro-CT) has seen an increasing use in biological research areas, such as functional morphology, taxonomy, evolutionary biology and developmental research. Micro-CT is a technology which uses X-rays to create sub-micron resolution images of external and internal features of specimens. These images can then be rendered in a three-dimensional space and used for qualitative and quantitative 3D analyses. However, the online exploration and dissemination of micro-CT datasets are rarely made available to the public due to their large size and a lack of dedicated online platforms for the interactive manipulation of 3D data. Here, the development of a virtual micro-CT laboratory (Micro-CT vlab ) is described, which can be used by everyone who is interested in digitisation methods and biological collections and aims at making the micro-CT data exploration of natural history specimens freely available over the internet. The Micro-CT vlab offers to the user virtual image galleries of various taxa which can be displayed and downloaded through a web application. With a few clicks, accurate, detailed and three-dimensional models of species can be studied and virtually dissected without destroying the actual specimen. The data and functions of the Micro-CT vlab can be accessed either on a normal computer or through a dedicated version for mobile devices.

  3. Synchrotron X-ray studies of the keel of the short-spined sea urchin Lytechinus variegatus: absorption microtomography (microCT) and small beam diffraction mapping.

    PubMed

    Stock, S R; Barss, J; Dahl, T; Veis, A; Almer, J D; Carlo, F

    2003-05-01

    In sea urchin teeth, the keel plays an important structural role, and this paper reports results of microstructural characterization of the keel of Lytechinus variegatus using two noninvasive synchrotron x-ray techniques: x-ray absorption microtomography (microCT) and x-ray diffraction mapping. MicroCT with 14 keV x-rays mapped the spatial distribution of mineral at the 1.3 microm level in a millimeter-sized fragment of a mature portion of the keel. Two rows of low absorption channels (i.e., primary channels) slightly less than 10 microm in diameter were found running linearly from the flange to the base of the keel and parallel to its sides. The primary channels paralleled the oral edge of the keel, and the microCT slices revealed a planar secondary channel leading from each primary channel to the side of the keel. The primary and secondary channels were more or less coplanar and may correspond to the soft tissue between plates of the carinar process. Transmission x-ray diffraction with 80.8 keV x-rays and a 0.1 mm beam mapped the distribution of calcite crystal orientations and the composition Ca(1-x)Mg(x)CO(3) of the calcite. Unlike the variable Mg concentration and highly curved prisms found in the keel of Paracentrotus lividus, a constant Mg content (x = 0.13) and relatively little prism curvature was found in the keel of Lytechinus variegatus.

  4. Exploring Hominin and Non-hominin Primate Dental Fossil Remains with Neutron Microtomography

    NASA Astrophysics Data System (ADS)

    Zanolli, Clément; Schillinger, Burkhard; Beaudet, Amélie; Kullmer, Ottmar; Macchiarelli, Roberto; Mancini, Lucia; Schrenk, Friedemann; Tuniz, Claudio; Vodopivec, Vladimira

    Fossil dental remains are an archive of unique information for paleobiological studies. Computed microtomography based on X-ray microfocus sources (X-μCT) and Synchrotron Radiation (SR-μCT) allow subtle quantification at the micron and sub-micron scale of the meso- and microstructural signature imprinted in the mineralized tissues, such as enamel and dentine, through high-resolution ;virtual histology;. Nonetheless, depending on the degree of alterations undergone during fossilization, X-ray analyses of tooth tissues do not always provide distinct imaging contrasts, thus preventing the extraction of essential morphological and anatomical details. We illustrate here by three examples the successful application of neutron microtomography (n-μCT) in cases where X-rays have previously failed to deliver contrasts between dental tissues of fossilized specimen.

  5. Heterogeneous vesiculation of 2011 El Hierro xeno-pumice revealed by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Berg, S. E.; Troll, V. R.; Deegan, F. M.; Burchardt, S.; Krumbholz, M.; Mancini, L.; Polacci, M.; Carracedo, J. C.; Soler, V.; Arzilli, F.; Brun, F.

    2016-12-01

    During the first week of the 2011 El Hierro submarine eruption, abundant light-coloured pumiceous, high-silica volcanic bombs coated in dark basanite were found floating on the sea. The composition of the light-coloured frothy material (`xeno-pumice') is akin to that of sedimentary rocks from the region, but the textures resemble felsic magmatic pumice, leaving their exact mode of formation unclear. To help decipher their origin, we investigated representative El Hierro xeno-pumice samples using X-ray computed microtomography for their internal vesicle shapes, volumes, and bulk porosity, as well as for the spatial arrangement and size distributions of vesicles in three dimensions (3D). We find a wide range of vesicle morphologies, which are especially variable around small fragments of rock contained in the xeno-pumice samples. Notably, these rock fragments are almost exclusively of sedimentary origin, and we therefore interpret them as relicts an the original sedimentary ocean crust protolith(s). The irregular vesiculation textures observed probably resulted from pulsatory release of volatiles from multiple sources during xeno-pumice formation, most likely by successive release of pore water and mineral water during incremental heating and decompression of the sedimentary protoliths.

  6. Visualizing and Quantifying Pore Scale Fluid Flow Processes With X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Hopmans, J. W.; Vaz, C. M.; Rivers, M. L.

    2001-05-01

    When using mathematical models based on Darcy's law it is often necessary to simplify geometry, physics or both and the capillary bundle-of-tubes approach neglects a fundamentally important characteristic of porous solids, namely interconnectedness of the pore space. New approaches to pore-scale modeling that arrange capillary tubes in two- or three-dimensional pore space have been and are still under development: Network models generally represent the pore space by spheres while the pore throats are usually represented by cylinders or conical shapes. Lattice Boltzmann approaches numerically solve the Navier-Stokes equations in a realistic microscopically disordered geometry, which offers the ability to study the microphysical basis of macroscopic flow without the need for a simplified geometry or physics. In addition to these developments in numerical modeling techniques, new theories have proposed that interfacial area should be considered as a primary variable in modeling of a multi-phase flow system. In the wake of this progress emerges an increasing need for new ways of evaluating pore-scale models, and for techniques that can resolve and quantify phase interfaces in porous media. The mechanisms operating at the pore-scale cannot be measured with traditional experimental techniques, however x-ray computerized microtomography (CMT) provides non-invasive observation of, for instance, changing fluid phase content and distribution on the pore scale. Interfacial areas have thus far been measured indirectly, but with the advances in high-resolution imaging using CMT it is possible to track interfacial area and curvature as a function of phase saturation or capillary pressure. We present results obtained at the synchrotron-based microtomography facility (GSECARS, sector 13) at the Advanced Photon Source at Argonne National Laboratory. Cylindrical sand samples of either 6 or 1.5 mm diameter were scanned at different stages of drainage and for varying boundary

  7. Imaging the Transport of Silver Nanoparticles Through Soil With Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Gerhard, J.; O'Carroll, D. M.; Willson, C. S.

    2012-12-01

    Synchrotron x-ray computed microtomography (SXCMT) offers the ability to examine the spatial distribution of contaminants within the pore space of a porous medium; examples include the distribution of nonaqueous phase liquids (NAPLs) and micro-sized colloids. Recently presented was a method, based upon the application of the Beer-Lambert law and K-edge imaging, for using SXCMT to accurately determine the distribution of silver nanoparticles in a porous medium (Molnar et al., AGU Fall Meeting, H53B-1418, 2011). By capturing a series of SXCMT images of a single sample evolving over time, this technique can study the changing distribution of nanoparticles throughout the pore-network and even within individual pores. While previous work on this method focused on accuracy, precision and its potential applications, this study will provide an in-depth analysis of the results of multiple silver nanoparticle transport experiments imaged using this new technique. SXCMT images were collected at various stages of silver nanoparticle injection into columns packed with well graded and poorly graded quartz sand, iron oxide sand and glass bead porous media. The collected images were used to explore the influences of grain type, size and shape on the transport of silver nanoparticles through soil. The results of this analysis illustrate how SXCMT can collect hitherto unobtainable data which can yield valuable insights into the factors affecting nanoparticle transport through soil.

  8. Structural changes of polymer-coated microgranules and excipients on tableting investigated by microtomography using synchrotron X-ray radiation.

    PubMed

    Kajihara, Ryusuke; Noguchi, Shuji; Iwao, Yasunori; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Itai, Shigeru

    2015-03-15

    Multiple-unit tablets consisting of polymer-coated microgranules and excipients have a number of advantageous pharmaceutical properties. Polymer-coated microgranules are known to often lose their functionality because of damage to the polymer coating caused by tableting, and the mechanism of polymer coating damage as well as the structural changes of excipients upon tableting had been investigated but without in-situ visualization and quantitative analysis. To elucidate the mechanism of coating damage, the internal structures of multiple-unit tablets were investigated by X-ray computed microtomography using synchrotron X-rays. Cross sectional images of the tablets with sub-micron spatial resolution clearly revealed that void spaces remained around the compressed excipient particles in the tablets containing an excipient composed of cellulose and lactose (Cellactose(®) 80), whereas much smaller void spaces remained in the tablets containing an excipient made of sorbitol (Parteck(®) SI 150). The relationships between the void spaces and the physical properties of the tablets such as hardness and disintegration were investigated. Damage to the polymer coating in tablets was found mainly where polymer-coated microgranules were in direct contact with each other in both types of tablets, which could be attributed to the difference in hardness of excipient particles and the core of the polymer-coated microgranules. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Three-dimensional morphology of the Sinocyclocheilus hyalinus (Cypriniformes : Cyprinidae) horn based on synchrotron X-ray microtomography.

    PubMed

    He, You; Chen, Xiao-Yong; Xiao, Ti-Qao; Yang, Jun-Xing

    2013-10-01

    Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China. Several species possess a conspicuous horn on their head, which has been suggested as a constructive troglomorphic trait but lacks substantial evidence. We used non-invasive, high spatial resolution synchrotron X-ray microtomography to investigate the three-dimensional (3D) morphology of the horn of Sinocyclocheilus hyalinus, one of eight such troglobiotic species. 3D renderings demonstrated the osteological components, which were comprised of a rear wall comprised of the supraoccipital bone, a remaining frontal wall with numerous fenestrae, and the bottom continuous with the parietal and epiotic. A horn cavity occurred within the horn. The fenestrae in the frontal wall were continuous in the horn cavity and showed elaborate channeling, and were, connected to the cranial cavity by soft tissue. We tentatively called this configuration the "otocornual connection" due to its anatomic and putative functional similarity to the otolateralic connection in clupeids and loricariids, which provide an indirect pathway to enhance perception of underwater sound signals. This study provides a functional morphology context for further histological and physiological investigations of such horn structures in Sinocyclocheilus cavefish, and we suggest that the horn might enhance acoustic perception to compensate for visual loss in subterranean life, which warrants future physiological examination as lab-reared S. hyalinus become available. Sinocyclocheilus is a cave-dwelling cyprinid genus endemic to southwest China. Several species possess a conspicuous horn on their head, which has been suggested as a constructive troglomorphic trait but lacks substantial evidence. We used non-invasive, high spatial resolution synchrotron X-ray microtomography to investigate the three-dimensional (3D) morphology of the horn of Sinocyclocheilus hyalinus , one of eight such troglobiotic species. 3D renderings demonstrated

  10. External and internal macromorphology in 3D-reconstructed maxillary molars using computerized X-ray microtomography.

    PubMed

    Bjørndal, L; Carlsen, O; Thuesen, G; Darvann, T; Kreiborg, S

    1999-01-01

    The aim of this study was to perform a qualitative analysis of the relationship between the external and internal macromorphology of the root complex and to use fractal dimension analysis to determine the correlation between the shape of the outer surface of the root and the shape of the root canal. On the basis of X-ray computed transaxial microtomography, a qualitative and quantitative analysis of the external and internal macromorphology of the root complex in permanent maxillary molars was performed using well-defined macromorphological variables and fractal dimension analysis. Five maxillary molars were placed between a microfocus X-ray tube with a focal spot size of 0.07 mm, a Thomson-SCF image intensifier, and a CCD camera compromising a detector for the tomograph. Between 100 and 240 tomographic 2D slices were made of each tooth. Assembling slices for 3D volume was carried out with subsequent median noise filtering. Segmentation into enamel, dentine and pulp space was achieved through thresholding followed by morphological filtering. Surface representations were then constructed. A useful visualization of the tooth was created by making the dental hard tissues transparent and the pulp chamber and root-canal system opaque. On this basis it became possible to assess the relationship between the external and internal macromorphology of the crown and root complex. There was strong agreement between the number, position and cross-section of the root canals and the number, position and degree of manifestation of the root complex macrostructures. Data from a fractal dimension analysis also showed a high correlation between the shape of the root canals and the corresponding roots. It is suggested that these types of 3D volumes constitute a platform for preclinical training in fundamental endodontic procedures.

  11. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  12. Overcoming the fragility - X-ray computed micro-tomography elucidates brachiopod endoskeletons.

    PubMed

    Seidel, Ronald; Lüter, Carsten

    2014-01-01

    The calcareous shells of brachiopods offer a wealth of informative characters for taxonomic and phylogenetic investigations. In particular scanning electron microscopy (SEM) has been used for decades to visualise internal structures of the shell. However, to produce informative SEM data, brachiopod shells need to be opened after chemical removal of the soft tissue. This preparation occasionally damages the shell. Additionally, skeletal elements of taxonomic/systematic interest such as calcareous spicules which are loosely embedded in the lophophore and mantle connective tissue become disintegrated during the preparation process. Using a nondestructive micro-computed tomography (μCT) approach, the entire fragile endoskeleton of brachiopods is documented for the first time. New insights on the structure and position of tissue-bound skeletal elements (spicules) are given as add ons to existing descriptions of brachiopod shell anatomy, thereby enhancing the quality and quantity of informative characters needed for both taxonomic and phylogenetic studies. Here, we present five modern, articulated brachiopods (Rectocalathis schemmgregoryi n. gen., n. sp., Eucalathis sp., Gryphus vitreus, Liothyrella neozelanica and Terebratulina retusa) that were X-rayed using a Phoenix Nanotom XS 180 NF. We provide links to download 3D models of these species, and additional five species with spicules can be accessed in the Supplemental Material. In total, 17 brachiopod genera covering all modern articulated subgroups and 2 inarticulated genera were X-rayed for morphological analysis. Rectocalathis schemmgregoryi n. gen., n. sp. is fully described. Micro-CT is an excellent non-destructive tool for investigating calcified structures in the exo- and endoskeletons of brachiopods. With high quality images and interactive 3D models, this study provides a comprehensive description of the profound differences in shell anatomy, facilitates the detection of new delicate morphological characters

  13. Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography.

    PubMed

    Altman, Susan J; Rivers, Mark L; Reno, Marissa D; Cygan, Randall T; McLain, Angela A

    2005-04-15

    Synchrotron-source X-ray computerized microtomography (CMT) was used to evaluate the adsorptive properties of aggregate soil samples. A linear relationship between measured mean mass attenuation coefficient (sigma) and mass fraction iron was generated by imaging mineral standards with known iron contents. On the basis of reported stoichiometries of the clay minerals and identifications of iron oxyhydroxides (1), we calculated the mass fraction iron and iron oxyhydroxide in the intergranular material. The mass fractions of iron were estimated to range from 0.17 to 0.22 for measurements made at 18 keV and from 0.18 to 0.21 for measurements made at 26 keV. One aggregate sample also contained regions within the intergranular material with mass fraction iron ranging from 0.29 to 0.31 and from 0.33 to 0.36 for the 18 and 26 keV measurements, respectively. The mass fraction iron oxyhydroxide ranged from 0.18 to 0.35 for the low-iron intergranular material and from 0.40 to 0.59 for the high-iron intergranular material. Using absorption edge difference imaging with CMT, we visualized cesium on the intergranular material, presumably because of adsorption and possible exchange reactions. By characterizing the mass fraction iron, the mass fraction iron oxyhydroxide, and the adsorptive capacity of these soil mineral aggregates, we provide information useful for conceptualization, development, and parametrization of transport models.

  14. Analysis of Soil Structure Turnover with Garnet Particles and X-Ray Microtomography

    PubMed Central

    Vogel, Hans-Jörg

    2016-01-01

    Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other. PMID:27453995

  15. Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.

    PubMed

    Asghar, Z; Requena, G; Sket, F

    2015-07-01

    The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. The use of microtomography in bone tissue and biomaterial three-dimensional analysis.

    PubMed

    Bedini, Rossella; Meleo, Deborah; Pecci, Raffaella; Pacifici, Luciano

    2009-01-01

    X-ray computed microtomography (micro-CT, microComputerised Tomography) is a miniaturized form of conventional computerized axial tomography (CAT ). This sophisticated technology enables 3D riconstruction of the internal structure of small X-ray opaque objects without sample destruction or preparation. The aim of this study is to show the possible applications of micro-CT in the analysis of bone graft materials of different origins (i.e. homologous, heterologous, alloplastic) in order to define their morphometric properties by means of SkyScan 1072 3D microtomography system. Since there is a close relationship between the properties of the materials and their microstructure, it is necessary to examine them using the highest levels of resolution before being able to improve existing materials or create new products.

  17. Advantages of phase retrieval for fast x-ray tomographic microscopy

    NASA Astrophysics Data System (ADS)

    Mokso, R.; Marone, F.; Irvine, S.; Nyvlt, M.; Schwyn, D.; Mader, K.; Taylor, G. K.; Krapp, H. G.; Skeren, M.; Stampanoni, M.

    2013-12-01

    In near-field imaging with partially coherent x-rays, the phase shifting properties of the sample are encoded in the diffraction fringes that appear as an additional intensity modulation in the x-ray projection images. These Fresnel fringes are often regarded as purely an enhancement of the visibility at the interfaces. We show that retrieving the phase information contained in these patterns significantly advances the developments in fast micro-tomography. Improving temporal resolution without intensifying radiation damage implies a shortening of the exposure time rather than increasing the photon flux on the sample. Phase retrieval, to a large extent, compensates the consequent photon count moderation in the images, by fully exploiting the stronger refraction effect as compared with absorption. Two single-distance phase retrieval methods are evaluated for the case of an in situ 3 Hz micro-tomography of a rapidly evolving liquid foam, and an in vivo 6 Hz micro-tomography of a blowfly. A new dual-detector setup is introduced for simultaneous acquisition of two near-field diffraction patterns. Our goal is to couple high temporal, spatial and density resolution in a single imaging system in a dose-efficient manner, opening further options for dynamic four-dimensional studies.

  18. Computational approach to integrate 3D X-ray microtomography and NMR data.

    PubMed

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G; Trevizan, Willian A; Fortulan, Carlos A; Bonagamba, Tito J

    2018-05-04

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T 1 and T 2 , respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the

  19. Computational approach to integrate 3D X-ray microtomography and NMR data

    NASA Astrophysics Data System (ADS)

    Lucas-Oliveira, Everton; Araujo-Ferreira, Arthur G.; Trevizan, Willian A.; Fortulan, Carlos A.; Bonagamba, Tito J.

    2018-07-01

    Nowadays, most of the efforts in NMR applied to porous media are dedicated to studying the molecular fluid dynamics within and among the pores. These analyses have a higher complexity due to morphology and chemical composition of rocks, besides dynamic effects as restricted diffusion, diffusional coupling, and exchange processes. Since the translational nuclear spin diffusion in a confined geometry (e.g. pores and fractures) requires specific boundary conditions, the theoretical solutions are restricted to some special problems and, in many cases, computational methods are required. The Random Walk Method is a classic way to simulate self-diffusion along a Digital Porous Medium. Bergman model considers the magnetic relaxation process of the fluid molecules by including a probability rate of magnetization survival under surface interactions. Here we propose a statistical approach to correlate surface magnetic relaxivity with the computational method applied to the NMR relaxation in order to elucidate the relationship between simulated relaxation time and pore size of the Digital Porous Medium. The proposed computational method simulates one- and two-dimensional NMR techniques reproducing, for example, longitudinal and transverse relaxation times (T1 and T2, respectively), diffusion coefficients (D), as well as their correlations. For a good approximation between the numerical and experimental results, it is necessary to preserve the complexity of translational diffusion through the microstructures in the digital rocks. Therefore, we use Digital Porous Media obtained by 3D X-ray microtomography. To validate the method, relaxation times of ideal spherical pores were obtained and compared with the previous determinations by the Brownstein-Tarr model, as well as the computational approach proposed by Bergman. Furthermore, simulated and experimental results of synthetic porous media are compared. These results make evident the potential of computational physics in the

  20. Implant-Abutment Contact Surfaces and Microgap Measurements of Different Implant Connections Under 3-Dimensional X-Ray Microtomography.

    PubMed

    Scarano, Antonio; Valbonetti, Luca; Degidi, Marco; Pecci, Raffaella; Piattelli, Adriano; de Oliveira, P S; Perrotti, Vittoria

    2016-10-01

    The presence of a microgap between implant and abutment could produce a bacterial reservoir which could interfere with the long-term health of the periimplant tissues. The aim of this article was to evaluate, by x-ray 3-dimensional microtomography, implant-abutment contact surfaces and microgaps at the implant-abutment interface in different types of implant-abutment connections. A total of 40 implants were used in this in vitro study. Ten implants presented a screw-retained internal hexagon abutment (group I), 10 had a Morse Cone taper internal connection (group II), 10 another type of Morse Cone taper internal connection (group III), and 10 had a screwed trilobed connection (group IV). In both types of Morse Cone internal connections, there was no detectable separation at the implant-abutment in the area of the conical connection, and there was an absolute congruity without any microgaps between abutment and implant. No line was visible separating the implant and the abutment. On the contrary, in the screwed abutment implants, numerous gaps and voids were present. The results of this study support the hypothesis that different types of implant-abutment joints are responsible for the observed differences in bacterial penetration.

  1. Characterization of Particle Size Standard NIST 1019b with SynchrotronX-ray Microtomography and Digital Data Extraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Jon M.; Rivers, Mark L.; Perlowitz, Michael A.

    We show that synchrotron x-ray microtomography ({mu}CT) followed by digital data extraction can be used to examine the size distribution and particle morphologies of the polydisperse (750 to 2450 {micro}m diameter) particle size standard NIST 1019b. Our size distribution results are within errors of certified values with data collected at 19.5 {micro}m/voxel. One of the advantages of using {mu}CT to investigate the particles examined here is that the morphology of the glass beads can be directly examined. We use the shape metrics aspect ratio and sphericity to examine of individual standard beads morphologies as a function of spherical equivalent diameters.more » We find that the majority of standard beads possess near-spherical aspect ratios and sphericities, but deviations are present at the lower end of the size range. The majority (> 98%) of particles also possess an equant form when examined using a common measure of equidimensionality. Although the NIST 1019b standard consists of loose particles, we point out that an advantage of {mu}CT is that coherent materials comprised of particles can be examined without disaggregation.« less

  2. Microstructural investigation using synchrotron radiation X-ray microtomography reveals taste-masking mechanism of acetaminophen microspheres.

    PubMed

    Guo, Zhen; Yin, Xianzhen; Liu, Congbiao; Wu, Li; Zhu, Weifeng; Shao, Qun; York, Peter; Patterson, Laurence; Zhang, Jiwen

    2016-02-29

    The structure of solid drug delivery systems has considerable influence on drug release behaviors from particles and granules and also impacts other properties relevant to release characteristics such as taste. In this study, lipid-based microspheres of acetaminophen were prepared to mask the undesirable taste of drug and therefore to identify the optimal formulation for drug release. Synchrotron radiation X-ray computed microtomography (SR-μCT) was used to investigate the fine structural architectures of microspheres non-destructively at different sampling times during drug release test, which were simultaneously determined to quantitatively correlate the structural data with drug release behaviors. The results demonstrated that the polymeric formulation component, namely, cationic polymethacrylate (Eudragit E100), was the key factor to mask the bitter taste of acetaminophen by inhibiting immediate drug release thereby reducing the interaction intensity of the bitter material with the oral cavity taste buds. The structure and morphology of the microspheres were found to be influenced by the shape and particle size of the drug, which was also an important factor for taste-masking performance. The quantitative analysis generated detailed structural information which was correlated well with drug release behaviors. Thus, SR-μCT has been proved as a powerful tool to investigate the fine microstructure of particles and provides a new approach in the design of particles for taste masking. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Application of X-ray phase contrast micro-tomography to the identification of traditional Chinese medicines

    NASA Astrophysics Data System (ADS)

    Ye, L. L.; Xue, Y. L.; Ni, L. H.; Tan, H.; Wang, Y. D.; Xiao, T. Q.

    2013-07-01

    Nondestructive and in situ investigation to the characteristic microstructures are important to the identification of traditional Chinese medicines (TCMs), especially for precious specimens and samples with oil contains. X-ray phase contrast micro-tomography (XPCMT) could be a practical solution for this kind of investigation. Fructus Foeniculi, a fruit kind of TCMs, is selected as the test sample. Experimental results show that the characteristic microstructures of Fructus Foeniculi, including vittae, vascular bundles, embryo, endosperm and the mesocarp reticulate cells around the vittae can be clearly distinguished and the integrated dissepiments microstructure in the vittae was observed successfully. Especially, for the first time, with virtual slice technique, it can investigate the liquid contains inside the TCMs. The results show that the vittae filled with volatile oil in the oil chamber were observed with this nondestructive and in situ 3-dimensional imaging technique. Furthermore, taking the advantage of micro-computed tomography, we can obtain the characteristic microstructures' quantitative information of the volume in liquid state. The volume of the oil chambers and the volatile oil, which are contained inside the vittae, was quantitatively analyzed. Accordingly, it can calculate the volume ratio of the volatile oil easily and accurately. As a result, we could conclude that XPCMT could be a useful tool for the nondestructive identification and quantitative analysis to TCMs.

  4. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging.

    PubMed

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie; Michaelsen, Maria Høtoft; Müllertz, Anette; Rantanen, Jukka; Rades, Thomas; Bøtker, Johan

    2017-05-01

    A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed imaging (TPI). Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XμCT data. The print resolution and accuracy was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XμCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.

  5. Visualizing and measuring flow in shale matrix using in situ synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Kohli, A. H.; Kiss, A. M.; Kovscek, A. R.; Bargar, J.

    2017-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image

  6. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Jansik, Danielle; Um, Wooyong

    2013-01-02

    ABSTRACT: X-ray microtomography (XMT), a nondestructive three-dimensional imaging technique, was applied to demonstrate its capability to visualize the mineralogical alteration and microstructure changes in hydrated Portland cement exposed to carbon dioxide under geologic sequestration conditions. Steel coupons and basalt fragments were added to the cement paste in order to simulate cement-steel and cement-rock interfaces. XMT image analysis showed the changes of material density and porosity in the degradation front (density: 1.98 g/cm3, porosity: 40%) and the carbonated zone (density: 2.27 g/cm3, porosity: 23%) after reaction with CO2- saturated water for 5 months compared to unaltered cement (density: 2.15 g/cm3, porosity:more » 30%). Three-dimensional XMT imaging was capable of displaying spatially heterogeneous alteration in cement pores, calcium carbonate precipitation in cement cracks, and preferential cement alteration along the cement-steel and cement-rock interfaces. This result also indicates that the interface between cement and host rock or steel casing is likely more vulnerable to a CO2 attack than the cement matrix in a wellbore environment. It is shown here that XMT imaging can potentially provide a new insight into the physical and chemical degradation of wellbore cement by CO2 leakage.« less

  7. Characterization of highly hydrophobic textiles by means of X-ray microtomography, wettability analysis and drop impact

    NASA Astrophysics Data System (ADS)

    Santini, M.; Guilizzoni, M.; Fest-Santini, S.; Lorenzi, M.

    2017-11-01

    Highly hydrophobic surfaces have been intensively investigated in the last years because their properties may lead to very promising technological spillovers encompassing both everyday use and high-tech fields. Focusing on textiles, hydrophobic fabrics are of major interest for applications ranging from clothes to architecture to environment protection and energy conversion. Gas diffusion media - made by a gas diffusion layer (GDL) and a microporous layer (MPL) - for fuel cells are a good benchmark to develop techniques aimed at characterizing the wetting performances of engineered textiles. An experimental investigation was carried out about carbon-based, PTFE-treated GDLs with and without MPLs. Two samples (woven and woven-non-woven) were analysed before and after coating with a MPL. Their three-dimensional structure was reconstructed and analysed by computer-aided X-ray microtomography (µCT). Static and dynamic wettability analyses were then carried out using a modified axisymmetric drop shape analysis technique. All the surfaces exhibited very high hydrophobicity, three of them near to a super-hydrophobic behavior. Water drop impacts were performed, evidencing different bouncing, sticking and fragmentation outcomes for which critical values of the Weber number were identified. Finally, a µCT scan of a drop on a GDL was performed, confirming the Cassie-Baxter wetting state on such surface.

  8. Polyglycolic Acid–Polylactic Acid Scaffold Response to Different Progenitor Cell In Vitro Cultures: A Demonstrative and Comparative X-Ray Synchrotron Radiation Phase-Contrast Microtomography Study

    PubMed Central

    Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia

    2014-01-01

    Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid–polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold. PMID:23879738

  9. Snow particles extracted from X-ray computed microtomography imagery and their single-scattering properties

    NASA Astrophysics Data System (ADS)

    Ishimoto, Hiroshi; Adachi, Satoru; Yamaguchi, Satoru; Tanikawa, Tomonori; Aoki, Teruo; Masuda, Kazuhiko

    2018-04-01

    Sizes and shapes of snow particles were determined from X-ray computed microtomography (micro-CT) images, and their single-scattering properties were calculated at visible and near-infrared wavelengths using a Geometrical Optics Method (GOM). We analyzed seven snow samples including fresh and aged artificial snow and natural snow obtained from field samples. Individual snow particles were numerically extracted, and the shape of each snow particle was defined by applying a rendering method. The size distribution and specific surface area distribution were estimated from the geometrical properties of the snow particles, and an effective particle radius was derived for each snow sample. The GOM calculations at wavelengths of 0.532 and 1.242 μm revealed that the realistic snow particles had similar scattering phase functions as those of previously modeled irregular shaped particles. Furthermore, distinct dendritic particles had a characteristic scattering phase function and asymmetry factor. The single-scattering properties of particles of effective radius reff were compared with the size-averaged single-scattering properties. We found that the particles of reff could be used as representative particles for calculating the average single-scattering properties of the snow. Furthermore, the single-scattering properties of the micro-CT particles were compared to those of particle shape models using our current snow retrieval algorithm. For the single-scattering phase function, the results of the micro-CT particles were consistent with those of a conceptual two-shape model. However, the particle size dependence differed for the single-scattering albedo and asymmetry factor.

  10. X-Ray microtomography analysis of the impact of pCO2 on serpentinization reactions: A reactive percolation experimental approach

    NASA Astrophysics Data System (ADS)

    Escario, Sofia; Godard, Marguerite; Gouze, Philippe; Smal, Pavel; Rodriguez, Olivier; Leprovost, Richard

    2017-04-01

    Serpentinization is the main hydrothermal process driving the alteration of the mantle lithosphere by seawater at ridges. It consists in the alteration of olivine to serpentine and is associated to processes such as oxidation as well as carbonation when CO2 is present. The sustainability and efficiency of the reaction requires penetration and renewal of fluids at the mineral-fluid interface. Yet the secondary low density minerals can fill the porous network, clogging flow paths efficiently. This study aims at better understanding the coupled hydrodynamic and chemical processes driving the earliest stages of alteration of the ultramafic basement, when seawater-derived hydrothermal fluids penetrate and interact with exposed mantle rocks at slow spreading ridges. We investigate the structural changes of the rock in relation to dissolution-precipitation reactions triggered by the injection CO2-rich seawater using an experimental approach. The experiments simulate open conditions and were performed using the reactive percolation bench ICARE Lab 3 - Géosciences Montpellier. ICARE 3 allows to continuously measuring permeability changes during experiments and sampling the outlet fluids passing through the sample. We analysed the reacted samples before and after the experiments using a combination of geochemical (TGA-MS) and high resolution X-Ray microtomography (ESRF ID19 synchrotron beamline, Grenoble) approaches. A series of experiments was carried out at 190°C and 25 MPa. CO2 enriched natural seawater (XCO2 5.24 mmol/kg) was injected into Titanium capsules (2 mm diameter, 6 mm length) filled by pressed powdered San Carlos olivine (Fo90; grains 150-200 µm). The outlet section of the samples were analysed at 0.65 µm resolution using microtomography before and after the experiments. The reacted powdered sample was analysed by TGA-MS. Comparison of microtomography images of reacted and unreacted samples shows evidences of olivine dissolution and secondary minerals

  11. Study of the structure of 3-D composites based on carbon nanotubes in bovine serum albumin matrix by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Ignatov, D.; Zhurbina, N.; Gerasimenko, A.

    2017-01-01

    3-D composites are widely used in tissue engineering. A comprehensive analysis by X-ray microtomography was conducted to study the structure of the 3-D composites. Comprehensive analysis of the structure of the 3-D composites consisted of scanning, image reconstruction of shadow projections, two-dimensional and three-dimensional visualization of the reconstructed images and quantitative analysis of the samples. Experimental samples of composites were formed by laser vaporization of the aqueous dispersion BSA and single-walled (SWCNTs) and multi-layer (MWCNTs) carbon nanotubes. The samples have a homogeneous structure over the entire volume, the percentage of porosity of 3-D composites based on SWCNTs and MWCNTs - 16.44%, 28.31%, respectively. An average pore diameter of 3-D composites based on SWCNTs and MWCNTs - 45 μm 93 μm. 3-D composites based on carbon nanotubes in bovine serum albumin matrix can be used in tissue engineering of bone and cartilage, providing cell proliferation and blood vessel sprouting.

  12. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  13. X-ray computed microtomography of sea ice - comment on "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)

    NASA Astrophysics Data System (ADS)

    Obbard, R. W.

    2015-07-01

    This comment addresses a statement made in "A review of air-ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, doi:10.5194/acp-14-1587-2014, 2014). Here we rebut the assertion that X-ray computed microtomography of sea ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.

  14. Mechanism insights into bio-floc bound water transformation based on synchrotron X-ray computed microtomography and viscoelastic acoustic response analysis.

    PubMed

    Wu, Boran; Zhou, Meng; Dai, Xiaohu; Chai, Xiaoli

    2018-06-05

    This study visually tracked the micro-spatial water distribution in bio-flocs of waste activated sludge through in situ synchrotron X-ray computed microtomography. Primarily, the two fractions of bound water, the vicinal water adhering to the surface of organic compositions and the interstitial water mechanically trapped in the net-like structure of bio-flocs, were proposed based on the cross-section imaging results. Furthermore, the determinants on bound water occurrences were explored in terms of viscoelastic acoustic responses of extracellular polymeric substances (EPS). The joint roles of hydrophilic substance removal, EPS aggregation compaction and colloidal instability of sludge flocs in bound water reduction were confirmed by the strong correlations (Pearson correlation coefficient, R p  > 0.95, p-value<0.04) among protein levels of EPS, EPS viscosity and bound water contents. Accordingly, providing adhering sites for vicinal water and forming bio-flocs with high viscosity for trapping interstitial water were proposed to be the contributions of EPS on bound water occurrences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-01-01

    New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.

  16. X-ray computed microtomography characterizes the wound effect that causes sap flow underestimation by thermal dissipation sensors.

    PubMed

    Marañón-Jiménez, S; Van den Bulcke, J; Piayda, A; Van Acker, J; Cuntz, M; Rebmann, C; Steppe, K

    2018-02-01

    Insertion of thermal dissipation (TD) sap flow sensors in living tree stems causes damage of the wood tissue, as is the case with other invasive methods. The subsequent wound formation is one of the main causes of underestimation of tree water-use measured by TD sensors. However, the specific alterations in wood anatomy in response to inserted sensors have not yet been characterized, and the linked dysfunctions in xylem conductance and sensor accuracy are still unknown. In this study, we investigate the anatomical mechanisms prompting sap flow underestimation and the dynamic process of wound formation. Successive sets of TD sensors were installed in the early, mid and end stage of the growing season in diffuse- and ring-porous trees, Fagus sylvatica (Linnaeus) and Quercus petraea ((Mattuschka) Lieblein), respectively. The trees were cut in autumn and additional sensors were installed in the cut stem segments as controls without wound formation. The wounded area and volume surrounding each sensor was then visually determined by X-ray computed microtomography (X-ray microCT). This technique allowed the characterization of vessel anatomical transformations such as tyloses formation, their spatial distribution and quantification of reduction in conductive area. MicroCT scans showed considerable formation of tyloses that reduced the conductive area of vessels surrounding the inserted TD probes, thus causing an underestimation in sap flux density (SFD) in both beech and oak. Discolored wood tissue was ellipsoidal, larger in the radial plane, more extensive in beech than in oak, and also for sensors installed for longer times. However, the severity of anatomical transformations did not always follow this pattern. Increased wound size with time, for example, did not result in larger SFD underestimation. This information helps us to better understand the mechanisms involved in wound effects with TD sensors and allows the provision of practical recommendations to reduce

  17. Brute force absorption contrast microtomography

    NASA Astrophysics Data System (ADS)

    Davis, Graham R.; Mills, David

    2014-09-01

    In laboratory X-ray microtomography (XMT) systems, the signal-to-noise ratio (SNR) is typically determined by the X-ray exposure due to the low flux associated with microfocus X-ray tubes. As the exposure time is increased, the SNR improves up to a point where other sources of variability dominate, such as differences in the sensitivities of adjacent X-ray detector elements. Linear time-delay integration (TDI) readout averages out detector sensitivities on the critical horizontal direction and equiangular TDI also averages out the X-ray field. This allows the SNR to be increased further with increasing exposure. This has been used in dentistry to great effect, allowing subtle variations in dentine mineralisation to be visualised in 3 dimensions. It has also been used to detect ink in ancient parchments that are too damaged to physically unroll. If sufficient contrast between the ink and parchment exists, it is possible to virtually unroll the tomographic image of the scroll in order that the text can be read. Following on from this work, a feasibility test was carried out to determine if it might be possible to recover images from decaying film reels. A successful attempt was made to re-create a short film sequence from a rolled length of 16mm film using XMT. However, the "brute force" method of scaling this up to allow an entire film reel to be imaged presents a significant challenge.

  18. The 4D evolution of porosity during ongoing pressure-solution processes in NaCl using x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Butler, Ian; Tudisco, Erika; Hall, Stephen; Andò, Edward

    2016-04-01

    Pressure-solution creep is a common deformation mechanism in the upper crust. It represents a mass transfer via dissolution-reprecipitation that critically affects the hydraulic properties of rocks. Successful management of safe radioactive storage sites in rock-salt deposits critically depends on an accurate knowledge of the hydro-mechanical behaviour of salt deposits. Despite numerous lab experiments that have been conducted, many aspects of pressure-solution are still poorly understood. There is little knowledge about the spatio-temporal evolution of porosity and permeability during pressure-solution creep. While rates of pressure-solution creep in silicates and carbonates are slow, which makes laboratory investigations of these materials impractical, compaction experiments have demonstrated that NaCl samples deform sufficiently fast to study pressure-solution creep in a lab environment at room temperature and modest loads. We present results from novel experiments that quantify the 4-dimensional (three spatial dimensions plus time) evolution of pressure-solution processes using in-situ x-ray microtomography. Our experiments are performed in custom made x-ray transparent presses. 5 mm diameter NaCl powder samples with a grain size of 250-300 μm are loaded dry into the press and pre-compacted to produce a starting aggregated material. The sample is then flooded with saturated NaCl solution and loaded uniaxially by means of a pneumatic actuator to a constant uniaxial stress. Different sample mixtures were tested, as well as different uniaxial loads. The resulting deformation of the samples is documented in 3-dimensional microtomographic datasets, acquired at regular time intervals. Image analysis allowed characterization of the microstructural evolution of the NaCl grains and the spatio-temporal distribution of porosity during ongoing mechanical and chemical compaction. The microtomography data have also been analysed with 3D Digital Image Correlation (3D-DIC or

  19. New approach to measure soil particulate organic matter in intact samples using X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Negassa, Wakene; Guber, Andrey; Schmidt, Sonja

    2014-05-01

    Particulate soil organic matter (POM) is biologically and chemically active fraction of soil organic matter. It is a source of many agricultural and ecological benefits, among which are POM's contribution to C sequestration. Most of conventional research methods for studying organic matter dynamics involve measurements conducted on pre-processed i.e., ground and sieved soil samples. Unfortunately, grinding and sieving completely destroys soil structure, the component crucial for soil functioning and C protection. Importance of a better understanding of the role of soil structure and of the physical protection that it provides to soil C cannot be overstated; and analysis of quantities, characteristics, and decomposition rates of POM in soil samples with intact structure is among the key elements of gaining such understanding. However, a marked difficulty hindering the progress in such analyses is a lack of tools for identification and quantitative analysis of POM in intact soil samples. Recent advancement in applications of X-ray computed micro-tomography (μ-CT) to soil science has given an opportunity to conduct such analyses. The objective of the current study is to develop a procedure for identification and quantitative characterization of POM within intact soil samples using X-ray μ-CT images and to test performance of the proposed procedure on a set of multiple intact soil macro-aggregates. We used 16 4-6 mm soil aggregates collected at 0-15 cm depth from a Typic Hapludalf soil at multiple field sites with diverse agricultural management history. The aggregates have been scanned at SIMBIOS Centre, Dundee, Scotland at 10 micron resolution. POM was determined from the aggregate images using the developed procedure. The procedure was based on combining image pre-processing steps with discriminant analysis classification. The first component of the procedure consisted of image pre-processing steps based on the range of gray values (GV) along with shape and size

  20. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    PubMed

    Toda, Hiroyuki

    2014-11-01

    X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this

  1. High-contrast differentiation resolution 3D imaging of rodent brain by X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Zikmund, T.; Novotná, M.; Kavková, M.; Tesařová, M.; Kaucká, M.; Szarowská, B.; Adameyko, I.; Hrubá, E.; Buchtová, M.; Dražanová, E.; Starčuk, Z.; Kaiser, J.

    2018-02-01

    The biomedically focused brain research is largely performed on laboratory mice considering a high homology between the human and mouse genomes. A brain has an intricate and highly complex geometrical structure that is hard to display and analyse using only 2D methods. Applying some fast and efficient methods of brain visualization in 3D will be crucial for the neurobiology in the future. A post-mortem analysis of experimental animals' brains usually involves techniques such as magnetic resonance and computed tomography. These techniques are employed to visualize abnormalities in the brains' morphology or reparation processes. The X-ray computed microtomography (micro CT) plays an important role in the 3D imaging of internal structures of a large variety of soft and hard tissues. This non-destructive technique is applied in biological studies because the lab-based CT devices enable to obtain a several-micrometer resolution. However, this technique is always used along with some visualization methods, which are based on the tissue staining and thus differentiate soft tissues in biological samples. Here, a modified chemical contrasting protocol of tissues for a micro CT usage is introduced as the best tool for ex vivo 3D imaging of a post-mortem mouse brain. This way, the micro CT provides a high spatial resolution of the brain microscopic anatomy together with a high tissue differentiation contrast enabling to identify more anatomical details in the brain. As the micro CT allows a consequent reconstruction of the brain structures into a coherent 3D model, some small morphological changes can be given into context of their mutual spatial relationships.

  2. The Grizzly Lake complex (Yellowstone Volcano, USA): Mixing between basalt and rhyolite unraveled by microanalysis and X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Morgavi, Daniele; Arzilli, Fabio; Pritchard, Chad; Perugini, Diego; Mancini, Lucia; Larson, Peter; Dingwell, Donald B.

    2016-09-01

    Magma mixing is a widespread petrogenetic process. It has long been suspected to operate in concert with fractional crystallization and assimilation to produce chemical and temperature gradients in magmas. In particular, the injection of mafic magmas into felsic magma chambers is widely regarded as a key driver in the sudden triggering of what often become highly explosive volcanic eruptions. Understanding the mechanistic event chain leading to such hazardous events is a scientific goal of high priority. Here we investigate a mingling event via the evidence preserved in mingled lavas using a combination of X-ray computed microtomographic and electron microprobe analyses, to unravel the complex textures and attendant chemical heterogeneities of the mixed basaltic and rhyolitic eruption of Grizzly Lake in the Norris-Mammoth corridor of the Yellowstone Plateau volcanic field (YVF). We observe evidence that both magmatic viscous inter-fingering of magmas and disequilibrium crystallization/dissolution processes occur. Furthermore, these processes constrain the timescale of interaction between the two magmatic components prior to their eruption. X-ray microtomography images show variegated textural features, involving vesicle and crystal distributions, filament morphology, the distribution of enclaves, and further textural features otherwise obscured in conventional 2D observations and analyses. Although our central effort was applied to the determination of mixing end members, analysis of the hybrid portion has led to the discovery that mixing in the Grizzly Lake system was also characterized by the disintegration and dissolution of mafic crystals in the rhyolitic magma. The presence of mineral phases in both end member, for example, forsteritic olivine, sanidine, and quartz and their transport throughout the magmatic mass, by a combination of both mixing dynamics and flow imposed by ascent of the magmatic mass and its eruption, might have acted as a "geometric

  3. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    PubMed Central

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151

  4. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.

    PubMed

    Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-07-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  5. Evaluation of the influence of acquisition parameters of microtomography in image quality applied by carbonate rocks

    NASA Astrophysics Data System (ADS)

    Santos, T. M. P.; Machado, A. S.; Araújo, O. M. O.; Ferreira, C. G.; Lopes, R. T.

    2018-03-01

    X-ray computed microtomography is a powerful nondestructive technique for 2D and 3D structure analysis. However, parameters used in acquisition promote directs influence in qualitative and quantitative results in characterization of samples, due image resolution. The aim of this study is value the influence of theses parameters in results through of tests changing these parameters in different situations and system characterization. Results demonstrate those pixel size and detector matrixes are the main parameters that influence in resolution and image quality. Microtomography was considered an excellent technique for characterization using the best image resolution possible.

  6. Hard X-ray full field microscopy and magnifying microtomography using compound refractive lenses

    NASA Astrophysics Data System (ADS)

    Schroer, Christian G.; Günzler, Til Florian; Benner, Boris; Kuhlmann, Marion; Tümmler, Johannes; Lengeler, Bruno; Rau, Christoph; Weitkamp, Timm; Snigirev, Anatoly; Snigireva, Irina

    2001-07-01

    For hard X-rays, parabolic compound refractive lenses (PCRLs) are genuine imaging devices like glass lenses for visible light. Based on these new lenses, a hard X-ray full field microscope has been constructed that is ideally suited to image the interior of opaque samples with a minimum of sample preparation. As a result of a large depth of field, CRL micrographs are sharp projection images of most samples. To obtain 3D information about a sample, tomographic techniques are combined with magnified imaging.

  7. Strain-dependent evolution of garnets in a high pressure ductile shear zone using Synchroton x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Macente, Alice; Fusseis, Florian; Menegon, Luca; John, Timm

    2016-04-01

    Synkinematic reaction microfabrics carry important information on the kinetics, timing and rheology of tectonometamorphic processes. Despite being routinely interpreted in metamorphic and structural studies, reaction and deformation microfabrics are usually described in two dimensions. We applied Synchrotron-based x-ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite-garnet eclogite in 3D. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway) previously described by John et al., (2009), we focused on the spatial transformation of garnet coronas into elongated clusters of garnets. Our microtomographic data allowed us to quantify changes to the garnet volume, their shapes and their spatial arrangement. We combined microtomographic observations with light microscope- and backscatter electron images as well as electron microprobe- (EMPA) and electron backscatter diffraction (EBSD) analyses to correlate mineral composition and orientation data with the x-ray absorption signal of the same mineral grains. This allowed us to extrapolate our interpretation of the metamorphic microfabric evolution to the third dimension, effectively yielding a 4-dimensional dataset. We found that: - The x-ray absorption contrast between individual mineral phases in our microtomographic data is sufficient to allow the same petrographic observations than in light- and electron microscopy, but extended to 3D. - Amongst the major constituents of the synkinematic reactions, garnet is the only phase that can be segmented confidently from the microtomographic data. - With increasing deformation, the garnet volume increases from about 9% to 25%. - Garnet coronas in the gabbros never completely encapsulate olivine grains. This may indicate that the reaction progressed preferentially in some directions, but also leaves pathways for element transport to and from the olivines that are

  8. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    PubMed Central

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-01-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods. PMID:27097672

  9. Development of high energy micro-tomography system at SPring-8

    NASA Astrophysics Data System (ADS)

    Uesugi, Kentaro; Hoshino, Masato

    2017-09-01

    A high energy X-ray micro-tomography system has been developed at BL20B2 in SPring-8. The available range of the energy is between 20keV and 113keV with a Si (511) double crystal monochromator. The system enables us to image large or heavy materials such as fossils and metals. The X-ray image detector consists of visible light conversion system and sCMOS camera. The effective pixel size is variable by changing a tandem lens between 6.5 μm/pixel and 25.5 μm/pixel discretely. The format of the camera is 2048 pixels x 2048 pixels. As a demonstration of the system, alkaline battery and a nodule from Bolivia were imaged. A detail of the structure of the battery and a female mold Trilobite were successfully imaged without breaking those fossils.

  10. Understanding how active volcanoes work: a contribution from synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Polacci, M.; Baker, D. R.; Mancini, L.

    2009-04-01

    and their implications on the rheological properties of magmas and on the intensity of explosive activity at volcanoes. Andronico, D., R. A. Corsaro, A. Cristaldi, and M. Polacci (2008), Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: An example from the 9 January 2005 explosion, J. Volcanol. Geotherm. Res., 176, 541-550. Burton, M. R., H. M. Mader, and M. Polacci (2007), The role of gas percolation in quiescent degassing of persistently active volcanoes, E. Planet. Sci. Lett., 264, 46-60. Colò, L., D. R. Baker, M. Polacci, and M. Ripepe (2007), Magma vesiculation and infrasonic activity in open conduit volcanoes, abstract presented at the AGU 2007 Fall meeting, 10-14 December, San Francisco, California, USA. Piochi, M., M. Polacci, G. De Astis, R. Zanetti, A. Mangiacapra, R. Vannucci, and D. Giordano (2008), Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): implications on the dynamics of explosive eruptions, G-cubed, doi:10.1029/2007GC001746. Polacci, M., D. R. Baker, L. Mancini, G. Tromba, F. Zanini (2006), Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes, Geophys. Res. Lett., 33, L13312, doi:10.1029/2006GL026241. Polacci, M., D. R. Baker, L. Bai, and L. Mancini (2008a), Large vesicles record pathways of degassing at basaltic volcanoes, Bull. Volcanol., 70, 1023-1029, doi:10.1007/s00445-007-0184-8. Polacci, M., D. R. Baker, L. Mancini, S. Favretto, and R. Hill (2008b), Vesiculation in magmas from Stromboli (Aeolian Archipelago, Italy) and implications for normal Strombolian activity and paroxysmal explosions in basaltic systems, J. Geophys. Res., doi:10.1029/2008JB005802

  11. Evaluation of marginal and internal fit of ceramic and metallic crown copings using x-ray microtomography (micro-CT) technology.

    PubMed

    Pimenta, Manuel Antonio; Frasca, Luis Carlos; Lopes, Ricardo; Rivaldo, Elken

    2015-08-01

    Prosthetic crown fit to the walls of the tooth preparation may vary depending on the material used for crown fabrication. The purpose of this study was to compare the marginal and internal fit of crown copings fabricated from 3 different materials. The selected materials were zirconia (ZirkonZahn system, group Y-TZP), lithium disilicate (IPS e.max Press system, group LSZ), and nickel-chromium alloy (lost-wax casting, group NiCr). Five specimens of each material were seated on standard dies. An x-ray microtomography (micro-CT) device was used to obtain volumetric reconstructions of each specimen. Points for fit measurement were located in Adobe Photoshop, and measurements were obtained in the CTAn SkyScan software environment. Marginal fit was measured at 4 points and internal fit at 9 points in each coping. Mean measurements from the 3 groups were compared by analysis of variance (ANOVA) at the 5% significance level, and between-group differences were assessed with the Tukey range test. The nickel-chromium alloy exhibited the best marginal fit overall, comparable with zirconia and significantly different from lithium disilicate. Lithium disilicate exhibited the lowest mean values for internal fit, similar to zirconia and significantly different from the nickel-chrome alloy. The marginal and internal fit parameters of the 3 tested materials were within clinically acceptable range. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  12. Hierarchical multimodal tomographic x-ray imaging at a superbend

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Mikuljan, G.; Jefimovs, K.; Trtik, P.; Vila-Comamala, J.; David, C.; Abela, R.

    2008-08-01

    Over the last decade, synchrotron-based X-ray tomographic microscopy has established itself as a fundamental tool for non-invasive, quantitative investigations of a broad variety of samples, with application ranging from space research and materials science to biology and medicine. Thanks to the brilliance of modern third generation sources, voxel sizes in the micrometer range are routinely achieved by the major X-ray microtomography devices around the world, while the isotropic 100 nm barrier is reached and trespassed only by few instruments. The beamline for TOmographic Microscopy and Coherent rAdiology experiments (TOMCAT) of the Swiss Light Source at the Paul Scherrer Institut, operates a multimodal endstation which offers tomographic capabilities in the micrometer range in absorption contrast - of course - as well as phase contrast imaging. Recently, the beamline has been equipped with a full field, hard X-rays microscope with a theoretical pixel size down to 30 nm and a field of view of 50 microns. The nanoscope performs well at X-ray energies between 8 and 12 keV, selected from the white beam of a 2.9 T superbend by a [Ru/C]100 fixed exit multilayer monochromator. In this work we illustrate the experimental setup dedicated to the nanoscope, in particular the ad-hoc designed X-ray optics needed to produce a homogeneous, square illumination of the sample imaging plane as well as the magnifying zone plate. Tomographic reconstructions at 60 nm voxel size will be shown and discussed.

  13. The drag and terminal velocity of volcanic ash and lapilli with 3D shape obtained by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-04-01

    New experiments of falling volcanic particles were performed in order to define drag and terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity and fractal dimension were obtained, the latter used for quantifying the aerodynamic drag of irregular particles for the first time. With this method, the measure of particle shape descriptors proved to be easier and less operator dependent than previously used 2D image particle analyses. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3x10-2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column and pyroclastic density currents, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of 3D sphericity and fractal dimension of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions. Some volcanological application examples are finally presented.

  14. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  15. Efficient high-resolution hard x-ray imaging with transparent Lu2O3:Eu scintillator thin films

    NASA Astrophysics Data System (ADS)

    Marton, Zsolt; Miller, Stuart R.; Brecher, Charles; Kenesei, Peter; Moore, Matthew D.; Woods, Russell; Almer, Jonathan D.; Miceli, Antonino; Nagarkar, Vivek V.

    2015-09-01

    We have developed microstructured Lu2O3:Eu scintillator films that provide spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their outstanding resolution, Lu2O3:Eu films also exhibits both high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission whose intensity rivals that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays; this results in excessive measurement time and exposure to the specimen. But the absorption efficiency of Lu2O3:Eu (99.9% @12 keV and 30% @ 70 keV) is much greater, significantly decreasing measurement time and radiation exposure. Our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapor deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, a microcolumnar structure for higher spatial resolution, and a bright emission (48000 photons/MeV) whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films of this material on a variety of matching substrates, measuring some 5-10μm in thickness and covering areas up to 1 x 1 cm2, which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT). The microstructure and optical transparency of such screens was optimized, and their imaging performance was evaluated in the Argonne National Laboratory's Advanced Photon Source. Spatial resolution and efficiency were also characterized.

  16. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    PubMed

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  17. Effects of infrared laser on the bone repair assessed by x-ray microtomography (μct) and histomorphometry

    NASA Astrophysics Data System (ADS)

    Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; da Silva, Alessandro M. Hakme; Reiff, Rodrigo Bezerra de Menezes; Bagnato, Vanderlei Salvador; Alves, José Marcos

    2015-06-01

    The bone fracture is important public health problems. The lasertherapy is used to accelerate tissue healing. Regarding diagnosis, few methods are validated to follow the evolution of bone microarchitecture. The aim of this study was to evaluate the effects of lasertherapy on bone repair with x-ray microtomography (μCT) and histomorphometry. A transverse rat tibia osteotomy with a Kirchner wire and a 2mm width polymeric spacer beads were used to produce a delayed bone union. Twelve rats were divided into two groups: (i) Control Group: untreated fracture and; (ii) Laser Group: fracture treated with laser. Twelve sessions of treatment (808nm laser, 100mW, 125J/cm2, 50seconds) were performed. The μCT scanner parameters were: 100kV, 100μA, Al+Cu filter and 9.92μm resolution. A volume of interest (VOI) was chosen with 300 sections above and below the central region of the fracture, totaling 601sections with a 5.96mm. The softwares CT-Analyzer, NRecon and Mimics were used for 2D and 3D analysis. A histomorphometry analysis was also performed. The connectivity (Conn) showed significant increase for Laser Group than Control Group (32371+/-20689 vs 17216+/-9467, p<0.05). There was no significant difference for bone volume (59+/-19mm3 vs 47+/- 8mm3) and histomorfometric data [Laser and Control Groups showed greater amount of cartilaginous (0.19+/-0.05% vs 0.11+/-0.09%) and fibrotic (0.21+/-0.12% vs 0.09+/-0.11%) tissues]. The negative effect was presence of the cartilaginous and fibrotic tissues which may be related to the Kirchner wire and the non-absorption of the polymeric that may have influenced negatively the light distribution through the bone. However, the positive effect was greater bone connectivity, indicating improvement in bone microarchitecture.

  18. Scanning transmission ion micro-tomography (STIM-T) of biological specimens.

    PubMed

    Schwertner, Micheal; Sakellariou, Arthur; Reinert, Tilo; Butz, Tilman

    2006-05-01

    Computed tomography (CT) was applied to sets of Scanning Transmission Ion Microscopy (STIM) projections recorded at the LIPSION ion beam laboratory (Leipzig) in order to visualize the 3D-mass distribution in several specimens. Examples for a test structure (copper grid) and for biological specimens (cartilage cells, cygospore) are shown. Scanning Transmission Micro-Tomography (STIM-T) at a resolution of 260 nm was demonstrated for the first time. Sub-micron features of the Cu-grid specimen were verified by scanning electron microscopy. The ion energy loss measured during a STIM-T experiment is related to the mass density of the specimen. Typically, biological specimens can be analysed without staining. Only shock freezing and freeze-drying is required to preserve the ultra-structure of the specimen. The radiation damage to the specimen during the experiment can be neglected. This is an advantage compared to other techniques like X-ray micro-tomography. At present, the spatial resolution is limited by beam position fluctuations and specimen vibrations.

  19. Pore-Scale Determination of Gas Relative Permeability in Hydrate-Bearing Sediments Using X-Ray Computed Micro-Tomography and Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiongyu; Verma, Rahul; Espinoza, D. Nicolas; Prodanović, Maša.

    2018-01-01

    This work uses X-ray computed micro-tomography (μCT) to monitor xenon hydrate growth in a sandpack under the excess gas condition. The μCT images give pore-scale hydrate distribution and pore habit in space and time. We use the lattice Boltzmann method to calculate gas relative permeability (krg) as a function of hydrate saturation (Shyd) in the pore structure of the experimental hydrate-bearing sand retrieved from μCT data. The results suggest the krg - Shyd data fit well a new model krg = (1-Shyd)·exp(-4.95·Shyd) rather than the simple Corey model. In addition, we calculate krg-Shyd curves using digital models of hydrate-bearing sand based on idealized grain-attaching, coarse pore-filling, and dispersed pore-filling hydrate habits. Our pore-scale measurements and modeling show that the krg-Shyd curves are similar regardless of whether hydrate crystals develop grain-attaching or coarse pore-filling habits. The dispersed pore filling habit exhibits much lower gas relative permeability than the other two, but it is not observed in the experiment and not compatible with Ostwald ripening mechanisms. We find that a single grain-shape factor can be used in the Carman-Kozeny equation to calculate krg-Shyd data with known porosity and average grain diameter, suggesting it is a useful model for hydrate-bearing sand.

  20. Phase-contrast microtomography using an X-ray interferometer having a 40-μm analyzer

    NASA Astrophysics Data System (ADS)

    Momose, A.; Koyama, I.; Hamaishi, Y.; Yoshikawa, H.; Takeda, T.; Wu, J.; Itai, Y.; Takai, , K.; Uesugi, K.; Suzuki, Y.

    2003-03-01

    Phase-contrast X-ray tomographic experiment using a triple Laue-case (LLL) interferometer having a 40-μm lamella which was fabricated to improve spatial resolution, was carried out using undulator X-rays at SPring-8, Japan. Three-dimensional images mapping the refractive index were measured for various animal tissues. Comparing the images with those obtained in previous experiments using conventional LLL interferometers having a 1-mm lamella, improvement in the spatial resolution was demonstrated in that histological structures, such as hepatic lobules in liver and tubules in kidney, were revealed.

  1. X-ray microtomography experiments using a diffraction tube and a focusing multilayer-mirror

    NASA Astrophysics Data System (ADS)

    Gurker, N.; Nell, R.; Backfrieder, W.; Kandutsch, J.; Sarg, K.; Prevrhal, S.; Nentwich, C.

    1994-10-01

    A first-generation (i.e. translate-rotate) micro X-ray transmission computed tomography system has been developed, which utilizes a standard 2.2 kW long-fine-focus diffraction tube with Cu-anode as the X-ray source, a spherical W/C multilayer-mirror to condense and spectrally select the CuKα-radiation (8.04 keV) from the tube and a scintillation counter to detect the X-ray photons; in the present configuration the optical system demagnifies the original source size in the direction parallel to the imaged object slice by a factor of 5, where a small slit captures the radiation and thus gives an intense microscopic (pseudo-) source of monochromatic X-radiation in close vicinity of the scanned specimen. The system provides tomographic images of small objects (up to 25 mm in diameter) reconstructed as 128 × 128 matrices with resolutions between ˜ 20 and 200 μm in ≥ 10 min. The software package which is available for image reconstruction includes filtered backprojection, correcting backprojection (ART, MART) and a new type of weighted backprojection, which turns out to be a simplified version of MART (SMART). A dedicated scan- and reconstruction-procedure demonstrates the feasibility to image selected regions-of-interest within the investigated specimen slice with (up to 1 order of magnitude) higher spatial resolution than their surroundings without major artefacts (Zoom-CT). The hard-and software-components of this CT-system are discussed, several examples are given and perspectives of further development are outlined.

  2. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.

    PubMed

    Wong, Christopher C; Curthoys, Ian S; O'Leary, Stephen J; Jones, Allan S

    2013-01-01

    The use of both gadolinium chloride (GdCl(3)) and osmium tetroxide (OsO(4)) allowed for the visualization of the membranous labyrinth and other intralabyrinthine structures, at different intensities, as compared with the control sample. This initial comparison shows the advantages of GdCl(3) in radiological assessments and OsO(4) in more detailed anatomical studies and pathways of labyrinthine pathogenesis using X-ray microtomography (microCT). To assess an improved OsO(4) staining protocol and compare the staining affinities against GdCl(3). Guinea pig temporal bones were stained with either GdCl(3) (2% w/v) for 7 days or OsO(4) (2% w/v) for 3 days, and scanned in a microCT system. The post-scanned datasets were then assessed in a 3D rendering program. The enhanced soft tissue contrast as presented in the temporal bones stained with either GdCl(3) or OsO(4) allowed for the membranous labyrinth to be visualized throughout the whole specimen. GdCl(3)-stained specimens presented more defined contours of the bone profile in the radiographs, while OsO(4)-stained specimens provided more anatomical detail of individual intralabyrinthine structures, hence allowing spatial relationships to be visualized with ease in a 3D rendering context and 2D axial slice images.

  3. The contribution of synchrotron X-ray computed microtomography to understanding volcanic processes.

    PubMed

    Polacci, Margherita; Mancini, Lucia; Baker, Don R

    2010-03-01

    A series of computed microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometre scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. The geometry of the vesicle (gas-filled void) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two-dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.

  4. Shear behavior of thermoformed woven-textile thermoplastic prepregs: An analysis combining bias-extension test and X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Gassoumi, M.; Rolland du Roscoat, S.; Casari, P.; Dumont, P. J. J.; Orgéas, L.; Jacquemin, F.

    2017-10-01

    Thermoforming allows the manufacture of structural parts for the automotive and aeronautical domains using long fiber thermoplastic prepregs with short cycle times. During this operation, several sheets of molten prepregs are stacked and subjected to large macroscale strains, mainly via in-plane shear, out-of-plane consolidation or dilatation, and bending of the fibrous reinforcement. These deformation modes and the related meso and microstructure evolutions are still poorly understood. However, they can drastically alter the end-use macroscale properties of fabricated parts. To better understand these phenomena, bias extension tests were performed using specimens made of several stacked layers of glass woven fabrics and polyamide matrix. The macroscale shear behavior of these prepregs was investigated at various temperatures. A multiscale analysis of deformed samples was performed using X-ray microtomography images of the deformed specimens acquired at two different spatial resolutions. The low-resolution images were used to analyze the deformation mechanisms and the structural characteristics of prepregs at the macroscale and bundle scales. It was possible to analyze the 3D shapes of deformed samples and, in particular, the spatial variations of their thickness so as to quantify the out-of-plane dilatancy or consolidation phenomena induced by the in-plane shear of prepregs. At a lower scale, the analysis of the high-resolution images showed that these mechanisms were accompanied by the growth of pores and the deformation of fiber bundles. The orientation of the fiber bundles and its through-thickness evolution were measured along the weft and warp directions in the deformed samples, allowing the relevance of geometrical models currently used to analyze bias extension tests to be discussed. Results can be used to enhance the current rheological models for the prediction of thermoforming of thermoplastic prepregs.

  5. Natural and laboratory compaction bands in porous carbonates: a three-dimensional characterization using synchrotron X-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Cilona, A.; Arzilli, F.; Mancini, L.; Emanuele, T.

    2014-12-01

    Porous carbonates form important reservoirs for water and hydrocarbons. The fluid flow properties of carbonate reservoirs may be affected by post-depositional processes (e.g., mechanical and chemical), which need to be quantified. Field-based studies described bed-parallel compaction bands (CBs) within carbonates with a wide range of porosities. These burial-related structures accommodate volumetric strain by grain rotation, translation, pore collapse and pressure solution. Recently, the same structures have been reproduced for the first time in the laboratory by performing triaxial compaction experiments on porous grainstones. These laboratory studies characterized and compared the microstructures of natural and laboratory CBs, but no analysis of pore connectivity has been performed. In this paper, we use an innovative approach to characterize the pore networks (e.g. porosity, connectivity) of natural and laboratory CBs and compare them with the host rock one. We collected the data using the synchrotron X-ray computed microtomography technique at the SYRMEP beamline of the Elettra-Sincrotrone Trieste Laboratory (Italy). Quantitative analyses of the samples were performed with the Pore3D software library. The porosity was calculated from segmented 3D images of pristine and deformed carbonates. A process of skeletonization was then applied to quantify the number of connected pores within the rock volume. The analysis of the skeleton allowed us to highlight the differences between natural and laboratory CBs, and to investigate how pore connectivity evolves as a function of different deformation pathways. Both pore volume and connectivity are reduced within the CBs respect to the pristine rock and the natural CB has a lower porosity with respect to the laboratory one. The grain contacts in the natural CB are welded, whereas in the laboratory one they have more irregular shapes and grain crushing is the predominant process.

  6. Mapping the spatial and temporal progression of human dental enamel biomineralization using synchrotron X-ray diffraction.

    PubMed

    Simmons, Lisa M; Montgomery, Janet; Beaumont, Julia; Davis, Graham R; Al-Jawad, Maisoon

    2013-11-01

    The complex biological, physicochemical process of human dental enamel formation begins in utero and for most teeth takes several years to complete. Lost enamel tissue cannot regenerate, therefore a better understanding of the spatial and temporal progression of mineralization of this tissue is needed in order to design improved in vivo mineral growth processes for regenerative dentistry and allow the possibility to grow a synthetic whole or partial tooth. Human dental enamel samples across a range of developmental stages available through archaeological collections have been used to explore the spatial and temporal progression of enamel biomineralization. Position sensitive synchrotron X-ray diffraction was used to quantify spatial and temporal variations in crystallite organization, lattice parameters and crystallite thickness at three different stages in enamel maturation. In addition X-ray microtomography was used to study mineral content distributions. An inverse correlation was found between the spatial variation in mineral content and the distribution of crystallite organization and thickness as a function of time during enamel maturation. Combined X-ray microtomography and synchrotron X-ray diffraction results show that as enamel matures the mineral content increases and the mineral density distribution becomes more homogeneous. Starting concurrently but proceeding at a slower rate, the enamel crystallites become more oriented and larger; and the crystallite organization becomes spatially more complex and heterogeneous. During the mineralization of human dental enamel, the rate of mineral formation and mineral organization are not identical. Whilst the processes start simultaneously, full mineral content is achieved earlier, and crystallite organization is slower and continues for longer. These findings provide detailed insights into mineral development in human dental enamel which can inform synthetic biomimetic approaches for the benefit of clinical

  7. Synchrotron-Based X-ray Microtomography Characterization of the Effect of Processing Variables on Porosity Formation in Laser Power-Bed Additive Manufacturing of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Montgomery, Colt; Beuth, Jack; Rollett, A. D.

    2017-03-01

    The porosity observed in additively manufactured (AM) parts is a potential concern for components intended to undergo high-cycle fatigue without post-processing to remove such defects. The morphology of pores can help identify their cause: irregularly shaped lack of fusion or key-holing pores can usually be linked to incorrect processing parameters, while spherical pores suggest trapped gas. Synchrotron-based x-ray microtomography was performed on laser powder-bed AM Ti-6Al-4V samples over a range of processing conditions to investigate the effects of processing parameters on porosity. The process mapping technique was used to control melt pool size. Tomography was also performed on the powder to measure porosity within the powder that may transfer to the parts. As observed previously in experiments with electron beam powder-bed fabrication, significant variations in porosity were found as a function of the processing parameters. A clear connection between processing parameters and resulting porosity formation mechanism was observed in that inadequate melt pool overlap resulted in lack-of-fusion pores whereas excess power density produced keyhole pores.

  8. X-ray imaging inspection of fiberglass reinforced by epoxy composite

    NASA Astrophysics Data System (ADS)

    Rique, A. M.; Machado, A. C.; Oliveira, D. F.; Lopes, R. T.; Lima, I.

    2015-04-01

    The goal of this work was to study the voids presented in bonded joints in order to minimize failures due to low adhesion of the joints in the industry field. One of the main parameters to be characterized is the porosity of the glue, since these pores are formed by several reasons in the moment of its adhesion, which are formed by composite of epoxy resin reinforced by fiberglass. For such purpose, it was used high energy X-ray microtomography and the results show its potential effective in recognizing and quantifying directly in 3D all the occlusions regions presented at glass fiber-epoxy adhesive joints.

  9. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  10. Investigation of internal structure of fine granules by microtomography using synchrotron X-ray radiation.

    PubMed

    Noguchi, Shuji; Kajihara, Ryusuke; Iwao, Yasunori; Fujinami, Yukari; Suzuki, Yoshio; Terada, Yasuko; Uesugi, Kentaro; Miura, Keiko; Itai, Shigeru

    2013-03-10

    Computed tomography (CT) using synchrotron X-ray radiation was evaluated as a non-destructive structural analysis method for fine granules. Two kinds of granules have been investigated: a bromhexine hydrochloride (BHX)-layered Celphere CP-102 granule coated with pH-sensitive polymer Kollicoat Smartseal 30-D, and a wax-matrix granule constructed from acetaminophen (APAP), dibasic calcium phosphate dehydrate, and aminoalkyl methacrylate copolymer E (AMCE) manufactured by melt granulation. The diameters of both granules were 200-300 μm. CT analysis of CP-102 granule could visualize the laminar structures of BHX and Kollicoat layers, and also visualize the high talc-content regions in the Kollicoat layer that could not be detected by scanning electron microscopy. Moreover, CT analysis using X-ray energies above the absorption edge of Br specifically enhanced the contrast in the BHX layer. As for granules manufactured by melt granulation, CT analysis revealed that they had a small inner void space due to a uniform distribution of APAP and other excipients. The distribution of AMCE revealed by CT analysis was also found to involve in the differences of drug dissolution from the granules as described previously. These observations demonstrate that CT analysis using synchrotron X-ray radiation is a powerful method for the detailed internal structure analysis of fine granules. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  12. Advanced X-ray Astrophysics Facility (AXAF): Science working group report. [space shuttle payload

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Advanced X-Ray Astrophysics Facility (AXAF) mission concept is examined from a scientific viewpoint. A brief description of the development of X-ray astronomy and a summary description of AXAF, the scientific objectives of the facility, a description of representative scientific instruments, requirements for X-ray ground testing, and a summary of studies related to spacecraft and support subsystems, are included.

  13. Quantitative characterization of 3-dimensional melt distribution in partially molten olivine-basalt aggregates using X-ray synchrotron microtomography

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gaetani, G. A.; Fusseis, F.

    2009-12-01

    Quantitative knowledge of the distribution of small amounts of silicate melt in peridotite and of its influence on permeability are critical to our understanding of melt migration and segregation processes in the upper mantle. Estimates for the permeability of partially molten rock require 3D melt distribution at the grain-scale. Existing studies of melt distribution, carried out on 2D slices through experimental charges, have produced divergent models for melt distribution at small melt fractions. While some studies conclude that small amounts of melt are distributed primarily along triple junctions [e.g., Wark et al., 2003], others predict an important role for melt distribution along grain boundaries at low melt fractions [e.g., Faul 1997]. Using X-ray synchrotron microtomography, we have obtained the first high quality non-destructive imaging of 3D melt distribution in olivine-basalt aggregates. Textually equilibrated partially molten samples consisting of magnesian olivine plus 2, 5, 10, or 20% primitive basalt were synthesized at 1.5 GPa and 1350°C in experiments lasting 264-336 hours. Microtomographic images of melt distribution were obtained on cylindrical cores, 1 mm in diameter, at a spatial resolution of 1 micron. Textual information such as melt channel size, dihedral angle and channel connectivity was then quantified using AVIZO and MATLAB. Our results indicate that as melt fraction decreases, melt becomes increasingly distributed along 3 grain junctions, in agreement with theoretical predictions. We do not find significant amounts of melt along grain boundaries at low melt fractions. We found that the true dihedral angle ranges from 50 to 70°, in agreements with results using 2D microcopy. Comparison between the samples provides a quantitative characterization of how melt fraction affects melt distribution including connectivity. The geometrical data have been incorporated into our network model to obtain macroscale transport properties for

  14. Quantitative Analysis Of Three-dimensional Branching Systems From X-ray Computed Microtomography Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinney, Adriana L.; Varga, Tamas

    Branching structures such as lungs, blood vessels and plant roots play a critical role in life. Growth, structure, and function of these branching structures have an immense effect on our lives. Therefore, quantitative size information on such structures in their native environment is invaluable for studying their growth and the effect of the environment on them. X-ray computed tomography (XCT) has been an effective tool for in situ imaging and analysis of branching structures. We developed a costless tool that approximates the surface and volume of branching structures. Our methodology of noninvasive imaging, segmentation and extraction of quantitative information ismore » demonstrated through the analysis of a plant root in its soil medium from 3D tomography data. XCT data collected on a grass specimen was used to visualize its root structure. A suite of open-source software was employed to segment the root from the soil and determine its isosurface, which was used to calculate its volume and surface. This methodology of processing 3D data is applicable to other branching structures even when the structure of interest is of similar x-ray attenuation to its environment and difficulties arise with sample segmentation.« less

  15. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma.

    PubMed

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-09-08

    Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-muCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM).

  16. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma

    PubMed Central

    Hammel, Jörg U; Herzen, Julia; Beckmann, Felix; Nickel, Michael

    2009-01-01

    Background Primary agametic-asexual reproduction mechanisms such as budding and fission are present in all non-bilaterian and many bilaterian animal taxa and are likely to be metazoan ground pattern characters. Cnidarians display highly organized and regulated budding processes. In contrast, budding in poriferans was thought to be less specific and related to the general ability of this group to reorganize their tissues. Here we test the hypothesis of morphological pattern formation during sponge budding. Results We investigated the budding process in Tethya wilhelma (Demospongiae) by applying 3D morphometrics to high resolution synchrotron radiation-based x-ray microtomography (SR-μCT) image data. We followed the morphogenesis of characteristic body structures and identified distinct morphological states which indeed reveal characteristic spatiotemporal morphological patterns in sponge bud development. We discovered the distribution of skeletal elements, canal system and sponge tissue to be based on a sequential series of distinct morphological states. Based on morphometric data we defined four typical bud stages. Once they have reached the final stage buds are released as fully functional juvenile sponges which are morphologically and functionally equivalent to adult specimens. Conclusion Our results demonstrate that budding in demosponges is considerably more highly organized and regulated than previously assumed. Morphological pattern formation in asexual reproduction with underlying genetic regulation seems to have evolved early in metazoans and was likely part of the developmental program of the last common ancestor of all Metazoa (LCAM). PMID:19737392

  17. X-ray biosignature of bacteria in terrestrial and extra-terrestrial rocks

    NASA Astrophysics Data System (ADS)

    Lemelle, L.; Simionovici, A.; Susini, J.; Oger, P.; Chukalina, M.; Rau, Ch.; Golosio, B.; Gillet, P.

    2003-04-01

    X-ray imaging techniques at the best spatial resolution and using synchrotron facilities are put forth as powerful techniques for the search of small life forms in extraterrestrial rocks under quarantine conditions (Lemelle et al. 2003). Samples, which may be collected in situ on the martian surface or on a cometary surface, will be brought back and finally stored in a container. We tested on the ID22 beamline, the possibilities of the X-ray absorption and fluorescence tomographies on sub-mm grains of NWA817 (Lemelle et al. submitted) and Tatahouine (Simionovici et al. 2001) meteorites stored in a 10 micrometer silica capillary, full of air, mimicking such containers. Studies of the X-ray microtomographies carried on reveal the positions, the 3D textures and mineralogies of the microenvironments where traces of life should be looked for in priority (with a submicrometer spatial resolution). Limitations with respect to bacterial detection are due to the difficulties to obtain information about light elements (Z <= 14), major constituents of biological and silicate samples. At this stage, traces of life were not detected, nor identified such as, on all the studied meteorites through the capillary. Theoretical developments of an internal elemental microanalysis combining X-ray fluorescence, Compton and Transmission tomographies will soon allow improvements of 3D detection of life by X-ray techniques (Golosio et al. submitted). We tested on the ID21 beamline, the possibilities of the X-ray imaging techniques on bacteria/silicate assemblages prepared in the laboratory and directly placed in the beam. The X-ray signature of a "present" bacteria on a silicate surface was defined by X-ray mapping, out of a container, as coincident micrometer and oval zones having strong P and S fluorescence lines (S-fluorescence being slightly lower than P-fluorescence) and an amino-linked sulfur redox speciation. The X-ray signature of a single bacteria can now be applied to test the

  18. Synchrotron x-ray microtomography of the interior microstructure of chocolate

    NASA Astrophysics Data System (ADS)

    Lügger, Svenja K.; Wilde, Fabian; Dülger, Nihan; Reinke, Lennart M.; Kozhar, Sergii; Beckmann, Felix; Greving, Imke; Vieira, Josélio; Heinrich, Stefan; Palzer, Stefan

    2016-10-01

    The structure of chocolate, a multicomponent food product, was analyzed using microtomography. Chocolate consists of a semi-solid cocoa butter matrix and a dense network of suspended particles. A detailed analysis of the microstructure is needed to understand mass transport phenomena. Transport of lipids from e.g. a filling or liquid cocoa butter is responsible for major problems in the confectionery industry such as formation of chocolate bloom, which is the formation of visible white spots or a grayish haze on the chocolate surface and leads to consumer rejections and thus large sales losses for the confectionery industry. In this study it was possible to visualize the inner structure of chocolate and clearly distinguish the particles from the continuous phase by taking advantage of the high density contrast of synchrotron radiation. Consequently, particle arrangement and cracks within the sample were made visible. The cracks are several micrometers thick and propagate throughout the entire sample. Images of pure cocoa butter, chocolate without any particles, did not show any cracks and thus confirmed that cracks are a result of embedded particles. They arise during the manufacturing process. Thus, the solidification process, a critical manufacturing step, was simulated with finite element methods in order to understand crack formation during this step. The simulation showed that cracks arise because of significant contraction of cocoa butter, the matrix phase, without any major change of volume of the suspended particles. Tempering of the chocolate mass prior to solidification is another critical step for a good product quality. We found that samples which solidified in an uncontrolled manner are less homogeneous than tempered samples. In summary, our study visualized for the first time the inner microstructure of tempered and untempered cocoa butter as well as chocolate without sample destruction and revealed cracks, which might act as transport pathways.

  19. Multiscale Shannon's Entropy Modeling of Orientation and Distance in Steel Fiber Micro-Tomography Data.

    PubMed

    Chiverton, John P; Ige, Olubisi; Barnett, Stephanie J; Parry, Tony

    2017-11-01

    This paper is concerned with the modeling and analysis of the orientation and distance between steel fibers in X-ray micro-tomography data. The advantage of combining both orientation and separation in a model is that it helps provide a detailed understanding of how the steel fibers are arranged, which is easy to compare. The developed models are designed to summarize the randomness of the orientation distribution of the steel fibers both locally and across an entire volume based on multiscale entropy. Theoretical modeling, simulation, and application to real imaging data are shown here. The theoretical modeling of multiscale entropy for orientation includes a proof showing the final form of the multiscale taken over a linear range of scales. A series of image processing operations are also included to overcome interslice connectivity issues to help derive the statistical descriptions of the orientation distributions of the steel fibers. The results demonstrate that multiscale entropy provides unique insights into both simulated and real imaging data of steel fiber reinforced concrete.

  20. Evaluating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Cunningham, Ross; Narra, Sneha P.; Ozturk, Tugce; Beuth, Jack; Rollett, A. D.

    2016-03-01

    Electron beam melting (EBM) is one of the subsets of direct metal additive manufacturing (AM), an emerging manufacturing method that fabricates metallic parts directly from a three-dimensional (3D) computer model by the successive melting of powder layers. This family of technologies has seen significant growth in recent years due to its potential to manufacture complex components with shorter lead times, reduced material waste and minimal post-processing as a "near-net-shape" process, making it of particular interest to the biomedical and aerospace industries. The popular titanium alloy Ti-6Al-4V has been the focus of multiple studies due to its importance to these two industries, which can be attributed to its high strength to weight ratio and corrosion resistance. While previous research has found that most tensile properties of EBM Ti-6Al-4V meet or exceed conventional manufacturing standards, fatigue properties have been consistently inferior due to a significant presence of porosity. Studies have shown that adjusting processing parameters can reduce overall porosity; however, they frequently utilize methods that give insufficient information to properly characterize the porosity (e.g., Archimedes' method). A more detailed examination of the result of process parameter adjustments on the size and spatial distribution of gas porosity was performed utilizing synchrotron-based x-ray microtomography with a minimum feature resolution of 1.5 µm. Cross-sectional melt pool area was varied systematically via process mapping. Increasing melt pool area through the speed function variable was observed to significantly reduce porosity in the part.

  1. X-ray microtomography-based measurements of meniscal allografts.

    PubMed

    Mickiewicz, P; Binkowski, M; Bursig, H; Wróbel, Z

    2015-05-01

    X-ray microcomputed tomography (XMT) is a technique widely used to image hard and soft tissues. Meniscal allografts as collagen structures can be imaged and analyzed using XMT. The aim of this study was to present an XMT scanning protocol that can be used to obtain the 3D geometry of menisci. It was further applied to compare two methods of meniscal allograft measurement: traditional (based on manual measurement) and novel (based on digital measurement of 3D models of menisci obtained with use of XMT scanner). The XMT-based menisci measurement is a reliable method for assessing the geometry of a meniscal allograft by measuring the basic meniscal dimensions known from traditional protocol. Thirteen dissected menisci were measured according the same principles traditionally applied in a tissue bank. Next, the same specimens were scanned by a laboratory scanner in the XMT Lab. The images were processed to obtain a 3D mesh. 3D models of allograft geometry were then measured using a novel protocol enhanced by computer software. Then, both measurements were compared using statistical tests. The results showed significant differences (P<0.05) between the lengths of the medial and lateral menisci measured in the tissue bank and the XMT Lab. Also, medial meniscal widths were significantly different (P<0.05). Differences in meniscal lengths may result from difficulties in dissected meniscus measurements in tissue banks, and may be related to the elastic structure of the dissected meniscus. Errors may also be caused by the lack of highlighted landmarks on the meniscal surface in this study. The XMT may be a good technique for assessing meniscal dimensions without actually touching the specimen. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. X-Ray microtomography for ant taxonomy: An exploration and case study with two new Terataner (Hymenoptera, Formicidae, Myrmicinae) species from Madagascar

    PubMed Central

    Fischer, Georg; Liu, Cong; Audisio, Tracy L.; Alpert, Gary D.; Fisher, Brian L.; Economo, Evan P.

    2017-01-01

    We explore the potential of x-ray micro computed tomography (μCT) for the field of ant taxonomy by using it to enhance the descriptions of two remarkable new species of the ant genus Terataner: T. balrog sp. n. and T. nymeria sp. n.. We provide an illustrated worker-based species identification key for all species found on Madagascar, as well as detailed taxonomic descriptions, which include diagnoses, discussions, measurements, natural history data, high-quality montage images and distribution maps for both new species. In addition to conventional morphological examination, we have used virtual reconstructions based on volumetric μCT scanning data for the species descriptions. We also include 3D PDFs, still images of virtual reconstructions, and 3D rotation videos for both holotype workers and one paratype queen. The complete μCT datasets have been made available online (Dryad, https://datadryad.org) and represent the first cybertypes in ants (and insects). We discuss the potential of μCT scanning and critically assess the usefulness of cybertypes for ant taxonomy. PMID:28328931

  3. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography1[OPEN

    PubMed Central

    Fei, Jiong; McElrone, Andrew J.; Shackel, Kenneth A.; Matthews, Mark A.

    2015-01-01

    Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (kh) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatic kh (xylem pathway) was consistently 4 orders of magnitude greater than osmotic kh (intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatic kh declined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specific kh (per xylem area) decreased in a similar fashion to kh despite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicel kh were associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reduced kh remains functional late into berry ripening. PMID:26077763

  4. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    NASA Astrophysics Data System (ADS)

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-05-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.

  5. Morphological Characterisation of Unstained and Intact Tissue Micro-architecture by X-ray Computed Micro- and Nano-Tomography

    PubMed Central

    Walton, Lucy A.; Bradley, Robert S.; Withers, Philip J.; Newton, Victoria L.; Watson, Rachel E. B.; Austin, Clare; Sherratt, Michael J.

    2015-01-01

    Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons. PMID:25975937

  6. Water Transport Properties of the Grape Pedicel during Fruit Development: Insights into Xylem Anatomy and Function Using Microtomography.

    PubMed

    Knipfer, Thorsten; Fei, Jiong; Gambetta, Gregory A; McElrone, Andrew J; Shackel, Kenneth A; Matthews, Mark A

    2015-08-01

    Xylem flow of water into fruits declines during fruit development, and the literature indicates a corresponding increase in hydraulic resistance in the pedicel. However, it is unknown how pedicel hydraulics change developmentally in relation to xylem anatomy and function. In this study on grape (Vitis vinifera), we determined pedicel hydraulic conductivity (kh) from pressure-flow relationships using hydrostatic and osmotic forces and investigated xylem anatomy and function using fluorescent light microscopy and x-ray computed microtomography. Hydrostatic kh (xylem pathway) was consistently 4 orders of magnitude greater than osmotic kh (intracellular pathway), but both declined before veraison by approximately 40% and substantially over fruit development. Hydrostatic kh declined most gradually for low (less than 0.08 MPa) pressures and for water inflow and outflow conditions. Specific kh (per xylem area) decreased in a similar fashion to kh despite substantial increases in xylem area. X-ray computed microtomography images provided direct evidence that losses in pedicel kh were associated with blockages in vessel elements, whereas air embolisms were negligible. However, vessel elements were interconnected and some remained continuous postveraison, suggesting that across the grape pedicel, a xylem pathway of reduced kh remains functional late into berry ripening. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Gas exsolution and bubbles nucleation from the 1669 lava flow of Mount Etna (Italy): evidences from phase-contrast synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo; Mancini, Lucia

    2017-04-01

    Bubbles are usually present in lavas, often showing an increase in their size and number from bottom to the top of vertical profile of the flows. Their presence is commonly interpreted as the final phase of the degassing processes starting and massively occurring at depth, before the eruption. In this work we present the results of a detailed study of size, shape and volumetric distribution of bubbles in lavas from the 1669 eruption of Mount Etna (Italy), one of the most voluminous and destructive historic events of this volcano. The lava field produced during this event extends up to 18 km from the craters, and the massive presence of bubbles in lavas sampled many kilometres away from the emission point is in contrast with the models predicting their almost total exsolution from the magma before the eruption, at depth of several kilometres beneath the volcano edifice. Sampling of the 1669 lava field has been performed along the longitudinal profile of the field at increasing distance from the vent. Collected rocks have been analysed by X-ray fluorescence and phase-contrast synchrotron X-ray computed microtomography in order to extract three-dimensional (3D) qualitative and quantitative information on the bubbles network. The use of synchrotron light permitted to investigate small portions of the samples at high spatial and contrast resolution and allowed us to obtain the 3D morphology and distribution of the micro-bubbles present in the lava, avoiding the limitations of the traditional two-dimensional analysis on thin sections. Results indicate that bubbles in lavas are present in various abundance, constituting up to 18% of the rocks volume, and are randomly distributed, with no regards for the distance from the vent. Their casual abundance, morphological characteristics and spatial distribution indicate large nucleation from syn- to post-eruptive stage, during the lava flowing and probably after it halted its run. These observations are in contrast with the

  8. Extraction of the 3D local orientation of myocytes in human cardiac tissue using X-ray phase-contrast micro-tomography and multi-scale analysis.

    PubMed

    Varray, François; Mirea, Iulia; Langer, Max; Peyrin, Françoise; Fanton, Laurent; Magnin, Isabelle E

    2017-05-01

    This paper presents a methodology to access the 3D local myocyte arrangements in fresh human post-mortem heart samples. We investigated the cardiac micro-structure at a high and isotropic resolution of 3.5 µm in three dimensions using X-ray phase micro-tomography at the European Synchrotron Radiation Facility. We then processed the reconstructed volumes to extract the 3D local orientation of the myocytes using a multi-scale approach with no segmentation. We created a simplified 3D model of tissue sample made of simulated myocytes with known size and orientations, to evaluate our orientation extraction method. Afterwards, we applied it to 2D histological cuts and to eight 3D left ventricular (LV) cardiac tissue samples. Then, the variation of the helix angles, from the endocardium to the epicardium, was computed at several spatial resolutions ranging from 3.6 3  mm 3 to 112 3  µm 3 . We measure an increased range of 20° to 30° from the coarsest resolution level to the finest level in the experimental samples. This result is in line with the higher values measured from histology. The displayed tractography demonstrates a rather smooth evolution of the transmural helix angle in six LV samples and a sudden discontinuity of the helix angle in two septum samples. These measurements bring a new vision of the human heart architecture from macro- to micro-scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  10. Compaction bands in shale revealed through digital volume correlation of time-resolved X-ray tomography scans

    NASA Astrophysics Data System (ADS)

    McBeck, J.; Kobchenko, M.; Hall, S.; Tudisco, E.; Cordonnier, B.; Renard, F.

    2017-12-01

    Previous studies have identified compaction bands primarily within sandstones, and in fewer instances, within other porous rocks and sediments. Using Digital Volume Correlation (DVC) of X-ray microtomography scans, we find evidence of localized zones of high axial contraction that form tabular structures sub-perpendicular to maximum compression, σ1, in Green River shale. To capture in situ strain localization throughout loading, two shale cores were deformed in the HADES triaxial deformation apparatus installed on the X-ray microtomography beamline ID19 at the European Synchrotron Radiation Facility. In these experiments, we increase σ1 in increments of two MPa, with constant confining pressure (20 MPa), until the sample fails in macroscopic shear. After each stress step, a 3D image of the sample inside the rig is acquired at a voxel resolution of 6.5 μm. The evolution of lower density regions within 3D reconstructions of linear attenuation coefficients reveal the development of fractures that fail with some opening. If a fracture produces negligible dilation, it may remain undetected in image segmentation of the reconstructions. We use the DVC software TomoWarp2 to identify undetected fractures and capture the 3D incremental displacement field between each successive pair of microtomography scans acquired in each experiment. The corresponding strain fields reveal localized bands of high axial contraction that host minimal shear strain, and thus match the kinematic definition of compaction bands. The bands develop sub-perpendicular to σ1 in the two samples in which pre-existing bedding laminations were oriented parallel and perpendicular to σ1. As the shales deform plastically toward macroscopic shear failure, the number of bands and axial contraction within the bands increase, while the spacing between the bands decreases. Compaction band development accelerates the rate of overall axial contraction, increasing the mean axial contraction throughout the sample

  11. Multimodal imaging of human cerebellum - merging X-ray phase microtomography, magnetic resonance microscopy and histology

    NASA Astrophysics Data System (ADS)

    Schulz, Georg; Waschkies, Conny; Pfeiffer, Franz; Zanette, Irene; Weitkamp, Timm; David, Christian; Müller, Bert

    2012-11-01

    Imaging modalities including magnetic resonance imaging and X-ray computed tomography are established methods in daily clinical diagnosis of human brain. Clinical equipment does not provide sufficient spatial resolution to obtain morphological information on the cellular level, essential for applying minimally or non-invasive surgical interventions. Therefore, generic data with lateral sub-micrometer resolution have been generated from histological slices post mortem. Sub-cellular spatial resolution, lost in the third dimension as a result of sectioning, is obtained using magnetic resonance microscopy and micro computed tomography. We demonstrate that for human cerebellum grating-based X-ray phase tomography shows complementary contrast to magnetic resonance microscopy and histology. In this study, the contrast-to-noise values of magnetic resonance microscopy and phase tomography were comparable whereas the spatial resolution in phase tomography is an order of magnitude better. The registered data with their complementary information permit the distinct segmentation of tissues within the human cerebellum.

  12. Long life electrodes for large-area x-ray generators

    NASA Technical Reports Server (NTRS)

    Rothe, Dietmar E. (Inventor)

    1991-01-01

    This invention is directed to rugged, reliable, and long-life electrodes for use in large-area, high-current-density electron gun and x-ray generators which are employed as contamination-free preionizers for high-energy pulsed gas lasers. The electron source at the cathode is a corona plasma formed at the interface between a conductor, or semiconductor, and a high-permittivity dielectric. Detailed descriptions are provided of a reliable cold plasma cathode, as well as an efficient liquid-cooled electron beam target (anode) and x-ray generator which concentrates the x-ray flux in the direction of an x-ray window.

  13. Quantitative Measurements of X-ray Intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J., Schneider, M.

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials thatmore » are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.« less

  14. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  15. A room temperature operating cryogenic cell for in vivo monitoring of dry snow metamorphism by X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Flin, F.; Lesaffre, B.; Dufour, A.; Roulle, J.; Puglièse, P.; Philip, A.; Lahoucine, F.; Rolland du Roscoat, S.; Geindreau, C.

    2013-12-01

    Three-dimensional (3D) images of snow offer the possibility of studying snow metamorphism at the grain scale by analysing the time evolution of its complex microstructure. Such images are also particularly useful for providing physical effective properties of snow arising in macroscopic models. In the last 15 years, several experiments have been developed in order to get 3D images of snow by X-ray microtomography. Up to now, two different approaches have been used: a static and an in vivo approach. The static method consists in imaging a snow sample whose structural evolution has been stopped by impregnation and/or very cold temperature conditions. The sample is placed in a cryogenic cell that can operate at the ambient temperature of the tomograph room (e.g. Brzoska et al., 1999, Coléou et al., 2001). The in vivo technique uses a non impregnated sample which continues to undergo structural evolutions and is put in a cell that controls the temperature conditions at the boundaries of the sample. This kind of cell requires a cold environnement and the whole tomographic acquisition process takes place in a cold room (e.g. Schneebeli and Sokratov, 2004, Pinzer and Schneebeli, 2009). The 2nd approach has the major advantage to provide the time evolution of the microstructure of a same snow sample but requires a dedicated cold-room tomographic scanner, whereas the static method can be used with any tomographic scanner operating at ambient conditions. We developed a new in vivo cryogenic cell which benefits from the advantages of each of the above methods: it (1) allows to follow the evolution of the same sample with time and (2) is usable with a wide panel of tomographic scanners provided with large cabin sizes, which has many advantages in terms of speed, resolution, and availability of new technologies. The thermal insulation between the snow sample and the outside is ensured by a double wall vacuum system of thermal conductivity of about 0.0015 Wm-1K-1. An air

  16. Software/hardware optimization for attenuation-based microtomography using SR at PETRA III (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beckmann, Felix

    2016-10-01

    The Helmholtz-Zentrum Geesthacht, Germany, is operating the user experiments for microtomography at the beamlines P05 and P07 using synchrotron radiation produced in the storage ring PETRA III at DESY, Hamburg, Germany. In recent years the software pipeline, sample changing hardware for performing high throughput experiments were developed. In this talk the current status of the beamlines will be given. Furthermore, optimisation and automatisation of scanning techniques, will be presented. These are required to scan samples which are larger than the field of view defined by the X-ray beam. The integration into an optimized reconstruction pipeline will be shown.

  17. Hard X-ray submicrometer tomography of human brain tissue at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Khimchenko, A.; Bikis, C.; Schulz, G.; Zdora, M.-C.; Zanette, I.; Vila-Comamala, J.; Schweighauser, G.; Hench, J.; Hieber, S. E.; Deyhle, H.; Thalmann, P.; Müller, B.

    2017-06-01

    There is a lack of the necessary methodology for three-dimensional (3D) investigation of soft tissues with cellular resolution without staining or tissue transformation. Synchrotron radiation based hard X-ray in-line phase contrast tomography using single-distance phase reconstruction (SDPR) provides high spatial resolution and density contrast for the visualization of individual cells using a standard specimen preparation and data reconstruction. In this study, we demonstrate the 3D characterization of a formalin-fixed paraffin-embedded (FFPE) human cerebellum specimen by SDPR at the Diamond-Manchester Imaging Branchline I13-2 (Diamond Light Source, UK) at pixel sizes down to 0.45 μm. The approach enables visualization of cerebellar layers (Stratum moleculare and Stratum granulosum), the 3D characterization of individual cells (Purkinje, stellate and granule cells) and can even resolve some subcellular structures (nucleus and nucleolus of Purkinje cells). The tomographic results are qualitatively compared to hematoxylin and eosin (H&E) stained histological sections. We demonstrate the potential benefits of hard X-ray microtomography for the investigations of biological tissues in comparison to conventional histology.

  18. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  19. Visualization and quantification of capillary drainage in the pore space of laminated sandstone by a porous plate method using differential imaging X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Lin, Qingyang; Bijeljic, Branko; Rieke, Holger; Blunt, Martin J.

    2017-08-01

    The experimental determination of capillary pressure drainage curves at the pore scale is of vital importance for the mapping of reservoir fluid distribution. To fully characterize capillary drainage in a complex pore space, we design a differential imaging-based porous plate (DIPP) method using X-ray microtomography. For an exemplar mm-scale laminated sandstone microcore with a porous plate, we quantify the displacement from resolvable macropores and subresolution micropores. Nitrogen (N2) was injected as the nonwetting phase at a constant pressure while the porous plate prevented its escape. The measured porosity and capillary pressure at the imaged saturations agree well with helium measurements and experiments on larger core samples, while providing a pore-scale explanation of the fluid distribution. We observed that the majority of the brine was displaced by N2 in macropores at low capillary pressures, followed by a further brine displacement in micropores when capillary pressure increases. Furthermore, we were able to discern that brine predominantly remained within the subresolution micropores, such as regions of fine lamination. The capillary pressure curve for pressures ranging from 0 to 1151 kPa is provided from the image analysis compares well with the conventional porous plate method for a cm-scale core but was conducted over a period of 10 days rather than up to few months with the conventional porous plate method. Overall, we demonstrate the capability of our method to provide quantitative information on two-phase saturation in heterogeneous core samples for a wide range of capillary pressures even at scales smaller than the micro-CT resolution.

  20. X-ray microtomography and laser ablation in the analysis of ink distribution in coated paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllys, M., E-mail: markko.myllys@jyu.fi; Häkkänen, H.; Korppi-Tommola, J.

    A novel method was developed for studying the ink-paper interface and the structural variations of a deposited layer of ink. Combining high-resolution x-ray tomography with laser ablation, the depth profile of ink (toner), i.e., its varying thickness, could be determined in a paper substrate. X-ray tomography was used to produce the 3D structure of paper with about 1 μm spatial resolution. Laser ablation combined with optical imaging was used to produce the 3D structure of the printed layer of ink on top of that paper with about 70 nm depth resolution. Ablation depth was calibrated with an optical profilometer. It can bemore » concluded that a toner layer on a light-weight-coated paper substrate was strongly perturbed by protruding fibers of the base paper. Such fibers together with the surface topography of the base paper seem to be the major factors that control the leveling of toner and its penetration into a thinly coated paper substrate.« less

  1. Synchrotron radiation X-ray microtomography and histomorphometry for evaluation of chemotherapy effects in trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Alessio, R.; Nogueira, L. P.; Almeida, A. P.; Colaço, M. V.; Braz, D.; Andrade, C. B. V.; Salata, C.; Ferreira-Machado, S. C.; de Almeida, C. E.; Tromba, G.; Barroso, R. C.

    2014-04-01

    Three-dimensional microtomography has the potential to examine complete bones of small laboratory animals with very high resolution in a non-invasive way. One of the side effects caused by some chemotherapy drugs is the induction of amenorrhea, temporary or not, in premenopausal women, with a consequent decrease in estrogen production, which can lead to bone changes. In the present work, the femur heads of rats treated with chemotherapy drugs were evaluated by 3D histomorphometry using synchrotron radiation microcomputed tomography. Control animals were also evaluated for comparison. The 3D tomographic images were obtained at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline at the Elettra Synchrotron Laboratory in Trieste, Italy. Results showed significant differences in morphometric parameters measured from the 3D images of femur heads of rats in both analyzed groups.

  2. Characterization of transport phenomena in porous transport layers using X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Hasanpour, S.; Hoorfar, M.; Phillion, A. B.

    2017-06-01

    Among different methods available for estimating the transport properties of porous transport layers (PTLs) of polymer electrolyte membrane fuel cells, X-ray micro computed tomography (X-μCT) imaging in combination with image-based numerical simulation has been recognized as a viable tool. In this study, four commercially-available single-layer and dual-layer PTLs are analyzed using this method in order to compare and contrast transport properties between different PTLs, as well as the variability within a single sheet. Complete transport property datasets are created for each PTL. The simulation predictions indicate that PTLs with high porosity show considerable variability in permeability and effective diffusivity, while PTLs with low porosity do not. Furthermore, it is seen that the Tomadakis-Sotirchos (TS) analytical expressions for porous media match the image-based simulations when porosity is relatively low but predict higher permeability and effective diffusivity for porosity values greater than 80%. Finally, the simulations show that cracks within MPL of dual-layer PTLs have a significant effect on the overall permeability and effective diffusivity of the PTLs. This must be considered when estimating the transport properties of dual-layer PTLs. These findings can be used to improve macro-scale models of product and reactant transport within fuel cells, and ultimately, fuel cell efficiency.

  3. About a method for compressing x-ray computed microtomography data

    NASA Astrophysics Data System (ADS)

    Mancini, Lucia; Kourousias, George; Billè, Fulvio; De Carlo, Francesco; Fidler, Aleš

    2018-04-01

    The management of scientific data is of high importance especially for experimental techniques that produce big data volumes. Such a technique is x-ray computed tomography (CT) and its community has introduced advanced data formats which allow for better management of experimental data. Rather than the organization of the data and the associated meta-data, the main topic on this work is data compression and its applicability to experimental data collected from a synchrotron-based CT beamline at the Elettra-Sincrotrone Trieste facility (Italy) and studies images acquired from various types of samples. This study covers parallel beam geometry, but it could be easily extended to a cone-beam one. The reconstruction workflow used is the one currently in operation at the beamline. Contrary to standard image compression studies, this manuscript proposes a systematic framework and workflow for the critical examination of different compression techniques and does so by applying it to experimental data. Beyond the methodology framework, this study presents and examines the use of JPEG-XR in combination with HDF5 and TIFF formats providing insights and strategies on data compression and image quality issues that can be used and implemented at other synchrotron facilities and laboratory systems. In conclusion, projection data compression using JPEG-XR appears as a promising, efficient method to reduce data file size and thus to facilitate data handling and image reconstruction.

  4. Recent advances in quantitative analysis of fluid interfaces in multiphase fluid flow measured by synchrotron-based x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Schlueter, S.; Sheppard, A.; Wildenschild, D.

    2013-12-01

    Imaging of fluid interfaces in three-dimensional porous media via x-ray microtomography is an efficient means to test thermodynamically derived predictions on the relationship between capillary pressure, fluid saturation and specific interfacial area (Pc-Sw-Anw) in partially saturated porous media. Various experimental studies exist to date that validate the uniqueness of the Pc-Sw-Anw relationship under static conditions and with current technological progress direct imaging of moving interfaces under dynamic conditions is also becoming available. Image acquisition and subsequent image processing currently involves many steps each prone to operator bias, like merging different scans of the same sample obtained at different beam energies into a single image or the generation of isosurfaces from the segmented multiphase image on which the interface properties are usually calculated. We demonstrate that with recent advancements in (i) image enhancement methods, (ii) multiphase segmentation methods and (iii) methods of structural analysis we can considerably decrease the time and cost of image acquisition and the uncertainty associated with the measurement of interfacial properties. In particular, we highlight three notorious problems in multiphase image processing and provide efficient solutions for each: (i) Due to noise, partial volume effects, and imbalanced volume fractions, automated histogram-based threshold detection methods frequently fail. However, these impairments can be mitigated with modern denoising methods, special treatment of gray value edges and adaptive histogram equilization, such that most of the standard methods for threshold detection (Otsu, fuzzy c-means, minimum error, maximum entropy) coincide at the same set of values. (ii) Partial volume effects due to blur may produce apparent water films around solid surfaces that alter the specific fluid-fluid interfacial area (Anw) considerably. In a synthetic test image some local segmentation methods

  5. High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue

    NASA Astrophysics Data System (ADS)

    McDonald, S. A.; Marone, F.; Hintermüller, C.; Bensadoun, J.-C.; Aebischer, P.; Stampanoni, M.

    2009-09-01

    The use of conventional absorption based X-ray microtomography can become limited for samples showing only very weak absorption contrast. However, a wide range of samples studied in biology and materials science can produce significant phase shifts of the X-ray beam, and thus the use of the phase signal can provide substantially increased contrast and therefore new and otherwise inaccessible information. The application of two approaches for high-throughput, high-resolution X-ray phase contrast tomography, both available on the TOMCAT beamline of the SLS, is illustrated. Differential Phase Contrast (DPC) imaging uses a grating interferometer and a phase-stepping technique. It has been integrated into the beamline environment on TOMCAT in terms of the fast acquisition and reconstruction of data and the availability to scan samples within an aqueous environment. The second phase contrast approach is a modified transfer of intensity approach that can yield the 3D distribution of the phase (refractive index) of a weakly absorbing object from a single tomographic dataset. These methods are being used for the evaluation of cell integrity in 3D, with the specific aim of following and analyzing progressive cell degeneration to increase knowledge of the mechanistic events of neurodegenerative disorders such as Parkinson's disease.

  6. The Cambrian Evolutionary Explosion: Novel Evidence from Fossils Studied by X-ray Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jun-Yuan

    The Cambrian explosion (from 542 million years to 488 million years ago) is one of the greatest mysteries in evolutionary biology. It wasn't until this period that complex organisms became common and diverse. the magnitude of the event can be understood based on the contrast between the biota and the degree of diversity of the fossils from both sides. great advances have been made in Cambrian palaeontology over the past century, especially the discovery of the well-preserved soft-bodied fauna from the Middle Cambrian Burgess Shale and the Lower Cambrian Maotianshan Shale deposits. The Cambrian side of the "Cambrian explosion" ismore » richly illustrated and contrasts greatly with the Precambrian side. The study of these extraordinarily preserved fossil biota is extremely difficult. A major challenge is 3-D reconstruction and determining the patter of the cell organization in Weng'an embryos and their buried structures in Maotianshan Shale fossils. This talk will show that two recent technological approaches, propagation phase contrast synchrotron x-ray microtomography and microtomography, provide unique analytical tools that permit the nondestructive computational examination and visualization of the internal and buried characters in virtual sections in any plane, and virtual 3-D depictions of internal structures.« less

  7. Evaluation of sample holders designed for long-lasting X-ray micro-tomographic scans of ex-vivo soft tissue samples

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Zemlicka, J.; Krejci, F.; Karch, J.; Patzelt, M.; Zach, P.; Sykora, V.; Mrzilkova, J.

    2016-03-01

    X-ray microradiography and microtomography are imaging techniques with increasing applicability in the field of biomedical and preclinical research. Application of hybrid pixel detector Timepix enables to obtain very high contrast of low attenuating materials such as soft biological tissue. However X-ray imaging of ex-vivo soft tissue samples is a difficult task due to its structural instability. Ex-vivo biological tissue is prone to fast drying-out which is connected with undesired changes of sample size and shape producing later on artefacts within the tomographic reconstruction. In this work we present the optimization of our Timepix equipped micro-CT system aiming to maintain soft tissue sample in stable condition. Thanks to the suggested approach higher contrast of tomographic reconstructions can be achieved while also large samples that require detector scanning can be easily measured.

  8. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the differentmore » selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with

  9. Planetesimal core formation with partial silicate melting using in-situ high P, high T, deformation x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Anzures, B. A.; Watson, H. C.; Yu, T.; Wang, Y.

    2017-12-01

    Differentiation is a defining moment in formation of terrestrial planets and asteroids. Smaller planetesimals likely didn't reach high enough temperatures for widescale melting. However, we infer that core formation must have occurred within a few million years from Hf-W dating. In lieu of a global magma ocean, planetesimals likely formed through inefficient percolation. Here, we used in-situ high temperature, high pressure, x-ray microtomography to track the 3-D evolution of the sample at mantle conditions as it underwent shear deformation. Lattice-Boltzmann simulations for permeability were used to characterize the efficiency of melt percolation. Mixtures of KLB1 peridotite plus 6.0 to 12.0 vol% FeS were pre-sintered to achieve an initial equilibrium microstructure, and then imaged through several consecutive cycles of heating and deformation. The maximum calculated melt segregation velocity was found to be 0.37 cm/yr for 6 vol.% FeS and 0.61 cm/year for 12 vol.% FeS, both below the minimum velocity of 3.3 cm/year required for a 100km planetesimal to fully differentiate within 3 million years. However, permeability is also a function of grain size and thus the samples having smaller grains than predicted for small planetesimals could have contributed to low permeability and also low migration velocity. The two-phase (sulfide melt and silicate melt) flow at higher melt fractions (6 vol.% and 12 vol.% FeS) was an extension of a similar study1 containing only sulfide melt at lower melt fraction (4.5 vol.% FeS). Contrary to the previous study, deformation did result in increased permeability until the sample was sheared by twisting the opposing Drickamer anvils by 360 degrees. Also, the presence of silicate melt caused the FeS melt to coalesce into less connected pathways as the experiment with 6 vol.% FeS was found to be less permeable than the one with 4.5 vol.% FeS but without any partial melt. The preliminary data from this study suggests that impacts as well as

  10. On the possibilities of polychromatic synchrotron radiation microtomography for visualization of internal structures of Rhodnius prolixus

    NASA Astrophysics Data System (ADS)

    Sena, G.; Almeida, A. P.; Braz, D.; Nogueira, L. P.; Soares, J.; Azambuja, P.; Gonzalez, M. S.; Tromba, G.; Barroso, R. C.

    2015-10-01

    The recent years advancements in microtomography have increased the achievable resolution and contrast, making this relatively inexpensive and a widely available technology, potentially useful for studies of insect's internal morphology. Phase Contrast X-Ray Synchrotron Microtomography (SR-PhC-μCT) is a non-destructive technique that allows the microanatomical investigations of Rhodnius prolixus, one of the most important insect vectors of Trypanosoma cruzi, the etiologic agent of Chagas' disease. In Latin America, vector control is the most useful method to prevent Chagas' disease, and a detailed knowledge of R. prolixus' interior structures is crucial for a better understanding of their function and evolution. Traditionally, in both biological morphology and anatomy, the internal structures of whole organisms or parts of them are accessed by dissecting or histological serial sectioning; so studying the internal structures of R. prolixus' head using SR-PhC-μCT is of great importance in researches on vector control. In this work, volume-rendered SR-PhC-μCT images of the heads of selected R. prolixus were obtained using the new set-up available at the SYRMEP beamline of ELETTRA (Trieste, Italy). In this new set-up, the outcoming beam from the ring is restrained before the monochromator and in a devoted end-station, absorption and phase contrast radiography and tomography set-up are available. The images obtained with polychromatic X-ray beam in phase contrast regimen and 2 μm resolution, showed details and organs of R. prolixus never seen before with SR-PhC-μCT.

  11. Propagation-based phase-contrast x-ray tomography of cochlea using a compact synchrotron source.

    PubMed

    Töpperwien, Mareike; Gradl, Regine; Keppeler, Daniel; Vassholz, Malte; Meyer, Alexander; Hessler, Roland; Achterhold, Klaus; Gleich, Bernhard; Dierolf, Martin; Pfeiffer, Franz; Moser, Tobias; Salditt, Tim

    2018-03-21

    We demonstrate that phase retrieval and tomographic imaging at the organ level of small animals can be advantageously carried out using the monochromatic radiation emitted by a compact x-ray light source, without further optical elements apart from source and detector. This approach allows to carry out microtomography experiments which - due to the large performance gap with respect to conventional laboratory instruments - so far were usually limited to synchrotron sources. We demonstrate the potential by mapping the functional soft tissue within the guinea pig and marmoset cochlea, including in the latter case an electrical cochlear implant. We show how 3d microanatomical studies without dissection or microscopic imaging can enhance future research on cochlear implants.

  12. Spherulites growth in trachytic melts: a textural quantitative study from synchrotron X-ray microtomography and SEM data

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Giuli, Gabriele; Cicconi, Maria Rita; Voltolini, Marco; Carroll, Michael R.

    2013-04-01

    This study shows the first textural data on synthetic alkali-feldspar spherulites grown in trachytic melts during cooling and decompression experiments with water-saturated conditions. Previous textural studies have shown the shape evolution and the growth process of spherulites as a function of undercooling (T) and water content, although just in basaltic and rhyolitic melts [1-3]. Spherulites are spherical clusters of polycrystalline aggregates that occur commonly in rhyolitic melts under highly non-equilibrium conditions [3-4]. Cooling and decompression experiments have been carried out on trachytic melts in order to investigate crystallization kinetics of alkali feldspars and the implications for magma dynamics during the ascent towards the surface. Experiments have been conducted using cold seal pressure vessel apparatus at pressure range of 30 - 200 MPa, temperature of 750 - 850 °C and time of 2 - 16 hours, thereby reproducing pre- and syn-eruptive conditions of the Campi Flegrei volcanoes. This study presents quantitative data on spherulite morphologies obtained both by scanning electron microscopy (SEM) and synchrotron X-ray microtomography. Size, aspect ratio, number and crystallographic misorientation of alkali feldspar crystals will be measured. Furthermore, experiments performed at different durations could allow us to follow the growth and the evolution of spherulites. The shape of spherulites changes as a function of ΔT and experimental durations. Two kind of spherulites occured during experiments: open spherulites and close spherulites. The open spherulites are characterized by an structure with large (generally rectangular prismatic), widely spaced fibers with main axis converging towards a central nucleus, in agreement with previous observations [5-6]. Instead, the close spherulites consist of acicular and tiny fibers radially aggregated around a nucleus and single crystals are hardly distinguishable. First preliminary results show: a

  13. Effect of Tube-Based X-Ray Microtomography Imaging on the Amino Acid and Amine Content of the Murchison CM2 Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Friedrich, J. M.; Aponte, J. C.; Dworkin, J. P.; Ebel, D. S.; Elsila, J. E.; Hill, M.; McLain, H. L.; Towbin, W. H.

    2017-01-01

    X-ray and synchrotron X-ray micro-computed tomography (micro-CT) are increasingly being used for three dimensional reconnaissance imaging of chondrites and returned extraterrestrial material prior to detailed chemical and mineralogical analyses. Although micro-CT imaging is generally considered to be a non-destructive technique since silicate and metallic minerals in chondrites are not affected by X-ray exposures at the intensities and wavelengths typically used, there are concerns that the use of micro-CT could be detrimental to the organics in carbonaceous chondrites. We recently conducted a synchrotron micro-CT experiment on a powdered sample of the Murchison CM2 carbonaceous chondrite exposed to a monochromatic high energy (approximately 48 kiloelectronvolts) total X-ray radiation dose of approximately 1 kilogray (kGy) using the Advanced Photon Source beamline 13-BMD (13-Bending Magnet-D Beamline) at Argonne National Laboratory and found that there were no detectable changes in the amino acid abundances or enantiomeric compositions in the chondrite after exposure relative to a Murchison control sample that was not exposed. However, lower energy bremsstrahlung X-rays could interact more with amino acids and other lower molecular weight amines in meteorites. To test for this possibility, three separate micro-CT imaging experiments of the Murchison meteorite using the GE Phoenix v/tome/x s 240 kilovolt microfocus high resolution tungsten target X-ray tube instrument at the American Museum of Natural History (AMNH) were conducted and the amino acid abundances and enantiomeric compositions were determined. We also investigated the abundances of the C1-C5 amines in Murchison which were not analyzed in the first study.

  14. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the Decadal Review, including missions with science that over-laps with that of IXO and ATHENA, as well as other missions addressing science topics beyond those of IXO and ATHENA. An X-ray Surveyor mission was recently endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible realization of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been working on these developments for the past several years.

  15. X-ray phase-contrast imaging: the quantum perspective

    NASA Astrophysics Data System (ADS)

    Slowik, J. M.; Santra, R.

    2013-08-01

    Time-resolved phase-contrast imaging using ultrafast x-ray sources is an emerging method to investigate ultrafast dynamical processes in matter. Schemes to generate attosecond x-ray pulses have been proposed, bringing electronic timescales into reach and emphasizing the demand for a quantum description. In this paper, we present a method to describe propagation-based x-ray phase-contrast imaging in nonrelativistic quantum electrodynamics. We explain why the standard scattering treatment via Fermi’s golden rule cannot be applied. Instead, the quantum electrodynamical treatment of phase-contrast imaging must be based on a different approach. It turns out that it is essential to select a suitable observable. Here, we choose the quantum-mechanical Poynting operator. We determine the expectation value of our observable and demonstrate that the leading order term describes phase-contrast imaging. It recovers the classical expression of phase-contrast imaging. Thus, it makes the instantaneous electron density of non-stationary electronic states accessible to time-resolved imaging. Interestingly, inelastic (Compton) scattering does automatically not contribute in leading order, explaining the success of the semiclassical description.

  16. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  17. Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Pottschmidt, Katja

    2008-01-01

    Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the

  18. Quantitative analysis of packed and compacted granular systems by x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Fu, Xiaowei; Milroy, Georgina E.; Dutt, Meenakshi; Bentham, A. Craig; Hancock, Bruno C.; Elliott, James A.

    2005-04-01

    The packing and compaction of powders are general processes in pharmaceutical, food, ceramic and powder metallurgy industries. Understanding how particles pack in a confined space and how powders behave during compaction is crucial for producing high quality products. This paper outlines a new technique, based on modern desktop X-ray tomography and image processing, to quantitatively investigate the packing of particles in the process of powder compaction and provide great insights on how powder densify during powder compaction, which relate in terms of materials properties and processing conditions to tablet manufacture by compaction. A variety of powder systems were considered, which include glass, sugar, NaCl, with a typical particle size of 200-300 mm and binary mixtures of NaCl-Glass Spheres. The results are new and have been validated by SEM observation and numerical simulations using discrete element methods (DEM). The research demonstrates that XMT technique has the potential in further investigating of pharmaceutical processing and even verifying other physical models on complex packing.

  19. Synchrotron x-ray high energy PDF and tomography studies for gallium melts under high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.; Li, R.; Li, L.

    2015-12-01

    Liquid gallium exhibits unusual and unique physical properties. A rich polymorphism and metastable modifications of solid Ga have been discovered and a number of studies of liquid gallium under high pressure conditions were reported. However, some fundamental properties, such as the equation of state (EoS) of Ga melt under extreme conditions remain unclear. To compare to the previous reports, we performed the pair distribution function (PDF) study using diamond anvil cell, in which synchrotron high-energy x-ray total scattering data, combined with reverse Monte Carlo simulation, was used to study the microstructure and EoS of liquid gallium under high pressure at room temperature conditions. The EoS of Ga melt, which was measured from synchrotron x-ray tomography method at room temperature, was used to avoid the potential relatively big errors for the density estimation from the reverse Monte Carlo simulation with the mathematical fit to the measured structure factor data. The volume change of liquid gallium have been studied as a function of pressure and temperature up to 5 GPa at 370 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction (EDXRD) techniques using Drickamer press. The directly measured P-V-T curves were obtained from 3D tomography reconstruction data. The existence of possible liquid-liquid phase transition regions is proposed based on the abnormal compressibility and local structure change in Ga melts.

  20. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  1. Ultra-fast LuI{sub 3}:Ce scintillators for hard x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marton, Zsolt, E-mail: zmarton@rmdinc.com; Miller, Stuart R.; Ovechkina, Elena

    We have developed ultra-fast cerium-coped lutetium-iodide (LuI{sub 3}:Ce) films thermally evaporated as polycrystalline, structured scintillator using hot wall epitaxy (HWE) method. The films have shown a 13 ns decay compared to the 28 ns reported for crystals. The fast speed coupled with its high density (∼5.6 g/cm{sup 3}), high effective atomic number (59.7), and the fact that it can be vapor deposited in a columnar form makes LuI{sub 3}:Ce an attractive candidate for high frame rate, high-resolution, hard X-ray imaging. In crystal form, LuI{sub 3}:Ce has demonstrated bright (>100,000 photons/MeV) green (540 nm) emission, which is well matched to commercialmore » CCD/CMOS sensors and is critical for maintaining high signal to noise ratio in light starved applications. Here, we report on the scintillation properties of films and those for corresponding crystalline material. The vapor grown films were integrated into a high-speed CMOS imager to demonstrate high-speed radiography capability. The films were also tested at Advanced Photon Source, Argonne National Laboratory beamline 1-ID under hard X-ray irradiation. The data show a factor of four higher efficiency than the reference LuAG:Ce scintillators, high image quality, and linearity of scintillation response over a wide energy range. The films were employed to perform hard X-ray microtomography, the results of which will also be discussed.« less

  2. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography.

    PubMed

    Boone, Marijn A; Nielsen, Peter; De Kock, Tim; Boone, Matthieu N; Quaghebeur, Mieke; Cnudde, Veerle

    2014-01-01

    Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material.

  3. Analytical dual-energy microtomography: A new method for obtaining three-dimensional mineral phase images and its application to Hayabusa samples

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, A.; Nakano, T.; Uesugi, K.; Uesugi, M.; Takeuchi, A.; Suzuki, Y.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; Imai, Y.; Nakamura, T.; Ogami, T.; Noguchi, T.; Abe, M.; Yada, T.; Fujimura, A.

    2013-09-01

    We developed a novel technique called "analytical dual-energy microtomography" that uses the linear attenuation coefficients (LACs) of minerals at two different X-ray energies to nondestructively obtain three-dimensional (3D) images of mineral distribution in materials such as rock specimens. The two energies are above and below the absorption edge energy of an abundant element, which we call the "index element". The chemical compositions of minerals forming solid solution series can also be measured. The optimal size of a sample is of the order of the inverse of the LAC values at the X-ray energies used. We used synchrotron-based microtomography with an effective spatial resolution of >200 nm to apply this method to small particles (30-180 μm) collected from the surface of asteroid 25143 Itokawa by the Hayabusa mission of the Japan Aerospace Exploration Agency (JAXA). A 3D distribution of the minerals was successively obtained by imaging the samples at X-ray energies of 7 and 8 keV, using Fe as the index element (the K-absorption edge of Fe is 7.11 keV). The optimal sample size in this case is of the order of 50 μm. The chemical compositions of the minerals, including the Fe/Mg ratios of ferromagnesian minerals and the Na/Ca ratios of plagioclase, were measured. This new method is potentially applicable to other small samples such as cosmic dust, lunar regolith, cometary dust (recovered by the Stardust mission of the National Aeronautics and Space Administration [NASA]), and samples from extraterrestrial bodies (those from future sample return missions such as the JAXA Hayabusa2 mission and the NASA OSIRIS-REx mission), although limitations exist for unequilibrated samples. Further, this technique is generally suited for studying materials in multicomponent systems with multiple phases across several research fields.

  4. Ultrafast absorption of intense x rays by nitrogen molecules

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Liu, Ji-Cai; Chen, Mau Hsiung; Cryan, James P.; Fang, Li; Glownia, James M.; Hoener, Matthias; Coffee, Ryan N.; Berrah, Nora

    2012-06-01

    We devise a theoretical description for the response of nitrogen molecules (N2) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations (ΔSCF method). To describe the interaction with N2, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N2: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N_2^{2+}, and molecular fragmentation are explained.

  5. Relationship between chemical structure of soil organic matter and intra-aggregate pore structure: evidence from X-ray computed micro-tomography

    NASA Astrophysics Data System (ADS)

    Kravchenko, Alexandra; Grandy, Stuart A.

    2014-05-01

    Understanding chemical structure of soil organic matter (SOM) and factors that affect it are vital for gaining understanding of mechanisms of C sequestration by soil. Physical protection of C by adsorption to mineral particles and physical disconnection between C sources and microbial decomposers is now regarded as the key component of soil C sequestration. Both of the processes are greatly influenced by micro-scale structure and distribution of soil pores. However, because SOM chemical structure is typically studied in disturbed (ground and sieved) soil samples the experimental evidence of the relationships between soil pore structure and chemical structure of SOM are still scarce. Our study takes advantage of the X-ray computed micro-tomography (µ-CT) tools that enable non-destructive analysis of pore structure in intact soil samples. The objective of this study is to examine the relationship between SOM chemical structure and pore-characteristics in intact soil macro-aggregates from two contrasting long-term land uses. The two studied land use treatments are a conventionally tilled corn-soybean-wheat rotation treatment and a native succession vegetation treatment removed from agricultural use >20 years ago. The study is located in southwest Michigan, USA, on sandy-loam Typic Hapludalfs. For this study we used soil macro-aggregates 4-6 mm in size collected at 0-15 cm depth. The aggregate size was selected so as both to enable high resolution of µ-CT and to provide sufficient amount of soil for C measurements. X-ray µ-CT scanning was conducted at APS Argonne at a scanning resolution of 14 µm. Two scanned aggregates (1 per treatment) were used in this preliminary study. Each aggregate was cut into 7 "geo-referenced" sections. Analyses of pore characteristics in each section were conducted using 3DMA and ImageJ image analysis tools. SOM chemistry was analyzed using pyrolysis/gas chromatography-mass spectroscopy. Results demonstrated that the relationships

  6. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, Lisa A., E-mail: poyneer1@llnl.gov; Brejnholt, Nicolai F.; Hill, Randall

    2016-05-15

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  7. X-ray metrology and performance of a 45-cm long x-ray deformable mirror

    DOE PAGES

    Poyneer, Lisa A.; Brejnholt, Nicolai F.; Hill, Randall; ...

    2016-05-20

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experimentmore » at an error level of 1 μrad RMS. Lastly, direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.« less

  8. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2018-05-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  9. Characterization of metal additive manufacturing surfaces using synchrotron X-ray CT and micromechanical modeling

    NASA Astrophysics Data System (ADS)

    Kantzos, C. A.; Cunningham, R. W.; Tari, V.; Rollett, A. D.

    2017-12-01

    Characterizing complex surface topologies is necessary to understand stress concentrations created by rough surfaces, particularly those made via laser power-bed additive manufacturing (AM). Synchrotron-based X-ray microtomography (μ XCT ) of AM surfaces was shown to provide high resolution detail of surface features and near-surface porosity. Using the CT reconstructions to instantiate a micromechanical model indicated that surface notches and near-surface porosity both act as stress concentrators, while adhered powder carried little to no load. Differences in powder size distribution had no direct effect on the relevant surface features, nor on stress concentrations. Conventional measurements of surface roughness, which are highly influenced by adhered powder, are therefore unlikely to contain the information relevant to damage accumulation and crack initiation.

  10. High-resolution x-ray tomography using laboratory sources

    NASA Astrophysics Data System (ADS)

    Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing

    2006-08-01

    X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.

  11. A Non-Destructive Method for Distinguishing Reindeer Antler (Rangifer tarandus) from Red Deer Antler (Cervus elaphus) Using X-Ray Micro-Tomography Coupled with SVM Classifiers

    PubMed Central

    Lefebvre, Alexandre; Rochefort, Gael Y.; Santos, Frédéric; Le Denmat, Dominique; Salmon, Benjamin; Pétillon, Jean-Marc

    2016-01-01

    Over the last decade, biomedical 3D-imaging tools have gained widespread use in the analysis of prehistoric bone artefacts. While initial attempts to characterise the major categories used in osseous industry (i.e. bone, antler, and dentine/ivory) have been successful, the taxonomic determination of prehistoric artefacts remains to be investigated. The distinction between reindeer and red deer antler can be challenging, particularly in cases of anthropic and/or taphonomic modifications. In addition to the range of destructive physicochemical identification methods available (mass spectrometry, isotopic ratio, and DNA analysis), X-ray micro-tomography (micro-CT) provides convincing non-destructive 3D images and analyses. This paper presents the experimental protocol (sample scans, image processing, and statistical analysis) we have developed in order to identify modern and archaeological antler collections (from Isturitz, France). This original method is based on bone microstructure analysis combined with advanced statistical support vector machine (SVM) classifiers. A combination of six microarchitecture biomarkers (bone volume fraction, trabecular number, trabecular separation, trabecular thickness, trabecular bone pattern factor, and structure model index) were screened using micro-CT in order to characterise internal alveolar structure. Overall, reindeer alveoli presented a tighter mesh than red deer alveoli, and statistical analysis allowed us to distinguish archaeological antler by species with an accuracy of 96%, regardless of anatomical location on the antler. In conclusion, micro-CT combined with SVM classifiers proves to be a promising additional non-destructive method for antler identification, suitable for archaeological artefacts whose degree of human modification and cultural heritage or scientific value has previously made it impossible (tools, ornaments, etc.). PMID:26901355

  12. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  13. Laser x-ray Conversion and Electron Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Wang, Guang-yu; Chang, Tie-qiang

    2001-02-01

    The influence of electron thermal conductivity on the laser x-ray conversion in the coupling of 3ωo laser with Au plane target has been investigated by using a non-LTE radiation hydrodynamic code. The non-local electron thermal conductivity is introduced and compared with the other two kinds of the flux-limited Spitzer-Härm description. The results show that the non-local thermal conductivity causes the increase of the laser x-ray conversion efficiency and important changes of the plasma state and coupling feature.

  14. The MIT OSO-7 X-ray experiment. A five color survey of the positions and time variations of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Taylor, R. S.; Clark, G. W.

    1971-01-01

    The all-sky, X-ray measurements are made in five broad energy bands from 0.5 to 60 keV with X-ray collimators of one and three degree FWHM response. Working with the onboard star sensor source locations may be determined to a precision of plus or minus 0.1 deg. The experiment is located in wheel compartment number three of the spacecraft. A time division logic system divides each wheel rotation into 256 data bins in each of which X-ray counts are accumulated over a 190 second interval. Measurement chain circuits include provision for both geometric and risetime anticoincidence. A detailed description of the instrument is included as is pertinent operating information.

  15. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  16. Lab-X-ray multidimensional imaging of processes inside porous media

    NASA Astrophysics Data System (ADS)

    Godinho, Jose

    2017-04-01

    Time-lapse and other multidimensional X-ray imaging techniques have mostly been applied using synchrotron radiation, which limits accessibility and complicates data analysis. Here, we present new time-lapse imaging approaches using laboratory X-ray computed microtomography (CT) to study transformations inside porous media. Specifically, three methods will be presented: 1) Quantitative time-lapse radiography to study sub-second processes. For example to study the penetration of particles into fractures and pores, which is essential to understand how proppants keep fractures opened during hydraulic fracturing and how filter cakes form during borehole drilling. 2) Combination of time-lapse CT with diffraction tomography to study the transformation between bio-inspired polymorphs in 6D, e.g. mineral phase transformation between ACC, Vaterite and Calcite - CaCO3, and between ACS, Anhydrite and Gypsum - CaSO4. Crystals can be resolved in nanopores down to 7 nm (over 100 times smaller than the resolution of CT), which allows studying the effect of confinement on phase stability and growth rates. 3) Fast iterative helical micro-CT scanning to study samples of high ratio height to width (e.g. long cores) with optimal resolution. Here we show how this can be useful to study the distribution of the products from fluid-mediated mineral reactions throughout longer reaction paths and more representative volumes. Using state of the art reconstruction algorithms allows reducing the scanning times from over ten hours to below two hours enabling time-lapse studies. It is expected that these new techniques will open new possibilities for time-lapse imaging of a wider range of geological processes using laboratory X-ray CT, thereby increasing the accessibility of multidimensional imaging to a larger number of users and applications in geology.

  17. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  18. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  19. Removing ring artefacts from synchrotron radiation-based hard x-ray tomography data

    NASA Astrophysics Data System (ADS)

    Thalmann, Peter; Bikis, Christos; Schulz, Georg; Paleo, Pierre; Mirone, Alessandro; Rack, Alexander; Siegrist, Stefan; Cörek, Emre; Huwyler, Jörg; Müller, Bert

    2017-09-01

    In hard X-ray microtomography, ring artefacts regularly originate from incorrectly functioning pixel elements on the detector or from particles and scratches on the scintillator. We show that due to the high sensitivity of contemporary beamline setups further causes inducing inhomogeneities in the impinging wavefronts have to be considered. We propose in this study a method to correct the thereby induced failure of simple flatfield approaches. The main steps of the pipeline are (i) registration of the reference images with the radiographs (projections), (ii) integration of the flat-field corrected projection over the acquisition angle, (iii) high-pass filtering of the integrated projection, (iv) subtraction of filtered data from the flat-field corrected projections. The performance of the protocol is tested on data sets acquired at the beamline ID19 at ESRF using single distance phase tomography.

  20. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  1. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.

  2. Linking Intra-Aggregate Pore Size Distribution with Organic Matter Decomposition Status, Evidence from FTIR and X-Ray Tomography

    NASA Astrophysics Data System (ADS)

    Toosi, E. R.; Quigley, M.; Kravchenko, A. N.

    2014-12-01

    It has been reported that conversion of intensively cultivated lands to less disturbed systems enhances soil OM storage capacity, primarily through OM stabilization in macroaggregates. We hypothesized that the potential for OM stabilization inside macro-aggregates is influenced by presence and abundance of intra-aggregate pores. Pores determine microbial access to OM and regulate diffusion of solution/gases within aggregates which drives microbial functioning. We investigated the influence of longterm disturbance intensity on soil OM composition and its relation to pore size distribution within macroaggregates. We used quantitative FTIR to determine OM decomposition status and X-ray micro-tomography to assess pore size distribution in macroaggregates as affected by management and landuse. Macroaggregates 4-6 mm in size where selected from topsoil under long term conventional tillage (CT), cover-crop (CC), and native succession vegetation (NS) treatments at Kellogg Biological Station, Michigan. Comparison of main soil OM functional groups suggested that with increasing disturbance intensity, the proportion of aromatic and carboxylic/carbohydrates associated compounds increased and it was concomitant with a decrease in the proportion of aliphatic associated compounds and lignin derivatives. Further, FTIR-based decomposition indices revealed that overall decomposition status of macroaggregates followed the pattern of CT > CC ≈ NS. X-ray micro-tomography findings suggested that greater OM decomposition within the macroaggregates was associated with i) greater percent of pores >13 micron in size within the aggregates, as well as ii) greater proportion of small to medium pores (13-110 micron). The results develop previous findings, suggesting that shift in landuse or management indirectly affects soil OM stabilization through alteration of pore size distribution within macroaggregates that itself, is coupled with OM decomposition status.

  3. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  4. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  5. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  6. Revision and Microtomography of the Pheidole knowlesi Group, an Endemic Ant Radiation in Fiji (Hymenoptera, Formicidae, Myrmicinae)Myrmicinae).

    PubMed

    Fischer, Georg; Sarnat, Eli M; Economo, Evan P

    2016-01-01

    The Fijian islands, a remote archipelago in the southwestern Pacific, are home to a number of spectacular endemic radiations of plants and animals. Unlike most Pacific archipelagos, these evolutionary radiations extend to social insects, including ants. One of the most dramatic examples of ant radiation in Fiji has occurred in the hyperdiverse genus Pheidole. Most of the 17 native Fijian Pheidole belong to one of two species groups that descended from a single colonization, yet have evolved dramatically contrasting morphologies: the spinescent P. roosevelti species group, and the more morphologically conservative P. knowlesi species group. Here we revise the knowlesi group, in light of recent phylogenetic results, and enhanced with modern methods of X-ray microtomography. We recognize six species belonging to this group, including two of which we describe as new: Pheidole caldwelli Mann, Pheidole kava sp. n., Pheidole knowlesi Mann, P. ululevu sp. n., P. vatu Mann, and P. wilsoni Mann. Detailed measurements and descriptions, identification keys, and high-resolution images for queens, major and minor workers are provided. In addition, we include highly detailed 3D surface reconstructions for all available castes.

  7. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  8. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  9. Three applications of backscatter x-ray imaging technology to homeland defense

    NASA Astrophysics Data System (ADS)

    Chalmers, Alex

    2005-05-01

    A brief review of backscatter x-ray imaging and a description of three systems currently applying it to homeland defense missions (BodySearch, ZBV and ZBP). These missions include detection of concealed weapons, explosives and contraband on personnel, in vehicles and large cargo containers. An overview of the x-ray imaging subsystems is provided as well as sample images from each system. Key features such as x-ray safety, throughput and detection are discussed. Recent trends in operational modes are described that facilitate 100% inspection at high throughput chokepoints.

  10. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  11. Three Dimensional Structures of Particles Recovered from the Asteroid Itokawa by the Hayabusa Mission and a Role of X-Ray Microtomography in the Preliminary Examination

    NASA Technical Reports Server (NTRS)

    Tsuchiyama, A.; Uesugi, M.; Uesugi, K.; Nakano, T.; Nakamura, T.; Noguchi, T.; Noguchi, R.; Matsumoto, T.; Matsuno, J.; Nagano, T.; hide

    2011-01-01

    Particles of regolith on S-type Asteroid 25143 Itokawa were successfully recovered by the Hayabusa mission of JAXA (Japan Aerospace Exploration Agency). Near-infrared spectral study of Itokawa s surface indicates that these particles are materials similar to LL5 or LL6 chondrites. High-resolution images of Itokawa's surface suggest that they may be breccias and some impact products. At least more than 1500 particles were identified as Itokawa origin at curation facility of JAXA. Preliminary analysis with SEM/EDX at the curation facility shows that they are roughly similar to LL chondrites. Although most of them are less than 10 micron in size, some larger particles of about 100 micron or larger were also identified. A part of the sample (probably several tens particles) will be selected by Hayabusa sample curation team, and sequential examination will start from January 2011 by Hayabusa Asteroidal Sample Preliminary Examination Team (HASPET). In mainstream of the analytical flow, each particle will be examined by microtomography, XRD and XRF first as nondestructive analyses, and then the particle will be cut by an ultra-microtome and examined by TEM, SEM, EPMA, SIMS, PEEM/XANES, and TOF-SIMS sequentially. Three-dimensional structures of Itokawa particles will be obtained by microtomography sub-team of HASPET. The results together with XRD and XRF will be used for design of later destructive analyses, such as determination of cutting direction and depth, to obtain as much information as possible from small particles. Scientific results and a role of the microtomography in the preliminary examination will be presented.

  12. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  13. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  14. A Dedicated Micro-Tomography Beamline For The Australian Synchrotron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Sheridan C.; Stevenson, Andrew W.; Wilkins, Stephen W.

    2010-07-23

    A dedicated micro-tomography beamline is proposed for the Australian Synchrotron. It will enable high-resolution micro-tomography with resolution below a micron and supporting phase-contrast imaging modes. A key feature of the beamline will be high-throughput/high-speed operation enabling near real-time micro-tomography.

  15. Directional x-ray dark-field imaging of strongly ordered systems

    NASA Astrophysics Data System (ADS)

    Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz

    2010-12-01

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  16. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  17. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  18. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  19. A New High-sensitivity solar X-ray Spectrophotometer SphinX:early operations and databases

    NASA Astrophysics Data System (ADS)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Siarkowski, Marek; Bakala, Jaroslaw; Podgorski, Piotr; Trzebinski, Witold; Plocieniak, Stefan; Kordylewski, Zbigniew; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio

    The Solar Photometer in X-rays (SphinX) is an instrument operating aboard Russian CORONAS-Photon satellite. A short description of this unique instrument will be presented and its unique capabilities discussed. SphinX is presently the most sensitive solar X-ray spectrophotometer measuring solar spectra in the energy range above 1 keV. A large archive of SphinX mea-surements has already been collected. General access to these measurements is possible. The SphinX data repositories contain lightcurves, spectra, and photon arrival time measurements. The SphinX data cover nearly continuously the period since the satellite launch on January 30, 2009 up to the end-of November 2009. Present instrument status, data formats and data access methods will be shown. An overview of possible new science coming from SphinX data analysis will be discussed.

  20. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  1. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  2. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  3. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  4. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  5. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  6. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  7. Hard x-ray phase contrastmicroscopy - techniques and applications

    NASA Astrophysics Data System (ADS)

    Holzner, Christian

    In 1918, Einstein provided the first description of the nature of the refractive index for X-rays, showing that phase contrast effects are significant. A century later, most x-ray microscopy and nearly all medical imaging remains based on absorption contrast, even though phase contrast offers orders of magnitude improvements in contrast and reduced radiation exposure at multi-keV x-ray energies. The work presented is concerned with developing practical and quantitative methods of phase contrast for x-ray microscopy. A theoretical framework for imaging in phase contrast is put forward; this is used to obtain quantitative images in a scanning microscope using a segmented detector, and to correct for artifacts in a commercial phase contrast x-ray nano-tomography system. The principle of reciprocity between scanning and full-field microscopes is then used to arrive at a novel solution: Zernike contrast in a scanning microscope. These approaches are compared on a theoretical and experimental basis in direct connection with applications using multi-keV x-ray microscopes at the Advanced Photon Source at Argonne National Laboratory. Phase contrast provides the best means to image mass and ultrastructure of light elements that mainly constitute biological matter, while stimulated x-ray fluorescence provides high sensitivity for studies of the distribution of heavier trace elements, such as metals. These approaches are combined in a complementary way to yield quantitative maps of elemental concentration from 2D images, with elements placed in their ultrastructural context. The combination of x-ray fluorescence and phase contrast poses an ideal match for routine, high resolution tomographic imaging of biological samples in the future. The presented techniques and demonstration experiments will help pave the way for this development.

  8. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  9. X-ray photoemission study of NiS2-xSex (x=0.0 1.2)

    NASA Astrophysics Data System (ADS)

    Krishnakumar, S. R.; Sarma, D. D.

    2003-10-01

    Electronic structure of NiS2-xSex system has been investigated for various compositions (x) using x-ray photoemission spectroscopy. An analysis of the core-level as well as the valence-band spectra of NiS2 in conjunction with many-body cluster calculations provides a quantitative description of the electronic structure of this compound. With increasing Se content, the on-site Coulomb correlation strength (U) does not change, while the bandwidth W of the system increases, driving the system from a covalent insulating state to a pd-metallic state.

  10. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  11. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  12. Using Synchrotron Radiation Microtomography to Investigate Multi-scale Three-dimensional Microelectronic Packages.

    PubMed

    Carlton, Holly D; Elmer, John W; Li, Yan; Pacheco, Mario; Goyal, Deepak; Parkinson, Dilworth Y; MacDowell, Alastair A

    2016-04-13

    Synchrotron radiation micro-tomography (SRµT) is a non-destructive three-dimensional (3D) imaging technique that offers high flux for fast data acquisition times with high spatial resolution. In the electronics industry there is serious interest in performing failure analysis on 3D microelectronic packages, many which contain multiple levels of high-density interconnections. Often in tomography there is a trade-off between image resolution and the volume of a sample that can be imaged. This inverse relationship limits the usefulness of conventional computed tomography (CT) systems since a microelectronic package is often large in cross sectional area 100-3,600 mm(2), but has important features on the micron scale. The micro-tomography beamline at the Advanced Light Source (ALS), in Berkeley, CA USA, has a setup which is adaptable and can be tailored to a sample's properties, i.e., density, thickness, etc., with a maximum allowable cross-section of 36 x 36 mm. This setup also has the option of being either monochromatic in the energy range ~7-43 keV or operating with maximum flux in white light mode using a polychromatic beam. Presented here are details of the experimental steps taken to image an entire 16 x 16 mm system within a package, in order to obtain 3D images of the system with a spatial resolution of 8.7 µm all within a scan time of less than 3 min. Also shown are results from packages scanned in different orientations and a sectioned package for higher resolution imaging. In contrast a conventional CT system would take hours to record data with potentially poorer resolution. Indeed, the ratio of field-of-view to throughput time is much higher when using the synchrotron radiation tomography setup. The description below of the experimental setup can be implemented and adapted for use with many other multi-materials.

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  14. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  15. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  16. Status of the eROSITA Telescope testing and calibrating the x-ray mirror assemblies

    NASA Astrophysics Data System (ADS)

    Burwitz, Vadim; Predehl, Peter; Bräuninger, Heinrich; Burkert, Wolfgang; Dennerl, Konrad; Eder, Josef; Friedrich, Peter; Fürmetz, Maria; Grisoni, Gabriele; Hartner, Gisela; Marioni, Fabio; Menz, Benedikt; Pfeffermann, Elmar; Valsecchi, Giuseppe

    2013-09-01

    The eROSITA X-ray observatory that will be launched on board the Russian Spectrum-RG mission comprises seven X-ray telescopes, each with its own mirror assembly (mirror module + X-ray baffle), electron deflector, filter wheel, and CCD camera with its control electronics. The completed flight mirror modules are undergoing many thorough X-ray tests at the PANTHER X-ray test facility after delivery, after being mated with the X-ray baffle, and again after both the vibration and thermal-vacuum tests. A description of the work done with mirror modules/assemblies and the test results obtained will be reported here. We report also on the environmental tests that have been performed on the eROSITA telescope qualification model.

  17. Cracking evolution behaviors of lightweight materials based on in situ synchrotron X-ray tomography: A review

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Wu, S. C.; Hu, Y. N.; Fu, Y. N.

    2018-03-01

    Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.

  18. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  19. Tutorial on X-ray photon counting detector characterization.

    PubMed

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  20. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  1. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  2. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  3. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  4. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  5. Optical imaging of oral pathological tissue using optical coherence tomography and synchrotron radiation computed microtomography

    NASA Astrophysics Data System (ADS)

    Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.

    2013-06-01

    The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.

  6. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  7. Strain partitioning in shales during elastic and creep deformation observed by synchrotron X-ray micro-tomography.

    NASA Astrophysics Data System (ADS)

    Sone, H.; Cheung, C.; Rivers, M. L.; Wang, Y.; Yu, T.

    2016-12-01

    Knowledge about the ductile time-dependent constitutive behavior of geological materials is essential when evaluating the long-term integrity of subsurface structures and predicting the long-term geomechanical response of the surrounding formations. To this end, it is not only important to measure the bulk time-dependent behavior but also essential to understand the microscale mechanism by which rocks exhibit time-dependence, because laboratory data needs to be extrapolated to time-scales much beyond laboratory experiments. We conducted long-term creep experiments using Green River shale samples and obtained synchrotron X-ray images during the tests in an attempt to capture the microscale strain-partitioning that occurs within the sample. Shale samples of few millimeter dimensions were stressed up to several tens of MPa by a spring-loaded device within an X-ray transparent load frame, and the load was held constant for up to several months to allow creep deformation. Tomographic images of about 5 micron resolution were reconstructed from images collected at different timings of the experiment, which allows us to investigate where and how much strain localized during elastic and creep deformation. Tracking the position of some outstanding features in the rock texture (e.g. pyrite grains, organic material patches) indicate that strain magnitudes expected from the sample elastic and relaxation modulus can be successfully recovered from the tomographic images. We also attempt to use digital volume correlation to track sub-voxel displacements and to characterize the spatial heterogeneity of the deformation.

  8. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  9. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  10. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  11. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma

    NASA Technical Reports Server (NTRS)

    Leiter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually emerge from an earlier stage at z approx = 4 in which they are the thermal X-ray sources responsible for most of the cosmic X-ray background (CXB). The conjecture is pursued that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx. 10 to the 8th power years these central black holes are spun-up to a canonical Kerr equilibrium state (A/M = 0.998; Thorne 1974) and shown how they then can lead to spectral evolution involving non-thermal emission extending to gamma rays, at the expense of reduced thermal disk radiation. That major portion of the CXB remaining after the contribution of usual AGN are considered, while a superposition of AGN sources at z 1 can account for the gamma ray background. Extensive X-ray measurements carried out with the HEAO 1 and 2 missions as well as gamma ray and optical data are shown to compare favorably with principal features of this model.

  12. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  13. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  15. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  16. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  17. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    DOE PAGES

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; ...

    2018-01-09

    Here, we measured the fluorescence photon yield of neon upon soft x-ray ionization (~1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  18. LCLS in—photon out: fluorescence measurement of neon using soft x-rays

    NASA Astrophysics Data System (ADS)

    Obaid, Razib; Buth, Christian; Dakovski, Georgi L.; Beerwerth, Randolf; Holmes, Michael; Aldrich, Jeff; Lin, Ming-Fu; Minitti, Michael; Osipov, Timur; Schlotter, William; Cederbaum, Lorenz S.; Fritzsche, Stephan; Berrah, Nora

    2018-02-01

    We measured the fluorescence photon yield of neon upon soft x-ray ionization (∼1200 eV) from the x-ray free-electron laser at Linac Coherent Light Source, and demonstrated the usage of a grazing incidence spectrometer with a variable line spacing grating to perform x-ray fluorescence spectroscopy on a gas phase system. Our measurements also allowed us to estimate the focal size of the beam from the theoretical description developed, in terms of the rate equation approximation accounting for photoionization shake off of neutral neon and double auger decay of single core holes.

  19. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  20. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  1. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  2. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  3. The donor star of the X-ray pulsar X1908+075

    NASA Astrophysics Data System (ADS)

    Martínez-Núñez, S.; Sander, A.; Gímenez-García, A.; Gónzalez-Galán, A.; Torrejón, J. M.; Gónzalez-Fernández, C.; Hamann, W.-R.

    2015-06-01

    High-mass X-ray binaries consist of a massive donor star and a compact object. While several of those systems have been well studied in X-rays, little is known for most of the donor stars as they are often heavily obscured in the optical and ultraviolet regime. There is an opportunity to observe them at infrared wavelengths, however. The goal of this study is to obtain the stellar and wind parameters of the donor star in the X1908+075 high-mass X-ray binary system with a stellar atmosphere model to check whether previous studies from X-ray observations and spectral morphology lead to a sufficient description of the donor star. We obtained H- and K-band spectra of X1908+075 and analysed them with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. For the first time, we calculated a stellar atmosphere model for the donor star, whose main parameters are: Mspec = 15 ± 6 M⊙, T∗ = 23-3+6 kK, log geff = 3.0 ± 0.2 and log L/L⊙ = 4.81 ± 0.25. The obtained parameters point towards an early B-type (B0-B3) star, probably in a supergiant phase. Moreover we determined a more accurate distance to the system of 4.85 ± 0.50 kpc than the previously reported value. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Appendix A is available in electronic form at http://www.aanda.org

  4. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  5. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  6. Tutorial on X-Ray Free-Electron Lasers

    DOE PAGES

    Carlsten, Bruce E.

    2018-05-02

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  7. Tutorial on X-Ray Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  8. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  9. OSO 8 X-ray spectra of clusters of galaxies. II - Discussion

    NASA Technical Reports Server (NTRS)

    Smith, B. W.; Mushotzky, R. F.; Serlemitsos, P. J.

    1979-01-01

    An observational description of X-ray clusters of galaxies is given based on OSO 8 X-ray results for spatially integrated spectra of 20 such clusters and various correlations obtained from these results. It is found from a correlation between temperature and velocity dispersion that the X-ray core radius should be less than the galaxy core radius or, alternatively, that the polytropic index is about 1.1 for most of the 20 clusters. Analysis of a correlation between temperature and emission integral yields evidence that more massive clusters accumulate a larger fraction of their mass as intracluster gas. Galaxy densities and optical morphology, as they correlate with X-ray properties, are reexamined for indications as to how mass injection by galaxies affects the density structure of the gas. The physical arguments used to derive iron abundances from observed equivalent widths of iron line features in X-ray spectra are critically evaluated, and the associated uncertainties in abundances derived in this manner are estimated to be quite large.

  10. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  11. Non-destructive phase contrast hard x-ray imaging to reveal the three-dimensional microstructure of soft and hard tissues

    NASA Astrophysics Data System (ADS)

    Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Hieber, Simone E.; Hasan, Samiul; Bikis, Christos; Schulz, Joachim; Costeur, Loïc.; Müller, Bert

    2016-04-01

    X-ray imaging in the absorption contrast mode is an established method of visualising calcified tissues such as bone and teeth. Physically soft tissues such as brain or muscle are often imaged using magnetic resonance imaging (MRI). However, the spatial resolution of MRI is insufficient for identifying individual biological cells within three-dimensional tissue. X-ray grating interferometry (XGI) has advantages for the investigation of soft tissues or the simultaneous three-dimensional visualisation of soft and hard tissues. Since laboratory microtomography (μCT) systems have better accessibility than tomography set-ups at synchrotron radiation facilities, a great deal of effort has been invested in optimising XGI set-ups for conventional μCT systems. In this conference proceeding, we present how a two-grating interferometer is incorporated into a commercially available nanotom m (GE Sensing and Inspection Technologies GmbH) μCT system to extend its capabilities toward phase contrast. We intend to demonstrate superior contrast in spiders (Hogna radiata (Fam. Lycosidae) and Xysticus erraticus (Fam. Thomisidae)), as well as the simultaneous visualisation of hard and soft tissues. XGI is an imaging modality that provides quantitative data, and visualisation is an important part of biomimetics; consequently, hard X-ray imaging provides a sound basis for bioinspiration, bioreplication and biomimetics and allows for the quantitative comparison of biofabricated products with their natural counterparts.

  12. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  13. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  14. Geant4 simulations of a wide-angle x-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Zhao, Donghua; Zhang, Chen; Yuan, Weimin; Zhang, Shuangnan; Willingale, Richard; Ling, Zhixing

    2017-06-01

    The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

  15. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine

  16. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  17. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  18. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  19. New approach on volatile contents determination in silicate melt inclusions: A coupling X-ray microtomography and geochemical approach in Los Humeros caldera complex (Eastern Mexican Volcanic Belt)

    NASA Astrophysics Data System (ADS)

    Creon, L.; Levresse, G.; Carrasco Nuñez, G.

    2016-12-01

    Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.

  20. Ion charge state distribution effects on elastic X-ray Thomson scattering

    NASA Astrophysics Data System (ADS)

    Iglesias, Carlos A.

    2018-03-01

    Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.

  1. The Astro-H Soft X-Ray Mirror

    NASA Technical Reports Server (NTRS)

    Robinson, David; Okajima, Takashi; Serlemitsos, Peter; Soong, Yang

    2012-01-01

    The Astro-H is led by the Japanese Space Agency (JAXA) in collaboration with many other institutions including the NASA Goddard Space Flight Center. Goddard's contributions include two soft X-ray telescopes (SXTs). The telescopes have an effective area of 562 square cm at 1 keV and 425 square cm at 6 keV with an image quality requirement of 1.7 arc-minutes half power diameter (HPD). The engineering model has demonstrated 1.1 arc-minutes HPD error. The design of the SXT is based on the successful Suzaku mission mirrors with some enhancements to improve the image quality. Two major enhancements are bonding the X-ray mirror foils to alignment bars instead of allowing the mirrors to float, and fabricating alignment bars with grooves within 5 microns of accuracy. An engineering model SXT was recently built and subjected to several tests including vibration, thermal, and X-ray performance in a beamline. Several lessons were learned during this testing that will be incorporated in the flight design. Test results and optical performance are discussed, along with a description of the design of the SXT.

  2. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  3. Event-Driven X-Ray CCD Detectors for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ricker, George R.

    2004-01-01

    A viewgraph presentation describing the Event-Driven X- Ray CCD (EDCCD) detector system for high energy astrophysics is presented. The topics include: 1) EDCCD: Description and Advantages; 2) Summary of Grant Activity Carried Out; and 3) EDCCD Test System.

  4. Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax

    NASA Astrophysics Data System (ADS)

    Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.

    2018-04-01

    We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.

  5. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  6. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  7. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  8. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  9. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  10. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  11. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  12. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...

  13. X-Ray Exam: Forearm

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: Forearm What's in this article? What ... Have Questions Print What It Is A forearm X-ray is a safe and painless test that ...

  14. X-Ray Exam: Ankle

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What ... Have Questions Print What It Is An ankle X-ray is a safe and painless test that ...

  15. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  16. X-Ray Exam: Wrist

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: Wrist What's in this article? What ... Have Questions Print What It Is A wrist X-ray is a safe and painless test that ...

  17. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  18. X-Ray Exam: Pelvis

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: Pelvis What's in this article? What ... Have Questions Print What It Is A pelvis X-ray is a safe and painless test that ...

  19. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  20. Long-Wavelength X-Ray Diffraction and Its Applications in Macromolecular Crystallography.

    PubMed

    Weiss, Manfred S

    2017-01-01

    For many years, diffraction experiments in macromolecular crystallography at X-ray wavelengths longer than that of Cu-K α (1.54 Å) have been largely underappreciated. Effects caused by increased X-ray absorption result in the fact that these experiments are more difficult than the standard diffraction experiments at short wavelengths. However, due to the also increased anomalous scattering of many biologically relevant atoms, important additional structural information can be obtained. This information, in turn, can be used for phase determination, for substructure identification, in molecular replacement approaches, as well as in structure refinement. This chapter reviews the possibilities and the difficulties associated with such experiments, and it provides a short description of two macromolecular crystallography synchrotron beam lines dedicated to long-wavelength X-ray diffraction experiments.

  1. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  2. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector

    PubMed Central

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-01-01

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation. PMID:27461900

  3. New Developments and Geoscience Applications of Synchrotron Computed Microtomography (Invited)

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.; Wang, Y.; Newville, M.; Sutton, S. R.; Yu, T.; Lanzirotti, A.

    2013-12-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution below one micron. - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element. - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa. - High speed radiography and tomography, with 100 microsecond temporal resolution. - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x-ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Studies of the evolution of the early solar system from 3-D textures in meteorites - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The location and chemical speciation of toxic

  4. Characterization of enamel caries lesions in rat molars using synchrotron X-ray microtomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Free, R. D.; DeRocher, K.; Stock, S. R.

    Dental caries is a ubiquitous infectious disease with a nearly 100% lifetime prevalence. Rodent caries models are widely used to investigate the etiology, progression and potential prevention or treatment of the disease. To explore the suitability of these models for deeper investigations of intact surface zones during enamel caries, the structures of early-stage carious lesions in rats were characterized and compared with previous reports on white spot enamel lesions in humans. Synchrotron X-ray microcomputed tomography non-destructively mapped demineralization in carious rat molar specimens across a range of caries severity, identifying 52 lesions across the 30 teeth imaged. Of these lesions,more » 13 were shown to have intact surface zones. Depth profiles of fractional mineral density were qualitatively similar to lesions in human teeth. However, the thickness of the surface zone in the rat model ranges from 10 to 58 µm, and is therefore significantly thinner than in human enamel. These results indicate that a fraction of lesions in rat caries possess an intact surface zone and are qualitatively similar to human lesions at the micrometer scale. This suggests that rat caries models may be a suitable analog through which to investigate the structure of surface zone enamel and its role during dental caries.« less

  5. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  6. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  7. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  8. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  9. Fundamentals and recent advances in X-ray micro computed tomography (microCT) applied on thermal-fluid dynamics and multiphase flows

    NASA Astrophysics Data System (ADS)

    Santini, Maurizio

    2015-11-01

    X-ray computed tomography (CT) is a well-known technique nowadays, since its first practical application by Sir. G. Hounsfield (Nobel price for medicine 1979) has continually benefited from optimising improvements, especially in medical applications. Indeed, also application of CT in various engineering research fields provides fundamental informations on a wide range of applications, considering that the technique is not destructive, allowing 3D visualization without perturbation of the analysed material. Nowadays, it is technologically possible to design and realize an equipment that achieve a micrometric resolution and even improve the sensibility in revealing differences in materials having very radiotransparency, allowing i.e. to distinguish between different fluids (with different density) or states of matter (like with two-phase flows). At the University of Bergamo, a prototype of an X-ray microCT system was developed since 2008, so being fully operative from 2012, with specific customizations for investigations in thermal-fluid dynamics and multiphase flow researches. A technical session held at the UIT International Conference in L'Aquila (Italy), at which this paper is referring, has presented some microCT fundamentals, to allow the audience to gain basics to follow the “fil-rouge” that links all the instrumentation developments, till the recent applications. Hereinafter are reported some applications currently developed at Bergamo University at the X-ray computed micro-tomography laboratory.

  10. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  11. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  12. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. Themore » purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.« less

  13. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  14. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  15. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  16. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  17. Abdominal x-ray

    MedlinePlus

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...

  18. X-Ray Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  19. Copernicus observations of a number of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Culhane, J. L.; Mason, K. O.; Sanford, P. W.; White, N. E.

    1976-01-01

    The Copernicus satellite was launched on 21 August 1972. The main experiment on board is the University of Princeton UV telescope. In addition a cosmic X-ray package of somewhat modest aperture was provided by the Mullard Space Science Laboratory (MSSL) of University College London. Following a brief description of the instrument, a list of galactic sources observed during the year is presented. Although the X-ray detection aperture is small, the ability to point the satellite for long periods of time with high accuracy makes Copernicus an ideal vehicle for the study of variable sources.

  20. The use of microtomography in structural geology: A new methodology to analyse fault faces

    NASA Astrophysics Data System (ADS)

    Jacques, Patricia D.; Nummer, Alexis Rosa; Heck, Richard J.; Machado, Rômulo

    2014-09-01

    This paper describes a new methodology to kinematically analyze faults in microscale dimensions (voxel size = 40 μm), using images obtained by X-ray computed microtomography (μCT). The equipment used is a GE MS8x-130 scanner. It was developed using rocks samples from Santa Catarina State, Brazil, and constructing micro Digital Elevation Models (μDEMs) for the fault surface, for analysing microscale brittle structures including striations, roughness and steps. Shaded relief images were created for the μDEMs, which enabled the generation of profiles to classify the secondary structures associated with the main fault surface. In the case of a sample with mineral growth that covers the fault surface, it is possible to detect the kinematic geometry even with the mineral cover. This technique proved to be useful for determining the sense of movement of faults, especially when it is not possible to determine striations in macro or microscopic analysis. When the sample has mineral deposit on the surface (mineral cover) this technique allows a relative chronology and geometric characterization between the faults with and without covering.

  1. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  2. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  3. Ultra-high Resolution Coherent X-ray Imaging of Nano-Materials

    NASA Astrophysics Data System (ADS)

    Shapiro, David

    A revolution is underway in the field of x-ray microscopy driven by the develop of experimental, theoretical and computational means of producing a complete description of coherent imaging systems from x-ray diffraction data. The methods being developed not only allow for full quantification and removal of all optical aberrations but also extension of the numerical aperture to the diffraction limit. One such method under intensive development is x-ray ptychography. This is a scanned probe method that reconstructs a scattering object and its illumination from coherent diffraction data. Within the first few years of development at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory, this method has already achieved the highest resolution x-ray images ever recorded in two, three and four dimensions. With the ability of x-rays to penetrate significantly more matter than electrons, their short wavelength and their sensitivity to chemical and magnetic states of matter, x-ray ptychography is set to revolutionize how we see the nano-scale world. In this presentation I will briefly describe the technical framework for how various methods work and will give a detailed account of a practical implementation at the ALS along with various scientific applications. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  4. Fresnel-propagated imaging for the study of human tooth dentin by partially coherent x-ray tomography

    NASA Astrophysics Data System (ADS)

    Zabler, S.; Riesemeier, H.; Fratzl, P.; Zaslansky, P.

    2006-09-01

    Recent methods of phase imaging in x-ray tomography allow the visualization of features that are not resolved in conventional absorption microtomography. Of these, the relatively simple setup needed to produce Fresnel-propagated tomograms appears to be well suited to probe tooth-dentin where composition as well as microstructure vary in a graded manner. By adapting analytical propagation approximations we provide predictions of the form of the interference patterns in the 3D images, which we compare to numerical simulations as well as data obtained from measurements of water immersed samples. Our observations reveal details of the tubular structure of dentin, and may be evaluated similarly to conventional absorption tomograms. We believe this exemplifies the power of Fresnel-propagated imaging as a form of 3D microscopy, well suited to quantify gradual microstructural-variations in teeth and similar tissues.

  5. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  6. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  7. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  8. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  9. Model of flare lightcurve profile observed in soft X-rays

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Siarkowski, Marek; Gburek, Szymon; Podgorski, Piotr; Sylwester, Janusz; Kepa, Anna; Mrozek, Tomasz

    We propose a new model for description of solar flare lightcurve profile observed in soft X-rays. The method assumes that single-peaked `regular' flares seen in lightcurves can be fitted with the elementary time profile being a convolution of Gaussian and exponential functions. More complex, multi-peaked flares can be decomposed as a sum of elementary profiles. During flare lightcurve fitting process a linear background is determined as well. In our study we allow the background shape over the event to change linearly with time. Presented approach originally was dedicated to the soft X-ray small flares recorded by Polish spectrophotometer SphinX during the phase of very deep solar minimum of activity, between 23 rd and 24 th Solar Cycles. However, the method can and will be used to interpret the lightcurves as obtained by the other soft X-ray broad-band spectrometers at the time of both low and higher solar activity level. In the paper we introduce the model and present examples of fits to SphinX and GOES 1-8 Å channel observations as well.

  10. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  11. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  12. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  13. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  14. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  15. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  16. Simbol-X: Imaging The Hard X-ray Sky with Unprecedented Spatial Resolution and Sensitivity

    NASA Astrophysics Data System (ADS)

    Tagliaferri, Gianpiero; Simbol-X Joint Scientific Mission Group

    2009-01-01

    Simbol-X is a hard X-ray mission, with imaging capability in the 0.5-80 keV range. It is based on a collaboration between the French and Italian space agencies with participation of German laboratories. The launch is foreseen in late 2014. It relies on a formation flight concept, with two satellites carrying one the mirror module and the other one the focal plane detectors. The mirrors will have a 20 m focal length, while the two focal plane detectors will be put one on top of the other one. This combination will provide over two orders of magnitude improvement in angular resolution and sensitivity in the hard X-ray range with respect to non-focusing techniques. The Simbol-X revolutionary instrumental capabilities will allow us to elucidate outstanding questions in high energy astrophysics such as those related to black-holes accretion physics and census, and to particle acceleration mechanisms. We will give an overall description of the mission characteristics, performances and scientific objectives.

  17. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  18. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  19. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  20. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  1. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  2. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  3. Development of polycapillary x-ray optics for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Attenkofer, Klaus; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; O'Mahony, Aileen; Minot, Michael J.; Popecki, Mark A.

    2016-09-01

    Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. Exploring the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

    This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  6. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  7. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  8. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  9. X-Rays from Pluto

    NASA Image and Video Library

    2016-09-14

    The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first

  10. Innovative space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.

    2017-11-01

    We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.

  11. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... through them and appear black. An X-ray technician takes the X-rays. Usually, three different pictures ... to tell her doctor and the X-ray technician. Procedure Although the procedure may take up to ...

  12. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most ...

  13. Characterization of polycrystalline materials using synchrotron X-ray imaging and diffraction techniques

    NASA Astrophysics Data System (ADS)

    Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.

    2010-12-01

    The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.

  14. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  15. The Vital Infrared to X-ray Link in the Sgr A* Accretion Flow

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Boyce, Hope; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Herrero-Illana, Ruben; Hora, Joseph; Ingalls, James; Lowrance, Patrick; Markoff, Sera; Marrone, Daniel; Morris, Mark; Narayan, Ramesh; Neilsen, Joseph; Ponti, Gabriele; Smith, Howard; Willner, Steven; Witzel, Gunther

    2018-05-01

    Black hole accretion drives extreme astrophysical phenomena in the universe. Sgr A*, the radiating counterpart of the nearest supermassive black hole, is highly variable, but sparse data and short observations have left its emission physics in question. Despite enormous advances in accretion models, physical description of the interacting radiation mechanisms is incomplete. The X-ray emission mechanism in particular remains unknown. Because the necessary information is contained in the time-dependent relation between X-ray and infrared emission, we have begun monitoring Sgr A* simultaneously with Chandra in X-rays and with Spitzer in the infrared. Defining the X-ray to infrared flux density ratio will allow the entire energy distribution to be understood. We therefore request two new 24-hour epochs of Spitzer monitoring at 4.5 microns simultaneous with Chandra time already approved. This will increase the exposure time for X-ray flares where the NIR state is known, moving us out of the realm of small-number statistics and enabling diagnostics of the true X-ray/IR ratio. Under current NASA plans, this will be the last chance for these valuable Spitzer+Chandra observations.

  16. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  17. Middle ear bones of a mid-gestation ruminant foetus extracted from x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Costeur, Loic; Mennecart, Bastien; Müller, Bert; Schulz, Georg

    2016-10-01

    The timing of ossification of middle ear ossicles has been extensively studied in humans. This is an exception since it is vastly unknown in the +5000 extant species of placentals. As a preliminary approach, a cow foetus (around 115 days of gestation) was visualized using X-ray microtomography (μCT) and the ossicles including stapes, incus, and malleus could be extracted from the data set. All three bones have already undergone substantial ossification, which allow comparison to adult middle ear bones. Their ossification at this stage parallels ossification in humans at a comparable stage of gestation. While full ossification is not yet achieved almost all the morphological characters of the ossicles are observed. Bone tissue is still very porous, the stapes does not have the characteristic plate-like footplate, the lenticular process of the incus is missing and the manubrium of the malleus is very thin and not yet complete. Despite all this, the ossicles are articulate with each other and perfectly with the bony labyrinth. The stapes footplate is positioned on the oval window but is smaller than the latter while it should perfectly fit to transmit sound vibrations to the cochlea. All ossicles, especially the stapes, have not yet reached adult size, while the bony labyrinth already has. This is the first detailed description of a set of middle ear bones in a placental at mid-gestation based on high-resolution μCT. Similarities in ossification timing with humans encourage more work to be done on foetuses to understand if a general rule for placental mammals exists.

  18. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  19. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  1. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  2. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  3. Hybrid modelling of a high-power X-ray attenuator plasma.

    PubMed

    Martín Ortega, Álvaro; Lacoste, Ana; Minea, Tiberiu

    2018-05-01

    X-ray gas attenuators act as stress-free high-pass filters for synchrotron and free-electron laser beamlines to reduce the heat load in downstream optical elements without affecting other properties of the X-ray beam. The absorption of the X-ray beam triggers a cascade of processes that ionize and heat up the gas locally, changing its density and therefore the X-ray absorption. Aiming to understand and predict the behaviour of the gas attenuator in terms of efficiency versus gas pressure, a hybrid model has been developed, combining three approaches: an analytical description of the X-ray absorption; Monte Carlo for the electron thermalization; and a fluid treatment for the electron diffusion, recombination and excited-states relaxation. The model was applied to an argon-filled attenuator prototype built and tested at the European Synchrotron Radiation Facility, at a pressure of 200 mbar and assuming stationary conditions. The results of the model showed that the electron population thermalizes within a few nanoseconds after the X-ray pulse arrival and it occurs just around the X-ray beam path, recombining in the bulk of the gas rather than diffusing to the attenuator walls. The gas temperature along the beam path reached 850 K for 770 W of incident power and 182 W m -1 of absorbed power. Around 70% of the absorbed power is released as visible and UV radiation rather than as heat to the gas. Comparison of the power absorption with the experiment showed an overall agreement both with the plasma radial profile and power absorption trend, the latter within an error smaller than 20%. This model can be used for the design and operation of synchrotron gas attenuators and as a base for a time-dependent model for free-electron laser attenuators.

  4. Comparing natural and artificial carious lesions in human crowns by means of conventional hard x-ray micro-tomography and two-dimensional x-ray scattering with synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Botta, Lea Maria; White, Shane N.; Deyhle, Hans; Dziadowiec, Iwona; Schulz, Georg; Thalmann, Peter; Müller, Bert

    2016-10-01

    Dental caries, one of the most prevalent infectious bacterial diseases in the world, is caused by specific types of acid-producing bacteria. Caries is a disease continuum resulting from the earliest loss of ions from apatite crystals through gross cavitation. Enamel dissolution starts when the pH-value drops below 5.5. Neutralizing the pH-value in the oral cavity opposes the process of demineralization, and so caries lesions occur in a dynamic cyclic de-mineralizing/remineralizing environment. Unfortunately, biomimetic regeneration of cavitated enamel is not yet possible, although remineralization of small carious lesions occurs under optimal conditions. Therefore, the development of methods that can regenerate carious lesions, and subsequently recover and retain teeth, is highly desirable. For the present proceedings we analyzed one naturally occurring sub-surface and one artificially produced lesion. For the characterization of artificial and natural lesions micro computed tomography is the method of choice when looking to determine three-dimensional mineral distribution and to quantify the degree of mineralization. In this pilot study we elucidate that the de-mineralized enamel in natural and artificially induced lesions shows comparable X-ray attenuation behavior, thereby implying that the study protocol employed herein seems to be appropriate. Once we know that the lesions are comparable, a series of well-reproducible in vitro experiments on enamel regeneration could be performed. In order to quantify further lesion morphology, the anisotropy of the enamel's nanostructure can be characterized by using spatially resolved, small-angle X-ray scattering. We wanted to demonstrate that the artificially induced defect fittingly resembles the natural carious lesion.

  5. Analysis of X-ray and EUV spectra of solar active regions

    NASA Technical Reports Server (NTRS)

    Strong, K. T.; Acton, L. W.

    1979-01-01

    Data acquired by two flights of an array of six Bragg crystal spectrometers on an Aerobee rocket to obtain high spatial and spectral resolution observations of various coronal features at soft X-ray wavelengths (9-23A) were analyzed. The various aspects of the analysis of the X-ray data are described. These observations were coordinated with observations from the experiments on the Apollo Telescope Mount and the various data sets were related to one another. The Appendices contain the published results, abstracts of papers, computer code descriptions and preprints of papers, all produced as a result of this research project.

  6. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  7. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  8. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  9. The X-ray Astronomy Recovery Mission

    NASA Astrophysics Data System (ADS)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  10. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  11. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  12. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  13. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  14. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  16. Optics Requirements For The Generation-X X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; hide

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  17. Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipment.

    PubMed

    Uehara, Kazuaki; Tagami, Tatsuaki; Miyazaki, Itaru; Murata, Norikazu; Takahashi, Yoshifumi; Ohkubo, Hiroshi; Ozeki, Tetsuya

    2015-06-01

    X-ray inspection equipment is widely used to detect missing materials and defective goods in opaque containers. Its application has been expanded to the pharmaceutical industry to detect the presence of drug tablets in aluminum foil press-through packaging. However, the effect of X-rays on the pharmaceutical quality of drug tablets is not well known. In this study, the effect of X-rays on the pharmaceutical quality of drug tablets was investigated. Exposure of acetaminophen, loxoprofen and mefenamic acid tablets to X-ray doses of 0.34 mGy (thrice the dose by X-ray scanning) to 300 Gy (maximum dose from our X-ray equipment) was demonstrated, and the samples were evaluated by formulation tests. Exposure to X-rays did not affect the pharmaceutical quality of the drug content. The samples exposed to X-rays exhibited almost the same profile in formulation tests (dissolution test, disintegrating test and hardness test) as control samples (0 Gy). The combination of X-ray exposure with accelerated temperature and humidity tests (six months) also did not affect the pharmaceutical quality. The color change of light-sensitive drugs (nifedipine and furosemide tablets) after X-ray exposure was negligible (< 1.0). In contrast, tablet color was remarkably changed by light from a D65 lamp. The X-ray scanning and X-ray exposure under our experimental conditions did not affect the pharmaceutical quality of drug tablets.

  18. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  19. X-ray tube thermal management

    NASA Astrophysics Data System (ADS)

    Nadella, Naresh; Khounsary, Ali M.

    2015-09-01

    This paper presents a brief overview of the various stationary anode X-ray tube designs and the thermal management challenges of the anode target that limit the intensity of the generated X-ray beams. Several options to further increase X-ray beam intensity are discussed.

  20. A computed microtomography method for understanding epiphyseal growth plate fusion

    NASA Astrophysics Data System (ADS)

    Staines, Katherine A.; Madi, Kamel; Javaheri, Behzad; Lee, Peter D.; Pitsillides, Andrew A.

    2017-12-01

    The epiphyseal growth plate is a developmental region responsible for linear bone growth, in which chondrocytes undertake a tightly regulated series of biological processes. Concomitant with the cessation of growth and sexual maturation, the human growth plate undergoes progressive narrowing, and ultimately disappears. Despite the crucial role of this growth plate fusion ‘bridging’ event, the precise mechanisms by which it is governed are complex and yet to be established. Progress is likely hindered by the current methods for growth plate visualisation; these are invasive and largely rely on histological procedures. Here we describe our non-invasive method utilising synchrotron x-ray computed microtomography for the examination of growth plate bridging, which ultimately leads to its closure coincident with termination of further longitudinal bone growth. We then apply this method to a dataset obtained from a benchtop microcomputed tomography scanner to highlight its potential for wide usage. Furthermore, we conduct finite element modelling at the micron-scale to reveal the effects of growth plate bridging on local tissue mechanics. Employment of these 3D analyses of growth plate bone bridging is likely to advance our understanding of the physiological mechanisms that control growth plate fusion.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-04-01

    This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)

  2. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  3. X-ray absorption spectra: Graphene, h-BN, and their alloy

    NASA Astrophysics Data System (ADS)

    Bhowmick, Somnath; Rusz, Jan; Eriksson, Olle

    2013-04-01

    Using first-principles density functional theory calculations, in conjunction with the Mahan-Nozières-de Dominicis theory, we calculate the x-ray absorption spectra of the alloys of graphene and monolayer hexagonal boron nitride on a Ni (111) substrate. The chemical neighborhood of the constituent atoms (B, C, and N) inside the alloy differs from that of the parent phases. In a systematic way, we capture the change in the K-edge spectral shape, depending on the chemical neighborhood of B, C, and N. Our work also reiterates the importance of the dynamical core-hole screening for a proper description of the x-ray absorption process in sp2-bonded layered materials.

  4. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  5. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  6. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  7. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  8. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  9. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  10. A multi-scale Lattice Boltzmann model for simulating solute transport in 3D X-ray micro-tomography images of aggregated porous materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Crawford, John W.; Flavel, Richard J.; Young, Iain M.

    2016-10-01

    The Lattice Boltzmann (LB) model and X-ray computed tomography (CT) have been increasingly used in combination over the past decade to simulate water flow and chemical transport at pore scale in porous materials. Because of its limitation in resolution and the hierarchical structure of most natural soils, the X-ray CT tomography can only identify pores that are greater than its resolution and treats other pores as solid. As a result, the so-called solid phase in X-ray images may in reality be a grey phase, containing substantial connected pores capable of conducing fluids and solute. Although modified LB models have been developed to simulate fluid flow in such media, models for solute transport are relatively limited. In this paper, we propose a LB model for simulating solute transport in binary soil images containing permeable solid phase. The model is based on the single-relaxation time approach and uses a modified partial bounce-back method to describe the resistance caused by the permeable solid phase to chemical transport. We derive the relationship between the diffusion coefficient and the parameter introduced in the partial bounce-back method, and test the model against analytical solution for movement of a pulse of tracer. We also validate it against classical finite volume method for solute diffusion in a simple 2D image, and then apply the model to a soil image acquired using X-ray tomography at resolution of 30 μm in attempts to analyse how the ability of the solid phase to diffuse solute at micron-scale affects the behaviour of the solute at macro-scale after a volumetric average. Based on the simulated results, we discuss briefly the danger in interpreting experimental results using the continuum model without fully understanding the pore-scale processes, as well as the potential of using pore-scale modelling and tomography to help improve the continuum models.

  11. X-ray emission from reverse-shocked ejecta in supernova remnants

    NASA Technical Reports Server (NTRS)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  12. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  13. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    NASA Astrophysics Data System (ADS)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  14. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  15. Explosive vessel for coupling dynamic experiments to the X-ray beam at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Owens, Charles; Sanchez, Nathaniel; Sorensen, Christian; Jensen, Brian

    2017-06-01

    Recent experiments at the Advanced Photon Source have been successful in coupling gun systems to the synchrotron to take advantage of the advanced X-ray diagnostics available including X-ray diffraction and X-ray phase contrast imaging (PCI) to examine matter at extreme conditions. There are many experiments that require explosive loading capabilities, e.g. detonator and initiator dynamics, small angle X-ray scattering (SAXS), ejecta formation, and explosively driven flyer experiments. The current work highlights a new explosive vessel that was designed specifically for use at a synchrotron facility with requirements to confine up to 15 grams of explosives (TNT equivalent), couple the vessel to the X-ray beam line, and reliably position samples remotely. A description of the system and capability will be provided along with the results from qualification testing to bring the system into service (LA-UR-17-21381).

  16. Monochromatic computed microtomography using laboratory and synchrotron sources and X-ray fluorescence analysis for comprehensive analysis of structural changes in bones.

    PubMed

    Buzmakov, Alexey; Chukalina, Marina; Nikolaev, Dmitry; Gulimova, Victoriya; Saveliev, Sergey; Tereschenko, Elena; Seregin, Alexey; Senin, Roman; Zolotov, Denis; Prun, Victor; Shaefer, Gerald; Asadchikov, Victor

    2015-06-01

    A combination of X-ray tomography at different wavelengths and X-ray fluorescence analysis was applied in the study of two types of bone tissue changes: prolonged presence in microgravity conditions and age-related bone growth. The proximal tail vertebrae of geckos were selected for investigation because they do not bear the supporting load in locomotion, which allows them to be considered as an independent indicator of gravitational influence. For the vertebrae of geckos no significant differences were revealed in the elemental composition of the flight samples and the synchronous control samples. In addition, the gecko bone tissue samples from the jaw apparatus, spine and shoulder girdle were measured. The dynamics of structural changes in the bone tissue growth was studied using samples of a human fetal hand. The hands of human fetuses of 11-15 weeks were studied. Autonomous zones of calcium accumulation were found not only in individual fingers but in each of the investigated phalanges. The results obtained are discussed.

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-04-15

    This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  19. X-ray angiography systems.

    PubMed

    1993-11-01

    Despite the emergence of several alternative angiographic imaging techniques (i.e., magnetic resonance imaging, computed tomography, and ultrasound angiography), x-ray angiography remains the predominant vascular imaging modality, generating over $4 billion in revenue a year in U.S. hospitals. In this issue, we provide a brief overview of the various angiographic imaging techniques, comparing them with x-ray angiography, and discuss the clinical aspects of x-ray vascular imaging, including catheterization and clinical applications. Clinical, cost, usage, and legal issues related to contrast media are discussed in "Contrast Media: Ionic versus Nonionic and Low-osmolality Agents." We also provide a technical overview and selection guidance for a basic x-ray angiography imaging system, including the gantry and table system, x-ray generator, x-ray tube, image intensifier, video camera and display monitors, image-recording devices, and digital acquisition and processing systems. This issue also contains our Evaluation of the GE Advantx L/C cardiac angiography system and the GE Advantx AFM general-purpose angiography system; the AFM can be used for peripheral, pulmonary, and cerebral vascular studied, among others, and can also be configured for cardiac angiography. Many features of the Advantx L/C system, including generator characteristics and ease of use, also apply to the Advantx AFM as configured for cardiac angiography. Our ratings are based on the systems' ability to provide the best possible image quality for diagnosis and therapy while minimizing patient and personnel exposure to radiation, as well as its ability to minimize operator effort and inconvenience. Both units are rated Acceptable. In the Guidance Section, "Radiation Safety and Protection," we discuss the importance of keeping patient and personnel exposures to radiation as low as reasonably possible, especially in procedures such as cardiac catheterization, angiographic imaging for special procedures

  20. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  1. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  2. Soft x-ray speckle from rough surfaces

    NASA Astrophysics Data System (ADS)

    Porter, Matthew Stanton

    Dynamic light scattering has been of great use in determining diffusion times for polymer solutions. At the same time, polymer thin films are becoming of increasing importance, especially in the semiconductor industry where they are used as photoresists and interlevel dielectrics. As the dimensions of these devices decrease we will reach a point where lasers will no longer be able to probe the length scales of interest. Current laser wavelengths limit the size of observable diffusion lengths to 180-700 nm. This dissertation will discuss attempts at pushing dynamic fight scattering experiments into the soft x-ray region so that we can examine fluctuations in polymer thin films on the molecular length scale. The dissertation explores the possibility of carrying out a dynamic light scattering experiment in the soft x-ray regime. A detailed account of how to meet the basic requirements for a coherent scattering experiment in the soft x-ray regime win be given. In addition, a complete description of the chamber design will be discussed. We used our custom designed scattering chamber to collect reproducible coherent soft x-ray scattering data from etched silicon wafers and from polystyrene coated silicon wafers. The data from the silicon wafers followed the statistics for a well-developed speckle pattern while the data from the polystyrene films exhibited Poisson statistics. We used the data from both the etched wafers and the polystyrene coated wafers to place a lower limit of ~20 Å on the RMS surface roughness of samples which will produce well defined speckle patterns for the current detector setup. Future experiments which use the criteria set forth in this dissertation have the opportunity to be even more successful than this dissertation project.

  3. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  4. A Chandra X-Ray Study of NGC 1068 IL the Luminous X-Ray Source Population

    NASA Technical Reports Server (NTRS)

    Smith, David A.; Wilson, Andrew S.

    2003-01-01

    We present an analysis of the compact X-ray source population in the Seyfert 2 galaxy NGC 1068, imaged with a approx. 50 ks Chandra observation. We find a total of 84 compact sources on the S3 chip, of which 66 are located within the 25.0 B-mag/arcsec isophote of the galactic disk of NGC 1068. Spectra have been obtained for the 21 sources with at least 50 counts and modeled with both multicolor disk blackbody and power-law models. The power-law model provides the better description of the spectrum for 18 of these sources. For fainter sources, the spectral index has been estimated from the hardness ratio. Five sources have 0.4 - 8 keV intrinsic luminosities greater than 10(exp 39)ergs/ s, assuming that their emission is isotropic and that they are associated with NGC 1068. We refer to these sources as intermediate-luminosity X-ray objects (ISOs). If these five sources are X-ray binaries accreting with luminosities that are both sub-Eddington and isotropic, then the implied source masses are approx greater than 7 solar mass, and so they are inferred to be black holes. Most of the spectrally modeled sources have spectral shapes similar to Galactic black hole candidates. However, the brightest compact source in NGC 1068 has a spectrum that is much harder than that found in Galactic black hole candidates and other ISOs. The brightest source also shows large amplitude variability on both short-term and long-term timescales, with the count rate possibly decreasing by a factor of 2 in approx. 2 ks during our Chundra observation, and the source flux decreasing by a factor of 5 between our observation and the grating observations taken just over 9 months later. The ratio of the number of sources with luminosities greater than 2.1 x 10(exp 38) ergs/s in the 0.4 - 8 keV band to the rate of massive (greater than 5 solar mass) star formation is the same, to within a factor of 2, for NGC 1068, the Antennae, NGC 5194 (the main galaxy in M51), and the Circinus galaxy. This suggests

  5. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  6. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  7. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  8. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  9. Performance of large area x-ray proportional counters in a balloon experiment

    NASA Astrophysics Data System (ADS)

    Roy, J.; Agrawal, P. C.; Dedhia, D. K.; Manchanda, R. K.; Shah, P. B.; Chitnis, V. R.; Gujar, V. M.; Parmar, J. V.; Pawar, D. M.; Kurhade, V. B.

    2016-10-01

    ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3 ∘ × 3 ∘ versus FOV of 1 ∘ × 1 ∘ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laboratory tests, calibration and the detector characteristics is presented here. The details of the experiment and background counting rates of the 2 LAXPCs at the float altitude of about 41 km are presented in different energy bands. The bright black hole X-ray binary Cygnus X-1 (Cyg X-1) was observed in the experiment for ˜ 3 hours. Details of Cyg X-1 observations, count rates measured from it in different energy intervals and the intensity variations of Cyg X-1 detected during the observations are presented and briefly discussed.

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  11. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  12. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  13. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  14. Machine learning for micro-tomography

    NASA Astrophysics Data System (ADS)

    Parkinson, Dilworth Y.; Pelt, Daniël. M.; Perciano, Talita; Ushizima, Daniela; Krishnan, Harinarayan; Barnard, Harold S.; MacDowell, Alastair A.; Sethian, James

    2017-09-01

    Machine learning has revolutionized a number of fields, but many micro-tomography users have never used it for their work. The micro-tomography beamline at the Advanced Light Source (ALS), in collaboration with the Center for Applied Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory, has now deployed a series of tools to automate data processing for ALS users using machine learning. This includes new reconstruction algorithms, feature extraction tools, and image classification and recommen- dation systems for scientific image. Some of these tools are either in automated pipelines that operate on data as it is collected or as stand-alone software. Others are deployed on computing resources at Berkeley Lab-from workstations to supercomputers-and made accessible to users through either scripting or easy-to-use graphical interfaces. This paper presents a progress report on this work.

  15. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  16. X-ray Timing Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2008-01-01

    We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\

  17. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  18. Adjustable Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  19. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  20. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; hide

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  1. X-ray scattering study

    NASA Technical Reports Server (NTRS)

    Wriston, R. S.; Froechtenigt, J. F.

    1972-01-01

    A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.

  2. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  3. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.

    2017-08-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  4. Microtomography of elastomers for tire manufacture

    NASA Astrophysics Data System (ADS)

    Dunsmuir, John H.; Dias, A. J.; Peiffer, D. G.; Kolb, R.; Jones, G.

    1999-09-01

    X-ray microtomography is used to image the internal structure of carbon black filled isobutylene-p-methylstyrene-p- bromomethylstyrene (PIB-PMS/BrPMS or ExxProTM) curing bladders before and after use-to-failure in the manufacture of automobile tires. Curing bladders operate under extreme conditions with extended mechanical cycling at high temperatures. Manufacturers typically do not run the bladders until failure but rather a pull policy is established which emphasizes the distribution of cyclic lifetimes. We examine the bladder elastomer structure at a resolution of about 10 microns with the objective of reducing the variability in performance. Using both edge crossing and absorption contrast we identify several types of heterogeneity including voids, foreign inclusions, and the distribution of curative agent from which we infer the uniformity of the cure. The results indicate several potential failure mechanisms. The small number of voids and foreign inclusions are mechanical defects that can initiate cracking. More widespread through the polymer matrix are small regions of polymer devoid of curative agent as shown by absorption edge imaging. These regions may be uncured polymer with poor mechanical and thermal properties that may lead to early failure. After several cure cycles the uncured regions are no longer present in the bladder tread area but they remain near the bead. At high cycles an approximately 500 micrometer thick zinc rich cap develops where the bladder contacts the inner tread area of the tire. This zinc rich cap may cause over-curing of the polymer resulting in crack initiation at the surface of the bladder that contacts the tire.

  5. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-10-13

    Chandra X-Ray Observatory took this first x-ray picture of the Andromeda Galaxy (M31) on October 13, 1999. The blue dot in the center of the image is a "cool" million-degree x-ray source where a supermassive black hole with the mass of 30-million suns is located. The x-rays are produced by matter furneling toward the black hole. Numerous other hotter x-ray sources are also apparent. Most of these are probably due to x-ray binary systems, in which a neutron star or black hole is in close orbit around a normal star. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other x-ray sources in the Andromeda Galaxy. To be detected by an x-ray telescope, the gas must have a temperature of more than a million degrees. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. (Photo Credit: NASA/CXC/SAO/S. Murray, M. Garcia)

  7. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-10-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  8. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  9. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    NASA Astrophysics Data System (ADS)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  10. The 1979 X-ray outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Swank, J. H.

    1980-01-01

    X-ray observations of the first major outburst of the classical transient X-ray source Centaurus X-4 since its discovery in 1969 are presented. The observations were obtained in May, 1979, with the all-sky monitor on board Ariel 5. The flare light curve is shown to exhibit many of the characteristics of other transients, including a double-peaked maximum, as well as significant, apparently random, variations and a lower peak flux and shorter duration than the 1969 event. Application of a standard epoch-folding technique to data corrected for linear decay trends indicates a possible source modulation at 0.3415 days (8.2 hours). Comparison of the results with previous other data on Cen X-4 and the characteristics of the soft X-ray transients allows a total X-ray output of approximately 3 x 10 to the 43rd ergs to be estimated, and reveals the duration and decay time of the 1979 Cen X-4 outburst to be the shortest yet observed from soft X-ray transients. The observations are explained in terms of episodic mass exchange from a late-type dwarf onto a neutron star companion in a relatively close binary system.

  11. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  12. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-02-01

    The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.

  13. X-ray modeling for SMILE

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wang, C.; Wei, F.; Liu, Z. Q.; Zheng, J.; Yu, X. Z.; Sembay, S.; Branduardi-Raymont, G.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a novel mission to explore the coupling of the solar wind-magnetosphere-ionosphere system via providing global images of the magnetosphere and aurora. As the X-ray imaging is a brand new technique applied to study the large scale magnetopause, modeling of the solar wind charge exchange (SWCX) X-ray emissions in the magnetosheath and cusps is vital in various aspects: it helps the design of the Soft X-ray Imager (SXI) on SMILE, selection of satellite orbits, as well as the analysis of expected scientific outcomes. Based on the PPMLR-MHD code, we present the simulation results of the X-ray emissions in geospace during storm time. Both the polar orbit and the Molniya orbit are used. From the X-ray images of the magnetosheath and cusps, the magnetospheric responses to an interplanetary shock and IMF southward turning are analyzed.

  14. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  15. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    PubMed Central

    Song, Shibin; Xu, Luping; Zhang, Hua; Bai, Yuanjie

    2015-01-01

    The further development of X-ray pulsar-based NAVigation (XNAV) is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM) shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments. PMID:26404295

  16. X-Ray Laser

    DTIC Science & Technology

    1991-01-31

    Reflection in Relativistic Electron Beam Channel Radiation Systems, IEEE Trans. on Plasma Science 16(5), 548 (1988). 3. M. Strauss, P. Amendt, N...Reduced Radiation Losses in a Channeled-Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 39(11), 5791 (1989). 6. M. Strauss and N. Rostoker... Radiation Guiding in Channeling Beam X-Ray Laser by Bragg Reflection Coupling, Phys. Rev. A 40(12), 7097 (1989). 91-00870111 llllltl

  17. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    PubMed

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  18. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    REPORT OF PROJECT: Novel chalcogenide materials for x - ray and - ray detection HDTRA1-09-1-0044 Mercouri Kanatzidis , PI Northwestern University...investigated semiconductor for hard radiation detection. The μτ products for electrons however are lower than those of CZT, the leading material for X - ray ...Formation of native defects in the gamma- ray detector material, Cs2Hg6S7 Semiconductor devices detecting hard radiation such as x - rays and

  19. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  20. Analysis of solar X-ray data

    NASA Technical Reports Server (NTRS)

    Teske, R. G.

    1972-01-01

    Type III solar bursts occurring in the absence of solar flares were observed to be accompanied by weak X-radiation. The energy scale of an OSO-3 soft X-ray ion chamber was assessed using realistic theoretical X-ray spectra. Relationships between soft solar X-rays and solar activity were investigated. These included optical studies, the role of the Type III acceleration mechanism in establishing the soft X-ray source volume, H alpha flare intensity variations, and gross magnetic field structure.

  1. Calculation of x-ray scattering patterns from nanocrystals at high x-ray intensity

    PubMed Central

    Abdullah, Malik Muhammad; Jurek, Zoltan; Son, Sang-Kil; Santra, Robin

    2016-01-01

    We present a generalized method to describe the x-ray scattering intensity of the Bragg spots in a diffraction pattern from nanocrystals exposed to intense x-ray pulses. Our method involves the subdivision of a crystal into smaller units. In order to calculate the dynamics within every unit, we employ a Monte-Carlo-molecular dynamics-ab-initio hybrid framework using real space periodic boundary conditions. By combining all the units, we simulate the diffraction pattern of a crystal larger than the transverse x-ray beam profile, a situation commonly encountered in femtosecond nanocrystallography experiments with focused x-ray free-electron laser radiation. Radiation damage is not spatially uniform and depends on the fluence associated with each specific region inside the crystal. To investigate the effects of uniform and non-uniform fluence distribution, we have used two different spatial beam profiles, Gaussian and flattop. PMID:27478859

  2. X-ray diagnostics of massive star winds

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.

    2017-11-01

    Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.

  3. SphinX x-ray spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kowaliński, Mirosław

    2012-05-01

    This paper presents assumptions to a PhD thesis. The thesis will be based on the construction of Solar Photometer in X-rays (SphinX). SphinX was an instrument developed to detect the soft X-rays from the Sun. It was flown on board the Russian CORONAS-Photon satellite from January 30, 2009 to the end of November, 2009. During 9 months in orbit SphinX provided an excellent and unique set of observations. It revealed about 750 flares and brightenings. The instrument observed in energy range 1.0 - 15.0 keV with resolution below ~0.5 keV. Here, the SphinX instrument objectives, design, performance and operation principle are described. Below results of mechanical and thermal - vacuum tests necessary to qualify the instrument to use in space environment are presented. Also the calibration results of the instrument are discussed. In particular detail it is described the Electrical Ground Support Equipment (EGSE) for SphinX. The EGSE was used for all tests of the instrument. At the end of the paper results obtained from the instrument during operation in orbit are discussed. These results are compared with the other similar measurements performed from the separate spacecraft instruments. It is suggested design changes in future versions of SphinX.

  4. CubeX: The CubeSAT X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.

    2017-12-01

    The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several

  5. X-Ray Studies of Diffusion Dynamics in Nano-Confined Geometries

    NASA Astrophysics Data System (ADS)

    Boucheron, Leandra

    Since their discovery in the late 1800s, x-rays have taken the stage as one of the most powerful research techniques for materials science. Their element-specific absorption has allowed for everyday applications in security and medical imaging, while their short wavelength has a tremendous ability to resolve materials on a molecular or even atomic level. In this dissertation, I will discuss basic properties of x-rays as well as how they are produced and detected. I will also present x-ray scattering and analysis techniques before moving onto a discussion of my research on diffusion in soft-matter systems. I provide a full alignment guide for a lab-based dynamic light scattering (DLS) goniometer system, which I used for some preliminary studies of systems. I proceed to discuss diffusion on the nanoscale in quasi-1D (nanopores) and quasi-2D (liquid surface) systems. The latter of these systems was the main focus of my dissertation research. I utilized x-ray photon correlation spectroscopy (XPCS) to study the diffusion and interparticle dynamics of iron oxide nanoparticles at the air-water interface. Autocorrelation analysis revealed that these particles show signatures of a jammed system under lateral compression. I present these results as well as a description of their interpretation and importance in the main text.

  6. King's College London/SERC Daresbury Scanning X-ray Microscope

    NASA Astrophysics Data System (ADS)

    Burge, R. E.; Browne, M. T.; Buckley, C. J.; Cave, R.; Charalambous, P.; Duke, P. J.; Freake, A. J.; Hare, A.; Hills, C. P. B.; Kenney, J. M.; Kuriyama, T.; Lidiard, D.; MacDowell, A.; Michette, A. G.; Morrison, G. R.; Ogawa, K.; Rogoyski, A. M.

    1986-01-01

    The present status of the soft X-ray microscope is described and a short description is given, with likely development paths for the future, of the Daresbury synchrotron source, the monochromator, the high-resolution zone-plates, the scanning specimen stage, image recording and methods of image enhancement. It is considered that the instrumental developments needed for images at 10 nm resolution will take a further two or three years.

  7. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  8. Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures.

    PubMed

    Hayashi, Kouichi

    2010-12-01

    Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.

  9. The Ferrara hard X-ray facility for testing/calibrating hard X-ray focusing telescopes

    NASA Astrophysics Data System (ADS)

    Loffredo, Gianluca; Frontera, Filippo; Pellicciotta, Damiano; Pisa, Alessandro; Carassiti, Vito; Chiozzi, Stefano; Evangelisti, Federico; Landi, Luca; Melchiorri, Michele; Squerzanti, Stefano

    2005-12-01

    We will report on the current configuration of the X-ray facility of the University of Ferrara recently used to perform reflectivity tests of mosaic crystals and to calibrate the experiment JEM X aboard Integral. The facility is now located in the technological campus of the University of Ferrara in a new building (named LARIX laboratory= LARge Italian X-ray facility) that includes a tunnel 100 m long with, on the sides, two large experimental rooms. The facility is being improved for determining the optical axis of mosaic crystals in Laue configuration, for calibrating Laue lenses and hard X-ray mirror prototypes.

  10. Neon in ultrashort and intense x-rays from free electron lasers

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Beerwerth, Randolf; Obaid, Razib; Berrah, Nora; Cederbaum, Lorenz S.; Fritzsche, Stephan

    2018-03-01

    We theoretically examine neon atoms in ultrashort and intense x-rays from free electron lasers and compare our results with data from experiments conducted at the Linac Coherent Light Source. For this purpose, we treat in detail the electronic structure in all possible nonrelativistic cationic configurations using a relativistic multiconfiguration approach. The interaction with the x-rays is described in rate-equation approximation. To understand the mechanisms of the interaction, a path analysis is devised which allows us to investigate what sequences of photoionization and decay processes lead to a specific configuration and with what probability. Thereby, we uncover a connection to the mathematics of graph theory and formal languages. In detail, we study the ion yields and find that plain rate equations do not provide a satisfactory description. We need to extend the rate equations for neon to incorporate double Auger decay of a K-shell vacancy and photoionization shake off for neutral neon. Shake off is included for valence and core ionization; the former has hitherto been overlooked but has important consequences for the ion yields from an x-ray energy below the core ionization threshold. Furthermore, we predict the photon yields from XUV and x-ray fluorescence these allow one insights into the configurations populated by the interaction with the x-rays. Finally, we discover that inaccuracies in those Auger decay widths employed in previous studies have only a minor influence on ion and photon yields.

  11. High-Mass X-ray Binaries in hard X- rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.

  12. Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography

    NASA Astrophysics Data System (ADS)

    Schlüter, S.; Weller, U.; Vogel, H.-J.

    2009-04-01

    Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P < 0.05) than those from the non-fertilised plot. The internal connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1996-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  16. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  17. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  18. X-ray properties of quasars

    NASA Technical Reports Server (NTRS)

    Ku, W. H.-M.; Helfand, D. J.; Lucy, L. B.

    1980-01-01

    The X-ray properties of 111 catalogued quasars have been examined with the imaging proportional counter on board the Einstein Observatory. Thirty-five of the objects, of redshift between 0.064 and 3.53, were detected as X-ray sources. The 0.5-4.5-keV X-ray properties of these quasars are correlated with their optical and radio continuum properties and with their redshifts and variability characteristics. The X-ray luminosity of quasars tends to be highest for those objects which are bright in the optical and radio regimes and which exhibit optically violent variability. These observations suggest that quasars should be divided into two classes on the basis of radio luminosities, spectra, evolution and underlying morphology and that quasars can make up a significant portion of the diffuse soft X-ray background only if the slope of the optical quasar log N-log S relation is steeper than 2 to m sub b of about 21.5.

  19. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  20. X-ray data booklet. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  1. Extragalactic Hard X-ray Surveys: From INTEGRAL to Simbol-X

    NASA Astrophysics Data System (ADS)

    Paltani, S.; Dwelly, T.; Walter, R.; McHardy, I. M.; Courvoisier, T. J.-L.

    2009-05-01

    We present some results of the deepest extragalactic survey performed by the INTEGRAL satellite. The fraction of very absorbed AGN is quite large. The sharp decrease in the absorption fraction with X-ray luminosity observed at lower-energy X-rays is not observed. The current lack of truly Compton-thick objects, with an upper limit of 14% to the size of this population, is just compatible with recent modeling of the cosmic X-ray background. We also study the prospects for a future hard X-ray serendipitous survey with Simbol-X. We show that Simbol-X will easily detect a large number of serendipitous AGN, allowing us to study the evolution of AGN up to redshifts about 2, opening the door to the cosmological study of hard X-ray selected AGN, which is barely possible with existing satellites like Swift and INTEGRAL.

  2. Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility

    NASA Technical Reports Server (NTRS)

    Croft, W. L.

    1986-01-01

    The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region.

  3. An X-ray excited wind in Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Day, C. S. R.; Stevens, Ian R.

    1993-01-01

    We propose a new interpretation of the behavior of the notable X-ray binary source Centaurus X-3. Based on both theoretical and observational arguments (using EXOSAT data), we suggest that an X-ray excited wind emanating from the O star is present in this system. Further, we suggest that this wind is responsible for the mass transfer in the system rather than Roche-lobe overflow or a normal radiatively driven stellar wind. We show that the ionization conditions in Cen X-3 are too extreme to permit a normal radiatively driven wind to emanate from portions of the stellar surface facing toward the neutron star. In addition, the flux of X-rays from the neutron star is strong enough to drive a thermal wind from the O star with sufficient mass-flux to power the X-ray source. We find that this model can reasonably account for the long duration of the eclipse transitions and other observed features of Cen X-3. If confirmed, this will be the first example of an X-ray excited wind in a massive binary. We also discuss the relationship between the excited wind in Cen X-3 to the situation in eclipsing millisecond pulsars, where an excited wind is also believed to be present.

  4. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  5. Coherent x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pitney, John Allen

    Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been

  6. Generation of High Brightness X-rays with the PLEIADES Thomson X-ray Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W J; Anderson, S G; Barty, C P J

    2003-05-28

    The use of short laser pulses to generate high peak intensity, ultra-short x-ray pulses enables exciting new experimental capabilities, such as femtosecond pump-probe experiments used to temporally resolve material structural dynamics on atomic time scales. PLEIADES (Picosecond Laser Electron InterAction for Dynamic Evaluation of Structures) is a next generation Thomson scattering x-ray source being developed at Lawrence Livermore National Laboratory (LLNL). Ultra-fast picosecond x-rays (10-200 keV) are generated by colliding an energetic electron beam (20-100 MeV) with a high intensity, sub-ps, 800 nm laser pulse. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm2/mrad2. Simulationsmore » of the electron beam production, transport, and final focus are presented. Electron beam measurements, including emittance and final focus spot size are also presented and compared to simulation results. Measurements of x-ray production are also reported and compared to theoretical calculations.« less

  7. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  8. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  9. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Israel, M. H.; Lee, K.; Krawczynski, H.; hide

    2011-01-01

    X-ray polarimetry promises to give new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10-80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  10. Design and Tests of the Hard X-Ray Polarimeter X-Calibur

    NASA Technical Reports Server (NTRS)

    Beilicke, M.; Baring, M. G.; Barthelmy, S.; Binns, W. R.; Buckley, J.; Cowsik, R.; Dowkontt, P.; Garson, A.; Guo, Q.; Haba, Y.; hide

    2012-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy astrophysical sources, such as binary black hole systems, micro-quasars, active galactic nuclei, and gamma-ray bursts. We designed, built and tested a hard X-ray polarimeter X-Calibur to be used in the focal plane of the InFOC(mu)S grazing incidence hard X-ray telescope. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 10 - 80 keY X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the electric field orientation. X-Calibur achieves a high detection efficiency of order unity.

  11. X-ray transmission microscope development

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.; Rosenberger, Franz E.

    1995-01-01

    We are developing a hard x-ray microscope for direct observation of solidification dynamics in metal alloys and metal matrix composites. The Fein-Focus Inc. x-ray source was delivered in September and found to perform better than expected. Confirmed resolution of better than 2 micrometers was obtained and magnifications up to 800X were measured. Nickel beads of 30 micrometer diameter were easily detected through 6mm of aluminum. X-ray metallography was performed on several specimens showing high resolution and clear definition of 3-dimensional structures. Prototype furnace installed and tested.

  12. X-ray compass for determining device orientation

    DOEpatents

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  13. High resolution X- and gamma-ray spectroscopy of solar flares

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1984-01-01

    A balloon-borne X- and gamma-ray instrument was developed, fabricated, and flown. This instrument has the highest energy resolution of any instrument flown to date for measurements of solar and cosmic X-ray and gamma-ray emission in the 13 to 600 keV energy range. The purpose of the solar measurements was to study electron acceleration and solar flare energy release processes. The cosmic observations were to search for cyclotron line features from neutron stars and for low energy gamma-ray lines from nucleosynthesis. The instrument consists of four 4 cm diameter, 1.3 cm thick, planar intrinsic germanium detectors cooled by liquid nitrogen and surrounded by CsI and NaI anti-coincidence scintillation crystals. A graded z collimator limited the field of view to 3 deg x 6 deg and a gondola pointing system provided 0.3 deg pointing accuracy. A total of four flights were made with this instrument. Additional funding was obtained from NSF for the last three flights, which had primarily solar objectives. A detailed instrument description is given. The main scientific results and the data analysis are discussed. Current work and indications for future work are summarized. A bibliography of publications resulting from this work is given.

  14. NASA's Future X-ray Missions: From Constellation-X to Generation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2006-01-01

    Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.

  15. The 2010 May Flaring Episode of Cygnus X-3 in Radio, X-Rays, and gamma-Rays

    NASA Technical Reports Server (NTRS)

    Williams, Peter K. G.; Tomsick, John A.; Bodaghee, Arash; Bower, Geoffrey C.; Pooley, Guy G.; Pottschmidt, Katja; Rodriguez, Jerome; Wilms, Joern; Migliari, Simone; Trushkin, Sergei A.

    2011-01-01

    In 2009, Cygnus X-3 (Cyg X-3) became the first microquasar to be detected in the GeV gamma-ray regime, via the satellites Fermi and AGILE. The addition of this new band to the observational toolbox holds promise for building a more detailed understanding of the relativistic jets of this and other systems. We present a rich dataset of radio, hard and soft X-ray, and gamma-ray observations of Cyg X-3 made during a flaring episode in 2010 May. We detect a approx.3-d softening and recovery of the X-ray emission, followed almost immediately by a approx.1-Jy radio flare at 15 GHz, followed by a 4.3sigma gamma-ray flare (E > 100 MeV) approx.1.5 d later. The radio sampling is sparse, but we use archival data to argue that it is unlikely the gamma-ray flare was followed by any significant unobserved radio flares. In this case, the sequencing of the observed events is difficult to explain in a model in which the gamma-ray emission is due to inverse Compton scattering of the companion star's radiation field. Our observations suggest that other mechanisms may also be responsible for gamma-ray emission from Cyg X-3.

  16. Nonlinear resonance scattering of femtosecond X-ray pulses on atoms in plasmas

    NASA Astrophysics Data System (ADS)

    Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.; Moroz, N. N.

    2017-11-01

    It is shown that for sufficiently short pulses the resonance scattering probability becomes a nonlinear function of the pulse duration. For fs X-ray pulses scattered on atoms in plasmas maxima and minima develop in the nonlinear regime whereas in the limit of long pulses the probability becomes linear and turns over into the standard description of the electromagnetic pulse scattering. Numerical calculations are carried out in terms of a generalized scattering probability for the total time of pulse duration including fine structure splitting and ion Doppler broadening in hot plasmas. For projected X-ray monocycles, the generalized nonlinear approach differs by 1-2 orders of magnitude from the standard theory.

  17. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy.

    PubMed

    Kärtner, F X; Ahr, F; Calendron, A-L; Çankaya, H; Carbajo, S; Chang, G; Cirmi, G; Dörner, K; Dorda, U; Fallahi, A; Hartin, A; Hemmer, M; Hobbs, R; Hua, Y; Huang, W R; Letrun, R; Matlis, N; Mazalova, V; Mücke, O D; Nanni, E; Putnam, W; Ravi, K; Reichert, F; Sarrou, I; Wu, X; Yahaghi, A; Ye, H; Zapata, L; Zhang, D; Zhou, C; Miller, R J D; Berggren, K K; Graafsma, H; Meents, A; Assmann, R W; Chapman, H N; Fromme, P

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  18. Centaurus X-3. [early x-ray binary star spectroscopy

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Cowley, A. P.; Crampton, D.; Van Paradus, J.; White, N. E.

    1979-01-01

    Spectroscopic observations of Krzeminski's star at dispersions 25-60 A/mm are described. The primary is an evolved star of type O6-O8(f) with peculiarities, some of which are attributable to X-ray heating. Broad emission lines at 4640A (N III), 4686 A(He II) and H-alpha show self-absorption and do not originate entirely from the region near the X-ray star. The primary is not highly luminous (bolometric magnitude about -9) and does not show signs of an abnormally strong stellar wind. The X-ray source was 'on' at the time of optical observations. Orbital parameters are presented for the primary, which yield masses of 17 + or - 2 and 1.0 + or - 3 solar masses for the stars. The optical star is undermassive for its luminosity, as are other OB-star X-ray primaries. The rotation is probably synchronized with the orbital motion. The distance to Cen X-3 is estimated to be 10 + or - 1 kpc. Basic data for 12 early-type X-ray primaries are discussed briefly

  19. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat

  20. Examining the X-ray Properties of Lenticular Galaxies: Rollins S0 X-ray Sample (RS0X)

    NASA Astrophysics Data System (ADS)

    Fuse, Christopher R.; Malespina, Alysa

    2017-01-01

    Lenticular galaxies represent a complex morphology in which many questions remain. The S0 morphology possesses spiral galaxy attributes, such as a disk, while also displaying the luminosity and old stellar population indicative of an elliptical galaxy. The proposed formation mechanisms for lenticulars are also varied, with the absence of gas suggesting a faded spiral and the high masses and luminosities implying a merger formation. The star formation and high-energy emission from a sample of S0s will be used to better understand the properties and formation mechanisms of this unique subset of galaxies.We use the Chandra X-ray Observatory archives cycle 1 - 16 to identify a sample of seventeen lenticular galaxies residing in a variety of environments. Data was analyzed using the CIAO software to produce true color images, radial profiles of the halo gas, gas contours, as well as determine the X-ray luminosities of the point sources and gas.The X-ray gas temperature of the sample S0s varied over a narrow range between 0.61 and 0.96 keV, with one outlier, NGC 4382 at 2.0 keV. The X-ray luminosity of the halo gas varies by four dex. The gas temperatures and X-ray luminosities do not vary by environment, with the majority of sample S0s displaying values of typical elliptical galaxies. The S0 sample is X-ray under-luminous relative to the optical luminosity as compared to the sample of early-type galaxies of Ellis & O’Sullivan (2006).The halo gas exhibited some distinct morphological features, such as multiple X-ray peaks, which may indicate a merger event, and highly concentrated gas, suggesting limited gravitational disturbance. Isolated S0, NGC 4406, displays an asymmetric halo, which could be interpreted as gas stripping. An isolated lenticular experiencing gas redistribution due to gravitational perturbation or a cluster-like medium could be interpreted as NGC 4406 forming in a higher galactic density environment than the field.