Swift Multi-wavelength Observing Campaigns: Strategies and Outcomes
NASA Technical Reports Server (NTRS)
Krimm, Hans A.
2007-01-01
The Swift gamma-ray burst explorer has been operating since December 2004 as both a gamma-ray burst (GRB) monitor and telescope and a multi-wavelength observatory, covering the energy range from V band and near UV to hard X rays above 150 keV. It is designed to rapidly repoint to observe newly discovered GRBs, and this maneuverability, combined with an easily changed observing program, allows Swift to also be an effective multiwavelength observatory for non-GRB targets, both as targets of opportunity and pre-planned multi-wavelength observing campaigns. Blazars are particularly attractive targets for coordinated campaigns with TeV experiments since many blazars are bright in both the hard X-ray and TeV energy ranges. Successful coordinated campaigns have included observations of 3C454.3 during its 2005 outburst. The latest Swift funding cycles allow for non- GRB related observations to be proposed. The Burst Alert Telescope on Swift also serves as a hard X-ray monitor with a public web page that includes light curves for over 400 X-ray sources and is used to alert the astronomical community about increased activity from both known and newly discovered sources. This presentation mill include Swift capabilities, strategies and policies for coordinated multi-wavelength observations as well as discussion of the potential outcomes of such campaigns.
Simultaneous Monitoring of X-ray and Radio Variability in Sagittarius A*
NASA Astrophysics Data System (ADS)
Haggard, Daryl; Capellupo, Daniel M.; Choux, Nicolas; Baganoff, Frederick K.; Bower, Geoffrey C.; Cotton, William D.; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Christopher Christopher; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joseph; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad
2017-08-01
We report on joint X-ray/radio campaigns targeting Sagittarius A*, including 9 contemporaneous Chandra and VLA observations. These campaigns are the most extensive of their kind and have allowed us to test whether the black hole’s variations in different parts of the electromagnetic spectrum are due to the same physical processes. We detect significant radio variability peaking >176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also identify other potentially associated X-ray and radio variability, with radio peaks appearing <80 minutes after weaker X-ray flares. These results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and at radio wavelengths are not temporally correlated, and show that the radio variations occurring around the time of X-ray flaring are not significantly greater than the overall radio flux variations. We also cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.
Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Corcoran, Michael F.
2012-01-01
X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 2-10 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron.
NASA Astrophysics Data System (ADS)
Kriss, Gerard A.; Agn Storm Team
2015-01-01
The AGN STORM collaboration monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, with observations spanning the hard X-ray to mid-infrared wavebands. The core of this campaign was an intensive HST COS program, which obtained 170 far-ultraviolet spectra at approximately daily intervals, with twice-per-day monitoring of the X-ray, near-UV, and optical bands during much of the same period using Swift. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow associated absorption lines in the UV spectrum of NGC 5548 remain strong. The lower-ionization transitions that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. Their depths over the longer term, however, also respond to the strength of the soft X-ray obscuration, indicating that the soft X-ray obscurer has a significant influence on the ionizing UV continuum that is not directly tracked by the observable UV continuum itself.
Measuring the Impact of AGN Outflows via Intensive UV and X-ray Monitoring Campaigns
NASA Astrophysics Data System (ADS)
Kriss, Gerard
2015-08-01
Observations of AGN outflows have progressed from the era of single-object surveys to intensive monitoring campaigns spanning weeks to months. The combination of multiple observations, improved temporal coverage, multi-wavelength monitoring in both the X-ray and UV bands, and the baseline of prior historical observations has enabled determinations of the locations, mass flux, and kinetic luminosities of the outflowing absorbing gas in several AGN, notably Mrk 509, NGC 5548, Mrk 335, and NGC 985. Another intensive campaign is planned for 2015-2016 on NGC 7469. In all cases, the mass flux and kinetic energy is dominated by the higher-ionization X-ray absorbing gas. But the higher-resolution UV observations give a kinematically resolved picture of the overall outflow. In most cases, the outflowing gas is located at parsec to kpc scales, with insufficient kinetic luminosity to have an evolutionary impact on the host galaxy. Typically, the kinetic luminosity is less than a percent of the Eddington luminosity. In some cases, transient, broad UV absorption troughs have appeared (e.g., Mrk 335 and NGC 5548), with variability timescales suggesting locations near the broad-line region of the AGN. Yet these higher-velocity outflows also have low-impact kinetic luminosities. In the best-studied case of NGC 5548, the strength of the broad UV absorption lines varies with the degree of soft X-ray obscuration first revealed by XMM-Newton spectra. The lower-ionization, narrow associated absorption lines in the UV spectrum of NGC 5548 that appeared concurrently with the soft X-ray obscuration vary in response to the changing UV flux on a daily basis. The intensive monitoring allows us to fit time-dependent photoionization models to the UV-absorbing gas, allowing precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
XTE Proposal #20102--"SS 433's High Energy Spectrum"
NASA Technical Reports Server (NTRS)
Band, David L.; Blanco, P.; Rothschild, R.; Kawai, N.; Kotani, T.; Oka, T.; Wagner, R. M.; Hjellming, R.; Rupen, M.; Brinkmann, W.
1999-01-01
We observed the jet-producing compact binary system SS 433 with RXTE during three multiwavelength campaigns, the first in conjunction with ASCA observations, the second simultaneous with a VLA-VLBA-MERLIN campaign, and the third associated with a Nobeyama millimeter-band campaign. All these campaigns included optical observations. Occurring at different jet precession and binary phases, the observations also monitored the system during a radio flare. The data provide SS 433's X-ray spectrum over more than an energy decade, and track the spectral variations as the X-ray source was partially eclipsed. The continuum can be modeled as a power law with an exponential cutoff, which can be detected to approximately 50 keV. Strong line emission is evident in the 5-10 keV range which can be modeled as a broad line whose energy is precession independent and a narrow line whose energy does vary with jet precession phase; this line model is clearly an over simplification since the PCA does not have sufficient energy resolution to detect the lines ASCA observed. The eclipses are deeper at high energy and at jet precession phases when the jets are more inclined towards and away from us. A large radio flare occurred between two sets of X-ray monitoring observations; an X-ray observation at the peak of the flare found a softer spectrum with a flux approximately 1/3 that of the quiescent level.
Optical and X-ray rebrightening in NS X-ray Nova Aql X-1
NASA Astrophysics Data System (ADS)
Meshcheryakov, A.; Bikmaev, I.; Irtuganov, E.; Sakhibullin, N.; Vlasyuk, V. V.; Spiridonova, O. I.; Khamitov, I.; Medvedev, P.; Pavlinsky, M. N.; Tsygankov, S. S.
2017-06-01
The current outburst in NS X-ray Nova Aql X-1 has started 28 May 2017, as it was reported earlier (see ATel#10441, #10450, #10452). During optical monitoring campaign of Aql X-1, performed at 1.5-m Russian-Turkish telescope (TUBITAK National Observatory) and 1-m SAO RAS optical telescope (Special Astrophysical Observatory) we report a substantial increase of optical brightness of Aql X-1 in the last few days.
NASA Astrophysics Data System (ADS)
González-Galán, A.; Oskinova, L. M.; Popov, S. B.; Haberl, F.; Kühnel, M.; Gallagher, J.; Schurch, M. P. E.; Guerrero, M. A.
2018-04-01
SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk
2015-02-10
Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previousmore » campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.« less
Coordinated Multiwavelength Observations of PKS 0528+134 in Quiescence
NASA Astrophysics Data System (ADS)
Boettcher, Markus; Palma, N.
2011-01-01
We report results of an intensive multiwavelength campaign on the prominent high-redshift (z = 2.06) gamma-ray bright blazar PKS 0528+134 in September - October 2009. The campaign was centered on four 30 ksec pointings with XMM-Newton, supplemented with ground-based optical (MDM, Perkins) and radio (UMRAO, Medicina, Metsaehovi, Noto, SMA) observations as well as long-term X-ray monitoring with RXTE and gamma-ray monitoring by Fermi. We find significant variability on 1 day time scales in the optical regime, accompanied by a weak redder-when-brighter trend. X-ray variability is found on longer ( 1 week) time scales, while the Fermi light curve shows no evidence for variability, neither in flux nor spectral index. We constructed four simultaneous spectral energy distributions, which can all be fit satisfactorily with a one-zone leptonic jet model. This work was supported by NASA through XMM-Newton Guest Observer Grant NNX09AV45G.
Monitoring of RU Peg requested for Swift observations
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2012-06-01
Dr. Koji Mukai (Universities Space Research Association/NASA Goddard Space Flight Center) has requested AAVSO observers' assistance in monitoring the SS Cyg-type dwarf nova RU Peg in support of target-of-opportunity observations with the NASA Swift satellite during an outburst. His observations will be targeted during the rise to outburst and during late decline from outburst. Thus, your prompt notification to AAVSO Headquarters of activity in RU Peg will be crucial to the success of this campaign. Dr. Mukai writes: "In the famous AAVSO/EUVE/RXTE campaign on SS Cyg (Mattei et al. 2000JAVSO..28..160M), the hard X-ray flux went up (with a delay) during the rise, then suddenly dropped; there was a corresponding flux enhancement episode during the decline. We know that, during the peak of the outburst, many dwarf novae are hard X-ray fainter than in quiescence (with a few exceptions, like U Gem). However, the hard X-ray enhancement episodes seen in SS Cyg have never been obs! erved in other dwarf novae. We have proposed a hypothesis that this is related to the mass of the accreting white dwarf; only dwarf novae with a relatively massive white dwarf show the hard X-ray enhancement. If that's true, we may well see similar enhancement in RU Peg, which is thought to have a massive white dwarf. Even if this hypothesis is completely wrong, RU Peg is a good target for an SS Cyg-like campaign, since it's X-ray bright during quiescence." Visual and CCD observations (filtered preferred to unfiltered) are appropriate for this campaign. Observers are requested to monitor RU Peg duning minimum, throughout the next outburst, and after return to minimym, and report their observations in a timely manner. If RU Peg appears to be brightening from minimum, please report your observations immediately to the AAVSO. If it is brighter than magnitude 12.3, please also send an email report to Elizabeth Waagen (eowaagen@aavso.org) and Matthew Templeton (matthewt@aavso.org). Please be aware that there is a ~12.5-magnitude star 11" NE of RU Peg.
Exceptional AGN long-timescale X-ray variability: The case of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-12-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜ 260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from - 1.57 to - 2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We present here results from our monitoring campaign.
Coupling of jet and accretion activity in the active galaxy NGC 1052
NASA Astrophysics Data System (ADS)
Boeck, Moritz; Kadler, Matthias; Ros, Eduardo; Weaver, Kimberly; Wilms, Joern; Brenneman, Laura; Angelakis, Emmanouil
The radio loud galaxy NGC 1052 has been monitored for the past fifteen years with Very Long Baseline Interferometry (VLBI) observations and has been the target of an intense multiwave-length monitoring campaign since 2005. This provides an excellent dataset for analyzing the relationship between properties of the relativistic jet and the accretion disk in active galactic nuclei. Components in the jet are tracked and the ejection times of new components are deter-mined. The analysis of the radio variability is complemented by the study of X-ray observations allowing us to draw conclusions on the accretion activity. The X-ray variability on weekly and monthly time scales is monitored with the Rossi X-ray Timing Explorer, whereas deep XMM-Newton and Suzaku observations provide spectra showing a broad Fe Kα line, whose variability can provide a particularly valuable probe of the inner accretion flow.
NASA Technical Reports Server (NTRS)
Rots, Arnold H.; Swank, Jean (Technical Monitor)
2001-01-01
The monitoring of the X-ray pulses from the Crab pulsar is still ongoing at the time of this writing, and we hope to be able to continue the campaign for the life of the XTE mission. We have established beyond all doubt that: (1) the X-ray main pulse leads the radio pulse by approximately 300 microseconds, (2) this phase lag is constant and not influenced by glitches, (3) this lag does not depend on X-ray energy, (4) the relative phase of the two X-ray pulses does not vary, and (5) the spectral indices of primary, secondary, and inter-pulse are distinct and constant. At this time we are investigating whether the radio timing ephemeris can be replaced by an x-ray ephemeris and whether any long-time timing ephemeris can be established. If so, it would enable use to study variations in pulse arrival times at a longer time scales. Such a study is easier in x-rays than at radio wavelengths since the dispersion measure plays no role. These results were reported at the 2000 HEAD Meeting in Honolulu, HI. Travel was paid partly out of this grant. The remainder was applied toward the acquisition of a laptop computer that allows independent and fast analysis of all monitoring observations.
NASA Astrophysics Data System (ADS)
Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.
2018-03-01
We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.
Long term multiwavelength studies of the corona/disc connection in AGN
NASA Astrophysics Data System (ADS)
Buisson, D.; Lohfink, A.; Alston, W.; Fabian, A.; Gallo, L.; Kara, E.; Zoghbi, A.; Wilkins, D.; Miller, J.; Cackett, E.
2017-10-01
One way of increasing our understanding of AGN is determining the nature of the connection between the optical/UV emitting accretion disc and the X-ray emitting corona. Studies of variability in these two bands are a key tool for gaining insight into the processes involved. We will present results from a sample of long-term AGN monitoring campaigns in the optical, UV and X-ray with Swift. In particular, we will explore UV/optical-X-ray correlations and associated time lags. We will compare these measurements and the UV/optical RMS spectra with theoretical reprocessing models and confront recent claims of the observed lags being longer than those which are expected for a standard thin disc. Additionally, a new Swift monitoring campaign of the z=2 quasar PG 1247+267 allows us to probe the shorter wavelengths at the peak of the accretion disc spectrum, providing information on the region of the disc closest to the black hole. However, not all AGN show such correlations, including IRAS 13224-3809, the subject of a recent 1.5 Ms XMM observation. Using this and other examples, we will explore the possible reasons for the lack of observed correlation.
What Can Simbol-X Do for Gamma-ray Binaries?
NASA Astrophysics Data System (ADS)
Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.
2009-05-01
Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.
Seven years with the Swift Supergiant Fast X-ray Transients project
NASA Astrophysics Data System (ADS)
Romano, P.
2015-09-01
Supergiant Fast X-ray Transients (SFXTs) are HMXBs with OB supergiant companions. I review the results of the Swift SFXT project, which since 2007 has been exploiting Swift's capabilities in a systematic study of SFXTs and supergiant X-ray binaries (SGXBs) by combining follow-ups of outbursts, when detailed broad-band spectroscopy is possible, with long-term monitoring campaigns, when the out-of-outburst fainter states can be observed. This strategy has led us to measure their duty cycles as a function of luminosity, to extract their differential luminosity distributions in the soft X-ray domain, and to compare, with unprecedented detail, the X-ray variability in these different classes of sources. I also discuss the ;seventh year crisis;, the challenges that the recent Swift observations are making to the prevailing models attempting to explain the SFXT behavior.
The Nature of the Torus in the Heavily Obscured AGN Markarian 3: an X-Ray Study
NASA Technical Reports Server (NTRS)
Guainazzi, M.; Risaliti, G.; Awaki, H.; Arevalo, P.; Bauer, F. E.; Bianchi, S.; Boggs, S.E; Brandt, W. N.; Brightman, M.; Christensen, F. E.;
2016-01-01
In this paper, we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy, Markarian 3, carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMMNewton. The hard X-ray spectrum of Markarian 3 is variable on all the time-scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N(sub H) approx. 0.8-1.1 x 10(exp 24)/sq cm). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle approx. 66deg, and is seen at a grazing angle through its upper rim (inclination angle approx. 70deg). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17 +/- 5) and individual column density, [approx. (4.9 +/- 1.5) x 10(exp 22)/ sq cm]. The comparison of IR and X-ray spectroscopic results with state-of-the art torus models suggests that at least two-thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterized by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.
Simultaneous Multiwavelength Observations of the Blazar 1ES 1959+650 at a Low TeV Flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tagliaferri, G.; Ghisellini, G.; Foschini, L.
We present the results from a multiwavelength campaign on the TeV blazar 1ES 1959+650, performed in 2006 May. Data from the optical, UV, soft- and hard-X-ray, and very high energy (VHE) gamma-ray (E > 100 GeV) bands were obtained with the Suzaku and Swift satellites, the MAGIC telescope, and other ground-based facilities. The source spectral energy distribution (SED), derived from Suzaku and MAGIC observations at the end of 2006 May, shows the usual double hump shape, with the synchrotron peak at a higher flux level than the Compton peak. With respect to historical values, during our campaign the source exhibitedmore » a relatively high state in X-rays and optical, while in the VHE band it was at one of the lowest level so far recorded. We also monitored the source for flux spectral variability on a time window of 10 days in the optical-UV and X-ray bands and 7 days in the VHE band. The source varies more in the X-ray than in the optical band, with the 2-10 keV X-ray flux varying by a factor of {approx}2. The synchrotron peak is located in the X-ray band and moves to higher energies as the source gets brighter, with the X-ray fluxes above it varying more rapidly than the X-ray fluxes at lower energies. The variability behavior observed in the X-ray band cannot be produced by emitting regions varying independently and suggests instead some sort of 'standing shock' scenario. The overall SED is well represented by a homogeneous one-zone synchrotron inverse Compton emission model, from which we derive physical parameters that are typical of high-energy peaked blazars.« less
NICER observations of highly magnetized neutron stars: Initial results
NASA Astrophysics Data System (ADS)
Enoto, Teruaki; Arzoumanian, Zaven; Gendreau, Keith C.; Nynka, Melania; Kaspi, Victoria; Harding, Alice; Guver, Tolga; Lewandowska, Natalia; Majid, Walid; Ho, Wynn C. G.; NICER Team
2018-01-01
The Neutron star Interior Composition Explorer (NICER) was launched on June 3, 2017, and attached to the International Space Station. The large effective area of NICER in soft X-rays makes it a powerful tool not only for its primary science objective (diagnostics of the nuclear equation state) but also for studying neutron stars of various classes. As one of the NICER science working groups, the Magnetars and Magnetospheres (M&M) team coordinates monitoring and target of opportunity (ToO) observations of magnetized neutron stars, including magnetars, high-B pulsars, X-ray dim isolated neutron stars, and young rotation-powered pulsars. The M&M working group has performed simultaneous X-ray and radio observations of the Crab and Vela pulsars, ToO observations of the active anomalous X-ray pulsar 4U 0142+61, and a monitoring campaign for the transient magnetar SGR 0501+4516. Here we summarize the current status and initial results of the M&M group.
SWIFT OBSERVATIONS OF TWO OUTBURSTS FROM THE MAGNETAR 4U 0142+61
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archibald, R. F.; Kaspi, V. M.; Scholz, P.
2017-01-10
4U 0142+61 is one of a small class of persistently bright magnetars. Here, we report on a monitoring campaign of 4U 0142+61 from 2011 July 26 to 2016 June 12 using the Swift X-ray Telescope, continuing a 16-year timing campaign with the Rossi X-ray Timing Explorer . We show that 4U 0142+61 had two radiatively loud timing events, on 2011 July 29 and 2015 February 28, both with short soft γ -ray bursts, and a long-lived flux decay associated with each case. We show that the 2015 timing event resulted in a net spin-down of the pulsar that is duemore » to overrecovery of a glitch. We compare this timing event to previous such events in other pulsars with high magnetic fields and discuss net spin-down glitches now seen in several young, high-B pulsars.« less
Properties of Supergiant Fast X-Ray Transients as Observed by Swift
NASA Technical Reports Server (NTRS)
Romano, P.; Vercellone, S.; Krimm, H. A.; Esposito, P.; Cusumano, C.; LaParola, V.; Mangano, V.; Kennea, J. A.; Burrows, D. N.; Pagani, C.;
2011-01-01
We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detecting outbursts from these fast transients with the BAT and by following them for days with the XRT. Thus, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we have performed several campaigns of intense monitoring with the XRT, assessing the fraction of the time these sources spend in each phase, and their duty cycle of inactivity.
The X-ray monitoring of the long-period colliding wind binaries
NASA Astrophysics Data System (ADS)
Sugawara, Y.; Maeda, Y.; Tsuboi, Y.
2017-10-01
We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.
Multi-Wavelength Monitoring of GRS 1915+105
NASA Technical Reports Server (NTRS)
Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.
1997-01-01
Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here preliminary results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8m Perkins telescope at Lowell Observatory. The K-band data presented herein provide the first long-term well-sampled IR light curve of GRS 1915+105. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.
Chandra's Observations of Jupiter's X-Ray Aurora During Juno Upstream and Apojove Intervals
NASA Technical Reports Server (NTRS)
Jackman, C.M.; Dunn, W.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.
2017-01-01
The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove (expected close to the magnetopause). We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 kiloseconds for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.
Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Plotkin, R. M.; Bright, J.; Miller-Jones, J. C. A.; Shaw, A. W.; Tomsick, J. A.; Russell, T. D.; Zhang, G.-B.; Russell, D. M.; Fender, R. P.; Homan, J.; Atri, P.; Bernardini, F.; Gelfand, J. D.; Lewis, F.; Cantwell, T. M.; Carey, S. H.; Grainge, K. J. B.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.
2017-10-01
The candidate black hole X-ray binary Swift J1753.5-0127 faded to quiescence in 2016 November after a prolonged outburst that was discovered in 2005. Nearly three months later, the system displayed renewed activity that lasted through 2017 July. Here, we present radio and X-ray monitoring over ≈ 3 months of the renewed activity to study the coupling between the jet and the inner regions of the disk/jet system. Our observations cover low X-ray luminosities that have not historically been well-sampled ({L}{{X}}≈ 2× {10}33{--}{10}36 {erg} {{{s}}}-1; 1-10 keV), including time periods when the system was both brightening and fading. At these low luminosities, Swift J1753.5-0127 occupies a parameter space in the radio/X-ray luminosity plane that is comparable to “canonical” systems (e.g., GX 339-4), regardless of whether the system was brightening or fading, even though during its ≳11 year outburst, Swift J1753.5-0127 emitted less radio emission from its jet than expected. We discuss implications for the existence of a single radio/X-ray luminosity correlation for black hole X-ray binaries at the lowest luminosities ({L}{{X}}≲ {10}35 {erg} {{{s}}}-1), and we compare to supermassive black holes. Our campaign includes the lowest luminosity quasi-simultaneous radio/X-ray detection to date for a black hole X-ray binary during its rise out of quiescence, thanks to early notification from optical monitoring combined with fast responses from sensitive multiwavelength facilities.
Long-term monitoring of Ark 120 with Swift
NASA Astrophysics Data System (ADS)
Gliozzi, M.; Papadakis, I. E.; Grupe, D.; Brinkmann, W. P.; Räth, C.
2017-02-01
We report the results of a six-month Swift monitoring campaign of Ark 120, a prototypical `bare' Seyfert 1 galaxy. The lack of intrinsic absorption combined with the nearly contemporaneous coverage of the ultraviolet (UV) and X-ray bands makes it possible to investigate the link between the accretion disc and the putative Comptonization corona. Our observations confirm the presence of substantial temporal variability, with the X-ray characterized by large-amplitude flux changes on time-scales of few days, while the variations in the UV bands are smoother and occur on time-scales of several weeks. The source also shows spectral variability with the X-ray spectrum steepening when the source is brighter. We do not detect any correlation between the UV flux and the X-ray spectral slope. A cross-correlation analysis suggests positive delays between X-rays and the UV emission, favouring a scenario of disc reprocessing. Although the strength of the correlation is moderate with a delay which is not well constrained (7.5 ± 7 d), it is nevertheless indicative of a very large disc reprocessing region, with a separation between the X-ray and the UV-emitting regions, which could be as large as 1000 rG. The Ark 120 correlation results are in agreement with those obtained in similar multiwavelength monitoring studies of active galactic nuclei (AGN). When combined together, the observations so far can be well described by a linear relation between the X-ray/UV delays and the mass of the central black hole. Within the context of the simplest scenario, where these delays correspond to light-travel times, the implied distance between the X-ray source and the optical/UV disc reprocessing region in these AGN should be of the order of many hundreds of gravitational radii.
Understanding Black Hole X-ray Binaries: The Case of Cygnus X-1
NASA Technical Reports Server (NTRS)
Pottschmidt, Katja
2008-01-01
Black Hole X-ray Binaries are known to display distinct emission states that differ in their X-ray spectra, their X-ray timing properties (on times scales less than 1 s) and their radio emission. In recent years monitoring observations, specially with NASA's Rossi X-ray Timing Explorer (RXTE), have provided us with detailed empirical modeling of the phenomenology of the different states as well as a unification scheme of the long term evolution of black holes, transient and persistent, in terms of these states. Observations of the persistent High Mass X-ray Binary (HMXB) Cygnus X-l have been at the forefront of learning about black hole states since its optical identification through a state transition in 1973. In this talk I will present in depth studies of several different aspects of the accretion process in this system. The main data base for these studies is an ongoing RXTE and Ryle radio telescope bi-weekly monitoring campaign that started in 1997. I will discuss high-resolution timing results, especially power spectra, which first gave rise to the Lorentzian description now widely used for black hole and neutron star binaries, and time lags, which we found to be especially well suited to identify state transitions. The evolution of spectral, timing, and radio parameters over years will be shown, including the rms-flux relation and the observation of a clearly correlated radio/x-ray flare. We also observed Cygnus X-1 with INTEGRAL, which allowed us to extend timing and spectral studies to higher energies, with XMM, which provided strong constraints on the parameters of the 6.4 keV iron fluorescence line, and with Chandra, which provided the most in depth study to date of the stellar wind in this system. Models based on the physical conditions in the accretion region are still mainly concentrated on the one or other of the observational areas but they are expanding: as an example I will review results from a jet model for the quantitative description of the radio through X-ray spectra. I will conclude with an outlook on a truly multi-instrument observing campaign of Cygnus X-1 that was performed in 2008 April in order to better constrain the jet models mentioned above (and provide a unique data set for cross-calibration).
Chandra observations of Jupiter's X-ray Aurora during Juno upstream and apojove intervals
NASA Astrophysics Data System (ADS)
Dunn, W.; Jackman, C. M.; Kraft, R.; Gladstone, R.; Branduardi-Raymont, G.; Knigge, C.; Altamirano, D.; Elsner, R.; Kammer, J.
2017-12-01
The Chandra space telescope has recently conducted a number of campaigns to observe Jupiter's X-ray aurora. The first set of campaigns took place in summer 2016 while the Juno spacecraft was upstream of the planet sampling the solar wind. The second set of campaigns took place in February, June and August 2017 at times when the Juno spacecraft was at apojove. These campaigns were planned following the Juno orbit correction to capitalise on the opportunity to image the X-ray emission while Juno was orbiting close to the expected position of the magnetopause. Previous work has suggested that the auroral X-ray emissions map close to the magnetopause boundary [e.g. Vogt et al., 2015; Kimura et al., 2016; Dunn et al., 2016] and thus in situ spacecraft coverage in this region combined with remote observation of the X-rays afford the chance to constrain the drivers of these energetic emissions and determine if they originate on open or closed field lines. We aim to examine possible drivers of X-ray emission including reconnection and the Kelvin-Helmholtz instability and to explore the role of the solar wind in controlling the emissions. We report on these upstream and apojove campaigns including intensities and periodicities of auroral X-ray emissions. This new era of jovian X-ray astronomy means we have more data than ever before, long observing windows (up to 72 ks for this Chandra set), and successive observations relatively closely spaced in time. These features combine to allow us to pursue novel methods for examining periodicities in the X-ray emission. Our work will explore significance testing of emerging periodicities, and the search for coherence in X-ray pulsing over weeks and months, seeking to understand the robustness and regularity of previously reported hot spot X-ray emissions. The periods that emerge from our analysis will be compared against those which emerge from radio and UV wavelengths.
Spectral and Timing States in Black Hole Binaries
NASA Astrophysics Data System (ADS)
Wilms, J.
Results on the long term variability of galactic black hole candidates are reviewed. I mainly present the results of a > 2 year long campaign with RXTE to monitor the canonical soft state black hole candidates LMC X-1 and LMC X-3 using monthly observations. These observations are presented within the context of the RXTE-ASM long term quasi-periodic variability on timescales of about 150d. For LMC X-3, times of low ASM count rate are correlated with a significant hardening of the X-ray spectrum. The observation with the lowest flux during the whole monitoring campaign can be modeled with a simple γ=1.7 power law -- a hard state spectrum. Since these spectral hardenings occur on the 150 d timescale it is probable that they are associated with periodic changes in the accretion rate. Possible causes for this behavior are discussed, e.g. a wind driven limit-cycle or long-term variability of the donor star.
MULTIWAVELENGTH OBSERVATIONS OF 3C 454.3. II. THE AGILE 2007 DECEMBER CAMPAIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnarumma, I.; Pucella, G.; Vittorini, V.
2009-12-20
We report on the second Astrorivelatore Gamma a Immagini Leggero (AGILE) multiwavelength campaign of the blazar 3C 454.3 during the first half of 2007 December. This campaign involved AGILE, Spitzer, Swift, Suzaku, the Whole Earth Blazar Telescope (WEBT) consortium, the Rapid Eye Mount (REM), and the Multicolor Imaging Telescopes for Survey and Monstrous Explosions (MITSuME) telescopes, offering a broadband coverage that allowed for a simultaneous sampling of the synchrotron and inverse Compton (IC) emissions. The two-week AGILE monitoring was accompanied by radio to optical monitoring by WEBT and REM, and by sparse observations in mid-infrared and soft/hard X-ray energy bandsmore » performed by means of Target of Opportunity observations by Spitzer, Swift, and Suzaku, respectively. The source was detected with an average flux of approx250 x 10{sup -8} photons cm{sup -2} s{sup -1} above 100 MeV, typical of its flaring states. The simultaneous optical and gamma-ray monitoring allowed us to study the time lag associated with the variability in the two energy bands, resulting in a possible approx
Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars
NASA Astrophysics Data System (ADS)
Kaspi, Victoria
We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.
Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)
NASA Astrophysics Data System (ADS)
We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.
X-ray flaring from Sagittarius A*: exploring the Milky Way black hole through its brightest flares
NASA Astrophysics Data System (ADS)
Nynka, Melania; Haggard, Daryl
2017-08-01
Sagittarius A* is the supermassive black hole at the center of our own Milky Way galaxy. Ambitious monitoring campaigns have yielded rich multiwavelength, time-resolved data, which have the power to probe the physical processes that underlie Sgr A*'s quiescent and flare emission. In 2013 and 2014 the Chandra X-ray Observatory captured two extremely luminous flares from Sgr A*, the two brightest ever detected in X-ray. I will describe the spectral and temporal properties of these flares, how they compare to previous analysis, and the possible physical processes driving the Sgr A* variability. I will also discuss the power spectral densities of the flares which may contain information about the black hole's ISCO and spin.
VizieR Online Data Catalog: X-ray monitoring of M31 novae (Henze+, 2014)
NASA Astrophysics Data System (ADS)
Henze, M.; Pietsch, W.; Haberl, F.; Della Valle, M.; Sala, G.; Hatzidimitriou, D.; Hofmann, F.; Hernanz, M.; Hartmann, D. H.; Greiner, J.
2014-02-01
This work is based on XMM-Newton and Chandra observations 30.0 of the central area of M 31 that were dedicated to the monitoring of SSS states of novae (PI: W. Pietsch). We report on the analysis of three observation campaigns carried out during Nov 2009 to Feb 2010, Nov 2010 to Mar 2011, and Nov 2011 to Mar 2012. (10 data files).
A NEW, LOW BRAKING INDEX FOR THE LMC PULSAR B0540–69
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, F. E.; Harding, A. K.; Guillemot, L.
2016-08-20
We report the results of a 16 month monitoring campaign using the Swift satellite of PSR B0540–69, a young pulsar in the Large Magellanic Cloud. Phase connection was maintained throughout the campaign so that a reliable ephemeris could be determined, and the length of the campaign is adequate to accurately determine the spin frequency ν and its first and second derivatives. The braking index n is 0.031 ± 0.013 (90% confidence), a value much lower than previously reported for B0540–69 and almost all other young pulsars. We use data from the extensive monitoring campaign with Rossi X-ray Timing Explorer tomore » show that timing noise is unlikely to significantly affect the measurement. This is the first measurement of the braking index in the pulsar's recently discovered high spin-down state. We discuss possible mechanisms for producing the low braking index.« less
Multi-Wavelength Monitoring of GRS 1915+105
NASA Technical Reports Server (NTRS)
Bandyopadhyay, R.; Martini, P.; Gerard, E.; Charles, P. A.; Wagner, R. M.; Shrader, C.; Shahbaz, T.; Mirabel, I. F.
1997-01-01
Since its discovery in 1992, the superluminal X-ray transient GRS 1915+105 has been extensively observed in an attempt to understand its behaviour. We present here first results from a multi-wavelength campaign undertaken from July to September 1996. This study includes X-ray data from the RXTE All Sky Monitor and BATSE, two-frequency data from the Nancay radio telescope, and infrared photometry from the 1.8 m Perkins telescope at Lowell Observatory. The first long-term well-sampled IR light curve of GRS 1915+105 is presented herein and is consistent with the interpretation of this source as a long-period binary. We compare the various light curves, searching for correlations in the behaviour of the source at differing wavelengths and for possible periodicities.
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2011-03-10
Here, we report on observations of BL Lacertae during the first 18 months of Fermi LAT science operations and present results from a 48 day multifrequency coordinated campaign from 2008 August 19 to 2008 October 7. The radio to gamma-ray behavior of BL Lac is unveiled during a low-activity state thanks to the coordinated observations of radio-band (Metsähovi and VLBA), near-IR/optical (Tuorla, Steward, OAGH, and MDM), and X-ray ( RXTE and Swift) observatories. No variability was resolved in gamma rays during the campaign, and the brightness level was 15 times lower than the level of the 1997 EGRET outburst. Moderatemore » and uncorrelated variability has been detected in UV and X-rays. The X-ray spectrum is found to be concave, indicating the transition region between the low- and high-energy components of the spectral energy distribution (SED). VLBA observation detected a synchrotron spectrum self-absorption turnover in the innermost part of the radio jet appearing to be elongated and inhomogeneous, and constrained the average magnetic field there to be less than 3 G. Over the following months, BL Lac appeared variable in gamma rays, showing flares (in 2009 April and 2010 January). There is no evidence for the correlation of gamma rays with the optical flux monitored from the ground in 18 months. The SED may be described by a single-zone or a two-zone synchrotron self-Compton (SSC) model, but a hybrid SSC plus external radiation Compton model seems to be preferred based on the observed variability and the fact that it provides a fit closest to equipartition.« less
Aleksić, J.; Antonelli, L. A.; Antoranz, P.; ...
2013-07-31
Here, BL Lacertae objects are variable at all energy bands on time scales down to minutes. To construct and interpret their spectral energy distribution (SED), simultaneous broad-band observations are mandatory. Up to now, the number of objects studied during such campaigns is very limited and biased towards high flux states. Furthermore, we present the results of a dedicated multi-wavelength study of the high-frequency peaked BL Lacertae (HBL) object and known TeV emitter 1ES 2344+514 by means of a pre-organised campaign. The observations were conducted during simultaneous visibility windows of MAGIC and AGILE in late 2008. The measurements were complemented bymore » Metsähovi, RATAN-600, KVA+Tuorla, Swift and VLBA pointings. Additional coverage was provided by the ongoing long-term F-GAMMA and MOJAVE programs, the OVRO 40-m and CrAO telescopes as well as the Fermi satellite. The obtained SEDs are modelled using a one-zone as well as a self-consistent two-zone synchrotron self-Compton model. As a result, 1ES 2344+514 was found at very low flux states in both X-rays and very high energy gamma rays. Variability was detected in the low frequency radio and X-ray bands only, where for the latter a small flare was observed. The X-ray flare was possibly caused by shock acceleration characterised by similar cooling and acceleration time scales. MOJAVE VLBA monitoring reveals a static jet whose components are stable over time scales of eleven years, contrary to previous findings. There appears to be no significant correlation between the 15 GHz and R-band monitoring light curves. The observations presented here constitute the first multi-wavelength campaign on 1ES 2344+514 from radio to VHE energies and one of the few simultaneous SEDs during low activity states. The quasi-simultaneous Fermi-LAT data poses some challenges for SED modelling, but in general the SEDs are described well by both applied models. The resulting parameters are typical for TeV emitting HBLs. Consequently it remains unclear whether a so-called quiescent state was found in this campaign.« less
Results of neutron irradiation of GEM detector for plasma radiation detection
NASA Astrophysics Data System (ADS)
Jednorog, S.; Bienkowska, B.; Chernyshova, M.; Łaszynska, E.; Prokopowicz, R.; Ziołkowski, A.
2015-09-01
The detecting devices dedicated for plasma monitoring will be exposed for massive fluxes of neutron, photons as well as other rays that are components of fusion reactions and their product interactions with plasma itself or surroundings. In result detecting module metallic components will be activated becoming a source of radiation. Moreover, electronics components could change their electronic properties. The prototype GEM detector constructed for monitoring soft X-ray radiation in ITER oriented tokamaks was used for plasma monitoring during experimental campaign on tokamak ASDEX Upgrade. After that it became a source of gamma radiation caused by neutrons. The present work contains description of detector activation in the laboratory conditions.
Pulsar timing for the Fermi gamma-ray space telescope
Smith, D. A.; Guillemot, L.; Camilo, F.; ...
2008-10-27
Here, we describe a comprehensive pulsar monitoring campaign for the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The detection and study of pulsars in gamma rays give insights into the populations of neutron stars and supernova rates in the Galaxy, into particle acceleration mechanisms in neutron star magnetospheres, and into the “engines” driving pulsar wind nebulae. LAT's unprecedented sensitivity between 20 MeV and 300 GeV together with its 2.4 sr field-of-view makes detection of many gamma-ray pulsars likely, justifying the monitoring of over two hundred pulsars with large spin-down powers. To search for gamma-ray pulsationsmore » from most of these pulsars requires a set of phase-connected timing solutions spanning a year or more to properly align the sparse photon arrival times. We describe the choice of pulsars and the instruments involved in the campaign. Attention is paid to verifications of the LAT pulsar software, using for example giant radio pulses from the Crab and from PSR B1937+21 recorded at Nançay, and using X-ray data on PSR J0218+4232 from XMM-Newton. We demonstrate accuracy of the pulsar phase calculations at the microsecond level.« less
Recent X-ray Variability of eta Carinae: the Quick Road to Recovery
NASA Technical Reports Server (NTRS)
Corcoran, M. Francis; Hamaguchi, K.; Pittard, J. M.; Russell, C. M. P.; Owocki, S. P.; Parkin, E. R.; Okazaki, A.
2010-01-01
We report continued monitoring of the superluminous binary system eta Car by the Proportional Counter Array on the Rossi X-ray Timing Observatory (RXTE) through the 2009 X-ray minimum. The RXTE campaign shows that the minimum began on 2009 January 16, consistent with the phasings of the two previous minima, and overall, the temporal behavior of the X-ray emission was similar to that observed by RXTE in the previous two cycles. However, important differences did occur. The 2-10 keV X-ray flux and X-ray hardness decreased in the 2.5-year interval leading up to the 2009 minimum compared to the previous cycle. Most intriguingly, the 2009 X-ray minimum was about one month shorter than either of the previous two minima. During the egress from the 2009 minimum the X-ray hardness increased markedly as it had during egress from the previous two minima, although the maximum X-ray hardness achieved was less than the maximum observed after the two previous recoveries. We suggest that the cycle-to-cycle variations, especially the unexpectedly early recovery from the 2009 X-ray minimum, might have been the result of a decline in eta Car's wind momentum flux produced by a drop in eta Car's mass loss rate or wind terminal velocity (or some combination), though if so the change in wind momentum flux required to match the X-ray variation is surprisingly large.
VizieR Online Data Catalog: X-ray/UV Swift monitoring of NGC 4151 (Edelson+, 2017)
NASA Astrophysics Data System (ADS)
Edelson, R.; Gelbord, J.; Cackett, E.; Connolly, S.; Done, C.; Fausnaugh, M.; Gardner, E.; Gehrels, N.; Goad, M.; Horne, K.; McHardy, I.; Peterson, B. M.; Vaughan, S.; Vestergaard, M.; Breeveld, A.; Barth, A. J.; Bentz, M.; Bottorff, M.; Brandt, W. N.; Crawford, S. M.; Bonta, E. D.; Emmanoulopoulos, D.; Evans, P.; Jaimes, R. F.; Filippenko, A. V.; Ferland, G.; Grupe, D.; Joner, M.; Kennea, J.; Korista, K. T.; Krimm, H. A.; Kriss, G.; Leonard, D. C.; Mathur, S.; Netzer, H.; Nousek, J.; Page, K.; Romero-Colmenero, E.; Siegel, M.; Starkey, D. A.; Treu, T.; Vogler, H. A.; Winkler, H.; Zheng, W.
2017-11-01
During 2016 February 20 through April 29, Swift executed an intensive monitoring campaign on NGC 4151, consisting of 319 separate visits of at least 120s, an average of nearly five visits per day. These Swift observations were coordinated with intensive monitoring with numerous ground-based telescopes including the Las Cumbres Observatory Global Telescope network and the Liverpool Telescope at La Palma. Those data will be presented in subsequent papers (K. Horne et al. 2017, in preparation; M. Goad et al. 2017, in preparation). (3 data files).
The NIF x-ray spectrometer calibration campaign at Omega.
Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B
2014-11-01
The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, J.; Madejski, G.; Sikora, M.
2007-09-28
We present the results from a multiwavelength campaign conducted in August 2006 of the powerful {gamma}-ray quasar PKS 1510--089 (z = 0.361). This campaign commenced with a deep Suzaku observation lasting three days for a total exposure time of 120 ks, and continued with Swift monitoring over 18 days. Besides Swift observations, which sampled the optical/UV flux in all 6 UVOT filters as well as the X-ray spectrum in the 0.3--10 keV energy range, the campaign included ground-based optical and radio data, and yielded a quasi-simultaneous broad-band spectral energy distribution from 109 Hz to 1019 Hz. Thanks to its lowmore » instrumental background, the Suzaku observation provided a high S/N X-ray spectrum, which is well represented by an extremely hard power-law with photon index {Gamma}{approx_equal}1.2, augmented by a soft component apparent below 1 keV, which is well described by a black-body model with temperature kT {approx_equal}0.2 keV. Monitoring by Suzaku revealed temporal variability which is different between the low and high energy bands, again suggesting the presence of a second, variable component in addition to the primary power-law emission. We model the broadband spectrum of PKS 1510--089 assuming that the high energy spectral component results from Comptonization of infrared radiation produced by hot dust located in the surrounding molecular torus. In the adopted internal shock scenario, the derived model parameters imply that the power of the jet is dominated by protons but with a number of electrons/positrons exceeding a number of protons by a factor {approx} 10. We also find that inhomogeneities responsible for the shock formation, prior to the collision may produce bulk-Compton radiation which can explain the observed soft X-ray excess and possible excess at {approx} 18 keV. We note, however, that the bulk-Compton interpretation is not unique, and the observed soft excess could arise as well via some other processes discussed briefly in the text.« less
NASA Astrophysics Data System (ADS)
Hatano, Y.; Yumizuru, K.; Koivuranta, S.; Likonen, J.; Hara, M.; Matsuyama, M.; Masuzaki, S.; Tokitani, M.; Asakura, N.; Isobe, K.; Hayashi, T.; Baron-Wiechec, A.; Widdowson, A.; contributors, JET
2017-12-01
Energy spectra of β-ray induced x-rays from divertor tiles used in ITER-like wall campaigns of the Joint European Torus were measured to examine tritium (T) penetration into tungsten (W) layers. The penetration depth of T evaluated from the intensity ratio of W(Lα) x-rays to W(Mα) x-rays showed clear correlation with poloidal position; the penetration depth at the upper divertor region reached several micrometers, while that at the lower divertor region was less than 500 nm. The deep penetration at the upper part was ascribed to the implantation of high energy T produced by DD fusion reactions. The poloidal distribution of total x-ray intensity indicated higher T retention in the inboard side than the outboard side of the divertor region.
Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
Abramowski, A.
2011-09-01
The high-frequency peaked BL Lac object PKS 2005-489 was the target of amulti-wavelength campaignwith simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E> 100 GeV) spectrum measured with H.E.S.S. with a peak energy between ~ 5 and 500 GeV. Compared to observations with contemporaneousmore » coverage in the VHE and X-ray bands in 2004, the X-ray flux was ~ 50 times higher during the 2009 campaign while the TeV γ-ray flux shows marginal variation over the years. The spectral energy distribution during this multi-wavelength campaign was fit by a one zone synchrotron self-Compton model with a well determined cutoff in X-rays. The parameters of a one zone SSC model are inconsistent with variability time scales. The variability behaviour over years with the large changes in synchrotron emission and small changes in the inverse Compton emission does not warrant an interpretation within a one-zone SSC model despite an apparently satisfying fit to the broadband data in 2009.« less
Discovery of a 115 Day Orbital Period in the Ultraluminous X-ray Source NGC 5408 X-1
NASA Technical Reports Server (NTRS)
Strohmayer, Tod E.
2009-01-01
We report the detection of a 115 day periodicity in SWIFT/XRT monitoring data from the ultraluminous X-ray source (ULX) NGC 5408 X-1. Our o ngoing campaign samples its X-ray flux approximately twice weekly and has now achieved a temporal baseline of ti 485 days. Periodogram ana lysis reveals a significant periodicity with a period of 115.5 +/- 4 days. The modulation is detected with a significance of 3.2 x 10(exp -4) . The fractional modulation amplitude decreases with increasing e nergy, ranging from 0.13 +/- 0.02 above 1 keV to 0.24 +/- 0.02 below 1 keV. The shape of the profile evolves as well, becoming less sharply peaked at higher energies. The periodogram analysis is consistent wi th a periodic process, however, continued monitoring is required to c onfirm the coherent nature of the modulation. Spectral analysis indic ates that NGC 5408 X-1 can reach 0.3 - 10 keV luminosities of approxi mately 2 x 10 40 ergs/s . We suggest that, like the 62 day period of the ULX in M82 (X41.4-1-60), the periodicity detected in NGC 5408 X-1 represents the orbital period of the black hole binary containing the ULX. If this is true then the secondary can only be a giant or super giant star.
Space simulation techniques and facilities for SAX STM test campaign
NASA Technical Reports Server (NTRS)
Giordano, Pietro; Raimondo, Giacomo; Messidoro, Piero
1994-01-01
SAX is a satellite for X-Ray astronomy. It is a major element of the overall basic Science Program of the Italian Space Agency (ASI) and is being developed with the contribution of the Netherlands Agency for Aerospace Programs (NIVR). The scientific objectives of SAX are to carry out systematic and comprehensive observations of celestial X-Ray sources over the 0.1 - 300 KeV energy range with special emphasis on spectral and timing measurements. The satellite will also monitor the X-Ray sky to investigate long-term source variability and to permit localization and study of X-Ray transients. Alenia Spazio is developing the satellite that is intended for launch in the second half of 1995 in a low, near-equatorial Earth orbit. At system level a Structural Thermal Model (STM) has been conceived to verify the environmental requirements by validating the mechanical and thermal analytical models and qualifying satellite structure and thermal control. In particular, the following tests have been carried out in Alenia Spazio, CEA/CESTA and ESTEC facilities: Modal Survey, Centrifuge, Acoustic, Sinusoidal/Random Vibration and Thermal Balance. The paper, after a short introduction of the SAX satellite, summarizes the environmental qualification program performed on the SAX STM. It presents test objectives, methodologies and relevant test configurations. Peculiar aspects of the test campaign are highlighted. Problems encountered and solutions adopted in performing the tests are described as well. Furthermore, test results are presented and assessed.
More surprises from the violent gamma-ray binary LS 2883 /B1259-63.
NASA Astrophysics Data System (ADS)
Kargaltsev, Oleg; Hare, Jeremy; Pavlov, George G.
2018-01-01
We report the results of a Chandra X-ray Observatory (CXO) monitoring campaign of the high-mass gamma-ray binary LS 2883, which hosts the young pulsar B1259-63. The monitoring now covers two binary cycles (6.8 years) and allows us to conclude that ejections of high-velocity X-ray emitting material are common for this binary. In the first cycle we observed an extended feature which detached and moved away from the binary. The observed changes in position were consistent with a steady motion with v=(0.07+/-0.01)c and a slight hint of acceleration. Tracing the motion back in time suggested that the X-ray emitting matter was ejected close to periastron passage. In the last orbital cycle, accelerated motion (reaching (0.13+/-0.02)c) is strongly preferred over a steady motion (the latter would imply that the ejected material was launched ~400 days after the periastron passage). The moving feature is also more luminous, compared to the previous binary cycle, larger in its apparent extent, and exhibits a puzzling morphology. We will show the CXO movies from both binary cycles and discuss physical interpretation of the resolved outflow dynamics in this remarkable system, which provides unique insight into the properties of the pulsar and stellar winds and their interaction.
NASA Astrophysics Data System (ADS)
Neilsen, Joey
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.
2014-08-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
Probing the connection between the accretion disk, outflows and the jet in 3C111
NASA Astrophysics Data System (ADS)
Tombesi, Francesco
2011-10-01
Recent XMM-Newton and Suzaku observations of 3C111 demonstrated the presence of ultra-fast outflows (UFOs) with v~0.1c and their relation with the accretion disk. Independent studies found that X-ray dips are followed by ejection of superluminal radio knots, therefore providing a proof of the disk-jet connection. We acquired evidence that UFOs are preferentially present between X-ray dips and new knots, possibly indicating also a link between disk outflows and the jet. The goal of this XMM-Newton proposal is to confirm this evidence. Given the strong correlation with X-rays, we will use an ongoing optical monitoring campaign to trigger a 90ks observation within two days of a dip to detect a UFO and we request a possible additional 60ks >15 days after to compare with the non-dipped state.
Cygnus X-3 Returns to an Active State
NASA Astrophysics Data System (ADS)
McCollough, Michael L.; Koljonen, Karri; Gurwell, Mark A.; Trushkin, Sergei; Pooley, Guy G.
2017-08-01
Cygnus X-3 is a well-known microquasar composed of a mass-donating Wolf-Rayet star and a compact object. Recently, Cygnus X-3 has been in a quiescent state for an extended period of time (2011-2016) but returned to an active state on two occasions during 2016/2017 including quenched/hypersoft states, gamma-ray emission, and major radio flares. During these two periods of activity, we undertook multi-wavelength observing campaigns with observations in the radio (RATAN-600, AMI-LA, Metsähovi), submillimeter (SMA, EHT), X-ray (Swift/XRT, MAXI), hard X-ray (Swift/BAT, NuSTAR), and gamma-ray (AGILE, Fermi, VERITAS). At the peak of the major radio flare in April 2017 observations were made with VERITAS (TeV), NuSTAR (hard X-ray), and the Event Horizon Telescope (submillimeter). In this presentation, I will review these observing campaigns and the insights they provide about Cygnus X-3.
A radio monitoring survey of ultra-luminous X-ray sources
NASA Astrophysics Data System (ADS)
Körding, E.; Colbert, E.; Falcke, H.
2005-06-01
We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg s-1. A well-defined sample of the 9 nearest ULXs has been monitored eight times over 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is ≈0.15 mJy (4σ) for radio flares and ≈60 μJy for continuous emission. In M 82 two ULXs seem to have coincident compact radio sources, which are probably supernova remnants. No continuous or flaring radio emission has been detected from any other ULX. Thus, ULXs do not generally emit steady-state radio emission above radio powers of 1.5 × 1017 W/Hz. The non-detections of the continuous emission are consistent with beamed or unbeamed radio emission from accreting black holes of ≤ 103 M⊙ based on the radio/X-ray correlation. Other published radio detections (M 82, NGC 5408) are also discussed in this context. Both detections are significantly above our detection limit. If ULXs have flaring radio emission above 4 × 1017 W/Hz we can give an upper limit on the duty cycle of the flares of 6%. This upper limit is in agreement with the observed number of flares in Galactic radio transients. Additionally we present a yet unreported radio double structure in the nearby low-luminosity AGN NGC 4736.
Observations of Cygnus X-2 with IUE: Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Garcia, M. R.; Verbunt, F.; Hasinger, Guenther; Kuerster, M.
1989-01-01
The observations of the low-mass x ray binary, Cyg X-2, taken with the International Ultraviolet Explorer (IUE) in a campaign conducted in June and October of 1988 are reported. A direct relationship between the strength of the UV continuum and line emission and the placement of the x ray spectrum in one of three branches of the so-called Z-shaped curve is found by comparison with simultaneous x ray observations. All three previously known x ray spectral states are detected; the UV continuum and line emission increase monotonically along the Z with the least emission in the horizontal branch, and the most in the flaring branch. Emission lines due to HeII, CIV, NIII, NIV, NV, SiIV, and MgII are observed.
NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*
NASA Astrophysics Data System (ADS)
Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra
2018-01-01
Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.
The Big Glitcher - the Rotation History of PSR JO537-6910
NASA Technical Reports Server (NTRS)
Marshall, F. E.; Gotthelf, E. V.; Middleditch, J.; Wang, Q. D.; Zhang, W.
2003-01-01
We report the results of an extensive monitoring campaign of PSR 50537-6910, the 16 ms pulsar in the Large Magellanic Cloud, using data acquired with the Rossi X-ray Timing Explorer. The spin evolution of this pulsar is found to experience extreme episodic discontinuities in its spin-down rate during the 2.6 year campaign. The rate of occurance of these timing glitches is 2.3 per year, comparable to the highest seen for any pulsar. The mean glitch amplitude produced a fraction change in the frequency of Delta(nu)/nu = 0.36 x l0(exp -6) and in the frequency derivative of Delta(dot nu)/dot nu = 3 x 10(exp -4). Despite this prodigous timing activity we are able to derive a phase connected timing solution between glitch events with an average spin-down rate of -1.9743 x 10(exp 10) Hz/s. The integrated effect of the glitches in dot nu was so large that the apparent characteristic age of the pulsar (-nu/2dot nu) decreased significantly during the campaign. We discuss the implications of a large glitch activity and high braking index on the spin evolution of young pulsars.
The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center
NASA Astrophysics Data System (ADS)
Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.
2014-05-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic center.
Serendipitous Detections of XTE J1906+09 with the Rossi X-Ray Timing Explorer
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa
2002-01-01
The 89 s X-ray pulsar XTE J1906+09 was discovered during Rossi X-Ray Timing Explorer (RXTE) observations of SGR 1900+14 in 1996. Because of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A search for pulsations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. Pulsed flux upper limits for the rest of the observations show that XTE J1906+09 is a transient X-ray pulsar and likely has a Be star companion. The RXTE all-sky monitor did not reveal XTE J1906+09. Pulse-timing analysis of the second outburst discovered a sinusoidal signature in the pulse frequencies that is likely produced by an orbital periastron passage. Fits to pulse phases using an orbital model and quadratic phase model have chi(exp 2) minima at orbital periods of 26-30 days for fixed mass functions of 5, 10, 15, and 20 solar masses. The pulse shape showed energy- and intensity-dependent variations. Pulse-phase spectroscopy quantified the energy-dependent variations. The phase-averaged spectrum used the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the Galactic ridge and was well fitted by an absorbed power law with a high-energy cutoff with column density N(sub H) = 6 +/- 1 x 10(exp 22)/sq cm, a photon index of 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and e-folding energy E(sub fold) = 19 +/- 4 keV. Estimated 2-10 keV peak fluxes, corrected for contributions from the Galactic ridge and SGR 1900+14, are 6 x l0(exp -12) and 1.1 x 10(exp -10) ergs/sq cm/s for the 1996 and 1998 outbursts, respectively. XTE J1906+09 may be part of an unusual class of Be/X-ray binaries that do not lie on the general spin period versus orbital period correlation with the majority of Be/X-ray binaries.
Long-term monitoring of PKS0558-504, a highly accreting AGN with a radio jet
NASA Astrophysics Data System (ADS)
Gliozzi, Mario
Mario Gliozzi, mgliozzi@gmu.edu George Mason University, Fairfax, Virginia, United States The radio-loud Narrow-Line Seyfert 1 galaxy PKS 0558-504 is a highly variable, X-ray bright source with super-Eddington accretion rate and a powerful radio jet that does not dominate the emission beyond the radio band. Hence this source represents an ideal laboratory to study the link between accretion and ejection phenomena. Here we present the preliminary results from a 5-year monitoring campaign with RXTE as well as from a 1.5-year multi-wavelength campaign with Swift, complemented with radio observations from the ATCA and VLBI. We combine several pieces of information from different energy bands to shed some light on the energetics of accretion and ejection phenomena in this extreme black hole system.
Results from CoMStOC - The Coronal Magnetic Structures Observing Campaign
NASA Technical Reports Server (NTRS)
Schmelz, J. T.; Holman, G. D.
1991-01-01
The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave observations were taken by the Solar Maximum Mission's X-ray Polychromator (XRP) and the Very Large Array (VLA) on four days in the campaign period (Nov 25 to Dec 21, 1987). XRP maps in soft X-ray resonance lines formed at different coronal temperatures provide accurate temperature and emission measure diagnostics. VLA maps at several frequencies in the 20 cm and 6 cm bands yield information on microwave structure, spectrum and polarization. The combined data set separates contributions from the two dominant microwave emission mechanisms, thermal bremsstrahlung and gyroresonance. Where gyroresonance dominates, the coronal magnetic field strength has been determined with the aid of theoretical modeling.
Results from CoMStOC - The Coronal Magnetic Structures Observing Campaign
NASA Astrophysics Data System (ADS)
Schmelz, J. T.; Holman, G. D.
The Coronal Magnetic Structures Observing Campaign (CoMStOC) was designed to measure the magnetic field strength and determine its structure in the solar corona. Simultaneous soft X-ray and microwave observations were taken by the Solar Maximum Mission's X-ray Polychromator (XRP) and the Very Large Array (VLA) on four days in the campaign period (Nov 25 to Dec 21, 1987). XRP maps in soft X-ray resonance lines formed at different coronal temperatures provide accurate temperature and emission measure diagnostics. VLA maps at several frequencies in the 20 cm and 6 cm bands yield information on microwave structure, spectrum and polarization. The combined data set separates contributions from the two dominant microwave emission mechanisms, thermal bremsstrahlung and gyroresonance. Where gyroresonance dominates, the coronal magnetic field strength has been determined with the aid of theoretical modeling.
NASA Astrophysics Data System (ADS)
Flaccomio, E.
2014-07-01
Proto-planetary disks are affected by radiative and magnetic interactions with the central object. X-ray/UV coronal and accretion-shock emission may drive gas ionization and heating and, consequently, photo-evaporation and disk dispersal. The magnetosphere connecting the star and inner disk mediates mass and angular momentum exchanges and modifies the disk structure. These interconnected processes are highly dynamic and involve material emitting in different bands: the inner disk dust (mIR), the stellar photosphere (optical), accretion shocks (UV/X-rays), and coronae (X-rays). I will present selected results form the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264), an unprecedented multi-wavelength month-long observing campaign of the NGC2264 region. Three space telescopes (Spitzer, CoRoT, and Chandra) simultaneously monitored a rich sample of ~3Myr old stars in the mIR, optical, and X-ray bands, providing new insights on the dynamics of the respective emitting regions and their interactions. First, I will discuss magnetic flares: for the first time we observe the heating phase (in the optical), the decay (in X-rays), and, possibly, the disk response to the flare (in the mIR). I will then focus on the longer time-scale relation between X-ray (coronal) and optical (photospheric)/mIR(disk) emission, with particular reference to the obscuration of coronal plasma by temporally varying disk structures.
Exploring the multiband emission of TXS 0536+145: the most distant -γray flaring blazar
Orienti, M.; D'Ammando, F.; Giroletti, M.; ...
2014-09-15
We report results of a multi-band monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6×1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicinamore » single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.« less
Exploring the multiband emission of TXS 0536+145: the most distant γ-ray flaring blazar
NASA Astrophysics Data System (ADS)
Orienti, M.; D'Ammando, F.; Giroletti, M.; Finke, J.; Ajello, M.; Dallacasa, D.; Venturi, T.
2014-11-01
We report results of a multiband monitoring campaign of the flat spectrum radio quasar TXS 0536+145 at redshift 2.69. This source was detected during a very high γ-ray activity state in 2012 March by the Large Area Telescope on board Fermi, becoming the γ-ray flaring blazar at the highest redshift detected so far. At the peak of the flare the source reached an apparent isotropic γ-ray luminosity of 6.6 × 1049 erg s-1 which is comparable to the values achieved by the most luminous blazars. This activity triggered radio-to-X-rays monitoring observations by Swift, Very Long Baseline Array, European VLBI Network, and Medicina single-dish telescope. Significant variability was observed from radio to X-rays supporting the identification of the γ-ray source with TXS 0536+145. Both the radio and γ-ray light curves show a similar behaviour, with the γ-rays leading the radio variability with a time lag of about 4-6 months. The luminosity increase is associated with a flattening of the radio spectrum. No new superluminal component associated with the flare was detected in high-resolution parsec-scale radio images. During the flare the γ-ray spectrum seems to deviate from a power law, showing a curvature that was not present during the average activity state. The γ-ray properties of TXS 0536+145 are consistent with those shown by the high-redshift γ-ray blazar population.
NASA Astrophysics Data System (ADS)
Ursini, F.; Petrucci, P.-O.; Matt, G.; Bianchi, S.; Cappi, M.; Dadina, M.; Grandi, P.; Torresi, E.; Ballantyne, D. R.; De Marco, B.; De Rosa, A.; Giroletti, M.; Malzac, J.; Marinucci, A.; Middei, R.; Ponti, G.; Tortosa, A.
2018-05-01
We present the analysis of five joint XMM-Newton/NuSTARobservations, 20 ks each and separated by 12 days, of the broad-line radio galaxy 3C 382. The data were obtained as part of a campaign performed in September-October 2016 simultaneously with VLBA. The radio data and their relation with the X-ray ones will be discussed in a following paper. The source exhibits a moderate flux variability in the UV/X-ray bands, and a limited spectral variability especially in the soft X-ray band. In agreement with past observations, we find the presence of a warm absorber, an iron Kα line with no associated Compton reflection hump, and a variable soft excess well described by a thermal Comptonization component. The data are consistent with a "two-corona" scenario, in which the UV emission and soft excess are produced by a warm (kT ≃ 0.6 keV), optically thick (τ ≃ 20) corona consistent with being a slab fully covering a nearly passive accretion disc, while the hard X-ray emission is due to a hot corona intercepting roughly 10% of the soft emission. These results are remarkably similar to those generally found in radio-quiet Seyferts, thus suggesting a common accretion mechanism.
A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares
NASA Technical Reports Server (NTRS)
Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.
1989-01-01
Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data.
BeppoSAX Observations of MKN 110
NASA Technical Reports Server (NTRS)
Nicastro, Fabrizio; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
Mkn 110 is a bright, nearby Seyfert 1 galaxy, which underwent a long optical monitoring campaign, during the past 12 years. Optical observations show that Mkn 110 vary, both in flux and spectral shape. The intensity and width of its Broad Emission Lines (BELs) also vary, from typical Seyfert 1, to typical Narrow Line Seyfert 1 (NLSyl) values, so suggesting that this could be the first supermassive black holes where accretion state related transitions, as frequently observed in stellar-size black holes, have finally been observed. To verify these suggestions we asked to monitor Mkn 110 with BeppoSAX with three 50 ksec observations six months apart. The goal of the proposal was to observe spectral variations in X-ray, already suggested by previous, existing ROSAT (Roentgen Satellite) and ASCA (Advanced Satellite for Cosmology and Astrophysics) observations of the same source. The first of these three SAX (Satellite per Astronomia X) observations was taken on May 2000, and lacks the Low-Energy instrument (0.1-2 keV is the band in which NLSy1 and Sy1 X-ray spectra differ most).
IGR J17329-2731: The birth of a symbiotic X-ray binary
NASA Astrophysics Data System (ADS)
Bozzo, E.; Bahramian, A.; Ferrigno, C.; Sanna, A.; Strader, J.; Lewis, F.; Russell, D. M.; di Salvo, T.; Burderi, L.; Riggio, A.; Papitto, A.; Gandhi, P.; Romano, P.
2018-05-01
We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7-1.2+3.4 kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680 ± 3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption (≫1023 cm-2) and prominent emission lines at 6.4 keV, and 7.1 keV. These features are usually found in wind-fed systems, in which the emission lines result from the fluorescence of the X-rays from the accreting compact object on the surrounding stellar wind. The presence of a strong absorption line around 21 keV in the spectrum suggests a cyclotron origin, thus allowing us to estimate the neutron star magnetic field as 2.4 × 1012 G. All evidencethus suggests IGR J17329-2731 is a symbiotic X-ray binary. As no X-ray emission was ever observed from the location of IGR J17329-2731 by INTEGRAL (or other X-ray facilities) during the past 15 yr in orbit and considering that symbiotic X-ray binaries are known to be variable but persistent X-ray sources, we concluded that INTEGRAL caught the first detectable X-ray emission from IGR J17329-2731 when the source shined as a symbiotic X-ray binary. The Swift XRT monitoring performed up to 3 months after the discovery of the source, showed that it maintained a relatively stable X-ray flux and spectral properties.
Monitoring X-Ray Emission from X-Ray Bursters
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Kaaret, Philip
1999-01-01
The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.
Stable accretion from a cold disc in highly magnetized neutron stars
NASA Astrophysics Data System (ADS)
Tsygankov, S. S.; Mushtukov, A. A.; Suleimanov, V. F.; Doroshenko, V.; Abolmasov, P. K.; Lutovinov, A. A.; Poutanen, J.
2017-11-01
Aims: The aim of this paper is to investigate the transition of a strongly magnetized neutron star into the accretion regime with very low accretion rate. Methods: For this purpose, we monitored the Be-transient X-ray pulsar GRO J1008-57 throughout a full orbital cycle. The current observational campaign was performed with the Swift/XRT telescope in the soft X-ray band (0.5-10 keV) between two subsequent Type I outbursts in January and September 2016. Results: The expected transition to the propeller regime was not observed. However, transitions between different regimes of accretion were detected. In particular, after an outburst, the source entered a stable accretion state characterised by an accretion rate of 1014-1015 g s-1. We associate this state with accretion from a cold (low-ionised) disc of temperature below 6500 K. We argue that a transition to this accretion regime should be observed in all X-ray pulsars that have a certain combination of the rotation frequency and magnetic field strength. The proposed model of accretion from a cold disc is able to explain several puzzling observational properties of X-ray pulsars.
The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring
NASA Astrophysics Data System (ADS)
Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.
2012-10-01
Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org
Time-Series Monitoring of Open Star Clusters
NASA Astrophysics Data System (ADS)
Hojaev, A. S.; Semakov, D. G.
2006-08-01
Star clusters especially a compact ones (with diameter of few to ten arcmin) are suitable targets to search of light variability for orchestera of stars by means of ordinary Casegrain telescope plus CCD system. A special patroling with short time-fixed exposures and mmag accuracy could be used also to study of stellar oscillation for group of stars simultaneously. The last can be carried out both separately from one site and within international campaigns. Detection and study of optical variability of X-ray sources including X-ray binaries with compact objects might be as a result of a long-term monitoring of such clusters as well. We present the program of open star clusters monitoring with Zeiss 1 meter RCC telescope of Maidanak observatory has been recently automated. In combination with quite good seeing at this observatory (see, e.g., Sarazin, M. 1999, URL http://www.eso.org/gen-fac/pubs/astclim/) the automatic telescope equipped with large-format (2KX2K) CCD camera AP-10 available will allow to collect homogenious time-series for analysis. We already started this program in 2001 and had a set of patrol observations with Zeiss 0.6 meter telescope and AP-10 camera in 2003. 7 compact open clusters in the Milky Way (NGC 7801, King1, King 13, King18, King20, Berkeley 55, IC 4996) have been monitored for stellar variability and some results of photometry will be presented. A few interesting variables were discovered and dozens were suspected for variability to the moment in these clusters for the first time. We have made steps to join the Whole-Earth Telescope effort in its future campaigns.
Catching Up on State Transitions in Cygnus X-1
NASA Technical Reports Server (NTRS)
Boeck, Moritz; Hanke, Manfred; Wilms, Joern; Pirner, Stefan; Grinberg, Victoria; Markoff, Sera; Pottschmidt, Katja; Nowak, Michael A.; Pooley, Guy
2008-01-01
In 2005 February we observed Cygnus X-1 over a period of 10 days quasi-continuously with the Rossi X-ray Timing Explorer and the Ryle telescope. We present the results of the spectral and timing analysis on a timescale of 90 min and show that the behavior of Cyg X-1 is similar to that found during our years long monitoring campaign. As a highlight we present evidence for a full transition from the hard to the soft state that happened during less than three hours. The observation provided a more complete picture of a state transition than before, especially concerning the evolution of the time lags, due to unique transition coverage and analysis with high time resolution.
SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2015-03-01
The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less
SWIFT-BAT HARD X-RAY SKY MONITORING UNVEILS THE ORBITAL PERIOD OF THE HMXB IGR J18219–1347
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Parola, V.; Cusumano, G.; Segreto, A.
2013-09-20
IGR J18219–1347 is a hard X-ray source discovered by INTEGRAL in 2010. We have analyzed the X-ray emission of this source exploiting the Burst Alert Telescope (BAT) survey data up to 2012 March and the X-Ray Telescope (XRT) data that include also an observing campaign performed in early 2012. The source is detected at a significance level of ∼13 standard deviations in the 88 month BAT survey data, and shows a strong variability along the survey monitoring, going from high intensity to quiescent states. A timing analysis on the BAT data revealed an intensity modulation with a period of Pmore » {sub 0} = 72.44 ± 0.3 days. The significance of this modulation is about seven standard deviations in Gaussian statistics. We interpret it as the orbital period of the binary system. The light curve folded at P {sub 0} shows a sharp peak covering ∼30% of the period, superimposed to a flat level roughly consistent with zero. In the soft X-rays the source is detected only in 5 out of 12 XRT observations, with the highest recorded count rate corresponding to a phase close to the BAT folded light-curve peak. The long orbital period and the evidence that the source emits only during a small fraction of the orbit suggests that the IGR J18219–1347 binary system hosts a Be star. The broadband XRT+BAT spectrum is well modeled with a flat absorbed power law with a high-energy exponential cutoff at ∼11 keV.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandra, Poonam; Kanekar, Nissim
We report results from a Giant Metrewave Radio Telescope (GMRT) monitoring campaign of the black hole X-ray binary V404 Cygni during its 2015 June outburst. The GMRT observations were carried out at observing frequencies of 1280, 610, 325, and 235 MHz, and extended from June 26.89 UT (a day after the strongest radio/X-ray outburst) to July 12.93 UT. We find the low-frequency radio emission of V404 Cygni to be extremely bright and fast-decaying in the outburst phase, with an inverted spectrum below 1.5 GHz and an intermediate X-ray state. The radio emission settles to a weak, quiescent state ≈11 daysmore » after the outburst, with a flat radio spectrum and a soft X-ray state. Combining the GMRT measurements with flux density estimates from the literature, we identify a spectral turnover in the radio spectrum at ≈1.5 GHz on ≈ June 26.9 UT, indicating the presence of a synchrotron self-absorbed emitting region. We use the measured flux density at the turnover frequency with the assumption of equipartition of energy between the particles and the magnetic field to infer the jet radius (≈4.0 × 10{sup 13} cm), magnetic field (≈0.5 G), minimum total energy (≈7 × 10{sup 39} erg), and transient jet power (≈8 × 10{sup 34} erg s{sup −1}). The relatively low value of the jet power, despite V404 Cygni’s high black hole spin parameter, suggests that the radio jet power does not correlate with the spin parameter.« less
Unifying Spectral and Timing Studies of Relativistic Reflection in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
X-ray observations of active galactic nuclei (AGN) contain a wealth of information relevant for understanding the structure of AGN, the process of accretion, and the gravitational physics of supermassive black holes. A particularly exciting development over the past four years has been the discovery and subsequent characterization of time delays between variability of the X-ray power-law continuum and the inner disk reflection spectrum including the broad iron line. The fact that the broad iron line shows this echo, or reverberation, in XMM-Newton, Suzaku and NuSTAR data is a strong confirmation of the disk reflection paradigm and has already been used to place constraints on the extent and geometry of the X-ray corona. However, current studies of AGN X-ray variability, including broad iron line reverberation, are only scratching the surface of the available data. At the present time, essentially all studies conduct temporal analyzes in a manner that is largely divorced from detailed spectroscopy - consistency between timing results (e.g., conclusions regarding the location of the primary X-ray source) and detailed spectral fits is examined after the fact. We propose to develop and apply new analysis tools for conducting a truly unified spectraltiming analysis of the X-ray properties of AGN. Operationally, this can be thought of as spectral fitting except with additional parameters that are accessing the temporal properties of the dataset. Our first set of tools will be based on Fourier techniques (via the construction and fitting of the energy- and frequency-dependent cross-spectrum) and most readily applicable to long observations of AGN with XMM-Newton. Later, we shall develop more general schemes (of a more Bayesian nature) that can operate on irregularly sampled data or quasi-simultaneous data from multiple instruments. These shall be applied to the long joint XMM-Newton/NuSTAR and Suzaku/NuSTAR AGN campaigns as well as Swift monitoring campaigns. Another important dimension of our work is the introduction of spectral and spectral-timing models of X-ray reflection from black hole disks that include realistic disk thickness (as opposed to the razor-thin disks assumed in current analysis tools). The astrophysical implications of our work are: - The first rigorous decomposition of the time-lags into those from reverberation and those from intrinsic continuum processes. - A new method for determining the density of photoionized (warm) absorbers in AGN through a measurement of the recombination time lags. - AGN black hole mass estimates obtained purely from X-ray data, and hence complementary to (observationally expensive) optical broad line reverberation campaigns. - The best possible characterization of strong gravity signatures in the reflected disk emission. - Detection and characterization of non-trivial accretion disk structure. Each of our tools and data products will be made available to the community/public upon the publication of the first results with that tool. The proposed work is in direct support of the NASA Science Plan, and is of direct relevant and support to NASA's fleet of X-ray observatories.
Opening the CHOCBOX: clumpy stellar winds in Cyg X-1
NASA Astrophysics Data System (ADS)
Grinberg, V.; Uttley, P.; Wilms, J.; Miller-Jones, J.; Pottschmidt, K.; Niu, S.; Hirsch, M.; Chocbox Collaboration
2017-10-01
Winds of O/B-stars are key drivers of enrichment and star formation and evolution. Yet, our understanding of their clumpy structure is limited. Luckily, high mass X-ray binaries, where the compact object accretes from the stellar wind of the companion, are perfect laboratories to study such winds: the X-ray radiation from the vicinity of the compact object is quasi-pointlike and effectively X-rays the clumps crossing the line of sight. We observed the high mass X-ray binary Cyg X-1 with XMM for 7 consecutive days with simultaneous coverage with NuSTAR, INTEGRAL and VLBA. One of our main aims was to probe the wind of the O-type companion in an unprecedented uninterrupted campaign, spanning more than an orbital period and including two superior conjunctions where we expect the densest wind. Here, we present first results from the CHOCBOX (Cyg X-1 Hard state Observations of a Complete Binary Orbit in X-rays) campaign and compare them to previous work, in particular multi-year studies of absorption variability and high resolution snapshots with Chandra-HETG. We argue that the clumps have a complex structure with hotter outer and colder inner layers and are not symmetrical.
Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Bucciantini, N.; Idec, W.; Nillson, K.; Schweizer, T.; Tennant, A. F.; Zanin, R.
2013-01-01
We have studied the wisps to the northwest of the Crab pulsar as part of a multi-wavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. It is also interesting to note that the optical and radio wisps are also separated from each other (Bietenholz et al. 2004). Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of PWNe, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi
2016-02-15
An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and themore » beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.« less
Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability
NASA Astrophysics Data System (ADS)
Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.
2016-04-01
We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).
NASA Astrophysics Data System (ADS)
Porquet, D.; Reeves, J. N.; Matt, G.; Marinucci, A.; Nardini, E.; Braito, V.; Lobban, A.; Ballantyne, D. R.; Boggs, S. E.; Christensen, F. E.; Dauser, T.; Farrah, D.; Garcia, J.; Hailey, C. J.; Harrison, F.; Stern, D.; Tortosa, A.; Ursini, F.; Zhang, W. W.
2018-01-01
Context. The physical characteristics of the material closest to supermassive black holes (SMBHs) are primarily studied through X-ray observations. However, the origins of the main X-ray components such as the soft X-ray excess, the Fe Kα line complex, and the hard X-ray excess are still hotly debated. This is particularly problematic for active galactic nuclei (AGN) showing a significant intrinsic absorption, either warm or neutral, which can severely distort the observed continuum. Therefore, AGN with no (or very weak) intrinsic absorption along the line of sight, so-called "bare AGN", are the best targets to directly probe matter very close to the SMBH. Aims: We perform an X-ray spectral analysis of the brightest and cleanest bare AGN known so far, Ark 120, in order to determine the process(es) at work in the vicinity of the SMBH. Methods: We present spectral analyses of data from an extensive campaign observing Ark 120 in X-rays with XMM-Newton (4 × 120 ks, 2014 March 18-24), and NuSTAR (65.5 ks, 2014 March 22). Results: During this very deep X-ray campaign, the source was caught in a high-flux state similar to the earlier 2003 XMM-Newton observation, and about twice as bright as the lower-flux observation in 2013. The spectral analysis confirms the "softer when brighter" behavior of Ark 120. The four XMM-Newton/pn spectra are characterized by the presence of a prominent soft X-ray excess and a significant Fe Kα complex. The continuum is very similar above about 3 keV, while significant variability is present for the soft X-ray excess. We find that relativistic reflection from a constant-density, flat accretion disk cannot simultaneously produce the soft excess, broad Fe Kα complex, and hard X-ray excess. Instead, Comptonization reproduces the broadband (0.3-79 keV) continuum well, together with a contribution from a mildly relativistic disk reflection spectrum. Conclusions: During this 2014 observational campaign, the soft X-ray spectrum of Ark 120 below 0.5 keV was found to be dominated by Comptonization of seed photons from the disk by a warm (kTe 0.5 keV), optically-thick corona (τ 9). Above this energy, the X-ray spectrum becomes dominated by Comptonization from electrons in a hot optically thin corona, while the broad Fe Kα line and the mild Compton hump result from reflection off the disk at several tens of gravitational radii.
The 2010 Very High Energy γ-Ray Flare And 10 Years Of Multi-Wavelength Observations Of M 87
Abramowski, A.
2012-02-02
The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) X 10 9M Θ ) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) γ-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE γ-ray emitter since 2006. The VHE γ-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported.more » During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE -ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of τrise d = (1:69 ± 0:30) days and τdecay d = (0:611 ± 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Φ>0:35 TeV ≃ (1 - 3) X 10 -11 ph cm -2 s -1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~ 3 days after the peak of the VHE γ-ray emission reveal an enhanced flux from the core (flux increased by factor ~ 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE γ-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE γ-ray emission from M87 are reviewed in the light of the new data.« less
On the Origin of the Soft X-ray excess in radio quiet AGN
NASA Astrophysics Data System (ADS)
Petrucci, P.; Ursini, F.; Cappi, M.; Bianchi, S.; Matt, G.; De Rosa, A.; Malzac, J.; Henri, G.
2016-06-01
Known since the 80s, the origin of the soft X-ray (< 2 keV) emission in excess to the high energy (2-10 keV) power law extrapolation, the so-called soft X-ray excess, is still highly debated. Two models are commonly discussed: relativistically blurred ionized reflection or thermal comptonisation. In some objects the observation of UV-soft X-ray correlation and the absence of clear signature of relativistic broadening, suggests comptonization as the dominant process. We successfully tested this hypothesis during the 2009 broad band monitoring campaign of Mkn 509. The deduced properties of the comptonizing plasma suggest a warm (˜1 keV), moderately thick (tau˜10-20) corona covering a large part of the accretion disk. Interestingly, the disc-corona energetics agree with a passive accretion disc, most of the accretion power being released in the warm corona. In this talk I will present the results obtained applying the same method to a sample of objects selected to have: a) 3 XMM observations b) at least 3 OM filters in use and c) a low (<1.e22 cm-2) neutral absorption. They all agree with a powerful warm corona above a passive or almost passive accretion disk. I will discuss the methodology and the important implications of the results.
NASA Technical Reports Server (NTRS)
Remillard, Ronald A.; Urry, C. Megan; Aharonian, Felix; Pian, Elena; Sambruna, Rita; Coppi, Paolo
2000-01-01
We conducted a multifrequency campaign for the TeV blazar Markarian 421 in 1998 April. The campaign started from a pronounced high-amplitude flare recorded by BeppoSAX and Whipple; the Advanced Satellite for Cosmology and Astrophysics (ASCA) observation started three days later. In the X-ray data, we detected multiple flares, occurring on timescales of about one day. ASCA data clearly reveal spectral variability. The comparison of the data from ASCA, the Extreme Ultraviolet Explorer, and the Rossi X-Ray Timing Explorer indicates that the variability amplitudes in the low-energy synchrotron component are larger at higher photon energies. In TeV and gamma-rays, large intraday variations-which were correlated with the X-ray flux-were observed when results from three Cerenkov telescopes were combined. The rms variability of TeV and gamma-rays was similar to that observed in hard X-rays, above ten keV. The X-ray light curve reveals flares that are almost symmetric for most cases, implying that the dominant timescale is the light crossing time through the emitting region. The structure function analysis based on the continuous X-ray light curve of seven days indicates that the characteristic timescale is approx. 0.5 days. The analysis of ASCA light curves in various energy bands appears to show both soft (positive) and hard (negative) lags. These may not be real, as systematic effects could also produce these lags, which are all much smaller than an orbit. If the lags of both signs are real, these imply that the particle acceleration and X-ray cooling timescales are similar.
Disc-jet Coupling in the 2009 Outburst of the Black Hole Candidate H1743-322
NASA Technical Reports Server (NTRS)
Miller-Jones, J. C. A.; Sivakoff, G. R.; Altamirano, D.; Coriat, M.; Corbel, S.; Dhawan, V.; Krimm, H. A.; Remillard, R. A.; Rupen, M. P.; Russell, D. M.;
2012-01-01
We present an intensive radio and X-ray monitoring campaign on the 2009 outburst of the Galactic black hole candidate X-ray binary H1743-322. With the high angular resolution of the Very Long Baseline Array, we resolve the jet ejection event and measure the proper motions of the jet ejecta relative to the position of the compact core jets detected at the beginning of the outburst. This allows us to accurately couple the moment when the jet ejection event occurred with X-ray spectral and timing signatures. We find that X-ray timing signatures are the best diagnostic of the jet ejection event in this outburst, which occurred as the X-ray variability began to decrease and the Type C quasi-periodic oscillations disappeared from the X-ray power density spectrum. However, this sequence of events does not appear to be replicated in all black hole X-ray binary outbursts, even within an individual source. In our observations of H1743-322, the ejection was contemporaneous with a quenching of the radio emission, prior to the start of the major radio flare. This contradicts previous assumptions that the onset of the radio flare marks the moment of ejection. The jet speed appears to vary between outbursts with a positive correlation outburst luminosity. The compact core radio jet reactivated on transition to the hard intermediate state at the end of the outburst and not when the source reached the low hard spectral state. Comparison with the known near-infrared behaviour of the compact jets suggests a gradual evolution of the compact jet power over a few days near beginning the and end of an outburst
Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102
NASA Astrophysics Data System (ADS)
Scholz, P.; Bogdanov, S.; Hessels, J. W. T.; Lynch, R. S.; Spitler, L. G.; Bassa, C. G.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Chatterjee, S.; Cordes, J. M.; Gourdji, K.; Kaspi, V. M.; Law, C. J.; Marcote, B.; McLaughlin, M. A.; Michilli, D.; Paragi, Z.; Ransom, S. M.; Seymour, A.; Tendulkar, S. P.; Wharton, R. S.
2017-09-01
We undertook coordinated campaigns with the Green Bank, Effelsberg, and Arecibo radio telescopes during Chandra X-ray Observatory and XMM-Newton observations of the repeating fast radio burst FRB 121102 to search for simultaneous radio and X-ray bursts. We find 12 radio bursts from FRB 121102 during 70 ks total of X-ray observations. We detect no X-ray photons at the times of radio bursts from FRB 121102 and further detect no X-ray bursts above the measured background at any time. We place a 5σ upper limit of 3 × 10‑11 erg cm‑2 on the 0.5–10 keV fluence for X-ray bursts at the time of radio bursts for durations < 700 ms, which corresponds to a burst energy of 4 × 1045 erg at the measured distance of FRB 121102. We also place limits on the 0.5–10 keV fluence of 5 × 10‑10 and 1 × 10‑9 erg cm‑2 for bursts emitted at any time during the XMM-Newton and Chandra observations, respectively, assuming a typical X-ray burst duration of 5 ms. We analyze data from the Fermi Gamma-ray Space Telescope Gamma-ray Burst Monitor and place a 5σ upper limit on the 10–100 keV fluence of 4 × 10‑9 erg cm‑2 (5 × 1047 erg at the distance of FRB 121102) for gamma-ray bursts at the time of radio bursts. We also present a deep search for a persistent X-ray source using all of the X-ray observations taken to date and place a 5σ upper limit on the 0.5–10 keV flux of 4 × 10‑15 erg s‑1 cm‑2 (3 × 1041 erg s‑1 at the distance of FRB 121102). We discuss these non-detections in the context of the host environment of FRB 121102 and of possible sources of fast radio bursts in general.
Swift XRT Observation of 1E 1841-045
NASA Astrophysics Data System (ADS)
Archibald, Robert; Scholz, Paul; Kaspi, Victoria
2013-09-01
We report on Swift XRT observations made following an X-ray/soft gamma-ray burst detected by Fermi-GBM on 13 September 2013 (GCNs 15245, 15228) from the direction of magnetar 1E 1841-045 in the supernova remnant Kes 73. As part of an ongoing monitoring campaign of 1E 1841-045, as well as several other magnetars with the Swift XRT, we observed the source on 16 September 2013 for 4.4 ks. We detect no significant change in the X-ray flux relative to pre-burst epochs: we measure an absorbed 2-10 keV flux of 2.48^(+0.07)_(-0.09) E-11 ergs/s/cm^2 for the 16 September 2013 observation, compared with an average of 2.484^(+0.006)_(-0.06) E-11 ergs/s/cm^2 for observations for the 2 years prior, or 2.39^(+0.10)_(-0.17) E-11 ergs/s/cm^2 for the prior observation on 24 August, 2013.
NASA Technical Reports Server (NTRS)
Strohymayer, Tod E.
2004-01-01
RX J0806.3+1527 is a candidate double degenerate binary with possibly the shortest known orbital period. The source shows an approximately equal to 100% X-ray intensity modulation at the putative orbital frequency of 3.11 mHz (321.5 s). If the system is a detached, ultracompact binary gravitational radiation should drive spin-up with a magnitude of nu(sup dot) approximately 10(exp -16) Hz per second. Efforts to constrain the X-ray frequency evolution to date have met with mixed success, principally due to the sparseness of earlier observations. Here we describe the results of the first phase coherent X-ray monitoring campaign on RX J0806.3+1527 with Chandra. We obtained a total of 70 ksec of exposure in 6 epochs logarithmically spaced over 320 days. With these data we conclusively show that the X-ray frequency is increasing at a rate of 3.77 plus or minus 0.8 x 10(exp -16) Hz per second. Using the ephemeris derived from the new data we are able to phase up all the earlier Chandra and ROSAT data and show they are consistent with a constant nu(sup dot) = 3.63 plus or minus 0.06 x 10(exp -16) Hz per second over the past decade. This value appears consistent with that recently derived by Israel et al. largely from monitoring of the optical modulation, and is in rough agreement with the solutions reported initially by Hakala et al., based on ground-based optical observations. The large and stable nu(sup dot) over a decade is consistent with gravitational radiation losses driving the evolution. An intermediate polar (IP) scenario where the observed X-ray period is the spin period of an accreting white dwarf appears less tenable because the observed nu(sup dot) requires an m(sup dot) approximately equal to 4 x 10 (exp -8) solar mass yr(sup -l), that is much larger than that inferred from the observed X-ray luminosity (although this depends on the uncertain distance and bolometric corrections), and it is difficult to drive such a high m(sup dot) in a binary system with parameters consistent with all the multiwavelength data. If the ultracompact scenario is correct, then the X-ray flux cannot be powered by stable accretion which would drive the components apart, suggesting a new type of energy source (perhaps electromagnetic) may power the X-ray flux.
Multiwavelength observations of Mrk 501 in 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleksic, J.; Ansoldi, S.; Antonelli, L. A.
2015-01-01
Context. Blazars are variable sources on various timescales over a broad energy range spanning from radio to very high energy (>100 GeV, hereafter VHE). Mrk 501 is one of the brightest blazars at TeV energies and has been extensively studied since its first VHE detection in 1996. However, most of the γ-ray studies performed on Mrk 501 during the past years relate to flaring activity, when the source detection and characterization with the available γ-ray instrumentation was easier toperform. Aims. Our goal is to characterize the source γ-ray emission in detail, together with the radio-to-X-ray emission, during the non-flaring (low)more » activity, which is less often studied than the occasional flaring (high) activity. Methods. We organized a multiwavelength (MW) campaign on Mrk 501 between March and May 2008. This multi-instrument effort included the most sensitive VHE γ-ray instruments in the northern hemisphere, namely the imaging atmospheric Cherenkov telescopes MAGIC and VERITAS, as well as Swift, RXTE, the F-GAMMA, GASP-WEBT, and other collaborations and instruments. This provided extensive energy and temporal coverage of Mrk 501 throughout the entire campaign. Results. Mrk 501 was found to be in a low state of activity during the campaign, with a VHE flux in the range of 10%–20% of the Crab nebula flux. Nevertheless, significant flux variations were detected with various instruments, with a trend of increasing variability with energy and a tentative correlation between the X-ray and VHE fluxes. The broadband spectral energy distribution during the two different emission states of the campaign can be adequately described within the homogeneous one-zone synchrotron self-Compton model, with the (slightly) higher state described by an increase in the electron number density. Conclusions. The one-zone SSC model can adequately describe the broadband spectral energy distribution of the source during the two months covered by the MW campaign. This agrees with previous studies of the broadband emission of this source during flaring and non-flaring states. We report for the first time a tentative X-ray-to-VHE correlation during such a low VHE activity. Although marginally significant, this positive correlation between X-ray and VHE, which has been reported many times during flaring activity, suggests that the mechanisms that dominate the X-ray/VHE emission during non-flaring-activity are not substantially different from those that are responsible for the emission during flaring activity.« less
Radio Observations of Ultra-Luminous X-Ray Sources and their Implication for Models
NASA Astrophysics Data System (ADS)
Koerding, E. G.; Colbert, E. J. M.; Falcke, H.
2004-05-01
We present the results of a radio monitoring campaign to search for radio emission from nearby ultra-luminous X-ray sources (ULXs). These intriguing sources are bright off-nuclear X-ray point sources with luminosities exceeding LX > 1039 erg/sec. Assuming isotropic emission the Eddington Limit suggests that they harbor intermediate mass black holes. Due to the problems of this explanation also other possibilities are currently discussed, among them are anisotropic emission, super-Eddington accretion flows or relativistically beamed emission from microquasars. Detections of compact radio cores at the positions of ULXs would be a direct hint to jet-emission. However, as the ULX phenomenom is connected to star formation we have to assume that they are strongly accreting objects. Thus, similar to their nearest Galactic cousins, the very high state X-ray binaries (see e.g., GRS 1915), ULXs may show radio flares. A well-defined sample of the 9 nearest ULXs has been monitored eight times during 5 months with the Very Large Array in A and B configuration. Our limiting sensitivity is 0.15 mJy (4 σ ) for flares and 68 μ Jy for continuous emission. In M82 some ULXs seem to be connected to radio supernova remnants. Besides that no flare or continuous emission has been detected. As the timescales of radio flares in ULXs are highly uncertain, it could well be that we have undersampled the lightcurve. However, upper bounds for the probability to detect a flare can be given. The upper limits for the continuous emission are compared with the emission found in NGC 5408 X-1 and with quasars and microquasars. We show that these limits are well in agreement with the microblazar model using the Radio/X-ray correlation of XRBs and AGN. Thus, it could well be that ULXs are microblazers which may be radio loud.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vercellone, S.; Romano, P.; D'Ammando, F.
2010-03-20
We report on 18 months of multiwavelength observations of the blazar 3C 454.3 (Crazy Diamond) carried out in the period 2007 July-2009 January. In particular, we show the results of the AGILE campaigns which took place on 2008 May-June, 2008 July-August, and 2008 October-2009 January. During the 2008 May-2009 January period, the source average flux was highly variable, with a clear fading trend toward the end of the period, from an average gamma-ray flux F{sub E>100{sub MeV}} {approx}> 200 x 10{sup -8} photons cm{sup -2} s{sup -1} in 2008 May-June, to F{sub E>100{sub MeV}} {approx} 80 x 10{sup -8} photonsmore » cm{sup -2} s{sup -1} in 2008 October-2009 January. The average gamma-ray spectrum between 100 MeV and 1 GeV can be fit by a simple power law, showing a moderate softening (from GAMMA{sub GRID} {approx} 2.0 to GAMMA{sub GRID} {approx} 2.2) toward the end of the observing campaign. Only 3sigma upper limits can be derived in the 20-60 keV energy band with Super-AGILE, because the source was considerably off-axis during the whole time period. In 2007 July-August and 2008 May-June, 3C 454.3 was monitored by Rossi X-ray Timing Explorer (RXTE). The RXTE/Proportional Counter Array (PCA) light curve in the 3-20 keV energy band shows variability correlated with the gamma-ray one. The RXTE/PCA average flux during the two time periods is F{sub 3-20{sub keV}} = 8.4 x 10{sup -11} erg cm{sup -2} s{sup -1}, and F{sub 3-20{sub keV}} = 4.5 x 10{sup -11} erg cm{sup -2} s{sup -1}, respectively, while the spectrum (a power law with photon index GAMMA{sub PCA} = 1.65 +- 0.02) does not show any significant variability. Consistent results are obtained with the analysis of the RXTE/High-Energy X-Ray Timing Experiment quasi-simultaneous data. We also carried out simultaneous Swift observations during all AGILE campaigns. Swift/XRT detected 3C 454.3 with an observed flux in the 2-10 keV energy band in the range (0.9-7.5) x 10{sup -11} erg cm{sup -2} s{sup -1} and a photon index in the range GAMMA{sub XRT} = 1.33-2.04. In the 15-150 keV energy band, when detected, the source has an average flux of about 5 mCrab. GASP-WEBT monitored 3C 454.3 during the whole 2007-2008 period in the radio, millimeter, near-IR, and optical bands. The observations show an extremely variable behavior at all frequencies, with flux peaks almost simultaneous with those at higher energies. A correlation analysis between the optical and the gamma-ray fluxes shows that the gamma-optical correlation occurs with a time lag of tau = -0.4{sup +0.6}{sub -0.8} days, consistent with previous findings for this source. An analysis of 15 GHz and 43 GHz VLBI core radio flux observations in the period 2007 July-2009 February shows an increasing trend of the core radio flux, anti-correlated with the higher frequency data, allowing us to derive the value of the source magnetic field. Finally, the modeling of the broadband spectral energy distributions for the still unpublished data, and the behavior of the long-term light curves in different energy bands, allow us to compare the jet properties during different emission states, and to study the geometrical properties of the jet on a time-span longer than one year.« less
Diagnosing radiative shocks from deuterium and tritium implosions on NIF.
Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H
2012-10-01
During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.
MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission
NASA Technical Reports Server (NTRS)
Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.
1989-01-01
A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.
NASA Astrophysics Data System (ADS)
Shappee, B. J.; Prieto, J. L.; Grupe, D.; Kochanek, C. S.; Stanek, K. Z.; De Rosa, G.; Mathur, S.; Zu, Y.; Peterson, B. M.; Pogge, R. W.; Komossa, S.; Im, M.; Jencson, J.; Holoien, T. W.-S.; Basu, U.; Beacom, J. F.; Szczygieł, D. M.; Brimacombe, J.; Adams, S.; Campillay, A.; Choi, C.; Contreras, C.; Dietrich, M.; Dubberley, M.; Elphick, M.; Foale, S.; Giustini, M.; Gonzalez, C.; Hawkins, E.; Howell, D. A.; Hsiao, E. Y.; Koss, M.; Leighly, K. M.; Morrell, N.; Mudd, D.; Mullins, D.; Nugent, J. M.; Parrent, J.; Phillips, M. M.; Pojmanski, G.; Rosing, W.; Ross, R.; Sand, D.; Terndrup, D. M.; Valenti, S.; Walker, Z.; Yoon, Y.
2014-06-01
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ~70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuum blue bump. Such "changing look active galactic nuclei (AGNs)" are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 107 M ⊙. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.
NASA Technical Reports Server (NTRS)
Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya;
2014-01-01
We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.
NASA Astrophysics Data System (ADS)
Fraija, N.; Marinelli, A.
2015-10-01
Long TeV γ-ray campaigns have been carried out to study the spectrum, variability and duty cycle of the BL Lac object Markarian 421. These campaigns have given some evidence of the presence of protons in the jet: (i) Its spectral energy distribution which shows two main peaks; one at low energies (∼1 keV) and the other at high energies (hundreds of GeV), has been described by using synchrotron proton blazar model. (ii) The study of the variability at GeV γ-rays and X-rays has indicated no significant correlation. (iii) TeV γ-ray detections without activity in X-rays, called "orphan flares" have been observed in this object. Recently, The Telescope Array Collaboration reported the arrival of 72 ultra-high-energy cosmic rays with some of them possibly related to the direction of Markarian 421. The IceCube Collaboration reported the detection of 37 extraterrestrial neutrinos in the TeV-PeV energy range collected during three consecutive years. In particular, no neutrino track events were associated with this source. In this paper, we consider the proton-photon interactions to correlate the TeV γ-ray fluxes reported by long campaigns with the neutrino and ultra-high-energy cosmic ray observations around this blazar. Considering the results reported by The IceCube and Telescope Array Collaborations, we found that only from ∼25% to 70% of TeV fluxes described with a power law function with exponential cutoff can come from the proton-photon interactions.
NASA Astrophysics Data System (ADS)
Pacciani, L.; Donnarumma, I.; Vittorini, V.; D'Ammando, F.; Fiocchi, M. T.; Impiombato, D.; Stratta, G.; Verrecchia, F.; Bulgarelli, A.; Chen, A. W.; Giuliani, A.; Longo, F.; Pucella, G.; Vercellone, S.; Tavani, M.; Argan, A.; Barbiellini, G.; Boffelli, F.; Caraveo, P. A.; Cattaneo, P. W.; Cocco, V.; Costa, E.; Del Monte, E.; Di Cocco, G.; Evangelista, Y.; Feroci, M.; Froysland, T.; Fuschino, F.; Galli, M.; Gianotti, F.; Labanti, C.; Lapshov, I.; Lazzarotto, F.; Lipari, P.; Marisaldi, M.; Mereghetti, S.; Morselli, A.; Pellizzoni, A.; Perotti, F.; Picozza, P.; Prest, M.; Rapisarda, M.; Soffitta, P.; Trifoglio, M.; Tosti, G.; Trois, A.; Vallazza, E.; Zanello, D.; Antonelli, L. A.; Colafrancesco, S.; Cutini, S.; Gasparrini, D.; Giommi, P.; Pittori, C.; Salotti, L.
2009-01-01
Context: We report the results of a 3-week multi-wavelength campaign targeting the flat spectrum radio quasar 3C 273 carried out with the AGILE gamma-ray mission, covering the 30 MeV-50 GeV and 18-60 keV, the REM observatory (covering the near-IR and optical), Swift (near-UV/Optical, 0.2-10 keV and 15-50 keV), INTEGRAL (3-200 keV) and Rossi XTE (2-12 keV). This is the first observational campaign including gamma-ray data, after the last EGRET observations, more than 8 years ago. Aims: This campaign has been organized by the AGILE team with the aim of observing, studying and modelling the broad band energy spectrum of the source, and its variability on a week timescale, testing the emission models describing the spectral energy distribution of this source. Methods: Our study was carried out using simultaneous light curves of the source flux from all the involved instruments, in the different energy ranges, to search for correlated variability. Then a time-resolved spectral energy distribution was used for a detailed physical modelling of the emission mechanisms. Results: The source was detected in gamma-rays only in the second week of our campaign, with a flux comparable to the level detected by EGRET in June 1991. We found an indication of a possible anti-correlation between the emission at gamma-rays and at soft and hard X-rays, supported by the complete set of instruments. Instead, optical data do not show short term variability, as expected for this source. Only in two preceding EGRET observations (in 1993 and 1997) 3C 273 showed intra-observation variability in gamma-rays. In the 1997 observation, flux variation in gamma-rays was associated with a synchrotron flare. The energy-density spectrum with almost simultaneous data partially covers the regions of synchrotron emission, the big blue bump, and the inverse-Compton. We adopted a leptonic model to explain the hard X/gamma-ray emissions, although from our analysis hadronic models cannot be ruled out. In the adopted model, the soft X-ray emission is consistent with combined synchrotron-self Compton and external Compton mechanisms, while hard X and gamma-ray emissions are compatible with external Compton from thermal photons of the disk. Under this model, the time evolution of the spectral energy distribution is well interpreted and modelled in terms of an acceleration episode of the electron population, leading to a shift in the inverse Compton peak towards higher energies.
Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.
1991-01-01
IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.
NASA Astrophysics Data System (ADS)
Brown, Alexander; France, Kevin; Walter, Frederick M.; Schneider, P. Christian; Brown, Timothy M.; Andrews, Sean M.; Wilner, David J.
2018-06-01
The young (7 Myr) 1.5 solar mass T Tauri star T Chamaeleontis shows dramatic variability. The optical extinction varies by at least 3 magnitudes on few hour time-scales with no obvious periodicity. The obscuration is produced by material at the inner edge of the circumstellar disk and therefore characterizing the absorbing material can reveal important clues regarding the transport of gas and dust within such disks. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. For this reason we have conducted a major multi-spectral-region observing campaign to study the UV/X-ray/optical variability of T Cha. During 2018 February/March we monitored the optical photometric and spectral variability using LCOGT (Chile/South Africa/Australia) and the SMARTS telescopes in Chile. These optical data provide a broad context within which to interpret our shorter UV and X-ray observations. We observed T Cha during 3 coordinated observations (each 5 HST orbits + 25 ksec XMM; on 2018 Feb 22, Feb 26, Mar 2) using the HST COS/STIS spectrographs to measure the FUV/NUV spectra and XMM-Newton to measure the corresponding X-ray energy distribution. The observed spectral changes are well correlated and demonstrate the influence of the same absorbing material in all the spectral regions observed. By examining which spectral features change and by how much we can determine the location of different emitting regions relative to the absorbers along the line-of-sight to the star. In this poster we provide an overview of the variability seen in the different spectral regions and quantify the dust and gas content of T Cha's inner disk edge.(This work is supported by grant HST-GO-15128 and time awarded by HST, XMM-Newton, LCOGT, and SMARTS. We acknowledge the assistance provided by Dr. Todd Henry in conducting this observing campaign.)
The 2010 Very High Energy Gamma-Ray Flare and 10 Years of Multi-Wavelength Observations of M87
NASA Technical Reports Server (NTRS)
Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.;
2011-01-01
The giant radio galaxy M87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3-6) X 10(exp 9) Solar Mass) provides a unique opportunity to investigate the origin of very high energy (VHE; E>100 GeV) gamma-ray emission generated in relativistic outflows and the surroundings of super-massive black holes. M87 has been established as a VHE gamma -ray emitter since 2006. The VHE gamma -ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected. triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of rise tau ((sup rise sub d) = (1:69 +/- 0:30) days and tau(sup decay sub d = (0:611 +/- 0:080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (approx day), peak fluxes (Phi (sub > 0:35 TeV) approx. equals (1 - 3) X 10(exp -11) ph / square cm/s), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken approx 3 days after the peak of the VHE gamma -ray emission reveal an enhanced flux from the core (flux increased by factor approx 2; variability timescale < 2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M87, spanning from radio to VHE and including data from HST, LT, VLA and EVN, is used to further investigate the origin of the VHE gamma -ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kpc jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE gamma -ray emission from M87 are reviewed in the light of the new data.
The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...
2015-04-17
We perform an extensive characterization of the broadband emission of Mrk 421, as well as its temporal evolution, during the non-flaring (low) state. The high brightness and nearby location (z = 0.031) of Mrk 421 make it an excellent laboratory to study blazar emission. The goal is to learn about the physical processes responsible for the typical emission of Mrk 421, which might also be extended to other blazars that are located farther away and hence are more difficult to study. We performed a 4.5-month multi-instrument campaign on Mrk 421 between January 2009 and June 2009, which included VLBA, F-GAMMA,more » GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other instruments and collaborations. This extensive radio to very-high-energy (VHE; E> 100 GeV) γ-ray dataset provides excellent temporal and energy coverage, which allows detailed studies of the evolution of the broadband spectral energy distribution. As a result, Mrk421 was found in its typical (non-flaring) activity state, with a VHE flux of about half that of the Crab Nebula, yet the light curves show significant variability at all wavelengths, the highest variability being in the X-rays. We determined the power spectral densities (PSD) at most wavelengths and found that all PSDs can be described by power-laws without a break, and with indices consistent with pink/red-noise behavior. We observed a harder-when-brighter behavior in the X-ray spectra and measured a positive correlation between VHE and X-ray fluxes with zero time lag. Such characteristics have been reported many times during flaring activity, but here they are reported for the first time in the non-flaring state. We also observed an overall anti-correlation between optical/UV and X-rays extending over the duration of the campaign. In conclusion, the harder-when-brighter behavior in the X-ray spectra and the measured positive X-ray/VHE correlation during the 2009 multi-wavelength campaign suggests that the physical processes dominating the emission during non-flaring states have similarities with those occurring during flaring activity. In particular, this observation supports leptonic scenarios as being responsible for the emission of Mrk 421 during non-flaring activity. Such a temporally extended X-ray/VHE correlation is not driven by any single flaring event, and hence is difficult to explain within the standard hadronic scenarios. Furthermore, the highest variability is observed in the X-ray band, which, within the one-zone synchrotron self-Compton scenario, indicates that the electron energy distribution is most variable at the highest energies.« less
The Chandra/MOST Campaign on Delta Ori A
NASA Astrophysics Data System (ADS)
Corcoran, Michael
2014-11-01
X-ray emission from massive stars is produced by shocked gas distributed throughout their unstable stellar winds. These shocks play a significant role in determining accurate stellar mass loss rates. Our current understanding of these shocks is derived from indirect indicators like line profile shapes and the f/i ratio of the He-like triplets. Here we discuss a campaign of phase-resolved Chandra grating observations and simultaneous high-precision photometry using the MOST satellite of the massive binary Delta Ori A, in an attempt to directly constrain the radial extent of the hot gas in the wind of the primary star (Delta Ori Aa) via occultation by the X-ray faint secondary (Delta Ori Ab). We present an overview of this campaign and a summary of our results.
Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948 0022 in March-July 2009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.
Following the recent discovery of {gamma} rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to {gamma} rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to {gamma}-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the {gamma}-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band. The smallest wasmore » at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. These results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less
NASA Astrophysics Data System (ADS)
Kriss, G.; Storm Team
2015-07-01
The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
NASA Technical Reports Server (NTRS)
Bodaghee, Arash; Tomsick, John A.; Rodriquez, Jerome; Chaty, Sylvain; Pottschmidt, Katja; Walter, Roland; Romano, Patrizia
2011-01-01
We present the results from analyses of Suzaku observations of the supergiant X-ray binaries IGR Jl6207-5129 and IGR Jl7391-3021. For IGR Jl6207-5129, we provide the first broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 16 X 10(exp 22)/square cm), and constrain the cutoff energy for the first time (E(sub c) 19 keV). We observed a prolonged (> 30 ks) attenuation of the X-ray flux which we tentatively attribute to an eclipse of the probable neutron star by its massive companion. For IGR Jl739J-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10 keV band are only a factor of 5 times that of the pre-flare emission. The weak flaring is accompanied by an increase in the absorbing column which suggests the accretion of obscuring clumps of wind. Placing this observation in the context of the recent Swift monitoring campaign, we now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well.
NASA Technical Reports Server (NTRS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.;
2015-01-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.
Simultaneous Multiwavelength Observations of PKS 2155-304
NASA Astrophysics Data System (ADS)
Osterman, M. A.; Miller, H. R.; Marshall, K.; Ryle, W. T.; Aller, H.; Aller, M.; Wagner, S.
2005-12-01
The TeV blazar PKS 2155-304 was the subject of an intensive two week optical and infrared observing campaign in August 2004 at the CTIO 0.9m telescope. During this time, simultaneous X-ray data from RXTE was also obtained. Over the course of these observations, two large flares occurred at these wavelengths. In the weeks following the CTIO campaign, more flux increases were observed at X-ray, optical, and radio wavelengths. We present an analysis of the relative sizes, shapes, and time delays of the various flares in order to constrain various models for blazar physics (e.g. shock in jet, accelerating or decelerating jet) assuming a synchrotron self-Compton model for the production of X-ray and higher energy emission. MAO, HRM, KM, and WTR are supported in part by the Program for Extragalactic Astronomy's Research Program Enhancement funds from GSU.
Origin of the Central Constant Emission Component of Eta Carinae
NASA Technical Reports Server (NTRS)
Hamaguchi, Kenji; Corocoran, M. F.; Gull, T.; Ishibashi, K.; Pittard, J. M.; Hillier, D. J.; Damineli, A.; Davidson, K.; Nielsen, K. E.; Owocki, S.;
2010-01-01
The X-ray campaign observation of the wind-wind colliding (WWC) binary system, Eta Carinae, targeted at its periastron passage in 2003, presented a detailed view of the flux and spectral variations of the X-ray minimum phase. One of the discoveries in this campaign was a central constant emission (CCE) component very near the central WWC source (Hamaguchi et al. 2007, ApJ, 663, 522). The CCE component was noticed between 1-3 keY during the X-ray minima and showed no variation on either short timescales within any observation or long timescales of up to 10 years. Hamaguchi et al. (2007) discussed possible origins as collisionally heated shocks from the fast polar winds from Eta Car or the fast moving outflow from the WWC with the ambient gas, or shocked gas that is intrinsic to the wind of Eta Car. During the 2009 periastron passage, we launched another focussed observing campaign of Eta Carinae with the Chandra, XMM-Newton and Suzaku observatories, concentrating on the X-ray faintest phase named the deep X-ray minimum. Thanks to multiple observations during the deep X-ray minimum, we found that the CCE spectrum extended up to 10 keV, indicating presence of hot plasma of kT approx.4-6 keV. This result excludes two possible origins that assume relatively slow winds (v approx. 1000 km/s) and only leaves the possibility that the CCE plasma is wind blown bubble at the WWC downstream. The CCE spectrum in 2009 showed a factor of 2 higher soft band flux as the CCE spectrum in 2003, while the hard band flux was almost unchanged. This variation suggests decrease in absorption column along the line of sight. We compare this result with recent increase in V-band magnitude of Eta Carinae and discuss location of the CCE plasma.
Abdul-Majid, S
1987-01-01
The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.
Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253
NASA Technical Reports Server (NTRS)
Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.;
2013-01-01
We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX nature for this source. Future NuSTAR and Chandra monitoring would be well equipped to break the degeneracy between the AGN and ULX nature of the 2003 source, if again caught in a high state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shappee, B. J.; Kochanek, C. S.; Stanek, K. Z.
2014-06-10
After the All-Sky Automated Survey for SuperNovae discovered a significant brightening of the inner region of NGC 2617, we began a ∼70 day photometric and spectroscopic monitoring campaign from the X-ray through near-infrared (NIR) wavelengths. We report that NGC 2617 went through a dramatic outburst, during which its X-ray flux increased by over an order of magnitude followed by an increase of its optical/ultraviolet (UV) continuum flux by almost an order of magnitude. NGC 2617, classified as a Seyfert 1.8 galaxy in 2003, is now a Seyfert 1 due to the appearance of broad optical emission lines and a continuummore » blue bump. Such 'changing look active galactic nuclei (AGNs)' are rare and provide us with important insights about AGN physics. Based on the Hβ line width and the radius-luminosity relation, we estimate the mass of central black hole (BH) to be (4 ± 1) × 10{sup 7} M {sub ☉}. When we cross-correlate the light curves, we find that the disk emission lags the X-rays, with the lag becoming longer as we move from the UV (2-3 days) to the NIR (6-9 days). Also, the NIR is more heavily temporally smoothed than the UV. This can largely be explained by a simple model of a thermally emitting thin disk around a BH of the estimated mass that is illuminated by the observed, variable X-ray fluxes.« less
The Mysterious sdO X-ray Binary BD+37°442
NASA Astrophysics Data System (ADS)
Heber, U.; Geier, S.; Irrgang, A.; Schneider, D.; Barbu-Barna, I.; Mereghetti, S.; La Palombara, N.
2014-04-01
Pulsed X-ray emission in the luminous, helium-rich sdO BD +37°442 has recently been discovered (La Palombara et al. 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD +37°442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD +37°442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of less than ten days. Hence, we embarked on radial velocity monitoring in order to derive the binary parameters of the BD+37°442 system and obtained 41 spectra spread out over several month in 2012. Unlike for HD 49798, no radial velocity variations were found and, hence, there is no dynamical evidence for the existence of a compact companion yet. The origin of the pulsed X-ray emission remains as a mystery.
PKS 2155-304 in July 2006: H.E.S.S. results and simultaneous multi-wavelength observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenain, Jean-Philippe; Boisson, Catherine; Sol, Helne
2008-12-24
The high-frequency-peaked BL Lac PKS 2155-304 is one of the brightest and best-studied VHE {gamma}-ray sources in the southern hemisphere. The High Energy Stereoscopic System (H.E.S.S.) has monitored PKS 2155-304 in 2006 and a multi-wavelength campaign involving X-ray, optical and radio observatories was triggered by the detection of an active state in July 2006, followed by the detection of two extraordinary flares on July, 28th and 30th, with peak fluxes {approx}100 times the usual values. We present results from the spectral and flux variability analysis of the VHE and simultaneous X-ray observations with Chandra during the second flare, as wellmore » as the detailed evolution of the VHE flux of PKS 2155-304 observed by H.E.S.S. in 2006. A study of flux correlations in the different frequency ranges during the second flare and the adjacent nights is discussed. We also present an interpretation of the active state of PKS 2155-304 in the framework of synchrotron self-Compton emission.« less
NASA Astrophysics Data System (ADS)
Hamaguchi, Kenji; Corcoran, Michael F.; Takahashi, Hiromitsu; Yuasa, Tadayuki; Groh, Jose H.; Russell, Christopher Michael Post; Pittard, Julian M.; Madura, Thomas; Owocki, Stanley P.; Grefenstette, Brian
2015-01-01
The super massive colliding wind binary system, Eta Carinae, experienced another periastron passage in the summer of 2014. We monitored this event using the multiple X-ray observatories, Chandra, XMM-Newton, NuSTAR, Suzaku and Swift. With a high eccentricity of its 5.5 year orbit, X-ray emission from the wind-wind collision (WWC) increases strongly toward periastron but then drops sharply by more than two orders of magnitude in two weeks around periastron due probably to an eclipse and an intrinsic activity decline of the WWC plasma. In this observing campaign, XMM-Newton and NuSTAR coordinated two simultaneous observations around the X-ray flux maximum on June 6 and just before the flux minimum on July 28. These two observations captured Eta Carinae with X-ray focusing telescopes in the extreme hard X-ray band above 10 keV for the first time.During the first observation, XMM and NuSTAR detected stable X-ray emission from the central binary system between 1 - 40 keV. A fit of a 1-temperature bremsstrahlung model to the high energy slope in the NuSTAR spectrum derives an electron temperature of ~6 keV, which is significantly higher than an ionization temperature at ~4.5 keV, measured from the Fe K emission lines resolved in the XMM spectrum.This result suggests the presence of very hot plasma and/or X-ray reflection at surrounding cold material. During the second observation, the X-ray flux between 5 - 10 keV declined steadily by a factor of ~2 in a day, while the other energy bands were rather stable. This variation may be explained by an increase of the line of sight absorption to emission from the plasma component that dominates above 5 keV. NuSTAR did not detect, in either observation, the very hard non-thermal component that dominated emission above 25 keV seen in earlier INTEGRAL and Suzaku observations. We discuss the plasma condition and the wind structure of Eta Carinae around periastron, and the nature of the non-thermal component.
NASA Technical Reports Server (NTRS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.;
2015-01-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.
UV and X-ray Evolution of AR12230 as Observed with IRIS and FOXSI-II
NASA Astrophysics Data System (ADS)
Ryan, Daniel; Christe, Steven; Glesener, Lindsay; Vievering, Julie; Krucker, Sam; Ishikawa, Shin-Nosuke
2017-08-01
We present a multi-spectral and spatio-temporal analysis of AR12230 using both UV and X-ray spectroscopic imaging obtained as part of a coordinated observing campaign on 11 December 2014. The campaign involved IRIS (Interface Region Imaging Spectrometer) -- which provides both UV imaging and slit spectrograph observations of optically thick chromospheric and transition region emission -- and FOXSI-II (Focusing Optics X-ray Solar Imager) -- the second in a series of sounding rocket flights which combines grazing incidence direct focusing optics to produce solar X-ray spectroscopic imaging in the range 4-15keV. The active region exhibits a prolonged compact brightening in the IRIS 1330 A and 1400 A slit-jaw channels near the center of the active region throughout the duration of the observations. In the early phase of the observations FOXSI-II shows an X-ray source approximately 20x20 arcsec centered at the same location. The X-ray spectra show the presence of hot (~8 MK) thermal plasma and is suggestive of the presence of non-thermal electrons.. Later, two additional transient, spatially extended, simultaneous brightenings are observed, one of which was captured by the IRIS slit spectrograph. We combine these observations to explore the evolution and topology of the active region. Hydrodynamic modeling of the chromosphere is used to place a limit on the amount of non-thermal electrons required to produce the observed UV emission. This result is then compared to the limit inferred from the FOXSI-II X-ray spectra. Thus, we explore the role of non-thermal electrons and hydrodynamics in the energization and evolution of plasma in active regions.
Results of X-ray and optical monitoring of SCO X-1
NASA Technical Reports Server (NTRS)
Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.
1974-01-01
Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.
NASA Astrophysics Data System (ADS)
Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Nazé, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; Richardson, N. D.; Pablo, H.; Evans, N. R.; Hamaguchi, K.; Gull, T.; Hamann, W.-R.; Oskinova, L.; Ignace, R.; Hoffman, Jennifer L.; Hole, K. T.; Lomax, J. R.
2015-08-01
We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the δ Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of ≈ 479 ks and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 Å is confirmed, with a maximum amplitude of about ±15% within a single ≈ 125 ks observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 ks contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S xv, Si xiii, and Ne ix. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at ϕ = 0.0 when the secondary δ Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability. Based on data from the Chandra X-ray Observatory and the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute of Aerospace Studies, and the University of British Columbia, with the assistance of the University of Vienna.
X-ray Monitoring of eta Carinae: Variations on a Theme
NASA Technical Reports Server (NTRS)
Corcoran, M. F.
2004-01-01
We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.
Multiwavelength observations of the blazar 1ES 1011+496 in Spring 2008
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carmona, E.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Caneva, G.; De Lotto, B.; de Oña Wilhelmi, E.; Delgado Mendez, C.; Di Pierro, F.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Elsaesser, D.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Eisenacher Glawion, D.; Godinović, N.; González Muñoz, A.; Guberman, D.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; López-Oramas, A.; Lorenz, E.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Orito, R.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Rügamer, S.; Saito, T.; Satalecka, K.; Scapin, V.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Lucarelli, F.; Pittori, C.; Vercellone, S.; Berdyugin, A.; Carini, M. T.; Lähteenmäki, A.; Pasanen, M.; Pease, A.; Sainio, J.; Tornikoski, M.; Walters, R.
2016-07-01
The BL Lac object 1ES 1011+496 was discovered at very high energy (VHE, E > 100GeV) γ-rays by Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) in Spring 2007. Before that the source was little studied in different wavelengths. Therefore, a multiwavelength (MWL) campaign was organized in Spring 2008. Along MAGIC, the MWL campaign included the Metsähovi Radio Observatory, Bell and Kungliga Vetenskapsakademien (KVA) optical telescopes and the Swift and AGILE satellites. MAGIC observations span from 2008 March to May for a total of 27.9 h, of which 19.4 h remained after quality cuts. The light curve showed no significant variability yielding an integral flux above 200 GeV of (1.3 ± 0.3) × 10-11 photons cm-2 s-1. The differential VHE spectrum could be described with a power-law function with a spectral index of 3.3 ± 0.4. Both results were similar to those obtained during the discovery. Swift X-ray Telescope observations revealed an X-ray flare, characterized by a harder-when-brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE γ-ray bands could be drawn. The contemporaneous spectral energy distribution shows a synchrotron-dominated source, unlike concluded in previous work based on non-simultaneous data, and is well described by a standard one-zone synchrotron self-Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.
NASA Astrophysics Data System (ADS)
Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda
2017-02-01
In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms.
Rapidly variable relatvistic absorption
NASA Astrophysics Data System (ADS)
Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.
2017-10-01
I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.
Monitoring variable X-ray sources in nearby galaxies
NASA Astrophysics Data System (ADS)
Kong, A. K. H.
2010-12-01
In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.
Multiwavelength Monitoring of the Enigmatic Narrow-Line Seyfert 1 PMN J0948+0022 in 2009 March-July
Abdo, A. A.; Ackermann, M.; Ajello, M.; ...
2009-11-25
For this research, following the recent discovery of γ rays from the radio-loud narrow-line Seyfert 1 galaxy PMN J0948+0022 (z = 0.5846), we started a multiwavelength campaign from radio to γ rays, which was carried out between the end of 2009 March and the beginning of July. The source displayed activity at all the observed wavelengths: a general decreasing trend from optical to γ-ray frequencies was followed by an increase of radio emission after less than two months from the peak of the γ-ray emission. The largest flux change, about a factor of about 4, occurred in the X-ray band.more » The smallest was at ultraviolet and near-infrared frequencies, where the rate of the detected photons dropped by a factor 1.6-1.9. At optical wavelengths, where the sampling rate was the highest, it was possible to observe day scale variability, with flux variations up to a factor of about 3. The behavior of PMN J0948+0022 observed in this campaign and the calculated power carried out by its jet in the form of protons, electrons, radiation, and magnetic field are quite similar to that of blazars, specifically of flat-spectrum radio quasars. In conclusion, these results confirm the idea that radio-loud narrow-line Seyfert 1 galaxies host relativistic jets with power similar to that of average blazars.« less
RXTE Observations of LMC X-1 and LMC X-3
NASA Technical Reports Server (NTRS)
Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.
1999-01-01
Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3 , we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200 d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.
RXTE Observations of LMC X-1 and LMC X-3
NASA Technical Reports Server (NTRS)
Wilms, J.; Nowak, M. A.; Dove, J. B.; Pottschmidt, K.; Heindl, W. A.; Begelman, M. C.; Staubert, R.
1998-01-01
Of all known persistent stellar-mass black hole candidates, only LMC X-1 and LMC X-3 consistently show spectra that are dominated by a soft, thermal component. We present results from long (170 ksec) Rossi X-ray Timing Explorer (RXTE) observations of LMC X-1 and LMC X-3 made in 1996 December. The spectra can be described by a multicolor disk blackbody plus an additional high-energy power-law. Even though the spectra are very soft (Gamma approximately 2.5), RXTE detected a significant signal from LMC X-3 up to energies of 50 keV, the hardest energy at which the object was ever detected. Focusing on LMC X-3, we present results from the first year of an ongoing monitoring campaign with RXTE which started in 1997 January. We show that the appearance of the object changes considerably over its approximately 200d long cycle. This variability can either be explained by periodic changes in the mass transfer rate or by a precessing accretion disk analogous to Her X-1.
Simultaneous Monitoring of X-Ray and Radio Variability in Sagittarius A*
NASA Astrophysics Data System (ADS)
Capellupo, Daniel M.; Haggard, Daryl; Choux, Nicolas; Baganoff, Fred; Bower, Geoffrey C.; Cotton, Bill; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Chris; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joey; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad
2017-08-01
Monitoring of Sagittarius A* from X-ray to radio wavelengths has revealed structured variability—including X-ray flares—but it is challenging to establish correlations between them. Most studies have focused on variability in the X-ray and infrared, where variations are often simultaneous, and because long time series at submillimeter and radio wavelengths are limited. Previous work on submillimeter and radio variability hints at a lag between X-ray flares and their candidate submillimeter or radio counterparts, with the long wavelength data lagging the X-ray. However, there is only one published time lag between an X-ray flare and a possible radio counterpart. Here we report nine contemporaneous X-ray and radio observations of Sgr A*. We detect significant radio variability peaking ≳ 176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also report other potentially associated X-ray and radio variability, with the radio peaks appearing ≲ 80 minutes after these weaker X-ray flares. Taken at face value, these results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and radio wavelengths is not temporally correlated. We cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.
An XMM-Newton Monitoring Campaign of the Accretion Flow in IGRJ16318-4848
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Nicastro, Fabrizio
2005-01-01
This grant is associated to a successful XMM-Newton-AO3 observational proposal to monitor the spectrum of the X-ray loud component of the recently discovered binary system IGR J16138-4848, to study the conditions of the accretion flows (and their evolution) in binary system. All four EPIC-PN and MOS observations of the target have now been performed (the last one of the 4, only 3 months ago). The four observations were logarithmically spaced, so to cover timescales from days to months. Data from all four pointings have now been reduced, using the XMM-Newton data reduction pipeline, and spectra and lightcurves from the target have been extracted. For the first three observations we have already performed the observation-by-observation data analysis, by fitting the single EPIC spectra with spectral models that include an intrinsic continuum power law (reduced at low energy by neutral absorption), a 6.4 keV iron emission line (detected in all spectra with varying intensity) and a Compton-reflection component. A Compton reflection component is also detected in all spectra, although at lower significance. The analysis of the fourth and last observation of our monitoring campaign has just recently begun. Next, we will (1) stack together the four observations of IGR J16138-4848, to obtain high-accuracy estimates of the average spectral parameters of this object; and then (2) proceed to the time-evolving analysis, of the three spectral parameters: (a) Gamma (the slope of the intrinsic continuum), (b) W(FeK), the equivalent width of the 6.4 keV Iron emission line, and (c) R, the relative amount of Compton reflection. Through this time-resolved spectroscopic analysis we hope to constrain (a) the physical state of the accreting matter and its relation with the X-ray output, and (b) the evolution of the accretion flow geometry, distribution and covering factor.
The X-Ray Variability of Sagittarius A*
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.
2015-01-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association
NASA Technical Reports Server (NTRS)
deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.;
2013-01-01
Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case, it would be the first associated with a high-energy gamma-ray source.
All-Sky Monitoring of Variable Sources with Fermi GBM
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James;
2011-01-01
Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.
Insight-HXMT observations of the first binary neutron star merger GW170817
NASA Astrophysics Data System (ADS)
Li, TiPei; Xiong, ShaoLin; Zhang, ShuangNan; Lu, FangJun; Song, LiMing; Cao, XueLei; Chang, Zhi; Chen, Gang; Chen, Li; Chen, TianXiang; Chen, Yong; Chen, YiBao; Chen, YuPeng; Cui, Wei; Cui, WeiWei; Deng, JingKang; Dong, YongWei; Du, YuanYuan; Fu, MinXue; Gao, GuanHua; Gao, He; Gao, Min; Ge, MingYu; Gu, YuDong; Guan, Ju; Guo, ChengCheng; Han, DaWei; Hu, Wei; Huang, Yue; Huo, Jia; Jia, ShuMei; Jiang, LuHua; Jiang, WeiChun; Jin, Jing; Jin, YongJie; Li, Bing; Li, ChengKui; Li, Gang; Li, MaoShun; Li, Wei; Li, Xian; Li, XiaoBo; Li, XuFang; Li, YanGuo; Li, ZiJian; Li, ZhengWei; Liang, XiaoHua; Liao, JinYuan; Liu, CongZhan; Liu, GuoQing; Liu, HongWei; Liu, ShaoZhen; Liu, XiaoJing; Liu, Yuan; Liu, YiNong; Lu, Bo; Lu, XueFeng; Luo, Tao; Ma, Xiang; Meng, Bin; Nang, Yi; Nie, JianYin; Ou, Ge; Qu, JinLu; Sai, Na; Sun, Liang; Tan, Yin; Tao, Lian; Tao, WenHui; Tuo, YouLi; Wang, GuoFeng; Wang, HuanYu; Wang, Juan; Wang, WenShuai; Wang, YuSa; Wen, XiangYang; Wu, BoBing; Wu, Mei; Xiao, GuangCheng; Xu, He; Xu, YuPeng; Yan, LinLi; Yang, JiaWei; Yang, Sheng; Yang, YanJi; Zhang, AiMei; Zhang, ChunLei; Zhang, ChengMo; Zhang, Fan; Zhang, HongMei; Zhang, Juan; Zhang, Qiang; Zhang, Shu; Zhang, Tong; Zhang, Wei; Zhang, WanChang; Zhang, WenZhao; Zhang, Yi; Zhang, Yue; Zhang, YiFei; Zhang, YongJie; Zhang, Zhao; Zhang, ZiLiang; Zhao, HaiSheng; Zhao, JianLing; Zhao, XiaoFan; Zheng, ShiJie; Zhu, Yue; Zhu, YuXuan; Zou, ChangLin
2018-03-01
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ( 1000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints ( 10‒7 to 10‒6 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Study of X-ray transients with Scanning Sky Monitor (SSM) onboard AstroSat
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Ravishankar, B. T.; Sarwade, Abhilash R.; Vaishali, S.; Iyer, Nirmal Kumar; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Baby, Blessy Elizabeth; Hasan, Mohammed; Seetha, S.; Bhattacharya, Dipankar
2018-02-01
Scanning Sky Monitor (SSM) onboard AstroSat is an X-ray sky monitor in the energy range 2.5-10 keV. SSM scans the sky for X-ray transient sources in this energy range of interest. If an X-ray transient source is detected in outburst by SSM, the information will be provided to the astronomical community for follow-up observations to do a detailed study of the source in various other bands. SSM instrument, since its power-ON in orbit, has observed a number of X-ray sources. This paper discusses observations of few X-ray transients by SSM. The flux reported by SSM for few sources during its Performance Verification phase (PV phase) is studied and the results are discussed.
An Integrated Approach to Winds, Jets, and State Transitions
NASA Astrophysics Data System (ADS)
Neilsen, Joseph
2017-09-01
We propose a large multiwavelength campaign (120 ks Chandra HETGS, NuSTAR, INTEGRAL, JVLA/ATCA, Swift, XMM, Gemini) on a black hole transient to study the influence of ionized winds on relativistic jets and state transitions. With a reimagined observing strategy based on new results on integrated RMS variability and a decade of radio/X-ray monitoring, we will search for winds during and after the state transition to test their influence on and track their coevolution with the disk and the jet over the next 2-3 months. Our spectral and timing constraints will provide precise probes of the accretion geometry and accretion/ejection physics.
ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577-577, Identified with LB 1727
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Marshall, H. L.; Grupe, D.; Remillard, R.; Leighly, K.
1998-01-01
We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 0.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, intrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some turn-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - 0.7 keV band.
ROSAT and ASCA Observations of the Seyfert Galaxy 1H0419-577, Identified with LB 1727
NASA Technical Reports Server (NTRS)
Turner, T. J.; George, I. M.; Nandra, K.; Grupe, D.; Remillard, R.; Leighly, K.; Marshall, H. L.
1998-01-01
We discuss the properties of the Seyfert 1.5 galaxy LB 1727 based upon the analysis of two ASCA observations, a two-month Rosat monitoring campaign, and optical data. The target is identified with the HEAO-A1 source 1H0419-577, so it has been observed by ASCA and ROSAT in order to obtain better X-ray variability and spectra data. Only modest (20%) variability is observed within or between ASCA and BeppoSAX observations in the approximately 2 - 10 keV band. However, the soft X-ray flux increased by a factor of 3 over a period of 2 months, while it was monitored daily by the ROSAT HRI instrument. The hard X-ray continuum can be parameterized as a power-law of slope Gamma approximately 1.5 - 1.6 across 9.7 - 11 keV in the rest-frame. We also report the first detection of an iron K(alpha) line in this source, consistent with emission from neutral material. The X-ray spectrum steepens sharply below 0.7 keV yielding a power-law of slope Gamma approximately 3.2. There is no evidence for absorption by neutral material, instrinsic to the nucleus. If the nucleus is unattenuated, then the break energy between the soft-excess and hard component is 0.7+/-0.08 keV. An ionized absorber may produce some tum-up in the spectrum at low energies, but a steepening of the underlying continuum is also required to explain the simultaneous ASCA and HRI data. We cannot rule out the possibility that a significant column of ionized material exists in the line-of-sight, if that is true, then the continuum break-energy can only be constrained to lie within the approximately 0.1 - -0.7 keV band.
Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A
2010-10-01
Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.
Optimizing implosion yields using rugby-shaped hohlraums
NASA Astrophysics Data System (ADS)
Park, Hye-Sook; Robey, H.; Amendt, P.; Philippe, F.; Casner, A.; Caillaud, T.; Bourgade, J.-L.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Glebov, V. Yu.
2009-11-01
We present the first experimental results on optimizing capsule implosion experiments by using rugby-shaped hohlraums [1] on the Omega laser, University of Rochester. This campaign compared D2-filled capsule performance between standard cylindrical Au hohlraums and rugby-shaped hohlraums for demonstrating the energetics advantages of the rugby geometry. Not only did the rugby-shaped hohlraums show nearly 20% more x-ray drive energy over the cylindrical hohlraums, but also the high-performance design of the capsules provided nearly 20 times more DD neutrons than in any previous Omega hohlraum campaigns, thereby enabling use of neutron temporal diagnostics. Comparison with simulations on neutron burn histories, x-ray core imaging, backscattered laser light and radiation temperature are presented. [1] P. Amendt et al., Phys. Plasmas 15, 012702 (2008)
Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars
NASA Astrophysics Data System (ADS)
Shemmer, Ohad
2017-09-01
We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.
Biomedical Equipment Maintenance Career Ladder, AFSC 918X0
1989-01-01
incubators, fetal heart monitors, and vital sign monitors. In comparison, higher percent- ages of the 5-skill level group maintain x-ray equipment...ECG) Monitors 87 Hypo/Hyperthermia Units 85 Incubators 85 Audiometer Systems 84 Blood Pressure Monitors, Automatic 81 Fetal Heart Monitors 80 X-Ray...01462 VERIFY CALIBRATION OF FETAL HEART MONITORS 100 G281 PERFORM OPERATIONAL INSPECTIONS OF VITAL SIGN MONITORS 100 01435 PERFORM PREVENTIVE
Shock Timing Plan for the National Ignition Campaign
NASA Astrophysics Data System (ADS)
Munro, D. H.; Robey, H. F.; Spears, B. K.; Boehly, T. R.
2006-10-01
We report progress on the design of the shock timing tuning procedure for the 2010 ignition campaign at the National Ignition Facility. Our keyhole target design provides adequate drive surrogacy for us to time the first three shocks empirically. The major risk to our plan is hard x-ray preheat, which can cause the diagnostic window to become opaque.
Anatomy of the AGN in NGC 5548: Discovery of a fast and massive outflow
NASA Astrophysics Data System (ADS)
Kaastra, J.; Kriss, G.; Cappi, M.; Mehdipour, M.; Petrucci, P.; Steenbrugge, K.; Arav, N.; Behar, E.; Bianchi, S.; Boissay, R.; Branduardi-Raymont, G.; Chamberlain, C.; Costantini, E.; Ely, J.; Ebrero, J.; Di Gesu, L.; Harrison, F.; kaspi, S.; Malzac, J.; De Marco, B.; Matt, G.; Nandra, K.; Paltani, S.; Person, R.; Peterson, B.; Pinto, C.; Ponti, G.; Pozo Nuñez, F.; De Rosa, A.; Seta, H.; Ursini, F.; De Vries, C.; Walton, D.; Whewell, M.
2014-07-01
After a very succesfull multi-satellite campaign on Mrk 509 in 2009, we conducted a similar campaign on the AGN NGC 5548 in 2013. This archetype Seyfert 1 galaxy NGC 5548 has been studied for decades, and high-resolution X-ray and UV observations have previously shown an outflow with standard physical characteristics. However, our recent observing campaign with six space observatories (XMM-Newton, HST, Swift, NuSTAR, Chandra and INTEGRAL) shows the nucleus to be obscured by a stream of new ionized gas never seen before in this source. The gas with hydrogen column densities of 1E26-1E27 per m2 blocks 90% of the soft X-ray emission and causes deep and broad UV absorption troughs. The outflow velocities are up to five times faster than the persistent normal outflow. It is located at a distance of only a few light days from the nucleus close to the broad line region; this might indicate an origin from the accretion disk.
The 2010 Very High Energy γ-Ray Flare and 10 Years of Multi-wavelength Observations of M 87
NASA Astrophysics Data System (ADS)
Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Barres de Almeida, U.; Becherini, Y.; Becker, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Clapson, A. C.; Coignet, G.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Häffner, S.; Hague, J. D.; Hampf, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khangulyan, D.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Laffon, H.; Lamanna, G.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, D.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H.E.S.S. Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Borla Tridon, D.; Braun, I.; Bretz, T.; Cañellas, A.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Cossio, L.; Covino, S.; Dazzi, F.; De Angelis, A.; De Cea del Pozo, E.; De Lotto, B.; Delgado Mendez, C.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; Fruck, C.; García López, R. J.; Garczarczyk, M.; Garrido, D.; Giavitto, G.; Godinović, N.; Hadasch, D.; Häfner, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Huber, B.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Krause, J.; La Barbera, A.; Lelas, D.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Makariev, M.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Munar, P.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paneque, D.; Paoletti, R.; Pardo, S.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Perez-Torres, M. A.; Persic, M.; Peruzzo, L.; Pilia, M.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Reinthal, R.; Rhode, W.; Ribó, M.; Rico, J.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Surić, T.; Takalo, L.; Takami, H.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thom, M.; Tibolla, O.; Torres, D. F.; Treves, A.; Vankov, H.; Vogler, P.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bouvier, A.; Bradbury, S. M.; Buckley, J. H.; Bugaev, V.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dickherber, R.; Duke, C.; Errando, M.; Falcone, A.; Finley, J. P.; Finnegan, G.; Fortson, L.; Furniss, A.; Galante, N.; Gall, D.; Godambe, S.; Griffin, S.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Huan, H.; Hui, C. M.; Kaaret, P.; Karlsson, N.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; LeBohec, S.; Maier, G.; McArthur, S.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nuñez, P. D.; Ong, R. A.; Orr, M.; Otte, A. N.; Park, N.; Perkins, J. S.; Pichel, A.; Pohl, M.; Prokoph, H.; Ragan, K.; Reyes, L. C.; Reynolds, P. T.; Roache, E.; Rose, H. J.; Ruppel, J.; Schroedter, M.; Sembroski, G. H.; Şentürk, G. D.; Telezhinsky, I.; Tešić, G.; Theiling, M.; Thibadeau, S.; Varlotta, A.; Vassiliev, V. V.; Vivier, M.; Wakely, S. P.; Weekes, T. C.; Williams, D. A.; Zitzer, B.; VERITAS Collaboration; Barres de Almeida, U.; Cara, M.; Casadio, C.; Cheung, C. C.; McConville, W.; Davies, F.; Doi, A.; Giovannini, G.; Giroletti, M.; Hada, K.; Hardee, P.; Harris, D. E.; Junor, W.; Kino, M.; Lee, N. P.; Ly, C.; Madrid, J.; Massaro, F.; Mundell, C. G.; Nagai, H.; Perlman, E. S.; Steele, I. A.; Walker, R. C.; Wood, D. L.
2012-02-01
The giant radio galaxy M 87 with its proximity (16 Mpc), famous jet, and very massive black hole ((3 - 6) × 109 M ⊙) provides a unique opportunity to investigate the origin of very high energy (VHE; E > 100 GeV) γ-ray emission generated in relativistic outflows and the surroundings of supermassive black holes. M 87 has been established as a VHE γ-ray emitter since 2006. The VHE γ-ray emission displays strong variability on timescales as short as a day. In this paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE was detected triggering further observations at VHE (H.E.S.S.), X-rays (Chandra), and radio (43 GHz Very Long Baseline Array, VLBA). The excellent sampling of the VHE γ-ray light curve enables one to derive a precise temporal characterization of the flare: the single, isolated flare is well described by a two-sided exponential function with significantly different flux rise and decay times of τrise d = (1.69 ± 0.30) days and τdecay d = (0.611 ± 0.080) days, respectively. While the overall variability pattern of the 2010 flare appears somewhat different from that of previous VHE flares in 2005 and 2008, they share very similar timescales (~day), peak fluxes (Φ>0.35 TeV ~= (1-3) × 10-11 photons cm-2 s-1), and VHE spectra. VLBA radio observations of 43 GHz of the inner jet regions indicate no enhanced flux in 2010 in contrast to observations in 2008, where an increase of the radio flux of the innermost core regions coincided with a VHE flare. On the other hand, Chandra X-ray observations taken ~3 days after the peak of the VHE γ-ray emission reveal an enhanced flux from the core (flux increased by factor ~2; variability timescale <2 days). The long-term (2001-2010) multi-wavelength (MWL) light curve of M 87, spanning from radio to VHE and including data from Hubble Space Telescope, Liverpool Telescope, Very Large Array, and European VLBI Network, is used to further investigate the origin of the VHE γ-ray emission. No unique, common MWL signature of the three VHE flares has been identified. In the outer kiloparsec jet region, in particular in HST-1, no enhanced MWL activity was detected in 2008 and 2010, disfavoring it as the origin of the VHE flares during these years. Shortly after two of the three flares (2008 and 2010), the X-ray core was observed to be at a higher flux level than its characteristic range (determined from more than 60 monitoring observations: 2002-2009). In 2005, the strong flux dominance of HST-1 could have suppressed the detection of such a feature. Published models for VHE γ-ray emission from M 87 are reviewed in the light of the new data.
NASA Astrophysics Data System (ADS)
Błażejowski, M.; Blaylock, G.; Bond, I. H.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Celik, O.; Cogan, P.; Cui, W.; Daniel, M.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L.; Gammell, S.; Gibbs, K.; Gillanders, G. G.; Grube, J.; Gutierrez, K.; Hall, J.; Hanna, D.; Holder, J.; Horan, D.; Humensky, B.; Kenny, G.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M.; LeBohec, S.; Linton, E.; Lloyd-Evans, J.; Maier, G.; Mendoza, D.; Milovanovic, A.; Moriarty, P.; Nagai, T. N.; Ong, R. A.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Reynolds, P. T.; Rebillot, P.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Valcarel, L.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; White, R.; Zweerink, J.; VERITAS Collaboration; Mochejska, B.; Smith, B.; Aller, M.; Aller, H.; Teräsranta, H.; Boltwood, P.; Sadun, A.; Stanek, K.; Adams, E.; Foster, J.; Hartman, J.; Lai, K.; Böttcher, M.; Reimer, A.; Jung, I.
2005-09-01
We report results from an intensive multiwavelength monitoring campaign on the TeV blazar Mrk 421 over the period of 2003-2004. The source was observed simultaneously at TeV energies with the Whipple 10 m telescope and at X-ray energies with the Rossi X-Ray Timing Explorer (RXTE) during each clear night within the Whipple observing windows. Supporting observations were also frequently carried out at optical and radio wavelengths to provide simultaneous or contemporaneous coverages. The large amount of simultaneous data has allowed us to examine the variability of Mrk 421 in detail, including cross-band correlation and broadband spectral variability, over a wide range of flux. The variabilities are generally correlated between the X-ray and gamma-ray bands, although the correlation appears to be fairly loose. The light curves show the presence of flares with varying amplitudes on a wide range of timescales at both X-ray and TeV energies. Of particular interest is the presence of TeV flares that have no coincident counterparts at longer wavelengths, because the phenomenon seems difficult to understand in the context of the proposed emission models for TeV blazars. We have also found that the TeV flux reached its peak days before the X-ray flux did during a giant flare (or outburst) in 2004 (with the peak flux reaching ~135 mcrab in X-rays, as seen by the RXTE ASM, and ~3 crab in gamma rays). Such a difference in the development of the flare presents a further challenge to both the leptonic and hadronic emission models. Mrk 421 varied much less at optical and radio wavelengths. Surprisingly, the normalized variability amplitude in the optical seems to be comparable to that in the radio, perhaps suggesting the presence of different populations of emitting electrons in the jet. The spectral energy distribution of Mrk 421 is seen to vary with flux, with the two characteristic peaks moving toward higher energies at higher fluxes. We have failed to fit the measured spectral energy distributions (SEDs) with a one-zone synchrotron self-Compton model; introducing additional zones greatly improves the fits. We have derived constraints on the physical properties of the X-ray/gamma-ray flaring regions from the observed variability (and SED) of the source. The implications of the results are discussed.
X-Rays from the Location of the Double-humped Transient ASASSN-15lh
NASA Astrophysics Data System (ADS)
Margutti, R.; Metzger, B. D.; Chornock, R.; Milisavljevic, D.; Berger, E.; Blanchard, P. K.; Guidorzi, C.; Migliori, G.; Kamble, A.; Lunnan, R.; Nicholl, M.; Coppejans, D. L.; Dall'Osso, S.; Drout, M. R.; Perna, R.; Sbarufatti, B.
2017-02-01
We present the detection of persistent soft X-ray radiation with {L}x˜ {10}41-1042 erg s-1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical-UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event.
Silicon pore optics development for ATHENA
NASA Astrophysics Data System (ADS)
Collon, Maximilien J.; Vacanti, Giuseppe; Günther, Ramses; Yanson, Alex; Barrière, Nicolas; Landgraf, Boris; Vervest, Mark; Chatbi, Abdelhakim; Beijersbergen, Marco W.; Bavdaz, Marcos; Wille, Eric; Haneveld, Jeroen; Koelewijn, Arenda; Leenstra, Anne; Wijnperle, Maurice; van Baren, Coen; Müller, Peter; Krumrey, Michael; Burwitz, Vadim; Pareschi, Giovanni; Conconi, Paolo; Christensen, Finn E.
2015-09-01
The ATHENA mission, a European large (L) class X-ray observatory to be launched in 2028, will essentially consist of an X-ray lens and two focal plane instruments. The lens, based on a Wolter-I type double reflection grazing incidence angle design, will be very large (~ 3 m in diameter) to meet the science requirements of large effective area (1-2 m2 at a few keV) at a focal length of 12 m. To meet the high angular resolution (5 arc seconds) requirement the X-ray lens will also need to be very accurate. Silicon Pore Optics (SPO) technology has been invented to enable building such a lens and thus enabling the ATHENA mission. We will report in this paper on the latest status of the development, including details of X-ray test campaigns.
X-ray monitoring optical elements
Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.
2016-12-27
An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brejnholt, Nicolai F., E-mail: brejnholt1@llnl.gov; Poyneer, Lisa A.; Hill, Randal M.
2016-07-27
We report on the current status of the Adaptive X-ray Optics project run by Lawrence Livermore National Laboratory (LLNL). LLNL is collaborating with the Advanced Light Source (ALS) to demonstrate a near real-time adaptive X-ray optic. To this end, a custom-built 45 cm long deformable mirror has been installed at ALS beamline 5.3.1 (end station 2) for a two-year period that started in September 2014. We will outline general aspects of the instrument, present results from a recent experimental campaign and touch on future plans for the project.
Q2122-444: A NAKED ACTIVE GALACTIC NUCLEUS FULLY DRESSED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gliozzi, M.; Satyapal, S.; Panessa, F.
Based on previous spectral and temporal optical studies, Q2122-444 has been classified as a naked active galactic nucleus (AGN) or true type 2 AGN, that is, an AGN that genuinely lacks a broad-line region (BLR). Its optical spectrum seemed to possess only narrow forbidden emission lines that are typical of type 2 (obscured) AGNs, but the long-term optical light curve, obtained from a monitoring campaign over more than two decades, showed strong variability, apparently ruling out the presence of heavy obscuration. Here we present the results from a {approx}40 ks XMM-Newton observation of Q2122-444 carried out to shed light onmore » the energetics of this enigmatic AGN. The X-ray analysis was complemented with Australia Telescope Compact Array radio data to assess the possible presence of a jet, and with new NTT/EFOSC2 optical spectroscopic data to verify the actual absence of a BLR. The higher-quality optical data revealed the presence of strong and broad Balmer lines that are at odds with the previous spectral classification of this AGN. The lack of detection of radio emission rules out the presence of a jet. The X-ray data combined with simultaneous UV observations carried out by the Optical Monitor (OM) aboard XMM-Newton confirm that Q2122-444 is a typical type 1 AGN without any significant intrinsic absorption. New estimates of the black hole mass independently obtained from the broad Balmer lines and from a new scaling technique based on X-ray spectral data suggest that Q2122-444 is accreting at a relatively high rate in Eddington units.« less
Gazing at the ultraslow magnetar in RCW 103 with NuSTAR and Swift
NASA Astrophysics Data System (ADS)
Borghese, A.; Coti Zelati, F.; Esposito, P.; Rea, N.; De Luca, A.; Bachetti, M.; Israel, G. L.; Perna, R.; Pons, J. A.
2018-07-01
We report on a new NuSTAR observation and on the ongoing Swift X-Ray Telescope monitoring campaign of the peculiar source 1E 161348-5055, located at the centre of the supernova remnant RCW 103, which is recovering from its last outburst in 2016 June. The X-ray spectrum at the epoch of the NuSTAR observation can be described by either two absorbed blackbodies (kT_BB_1 ˜ 0.5 keV, kT_BB_2 ˜ 1.2 keV) or an absorbed blackbody plus a power law (kT_BB_1 ˜ 0.6 keV, Γ ˜ 3.9). The observed flux was ˜9 × 10-12 erg s-1 cm-2, ˜3 times lower than what observed at the outburst onset, but about one order of magnitude higher than the historical quiescent level. A periodic modulation was detected at the known 6.67 h periodicity. The spectral decomposition and evolution along the outburst decay are consistent with 1E 161348-5055 being a magnetar, the slowest ever detected.
Application of X-ray imaging techniques to auroral monitoring
NASA Technical Reports Server (NTRS)
Rust, D. M.; Burstein, P.
1981-01-01
The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.
First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign
Furniss, Amy
2015-10-08
We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsähovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by amore » sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.« less
FIRST NuSTAR OBSERVATIONS OF MRK 501 WITHIN A RADIO TO TeV MULTI-INSTRUMENT CAMPAIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furniss, A.; Noda, K.; Boggs, S.
2015-10-10
We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 2013 April 1 and August 10, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope, Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, Metsähovi, and the F-Gamma consortium. Some of the MAGIC observations were affected by amore » sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a Light Detection and Ranging (LIDAR) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution (SED) between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) show evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton (SSC) model to five simultaneous broadband SEDs. We find that the SSC model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission.« less
NASA Technical Reports Server (NTRS)
Klingelhoefer, G.; Morris, R. V.; Blumers, M.; Bernhardt, B.; Graff, T.
2011-01-01
For the advanced Moessbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform X-ray fluorescence analysis simultaneously to Moessbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The ISRU 2010 field campaign demonstrated that in-situ Moessbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.
Multiwavelength study of the flaring activity of Sagittarius A* in 2014 February-April
NASA Astrophysics Data System (ADS)
Mossoux, E.; Grosso, N.; Bushouse, H.; Eckart, A.; Yusef-Zadeh, F.; Plambeck, D.; Peissker, F.; Valencia-S., M.; Porquet, D.; Roberts, D.
2017-10-01
We studied the flaring activity of the Galactic Center supermassive black hole Sgr A* close to the DSO/G2 pericenter passage with XMM-Newton, HST/WFC3, VLT/SINFONI, VLA and CARMA. We detected 3 and 2 NIR and 2 X-ray flares with HST, VLT and XMM-Newton, respectively. The Mar. 10 X-ray flare has a long rise and a rapid decay. Its NIR counterpart peaked before the X-ray peak implying a variation in the X-ray-to-NIR flux ratio. This flare may be one flare created by the adiabatic compression of a plasmon or 2 close flares with simultaneous X-ray/NIR peaks. The rising radio flux-density observed on Mar. 10 with the VLA could be the delayed emission from a NIR/X-ray flare preceding our observations. On Apr. 2, we observed the start of the NIR counterpart of the X-ray flare and the end of a bright NIR flare without X-ray counterpart. We studied the physical parameters of the flaring region for each NIR flare but none of the radiative processes can be ruled out for the X-ray flares creation. Our X-ray flaring rate is consistent with those observed in the 2012 Chandra/XVP campaign. No increase in the flaring activity was thus triggered close to the DSO/G2 pericenter passage.
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2005-08-01
AAVSO Alert Notice 326 contains two topics. First: Dr. Christopher Mauche (Lawrence Livermore National Laboratory) has requested our assistance in monitoring the novalike intermediate polar AE Aqr in support of multiwavelength (gamma-ray, X-ray, UV, optical, and radio) observations scheduled for August-September 2005. AAVSO observations, particularly CCD ones, are requested to correlate with these multiwavelength observations; visual observations are also encouraged. Second: as announced in Alert Notice 317, Drs. Christopher Mauche, Peter Wheatley, and Koji Mukai have obtained time on XMM-Newton to observe HT Cas, Z Cha, or OY Car in outburst, and they have requested our assistance in monitoring these stars closely so we can inform them promptly when any of them go into outburst. Very prompt notification is essential because of the time required to trigger the satellite and the shortness of the outbursts of the target stars. Please monitor HT Cas, OY Car, and Z Cha closely from now through at least a month after the last observing window closes, and notify Headquarters immediately if any of the target stars goes into outburst. Both visual and CCD observations are encouraged. Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
The multi-coloured universe of 2S 0114+650
NASA Astrophysics Data System (ADS)
Farrell, Sean A.
2007-07-01
This thesis presents the results of a comprehensive multi-wavelength study of the high mass X-ray binary 2S 0114+650. This enigmatic source has previously been proposed to be the first in a new class of super-slow X-ray pulsars, containing a neutron star revolving once every 2.7 h. The 11.6 d orbital period of this system has been well established in both X-ray and optical wavelengths. During the initial stages of the research presented in this thesis we discovered an additional 30.7 d "super-orbital" modulation in the X-ray emission from this source. While similar periodicities seen in other X-ray binaries are commonly attributed to the precession of a warped accretion disc, the observational evidence suggests the absence of such a disc in 2S 0114+650. The purpose of this project is thus to determine the nature of the super-orbital modulation and to better constrain the astrophysical parameters of this system. To investigate the long-term variability we analysed ~8.5 yr of archived data from the Rossi X-ray Timing Explorer space telescope. The problem of the spurious ~24 h periods in this data was solved as a by-product of these studies. Follow-up pointed observations were obtained with this satellite in order to examine the spectral and temporal behaviour over the spin, orbital and super-orbital timescales. Independent confirmation of the super-orbital modulation was performed using ~2 yr of data from the INTEGRAL satellite obtained during a long-term monitoring campaign of the Cassiopeia region. The evolution of the spin, orbital and super-orbital periods over ~10 yr was examined using archived data from the Rossi X-ray Timing Explorer satellite. Radio observations were performed with the Giant Meterwave Radio Telescope to search for any radio emission associated with this source and to determine whether it is variable over the known periodicities. Near infrared observations were performed with the Mt Abu telescope to determine wheth! er a Be star nature can be ruled out for the optical component! . Finally, a statistical analysis of the properties of the confirmed super-orbital X-ray binaries was performed in order to search for commonalities between these systems.
Soft X-ray characterisation of the long-term properties of supergiant fast X-ray transients
NASA Astrophysics Data System (ADS)
Romano, P.; Ducci, L.; Mangano, V.; Esposito, P.; Bozzo, E.; Vercellone, S.
2014-08-01
Context. Supergiant fast X-ray transients (SFXTs) are high mass X-ray binaries (HMXBs) that are characterised by a hard X-ray (≥ 15 keV) flaring behaviour. These flares reach peak luminosities of 1036-1037 erg s-1 and last a few hours in the hard X-rays. Aims: We investigate the long-term properties of SFXTs by examining the soft (0.3-10 keV) X-ray emission of the three least active SFXTs in the hard X-ray and by comparing them with the remainder of the SFXT sample. Methods: We performed the first high-sensitivity soft X-ray long-term monitoring with Swift/XRT of three relatively unexplored SFXTs, IGR J08408-4503, IGR J16328-4726, and IGR J16465-4507, whose hard X-ray duty cycles are the lowest measured among the SFXT sample. We assessed how long each source spends in each flux state and compared their properties with those of the prototypical SFXTs. Results: The behaviour of IGR J08408-4503 and IGR J16328-4726 resembles that of other SFXTs, and it is characterised by a relatively high inactivity duty cycle (IDC) and pronounced dynamic range (DR) in the X-ray luminosity. We found DR ~ 7400, IDC ~ 67% for IGR J08408-4503, and DR ~ 750, IDC ~ 61% for IGR J16328-4726 (in all cases the IDC is given with respect to the limiting flux sensitivity of XRT, that is 1-3 × 10-12 erg cm-2 s-1). In common with all the most extreme SFXT prototypes (IGR J17544-2619, XTE J1739-302, and IGR J16479-4514), IGR J08408-4503 shows two distinct flare populations. The first one is associated with the brightest outbursts (X-ray luminosity LX ≳ 1035 - 36 erg s-1), while the second comprises dimmer events with typical luminosities of LX ≲ 1035 erg s-1. This double-peaked distribution of the flares as a function of the X-ray luminosity seems to be a ubiquitous feature of the extreme SFXTs. The lower DR of IGR J16328-4726 suggests that this is an intermediate SFXT. IGR J16465-4507 is characterised by a low IDC ~ 5% and a relatively narrow DR ~ 40, reminiscent of classical supergiant HMXBs. The duty cycles measured with XRT are found to be comparable with those reported previously by BAT and INTEGRAL, when the higher limiting sensitivities of these instruments are taken into account and sufficiently long observational campaigns are available. By making use of these new results and those we reported previously, we prove that no clear correlation exists between the duty cycles of the SFXTs and their orbital periods. Conclusions: The unique sensitivity and scheduling flexibility of Swift/XRT allowed us to carry out an efficient long-term monitoring of the SFXTs, following their activity across more than 4 orders of magnitude in X-ray luminosity. While it is not possible to exclude that particular distributions of the clump and wind parameters may produce double-peaked differential distributions in the X-ray luminosities of the SFXTs, the lack of a clear correlation between the duty cycles and orbital periods of these sources make it difficult to interpret their peculiar variability by only using arguments related to the properties of supergiant star winds. Our findings favour the idea that a correct interpretation of the SFXT phenomenology requires a mechanism to strongly reduce the mass accretion rate onto the compact object during most of its orbit around the companion, as proposed in a number of theoretical works. Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A55
Laser power meters as an X-ray power diagnostic for LCLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
Laser power meters as an X-ray power diagnostic for LCLS-II.
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; Song, Sanghoon; Dakovski, Georgi; Nordlund, Dennis; Fritz, David
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
Laser power meters as an X-ray power diagnostic for LCLS-II
Heimann, Philip; Moeller, Stefan; Carbajo, Sergio; ...
2018-01-01
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore » in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.« less
The Swift/BAT Hard X-ray Transient Monitor: A Status Report
NASA Astrophysics Data System (ADS)
Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team
2013-04-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.
The Swift/BAT Hard X-ray Transient Monitor: A Status Report
NASA Astrophysics Data System (ADS)
Krimm, Hans A.; Swift/BAT Team
2011-09-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.
The Swift/BAT Hard X-ray Transient Monitor
NASA Technical Reports Server (NTRS)
Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.;
2013-01-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.
Moeller, Ralf; Raguse, Marina; Leuko, Stefan; Berger, Thomas; Hellweg, Christine Elisabeth; Fujimori, Akira; Okayasu, Ryuichi; Horneck, Gerda
2017-02-01
In-depth knowledge regarding the biological effects of the radiation field in space is required for assessing the radiation risks in space. To obtain this knowledge, a set of different astrobiological model systems has been studied within the STARLIFE radiation campaign during six irradiation campaigns (2013-2015). The STARLIFE group is an international consortium with the aim to investigate the responses of different astrobiological model systems to the different types of ionizing radiation (X-rays, γ rays, heavy ions) representing major parts of the galactic cosmic radiation spectrum. Low- and high-energy charged particle radiation experiments have been conducted at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute of Radiological Sciences (NIRS) in Chiba, Japan. X-rays or γ rays were used as reference radiation at the German Aerospace Center (DLR, Cologne, Germany) or Beta-Gamma-Service GmbH (BGS, Wiehl, Germany) to derive the biological efficiency of different radiation qualities. All samples were exposed under identical conditions to the same dose and qualities of ionizing radiation (i) allowing a direct comparison between the tested specimens and (ii) providing information on the impact of the space radiation environment on currently used astrobiological model organisms. Key Words: Space radiation environment-Sparsely ionizing radiation-Densely ionizing radiation-Heavy ions-Gamma radiation-Astrobiological model systems. Astrobiology 17, 101-109.
Is there a UV/X-ray connection in IRAS 13224-3809?
NASA Astrophysics Data System (ADS)
Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.
2018-04-01
We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.
NASA Astrophysics Data System (ADS)
Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.
2018-03-01
We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.
X-ray Spectroscopy of High-Z Elements on Nike
NASA Astrophysics Data System (ADS)
Aglitskiy, Y.; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.
2013-10-01
Survey X-ray spectrometer covering a spectral range from 0.5 to 19.5 angstroms has been added to the spectroscopic suite of Nike diagnostics. That allows simultaneous observation of both M- and N- spectra of W, Ta and Au with high spectral resolution. Low energy test shots confirmed strong presence of 3-4 transitions of Ni-like W, Ta and Au with X-ray energies as high as 3.5 keV when above mentioned elements were used as the targets. In our continuous effort to support DOE-NNSA's inertial fusion program, the future campaign will cover a wide range of plasma conditions that result in relatively energetic X-ray production. Eventually, absolutely calibrated spectrometers of similar geometry will be fielded at NIF in cooperation with NIF diagnostic group. Work supported by US DOE, Defense Programs.
NASA Technical Reports Server (NTRS)
Mruphy, Kendrah D.; Yaqoob, Tahir; Terashima, Yuichi
2007-01-01
We present the results of a one year monitoring campaign of the Seyfert 1.9 galaxy NGC 2992 with RXTE. Historically, the source has been shown to vary dramatically in 2-10 keV flux over timescales of years and was thought to be slowly transitioning between periods of quiescence and active accretion. Our results show that in one year the source continuum flux covered almost the entire historical range, making it unlikely that the low-luminosity states correspond to the accretion mechanism switching off. During flaring episodes we found that a highly redshifted Fe K line appears, implying that the violent activity is occurring in the inner accretion disk, within 100 gravitational radii of the central black hole. We also found that the Compton y parameter for the X-ray continuum remained approximately constant during the large amplitude variability. These observations make NGC 2992 well-suited for future multi-waveband monitoring, as a test-bed for constraining accretion models.
RXTE, VLBA, Optical, and Radio Monitoring of the Quasars 3C 279, PKS 1510--089, and 3C 273
NASA Technical Reports Server (NTRS)
Marscher, A. P.; Jorstad, S. G.; Aller, M. F.; McHardy, I. M.; Balonek, T. J.
2001-01-01
We are continuing our combined RXTE X-ray, VLBA imaging (at 43 GHz), optical (several observatories), and radio (University of Michigan Radio Astronomy Observatory) monitoring of the quasars 3C 279 and PKS 1510-089, and have started similar monitoring of 3C 273. X-ray flares in 3C 279 and PKS 1510-089 are associated with ejections of superluminal components. In addition, there is a close connection between the optical and X-ray variability of 3C 279. There is a strong correlation between the 14.5 GHz and X-ray variability of PKS 1510-089 in 1997 and 1998 (with the radio leading the X-ray) that becomes weaker in subsequent years. X-ray fluctuations occur on a variety of timescales in 3C 273, with a major prolonged outburst in mid-2001. The lead author will discuss the correlations in terms of inverse Compton models for the X-ray emission coupled with synchrotron models for the lower-frequency radiation. Synchrotron self-Compton models can explain the "reverse" time lag in PKS 1510-089 is well as the variable correlation between the X-ray variations and those at lower frequencies in this object and in 3C 279.
Exploring transient X-ray sky with Einstein Probe
NASA Astrophysics Data System (ADS)
Yuan, W.; Zhang, C.; Ling, Z.; Zhao, D.; Chen, Y.; Lu, F.; Zhang, S.
2017-10-01
The Einstein Probe is a small satellite in time-domain astronomy to monitor the soft X-ray sky. It is a small mission in the space science programme of the Chinese Academy of Sciences. It will carry out systematic survey and characterisation of high-energy transients at unprecedented sensitivity, spatial resolution, Grasp and monitoring cadence. Its wide-field imaging capability is achieved by using established technology of micro-pore lobster-eye X-ray focusing optics. Complementary to this is X-ray follow-up capability enabled by a narrow-field X-ray telescope. It is capable of on-board triggering and real time downlink of transient alerts, in order to trigger fast follow-up observations at multi-wavelengths. Its scientific goals are concerned with discovering and characterising diverse types of X-ray transients, including tidal disruption events, supernova shock breakouts, high-redshift GRBs, and of particular interest, X-ray counterparts of gravitational wave events.
Apparatus for monitoring X-ray beam alignment
Steinmeyer, P.A.
1991-10-08
A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.
Current developments and tests of small x-ray optical systems for space applications
NASA Astrophysics Data System (ADS)
Pina, L.; Hudec, R.; Inneman, A.; Doubravová, D.; Marsikova, V.
2017-05-01
The paper addresses the X-ray monitoring for astrophysical applications. A novel approach based on the use of 1D and 2D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV was further studied. Wide-field optical system of this type has not been used in space yet. Designed wide-field optical system combined with Timepix X-ray detector is described together with latest experimental results obtained during laboratory tests. Proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases where intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system is considered to be used in a student rocket experiment.
X-Rays from the Location of the Double-humped Transient ASASSN-15lh
Margutti, R.; Metzger, B. D.; Chornock, R.; Milisavljevic, D.; Berger, E.; Blanchard, P. K.; Guidorzi, C.; Migliori, G.; Kamble, A.; Lunnan, R.; Nicholl, M.; Coppejans, D. L.; Dall’Osso, S.; Drout, M. R.; Perna, R.; Sbarufatti, B.
2017-01-01
We present the detection of persistent soft X-ray radiation with Lx ~ 1041–1042 erg s−1 at the location of the extremely luminous, double-humped transient ASASSN-15lh as revealed by Chandra and Swift. We interpret this finding in the context of observations from our multiwavelength campaign, which revealed the presence of weak narrow nebular emission features from the host-galaxy nucleus and clear differences with respect to superluminous supernova optical spectra. Significant UV flux variability on short timescales detected at the time of the rebrightening disfavors the shock interaction scenario as the source of energy powering the long-lived UV emission, while deep radio limits exclude the presence of relativistic jets propagating into a low-density environment. We propose a model where the extreme luminosity and double-peaked temporal structure of ASASSN-15lh is powered by a central source of ionizing radiation that produces a sudden change in the ejecta opacity at later times. As a result, UV radiation can more easily escape, producing the second bump in the light curve. We discuss different interpretations for the intrinsic nature of the ionizing source. We conclude that, if the X-ray source is physically associated with the optical–UV transient, then ASASSN-15lh most likely represents the tidal disruption of a main-sequence star by the most massive spinning black hole detected to date. In this case, ASASSN-15lh and similar events discovered in the future would constitute the most direct probes of very massive, dormant, spinning, supermassive black holes in galaxies. Future monitoring of the X-rays may allow us to distinguish between the supernova hypothesis and the hypothesis of a tidal disruption event. PMID:28966348
Periodicities in the high-mass X-ray binary system RXJ0146.9+6121/LSI+61°235
NASA Astrophysics Data System (ADS)
Sarty, Gordon E.; Kiss, László L.; Huziak, Richard; Catalan, Lionel J. J.; Luciuk, Diane; Crawford, Timothy R.; Lane, David J.; Pickard, Roger D.; Grzybowski, Thomas A.; Closas, Pere; Johnston, Helen; Balam, David; Wu, Kinwah
2009-01-01
The high-mass X-ray binary RXJ0146.9+6121, with optical counterpart LSI+61°235 (V831Cas), is an intriguing system on the outskirts of the open cluster NGC663. It contains the slowest Be type X-ray pulsar known with a pulse period of around 1400s and, primarily from the study of variation in the emission line profile of Hα, it is known to have a Be decretion disc with a one-armed density wave period of approximately 1240d. Here we present the results of an extensive photometric campaign, supplemented with optical spectroscopy, aimed at measuring short time-scale periodicities. We find three significant periodicities in the photometric data at, in order of statistical significance, 0.34, 0.67 and 0.10d. We give arguments to support the interpretation that the 0.34 and 0.10d periods could be due to stellar oscillations of the B-type primary star and that the 0.67d period is the spin period of the Be star with a spin axis inclination of 23+10-8 degrees. We measured a systemic velocity of -37.0 +/- 4.3kms-1 confirming that LSI+61°235 has a high probability of membership in the young cluster NGC663 from which the system's age can be estimated as 20-25Myr. From archival RXTE All Sky Monitor (ASM) data we further find `super' X-ray outbursts roughly every 450d. If these super outbursts are caused by the alignment of the compact star with the one-armed decretion disc enhancement, then the orbital period is approximately 330d.
New Swift UVOT data reduction tools and AGN variability studies
NASA Astrophysics Data System (ADS)
Gelbord, Jonathan; Edelson, Rick
2017-08-01
The efficient slewing and flexible scheduling of the Swift observatory have made it possible to conduct monitoring campaigns that are both intensive and prolonged, with multiple visits per day sustained over weeks and months. Recent Swift monitoring campaigns of a handful of AGN provide simultaneous optical, UV and X-ray light curves that can be used to measure variability and interband correlations on timescales from hours to months, providing new constraints for the structures within AGN and the relationships between them. However, the first of these campaigns, thrice-per-day observations of NGC 5548 through four months, revealed anomalous dropouts in the UVOT light curves (Edelson, Gelbord, et al. 2015). We identified the cause as localized regions of reduced detector sensitivity that are not corrected by standard processing. Properly interpreting the light curves required identifying and screening out the affected measurements.We are now using archival Swift data to better characterize these low sensitivity regions. Our immediate goal is to produce a more complete mapping of their locations so that affected measurements can be identified and screened before further analysis. Our longer-term goal is to build a more quantitative model of the effect in order to define a correction for measured fluxes, if possible, or at least to put limits on the impact upon any observation. We will combine data from numerous background stars in well-monitored fields in order to quantify the strength of the effect as a function of filter as well as location on the detector, and to test for other dependencies such as evolution over time or sensitivity to the count rate of the target. Our UVOT sensitivity maps and any correction tools will be provided to the community of Swift users.
The Swift-BAT Hard X-Ray Transient Monitor
NASA Technical Reports Server (NTRS)
Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.;
2013-01-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.
THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.
2013-11-01
The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. Themore » primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.« less
Millimeter and hard x ray/gamma ray observations of solar flares during the June 1991 GRO campaign
NASA Technical Reports Server (NTRS)
Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.
1992-01-01
We have carried out high-spatial-resolution millimeter observations of solar flares using the Berkeley-Illinois-Maryland Array (BIMA). At the present time, BIMA consists of only three elements, which is not adequate for mapping highly variable solar phenomena, but is excellent for studies of the temporal structure of flares at millimeter wavelengths at several different spatial scales. We present BIMA observations made during the Gamma Ray Observatories (GRO)/Solar Max 1991 campaign in Jun. 1991 when solar activity was unusually high. Our observations covered the period 8-9 Jun. 1991; this period overlapped the period 4-15 Jun. when the Compton Telescope made the Sun a target of opportunity because of the high level of solar activity.
Absolute x-ray energy calibration and monitoring using a diffraction-based method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.
2016-07-27
In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.
Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, P; Holder, J; Young, B
2006-11-02
The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the usemore » of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.« less
Corbel, S.; Dubus, G.; Tomsick, J. A.; ...
2012-04-10
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, we observed Cyg X-3 in order to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (~20more » Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. There were no γ-rays observed during the ~1-month long quenched state, when the radio flux is weakest. These results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.« less
Time-domain Astronomy with the Advanced X-ray Imaging Satellite
NASA Astrophysics Data System (ADS)
Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard
2018-01-01
The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.
NASA Astrophysics Data System (ADS)
Heinz, Sebastian
2017-09-01
When an X-ray transient exhibits a bright flare, scattering by interstellar dust clouds can give rise to a light echo in the form of concentric rings. To date, three such echoes have been detected, each leading to significant discoveries and press attention. We propose a Target-of-Opportunity campaign to observe future echoes with the aim to follow the temporal evolution of the echo in order to (a) map the 3D distribution interstellar dust along the line of sight to parsec accuracy, (b) constrain the composition and grain size distribution of ISM dust in each of the clouds towards the source, (c) measure the distance to the X-ray source, (d) constrain the velocity dispersion of molecular clouds and (e) search for evidence of streaming velocities by combing X-ray and CO data on the clouds.
First multi-wavelength campaign on the gamma-ray-loud active galaxy IC 310
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Ishio, K.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Krauß, F.; Schulz, R.; Kadler, M.; Wilms, J.; Ros, E.; Bach, U.; Beuchert, T.; Langejahn, M.; Wendel, C.; Gehrels, N.; Baumgartner, W. H.; Markwardt, C. B.; Müller, C.; Grinberg, V.; Hovatta, T.; Magill, J.
2017-07-01
Context. The extragalactic very-high-energy gamma-ray sky is rich in blazars. These are jetted active galactic nuclei that are viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are so far known to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. Aims: We aim to report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10°-20°. Methods: The multi-instrument campaign was conducted between 2012 November and 2013 January, and involved observations with MAGIC, Fermi, INTEGRAL, Swift, OVRO, MOJAVE and EVN. These observations were complemented with archival data from the AllWISE and 2MASS catalogs. A one-zone synchrotron self-Compton model was applied to describe the broadband spectral energy distribution. Results: IC 310 showed an extraordinary TeV flare at the beginning of the campaign, followed by a low, but still detectable TeV flux. Compared to previous measurements in this energy range, the spectral shape was found to be steeper during the low emission state. Simultaneous observations in the soft X-ray band showed an enhanced energy flux state and a harder-when-brighter spectral shape behavior. No strong correlated flux variability was found in other frequency regimes. The broadband spectral energy distribution obtained from these observations supports the hypothesis of a double-hump structure. Conclusions: The harder-when-brighter trend in the X-ray and VHE emission, observed for the first time during this campaign, is consistent with the behavior expected from a synchrotron self-Compton scenario. The contemporaneous broadband spectral energy distribution is well described with a one-zone synchrotron self-Compton model using parameters that are comparable to those found for other gamma-ray-emitting misaligned blazars.
Swift J2058.4+0516: Discovery of a Possible Second Relativistic Tidal Disruption Flare
NASA Technical Reports Server (NTRS)
Cenko, S. Bradely; Krimm, Hans A.; Horesh, Assaf; Rau, Arne; Frail, Dale A.; Kennea, Jamie A.; Levan, Andrew J.; Holland, Stephen T.; Butler, Nathaniel R.; Quimby, Robert M.;
2011-01-01
We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration approximately greater than months), luminous X-ray (L(sub x.iso) approximates 3 X 10(exp47) erg/s) and radio (vL(sub v.iso) approximates 10(exp 42) erg/s) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / Swift 1164449.3+573451 (Sw 11644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources implies that either these outflows are extremely narrowly collimated (theta < 1 deg), or only a small fraction of tidal disruptions generate relativistic ejecta. Analogous to the case of long duration gamma-ray bursts and core-collapse supernovae, we speculate that the spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus), this would imply that some galaxies can transition from apparent quiescence to a radiatively efficient state of accretion on quite short time scales.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.; Darbro, W. A.; Elsner, R. F.; Williams, A. C.; Kahn, S. M.; Grindlay, J. E.; Naranan, S.; Sutherland, P. G.
1983-01-01
A comparison is presented of the black hole candidates LMC X-3 and Cygnus X-1 based on Einstein observations of LMC X-3 with the monitor proportional counter. A spectral analysis shows LMC X-3 to be more like the typical bright galactic X-ray source than Cygnus X-1. A search for periodic pulsations over a period range from 0.2 ms to over 1000 s set upper limits at the 90 percent confidence level of the order of 10 percent. An analysis of the aperiodic variability of LMC X-3 shows none of the shot noise behavior characteristic of Cygnus X-1. The absence of distinctive X-ray properties common to both sources suggests that the identification of black hole candidates on the basis of X-ray properties similar to Cygnus X-1 (or LMC X-3) is not reliable.
Spectroscopic and Temporal Properties of Supergiant Fast X-ray Transients with Swift
NASA Astrophysics Data System (ADS)
Romano, Patrizia; Kennea, J. A.; Vercellone, S.; Burrows, D. N.; Cusumano, G.; Esposito, P.; Farinelli, R.; Krimm, H. A.; La Parola, V.; Mangano, V.; Pagani, C.; Gehrels, N.
2011-09-01
We present a review of the Swift Supergiant Fast X-ray Transients (SFXT) project. Swift has recently opened a brand new way of investigating this class of High-Mass X-ray Binaries whose optical counterparts are O or B supergiant stars, and whose X-ray outbursts are about 4 orders of magnitude brighter than the quiescent state. Thanks to its scheduling flexibility, Swift has allowed us to regularly monitor a small sample of SFXTs with 2-3 observations per week (1-2 ks) with the X-Ray Telescope (XRT) over their entire visibility period (9 months/year) for over 2 years. This intense monitoring has allowed us to study them throughout all phases of their lives (outbursts, intermediate level, and quiescence) and to determine the long-term properties and their duty cycles, through very sensitive and non-serendipitous observations. We also monitored one source along its whole orbital period. Furthermore, thanks to its autonomous and rapid repointing, Swift has allowed us for the first time to catch and study, from optical to hard X-ray, the bright outbursts, and to follow them in the X-ray for days, thus determining the actual duration of the outburst episodes and the shape of their X-ray spectra through simultaneous broadband spectroscopy. We acknowledge financial contribution from the agreement ASI-INAF I/009/10/0.
Much NICER Monitoring of the X-ray Spectrum of Eta Carinae
NASA Astrophysics Data System (ADS)
Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven
2018-01-01
Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.
Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, G.; Brandt, W. N.; Schneider, D. P.; Fabian, A. C.; Gallo, L. C.; Boller, Th.
2012-09-01
PHL 1092 is a z ˜ 0.4 high-luminosity counterpart of the class of Narrow-Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ˜260 with respect to a previous observation performed 4.5 yr earlier. The ultraviolet (UV) flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope αox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with three further XMM-Newton observations, producing a simultaneous UV and X-ray data base spanning almost 10 yr in total in the activity of the source. Our monitoring programme demonstrates that the αox variability in PHL 1092 is entirely driven by long-term X-ray flux changes. We apply a series of physically motivated models with the goal of explaining the UV-to-X-ray spectral energy distribution and the extreme X-ray and αox variability. We consider three possible models. (i) A breathing corona scenario in which the size of the X-ray-emitting corona is correlated with the X-ray flux. In this case, the lowest X-ray flux states of PHL 1092 are associated with an almost complete collapse of the X-ray corona down to the marginal stable orbit. (ii) An absorption scenario in which the X-ray flux variability is entirely due to intervening absorption. If so, PHL 1092 is a quasar with standard X-ray output for its optical luminosity, appearing as X-ray weak at times due to absorption. (iii) A disc-reflection-dominated scenario in which the X-ray-emitting corona is confined within a few gravitational radii from the black hole at all times. In this case, the intrinsic variability of PHL 1092 only needs to be a factor of ˜10 rather than the observed factor of ˜260. We discuss these scenarios in the context of non-BAL X-ray weak quasars.
Defect Implosion Experiments (DIME) at OMEGA
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Schmitt, M. J.; Tregillis, I. L.; Obrey, K. D.; Magelssen, G. R.; Wilke, M. D.; Glebov, V.; Marshall, F. J.; Kim, Y. H.; Bradley, P. A.; Batha, S. H.
2010-11-01
The Los Alamos DIME campaign involves perturbed spherical implosions, driven by 60 OMEGA beams with uniform, symmetrical illumination. D-T-filled CH-shell targets with equatorial-plane defects are designed to produce a non-spherical neutron burn region. The objectives of the DIME series are to observe the non-spherical burn with the neutron imaging system (NIS) and to simulate the physics of the neutron and x-ray production. We have demonstrated adequate neutron yield for NIS imaging with targets of diameter 860 μm. All targets are filled with 5 atm of DT. We used two separate shell thicknesses: 8 μm and 15 μm, thus testing both exploding pusher and ablative designs. Defect channel depth ranges from 0 -- 8 μm. Width is 20 -- 40 μm. Perfect targets have no defect. Numerical simulations predict enhanced x-ray emission, that is suggested by experiment. Results from a recent DIME campaign will be discussed.
X-ray verification of an optically-aligned off-plane grating module
NASA Astrophysics Data System (ADS)
Donovan, Benjamin; McEntaffer, Randall; Tutt, James; DeRoo, Casey; Allured, Ryan; Gaskin, Jessica; Kolodziejczak, Jeffery
2017-08-01
The next generation of X-ray spectrometer missions are baselined to have order-of-magnitude improvements in both spectral resolving power and effective area when compared to existing X-ray spectrometer missions. Off-plane X-ray reflection gratings are capable of achieving high resolution and high diffraction efficiencies over the entire X-ray bandpass, making them an ideal technology to implement on these future missions. To achieve the high effective area desired while maintaining high spectral resolution, many off-plane gratings must be precisely aligned such that their diffraction arcs overlap at the focal plane. Methods are under development to align a number of these gratings into a grating module using optical metrology techniques in support of the Off-plane Grating Rocket Experiment (OGRE), a suborbital rocket payload scheduled to launch in late 2018. X-ray testing was performed on an aligned grating module at the Straylight Test Facility (SLTF) at NASA Marshall Space Flight Center (MSFC) to assess the current alignment methodology and its ability to meet the desired performance of OGRE. We report on the results from the test campaign at MSFC, as well as plans for future development.
Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532
NASA Technical Reports Server (NTRS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.
2012-01-01
We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.
All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2010-01-01
We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.
A giant radio flare from Cygnus X-3 with associated γ-ray emission
NASA Astrophysics Data System (ADS)
Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.; Hill, A. B.; Kerr, M.; Max-Moerbeck, W.; Readhead, A. C. S.; Bodaghee, A.; Tudose, V.; Parent, D.; Wilms, J.; Pottschmidt, K.
2012-04-01
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high-energy γ-ray emission, thanks to detections by Fermi Large Area Telescope (Fermi/LAT) and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy γ-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (˜20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E≥ 100 MeV) reveal renewed γ-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the γ-ray emission is not exclusively related to the rare giant radio flares. A three-week period of γ-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No γ-rays are observed during the ˜1-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio-quenched) state trigger γ-ray emission, implying a connection to the accretion process, and also that the γ-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
A Giant Radio Flare from Cygnus X-3 with Associated Gamma-Ray Emission
NASA Technical Reports Server (NTRS)
Corbel, S.; Dubus, G.; Tomsick, J. A.; Szostek, A.; Corbet, R. H. D.; Miller-Jones, J. C. A.; Richards, J. L.; Pooley, G.; Trushkin, S.; Dubois, R.;
2012-01-01
With frequent flaring activity of its relativistic jets, Cygnus X-3 (Cyg X-3) is one of the most active microquasars and is the only Galactic black hole candidate with confirmed high energy gamma-ray emission, thanks to detections by Fermi/LAT and AGILE. In 2011, Cyg X-3 was observed to transit to a soft X-ray state, which is known to be associated with high-energy gamma-ray emission. We present the results of a multiwavelength campaign covering a quenched state, when radio emission from Cyg X-3 is at its weakest and the X-ray spectrum is very soft. A giant (approx 20 Jy) optically thin radio flare marks the end of the quenched state, accompanied by rising non-thermal hard X-rays. Fermi/LAT observations (E greater than or equal 100 MeV) reveal renewed gamma-ray activity associated with this giant radio flare, suggesting a common origin for all non-thermal components. In addition, current observations unambiguously show that the gamma-ray emission is not exclusively related to the rare giant radio flares. A 3-week period of gamma-ray emission is also detected when Cyg X-3 was weakly flaring in radio, right before transition to the radio quenched state. No gamma rays are observed during the one-month long quenched state, when the radio flux is weakest. Our results suggest transitions into and out of the ultrasoft X-ray (radio quenched) state trigger gamma-ray emission, implying a connection to the accretion process, and also that the gamma-ray activity is related to the level of radio flux (and possibly shock formation), strengthening the connection to the relativistic jets.
Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Fausnaugh, M. M.; Starkey, D. A.; Horne, Keith; Kochanek, C. S.; Peterson, B. M.; Bentz, M. C.; Denney, K. D.; Grier, C. J.; Grupe, D.; Pogge, R. W.; De Rosa, G.; Adams, S. M.; Barth, A. J.; Beatty, Thomas G.; Bhattacharjee, A.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brown, Jacob E.; Brown, Jonathan S.; Brotherton, M. S.; Coker, C. T.; Crawford, S. M.; Croxall, K. V.; Eftekharzadeh, Sarah; Eracleous, Michael; Joner, M. D.; Henderson, C. B.; Holoien, T. W.-S.; Hutchison, T.; Kaspi, Shai; Kim, S.; King, Anthea L.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; MacInnis, F.; Manne-Nicholas, E. R.; Mason, M.; Montuori, Carmen; Mosquera, Ana; Mudd, Dale; Musso, R.; Nazarov, S. V.; Nguyen, M. L.; Okhmat, D. N.; Onken, Christopher A.; Ou-Yang, B.; Pancoast, A.; Pei, L.; Penny, Matthew T.; Poleski, Radosław; Rafter, Stephen; Romero-Colmenero, E.; Runnoe, Jessie; Sand, David J.; Schimoia, Jaderson S.; Sergeev, S. G.; Shappee, B. J.; Simonian, Gregory V.; Somers, Garrett; Spencer, M.; Stevens, Daniel J.; Tayar, Jamie; Treu, T.; Valenti, Stefano; Van Saders, J.; Villanueva, S., Jr.; Villforth, C.; Weiss, Yaniv; Winkler, H.; Zhu, W.
2018-02-01
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC 2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of τ ∝ λ 4/3. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long (2.6 day) lag is problematic for coronal reprocessing models.
NASA Technical Reports Server (NTRS)
Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta
2011-01-01
X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.
The PoGO+ Ballon-Borne Hard X-ray Polarimetry Mission
NASA Astrophysics Data System (ADS)
Friis, Mette; Kiss, Mózsi; Mikhalev, Victor; Pearce, Mark; Takahashi, Hiromitsu
2018-03-01
The PoGO mission, including the PoGOLite Pathfinder and PoGO+, aims to provide polarimetric measurements of the Crab system and Cygnus X-1 in the hard X-ray band. Measurements are conducted from a stabilized balloon-borne platform, launched on a 1 million cubic meter balloon from the Esrange Space Center in Sweden to an altitude of approximately 40 km. Several flights have been conducted, resulting in two independent measurements of the Crab polarization and one of Cygnus X-1. Here, a review of the PoGO mission is presented, including a description of the payload and the flight campaigns, and a discussion of some of the scientific results obtained to date.
Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state
NASA Astrophysics Data System (ADS)
Matzeu, G. A.; Reeves, J. N.; Nardini, E.; Braito, V.; Costa, M. T.; Tombesi, F.; Gofford, J.
2016-05-01
We present a detailed analysis of a recent, 2013 Suzaku campaign on the nearby (z = 0.184) luminous (Lbol ˜ 1047 erg s-1) quasar PDS 456. This consisted of three observations, covering a total duration of ˜1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was unusually low, suppressed by a factor of >10 in the soft X-ray band when compared to previous observations. We investigated the broad-band continuum by constructing a spectral energy distribution (SED), making use of the optical/UV photometry and hard X-ray spectra from the later simultaneous XMM-Newton and NuSTAR campaign in 2014. The high-energy part of this low-flux SED cannot be accounted for by physically self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray continuum. At least two layers of absorbing gas are required, of column density log (NH,low/cm-2) = 22.3 ± 0.1 and log (NH,high/cm-2) = 23.2 ± 0.1, with average line-of-sight covering factors of ˜80 per cent (with typical ˜5 per cent variations) and 60 per cent (±10-15 per cent), respectively. During these observations PDS 456 displays significant short-term X-ray spectral variability, on time-scales of ˜100 ks, which can be accounted for by variable covering of the absorbing gas along the line of sight. The partial covering absorber prefers an outflow velocity of v_pc = 0.25^{+0.01}_{-0.05} c at the >99.9 per cent confidence level over the case where vpc = 0. This is consistent with the velocity of the highly ionized outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally estimates are placed upon the size-scale of the X-ray emission region from the source variability. The radial extent of the X-ray emitter is found to be of the order ˜15-20Rg, although the hard X-ray (>2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is typically ˜6-8Rg in size.
Scanning sky monitor (SSM) onboard AstroSat
NASA Astrophysics Data System (ADS)
Ramadevi, M. C.; Seetha, S.; Bhattacharya, Dipankar; Ravishankar, B. T.; Sitaramamurthy, N.; Meena, G.; Sharma, M. Ramakrishna; Kulkarni, Ravi; Babu, V. Chandra; Kumar; Singh, Brajpal; Jain, Anand; Yadav, Reena; Vaishali, S.; Ashoka, B. N.; Agarwal, Anil; Balaji, K.; Nagesh, G.; Kumar, Manoj; Gaan, Dhruti Ranjan; Kulshresta, Prashanth; Agarwal, Pankaj; Sebastian, Mathew; Rajarajan, A.; Radhika, D.; Nandi, Anuj; Girish, V.; Agarwal, Vivek Kumar; Kushwaha, Ankur; Iyer, Nirmal Kumar
2017-10-01
Scanning Sky Monitor (SSM) onboard AstroSat is an Xray sky monitor in the soft X-ray band designed with a large field of view to detect and locate transient X-ray sources and alert the astronomical community about interesting phenomena in the X-ray sky. SSM comprises position sensitive proportional counters with 1D coded mask for imaging. There are three detector units mounted on a platform capable of rotation which helps covering about 50% of the sky in one full rotation. This paper discusses the elaborate details of the instrument and few immediate results from the instrument after launch.
Kuiper, L M; Thijs, A; Smulders, Y M
2012-01-01
The advent of beamer projection of radiological images raises the issue of whether such projection compromises diagnostic accuracy. The purpose of this study was to evaluate whether beamer projection of chest X-rays is inferior to monitor display. We selected 53 chest X-rays with subtle abnormalities and 15 normal X-rays. The images were independently judged by a senior radiologist and a senior pulmonologist with a state-of-art computer monitor. We used their unanimous or consensus judgment as the reference test. Subsequently, four observers (one senior pulmonologist, one senior radiologist and one resident from each speciality) judged these X-rays on a standard clinical computer monitor and with beamer projection. We compared the number of correct results for each method. Overall, the sensitivity and specificity did not differ between monitor and beamer projection. Separate analyses in senior and junior examiners suggested that senior examiners had a moderate loss of diagnostic accuracy (8% lower sensitivity, pp<0.05, and 6% lower specificity, p=ns) associated with the use of beamer projection, whereas juniors showed similar performance on both imaging modalities. These initial data suggest that beamer projection may be associated with a small loss of diagnostic accuracy in specific subgroups of physicians. This finding illustrates the need for more extensive studies.
Pleiades Experiments on the NIF: Phase II-C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benstead, James; Morton, John; Guymer, Thomas
2015-06-08
Pleiades was a radiation transport campaign fielded at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) between 2011 and 2014. The primary goals of the campaign were to develop and characterise a reproducible ~350eV x-ray drive and to constrain a number of material data properties required to successfully model the propagation of radiation through two low-density foam materials. A further goal involved the development and qualification of diagnostics for future radiation transport experiments at NIF. Pleiades was a collaborative campaign involving teams from both AWE and the Los Alamos National Laboratory (LANL).
Diamond sensors and polycapillary lenses for X-ray absorption spectroscopy.
Ravel, B; Attenkofer, K; Bohon, J; Muller, E; Smedley, J
2013-10-01
Diamond sensors are evaluated as incident beam monitors for X-ray absorption spectroscopy experiments. These single crystal devices pose a challenge for an energy-scanning experiment using hard X-rays due to the effect of diffraction from the crystalline sensor at energies which meet the Bragg condition. This problem is eliminated by combination with polycapillary lenses. The convergence angle of the beam exiting the lens is large compared to rocking curve widths of the diamond. A ray exiting one capillary from the lens meets the Bragg condition for any reflection at a different energy from the rays exiting adjacent capillaries. This serves to broaden each diffraction peak over a wide energy range, allowing linear measurement of incident intensity over the range of the energy scan. Extended X-ray absorption fine structure data are measured with a combination of a polycapillary lens and a diamond incident beam monitor. These data are of comparable quality to data measured without a lens and with an ionization chamber monitoring the incident beam intensity.
Variability of the symbiotic X-ray binary GX 1+4. Enhanced activity near periastron passage
NASA Astrophysics Data System (ADS)
Iłkiewicz, Krystian; Mikołajewska, Joanna; Monard, Berto
2017-05-01
Context. GX 1+4 belongs to a rare class of X-ray binaries with red giant donors, symbiotic X-ray binaries. It has a history of complicated variability on multiple timescales in the optical light and X-rays. The nature of this variability remains poorly understood. Aims: We aim to study variability of GX 1+4 on long timescale in X-ray and optical bands. Methods: We took X-ray observations from the INTEGRAL Soft Gamma-Ray Imager and RXTE All Sky Monitor. Optical observations were made with the INTEGRAL Optical Monitoring Camera. Results: The variability of GX 1+4 both in optical light and hard X-ray emission (>17 keV) is dominated by 50-70 d quasi-periodic changes. The amplitude of this variability is highest during the periastron passage, while during the potential neutron star eclipse the system is always at minimum. This confirms the 1161 d orbital period that has had been proposed for the system based on radial velocity curve. Neither the quasi-periodic variability or the orbital period are detected in soft X-ray emission (1.3-12.2 keV), where the binary shows no apparent periodicity.
NASA Technical Reports Server (NTRS)
Sreekumar, P.; Bertsch, D. L.; Bloom, S. D.; Hartman, R. C.; Lin, Y. C.; Mukherjee, R.; Thompson, D. J.
1999-01-01
Mrk 501 is the third TeV blazar with a known GeV component. Previous multiwavelength campaigns on Mrk 501 showed well correlated outbursts at x-ray and TeV energies with no significant activity at GeV energies. We present here new evidence suggesting GeV outbursts in Mrk 501 when the spectrum appears to be extremely hard. However, this outburst appears uncorrelated with emission at x-ray energies. The resulting spectral energy distribution suggests a sharp cut off in the high-energy emission beyond a few hundred GeV.
Delta Ori Phase-Dependent Variability from Chandra and MOST Campaign
NASA Astrophysics Data System (ADS)
Nichols, Joy; Naze, Yael; Moffatt, Anthony F. J.; Corcoran, Michael; Richardson, Noel; Williams, S.; Pollock, A. M. T.; Ignace, Richard; Hole, T.; Waldron, W.; Evans, Nancy Remage; MOST Collaboration
2013-06-01
We report preliminary results from variability analysis of delta Ori in Chandra high-resolution X-ray spectroscopy and concurrent MOST high-precision optical photometry. With nearly complete phase coverage of the 5-day eclipsing binary orbit, it is possible to measure directly radial velocity and flux variations as a function of phase, leading to a mapping of the stellar wind distribution for the massive primary star. The phase dependence of the X-ray overall intensity and the comparative behavior of the emission lines are also presented.
Radio synthesis imaging during the GRO solar campaign
NASA Technical Reports Server (NTRS)
Gary, Dale E.
1992-01-01
The Owens Valley (OVRO) Solar Array was recently expanded to 5 antennas. Using frequency synthesis, the 5-element OVRO Solar Array has up to 450 effective baselines, which can be employed as necessary to make maps at frequencies in the range 1 to 18 GHz. Fortuitously, the last of the 5 antennas was completed and brought into operation on 7 Jun., just in time for the Gamma Ray Observatory (GRO)/Max 1991 observing campaign. Many events were observed jointly with OVRO and the BATSE experiment on GRO, including the six larger events that are presented in tabular form. Unfortunately, the X flares that occurred during the campaign all occurred outside the OVRO time range. The UV coverage of the newly expanded solar array, combined with frequency synthesis, should give a more complete view of solar flares in the microwave range by providing simultaneous spatial and spectral resolution. A promising application of MEM (maximum entropy) is also being pursued that will use smoothness criteria in both the spatial and spectral domains to give brightness temperature maps at each observed frequency (up to 45 frequencies every 10 s). Such maps can be compared directly with the theory of microwave emission to yield plasma parameters in the source - notably the number and energy distribution of electrons, for comparison with the x ray and gamma ray results from GRO.
Single crystal CVD diamond membranes as Position Sensitive X-ray Detector
NASA Astrophysics Data System (ADS)
Desjardins, K.; Menneglier, C.; Pomorski, M.
2017-12-01
Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.
GBM Observations of Be X-Ray Binary Outbursts
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.
2014-01-01
Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.
Simultaneous X-ray, UV, and Optical Variations in lambda ERI (B2e)
NASA Astrophysics Data System (ADS)
Smith, M. A.; Murakami, T.; Anandarao, B.
1996-12-01
We have carried out a simultaneous observing campaign on the prototypical Be star lambda Eri using ground stations and ROSAT, ASCA, IUE, and Voyager spacecrafts during the week of February-March 1995; a smaller campaign was carried out the following September. In late February lambda Eri showed extraordinary disk-wind activity. ROSAT/HRI monitoring disclosed no large flares such as ROSAT observed in 1991 in lambda Eri. Possible low amplitude fluctuations in the 1995 data occurred at the same time with unusual activity in Hα , HeI lambda 6678, HeII lambda 1640, CIII, and the CIV doublet. The helium line activity suggests that mass ejection occurred at the base of the wind. The strong CIII and CIV lines implies that shock interactions originated in the wind flow. It is not clear that the X-ray fluctuations are directly related to the increases in wind line absorption. Within hours of the mild X-ray flux variations found by ROSAT on February 28, the Voyager UVS observed a ``ringing" that decayed over three 3-hr. cycles. The amplitude of these fluctuations was large (50%) at lambda lambda 950-1100, decreased rapidly with wavelength, and faded to nondetection above lambda 1300. Various considerations indicate that these continuum variations were not due to an instrument pathology in the UVS. Rather, they appear to be due to a time-dependent flux deficit in the lambda lambda 1250 during the minima of these cycles. We outline a scenario in which dense plasma over the star's surface is alternately heated and cooled quasi-periodically to produce the flux changes. Additional examples of this new phenomenon are needed. Amateur astronomers can make a significant contribution to the understanding of flickering in Be star light curves during their outburst phases. We also draw attention to an increase in the emission of the Hα line that occurred at about the same time the FUV ringing started. This increased emission hints that ~ 50,000K plasma near the star's surface can infuence the circumstellar disc some distance away by its increased Lyman continuum flux.
Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers
NASA Astrophysics Data System (ADS)
Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen
2017-08-01
The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.
Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532
NASA Technical Reports Server (NTRS)
Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.
2011-01-01
We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT
Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State
NASA Astrophysics Data System (ADS)
Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.
2017-09-01
The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).
McPherson, Armon; Mills, Dennis M.
2002-01-01
A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.
NASA Astrophysics Data System (ADS)
Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.
2017-09-01
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.
Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike
Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less
Pulse-resolved intensity measurements at a hard X-ray FEL using semi-transparent diamond detectors
Roth, Thomas; Freund, Wolfgang; Boesenberg, Ulrike; ...
2018-01-01
Solid-state ionization chambers are presented based on thin diamond crystals that allow pulse-resolved intensity measurements at a hard X-ray free-electron laser (FEL), up to the 4.5 MHz repetition rate that will become available at the European XFEL. Due to the small X-ray absorption of diamond the thin detectors are semi-transparent which eases their use as non-invasive monitoring devices in the beam. FELs are characterized by strong pulse-to-pulse intensity fluctuations due to the self-amplified spontaneous emission (SASE) process and in many experiments it is mandatory to monitor the intensity of each individual pulse. Two diamond detectors with different electrode materials, berylliummore » and graphite, were tested as intensity monitors at the XCS endstation of the Linac Coherent Light Source (LCLS) using the pink SASE beam at 9 keV. The performance is compared with LCLS standard monitors that detect X-rays backscattered from thin SiN foils placed in the beam. In conclusion, the graphite detector can also be used as a beam position monitor although with rather coarse resolution.« less
The First FUor in Early X-Ray Outburst: HBC 722
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2012-09-01
FU Ori outbursts ("FUors") play an important role in the accretion history of a pre-main sequence star. They reveal themselves as brightness increases by several magnitudes in the optical/infrared. FUors are attributed to accretion disk instabilities heating the inner disk such that it entirely dominates the optical spectrum. They decline over many years to decades. Only a handful of FUors in optical eruption have been recorded during the past decades, and no FUor has been caught in X-ray outburst before the recent eruption of the bona-fide FUor HBC 722 in 2010. We have secured two X-ray snapshot observations and now propose to obtain a high resolution Chandra image and a CCD spectrum to continue study of this object in the framework of a multi-wavelength campaign.
Half-value-layer increase owing to tungsten buildup in the x-ray tube: fact or fiction.
Stears, J G; Felmlee, J P; Gray, J E
1986-09-01
The half-value layer (HVL) of an x-ray beam is generally believed to increase with x-ray tube use. This increase in HVL has previously been attributed to the hardening of the x-ray beam as a result of a buildup of tungsten on the x-ray tube glass window. Radiographs and HVL measurements were obtained to determine the effect of tungsten deposited on the x-ray tube windows. This work, along with the HVL data from approximately 200 functioning x-ray tubes used for all applications that were monitored for more than 8 years, indicated there is no significant increase in HVL with diagnostic x-ray tube use.
2011-07-01
dosimeter program. Unfortunately, this limited personnel monitoring program did not address the case of an individual who may have performed...and forearms; feet and ankles 18 ¾ Skin of whole body 7 ½ The USCG does maintain a small radiation personnel dosimeter monitoring program for x...ray technicians at USCG medical clinics (USCG, 2006). This medical clinic dosimeter program reflects a civilian standard of practice, where the x-ray
Voltage and Current Measurements in HIFX Diodes
1977-08-01
Laboratories High- Intensity Flash X Ray Pacility. Sensitivities of these monitors have been measured to an accuracy of 10 percent or better by improved...importance of voltage (V) and current (1) monitors as a diagnostic tool for pulsed-electron beam machines such as High-Intensity Flash X Ray (HIFX) is well...15.4 2.7 109515. .2 7. - 3. 172.6 6.0 2.30 36. 4T. H. Martin, K. R. Prestwicht and D. L. Johnson, Summary of th e Hermes Flash X -Ray Program, Sandia
Plasma instability control toward high fluence, high energy x-ray continuum source
NASA Astrophysics Data System (ADS)
Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent
2017-10-01
X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.
2018-05-01
The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.
Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?
NASA Technical Reports Server (NTRS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-01-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Editor)
1992-01-01
The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.
Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?
NASA Astrophysics Data System (ADS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-11-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”
PSR J2032+4127/MT91 213 on approach to periastron: X-ray & optical monitoring
NASA Astrophysics Data System (ADS)
Coe, M. J.; Steele, I. A.; Ho, W. C. G.; Stappers, B.; Lyne, A. G.; Halpern, J. P.; Ray, P. S.; Johnson, T. L.; Ng, C.-Y.; Kerr, M.
2017-11-01
Swift XRT monitoring of the 50 year binary system PSR J2032+4127/MT91 213 shows a dramatic decrease in the X-ray flux as the system is in the final stages of approach to periastron (13 November 2017).
Monitoring the Galaxy - Highlights from the MAXI mission
NASA Astrophysics Data System (ADS)
Mihara, Tatehiro
Monitor of All-sky X-ray Image (MAXI) is an X-ray all-sky monitor on the International Space Station. It is equipped with Gas Slit Camera (GSC) and Solid-state Slit Camera (SSC). Since it was mounted to the Japanese experimental module in 2009, it has been scanning the whole sky in every 92 minutes with ISS rotation. The data are processed automatically and distributed through http://maxi.riken.jp homepage. MAXI issued 136 to Astronomers Telegram and 47 to Gamma-ray burst Coordinated Network so far. There are many transient X-ray sources in our galaxy. The most remarkable one is a new source. MAXI discovered 12 MAXI sources, 6 of which are blackhole binaries. MAXI J0158-744 was a source in a new category (Morii et al. 2013). It was a very bright (10(40) erg s(-1) ) and very rapid (< 1 hour) nova consisting of a unusual pair of binary, which was a Ne-white dwarf and a Be star. The monitoring results are published as the 37-month catalog (Hiroi et al. 2012) which contains 500 sources above 0.6 mCrab in 4-10 keV in high Galactic-latitude (|b| > 10 deg). SSC with X-ray CCD has detected diffuse soft X-rays in the all-sky, such as Cygnus super bubble (Kimura et al. 2013) and north polar spur, as well as it found Ne line from the rapid soft X-ray nova MAXI J0158-744. Be X-ray binary pulsars (BeXBP) are also transients. They have outbursts at the periastron passage. However, the outburst does not occur in every orbit. Some sources stay in quiescence for tens of years, then suddenly start outbursts repeating for several years. All-sky monitor is then essential to study such kinds of sources. For example, cyclotron feature is often seen in the high energy X-ray band of BeXBP, from which magnetic fields of the poles are measured. MAXI detection of outburst and following SUZAKU pointing observation are very effective. We observed two BeXBP, GX 304-1 in 2010 and GRO J1008-57 in 2012 in MAXI-Suzaku collaboration and succeeded to catch them at the outburst peaks (600mCrab and 450mCrab) to detect cyclotron feature at 54 keV (Yamamoto et al. 2011) and 76 keV (Yamamoto et al. 2014), respectively. Those are top 1 and 3 of the highest magnetic fields among XBP. Transient low-mass X-ray binaries (LMXB), containing a neutron star or a black hole are also transients. The instability of the acretion disks are proposed to explain the random appearance. The long-term monitoring is also essential to study super orbital modulations of such as supergiant XBP (SMC X-1, LMC X-4 etc.) and LMXB (4U 1820-30 etc.). Monitoring is also useful to detect a rare state, such as a quenched-radio state of Cyg X-3 and rapid end of outburst of Cir X-1.
7 years of MAXI: monitoring X-ray transients
NASA Astrophysics Data System (ADS)
Serino, M.; Shidatsu, M.; Iwakiri, W.; Mihara, T.
2017-03-01
This workshop was held to celebrate the successful 7 years of observation with Monitor of All-sky X-ray Image (MAXI), a Japanese astrophysics payload on the International Space Station. Since the launch in 2009, MAXI has been monitoring the variable X-ray sky, and has discovered 17 new X-ray sources. Often with a help of multi-wavelength follow-up observations, one of them has been identified with the nuclear ignition of a massive nova, 6 with black-hole binaries, and 5 with those involving neutron stars. Nevertheless, 4 of them remain unidentified, and are considered to form a potentially new class of short soft transients. MAXI is also leading the time-domain astronomy, with its capability to issue alerts which triggers prompt follow-up observations in the optical and other wavelengths. So far, MAXI has detected about a hundred gamma-ray bursts, and performing unbiased watch for stellar flares. In addition, long-term X-ray variations of about a hundred of sources are continuously tracked with MAXI. This has enabled a variety of new astrophysics that cannot be achieved by snapshot observations. The recent detections of the gravitation wave events have significantly increased the importance of MAXI as a currently operating all-sky monitor, and as a member of multi-messenger astronomy which covers electromagnetic waves, neutrinos, and gravitational waves. In this symposium, the MAXI results obtained during the 7 years are reviewed, with a session assigned to those from Hitomi. The symposium also covers new prospects in the time-domain astronomy, to be developed with future X-ray missions/instruments.
Request for regular monitoring of the symbiotic variable RT Cru
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2014-08-01
Dr. Margarita Karovska (Harvard-Smithsonian Center for Astrophysics) and colleagues have requested AAVSO observer assistance in their campaign on the symbiotic variable RT Cru (member of a new class of hard X-ray emitting symbiotic binaries). Weekly or more frequent monitoring (B, V, and visual) beginning now is requested in support of upcoming Chandra observations still to be scheduled. "We plan Chandra observations of RT Cru in the near future that will help us understand the characteristics of the accretion onto the white dwarf in this sub-class of symbiotics. This is an important step for determining the precursor conditions for formation of a fraction of asymmetric Planetary Nebulae, and the potential of symbiotic systems as progenitors of at least a fraction of Type Ia supernovae." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details and observations.
Transitional millisecond pulsars in the low-level accretion state
NASA Astrophysics Data System (ADS)
Jaodard, Amruta D.; Hessels, Jason W. T.; Archibald, Anne; Bogdanov, Slavko; Deller, Adam; Hernandez Santisteban, Juan; Patruno, Alessandro; D'Angelo, Caroline; Bassa, Cees; Amruta Jaodand
2018-01-01
In the canonical pulsar recycling scenario, a slowly spinning neutron star can be rejuvenated to rapid spin rates by the transfer of angular momentum and mass from a binary companion star. Over the last decade, the discovery of three transitional millisecond pulsars (tMSPs) has allowed us to study recycling in detail. These systems transition between accretion-powered (X-ray) and rotation-powered (radio) pulsar states within just a few days, raising questions such as: what triggers the state transition, when does the recycling process truly end, and what will the radio pulsar’s final spin rate be? Systematic multi-wavelength campaigns over the last decade have provided critical insights: multi-year-long, low-level accretion states showing coherent X-ray pulsations; extremely stable, bi-modal X-ray light curves; outflows probed by radio continuum emission; a surprising gamma-ray brightening during accretion, etc. In my thesis I am trying to bring these clues together to understand the low-level accretion process that recycles a pulsar. For example, recently we timed PSR J1023+0038 in the accretion state and found it to be spinning down ~26% faster compared to the non-accreting radio pulsar state. We are currently conducting simultaneous multi-wavelength campaigns (XMM, HST, Kepler and VLA) to understand the global variability of the accretion flow, as well as high-energy Fermi-LAT observations to probe the gamma-ray emission mechanism. I will highlight these recent developments, while also presenting a broad overview of tMSPs as exciting new laboratories to test low-level accretion onto magnetized neutron stars.
NASA Astrophysics Data System (ADS)
Ducrocq, Véronique
2013-04-01
The Mediterranean region is frequently affected by heavy precipitation events associated with flash-floods, landslides and mudslides each year that cost several billions of dollars in damage and causing too often casualties. Within the framework of the 10-year international HyMeX program dedicated to the hydrological cycle and related processes in the Mediterranean (http://www.hymex.org), a major field campaign has been dedicated to heavy precipitation and flash-floods from September to November 2012. The 2-month field campaign took place over the Northwestern Mediterranean Sea and its surrounding coastal regions in France, Italy and Spain. The observation strategy aimed at documenting four key components leading to heavy precipitation and flash-flooding in that region: (i) the marine atmospheric flow that transport moist and conditionaly unstable air towards the coasts; (ii) the Mediterranean Sea as a moisture and energy source; (iii) the dynamics and microphysics of the convective systems; (iv) the hydrological processes during flash-floods. During the field campaign about twenty precipitation events were monitored, including mesoscale convective systems, Mediterranean cyclogenesis, shallow-convection orographic precipitation. Three aircraft performed about 250 flight hours for a survey of the upstream flow, the air-sea fluxes and the convective systems. About 700 additional radiosoundings were launched either from HyMeX sites or from operational RS sites in Europe, as well as about 20 boundary layer balloons were launched to monitor the low-level flow over the Mediterranean Sea and the ambient atmospheric conditions. Gliders, Argo floats, drifting buoys and ocean soundings from vessels monitored the Mediterranean Sea during the field campaign. Atmospheric and hydrological instruments such as radars, LIDARS, radiometers, wind profilers, lightning sensors, were deployed over 5 regions in France, Italy and Spain. The presentation will present the general observation strategy and instrumentation deployed during the campaign, as well as the weather forecast component of the field operations coordination. An overview of the Intensive Observation Periods (IOP) will be then presented, together with first highlights on some observations and events.
First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way
NASA Technical Reports Server (NTRS)
Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.
2007-01-01
After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.
Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041
NASA Technical Reports Server (NTRS)
Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.
2011-01-01
Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.
NASA Astrophysics Data System (ADS)
Masetti, N.; Mason, E.; Morelli, L.; Cellone, S. A.; McBride, V. A.; Palazzi, E.; Bassani, L.; Bazzano, A.; Bird, A. J.; Charles, P. A.; Dean, A. J.; Galaz, G.; Gehrels, N.; Landi, R.; Malizia, A.; Minniti, D.; Panessa, F.; Romero, G. E.; Stephen, J. B.; Ubertini, P.; Walter, R.
2008-04-01
Using 8 telescopes in the northern and southern hemispheres, plus archival data from two on-line sky surveys, we performed a systematic optical spectroscopic study of 39 putative counterparts of unidentified or poorly studied INTEGRAL sources in order to determine or at least better assess their nature. This was implemented within the framework of our campaign to reveal the nature of newly-discovered and/or unidentified sources detected by INTEGRAL. Our results show that 29 of these objects are active galactic nuclei (13 of which are of Seyfert 1 type, 15 are Seyfert 2 galaxies and one is possibly a BL Lac object) with redshifts between 0.011 and 0.316, 7 are X-ray binaries (5 with high-mass companions and 2 with low-mass secondaries), one is a magnetic cataclysmic variable, one is a symbiotic star and one is possibly an active star. Thus, the large majority (74%) of the identifications in this sample belongs to the AGN class. When possible, the main physical parameters for these hard X-ray sources were also computed using the multiwavelength information available in the literature. These identifications further underscore the importance of INTEGRAL in studying the hard X-ray spectra of all classes of X-ray emitting objects, and the effectiveness of a strategy of multi-catalogue cross-correlation plus optical spectroscopy to securely pinpoint the actual nature of still unidentified hard X-ray sources. Based on observations collected at the following observatories: ESO (La Silla, Chile), partly under program 079.A-0171(A); Astronomical Observatory of Bologna in Loiano (Italy); Astronomical Observatory of Asiago (Italy); Cerro Tololo Interamerican Observatory (Chile); Complejo Astronómico El Leoncito (San Juan, Argentina); South African Astronomical Observatory (Sutherland, South Africa); Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain); Anglo-Australian Observatory (Siding Spring, Australia); Apache Point Observatory (New Mexico, USA).
NASA Astrophysics Data System (ADS)
Nitta, N.; White, S. M.; Kundu, M. R.; Gopalswamy, N.; Holman, G. D.; Brosius, J. W.; Schmelz, J. T.; Saba, J. L. R.; Strong, K. T.
1991-06-01
Using simultaneous microwave and soft X-ray measurements made with the Very Large Array (VLA) at 6 and 20 cm and the X-ray Polychromator (XRP) aboard the Solar Maximum Mission (SMM), we have studied two active regions near the solar limb. These observations were taken as part of the Coronal Magnetic Structures Observing Campaign (CoMStOC), a collaboration designed to study the magnetic field in the solar corona. The images in soft X-rays and at 20 cm wavelength are similar: both show peaks above the active regions and extended bridge of emission 200,000 km long connecting the two regions. The brightness temperature of the 20 cm emission is lower than that predicted from the X-ray emitting material, however; it can be attributed to free-free emission in cooler (<106 K) plasma not visible to XRP, with an optical depth ˜1. The 6 cm emission is concentrated at lower altitudes and in a ˜160,000 km long bundle of loops in the northern active region. Comparison of the 6 cm map with the potential magnetic field lines computed from photospheric magnetic fields (measured 2 days earlier) indicates that the 6 cm emission is associated with fields of less than ˜200 G. Such fields would be too weak to attribute the observed 6 cm emission to gyroresonance radiation. Analysis of the 6 cm loop bundle indicates that it is strongly asymmetric, with the magnetic field in the northern leg ˜2 times stronger than in the southern leg; the 6 cm emission most likely arises from a combination of hot ( ≥ 2 × 106 K) and cool plasmas, while the 20 cm emission becomes optically thick in the cooler (˜9 × 103 K) plasma. We estimate an Alfvén speed ˜7000 km s-1 and ratio of electron gyrofrequency to plasma frequency ˜1.0 in the northern leg of the 6 cm loop.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Swift/BAT Detects Increase in Hard X-ray Emission from the Ultra-compact X-ray Binary 4U 1543-624
NASA Astrophysics Data System (ADS)
Ludlam, Renee; Miller, Jon M.; Miller-Jones, James; Reynolds, Mark
2017-08-01
The Swift/BAT detected an increase in hard X-ray emission (15-50 keV) coming from the ultra-compact X-ray binary 4U 1543-624 around 2017 August 9. The MAXI daily monitoring also shows a gradual increase in 2.0-20.0 keV X-ray intensity as of 2017 August 19. Swift/XRT ToO monitoring of the source was triggered and shows an increase in unabsorbed flux to 1.06E-9 ergs/cm2/s in the 0.3-10.0 keV energy band as of 2017 August 26. ATCA performed ToO observations for approximately 4 hours in the 5.5 GHz and 9.0 GHz bands while the antennas were in the 1.5A array configuration from 11:25-16:09 UTC on 2017 August 23. The source was not detected in either band.
Insights on the X-ray weak quasar phenomenon from XMM-Newton monitoring of PHL 1092
NASA Astrophysics Data System (ADS)
Miniutti, Giovanni; Fabian, Andy; Gallo, Luigi; Brandt, Niel; Schneider, Donald
2012-09-01
PHL 1092 is a z~0.4 high-luminosity counterpart of the class of Narrow Line Seyfert 1 galaxies. In 2008, PHL 1092 was found to be in a remarkably low X-ray flux state during an XMM-Newton observation. Its 2 keV flux density had dropped by a factor of ~260 with respect to a previous observation performed 4.5 yr earlier. The UV flux remained almost constant, resulting in a significant steepening of the optical-to-X-ray slope alpha_ox from -1.57 to -2.51, making PHL 1092 one of the most extreme X-ray weak quasars with no observed broad absorption lines (BALs) in the UV. We have monitored the source since 2008 with XMM-Newton, producing a simultaneous UV and X-ray database spanning almost 10 yr in total in the activity of the source. We apply a series of physically motivated models to the data with the goal of explaining as self-consistently as possible the UV-to-X-ray spectral energy distribution (SED) and the extreme X-ray and alpha_ox variability. We discuss our results in the context of the class of non-BAL X-ray weak quasars and so-called PHL 1811 analogs.
NASA Astrophysics Data System (ADS)
Vievering, J. T.; Glesener, L.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Ishikawa, S. N.; Ramsey, B.; Takahashi, T.; Watanabe, S.
2016-12-01
Observations of the sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. Currently, RHESSI is the only solar-dedicated spacecraft observing in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the method of rotation modulation collimators is limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Preliminary analysis of these two flares will be presented, including imaging spectroscopy, light curves, and photon spectra. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.
NASA Astrophysics Data System (ADS)
Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan
2014-05-01
At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision measurements of the chemical composition of the final samples (EPMA, various energy-dispersive XRF) will serve as calibration standard for XRF-S. Development is funded by the German Aerospace Agency under grant 50 JR 1303.
Design of T-GEM detectors for X-ray diagnostics on JET
NASA Astrophysics Data System (ADS)
Rzadkiewicz, J.; Dominik, W.; Scholz, M.; Chernyshova, M.; Czarski, T.; Czyrkowski, H.; Dabrowski, R.; Jakubowska, K.; Karpinski, L.; Kasprowicz, G.; Kierzkowski, K.; Pozniak, K.; Salapa, Z.; Zabolotny, W.; Blanchard, P.; Tyrrell, S.; Zastrow, K.-D.; JET EFDA Contributors
2013-08-01
Upgraded high-resolution X-ray diagnostics on JET is expected to monitor the plasma radiation emitted by W46+ and Ni26+ ions at 2.4 keV and 7.8 keV photon energies, respectively. Both X-ray lines will be monitored by new generation energy-resolved micropattern gas detectors with 1-D position reconstruction capability. The detection structure is based on triple GEM (T-GEM) amplification structure followed by the strip readout electrode. This article presents a design of new detectors and prototype detector tests.
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is moved toward the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is waiting to be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, workers check the MAXI (Monitor of All-sky X-ray Image) before it is installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) is waiting to be installed on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.
1994-01-01
We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.
The Vital Infrared to X-ray Link in the Sgr A* Accretion Flow
NASA Astrophysics Data System (ADS)
Fazio, Giovanni; Ashby, Matthew; Baganoff, Frederick; Becklin, Eric; Boyce, Hope; Carey, Sean; Gammie, Charles; Ghez, Andrea; Glaccum, William; Gurwell, Mark; Haggard, Daryl; Herrero-Illana, Ruben; Hora, Joseph; Ingalls, James; Lowrance, Patrick; Markoff, Sera; Marrone, Daniel; Morris, Mark; Narayan, Ramesh; Neilsen, Joseph; Ponti, Gabriele; Smith, Howard; Willner, Steven; Witzel, Gunther
2018-05-01
Black hole accretion drives extreme astrophysical phenomena in the universe. Sgr A*, the radiating counterpart of the nearest supermassive black hole, is highly variable, but sparse data and short observations have left its emission physics in question. Despite enormous advances in accretion models, physical description of the interacting radiation mechanisms is incomplete. The X-ray emission mechanism in particular remains unknown. Because the necessary information is contained in the time-dependent relation between X-ray and infrared emission, we have begun monitoring Sgr A* simultaneously with Chandra in X-rays and with Spitzer in the infrared. Defining the X-ray to infrared flux density ratio will allow the entire energy distribution to be understood. We therefore request two new 24-hour epochs of Spitzer monitoring at 4.5 microns simultaneous with Chandra time already approved. This will increase the exposure time for X-ray flares where the NIR state is known, moving us out of the realm of small-number statistics and enabling diagnostics of the true X-ray/IR ratio. Under current NASA plans, this will be the last chance for these valuable Spitzer+Chandra observations.
NASA Astrophysics Data System (ADS)
H.E.S.S. Collaboration; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A. R.; Becherini, Y.; Behera, B.; Benbow, W.; Bernlöhr, K.; Bochow, A.; Boisson, C.; Bolmont, J.; Borrel, V.; Brucker, J.; Brun, F.; Brun, P.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Costamante, L.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubois, F.; Dubus, G.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Göring, D.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Hofverberg, P.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jung, I.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Kerschhaggl, M.; Khangulyan, D.; Khélifi, B.; Keogh, D.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Lamanna, G.; Lenain, J.-P.; Lohse, T.; Marandon, V.; Martineau-Huynh, O.; Marcowith, A.; Masbou, J.; Maurin, D.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Moulin, E.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; Olive, J.-F.; de Oña Wilhelmi, E.; Orford, K. J.; Ostrowski, M.; Panter, M.; Paz Arribas, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Renaud, M.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Schlickeiser, R.; Schöck, F. M.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sikora, M.; Skilton, J. L.; Sol, H.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Superina, G.; Szostek, A.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; Tibolla, O.; Tluczykont, M.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Venter, L.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.; Zdziarski, A. A.; Zech, A.
2010-02-01
Aims: Our aim is to study the very high energy (VHE; E>100 GeV) γ-ray emission from BL Lac objects and the evolution in time of their broad-band spectral energy distribution (SED). Methods: VHE observations of the high-frequency peaked BL Lac object PKS 2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newton and RXTE satellites. Results: A strong VHE signal, ~17σ total, from PKS 2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, Γ = 3.20± 0.16_stat± 0.10_syst. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum (ΔΓX ≈ 0.7) are also observed, which appear to be mirrored in the VHE band. Conclusions: The SED of PKS 2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005. Supported by CAPES Foundation, Ministry of Education of Brazil.Now at Harvard-Smithsonian Center for Astrophysics, Cambridge, USA.Now at W.W. Hansen Experimental Physics Laboratory & Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA.
Swift monitoring observations of 1H 1743-322 and its evolution towards a state transition
NASA Astrophysics Data System (ADS)
Yan, Zhen; Lin, Jie; Yu, Wenfei; Zhang, Wenda; Zhang, Hui; Mao, Dongming
2016-03-01
Following the report of the new outburst of black hole X-ray binary H1743-322 (ATel #8751), we requested a series of Swift ToO observations to monitor the X-ray temporal and spectral evolution and potential jet contribution to the UV flux during the outburst.
Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence
ERIC Educational Resources Information Center
Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.
2007-01-01
A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.;
2015-01-01
We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corcoran, M. F.; Hamaguchi, K.; Nichols, J. S.
2015-08-20
We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, andmore » wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.« less
X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.
Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S
2016-02-01
Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.
Unveiling the X-ray/UV properties of AGN winds using Broad and mini-Broad Absorption Line Quasars
NASA Astrophysics Data System (ADS)
Giustini, M.
2015-07-01
BAL/mini-BALs are observed in the UV spectra of ˜ 20-30% of optically selected AGN as broad absorption troughs blueshifted by several thousands km/s, indicative of powerful nuclear winds. They could be representative of the average AGN if their winds cover only 20-30% of the continuum source, and/or represent an evolutionary state analogous to the high-soft state of BHB, when the jet emission is quenched and strong X-ray absorbing equatorial disk winds are virtually ubiquitous. High-quality, possibly time-resolved X-ray/UV studies are crucial to assess the global amount and 'character' of absorption in BAL/mini-BAL QSOs and to constrain the physical mechanism responsible for the launch and acceleration of their winds, therefore placing them in the broader context of AGN geometry and evolution. I will review here the known X-ray properties of BAL/mini-BAL QSOs, and present new results from a comprehensive X-ray spectral analysis of all the Palomar-Green BAL/mini-BAL QSOs with available XMM-Newton observations, for a total of 51 pointings of 14 different sources. These will include the most recent results from a high-quality simultaneous XMM/HST observational campaign on the mini-BAL QSO PG 1126-041, that unveiled with stunning details the X-ray/UV connection in action in an AGN disk wind through correlated X-ray/UV absorption variability.
Set of instruments for solar EUV and soft X-ray monitoring onboard satellite Coronas-Photon
NASA Astrophysics Data System (ADS)
Kotov, Yury; Kochemasov, Alexey; Kuzin, Sergey; Kuznetsov, Vladimir; Sylwester, Janusz; Yurov, Vitaly
Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation. The main goal of the "Coronas-Photon" is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation (2000MeV). Scientific payload for solar radiation observation consists of three types of instruments: Monitors (Natalya-2M, Konus-RF, RT-2, Penguin-M, BRM, PHOKA, Sphin-X, SOKOL spectral and timing measurements of full solar disk radiation have timing in flare/burst mode up to one msec. Instruments Natalya-2M, Konus-RF, RT-2 will cover the wide energy range of hard X-rays and soft gamma-rays (15keV to 2000MeV) and will together constitute the largest area detectors ever used for solar observations. Detectors of gamma-ray monitors are based on structured inorganic scintillators. For X-ray and EUV monitors the scintillation phoswich detectors, gas proportional counter, CdZnTe assembly and filter-covered Si-diodes are used. Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays has angular resolution up to 1arcsec in three spectral lines. Satellite platform and scientific payload is under construction to be launched in autumn 2008. Satellite orbit is circular with initial height 550km and inclination 82.5degrees. Accuracy of the spacecraft orientation to the Sun is better 3arcmin. In the report the capability of PHOKA, SphinX, SOKOL and TESIS as well as the observation program are described and discussed.
49 CFR 1549.103 - Qualifications and training of individuals with security-related duties.
Code of Federal Regulations, 2011 CFR
2011-10-01
... screening technologies that the facility is authorized to use. These include: (i) The ability to operate x-ray equipment and to distinguish on the x-ray monitor the appropriate imaging standard specified in the certified cargo screening facility security program. Wherever the x-ray system displays colors...
Detection of Highly-Absorbed X-rays from Nova Mus 2018 with Swift
NASA Astrophysics Data System (ADS)
Nelson, Thomas; Kuin, Paul; Mukai, Koji; Page, Kim; Chomiuk, Laura; Kawash, Adam; Sokoloski, J. L.; Linford, Justin; Rupen, Michael P.; Mioduszewski, Amy
2018-03-01
We report the detection of X-rays from Nova Mus 2018 with the Swift XRT instrument. We have been carrying out weekly monitoring of the nova with Swift since its discovery on 2018 Jan 15 (see ATel #11220), and observations up to 2018 Feb 24 yielded X-ray non-detections.
FK Comae Berenices, King of Spin: The COCOA-PUFS Project
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.; Kashyap, V.; Saar, S.; Huenemoerder, D.; Korhonen, H.; Drake, J. J.; Testa, P.; Cohen, O.; Garraffo, C.; Granzer, T.; Strassmeier, K.
2016-03-01
COCOA-PUFS is an energy-diverse, time-domain study of the ultra-fast spinning, heavily spotted, yellow giant FK Comae Berenices (FK Com: HD117555; G4 III). This single star is thought to be a recent binary merger, and is exceptionally active by measure of its intense ultraviolet (UV) and X-ray emissions, and proclivity to flare. COCOA-PUFS was carried out with the Hubble Space Telescope in the UV (1200-3000 Å), using mainly its high-performance Cosmic Origins Spectrograph, but also high precision Space Telescope Imaging Spectrograph; Chandra X-ray Observatory in the soft X-rays (0.5-10 keV), utilizing its High-Energy Transmission Grating Spectrometer; together with supporting photometry and spectropolarimetry in the visible from the ground. This is an introductory report on the project. FK Com displayed variability on a wide range of timescales over all wavelengths during the week-long main campaign, including a large X-ray flare; “super-rotational broadening” of the far-ultraviolet “hot lines” (e.g., Si IV 1393 Å 8 × 104 K) together with chromospheric Mg II 2800 Å and C II 1335 Å (1-3 × 104 K); large Doppler swings suggestive of bright regions alternately on advancing and retreating limbs of the star; and substantial redshifts of the epoch-average emission profiles. These behaviors paint a picture of a highly extended, dynamic, hot (˜10 MK) coronal magnetosphere around the star, threaded by cooler structures perhaps analogous to solar prominences and replenished continually by surface activity and flares. Suppression of angular momentum loss by the confining magnetosphere could temporarily postpone the inevitable stellar spindown, thereby lengthening this highly volatile stage of coronal evolution. COordinated Campaign of Observations and Analysis, Photosphere to Upper Atmosphere, of a Fast-rotating Star.
Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation
NASA Astrophysics Data System (ADS)
Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.
1999-01-01
Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Rongli; Daly, Edward; Drury, Michael
2015-09-01
We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard ‘in air’ Geiger-Muller (G-M) tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carriedmore » out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule. These preliminary results confirmed our expectation and warrant further effort toward the establishment of permanent at-cavity cryogenic X-ray detection for SRF development and operation.« less
NASA Astrophysics Data System (ADS)
Koliopanos, F.; Ciambur, B.; Graham, A.; Webb, N.; Coriat, M.; Mutlu-Pakdil, B.; Davis, B.; Godet, O.; Barret, D.; Seigar, M.
2017-10-01
Intermediate Mass Black Holes (IMBHs) are predicted by a variety of models and are the likely seeds for super massive BHs (SMBHs). However, we have yet to establish their existence. One method, by which we can discover IMBHs, is by measuring the mass of an accreting BH, using X-ray and radio observations and drawing on the correlation between radio luminosity, X-ray luminosity and the BH mass, known as the fundamental plane of BH activity (FP-BH). Furthermore, the mass of BHs in the centers of galaxies, can be estimated using scaling relations between BH mass and galactic properties. We are initiating a campaign to search for IMBH candidates in dwarf galaxies with low-luminosity AGN, using - for the first time - three different scaling relations and the FP-BH, simultaneously. In this first stage of our campaign, we measure the mass of seven LLAGN, that have been previously suggested to host central IMBHs, investigate the consistency between the predictions of the BH scaling relations and the FP-BH, in the low mass regime and demonstrate that this multiple method approach provides a robust average mass prediction. In my talk, I will discuss our methodology, results and next steps of this campaign.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1992-01-01
The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.
NASA Technical Reports Server (NTRS)
Wu, S. T.
2000-01-01
The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Gupta, A.; Page, K.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
Mathur, S.; Gupta, A.; Page, K.; ...
2017-08-31
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Pogge, R. W.; Adams, S. M.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
The Fermi-GBM Three-year X-Ray Burst Catalog
NASA Astrophysics Data System (ADS)
Jenke, P. A.; Linares, M.; Connaughton, V.; Beklen, E.; Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.
2016-08-01
The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient events from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Y.; Kataoka, J.; Nakamori, T.
2012-03-01
We report on our second-year campaign of X-ray follow-up observations of unidentified Fermi Large Area Telescope (LAT) {gamma}-ray sources at high Galactic latitudes (|b| > 10 Degree-Sign ) using the X-ray Imaging Spectrometer on board the Suzaku X-ray Observatory. In this second year of the project, seven new targets were selected from the First Fermi-LAT Catalog, and studied with 20-40 ks effective Suzaku exposures. We detected an X-ray point source coincident with the position of the recently discovered millisecond pulsar (MSP) PSR J2302+4442 within the 95% confidence error circle of 1FGL J2302.8+4443. The X-ray spectrum of the detected counterpart wasmore » well fit by a blackbody model with temperature of kT {approx_equal} 0.3 keV, consistent with an origin of the observed X-ray photons from the surface of a rotating magnetized neutron star. For four other targets that were also recently identified with a normal pulsar (1FGL J0106.7+4853) and MSPs (1FGL J1312.6+0048, J1902.0-5110, and J2043.2+1709), only upper limits in the 0.5-10 keV band were obtained at the flux levels of {approx_equal} 10{sup -14} erg cm{sup -2} s{sup -1}. A weak X-ray source was found in the field of 1FGL J1739.4+8717, but its association with the variable {gamma}-ray emitter could not be confirmed with the available Suzaku data alone. For the remaining Fermi-LAT object 1FGL J1743.8-7620 no X-ray source was detected within the LAT 95% error ellipse. We briefly discuss the general properties of the observed high Galactic-latitude Fermi-LAT objects by comparing their multiwavelength properties with those of known blazars and MSPs.« less
The mass campaign to eradicate ringworm among the Jewish community in Eastern Europe, 1921-1938.
Shvarts, Shifra; Romem, Pnina; Romem, Yitzhak; Shani, Mordechai
2013-04-01
Between the years 1921 and 1938, 27,600 children were irradiated during a mass campaign to eradicate ringworm among the Jewish community in East Europe. The ringworm campaign was the initiative of the American Jewish Joint Distribution Committee together with the Jewish health maintenance organization OZE (The Society for the Protection of Jewish Health). We describe this campaign that used x-rays to eradicate ringworm and its mission to enhance public health among Jewish communities in Eastern Europe during the period between the world wars. We discuss the concepts behind the campaign, the primary health agents that participated in it, and the latent medical ramifications that were found among children treated for ringworm, many years after treatment--pathologies that can be linked to the irradiation they received as children. Our research is based on historical archival materials in the United States, Europe, and Israel.
The Mass Campaign to Eradicate Ringworm Among the Jewish Community in Eastern Europe, 1921–1938
Romem, Pnina; Romem, Yitzhak; Shani, Mordechai
2013-01-01
Between the years 1921 and 1938, 27 600 children were irradiated during a mass campaign to eradicate ringworm among the Jewish community in East Europe. The ringworm campaign was the initiative of the American Jewish Joint Distribution Committee together with the Jewish health maintenance organization OZE (The Society for the Protection of Jewish Health). We describe this campaign that used x-rays to eradicate ringworm and its mission to enhance public health among Jewish communities in Eastern Europe during the period between the world wars. We discuss the concepts behind the campaign, the primary health agents that participated in it, and the latent medical ramifications that were found among children treated for ringworm, many years after treatment—pathologies that can be linked to the irradiation they received as children. Our research is based on historical archival materials in the United States, Europe, and Israel. PMID:23409897
A SPECTROPOLARIMETRIC TEST OF THE STRUCTURE OF THE INTRINSIC ABSORBERS IN THE QUASAR HS 1603+3820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael
We report the results of a spectropolarimetric observation of the C VI 'mini-broad' absorption line (mini-BAL) in the quasar HS 1603+3820 (z {sub em} = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of {delta}p{approx} 0.1%, at a resolving power of R {approx} 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causesmore » of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p {approx} 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.« less
Swift/BAT X-ray monitoring indicates a new outburst of the black hole transient H 1743-322
NASA Astrophysics Data System (ADS)
Zhang, Hui; Yu, Wenfei; Yan, Zhen; Lin, Jie
2017-07-01
H 1743-322 is a black hole X-ray binary with frequent outbursts. Recent Swift/BAT monitoring observations (Krimm et al. 2013) show that this source has turned into a new outburst after been in quiescence for about nine months since the most recent outburst in 2016.
Optical photometry and polarimetry of GX 339-4 during its outburst rise
NASA Astrophysics Data System (ADS)
Russell, D. M.; Lewis, F.; Casella, P.; Pretorius, M. L.; Fender, R. P.; Roche, P.; Clark, S.
2009-03-01
GX 339-4 is currently brightening at X-ray, UV, optical and radio frequencies (ATel #1945, #1954, #1960). Our monitoring campaign with the Faulkes Telescope South (ATel #1586) gives the following recent magnitudes (light curves are below; errors are ~ 0.02 mag): 2009-02-20 (MJD 54882.65): i' ~ 16.66 (and varying by ~ 0.2 mag in 10 minutes) 2009-02-21 (MJD 54883.76): V ~ 16.94, R ~ 16.46, i' ~ 16.68 2009-03-06 (MJD 54896.76): V ~ 16.37, R ~ 15.94, i' ~ 15.50 2009-03-07 (MJD 54897.76): V ~ 16.31, R ~ 15.89, i' ~ 15.65 The source brightened by 0.6, 0.5 and 1.2 mag in V, R and i' respectively in 13 days between 2009-02-21 and 2009-03-06.
High-power laser interaction with low-density C–Cu foams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, F.; Colvin, J. D.; May, M. J.
2015-11-15
We study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
High-power laser interaction with low-density C–Cu foams
Pérez, F.; Colvin, J. D.; May, M. J.; ...
2015-11-19
Here, we study the propagation of high-power laser beams in micro-structured carbon foams by monitoring the x-ray output from deliberately introduced Cu content. In particular, we characterize this phenomenon measuring absolute time-resolved x-ray yields, time-resolved x-ray imaging, and x-ray spectroscopy. New experimental results for C–Cu foams show a faster heat front velocity than simulation that assumed homogeneous plasma. We suggest the foam micro-structure may explain this trend.
The hypersoft state of Cygnus X-3. A key to jet quenching in X-ray binaries?
NASA Astrophysics Data System (ADS)
Koljonen, K. I. I.; Maccarone, T.; McCollough, M. L.; Gurwell, M.; Trushkin, S. A.; Pooley, G. G.; Piano, G.; Tavani, M.
2018-04-01
Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion. Aim. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic γ-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state. Methods: We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and γ-ray monitoring data from AGILE and Fermi. Results: We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries.
Bragg x-ray survey spectrometer for ITER.
Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S
2012-10-01
Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a crane is moved over the MAXI (Monitor of All-sky X-ray Image). The crane will lift the MAXI onto the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a crane lifts the MAXI (Monitor of All-sky X-ray Image) to move it onto the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a crane lifts the MAXI (Monitor of All-sky X-ray Image) to move it onto the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES, where it will be installed. The MAXI is part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Widmann, Klaus; Benjamin, Russ; May, Mark; Thorn, Daniel; Colvin, Jeff; Barrios, Maria; Kemp, G. Elijah; Fournier, Kevin; Blue, Brent
2016-10-01
In our on-going x-ray source development campaign at the National Ignition Facility, we have recently extended the energy range of our laser-driven cavity sources to the 20 keV range by utilizing molybdenum-lined and silver-lined cavity targets. Using a variety of spectroscopic and power diagnostics we determined that almost 1% of the nearly 1 MJ total laser energy used for heating the cavity target was converted to Mo K-shell x rays using our standard cavity design. The same laser drive for silver-lined cavities yielded about 0.4% conversion efficiency for the Ag K-shell emission. Comparison with HYDRA simulations are used to further optimize the x-rays conversion efficiency. The simulations indicate that minor changes in the aspect ratio of the cavity and the layer thickness may double the radiative power of the K-shell emission. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Aglitskiy, Yefim; Weaver, J. L.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Ralchenko, Yu.
2014-10-01
The spectra of multi-charged ions of Hf, Ta, W, Pt, Au and Bi have been studied on Nike krypton-fluoride laser facility with the help of two kinds of X-ray spectrometers. First, survey instrument covering a spectral range from 0.5 to 19.5 angstroms which allows simultaneous observation of both M- and N- spectra of above mentioned elements with high spectral resolution. Second, an imaging spectrometer with interchangeable spherically bent Quartz crystals that added higher efficiency, higher spectral resolution and high spatial resolution to the qualities of the former one. Multiple spectral lines with X-ray energies as high as 4 keV that belong to the isoelectronic sequences of Fe, Co, Ni, Cu and Zn were identified with the help of NOMAD package developed by Dr. Yu. Ralchenko and colleagues. In our continuous effort to support DOE-NNSA's inertial fusion program, this campaign covered a wide range of plasma conditions that result in production of relatively energetic X-rays. Work supported by the US DOE/NNSA.
Chen, Hui; Palmer, N; Dayton, M; Carpenter, A; Schneider, M B; Bell, P M; Bradley, D K; Claus, L D; Fang, L; Hilsabeck, T; Hohenberger, M; Jones, O S; Kilkenny, J D; Kimmel, M W; Robertson, G; Rochau, G; Sanchez, M O; Stahoviak, J W; Trotter, D C; Porter, J L
2016-11-01
A novel x-ray imager, which takes time-resolved gated images along a single line-of-sight, has been successfully implemented at the National Ignition Facility (NIF). This Gated Laser Entrance Hole diagnostic, G-LEH, incorporates a high-speed multi-frame CMOS x-ray imager developed by Sandia National Laboratories to upgrade the existing Static X-ray Imager diagnostic at NIF. The new diagnostic is capable of capturing two laser-entrance-hole images per shot on its 1024 × 448 pixels photo-detector array, with integration times as short as 1.6 ns per frame. Since its implementation on NIF, the G-LEH diagnostic has successfully acquired images from various experimental campaigns, providing critical new information for understanding the hohlraum performance in inertial confinement fusion (ICF) experiments, such as the size of the laser entrance hole vs. time, the growth of the laser-heated gold plasma bubble, the change in brightness of inner beam spots due to time-varying cross beam energy transfer, and plasma instability growth near the hohlraum wall.
Structure and Kinematics of the BLR: What We have Learned and Where We Are
NASA Astrophysics Data System (ADS)
Gaskell, C. Martin
What has been learned from variability studies of the BLR is reviewded. The majority of our knowledge has ceom from determining only the first moment of the transfer function (the "lag"). Details of the method most widely used for determining the first moment, i.e., the partial interpolation cross correlation function (PICCF) method, are discussed. The much higher efficiency of the PICCF method compared to the discrete correlation function (DCF) method is emphasized. Recovering much beyond the first moment of the transfer function is difficult, and a plateau seems to ahve been reached in what we can learn from our present style of monitoring campaign. Directions are suggested for future observing campaigns. Obtaining simultaneous X-ray light curves is very important. Quasars with unusual double-peaked emission lines vlearly need ot be understoo as do ones with strong optical Fe II emission. Theoretical problems mentioned include (1) the reconciliation of the apparent lack of radial outflow with the blueshifting of high-ionization lines, (2) the role of electron scattering, and (3) the small apparent sizes seen in 3C 273 and some high-luminosity quasars. Continuum anisotropy offers a natural solution to the last problem.
Stellar wind measurements for Colliding Wind Binaries using X-ray observations
NASA Astrophysics Data System (ADS)
Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko
2017-11-01
We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.
NASA Astrophysics Data System (ADS)
Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe
2012-04-01
We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.
Note: Measurement of the runaway electrons in the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.
2012-05-01
The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.
Watanabe, Yasushi
2018-03-02
The performance of ion-exchange chromatography combined with small-angle X-ray scattering measurement was evaluated by characterization of the hen egg white lysozyme as a model protein. The X-ray transmittance was estimated using a micro-ionization chamber equipped with a sample cell holder for the real-time monitoring of the X-ray beam strength through the salt gradient elution. The radius of gyration of the eluted protein was estimated to be 1.50 ± 0.06 (n = 3) nm and 1.4 ± 0.1 nm as the value at the zero protein concentration. By using the X-ray transmittance values for the scattering intensity correction, the molecular weight of the eluted protein was estimated to be 15,200 ± 500 (n = 3) and 14,400 ± 200 as the value at the zero protein concentration. These values are close to those of the monomer of this protein. The ion-exchange chromatography combined with the small-angle X-ray scattering measurement system equipped with the X-ray transmittance monitor is a reliable method for protein characterization in solution. Copyright © 2018 Elsevier B.V. All rights reserved.
All-Sky Earth Occultation Observations with the Fermi Gamma-Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Jenke, P.; Chaplin, V.; Cherry, M.; Connaughton, V.;
2009-01-01
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/ soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. In addition, to Earth occultations, we have observed numerous occultations with Fermi's solar panels.
X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy
NASA Technical Reports Server (NTRS)
Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.
2010-01-01
A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.
NASA Astrophysics Data System (ADS)
Malacaria, C.; Kollatschny, W.; Whelan, E.; Santangelo, A.; Klochkov, D.; McBride, V.; Ducci, L.
2017-07-01
Context. Be/X-ray binaries (BeXRBs) are the most populous class of high-mass X-ray binaries. Their X-ray duty cycle is tightly related to the optical companion wind activity, which in turn can be studied through dedicated optical spectroscopic observations. Aims: We study optical spectral features of the Be circumstellar disk to test their long-term variability and their relation with the X-ray activity. Special attention has been given to the Hα emission line, one of the best tracers of the disk conditions. Methods: We obtained optical broadband medium resolution spectra from a dedicated campaign with the Anglo-Australian Telescope and the Southern African Large Telescope in 2014-2015. Data span over one entire binary orbit, and cover both X-ray quiescent and moderately active periods. We used Balmer emission lines to follow the evolution of the circumstellar disk. Results: We observe prominent spectral features, like double-peaked Hα and Hβ emission lines. The HαV/R ratio significantly changes over a timescale of about one year. Our observations are consistent with a system observed at a large inclination angle (I ≳ 60°). The derived circumstellar disk size shows that the disk evolves from a configuration that prevents accretion onto the neutron star, to one that allows only moderate accretion. This is in agreement with the contemporary observed X-ray activity. Our results are interpreted within the context of inefficient tidal truncation of the circumstellar disk, as expected for this source's binary configuration. We derived the Hβ-emitting region size, which is equal to about half of the corresponding Hα-emitting disk, and constrain the luminosity class of V850 Cen as III-V, consistent with the previously proposed class.
NASA Astrophysics Data System (ADS)
Torpin, Trevor; Boyd, Patricia T.; Smale, Alan P.
2015-01-01
The bright, unusual black-hole X-ray binary LMC X-3 has been monitored virtually continuously by the Japanese MAXI X-ray All-Sky Monitor aboard the International Space Station (Matsuoka, et al., PASJ, 2009) from August 2009 to the present. Comparison with RXTE PCA and ASM light curves during the ~2.33-year period of overlap demonstrate that despite slight differences in energy-band boundaries both the ASM and MAXI faithfully reproduce characteristics of the high-amplitude, nonperiodic long-term variability, on the order of 100-300 days, clearly seen in the more sensitive PCA monitoring. The mechanism for this variability at a timescale many times longer than the 1.7-day orbital period is still unknown. Models to explain the long-term variability invoke mechanisms such as changes in mass transfer rate, and/or a precessing warped accretion disk. Observations of LMC X-3 have not definitely determined whether wind accretion or Roche-love overflow is the driver of the long-term variability. Recent MAXI monitoring of LMC X-3 includes excellent coverage of a rare anomalous low state (ALS) where the X-ray source cannot be distinguished from the background, as well as several normal low states, in which the source count rate passes smoothly through a low, yet detectable value. Pointed Swift XRT and UVOT observations also sample this ALS and one normal low state well. We combine these data sets to study the correlations between the wavelength regimes observed during the ALS versus the normal low. We also examine the behavior of the X-ray hardness ratios using XRT and MAXI monitoring data during the ALS versus the normal low state.
Probing the Relativistic Jets of Active Galactic Nuclei with Multiwavelength Monitoring
NASA Technical Reports Server (NTRS)
Marscher, Alan P.; Jorstad, Svetlana G.; Aller, Margo
2005-01-01
The work completed includes the analysis of observations obtained during Cycle 7 (March 2002-February 2003) of the Rossi X-ray Timing Explorer (RXTE). The project was part of a longer-term, continuing program to study the X-ray emission process in blazars and radio galaxies in collaboration with Dr. Ian McHardy (U. of Southampton, UK) and Prof. Thomas Balonek (Colgate U.). The goals of the program are to study the X-ray emission mechanism in blazars and radio galaxies and the relation of the X-ray emission to changes in the relativistic jet. The program includes contemporaneous brightness and linear polarization monitoring at radio and optical wavelengths, total and polarized intensity imaging at at 43 GHz with a resolution of 0.1 milliarcseconds with the VLBA, and well-sampled X-ray light curves obtained from a series of approved RXTE programs. The objects studied in the time period covered by the grant were 3C 120, 3C 279, PKS 1510-089, and 3C 273, all with radio jets containing bright knots that appear to move at superluminal speeds. During RXTE Cycle 7, the project was awarded RXTE time to monitor PKS 1510-089 two times per week, 3C 273 and 3C 279 three times per week, and 3C 120 four times per week. In addition, 3C273 and 3C 279 were observed several times per day during a ten-day period in April 2002. The X-ray data, including those from earlier cycles, were compared with radio measurements obtained in the centimeter-wave band by the monitoring program of Drs. Margo and Hugh Aller at the University of Michigan Radio Astronomy Observatory, monthly imaging observations with the VLBA at 43 GHz, and optical observations obtained at several telescopes around the world.
NASA Astrophysics Data System (ADS)
Stuffler, Timo; Graue, Roland; Bird, Antony J.; Dean, Antony; Staubert, Rüdiger
2018-04-01
This paper, "PIMACS (Polarimeter and improved modular anti-coincidence system): an effective instrument concept for x-, gamma-ray monitoring, and polarimetry measurements on the International Space Station," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
NASA Technical Reports Server (NTRS)
Gregory, J. C.
1976-01-01
The use and sensitivity of the multiwire proportional counter to detect Kr-85 in ambient air are examined. Data also cover monitoring beta and X-ray emitting radio nuclides at low activity levels. Results show the counter to have excellent properties for monitoring Kr-85 down to 0.0004 pCi cu/cm.
Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B.; Lee, S.; Westferro, F.
The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less
Long Duration X-ray Bursts Observed by MAXI
NASA Astrophysics Data System (ADS)
Serino, Motoko; Iwakiri, Wataru; Tamagawa, Toru; Sakamoto, Takanori; Nakahira, Satoshi; Matsuoka, Masaru; Yamaoka, Kazutaka; Negoro, Hitoshi
Monitor of All-sky X-ray Image (MAXI) is X-ray mission on the International Space Station. MAXI scans all sky every 92 min and detects various X-ray transient events including X-ray bursts. Among the X-ray bursts observed by MAXI, eleven had long duration and were observed more than one scan. Six out of eleven long bursts have the e-folding time of >1 h, that should be classified as "superbursts", while the rest are "intermediate-duration bursts". The total emitted energy of these long X-ray bursts range from 1041 to 1042 ergs. The lower limits of the superburst recurrence time of 4U 0614+091 and Ser X-1 are calculated as 4400 and 59 days, which may be consistent with the observed recurrence time of 3523 and 1148 days, respectively.
Power Spectrum Density of Long-Term MAXI Data
NASA Astrophysics Data System (ADS)
Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.
A mid-life crisis? Sudden changes in radio and X-ray emission from supernova 1970G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittmann, J. A.; Soderberg, A. M.; Margutti, R.
2014-06-10
Supernovae (SNe) provide a backdrop from which we can probe the end state of stellar evolution in the final years before the progenitor star explodes. As the shock from the SN expands, the timespan of mass-loss history we are able to probe also extends, providing insight to rapid timescale processes that govern the end state of massive stars. While SNe transition into remnants on timescales of decades to centuries, observations of this phase are currently limited. Here, we present observations of SN 1970G, serendipitously observed during the monitoring campaign of SN 2011fe, which shares the same host galaxy. Utilizing themore » new Jansky Very Large Array (VLA) upgrade and a deep X-ray exposure taken by Chandra, we are able to recover this middle-aged SN and distinctly resolve it from the H II cloud with which it is associated. We find that the flux density of SN 1970G has changed significantly since it was last observed—the X-ray luminosity has increased by a factor of ∼3, while we observe a significantly lower radio flux of only 27.5 μJy at 6.75 GHz, a level only detectable through the upgrades now in operation at the Jansky VLA. These changes suggest that SN 1970G has entered a new stage of evolution toward an SN remnant, and we may be detecting the turn-on of the pulsar wind nebula. Deep radio observations of additional middle-aged SNe with the improved radio facilities will provide a statistical census of the delicate transition period between SN and remnant.« less
Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745*
NASA Technical Reports Server (NTRS)
Sharon, Keren; Bayliss, Matthew B.; Dahle, Hakon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva
2017-01-01
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found T(sub AB) = 47.7 +/- 6.0 days and T(sub AC) = 722 +/- 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are T(sub AD) = 502+/- 68 days, T( sub AE) = 611 +/- 75 days, and T(sub AF) = 415 +/- 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.
LENS MODEL AND TIME DELAY PREDICTIONS FOR THE SEXTUPLY LENSED QUASAR SDSS J2222+2745
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon, Keren; Johnson, Traci L.; Paterno-Mahler, Rachel
2017-01-20
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image ofmore » the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τ {sub AB} = 47.7 ± 6.0 days and τ {sub AC} = −722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τ {sub AD} = 502 ± 68 days, τ {sub AE} = 611 ± 75 days, and τ {sub AF} = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift , indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion.« less
High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums
NASA Astrophysics Data System (ADS)
Robey, Harry F.
2009-11-01
Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).
The U.S. Spectrum X Gamma Coordination Facility
NASA Astrophysics Data System (ADS)
Forman, William R.
1999-08-01
Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.
The U.S. Spectrum X Gamma Coordination Facility
NASA Technical Reports Server (NTRS)
Forman, William R.
1999-01-01
Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.
X-ray Lobster Eye all-sky monitor for rocket experiment
NASA Astrophysics Data System (ADS)
Dániel, V.; Inneman, A.; Pína, L.; Zadražil, V.; Báča, T.; Stehlíková, V.; Nentvich, O.; Urban, M.; Maršíková, V.; McEntaffer, R.; Tutt, J.; Schulz, T.
2017-05-01
This paper presents a Lobster Eye (LE) X-ray telescope developed for the Water Recovery X-ray Rocket (WRX-R) experiment. The primary payload of the rocket experiment is a soft X-ray spectroscope developed by the Pennsylvania State University (PSU), USA. The Czech team participates by hard LE X-ray telescope as a secondary payload. The astrophysical objective of the rocket experiment is the Vela Supernova of size about 8deg x 8deg. In the center of the nebula is a neutron star with a strong magnetic field, roughly the mass of the Sun and a diameter of about 20 kilometers forming the Vela pulsar. The primary objective of WRX-R is the spectral measurement of the outer part of the nebula in soft X-ray and FOV of 3.25deg x 3.25deg. The secondary objective (hard LE X-ray telescope) is the Vela neutron star observation. The hard LE telescope consists of two X-ray telescopes with the Timepix detector. First telescope uses 2D LE Schmidt optics (2DLE- REX) with focal length over 1m and 4 Timepix detectors (2x2 matrix). The telescope FOV is 1.5deg x 1.5deg with spectral range from 3keV to 60keV. The second telescope uses 1D LE Schmidt optics (1D-LE-REX) with focal length of 25 cm and one Timepix detector. The telescope is made as a wide field with FOV 4.5deg x 3.5deg and spectral range from 3keV to 40keV. The rocket experiment serves as a technology demonstration mission for the payloads. The LE X-ray telescopes can be in the future used as all-sky monitor/surveyor. The astrophysical observation can cover the hard X-ray observation of astrophysical sources in time-domain, the GRBs surveying or the exploration of the gravitational wave sources.
The independent pulsations of Jupiter's northern and southern X-ray auroras
NASA Astrophysics Data System (ADS)
Dunn, W. R.; Branduardi-Raymont, G.; Ray, L. C.; Jackman, C. M.; Kraft, R. P.; Elsner, R. F.; Rae, I. J.; Yao, Z.; Vogt, M. F.; Jones, G. H.; Gladstone, G. R.; Orton, G. S.; Sinclair, J. A.; Ford, P. G.; Graham, G. A.; Caro-Carretero, R.; Coates, A. J.
2017-11-01
Auroral hot spots are observed across the Universe at different scales1 and mark the coupling between a surrounding plasma environment and an atmosphere. Within our own Solar System, Jupiter possesses the only resolvable example of this large-scale energy transfer. Jupiter's northern X-ray aurora is concentrated into a hot spot, which is located at the most poleward regions of the planet's aurora and pulses either periodically2,3 or irregularly4,5. X-ray emission line spectra demonstrate that Jupiter's northern hot spot is produced by high charge-state oxygen, sulfur and/or carbon ions with an energy of tens of MeV (refs 4-6) that are undergoing charge exchange. Observations instead failed to reveal a similar feature in the south2,3,7,8. Here, we report the existence of a persistent southern X-ray hot spot. Surprisingly, this large-scale southern auroral structure behaves independently of its northern counterpart. Using XMM-Newton and Chandra X-ray campaigns, performed in May-June 2016 and March 2007, we show that Jupiter's northern and southern spots each exhibit different characteristics, such as different periodic pulsations and uncorrelated changes in brightness. These observations imply that highly energetic, non-conjugate magnetospheric processes sometimes drive the polar regions of Jupiter's dayside magnetosphere. This is in contrast to current models of X-ray generation for Jupiter9,10. Understanding the behaviour and drivers of Jupiter's pair of hot spots is critical to the use of X-rays as diagnostics of the wide range of rapidly rotating celestial bodies that exhibit these auroral phenomena.
X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J.
Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago.more » The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.« less
Parametric Characterization of TES Detectors Under DC Bias
NASA Technical Reports Server (NTRS)
Chiao, Meng P.; Smith, Stephen James; Kilbourne, Caroline A.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.;
2016-01-01
The X-ray integrated field unit (X-IFU) in European Space Agency's (ESA's) Athena mission will be the first high-resolution X-ray spectrometer in space using a large-format transition-edge sensor microcalorimeter array. Motivated by optimization of detector performance for X-IFU, we have conducted an extensive campaign of parametric characterization on transition-edge sensor (TES) detectors with nominal geometries and physical properties in order to establish sensitivity trends relative to magnetic field, dc bias on detectors, operating temperature, and to improve our understanding of detector behavior relative to its fundamental properties such as thermal conductivity, heat capacity, and transition temperature. These results were used for validation of a simple linear detector model in which a small perturbation can be introduced to one or multiple parameters to estimate the error budget for X-IFU. We will show here results of our parametric characterization of TES detectors and briefly discuss the comparison with the TES model.
Engine materials characterization and damage monitoring by using x ray technologies
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1993-01-01
X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto
2011-09-01
We present the results of a systematic search in {approx}14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listedmore » in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the {approx}3.9 day orbital period of LMC X-1 and the {approx}3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.« less
Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S
2016-01-01
This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.
Six Years of Monitoring of the Sgr B2 Molecular Cloud with INTEGRAL
NASA Astrophysics Data System (ADS)
Terrier, R.; Bélanger, G.; Ponti, G.; Trap, G.; Goldwurm, A.; Decourchelle, A.
2009-05-01
Several molecular clouds around the Galactic Centre (GC) emit strong neutral iron fluorescence line at 6.4 keV, as well as hard X-ray emission up to 100 keV. The origin of this emission has long been a matter of controversy: irradiation by low energy cosmic ray electrons or X-rays emitted by a nearby flaring source in the central region. A recent evidence for time variability in the iron line intensity that has been detected in the Sgr B2 cloud favors the reflexion scenario. We present here the data obtained after 6 years of INTEGRAL monitoring of the GC. In particular, we show a lightcurve of Sgr B2 that reveals a decrease in the hard X-ray flux over the last years and discuss its implications. We finally discuss perspectives with Simbol-X.
[The forgotten ringworm campaign of OZE-TOZ in Poland].
Shvarts, Shifra; Romem, Pnina; Romem, Yitzhak; Shani, Mordechai
2009-04-01
In 1921, the JOINT-JDC [the American Jewish WeLfare Organization) together with the Jewish health organizations of Eastern Europe (OZE, TOZ) initiated a campaign to eradicate ringworm of the scalp, which was one of the major medical causes that prevented Jews from immigrating to the West. This campaign continued until 1938. During the years 1921-1938, 27,760 children were irradiated (x-rayed) as part of the treatment. This study, based on archival sources in Israel and abroad, presents the story of this unique campaign to eradicate ringworm in the Eastern European Jewish communities, the ideology behind this initiative, the health and medical factors that played a role and its outcomes. This research was conducted at The Gertner Institute for Epidemiology and Health Policy Research and The School of Public Health at Tel Aviv University.
Probing the Environment of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hanke, Manfred
2011-04-01
X-ray binaries are the topic of this thesis. They consist of a compact object -- a black hole or a neutron star -- and an ordinary star, which loses matter to the compact object. The gravitational energy released through this process of mass accretion is largely converted into X-rays. The latter are used in the present work to screen the environment of the compact object. The main focus in the case of a massive star is on its wind, which is not homogeneous, but may display structures in form of temperature and density variations. Since great importance is, in multiple respects, attached to stellar winds in astrophysics, there is large interest in general to understand these structures more thoroughly. In particular for X-ray binaries, whose compact object obtains matter from the wind of its companion star, the state of the wind can decisively influence mass accretion and its related radiation processes. A detailed introduction to the fundamentals of stellar winds, compact objects, accretion and radiation processes in X-ray binaries, as well as to the employed instruments and analysis methods, is given in chapter 1. The focus of this investigation is on Cygnus X-1, a binary system with a black hole and a blue supergiant, which form a persistently very bright X-ray source because of accretion from the stellar wind. It had been known for a long time that this source -- when the black hole is seen through the dense stellar wind -- often displays abrupt absorption events whose origin is suspected to be in clumps in the wind. More detailed physical properties of these clumps and of the wind in general are explored in this work. Observations that were specifically acquired for this study, as well as archival data from different satellite observatories, are analyzed in view of signatures of the wind and its fine structures. These results are presented in chapter 2. In a first part of the analysis, the statistical distribution of the brightness of Cyg X-1, as measured since 1996 with the RXTE satellite's all-sky monitor, is investigated in the context of the binary system's orbital phase. The stellar wind is here noticed via absorption of the soft X-radiation. This analysis has not only shown that the mean column density in the wind is -- as already known -- larger along lines of sight passing close by the star, but also that the wind is more clumpy there. The evaluation of more than 2 000 spectra from RXTE's proportional counter, taken within 14.5 years and mostly in the framework of a monitoring campaign, has lead to the same result. Compared to previous studies, the accuracy of the measurements could be improved by a careful investigation of the quality of the low-energy spectrum, which was required to register the scatter due to the clumpiness. In the next part, several high-resolution X-ray sepectra were analyzed, which were recorded with the gratings spectrometer of the highly requested Chandra satellite. The modulation of the absorption could, for the first time, be ascribed to the highly ionized wind, which has consequences for its quantitative interpretation due to the reduced cross sections compared to neutral absorption. Moreover, the acceleration of the wind with increasing distance from the star could be demonstrated, which constitutes an important observational evidence in terms of the wind structure. A conjecture published in 2008, according to which no wind might develop in the ionized environment of the X-ray source, is therewith disproved. By means of spectroscopy of strong absorption events, it was for the first time unequivocally demonstrated that these can be ascribed to a shift of the ionization balance to less strongly ionized gas, due to the enhanced density of the clumps. The increase of the column density of lower ionization stages is also confirmed by the spectroscopic analysis of the contemporaneous observation with the XMM-Newton satellite. Since these simultaneous observations were, in the framework of the largest observational campaign to date, accompanied by all available X-ray satellites, the effect of the absorption events on hard X-rays could be investigated as well. A flux reduction was detected in light curves at high energies, not affected by absorption, which coincides with the time of the strongest absorption event. This effect could be confirmed by time resolved spectroscopy of the XMM data, and be interpreted as due to scattering on a fully ionized cloud. The evolution of the light curve constitutes therefore a tomography of this cloud, and reveals further structure in the stellar wind. The strong absorption event is caused by the cloud's core, which is sufficiently dense that its ionization balance is shifted. Results from the analysis of another source are briefly presented in chapter 3. For the X-ray binary system LMC X-1 in the Large Magellanic Cloud, six spectra have been analyzed in view of their absorption. A connection with the orbital phase was suggested, which indicates absorption by material within the system itself. Concluding this thesis, the detailed results are summarized and discussed in chapter 4, and an outlook on future research possibilities is given.
Development of the hard x-ray monitor onboard WF-MAXI
NASA Astrophysics Data System (ADS)
Arimoto, Makoto; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Harayama, Atsushi; Takeda, Shin'ichiro; Takahashi, Tadayuki; Tomida, Hiroshi; Ueno, Shiro; Kimura, Masashi; Mihara, Tatehiro; Serino, Motoko; Tsunemi, Hiroshi; Yoshida, Atsumasa; Sakamoto, Takanori; Kohmura, Tadayoshi; Negoro, Hitoshi; Ueda, Yoshihiro
2014-07-01
WF-MAXI is a mission to detect and localize X-ray transients with short-term variability as gravitational-wave (GW) candidates including gamma-ray bursts, supernovae etc. We are planning on starting observations by WF-MAXI to be ready for the initial operation of the next generation GW telescopes (e.g., KAGRA, Advanced LIGO etc.). WF-MAXI consists of two main instruments, Soft X-ray Large Solid Angle Camera (SLC) and Hard X-ray Monitor (HXM) which totally cover 0.7 keV to 1 MeV band. HXM is a multi-channel array of crystal scintillators coupled with APDs observing photons in the hard X-ray band with an effective area of above 100 cm2. We have developed an analog application specific integrated circuit (ASIC) dedicated for the readout of 32-channel APDs' signals using 0.35 μm CMOS technology based on Open IP project and an analog amplifier was designed to achieve a low-noise readout. The developed ASIC showed a low-noise performance of 2080 e- + 2.3 e-/pF at root mean square and with a reverse-type APD coupled to a Ce:GAGG crystal a good FWHM energy resolution of 6.9% for 662 keV -rays.
A Study of Nonthermal X-Ray and Radio Emission from the O Star 9 Sgr
NASA Technical Reports Server (NTRS)
Waldron, Wayne L.; Corcoran, Michael F.; Drake, Stephen A.
1999-01-01
The observed X-ray and highly variable nonthermal radio emission from OB stars has eluded explanation for more than 18 years. The most favorable model of X-ray production in these stars (shocks) predicts both nonthermal radio and X-ray emission. The nonthermal X-ray emission should occur above 2 keV and the variability of this X-ray component should also be comparable to the observed radio variability. To test this scenario, we proposed an ASC/VLA monitoring program to observe the OB star, 9 Sgr, a well known nonthermal, variable radio source and a strong X-ray source. We requested 625 ks ASCA observations with a temporal spacing of approximately 4 days which corresponds to the time required for a density disturbance to propagate to the 6 cm radio free-free photosphere. The X-ray observations were coordinated with 5 multi-wavelength VLA observations. These observations represent the first systematic attempt to investigate the relationship between the X-ray and radio emission in OB stars.
In-situ X-ray diffraction system using sources and detectors at fixed angular positions
Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY
2007-06-26
An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.
Energy discriminating x-ray camera utilizing a cadmium telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Purkhet, Abderyim; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Wantanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Tanaka, Etsuro; Kawai, Toshiaki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2009-07-01
An energy-discriminating x-ray camera is useful for performing monochromatic radiography using polychromatic x rays. This x-ray camera was developed to carry out K-edge radiography using iodine-based contrast media. In this camera, objects are exposed by a cone beam from a cerium x-ray generator, and penetrating x-ray photons are detected by a cadmium telluride detector with an amplifier unit. The optimal x-ray photon energy and the energy width are selected out using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x-y stage driven by a two-stage controller, and radiograms obtained by energy discriminating are shown on a personal computer monitor. In radiography, the tube voltage and current were 60 kV and 36 μA, respectively, and the x-ray intensity was 4.7 μGy/s. Cerium K-series characteristic x rays are absorbed effectively by iodine-based contrast media, and iodine K-edge radiography was performed using x rays with energies just beyond iodine K-edge energy 33.2 keV.
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the MAXI (Monitor of All-sky X-ray Image) has been installed next to the SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload) on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. The MAXI and SEDA-AP are part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
Monitoring the Galactic - Search for Hard X-Ray Transients
NASA Astrophysics Data System (ADS)
Marshall, Francis
Hard X-ray transients with fluxs from ~1 to ~30 mCrab are a common feature of the galactic plane with apparent concentrations in specific regions of the plane. Concentrations in the Scutum and Carina fields probably indicate an enhancement of Be X-ray binaries along the tangent direction of two spiral arms. The frequency of outbursts suggest that at any one time 1 or 2 transients are active in the Scutum field alone. We propose weekly scans of the galactic plane to understand this population of sources. The scans will also monitor about 50 already known sources with better spectral information than available with the ASM.
Optical polarimetry and photometry of X-ray selected BL Lacertae objects
NASA Technical Reports Server (NTRS)
Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard
1993-01-01
We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.
An X-ray monitor for measurement of a titanium tritide target thickness
NASA Technical Reports Server (NTRS)
Alger, D. L.; Steinberg, R.
1972-01-01
An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy.
Global X-ray Spectral Variation of Eta Carinae through the 2003 X-ray Minimum
NASA Technical Reports Server (NTRS)
Hamaguchi, K.; Corcoran, M. F.; White, N. E.; Gull, T.; Damineli, A.; Davidson, K.
2006-01-01
We report on the results of the X-ray observing campaign of the massive, evolved star Eta Carinae in 2003 around its recent X-ray Minimum, mainly using data from the XMM-Newton observatory. These imaging observations show that the hard X-ray source associated with the Eta Carinae system does not completely disappear in any of the observations during the Minimum. The variation of the spectral shape revealed two emission components. One newly discovered component did not exhibit any variation on kilo-second to year-long timescales, in a combined analysis with earlier ASCA and ROSAT data, and might represent the collision of a high speed outflow from Eta Carinae with ambient gas clouds. The other emission component was strongly variable in flux but the temperature of the hottest plasma did not vary significantly at any orbital phase. Absorption to the hard emission, was about a factor of three larger than the absorption determined from the cutoff of the soft emission, and reached a maximum of approx.4 x 10(exp 23)/sq cm before the Minimum. The thermal Fe\\rm XXV emission line showed significant excesses on both the red and blue sides of the line outside the Minimum and exhibited a large redward excess during the Minimum. This variation in the line profile probably requires an abrupt change in ionization balance in the shocked gas.
Canadian Led X-ray Polarimeter Mission CXP
NASA Technical Reports Server (NTRS)
Kaspi, V.; Hanna, D.; Weisskopf, M.; Ramsey, B.; Ragan, K.; Vachon, B.; Elsner, R.; Heyl, J.; Pavlov, G.; Cumming, A.;
2006-01-01
We propose a Canadian-led X-ray Polarimetry Mission (CXP), to include a scattering X-ray Polarimeter and sensitive All-Sky X-ray Monitor (ASXM). Polarimetry would provide a new observational window on black holes, neutron stars, accretion disks and jets, and the ASXM would offer sensitive monitoring of the volatile X-ray sky. The envisioned polarimeter consists of a hollow scattering beryllium cone surrounded by an annular proportional counter, in a simple and elegant design that is reliable and low-risk. It would be sensitive in the 6-30 keV band to approx. 3% polarization in approx. 30 Galactic sources and 2 AGN in a baseline 1-yr mission, and have sensitivity greater than 10 times that of the previous X-ray polarimeter flown (NASA's OSO-8, 1975-78) for most sources. This X-ray polarimeter would tackle questions like, Do black holes spin?, How do pulsars pulse?, What is the geometry of the magnetic field in accreting neutron stars? Where and how are jets produced in microquasars and AGN?, What are the geometries of many of the most famous accretion-disk systems in the sky? This will be done using a novel and until-now unexploited technique that will greatly broaden the available observational phase space of compact objects by adding to timing and spectroscopy observations of polarization fraction and position angle as a function of energy. The All-Sky X-ray Monitor would scan for transients, both as potential targets for the polarimeter but also as a service to the worldwide astronomical community. The entire CXP mission could be flown for $40- 60M CDN, according to estimates by ComDev International, and could be built entirely in Canada. It would fall well within the CSA's SmallSat envelope and would empower the growing and dynamic Canadian High-Energy Astrophysics community with world leadership in a potentially high impact niche area.
NASA Astrophysics Data System (ADS)
Hui, Chung-Yue
2013-09-01
Here we review the effort of Fermi Asian Network (FAN) in exploring the supernova remnants (SNRs) with state-of-art high energy observatories, including Fermi Gamma-ray Space Telescope and Chandra X-ray Observatory, in the period of 2011- 2012. Utilizing the data from Fermi LAT, we have discovered the GeV emission at the position of the Galactic SNR Kes 17 which provides evidence for the hadronic acceleration. Our study also sheds light on the propagation of cosmic rays from their acceleration site to the intersteller medium. We have also launched an identification campaign of SNR candidates in the Milky Way, in which a new SNR G308.3-1.4 have been uncovered with our Chandra observation. Apart from the remnant, we have also discovered an associated compact object at its center. The multiwavelength properties of this X-ray source suggest it can possibly be the compact binary that survived a supernova explosion.
Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009
NASA Astrophysics Data System (ADS)
Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Buson, S.; Carosi, A.; Chatterjee, A.; Clavero, R.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; González Muñoz, A.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hanabata, Y.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Overkemping, A.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rodriguez Garcia, J.; Saito, T.; Satalecka, K.; Schröder, S.; Schultz, C.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Steinbring, T.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Thaele, J.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Verguilov, V.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Connolly, M. P.; Cui, W.; Dickinson, H. J.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Gillanders, G. H.; Griffin, S.; Grube, J.; Hütten, M.; Hanna, D.; Holder, J.; Humensky, T. B.; Kaaret, P.; Kar, P.; Kelley-Hoskins, N.; Kertzman, M.; Kieda, D.; Krause, M.; Krennrich, F.; Lang, M. J.; Maier, G.; McCann, A.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Brien, S.; Ong, R. A.; Otte, N.; Park, N.; Perkins, J.; Pichel, A.; Pohl, M.; Popkow, A.; Pueschel, E.; Quinn, J.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Rovero, A. C.; Rulten, C.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilcox, P.; Wilhelm, A.; Williams, D. A.; Zitzer, B.; Razzaque, S.; Villata, M.; Raiteri, C. M.; Aller, H. D.; Aller, M. F.; Larionov, V. M.; Arkharov, A. A.; Blinov, D. A.; Efimova, N. V.; Grishina, T. S.; Hagen-Thorn, V. A.; Kopatskaya, E. N.; Larionova, L. V.; Larionova, E. G.; Morozova, D. A.; Troitsky, I. S.; Ligustri, R.; Calcidese, P.; Berdyugin, A.; Kurtanidze, O. M.; Nikolashvili, M. G.; Kimeridze, G. N.; Sigua, L. A.; Kurtanidze, S. O.; Chigladze, R. A.; Chen, W. P.; Koptelova, E.; Sakamoto, T.; Sadun, A. C.; Moody, J. W.; Pace, C.; Pearson, R.; Yatsu, Y.; Mori, Y.; Carraminyana, A.; Carrasco, L.; de la Fuente, E.; Norris, J. P.; Smith, P. S.; Wehrle, A.; Gurwell, M. A.; Zook, A.; Pagani, C.; Perri, M.; Capalbi, M.; Cesarini, A.; Krimm, H. A.; Kovalev, Y. Y.; Kovalev, Yu. A.; Ros, E.; Pushkarev, A. B.; Lister, M. L.; Sokolovsky, K. V.; Kadler, M.; Piner, G.; Lähteenmäki, A.; Tornikoski, M.; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.; Fuhrmann, L.; Zensus, J. A.; Cassaro, P.; Orlati, A.; Maccaferri, G.; Leto, P.; Giroletti, M.; Richards, J. L.; Max-Moerbeck, W.; Readhead, A. C. S.
2017-07-01
Context. We present an extensive study of the BL Lac object Mrk 501 based on a data set collected during the multi-instrument campaign spanning from 2009 March 15 to 2009 August 1, which includes, among other instruments, MAGIC, VERITAS, Whipple 10 m, and Fermi-LAT to cover the γ-ray range from 0.1 GeV to 20 TeV; RXTE and Swift to cover wavelengths from UV tohard X-rays; and GASP-WEBT, which provides coverage of radio and optical wavelengths. Optical polarization measurements were provided for a fraction of the campaign by the Steward and St. Petersburg observatories. We evaluate the variability of the source and interband correlations, the γ-ray flaring activity occurring in May 2009, and interpret the results within two synchrotron self-Compton (SSC) scenarios. Aims: The multiband variability observed during the full campaign is addressed in terms of the fractional variability, and the possible correlations are studied by calculating the discrete correlation function for each pair of energy bands where the significance was evaluated with dedicated Monte Carlo simulations. The space of SSC model parameters is probed following a dedicated grid-scan strategy, allowing for a wide range of models to be tested and offering a study of the degeneracy of model-to-data agreement in the individual model parameters, hence providing a less biased interpretation than the "single-curve SSC model adjustment" typically reported in the literature. Methods: We find an increase in the fractional variability with energy, while no significant interband correlations of flux changes are found on the basis of the acquired data set. The SSC model grid-scan shows that the flaring activity around May 22 cannot be modeled adequately with a one-zone SSC scenario (using an electron energy distribution with two breaks), while it can be suitably described within a two (independent) zone SSC scenario. Here, one zone is responsible for the quiescent emission from the averaged 4.5-month observing period, while the other one, which is spatially separated from the first, dominates the flaring emission occurring at X-rays and very-high-energy (>100 GeV, VHE) γ rays. The flaring activity from May 1, which coincides with a rotation of the electric vector polarization angle (EVPA), cannot be satisfactorily reproduced by either a one-zone or a two-independent-zone SSC model, yet this is partially affected by the lack of strictly simultaneous observations and the presence of large flux changes on sub-hour timescales (detected at VHE γ rays). Results: The higher variability in the VHE emission and lack of correlation with the X-ray emission indicate that, at least during the 4.5-month observing campaign in 2009, the highest energy (and most variable) electrons that are responsible for the VHE γ rays do not make a dominant contribution to the 1 keV emission. Alternatively, there could be a very variable component contributing to the VHE γ-ray emission in addition to that coming from the SSC scenario. The studies with our dedicated SSC grid-scan show that there is some degeneracy in both the one-zone and the two-zone SSC scenarios probed, with several combinations of model parameters yielding a similar model-to-data agreement, and some parameters better constrained than others. The observed γ-ray flaring activity, with the EVPA rotation coincident with the first γ-ray flare, resembles those reported previously for low frequency peaked blazars, hence suggesting that there are many similarities in the flaring mechanisms of blazars with different jet properties.
The 1.5 Ms Observing Campaign on IRAS 13224-3809: X-ray Spectral Analysis I.
NASA Astrophysics Data System (ADS)
Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.
2018-03-01
We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray lightcurve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time scale of kiloseconds. The spectra are well fit with a primary powerlaw continuum, two relativistic-blurred reflection components from the inner accretion disk with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.263 and 0.229 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disk electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe=24^{+3}_{-4}Z_⊙ with ne ≡ 1015 cm-3 to Z_Fe=6.6^{+0.8}_{-2.1}Z_⊙.
The 1.5 Ms observing campaign on IRAS 13224-3809 - I. X-ray spectral analysis
NASA Astrophysics Data System (ADS)
Jiang, J.; Parker, M. L.; Fabian, A. C.; Alston, W. N.; Buisson, D. J. K.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; Gallo, L. C.; García, J. A.; Harrison, F. A.; Lohfink, A. M.; De Marco, B.; Kara, E.; Miller, J. M.; Miniutti, G.; Pinto, C.; Walton, D. J.; Wilkins, D. R.
2018-07-01
We present a detailed spectral analysis of the recent 1.5 Ms XMM-Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224-3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density ne > 1018.7 cm-3 and lowers the iron abundance from Z_Fe = 24^{+3}_{-4} Z_{⊙} with ne ≡ 1015 cm-3 to Z_Fe = 6.6^{+0.8}_{-2.1} Z_{⊙}.
Results from Multiwavelength Workshop for Next Generation Gamma Ray Experiments
NASA Astrophysics Data System (ADS)
Fortson, L.
2002-12-01
The next few years will see the build up of several new gamma-ray detectors both on the ground and in space. By 2006 VERITAS, HESS and MAGIC expect to be operational and GLAST will be in orbit. At the same time, a number of X-ray satellites will be in operation, complementing these new gamma-ray instruments. A better understanding of many high-energy sources can be obtained by making contemporaneous observations with multiple x-ray and gamma-ray instruments. A workshop was recently held at the Adler Planetarium and Astronomy Museum in Chicago to discuss the future of multiwavelength campaigns. The workshop was intended as an opportunity for information exchange within the community to get the best possible science returns from the wealth of data that is expected to come in from the next generation of experiments. By the end of the workshop participants gained a general understanding of the capabilities of the various instruments and their observational strategies. We also came up with a good start on some concrete mechanisms for coordinating gamma-ray observations with ground based and space based observatories at other wavelengths - including X-ray and optical groups. I will report on the results from this workshop in my presentation at the AAS. The workshop was sponsored by the Adler Planetarium and Astronomy Museum.
NASA Astrophysics Data System (ADS)
Kumsiashvili, M. I.; Kochiashvili, N. T.
2000-10-01
Broad-band photometric observations of the black hole candidate Cyg X-1 were carried out in 1975-1998 at the Abastumani Astrophysical Observatory in the framework of coordinated observations, at the varies observatories of the former Soviet Union. All data have been reduced to a homogeneous set.Comparison of the optical and X-ray data clearly shows the existence of several kinds of variability. Analysis of the prolonged photoelectric observations of V 1357 Cyg=Cyg X-1 confirmed long-period optical variation of this X-ray binary system with the period of 294 d revealed by Kemp et al. This periodicity is most strongly pronounced at the orbital period phase when the optical star is in front of the X-ray source. Variations of the mean level of Cyg X-1 and of the light curve form with the phase of the period 294 d agree well with the model of the precessing accretion disk which radiates in the optical range mainly by scattering and processing of the optical star radiation. The direction of the disc precession coincides with that of the orbital motion and it is hard to understand this fact in the models with the forced precession. The triple system model is less probable. There are also observations of this objects made in the Abastumani Observatory in 1982-1988 which are represented the Table and light curves. These observations have not discussed by coordinators. The observations taken in the course of the International campaign "The Optical Monitoring of the Unique Astrophysical Objects" were realized by the observatories located on the territories of Georgia, Russia, Uzbekistan and Ukraine in 1994-1998. They are united in a single set, taking into account the systemic differences between them. Number of usual observations is 2247 in 399 nights in U B V R bands. The observations were performed simultaneously in X-ray band in the energy range of 2-10 keV (ASM/RXTE), and 20-100 keV (BASTE/CGRO), and also with radio observations at the Mullard radio observatory. Our optical data overlapped well the hard band at JD 2451000-040. Both outbursts did not coincide with any optical brightening or double wave orbital light curve changes. From two independent sets strong optical flare at JD 2450988, being a possible precursor of hard X-ray flare have been detected. Intrinsic variations of the system have the chaotic character with flares and dips in time scale of a day and the amplitude of 0.10 m. Fourier spectra show predominating secondary period of 147 d at high probability level, being a half of 294 d period found by Priedhorsky et al. in X-rays, and Kemp et al. in optics. We have identified near-by period of 150 d which predominates modern X-ray light curve. The period found in optics is close to the period of 142.7 d in modern Mullard radio data by Brooksopp et al. The light curve resembles a non-stationary process by the time changes of Fourier spectra. But some spectrum peaks can be stable for several seasons. The cross-correlation analysis confirms the time delay of the trends of the X-ray light curve relative to the optical one by 11.620 days. The weak relation of the short-time variations of X-ray and optical radiation are also found at high probability level with delay 3 days.
NASA Astrophysics Data System (ADS)
Aslam, O. P. M.; Badruddin
2017-09-01
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.
A Hard X-ray View on Two Distant VHE Blazars: 1ES 1101-232 and 1ES 1553+113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimer, A.; Costamente, L.; /Stanford U., HEPL /KIPAC, Menlo Park
2008-05-02
TeV-blazars are known as prominent non-thermal emitters across the entire electromagnetic spectrum with their photon power peaking in the X-ray and TeV-band. If distant, absorption of -ray photons by the extragalactic background light (EBL) alters the intrinsic TeV spectral shape, thereby affecting the overall interpretation. Suzaku observations for two of the more distant TeV-blazars known to date, 1ES 1101-232 and 1ES 1553+113, were carried out in May and July 2006, respectively, including a quasi-simultaneous coverage with the state of the art Cherenkov telescope facilities. We report on the resulting data sets with emphasis on the X-ray band, and set intomore » context to their historical behavior. During our campaign, we did not detect any significant X-ray or {gamma}-ray variability. 1ES 1101-232 was found in a quiescent state with the lowest X-ray flux ever measured. The combined XIS and HXD PIN data for 1ES 1101-232 and 1ES 1553+113 clearly indicate spectral curvature up to the highest hard X-ray data point ({approx} 30 keV), manifesting as softening with increasing energy. We describe this spectral shape by either a broken power law or a log-parabolic fit with equal statistical goodness of fits. The combined 1ES 1553+113 very high energy spectrum (90-500 GeV) did not show any significant changes with respect to earlier observations. The resulting contemporaneous broadband spectral energy distributions of both TeV-blazars are discussed in view of implications for intrinsic blazar parameter values, taking into account the {gamma}-ray absorption in the EBL.« less
Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing
NASA Astrophysics Data System (ADS)
Edelson, R.; Gelbord, J.; Cackett, E.; Connolly, S.; Done, C.; Fausnaugh, M.; Gardner, E.; Gehrels, N.; Goad, M.; Horne, K.; McHardy, I.; Peterson, B. M.; Vaughan, S.; Vestergaard, M.; Breeveld, A.; Barth, A. J.; Bentz, M.; Bottorff, M.; Brandt, W. N.; Crawford, S. M.; Dalla Bontà, E.; Emmanoulopoulos, D.; Evans, P.; Figuera Jaimes, R.; Filippenko, A. V.; Ferland, G.; Grupe, D.; Joner, M.; Kennea, J.; Korista, K. T.; Krimm, H. A.; Kriss, G.; Leonard, D. C.; Mathur, S.; Netzer, H.; Nousek, J.; Page, K.; Romero-Colmenero, E.; Siegel, M.; Starkey, D. A.; Treu, T.; Vogler, H. A.; Winkler, H.; Zheng, W.
2017-05-01
Swift monitoring of NGC 4151 with an ˜6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3-50 keV) and six in the ultraviolet (UV)/optical (1900-5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ˜3-4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by ˜0.5-1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner & Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.
X-Ray Radiography of Gas Turbine Ceramics.
1979-10-20
Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm
2014-02-05
X - ray photoelectron spectroscopy (XPS), Raman spectroscopy , and atomic ...calculate thickness, n and k. X - ray photoelectron spectroscopy (XPS), Raman spectroscopy , and atomic force microscopy (AFM) were all performed on each of the... X - ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to measure and compare the composition of the films.6 In this paper,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bottacini, E.; Schady, P.; Rau, A.
1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV {gamma}-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral componentmore » at X-ray energies is most likely due to synchrotron emission, while at soft {gamma}-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft {gamma}-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q {approx} 1.85, possibly indicating the relevance of second-order Fermi acceleration.« less
Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra
NASA Technical Reports Server (NTRS)
Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.
2014-01-01
We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingold, G., E-mail: gerhard.ingold@psi.ch; Rittmann, J., E-mail: jochen.rittmann@psi.ch; Beaud, P.
The ESB instrument at the SwissFEL ARAMIS hard X-ray free electron laser is designed to perform pump-probe experiments in condensed matter and material science employing photon-in and photon-out techniques. It includes a femtosecond optical laser system to generate a variety of pump beams, a X-ray optical scheme to tailor the X-ray probe beam, shot-to-shot diagnostics to monitor the X-ray intensity and arrival time, and two endstations operated at a single focus position that include multi-purpose sample environments and 2D pixel detectors for data collection.
The X-Ray View of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2007-08-01
X-rays offer ideal access to high-energy phenomena in young, accreting stars. The energy released in magnetic flares has profound effects on the stellar environment. Star-disk magnetic reconnection has been suggested as a possible origin of bipolar jets. Such jets from have been detected at X-ray wavelengths, offering new diagnostics for the energy release and jet shock physics. Finally, eruptive phenomena of FU Ori and EX Lup-type stars have been monitored in X-rays. I will discuss observations and suggest simple models for high-energy eruptive phenomena in young stars.
On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1
NASA Astrophysics Data System (ADS)
Güngör, C.; Ekşi, K. Y.; Göğüş, E.
2017-10-01
We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.
An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P.
Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experimentsmore » are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.« less
Palomäki, Emmi; Ahvenainen, Patrik; Ehlers, Henrik; Svedström, Kirsi; Huotari, Simo; Yliruusi, Jouko
2016-07-11
In this paper we present a fast model system for monitoring the recrystallization of quench-cooled amorphous xylitol using Raman spectroscopy and wide-angle X-ray scattering. The use of these two methods enables comparison between surface and bulk crystallization. Non-ordered mesoporous silica micro-particles were added to the system in order to alter the rate of crystallization of the amorphous xylitol. Raman measurements showed that adding silica to the system increased the rate of surface crystallization, while X-ray measurements showed that the rate of bulk crystallization decreased. Using this model system it is possible to measure fast changes, which occur in minutes or within a few hours. Raman-spectroscopy and wide-angle X-ray scattering were found to be complementary techniques when assessing surface and bulk crystallization of amorphous xylitol. Copyright © 2016 Elsevier B.V. All rights reserved.
Metrology and Alignment of Light Weight Grazing Incidence X-Ray Mirrors
NASA Technical Reports Server (NTRS)
Zhang, William; Content, David; Petre, Robert; Saha, Timo
2000-01-01
Metrology and alignment of light weight X-ray optics have been a challenge for two reasons: (1) that the intrinsic mirror quality and distortions caused by handling can not be easily separated, and (2) the diffraction limits of the visible light become a severe problem at the order of one arc-minute. Traditional methods of using a normal incident pencil or small parallel beam which monitors a tiny fraction of the mirror in question at a given time can not adequately monitor those distortions. We are developing a normal incidence setup that monitors a large fraction, if not the whole, of the mirror at any given time. It will allow us to align thin X-ray mirrors to-an accuracy of a few arc seconds or to a limit dominated by the mirror intrinsic quality.
NASA Astrophysics Data System (ADS)
Dunn, W.; Mori, K.; Hailey, C. J.; Branduardi-Raymont, G.; Grefenstette, B.; Jackman, C. M.; Hord, B. J.; Ray, L. C.
2017-12-01
The Nuclear Spectroscopic Telescope Array (NuSTAR) is the first focusing hard X-ray telescope operating in the 3-79 keV band with sub-arcminute angular resolution (18" FWHM). For the first time, NuSTAR provides sufficient sensitivity to detect/resolve hard X-ray emission from Jupiter above 10 keV, since the in-situ Ulysses observation failed to detect X-ray emission in the 27-48 keV band [Hurley et al. 1993]. The initial, exploratory NuSTAR observation of Jupiter was performed in February 2015 with 100 ksec exposure. NuSTAR detected hard X-ray emission (E > 10 keV) from the south polar region at a marginally significance of 3 sigma level [Mori et al. 2016, AAS meeting poster]. This hard X-ray emission is likely an extension of the non-thermal bremsstrahlung component detected up to 7 keV by XMM-Newton [Branduardi-Raymont et al. 2007]. The Ulysses non-detection suggests there should be a spectral cutoff between 7 and 27 keV. Most intriguingly, the NuSTAR detection of hard X-ray emission from the south aurora is in contrast to the 2003 XMM-Newton observations where soft X-ray emission below 8 keV was seen from both the north and south poles [Gladstone et al. 2002]. Given the marginal, but tantalizing, hard X-ray detection of the southern Jovian aurora, a series of NuSTAR observations with total exposure of nearly half a million seconds were approved in the NuSTAR GO and DDT program. These NuSTAR observations coincided with one Juno apojove (in June 2017) and three perijoves (in May, July and September 2017), also joining the multi-wavelength campaigns of observing Jupiter coordinating with Chandra and XMM-Newton X-ray telescope (below 10 keV) and HST. We will present NuSTAR imaging, spectral and timing analysis of Jupiter. NuSTAR imaging analysis will map hard X-ray emission in comparison with soft X-ray and UV images. In addition to investigating any distinctions between the soft and hard X-ray morphology of the Jovian aurorae, we will probe whether hard X-ray emission is spatially associated with the FUV auroral oval. NuSTAR spectral analysis will measure to how high an energy the non-thermal bremsstrahlung component extends, and detect an expected spectral cutoff between 7 and 27 keV. Since NuSTAR operates in the hard X-ray energy band, it probes the maximum energy of accelerating electrons in the Jovian magnetosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenke, P. A.; Linares, M.; Connaughton, V.
The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky gamma-ray monitor well known in the gamma-ray burst (GRB) community. Although GBM excels in detecting the hard, bright extragalactic GRBs, its sensitivity above 8 keV and its all-sky view make it an excellent instrument for the detection of rare, short-lived Galactic transients. In 2010 March, we initiated a systematic search for transients using GBM data. We conclude this phase of the search by presenting a three-year catalog of 1084 X-ray bursts. Using spectral analysis, location, and spatial distributions we classified the 1084 events into 752 thermonuclear X-ray bursts, 267 transient eventsmore » from accretion flares and X-ray pulses, and 65 untriggered gamma-ray bursts. All thermonuclear bursts have peak blackbody temperatures broadly consistent with photospheric radius expansion (PRE) bursts. We find an average rate of 1.4 PRE bursts per day, integrated over all Galactic bursters within about 10 kpc. These include 33 and 10 bursts from the ultra-compact X-ray binaries 4U 0614+09 and 2S 0918-549, respectively. We discuss these recurrence times and estimate the total mass ejected by PRE bursts in our Galaxy.« less
Studying the transient magnetar 3XMMJ185246.6+003317 close to SNR Kes 79
NASA Astrophysics Data System (ADS)
Murray, Stephen
2014-09-01
We have discovered a new transient AXP just south of SNR Kes 79. It has the longest period among transient AXPs and the second longest period among isolated X-ray NSs. It is also only the third low-B magnetar. We propose two 10 ks ACIS-I observations, separated by about six months, to monitor the activity of the transient AXP, which was in a quiescent state from late 2012 to late 2013 and is expected to have a duty cycle of less than 10%. We plan to use these two observations to start our long-term campaign on the AXP and Kes 79, which will address important questions like the nature of this rare, low-B, transient AXP, its connection with Kes 79, the activity of the central compact object at the center of Kes 79 and the non-thermal and ejecta emission from Kes 79.
X-rays Provide a New Way to Investigate Exploding Stars
NASA Astrophysics Data System (ADS)
2007-05-01
The European Space Agency's X-ray observatory XMM-Newton has revealed a new class of exploding stars - where the X-ray emission 'lives fast and dies young'. The identification of this particular class of explosion gives astronomers a valuable new constraint to help them understand stellar explosions. Exploding stars called novae remain a puzzle to astronomers. "Modelling these outbursts is very difficult," says Wolfgang Pietsch, Max Planck Institut für Extraterrestrische Physik. Now, ESA's XMM-Newton and NASA's Chandra have provided valuable information about when individual novae emit X-rays. Between July 2004 and February 2005, the X-ray observatories watched the heart of the nearby Andromeda Galaxy, known to astronomers as M31. During that time, Pietsch and his colleagues monitored novae, looking for the X-rays. X-ray Image of Andromeda Galaxy (M31) Chandra X-ray Image of Andromeda Galaxy (M31) They detected that eleven out of the 34 novae that had exploded in the galaxy during the previous year were shining X-rays into space. "X-rays are an important window onto novae. They show the atmosphere of the white dwarf," says Pietsch. White dwarfs are hot stellar corpses left behind after the rest of the star has been ejected into space. A typical white dwarf contains about the mass of the Sun, in a spherical volume little bigger than the Earth. It has a strong pull of gravity and, if it is in orbit around a normal star, can rip gas from it. This material builds up on the surface of the white dwarf until it reaches sufficient density to nuclear detonate. The resultant explosion creates a nova. However, these particular events are not strong enough to destroy the underlying white dwarf. The X-ray emission becomes visible some time after the detonation, when the matter ejected by the nova thins out enough to allow astronomers to peer down to the nuclear burning white dwarf atmosphere beneath. At the end of the process, the X-ray emission stops when the fuel is exhausted. The duration of this X-ray emission traces the amount of material left on the white dwarf after the nova explosion. Optical Image of Andromeda Galaxy (M31) Optical Image of Andromeda Galaxy (M31) A well determined start time of the optical nova outburst and the X-ray turn-on and turn-off times are therefore important benchmarks for replication in computer models of novae. Whilst monitoring the M31 novae, frequently over several months, for the appearance and subsequent disappearance of the X-rays, Pietsch made an important discovery. Some novae start to emit X-rays and then turn them off again within just a few months. "These novae are a new class. They would have been overlooked before," says Pietsch. That's because previous surveys looked only every six months or so. Within that time, the fast X-ray novae could have blinked both on and off. In addition to discovering the short-lived ones, the new survey also confirms that other novae generate X-rays over a much longer time. XMM-Newton detected seven novae that were still shining X-rays into space, up to a decade after the original eruption. The differing lengths of times are thought to reflect the masses of the white dwarfs at the heart of the nova explosion. The fastest evolving novae are thought to be those coming from the most massive white dwarfs. To investigate further, the team have been awarded more XMM-Newton and Chandra observing time. They now plan to monitor M31's novae every ten days for several months, starting in November 2007 to glean more information about these puzzling stellar explosions. Notes for editors: X-ray monitoring of optical novae in M31 from July 2004 to February 2005 by W. Pietsch et al. is published in Astronomy and Astrophysics, 465, 375-392 (2007). For more information: Wolfgang Pietsch wnp@mpe.mpg.de Norbert Schartel Norbert.Schartel@sciops.esa.int
Sigma observations of the low mass X-ray binaries of the galactic bulge
NASA Technical Reports Server (NTRS)
Goldwurm, A.; Denis, M.; Paul, J.; Faisse, S.; Roques, J. P.; Bouchet, L.; Vedrenne, G.; Mandrou, P.; Sunyaev, R.; Churazov, E.
1995-01-01
The soft gamma-ray telescope (35-1300 keV) SIGMA aboard the high energy GRANAT space observatory has been monitoring the Galactic Bulge region for more than 2000 h of effective time since March 1990. In the resulting average 35-75 keV image we detected ten sources at a level of greater than 5 standard deviations, 6 of which can be identified with low mass X-ray binaries (LMXB). Among them, one is the 1993 X-ray nova in Ophiuchus (GRS 1726-249), one is an X-ray pulsar (GX 1+4), two are associated with X-ray bursters (GX 354-0 and A 1742-294) and two with bursting X-ray binaries in the globular clusters Terzan 2 and Terzan 1. Their spectral and long term variability behavior as measured by SIGMMA are presented and discussed.
New developments in flash radiography
NASA Astrophysics Data System (ADS)
Mattsson, Arne
2007-01-01
The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.
Development and tests of x-ray multifoil optical system for 1D imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pína, Ladislav; Hudec, René; Inneman, Adolf J.; Baca, Tomas; Blazek, M.; Platkevic, M.; Sieger, Ladislav; Doubravova, Daniela; McEntaffer, Randall L.; Schultz, Ted B.; Dániel, Vladimír.
2016-09-01
The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.
X-ray Weekly Monitoring of the Galactic Center Sgr A* with Suzaku
NASA Astrophysics Data System (ADS)
Maeda, Yoshitomo; Nobukawa, Masayoshi; Hayashi, Takayuki; Iizuka, Ryo; Saitoh, Takayuki; Murakami, Hiroshi
A small gas cloud, G2, is on an orbit almost straight into the supermassive blackhole Sgr A* by spring 2014. This event gives us a rare opportunity to test the mass feeding onto the blackhole by a gas. To catch a possible rise of the mass accretion from the cloud, we have been performing the bi-week monitoring of Sgr A* in autumn and spring in the 2013 fiscal year. The key feature of Suzaku is the high-sensitivity wide-band X-ray spectroscopy all in one observatory. It is characterized by a large effective area combined with low background and good energy resolution, in particular a good line spread function in the low-energy range. Since the desired flare events associated with the G2 approach is a transient event, the large effective area is critical and powerful tools to hunt them. The first monitoring in 2013 autumn was successfully made. The X-rays from Sgr A* and its nearby emission were clearly resolved from the bright transient source AX J1745.6-2901. No very large flare from Sgr A*was found during the monitoring. We also may report the X-ray properties of two serendipitous sources, the neutron star binary AX J1745.6-2901 and a magnetar SGR J1745-29.
NASA Technical Reports Server (NTRS)
Courvoisier, T. J.-L.; Blecha, A.; Bouchet, P.; Bratschi, P.; Carini, M. T.; Donahue, M.; Edelson, R.; Feigelson, E. D.; Filippenko, A. V.; Glass, I. S.
1995-01-01
We present ground-based observations of the BL Lac object PKS 2155-304 during 1991 November. These data were obtained as part of a large international campaign of observations spanning the electro-magnetic spectrum from the radio waves to the X-rays. The data presented here include radio and UBVRI fluxes, as well as optical polarimetry. The U to I data show the same behavior in all bands and that only upper limits to any lag can be deduced from the cross-correlation of the light curves. The spectral slope in the U-I domain remained constant on all epochs but 2. There is no correlation between changes in the spectral slope and large variations in the total or polarized flux. The radio flux variations did not follow the same pattern of variability as the optical and infrared fluxes. The polarized flux varied by a larger factor than the total flux. The variations of the polarized flux are poorly correlated with those of the total flux in the optical (and hence UV domain; see the accompanying paper by Edelson et al.) nor with those of the soft X-rays. We conclude that the variability of PKS 2155-304 in the optical and near-infrared spectral domains are easier to understand in the context of variable geometry or bulk Lorentz factor than of variable electron acceleration and cooling rates.
THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs
Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Stojanovic, Nikola
2018-01-01
FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine’s full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented. PMID:29271749
THz pulse doubler at FLASH: double pulses for pump-probe experiments at X-ray FELs.
Zapolnova, Ekaterina; Golz, Torsten; Pan, Rui; Klose, Karsten; Schreiber, Siegfried; Stojanovic, Nikola
2018-01-01
FLASH, the X-ray free-electron laser in Hamburg, Germany, employs a narrowband high-field accelerator THz source for unique THz pump X-ray probe experiments. However, the large difference in optical paths of the THz and X-ray beamlines prevents utilization of the machine's full potential (e.g. extreme pulse energies in the soft X-ray range). To solve this issue, lasing of double electron bunches, separated by 28 periods of the driving radiofrequency (at 1.3 GHz), timed for the temporal overlap of THz and X-ray pulses at the experimental station has been employed. In order to optimize conditions for a typical THz pump X-ray probe experiment, X-ray lasing of the first bunch to one-sixth of that of the second has been suppressed. Finally, synchronization of THz radiation pulses was measured to be ∼20 fs (r.m.s.), and a solution for monitoring the arrival time for achieving higher temporal resolution is presented.
A coordinated X-ray, optical, and microwave study of the flare star Proxima Centauri
NASA Technical Reports Server (NTRS)
Haisch, B. M.; Linsky, J. L.; Slee, O. B.; Hearn, D. R.; Walker, A. R.; Rydgren, A. E.; Nicolson, G. D.
1978-01-01
Results are reported for a three-day coordinated observing program to monitor the flare star Proxima Centauri in the X-ray, optical, and radio spectrum. During this interval 30 optical flares and 12 possible radio bursts were observed. The SAS 3 X-ray satellite made no X-ray detections. An upper limit of 0.08 on the X-ray/optical luminosity ratio is derived for the brightest optical flare. The most sensitive of the radio telescopes failed to detect 6-cm emission during one major and three minor optical flares, and on this basis an upper limit on the flare radio emission (1 hundred-thousandth of the optimal luminosity) is derived.
A Spectropolarimetric Test of the Structure of the Intrinsic Absorbers in the Quasar HS 1603+3820
NASA Astrophysics Data System (ADS)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari
2010-08-01
We report the results of a spectropolarimetric observation of the C VI "mini-broad" absorption line (mini-BAL) in the quasar HS 1603+3820 (z em = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of δp~ 0.1%, at a resolving power of R ~ 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p ~ 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
Ho, Wynn C. G.; Ng, C. -Y.; Lyne, Andrew G.; ...
2016-09-22
The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here in this paper, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45–50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swiftmore » observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over time-scales as short as 1–2 months. In conclusion, multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.« less
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a crane lowers the MAXI (Monitor of All-sky X-ray Image) onto the Payload Attachment Mechanism on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. It is being installed next to the SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload). The MAXI and SEDA-AP are part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a crane lowers the MAXI (Monitor of All-sky X-ray Image) onto the Payload Attachment Mechanism on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. It is being installed next to the SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload). The MAXI and SEDA-AP are part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
2009-01-08
CAPE CANAVERAL, Fla. -- In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a worker adjusts placement of the MAXI (Monitor of All-sky X-ray Image) on the Payload Attachment Mechanism on the Japanese Experiment Module's Experiment Logistics Module-Exposed Section, or ELM-ES. It is being installed next to the SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload). The MAXI and SEDA-AP are part of space shuttle Endeavour's payload on the STS-127 mission. Using X-ray slit cameras with high sensitivity, the MAXI will continuously monitor astronomical X-ray objects over a broad energy band (0.5 to 30 keV). Endeavour is targeted to launch May 15. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam;
2014-01-01
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chomiuk, Laura; Nelson, Thomas; Mukai, Koji
2014-06-20
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (∼45 eV) and implies that the white dwarf in T Pyx is significantly below themore » Chandrasekhar mass (∼1 M {sub ☉}). The late turn-on time of the super-soft component yields a large nova ejecta mass (≳ 10{sup –5} M {sub ☉}), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ∼1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.« less
Apparatus for monitoring X-ray beam alignment
Steinmeyer, Peter A.
1991-10-08
A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.
The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26
NASA Technical Reports Server (NTRS)
Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.;
2017-01-01
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26
NASA Astrophysics Data System (ADS)
Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; García, Javier; Hailey, C. J.; Harrison, F. A.; Ricci, Claudio; Stern, Daniel; Zhang, W. W.
2017-06-01
The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of {183}-35+51 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of R in = 4-180 R g. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.
The Sun's X-ray Emission During the Recent Solar Minimum
NASA Astrophysics Data System (ADS)
Sylwester, Janusz; Kowalinski, Mirek; Gburek, Szymon; Siarkowski, Marek; Kuzin, Sergey; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.
2010-02-01
The Sun recently underwent a period of a remarkable lack of major activity such as large flares and sunspots, without equal since the advent of the space age a half century ago. A widely used measure of solar activity is the amount of solar soft X-ray emission, but until recently this has been below the threshold of the X-ray-monitoring Geostationary Operational Environmental Satellites (GOES). There is thus an urgent need for more sensitive instrumentation to record solar X-ray emission in this range. Anticipating this need, a highly sensitive spectrophotometer called Solar Photometer in X-rays (SphinX) was included in the solar telescope/spectrometer TESIS instrument package on the third spacecraft in Russia's Complex Orbital Observations Near-Earth of Activity of the Sun (CORONAS-PHOTON) program, launched 30 January 2009 into a near-polar orbit. SphinX measures X-rays in a band similar to the GOES longer-wavelength channel.
Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor
NASA Astrophysics Data System (ADS)
Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.
2014-12-01
We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.
NASA Technical Reports Server (NTRS)
Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.
1992-01-01
The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.
EXTREME ULTRAVIOLET EXPLORER OBSERVATIONS OF HERCULES X-1 OVER A 35 DAY CYCLE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leahy, D. A.; Dupuis, Jean, E-mail: leahy@ucalgary.c
2010-06-01
Observations of Hercules X-1 by the Extreme Ultraviolet Explorer covering most of the 35 day cycle are reported here. This is the only long extreme ultraviolet (EUV) observation of Her X-1. Simultaneous X-ray observations with the Rossi X-ray Timing Explorer All-Sky Monitor (RXTE/ASM) X-ray show that Her X-1 is in an X-ray anomalous low state. The first 4 days are also observed with the RXTE proportional counter array (PCA), which shows that the X-ray properties are nearly the same as for normal low states in Her X-1 with flux reduced by a factor of 2. In contrast, the EUV emissionmore » from Her X-1 is reduced by a factor of {approx}4 compared to normal low states. The twisted-tilted accretion disk responsible for the normal 35 day X-ray cycle can be modified to explain this behavior. An increased disk twist reduces the X-ray illumination of HZ Her by a factor of {approx}2 and of the disk surface by a somewhat larger factor, leading to a larger reduction in EUV flux compared to X-ray flux.« less
Results from the Ariel-5 all-sky X-ray monitor
NASA Technical Reports Server (NTRS)
Holt, S. S.
1975-01-01
A summary of results obtained from the first year of Ariel-5 all-sky monitor operation is presented. Transient source observations, as well as the results of long term studies of Sco X-1, Cyg X-3, and Cyg X-1 are described. By example, the included results are indicative of the temporal effects to which the all-sky monitor remains sensitive as it begins its second year of observation.
Design calculations for NIF convergent ablator experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.
2010-11-01
Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdo, A. A.; Ackermann, M.; Ajello, M.
We report on the {gamma}-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) {gamma}-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index {Gamma} = 1.78 {+-} 0.02 and average photon flux F(> 0.3 GeV) = (7.23 {+-} 0.16) x 10{sup -8} ph cm{sup -2} s{sup -1}. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations inmore » the photon flux (up to a factor {approx}3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in {gamma}-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.« less
X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates
Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...
2016-02-05
A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less
Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelson, R.; Gelbord, J.; Cackett, E.
Swift monitoring of NGC 4151 with an ∼6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3–50 keV) and six in the ultraviolet (UV)/optical (1900–5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ∼3–4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to leadmore » the optical by ∼0.5–1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner and Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.« less
The Chaotic Long-term X-ray Variability of 4U 1705-44
NASA Astrophysics Data System (ADS)
Phillipson, R. A.; Boyd, P. T.; Smale, A. P.
2018-04-01
The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.
New technology and techniques for x-ray mirror calibration at PANTER
NASA Astrophysics Data System (ADS)
Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin
2008-07-01
The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.
NASA Technical Reports Server (NTRS)
Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.; Chen, P. C.
1988-01-01
A solid-state digital camera was developed for obtaining H alpha images of solar flares with 0.1 s time resolution. Beginning in the summer of 1988, this system will be operated in conjunction with SMM's hard X-ray burst spectrometer (HXRBS). Important electron time-of-flight effects that are crucial for determining the flare energy release processes should be detectable with these combined H alpha and hard X-ray observations. Charge-injection device (CID) cameras provide 128 x 128 pixel images simultaneously in the H alpha blue wing, line center, and red wing, or other wavelength of interest. The data recording system employs a microprocessor-controlled, electronic interface between each camera and a digital processor board that encodes the data into a serial bitstream for continuous recording by a standard video cassette recorder. Only a small fraction of the data will be permanently archived through utilization of a direct memory access interface onto a VAX-750 computer. In addition to correlations with hard X-ray data, observations from the high speed H alpha camera will also be correlated and optical and microwave data and data from future MAX 1991 campaigns. Whether the recorded optical flashes are simultaneous with X-ray peaks to within 0.1 s, are delayed by tenths of seconds or are even undetectable, the results will have implications on the validity of both thermal and nonthermal models of hard X-ray production.
NASA Astrophysics Data System (ADS)
Alfonso-Garzón, J.; Fabregat, J.; Reig, P.; Kajava, J. J. E.; Sánchez-Fernández, C.; Townsend, L. J.; Mas-Hesse, J. M.; Crawford, S. M.; Kretschmar, P.; Coe, M. J.
2017-11-01
Context. Multiwavelength monitoring of Be/X-ray binaries is crucial to understand the mechanisms producing their outbursts. H 1145-619 is one of these systems, which has recently displayed X-ray activity. Aims: We investigate the correlation between the optical emission and X-ray activity to predict the occurrence of new X-ray outbursts from the inferred state of the circumstellar disc. Methods: We have performed a multiwavelength study of H 1145-619 from 1973 to 2017 and present here a global analysis of its variability over the last 40 yr. We used optical spectra from the SAAO, SMARTS, and SALT telescopes and optical photometry from the Optical Monitoring Camera (OMC) onboard INTEGRAL and from the All Sky Automated Survey (ASAS). We also used X-ray observations from INTEGRAL/JEM-X, and IBIS to generate the light curves and combined them with Swift/XRT to extract the X-ray spectra. In addition, we compiled archival observations and measurements from the literature to complement these data. Results: Comparing the evolution of the optical continuum emission with the Hα line variability, we identified three different patterns of optical variability: first, global increases and decreases of the optical brightness, observed from 1982 to 1994 and from 2009 to 2017, which can be explained by the dissipation and replenishment of the circumstellar disc; second, superorbital variations with a period of Psuperorb ≈ 590 days, observed in 2002-2009, which seems to be related to the circumstellar disc; and third, optical outbursts, observed in 1998-1999 and 2002-2005, which we interpret as mass ejections from the Be star. We discovered the presence of a retrograde one-armed density wave, which appeared in 2016 and is still present in the circumstellar disc. Conclusions: We carried out the most complete long-term optical study of the Be/X-ray binary H 1145-619 in correlation with its X-ray activity. For the first time, we found the presence of a retrograde density perturbation in the circumstellar disc of a Be/X-ray binary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Said, A. H.; Sinn, H.; Divan, R.
2011-05-01
In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.
NASA Astrophysics Data System (ADS)
Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk
2017-11-01
In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.
Cracking the Conundrum of F-supergiant Coronae
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.
2018-02-01
Chandra X-ray and HST far-ultraviolet (FUV) observations of three early-F supergiants have shed new light on a previous puzzle involving a prominent member of the class: α Persei (HD 20902: F5 Ib). The warm supergiant is a moderately strong, hard coronal (T∼ {10}7 K) X-ray source, but has 10 times weaker “subcoronal” Si IV 1393 Å (T∼ 8× {10}4 K) emissions than early-G supergiants of similar high-energy properties. The α Per X-ray excess was speculatively ascribed to a close-in hyperactive G-dwarf companion, which could have escaped previous notice, lost in the glare of the bright star. However, a subsequent dedicated multi-wavelength imaging campaign failed to find any evidence for a resolved secondary. The origin of the α Per high-energy dichotomy then devolved to (1) an unresolved companion or (2) intrinsic coronal behavior. Exploring the second possibility, the present program has found that early-F supergiants do appear to belong to a distinct coronal class, characterized by elevated X-ray/FUV ratios, although sharing some similarities with Cepheid variables in their transitory X-ray “high states.” Remarkably, the early-F supergiants now are seen to align with the low-activity end of the X-ray/FUV sequence defined by late-type dwarfs, suggesting that the disjoint behavior relative to the G supergiants might be attributed to thinner outer atmospheres on the F types, as in dwarfs, but in this case perhaps caused by a weakened “ionization valve” effect due to overly warm photospheres.
Action at the Horizon: Chandra/EHT Observations of Sgr A*
NASA Astrophysics Data System (ADS)
Neilsen, Joseph
2017-09-01
In April 2017, the Event Horizon Telescope will observe Sgr A* with imaging quality sufficient to resolve the shadow of the black hole, while providing a close-up view of accretion at the horizon. As Sgr A* is a well-known source of X-ray flares, coordinated Chandra/EHT observations offer an incredible opportunity: a chance to observe structures (e.g., hotspots) near the event horizon while tracking their high-energy variability. In anticipation of a follow-up campaign in 2018, we are requesting 4x33 ks Chandra observations of Sgr A* to be coordinated with EHT. This campaign will double our chances of simultaneous flares. We will search for flares and hotspots, provide priors for EHT image reconstruction, and track any activity associated with the closest approach of the massive star S0-2.
Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging
NASA Astrophysics Data System (ADS)
Karagoz, Burcu; Kamburoglu, Kıvanc; Altan, Hakan
2017-07-01
Dental caries in sliced samples are investigated using terahertz pulsed imaging. Frequency domain terahertz response of these structures consistent with X-ray imaging results show the potential of this technique in the detection of early caries.
Did LMC X-3 Undergo a 'Her X-1-like' Anomalous Low State?
NASA Technical Reports Server (NTRS)
Boyd, Patricia t.
2008-01-01
The black hole X-ray binary LMC X-3 has been monitored by the Rossi X-ray Timing Explorer (RXTE) from its launch to the present by the All-Sky Monitor (ASM). This well-sampled light curve is supplemented by frequent pointed observations with the PCA and HEXTE instruments which provide improved sensitivity, time resolution and spectral information. The long-term X-ray luminosity of the system is strongly modulated on timescales of hundreds of days. The mean 2-10 kev X-ray flux varies by a factor of more than 100 during this long-term cycle. This variability has been attributed to the precession of a bright, tilted, and warped accretion disk---the mechanism also invoked to explain the 35-day super-orbital period in the X-ray binary pulsar system Her X-1. The ASM light curve displays a unique episode, starting in December 2003, during which LMC X-3 displayed a very low, nearly constant flux, for about 80 days. This is markedly different from the typical low-flux excursions in LMC X-3, which smoothly evolve toward and then away from a minimum flux on about a 10-day time scale. The character of the long-term variability, as measured by amplitude and characteristic time scale, is not the same after this long low state as it was before. Similar shifts in long-term period and amplitude are seen after the so-called "anomalous low states" in Her X-1, when the 35-day X-ray modulation ceases for an unpredictable length of time. These similar shifts in the long-term amplitude and timescale in the two systems suggests they share a similar mechanism which gives rise to the anomalous low states
MAXI/GSC 7-year Source Catalog
NASA Astrophysics Data System (ADS)
Ueda, Y.; Kawamuro, T.; Hori, T.; Shidatsu, M.; Tanimoto, A.; MAXI Team
2017-10-01
Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been continuously observing the X-ray sky since its launch in 2009. The MAXI survey has achieved the best sensitivity in the 4-10 keV band as an all sky X-ray mission, and is complementary to the ROSAT all sky survey (<2 keV) and hard X-ray (>10 keV) surveys performed with Swift and INTEGRAL. Here we present the latest source catalog of MAXI/Gas Slit Camera (GSC) constructed from the first 7-year data, which is an extension of the 37-month catalog of the high Galactic-latitude sky (Hiroi et al. 2013). We summarize statistical properties of the X-ray sources and results of cross identification with other catalogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Mengnan; Gaowei, Mengjia; Zhou, Tianyi
Diamond X-ray detectors with conducting nitrogen-incorporated ultra-nanocrystalline diamond (N-UNCD) films as electrodes were fabricated to measure X-ray beam flux and position. Structural characterization and functionality tests were performed for these devices. The N-UNCD films grown on unseeded diamond substrates were compared with N-UNCD films grown on a seeded silicon substrate. The feasibility of the N-UNCD films acting as electrodes for X-ray detectors was confirmed by the stable performance in a monochromatic X-ray beam. The fabrication process is able to change the surface status which may influence the signal uniformity under low bias, but this effect can be neglected under fullmore » collection bias.« less
ASM observations of X-ray flares from 4U 0115+63 and ASM 1354-64.
NASA Astrophysics Data System (ADS)
Tsunemi, H.; Kitamoto, S.
The authors report two X-ray flares detected with the All Sky Monitor (ASM) on board the GINGA satellite. One is from the recurrent X-ray pulsar 4U 0115+63 and the other is from the probable recurrent X-ray nova named ASM 1354-64. The maximum intensity for 4U 0115+63 was 180 mCrab and its duration was at least 22 days. Its spectrum was hard and resembled those of X-ray pulsars. The maximum intensity of ASM 1354-64 was 300 mCrab. It faded down below the detection limit at the end of August 1987. Its spectrum was soft and was similar to those of black hole candidates.
Video-based beam position monitoring at CHESS
NASA Astrophysics Data System (ADS)
Revesz, Peter; Pauling, Alan; Krawczyk, Thomas; Kelly, Kevin J.
2012-10-01
CHESS has pioneered the development of X-ray Video Beam Position Monitors (VBPMs). Unlike traditional photoelectron beam position monitors that rely on photoelectrons generated by the fringe edges of the X-ray beam, with VBPMs we collect information from the whole cross-section of the X-ray beam. VBPMs can also give real-time shape/size information. We have developed three types of VBPMs: (1) VBPMs based on helium luminescence from the intense white X-ray beam. In this case the CCD camera is viewing the luminescence from the side. (2) VBPMs based on luminescence of a thin (~50 micron) CVD diamond sheet as the white beam passes through it. The CCD camera is placed outside the beam line vacuum and views the diamond fluorescence through a viewport. (3) Scatter-based VBPMs. In this case the white X-ray beam passes through a thin graphite filter or Be window. The scattered X-rays create an image of the beam's footprint on an X-ray sensitive fluorescent screen using a slit placed outside the beam line vacuum. For all VBPMs we use relatively inexpensive 1.3 Mega-pixel CCD cameras connected via USB to a Windows host for image acquisition and analysis. The VBPM host computers are networked and provide live images of the beam and streams of data about the beam position, profile and intensity to CHESS's signal logging system and to the CHESS operator. The operational use of VBPMs showed great advantage over the traditional BPMs by providing direct visual input for the CHESS operator. The VBPM precision in most cases is on the order of ~0.1 micron. On the down side, the data acquisition frequency (50-1000ms) is inferior to the photoelectron based BPMs. In the future with the use of more expensive fast cameras we will be able create VBPMs working in the few hundreds Hz scale.
Intensive HST, RXTE, and ASCA Monitoring of NGC 3516: Evidence against Thermal Reprocessing
NASA Technical Reports Server (NTRS)
Edelson, Rick; Koratkar, Anuradha; Nandra, Kirpal; Goad, Michael; Peterson, Bradley M.; Collier, Stefan; Krolik, Julian; Malkan, Matthew; Maoz, Dan; OBrien, Paul
2000-01-01
During 1998 April 1316, the bright, strongly variable Seyfert 1 galaxy NGC 3516 was monitored almost continuously with HST for 10.3 hr at ultraviolet wavelengths and 2.8 days at optical wavelengths, and simultaneous RXTE and ASCA monitoring covered the same period. The X-ray fluxes were strongly variable with the soft (0.5-2 keV) X-rays showing stronger variations (approx. 65% peak to peak) than the hard (2-10 keV) X-rays (approx. 50% peak to peak). The optical continuum showed much smaller but still highly significant variations: a slow approx. 2.5% rise followed by a faster approx. 3.5% decline. The short ultraviolet observation did not show significant variability. The soft and hard X-ray light curves were strongly correlated, with no evidence for a significant interband lag. Likewise, the optical continuum bands (3590 and 5510 A) were also strongly correlated, with no measurable lag, to 3(sigma) limits of approx. less than 0.15 day. However, the optical and X-ray light curves showed very different behavior, and no significant correlation or simple relationship could be found. These results appear difficult to reconcile with previous reports of correlations between X-ray and optical variations and of measurable lags within the optical band for some other Seyfert 1 galaxies. These results also present serious problems for "reprocessing" models in which the X-ray source heats a stratified accretion disk, which then reemits in the optical/ultraviolet : the synchronous variations within the optical would suggest that the emitting region is approx. less than 0.3 It-day across, while the lack of correlation between X-ray and optical variations would indicate, in the context of this model, that any reprocessing region must be approx. greater than 1 It-day in size. It may be possible to resolve this conflict by invoking anisotropic emission or special geometry, but the most natural explanation appears to be that the bulk of the optical luminosity is generated by some mechanism other than reprocessing.
Increasing X-Ray Brightness of HBL Source 1ES 1727+650
NASA Astrophysics Data System (ADS)
Kapanadze, Bidzina
2017-02-01
The nearby TeV-detected HBL object 1ES 1727+502 (1Zw 187, z=0.055) has been targeted 111 times by X-ray Telescope (XRT) onboard Swift since 2010 April 2. During this monitoring, the 0.3-10 keV count rate varied by a factor of 17.4 (see http://www.swift.psu.edu/monitoring/source.php?source=QSOB1727+502) and showed a prolonged X-ray flaring activity during 2015 March - 2016 February, revealed mainly via the Target of Opportunity observations performed in the framework of our request of different urgencies (Request Number 6571, 6606, 6717, 6809, 6927, 7322, 7355, 7379, 7390, 7404, 7430, 7441, 7516, 7565; see Kapanadze et al. 2015, Atel #8224, #7342).
Fermi GBM: Highlights from the First Year
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2009-01-01
The Fermi Gamma ray Burst Monitor is an all-sky instrument sensitive to photons from about 8 keV to 40 MeV. I will summarize highlights from the first year, including triggered observations of gamma ray bursts, soft gamma ray repeaters, and terrestrial gamma flashes, and observations in the continuous data of X-ray binaries and accreting X-ray pulsars. GBM provides complementary observations to Swift/BAT, observing many of the same sources, but over a wider energy range.
The MIRAX x-ray astronomy transient mission
NASA Astrophysics Data System (ADS)
Braga, João; Mejía, Jorge
2006-06-01
The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it would be seen by MIRAX are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tivanski, A.V.; Hopkins, R.J.; Tyliszczak, T.
2007-06-21
Carbonaceous particles originating from biomass burning canaccount for a large fraction of organic aerosols in a local environment.Presently, their composition, physical and chemical properties, as wellas their environmental effects are largely unknown. Tar balls, a distincttype of highly spherical carbonaceous biomass burn particles, have beenobserved in a number of field campaigns. The Yosemite AerosolCharacterization Study that took place in summer 2002 occurred during anactive fire season in the western United States; tar balls collectedduring this field campaign are described in this article. Scanningtransmission X-ray microscopy and near-edge X-ray absorption finestructure spectroscopy are used to determine the shape, structure, andsize-dependent chemicalmore » composition of ~;150 individual sphericalparticles ranging in size from 0.15 to 1.2mu m.The elemental compositionof tar balls is ~;55 percent atomic carbon and ~;45 percent atomicoxygen. Oxygen is present primarily as carboxylic carbonyls andoxygen-substituted alkyl (O-alkyl-C) functional groups, followed bymoderate amounts of ketonic carbonyls. The observed chemical composition,density, and carbon functional groups are distinctly different from sootor black carbon and more closely resemble high molecular weight polymerichumic-like substances, which could account for their reported opticalproperties. A detailed examination of the carboxylic carbonyl andO-alkyl-C functional groups as a function of particle size reveals a thinoxygenated interface layer. The high oxygen content, as well as thepresence of water-soluble carboxylic carbonyl groups, could account forthe reported hygroscopic properties of tar balls. The presence of theoxygenated layer is attributed to atmospheric processing of biomass burnparticles.« less
Observational capabilities of solar satellite "Coronas-Photon"
NASA Astrophysics Data System (ADS)
Kotov, Yu.
Coronas-Photon mission is the third satellite of the Russian Coronas program on solar activity observation The main goal of the Coronas-Photon is the study of solar hard electromagnetic radiation in the wide energy range from UV up to high energy gamma-radiation sim 2000MeV Scientific payload for solar radiation observation consists of three type of instruments 1 monitors Natalya-2M Konus-RF RT-2 Penguin-M BRM Phoka Sphin-X Sokol for spectral and timing measurements of full solar disk radiation with timing in flare burst mode up to one msec Instruments Natalya-2M Konus-RF RT-2 will cover the wide energy range of hard X-rays and soft Gamma rays 15keV to 2000MeV and will together constitute the largest area detectors ever used for solar observations Detectors of gamma-ray monitors are based on structured inorganic scintillators with energy resolution sim 5 for nuclear gamma-line band to 35 for GeV-band PSD analysis is used for gamma neutron separation for solar neutron registration T 30MeV Penguin-M has capability to measure linear polarization of hard X-rays using azimuth are measured by Compton scattering asymmetry in case of polarization of an incident flux For X-ray and EUV monitors the scintillation phoswich detectors gas proportional counter CZT assembly and Filter-covered Si-diodes are used 2 Telescope-spectrometer TESIS for imaging solar spectroscopy in X-rays with angular resolution up to 1 in three spectral lines and RT-2 CZT assembly of CZT
Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil
2015-01-01
Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486
NASA Technical Reports Server (NTRS)
2003-01-01
We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.
Time-Resolved SEDs of Blazars Flares
NASA Astrophysics Data System (ADS)
Kreikenbohm, A.; Dorner, D.; Kadler, M.; Beuchert, T.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Mannheim, K.; Wilms, J.
2017-10-01
The origin of very-high-energy gamma rays in active galactic nuclei is still under debate. While snapshots of spectral energy distributions (SEDs) can usually be explained with simple competing models, the true emission mechanisms may be revealed from dynamic SED studies during exceptional source states. Based on the FACT monitoring program, we have set up a multiwavelength target-of-opportunity program which allows us to measure time-resolved SEDs during blazar flares. While the FACT and Fermi measurements cover the high energy peak continuously, X-ray observations with INTEGRAL and XMM-Newton are triggered in case of a bright flare. To distinguish orphan flares from time lags between the energy bands, this is combined with an X-ray monitoring with the Swift satellite. In December 2015, observations of the X-ray telescopes Swift and INTEGRAL were triggered during a moderately-high flux state of the TeV blazar Mrk 421. Pre- and post observations in X-rays are available from Swift-XRT. In this presentation, the results from the Mrk 421 ToO observations will be summarized.
Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925
NASA Technical Reports Server (NTRS)
Sakamoto, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.;
2010-01-01
We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in the region of GRB 050925. This short Swift burst is a candidate for a newly discovered soft gamma-ray repeater (SGR) with the following observational burst properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration, and 3) a blackbody rather than a simple power-law spectral shape (with a significance level of 97%). We found two possible X-ray counterparts of GRB 050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray sources show the transient behavior with a power-law decay index shallower than -1. We found no hard X-ray emission nor any additional burst from the location of GRB 050925 in approximately 5 Ms of INTEGRAL data. We discuss about the three BATSE short bursts which might be associated with GRB 050925, based on their location and the duration. Assuming GRB 050925 is associated with the H(sub II), regions (W 58) at the galactic longitude of 1=70 deg, we also discuss the source frame properties of GRB 050925.
An X-ray beam position monitor based on the photoluminescence of helium gas
NASA Astrophysics Data System (ADS)
Revesz, Peter; White, Jeffrey A.
2005-03-01
A new method for white beam position monitoring for both bend magnet and wiggler synchrotron X-ray radiation has been developed. This method utilizes visible light luminescence generated as a result of ionization by the intense X-ray flux. In video beam position monitors (VBPMs), the luminescence of helium gas at atmospheric pressure is observed through a view port using a CCD camera next to the beam line. The beam position, profile, integrated intensity and FWHM are calculated from the distribution of luminescence intensity in each captured image by custom software. Misalignment of upstream apertures changes the image profile making VBPMs helpful for initial alignment of upstream beam line components. VBPMs can thus provide more information about the X-ray beam than most beam position monitors (BPMs). A beam position calibration procedure, employing a tilted plane-parallel glass plate placed in front of the camera lens, has also been developed. The accuracy of the VBPM system was measured during a bench-top experiment to be better than 1 μm. The He-luminescence-based VBPM system has been operative on three CHESS beam lines (F hard-bend and wiggler, A-line wiggler and G-line wiggler) for about a year. The beam positions are converted to analog voltages and used as feedback signals for beam stabilization. In our paper we discuss details of VBPM construction and describe further results of its performance.
Gravitational wave discovery and characterization of the binary neutron star inspiral GW170817
NASA Astrophysics Data System (ADS)
Littenberg, Tyson; LIGO Scientific Collaboration and Virgo Collaboration
2018-01-01
On August 17, 2017 the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a binary neutron star inspiral. The source, GW170817, was the closest, loudest, and best localized gravitational-wave observation to date and was part of the spectacular multi-messenger observing campaign including the associated gamma-ray burst, a transient counterpart discovered in the optical, and late-time X-ray and radio emission. This talk will overview the discovery of GW170817 and what has been learned about the source from the gravitational-wave observations.
Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru
2016-01-01
UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.
Status Of The Swift Burst Alert Telescope Hard X-ray Transient Monitor
NASA Astrophysics Data System (ADS)
Krimm, Hans A.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J.; Fenimore, E.; Gehrels, N.; Markwardt, C. B.; Palmer, D.; Sakamoto, T.; Skinner, G. K.; Stamatikos, M.; Tueller, J.
2010-01-01
The Swift Burst Alert Telescope hard X-ray transient monitor has been operating since October 1, 2006. More than 700 sources are tracked on a daily basis and light curves are produced and made available to the public on two time scales: a single Swift pointing (approximately 20 minutes) and the weighted average for each day. Of the monitored sources, approximately 33 are detected daily and another 100 have had one or more outburst during the Swift mission. The monitor is also sensitive to the detection of previously undiscovered sources and we have reported the discovery of four galactic sources and one source in the Large Magellanic Cloud. Follow-up target of opportunity observations with Swift and the Rossi X-Ray Timing Explorer have revealed that three of these new sources are pulsars and two are black hole candidates. In addition, the monitor has led to the announcement of significant outbursts from 24 different galactic and extra-galactic sources, many of which have had follow-up Swift XRT, UVOT and ground based multi-wavelength observations. The transient monitor web pages currently receive an average of 21 visits per day. We will report on the most important results from the transient monitor and also on detection and exposure statistics and outline recent and planned improvements to the monitor. The transient monitor web page is http://swift.gsfc.nasa.gov/docs/swift/results/transients/.
A Long Decay of X-Ray Flux and Spectral Evolution in the Supersoft Active Galactic Nucleus GSN 069
NASA Astrophysics Data System (ADS)
Shu, X. W.; Wang, S. S.; Dou, L. M.; Jiang, N.; Wang, J. X.; Wang, T. G.
2018-04-01
GSN 069 is an optically identified very low-mass active galactic nuclei (AGN) that shows supersoft X-ray emission. The source is known to exhibit a huge X-ray outburst, with flux increased by more than a factor of ∼240 compared to the quiescence state. We report its long-term evolution in the X-ray flux and spectral variations over a timescale of ∼decade, using both new and archival X-ray observations from the XMM-Newton and Swift. The new Swift observations detected the source in its lowest level of X-ray activity since the outburst, a factor of ∼4 lower in the 0.2–2 keV flux than that obtained with the XMM-Newton observations nearly eight years ago. Combining with the historical X-ray measurements, we find that the X-ray flux is decreasing slowly. There seemed to be spectral softening associated with the drop of X-ray flux. In addition, we find evidence for the presence of a weak, variable, hard X-ray component, in addition to the dominant thermal blackbody emission reported before. The long decay of X-ray flux and spectral evolution, as well as the supersoft X-ray spectra, suggest that the source could be a tidal disruption event (TDE), though a highly variable AGN cannot be fully ruled out. Further continued X-ray monitoring would be required to test the TDE interpretation, by better determining the flux evolution in the decay phase.
Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barty, Christopher P. J.
Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less
DTRA National Ignition Facility (NIF)
2009-01-16
might provide a capability closer to that of UGT ‟s, particularly in the 15-100 keV X-ray band. We conclude that DRTA should monitor developments in...presently be tested. This is because, since the cessation of underground tests ( UGT ‟s), available facilities cannot produce X-ray environments of...provide a capability closer to that of UGT ‟s, particularly in the 15-100 keV X-ray band. However, source characteristics, including the level of
NASA Astrophysics Data System (ADS)
Graves, Mark; Smith, Alexander; Batchelor, Bruce G.; Palmer, Stephen C.
1994-10-01
In the food industry there is an ever increasing need to control and monitor food quality. In recent years fully automated x-ray inspection systems have been used to detect food on-line for foreign body contamination. These systems involve a complex integration of x- ray imaging components with state of the art high speed image processing. The quality of the x-ray image obtained by such systems is very poor compared with images obtained from other inspection processes, this makes reliable detection of very small, low contrast defects extremely difficult. It is therefore extremely important to optimize the x-ray imaging components to give the very best image possible. In this paper we present a method of analyzing the x-ray imaging system in order to consider the contrast obtained when viewing small defects.
X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213
NASA Astrophysics Data System (ADS)
Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.
2018-02-01
PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.
Combining X-ray and neutron crystallography with spectroscopy.
Kwon, Hanna; Smith, Oliver; Raven, Emma Lloyd; Moody, Peter C E
2017-02-01
X-ray protein crystallography has, through the determination of the three-dimensional structures of enzymes and their complexes, been essential to the understanding of biological chemistry. However, as X-rays are scattered by electrons, the technique has difficulty locating the presence and position of H atoms (and cannot locate H + ions), knowledge of which is often crucially important for the understanding of enzyme mechanism. Furthermore, X-ray irradiation, through photoelectronic effects, will perturb the redox state in the crystal. By using single-crystal spectrophotometry, reactions taking place in the crystal can be monitored, either to trap intermediates or follow photoreduction during X-ray data collection. By using neutron crystallography, the positions of H atoms can be located, as it is the nuclei rather than the electrons that scatter neutrons, and the scattering length is not determined by the atomic number. Combining the two techniques allows much greater insight into both reaction mechanism and X-ray-induced photoreduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Cheolwoong; Kang, Huixiao; De Andrade, Vincent
2017-03-21
The electrode of Li-ion batteries is required to be chemically and mechanically stable in the electrolyte environment forin situmonitoring by transmission X-ray microscopy (TXM). Evidence has shown that continuous irradiation has an impact on the microstructure and the electrochemical performance of the electrode. To identify the root cause of the radiation damage, a wire-shaped electrode is soaked in an electrolyte in a quartz capillary and monitored using TXM under hard X-ray illumination. The results show that expansion of the carbon–binder matrix by the accumulated X-ray dose is the key factor of radiation damage. Forin situTXM tomography, intermittent X-ray exposure duringmore » image capturing can be used to avoid the morphology change caused by radiation damage on the carbon–binder matrix.« less
NASA Astrophysics Data System (ADS)
Winters, V. R.; Brezinsek, S.; Effenberg, F.; Rasinski, M.; Schmitz, O.; Stephey, L.; Biedermann, C.; Dhard, C. P.; Frerichs, H.; Harris, J.; Krychowiak, M.; König, R.; Pedersen, T. Sunn; Wurden, G. A.; the W7-X Team
2017-12-01
The first operational campaign of Wendelstein 7-X (W7-X) provided an excellent environment for the study of plasma-surface interaction (PSI) in a stellarator. In situ spectroscopic analysis via a combined visible/infrared camera system and a filterscope system revealed that the primary erosion zone was correlated with the high heat flux regions on the limiter. This analysis matched to where the erosion zone was found in the post-mortem analysis, which was done with scanning electron microscopy/focused ion beam/electron dispersive x-ray spectroscopy imaging. Additionally, a region of prompt deposition was found to the inside of these high heat flux zones. A region of far scrape-off layer (SOL) deposition was found at the edges of the limiter tiles. All deposition regions were identified by their homogeneous, increased oxygen content compared to the pure carbon makeup of the limiters. Poloidal variation of the impinging heat flux follow the imprint of the 3D SOL flux tubes. In how far this reflects in the PSI will require further analysis and modeling.
A Search for the Location of the Gamma-ray Flares
NASA Technical Reports Server (NTRS)
Weisskopf, Martin
2012-01-01
Subsequent to announcements by the AGILE and by the Fermi-LAT teams of the discovery of gamma-ray flares from the Crab Nebula in the fall of 2010, an international collaboration has been monitoring X-Ray emission from the Crab on a regular basis using the Chandra X-Ray Observatory. Observations occurred typically once per month when viewing constraints allow. A notable exception occurred in 2011 April, when we triggered a set of Chandra Target-of-Opportunity observations in conjunction with the brightest -ray flare yet observed. The aim of the program is to characterize in depth the X-Ray variations within the Nebula, and, if possible, to much more precisely locate the origin of the -ray flares. We briefly summarize the April X-ray observations and the information we have gleaned to date.
C+C Fusion Cross Sections Measurements for Nuclear Astrophysics
Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.; ...
2015-06-02
Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.
C+C Fusion Cross Sections Measurements for Nuclear Astrophysics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almaraz-Calderon, S.; Carnelli, P. F. F.; Rehm, K. E.
Total fusion cross section of carbon isotopes were obtained using the newly developed MUSIC detector. MUSIC is a highly efficient, active target-detector system designed to measure fusion excitation functions with radioactive beams. The present measurements are relevant for understanding x-ray superbursts. The results of the first MUSIC campaign as well as the astrophysical implications are presented in this work.
Long-Term Properties of Accretion Discs in X-ray Binaries. 1; The Variable Third Period in SMC X-1
NASA Technical Reports Server (NTRS)
Charles, P. A.; Clarkson, W. I.; Coe, M. J.; Laycock, S.; Tout, M.; Wilson, C.; Six, N. Frank (Technical Monitor)
2002-01-01
Long term X-ray monitoring data from the RXTE All Sky Monitor (ASM) reveal that the third (superorbital) period in SMC X-1 is not constant but varies between 40-60 days. A dynamic power spectrum analysis indicates that the third period has been present continuously throughout the five years of ASM observations. This period changed smoothly from 60 days to 45 days and then returned to its former value, on a timescale of approximately 1600 days. During the nearly 4 years of overlap between the CGRO & RXTE missions, the simultaneous BATSE hard X-ray data confirm this variation in SMC X-1. Sources of systematic error and possible artefacts are investigated and found to be incapable of reproducing the results reported here. Our disco cry of such an instability in the superorbital period of SMC X-1 is interpreted in the context of recent theoretical studies of warped, precessing accretion discs. We find that the behaviour of SMC X-1 is consistent with a radiation - driven warping model.
High level tritiated water monitoring by Bremsstrahlung counting using a silicon drift detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niemes, S.; Sturm, M.; Michling, R.
2015-03-15
The β-ray induced X-ray spectrometry (BIXS) is a promising technique to monitor the tritium concentration in a fuel cycle of a fusion reactor. For in-situ measurements of high level tritiated water by Bremsstrahlung counting, the characteristics of a low-noise silicon drift detector (SDD) have been examined at the Tritium Laboratory Karlsruhe (TLK). In static measurements with constant sample volume and tritium concentration, the Bremsstrahlung spectra of tritiated water samples in a concentration range of 0.02 to 15 MBq/ml have been obtained. The volume has been kept constant at 5 cm{sup 3}. The observed spectra are well above the noise threshold.more » In addition to X-rays induced by β-rays, the spectra feature X-ray fluorescence peaks of the surrounding materials. No indications of memory effects have been observed. A linear relation between the X-ray intensity and the tritium concentration was obtained and the lower detection limit of the setup has been determined to 1 MBq ml{sup -1}, assessed by the Curie criterion. In addition, the spectra obtained experimentally could be reproduced with high agreement by Monte-Carlo simulations using the GEANT4-tool-kit. It was found that the present detection system is applicable to non-invasive measurements of high-level tritiated water and the SDD is a convenient tool to detect the low energy Bremsstrahlung X-rays. (authors)« less
Interpretation of symmetry experiments on Omega
NASA Astrophysics Data System (ADS)
Lours, Laurence; Bastian, Josiane; Monteil, Marie-Christine; Philippe, Franck; Jadaud, Jean-Paul
2006-10-01
The interpretation of the symmetry experiments performed on Omega in 2005 with 3 cone LMJ-like irradiation is presented here. The goal of this campaign was the characterization of the irradiation symmetry by X-ray imaging of the D2Ar capsule. Images of backlit implosion (as done in earlier campaigns with foam balls) and core emission were obtained on the same shot, and can be compared to FCI2 simulations. This set of shots comfirms former results with foam balls of a good symmetry control with 3 cones in empty hohlraums. The influence of the hohlraum shape on symmetry is also studied by comparison of cylindrical hohlraums vs rugby ones.
Optically stimulated luminescence in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass
NASA Astrophysics Data System (ADS)
Nanto, H.; Nakagawa, R.; Takei, Y.; Hirasawa, K.; Miyamoto, Y.; Masai, H.; Kurobori, T.; Yanagida, T.; Fujimoto, Y.
2015-06-01
An intense optically stimulated luminescence (OSL) was observed, for the first time, in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass. It was found that the peak wavelength of OSL emission spectrum and its stimulation spectrum is about 400 nm and 600 nm, respectively. The OSL intensity is depended on the SnO contents (x=0.05-1.5) and the most intense OSL was observed in 1.0 mol% SnO doped glass. It was found that the OSL intensity is increased with increasing x-ray absorbed dose. Fairly good fading characteristics were observed in the x-ray irradiated glass, showing that this glass is useful as a candidate for OSL sensor materials for ionizing radiation monitoring.
Low back pain media campaign: no effect on sickness behaviour.
Werner, Erik L; Ihlebaek, Camilla; Laerum, Even; Wormgoor, Marjon E A; Indahl, Aage
2008-05-01
To evaluate the effect of a media campaign on popular beliefs about LBP, and eventual changes in sick leave, imaging examinations, and surgery. Quasi-experimental telephone survey of 1500 randomly chosen people before, during, and after a media campaign in two Norwegian counties, with residents of an adjacent county as the control group. Data on sickness absence, surgery rates for disc herniation and imaging examinations on LBP in the area were collected at the same intervals. The campaign led to a small but statistically significant shift in beliefs about LBP in the general public. In particular, beliefs about the use of X-rays, and the importance of remaining active and at work, seemed to have changed in response to the campaign messages. However, this change in attitude and understanding of the condition did not lead to any corresponding change in sickness behaviour. Although the media campaign seemed to somewhat improve beliefs about LBP in the general public, the magnitude of this was too small to produce any significant change in behaviour. A media campaign on LBP should not be limited to small areas and low-budget. A much larger investment is needed for a media campaign to have sufficient impact on public's beliefs on LBP to lead to altered sickness behaviour.
Status and expected perfomance of the MAXI mission for the JEM/ISS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, J.; Kawai, N.
2008-12-24
MAXI (Monitor of All-sky X-ray Image) is the first payload to be attached on JEM-EF (Kibo exposed facility) of ISS. It provides an all sky X-ray image every ISS orbit. Only with a few weeks scan, MAXI is expected to make a milli-Crab X-ray all sky map excluding bright region around the sun. Thus, MAXI does not only inform X-ray novae and transients rapidly to world astronomers if once they occur, but also observes long-term variability of Galact ic and extra-Galactic X-ray sources. MAXI also provides an X-ray source catalogue at that time with diffuse cosmic X-ray background. MAXI consistsmore » of two kinds of detectors, position sensitive gas-proportional counters for 2-30 keV X-rays and CCD cameras for 0.5-10 keV X-rays. All instruments of MAXI are now in final phase of pre-launching tests of their flight modules. We are also carrying out performance tests for X-ray detectors and collimators. Data processing and analysis software including alert system on ground are being developed by mission team. In this paper we report an overview of final instruments of MAXI and capability of MAXI.« less
NASA Astrophysics Data System (ADS)
Dennerl, K.
2017-10-01
While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.
Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-08-01
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
Hard X-ray mirrors for Nuclear Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Descalle, M. A.; Brejnholt, N.; Hill, R.
Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally, we conducted the first demonstration that reflective multilayer mirrors could be used as diagnostic for HED experiment with an order of magnitude improvement in signal-to-noise ratio for the multilayer optic compared a transmission crystal spectrometer.« less
Advanced X-Ray Timing Array Mission: Conceptual Spacecraft Design Study
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Johnson, L.; Thomas, H. D.; Wilson-Hodge, C. A.; Baysinger, M.; Maples, C. D.; Fabisinski, L.L.; Hornsby, L.; Thompson, K. S.; Miernik, J. H.
2011-01-01
The Advanced X-Ray Timing Array (AXTAR) is a mission concept for submillisecond timing of bright galactic x-ray sources. The two science instruments are the Large Area Timing Array (LATA) (a collimated instrument with 2-50-keV coverage and over 3 square meters of effective area) and a Sky Monitor (SM), which acts as a trigger for pointed observations of x-ray transients. The spacecraft conceptual design team developed two spacecraft concepts that will enable the AXTAR mission: A minimal configuration to be launched on a Taurus II and a larger configuration to be launched on a Falcon 9 or similar vehicle.
XMM-Newton reveals a Seyfert-like X-ray spectrum in the z = 3.6 QSO B1422+231
NASA Astrophysics Data System (ADS)
Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; De Marco, B.; Chartas, G.; Giustini, M.
2016-08-01
Context. Matter flows from the central regions of quasi-stellar objects (QSOs) during their active phases are probably responsible for the properties of the super-massive black holes and those of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts, when QSO activity is at its peak. Aims: We aim to use X-ray data to probe the matter inflow at the very center of a QSO at z = 3.62. While complex absorption, the iron K emission line, reflection hump, and high-energy cutoff are known to be almost ubiquitous in nearby active galactic nuclei (AGN), only a few distant objects are known to exhibit some of them. Methods: The few high-quality spectra of distant QSO were collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability and/or microlensing. To avoid such problems, we decided to collect a single-epoch and high-quality X-ray spectrum of a distant AGN. We thus picked up the z = 3.62 QSO B1422+231, whose flux, enhanced by gravitationally lensing, is proven to be among the brightest lensed QSOs in X-rays (F2-10 keV ~ 10-12 erg s-1 cm-2). Results: The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is clearly detected (NH ~ 5 × 1021 cm-2 at the redshift of the source), while a strong absorption edge is measured at E ~ 7.5 keV with an optical depth of τ ~ 0.14. We also find hints of the FeKα line in emission at E ~ 6.4 keV line (EW ≲ 70 eV), and a hump is detected in the E ~ 15 - 20 keV energy band (rest frame) in excess of what is predicted by a simple absorbed power-law. Conclusions: The spectrum can best be modeled with two rather complex models; one assumes ionized and partially covering matter along the line of sight, the other is characterized by a reflection component. We argue that reflection seems more plausible here on a statistical basis. In this scenario, the primary emission of B1422+231 is most probably dominated by the thermal Comptonization of UV seed photons in a corona with kT ~ 40 keV. We also detected a reflection component with relative direct-to-reflect normalization r ~ 1. These findings confirm that gravitational lensing is suitable for obtaining good-quality X-ray spectral information of QSOs at high-z, moreover, they support the idea that the same general picture characterizing AGN in the nearby Universe is also valid at high redshift.
First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...
2014-12-09
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on its gamma-ray spectral properties, it was identified as a potential very high energy (VHE; E> 100 GeV) gamma-ray emitter. We investigate whether this object is aVHE emitter, characterize its gamma-ray spectrum, and study the broadband emission within the one-zone synchrotron self-Compton (SSC) scenario, which is commonly used to describe the emission in blazars. Moreover, we also intend to determine the redshift of this object, which is a crucial parameter for its scientific interpretation. Here, the source was observedmore » with MAGIC first in 2009 and later in 2010 within a multi-instrument observation campaign. The MAGIC observations yielded 14.8 h of good quality stereoscopic data. Besides MAGIC, the campaign involved, observations with Fermi-LAT, Swift-XRT/UVOT, the optical telescopes KVA, Goddard Robotic Telescope, Galaxy View observatory, Crimean Astrophysical observatory, St. Petersburg observatory, and the Owens Valley Radio Observatory. The object was monitored at radio, optical and gamma-ray energies during the years 2010 and 2011. We characterize the radio to VHE spectral energy distribution and quantify the multiband variability and correlations over short (few days) and long (many months) timescales. We also organized deep imaging optical observations with the Nordic Optical Telescope in 2013 to determine the source redshift. As a result, the source, named MAGIC J2001+439, is detected for the first time at VHE with MAGIC at a statistical significance of 6.3σ (E > 70 GeV) during a 1.3 h long observation on 2010 July 16. The multi-instrument observations show variability in all energy bands with the highest amplitude of variability in the X-ray and VHE bands. Besides the variability on few-day timescales, the long-term monitoring of MAGIC J2001+439 shows that, the gamma-ray, optical, and radio emissions gradually decreased on few-month timescales from 2010 through 2011, indicating that at least some of the radio, optical and gamma-ray emission is produced in a single region by the same population of particles. We also determine for the first time the redshift of this BL Lac object through the measurement of its host galaxy during low blazar activity. Using the observational evidence that the luminosities of BL Lac host galaxies are confined to a relatively narrow range, we obtain z = 0.18 ± 0.04. In addition, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide an independent redshift estimation, z = 0.17 ± 0.10. Finally, using the former (more accurate) redshift value, we adequately describe the broadband emission with a one-zone SSC model for different activity states and interpret the few-day timescale variability as produced by changes in the high-energy component of the electron energy distribution.« less
All-Sky Earth Occultation Observations with the Fermi Gamma Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, C. A.; Beklen, E.; Bhat, P. N.; Briggs, M.; Camero-Arranz, A.; Case, G.; Chaplin, V.; Cherry, M.; Connaughton, V.; Finger, M.;
2010-01-01
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique. Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors and spanning 150 keV to 40 MeV for the GBM BGO detectors. Our preliminary catalog consists of galactic X-ray binaries, the Crab Nebula, and active galactic nuclei. New sources are added to our catalog as they become active or upon request. In addition to Earth occultations, we have observed numerous occultations with Fermi's solar panels. We will present early results. Regularly updated results will be found on our website http://gammaray.nsstc.nasa.gov/gbm/science/occultation.
Spectroscopic monitoring of V1357 Cyg = Cyg X-1 in 2002-2004
NASA Astrophysics Data System (ADS)
Karitskaya, E. A.; Bochkarev, N. G.; Bondar', A. V.; Galazutdinov, G. A.; Lee, B.-C.; Musaev, F. A.; Sapar, A. A.; Shimanskii, V. V.
2008-05-01
We discuss the results of optical spectroscopic monitoring of Cyg X-1 = HDE 226868/V1357 Cyg in 2002-2004. Our spectroscopy was carried out at the Terskol Observatory (Kabarda-Balkaria, Russia; the resolving power was R = 45 000 and 13 000) and at the Bohyunsan Optical Astronomy Observatory (BOAO, Korea, R = 30 000 and 44 000). Each spectrum covers most of the optical range. We obtained a total of 75 echelle spectra on 33 nights, during both “soft” and “hard” X-ray states of Cyg X-1. We study the influence of the X-rays on spectral-line profiles using RXTE/ASM X-ray data. We find that the X-ray flare of June 13, 2003 resulted in strong variations of the emission profiles of the Hα and Hellλ4686 Å lines within a night. This behavior is due to variations of the ionization state of the gas in the system. We also analyzed line-profile variations with orbital phase. A spectral atlas of Cyg X-1 was created, and the lines it contains identified. A total of 172 stellar lines and blends belonging to 12 chemical elements (H, He, C, N, O, Ne, Mg, Al, Si, S, Fe, Zn) were identified. The spectral classification of HDE 226868 as an ON star is confirmed.
Chandra Observations of M31 and their Implications for its ISM
NASA Technical Reports Server (NTRS)
Primini, F.; Garcia, M.; Murray, S.; Forman, W.; Jones, C.; McClintock, J.
2000-01-01
As part of the Chandra X-ray Observatory's Survey/Monitoring Program of M31, we have been regularly observing the bulge amd inner disk of M31 for nearly 1 year, using both the HRC and ACIS Instruments. We present results from our program th it are of interest to the study of the ISM in M31. In particular, spectral analysis of bright, unresolved x-ray sources in the bulge reveals the presence of significant local x-ray extinction (N(sub H) is about 2 x 10(exp 21)/square cm), and we will attempt to map out this extinction, Further, we find that diffuse emission accounts for a significant fraction of the overall x-ray flux from the bulge. Finally, our search for x-ray counterparts to supernova remnants in M31 yields surprisingly few candidates.
The chaotic long-term X-ray variability of 4U 1705-44
NASA Astrophysics Data System (ADS)
Phillipson, R. A.; Boyd, P. T.; Smale, A. P.
2018-07-01
The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a time-scale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from 1995 December through 2014 May. The combined ASM-MAXI data provide a continuous time series over 50 times the length of the time-scale of interest. Topological analysis can help us identify `fingerprints' in the phase space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled non-linear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.
Wedding, J L; Harris, H H; Bader, C A; Plush, S E; Mak, R; Massi, M; Brooks, D A; Lai, B; Vogt, S; Werrett, M V; Simpson, P V; Skelton, B W; Stagni, S
2017-04-19
Optical epifluorescence microscopy was used in conjunction with X-ray fluorescence imaging to monitor the stability and intracellular distribution of the luminescent rhenium(i) complex fac-[Re(CO) 3 (phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence imaging techniques. X-ray fluorescence also showed that the rhenium complex disrupted the homeostasis of some biologically relevant elements, such as chlorine, potassium and zinc.
Probing the gravitational Faraday rotation using quasar X-ray microlensing.
Chen, Bin
2015-11-17
The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.
Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2014-01-01
Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.
Swift/BAT and MAXI/GSC monitoring indicate a new outburst of black hole transient H 1743-322
NASA Astrophysics Data System (ADS)
Zhang, Hui; Yu, Wenfei; Lin, Jie; Zhang, Wenda; Yan, Zhen
2015-06-01
Swift/BAT and MAXI/GSC monitoring in the X-rays show that the black hole binary transient H 1743-322 has started a new outburst. The Swift/BAT X-ray intensity increased from 0.007+/-0.003 counts/s/cm^2 (0.029+/-0.012 Crab) on MJD 57177 to 0.024+/-0.002 counts/s/cm^2 (0.105+/-0.007 Crab) on MJD 57181 in 15-50 keV.
Detector sustainability improvements at LCLS
NASA Astrophysics Data System (ADS)
Browne, Michael C.; Carini, Gabriella; DePonte, Daniel P.; Galtier, Eric C.; Hart, Philip A.; Koralek, J. D.; Mitra, Ankush; Nakahara, Kazutaka
2017-06-01
The Linac Coherent Light Source (LCLS) poses a number of daunting and often unusual challenges to maintaining X-ray detectors, such as proximity to liquid-sample injectors, complex setups with moving components, intense X-ray and optical laser light, and Electromagnetic Pulse (EMP). The Detector and Sample Environment departments at LCLS are developing an array of engineering, monitoring, and administrative controls solutions to better address these issues. These include injector improvements and monitoring methods, fast online damage recognition algorithms, EMP mapping and protection, actively cooled filters, and more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosch, R.; Trosseille, C.; Caillaud, T.
The Laser Megajoule (LMJ) facility located at CEA/CESTA started to operate in the early 2014 with two quadruplets (20 kJ at 351 nm) focused on target for the first experimental campaign. We present here the first set of gated x-ray imaging (GXI) diagnostics implemented on LMJ since mid-2014. This set consists of two imaging diagnostics with spatial, temporal, and broadband spectral resolution. These diagnostics will give basic measurements, during the entire life of the facility, such as position, structure, and balance of beams, but they will also be used to characterize gas filled target implosion symmetry and timing, to studymore » x-ray radiography and hydrodynamic instabilities. The design requires a vulnerability approach, because components will operate in a harsh environment induced by neutron fluxes, gamma rays, debris, and shrapnel. Grazing incidence x-ray microscopes are fielded as far as possible away from the target to minimize potential damage and signal noise due to these sources. These imaging diagnostics incorporate microscopes with large source-to-optic distance and large size gated microchannel plate detectors. Microscopes include optics with grazing incidence mirrors, pinholes, and refractive lenses. Spatial, temporal, and spectral performances have been measured on x-ray tubes and UV lasers at CEA-DIF and at Physikalisch-Technische Bundesanstalt BESSY II synchrotron prior to be set on LMJ. GXI-1 and GXI-2 designs, metrology, and first experiments on LMJ are presented here.« less
NASA Astrophysics Data System (ADS)
Vievering, J. T.; Glesener, L.; Panchapakesan, S. A.; Ryan, D.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Inglis, A. R.; Musset, S.
2017-12-01
Observations of the Sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. RHESSI is the only solar-dedicated imager currently operating in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the indirect imaging method of rotating collimating optics is fundamentally limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Here we present current imaging and spectral analyses of these microflares, exploring the nature of energy release and comparing to observations from other instruments. Additionally, we feature the first analysis of data from the FOXSI-2 CdTe strip detectors, which provide improved efficiency above 10 keV. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shidatsu, M.; Ueda, Y.; Fabrika, S., E-mail: megumi.shidatsu@riken.jp
We report on an X-ray observing campaign of the ultraluminous X-ray source IC 342 X-1 with NuSTAR and Swift in 2016 October, in which we captured the very moment when the source showed spectral variation. The Swift/XRT spectrum obtained in October 9–11 has a power-law shape and is consistent with those observed in the coordinated XMM-Newton and NuSTAR observations in 2012. In October 16–17, when the 3–10 keV flux became ≈4 times higher, we performed simultaneous NuSTAR and Swift observations. In this epoch, the source showed a more round-shaped spectrum like that seen with ASCA 23 years ago. Thanks tomore » the wide energy coverage and high sensitivity of NuSTAR , we obtained hard X-ray data covering up to ∼30 keV for the first time during the high-luminosity state of IC 342 X-1. The observed spectrum has a broader profile than the multi-color disk blackbody model. The X-ray flux decreased again in the last several hours of the NuSTAR observation, when the spectral shape approached those seen in 2012 and 2016 October 9–11. The spectra obtained in our observations and in 2012 can be commonly described with disk emission and its Comptonization in cool ( T {sub e} ≈ 4 keV), optically thick ( τ ≈ 5) plasma. The spectral turnover seen at around 5–10 keV shifts to higher energies as the X-ray luminosity decreases. This behavior is consistent with that predicted from recent numerical simulations of super-Eddington accretion flows with Compton-thick outflows. We suggest that the spectral evolution observed in IC 342 X-1 can be explained by a smooth change in mass-accretion rate.« less
Secrets in the Ancient Goatskins: X-Rays Reveal Archimedes' Oldest Writings
Bergmann, Uwe
2017-12-22
Archimedes of Syracruse (287 - 212 B.C.) is considered one of the most brilliant thinkers of all time. The tenth-century parchment known as the Archimedes Palimpsest is by far the oldest surviving manuscript containing works of Archimedes. it is also the unique source for three of the Greek's treatises: the Stomachion, the Method of Mechanical Theorems, and the Greek version of On Floating Bodies. The privately owned palimpsest is the subject of a integrated campaign of conservation, imaging, and scholarship being undertaken at the Walters Art Museum in Baltimore. Much of the text has been imaged by various optical techniques, but significant gaps in our knowledge of the writing of Archimedes remained. A breakthrough in uncovering the missing Archimedes writings was achieved at the Stanford Synchrotron Radiation Laboratory. Using x-ray fluorescence imaging, writings from faint traces of the partly erased iron gall ink were brought to light. The x-ray image revealed Archimedes writings from some of his most important works covered by twelfth-century biblical texts and twentieth-century gold forgeries. This talk will focus on the fascinating journal of a 1,000 year old parchment from its origin in the Mediterranean city of Constantinople to an x-ray beamline at SLAC.
Secrets in the Ancient Goatskins: X-Rays Reveal Archimedes' Oldest Writings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Uwe
2008-04-02
Archimedes of Syracruse (287 - 212 B.C.) is considered one of the most brilliant thinkers of all time. The tenth-century parchment known as the Archimedes Palimpsest is by far the oldest surviving manuscript containing works of Archimedes. it is also the unique source for three of the Greek's treatises: the Stomachion, the Method of Mechanical Theorems, and the Greek version of On Floating Bodies. The privately owned palimpsest is the subject of a integrated campaign of conservation, imaging, and scholarship being undertaken at the Walters Art Museum in Baltimore. Much of the text has been imaged by various optical techniques,more » but significant gaps in our knowledge of the writing of Archimedes remained. A breakthrough in uncovering the missing Archimedes writings was achieved at the Stanford Synchrotron Radiation Laboratory. Using x-ray fluorescence imaging, writings from faint traces of the partly erased iron gall ink were brought to light. The x-ray image revealed Archimedes writings from some of his most important works covered by twelfth-century biblical texts and twentieth-century gold forgeries. This talk will focus on the fascinating journal of a 1,000 year old parchment from its origin in the Mediterranean city of Constantinople to an x-ray beamline at SLAC.« less
Archimedes Manuscript under X-ray Vision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Uwe
2006-09-25
Archimedes of Syracuse (287 - 212 BC) is considered one of the most brilliant thinkers of all times. The 10th century parchment document known as the Archimedes Palimpsest is the unique source for two of the Greek's treatises - the Stomachion, and The Method of Mechanical Theorems. It is also the only source for On Floating Bodies in Greek. The privately owned palimpsest is the subject of an integrated campaign of conservation, imaging, and scholarship being undertaken at the Walters Art Museum in Baltimore. Much of the text has been imaged by various optical techniques, but significant gaps remain inmore » our knowledge of the writings of Archimedes, while texts by other authors - potentially of major significance - remain yet unread. A breakthrough in uncovering the missing Archimedes writings has recently been achieved at the Stanford Synchrotron Radiation Laboratory. Using x-ray fluorescence imaging, writings from faint traces of the partly erased iron gall ink were brought to light. The x-ray image revealed Archimedes writings from some of his most important works covered by 12th century biblical texts and 20th century gold forgeries. Please join me in a fascinating journey of a 1000 year old parchment from its origin in the Mediterranean city of Constantinople to an x-ray beam line in Menlo Park, California.« less
Secrets in the Ancient Goatskins: X-Rays Reveal archimedes' Oldest Writings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergmann, Uwe
2008-04-02
Archimedes of Syracruse (287 - 212 B.C.) is considered one of the most brilliant thinkers of all time. The tenth-century parchment known as the Archimedes Palimpsest is by far the oldest surviving manuscript containing works of Archimedes. it is also the unique source for three of the Greek's treatises: the Stomachion, the Method of Mechanical Theorems, and the Greek version of On Floating Bodies. The privately owned palimpsest is the subject of a integrated campaign of conservation, imaging, and scholarship being undertaken at the Walters Art Museum in Baltimore. Much of the text has been imaged by various optical techniques,more » but significant gaps in our knowledge of the writing of Archimedes remained. A breakthrough in uncovering the missing Archimedes writings was achieved at the Stanford Synchrotron Radiation Laboratory. Using x-ray fluorescence imaging, writings from faint traces of the partly erased iron gall ink were brought to light. The x-ray image revealed Archimedes writings from some of his most important works covered by twelfth-century biblical texts and twentieth-century gold forgeries. This talk will focus on the fascinating journal of a 1,000 year old parchment from its origin in the Mediterranean city of Constantinople to an x-ray beamline at SLAC.« less
X-ray Variability of the Magnetic Cataclysmic Variable V1432 Aql and the Seyfert Galaxy NGC 6814
NASA Technical Reports Server (NTRS)
Mukai, K.; Hellier, C.; Madejski, G.; Patterson, J.; Skillman, D. R.
2003-01-01
V1432 Aquilae (=RX J1940.2-1025) is the X-ray bright, eclipsing magnetic cataclysmic variable approximately 37 (sup) away from the Seyfert galaxy, NGC 6814. Due to a 0.3% difference between the orbital (12116.3 s) and the spin (12150 s) periods: the accretion geometry changes over the approximately 50 day beat period. Here we report the results of an RXTE campaign to observe the eclipse 25 times, as well as of archival observations with ASCA and BeppoSAX. Having confirmed that the eclipse is indeed caused by the secondary, we use the eclipse timings and profiles to map the accretion geometry as a function of the beat phase. We find that the accretion region is compact, and that it moves relative to the center of white dwarf on the beat period. The amplitude of this movement suggest a low-mass white dwarf, in contrast to the high mass previously estimated from its X-ray spectrum. The size of the X-ray emission region appears to be larger than in other eclipsing magnetic CVs. We also report on the RXTE data as well as the long-term behavior of NGC 6814, indicating flux variability by a factor of at least 10 on time scales of years.
In-line wear monitor. Final report, July 1988-April 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pieper, K.A.; Taylor, I.J.
This report describes construction and test results of an in-line monitor for critical ferrous and nonferrous metal debris in turbine engine lubrication systems. The in-line wear monitor (ILWM) uses the X-ray fluorescence principle for detecting metal debris on a continuous basis while the engine is running. The sensor portion of the system is engine mounted and contains a radioactive X-ray source, a flow cell to direct the oil across an X-ray permeable window, a proportional counter X-ray detector and its associated preamplifier and amplifier electronics. The data acquisition electronics is mounted on the airframe and contains a microprocessor based systemmore » for inputting pulses from the sensor, classifying and counting them according to energy bands, and analyzing the data and outputting metal concentration values to the engine monitoring system. The sensor portion of the system is designed to fit on a TF41 turbine engine in place of a tube between the oil tank and the oil pump. A TF41 engine monitoring system has been modified to accept the new signals from the ILWM on spare inputs so that none of the existing functions were disturbed. The ILWM has been flow tested at various flow rates, concentration levels, oil temperatures, and aerations. The wear monitor detected iron, copper, and both iron and copper together with less than 2 ppm one sigma statistical uncertainty for 30 minute count times over the 0-50 ppm range. There was no significant effect of flow rate or aeration on accuracy. The system is developed to the point that it can be tested in an actual flight environment.« less
1990-08-08
for their collaboration in synthetic study. We also thank Prof. N. Kasai and Dr. Y. Kai for their collaboration in X - ray crystallographic study. We...substantially with the increasing amount of doping as monitored by the powder x - ray diffraction. After doping the sample was kept for at least one day...physical properties at different oxidation states in solution and in the solid state of tEDTB complexed with TCNQF4. The X ray crystal structure of
Large Observatory for x-ray Timing (LOFT-P): a Probe-class mission concept study
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Chakrabarty, Deepto; Feroci, Marco; Alvarez, Laura; Baysinger, Michael; Becker, Chris; Bozzo, Enrico; Brandt, Soren; Carson, Billy; Chapman, Jack; Dominguez, Alexandra; Fabisinski, Leo; Gangl, Bert; Garcia, Jay; Griffith, Christopher; Hernanz, Margarita; Hickman, Robert; Hopkins, Randall; Hui, Michelle; Ingram, Luster; Jenke, Peter; Korpela, Seppo; Maccarone, Tom; Michalska, Malgorzata; Pohl, Martin; Santangelo, Andrea; Schanne, Stephane; Schnell, Andrew; Stella, Luigi; van der Klis, Michiel; Watts, Anna; Winter, Berend; Zane, Silvia
2016-07-01
LOFT-P is a mission concept for a NASA Astrophysics Probe-Class (<$1B) X-ray timing mission, based on the LOFT M-class concept originally proposed to ESAs M3 and M4 calls. LOFT-P requires very large collecting area, high time resolution, good spectral resolution, broad-band spectral coverage (2-30 keV), highly flexible scheduling, and an ability to detect and respond promptly to time-critical targets of opportunity. It addresses science questions such as: What is the equation of state of ultra dense matter? What are the effects of strong gravity on matter spiraling into black holes? It would be optimized for sub-millisecond timing of bright Galactic X-ray sources including X-ray bursters, black hole binaries, and magnetars to study phenomena at the natural timescales of neutron star surfaces and black hole event horizons and to measure mass and spin of black holes. These measurements are synergistic to imaging and high-resolution spectroscopy instruments, addressing much smaller distance scales than are possible without very long baseline X-ray interferometry, and using complementary techniques to address the geometry and dynamics of emission regions. LOFT-P would have an effective area of >6 m2, > 10x that of the highly successful Rossi X-ray Timing Explorer (RXTE). A sky monitor (2-50 keV) acts as a trigger for pointed observations, providing high duty cycle, high time resolution monitoring of the X-ray sky with 20 times the sensitivity of the RXTE All-Sky Monitor, enabling multi-wavelength and multimessenger studies. A probe-class mission concept would employ lightweight collimator technology and large-area solid-state detectors, segmented into pixels or strips, technologies which have been recently greatly advanced during the ESA M3 Phase A study of LOFT. Given the large community interested in LOFT (>800 supporters*, the scientific productivity of this mission is expected to be very high, similar to or greater than RXTE ( 2000 refereed publications). We describe the results of a study, recently completed by the MSFC Advanced Concepts Office, that demonstrates that such a mission is feasible within a NASA probe-class mission budget.
NASA Astrophysics Data System (ADS)
Pahari, Mayukh; Yadav, J. S.; Verdhan Chauhan, Jai; Rawat, Divya; Misra, Ranjeev; Agrawal, P. C.; Chandra, Sunil; Bagri, Kalyani; Jain, Pankaj; Manchanda, R. K.; Chitnis, Varsha; Bhattacharyya, Sudip
2018-01-01
We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 2017 April 1–2. Within a timescale of a few hours, the source shows a transition from the hypersoft state (HPS) to a more luminous state (we termed as the very high state), which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the Soft X-ray Telescope (SXT) and Large Area X-ray Proportional Counter (LAXPC) spectra jointly in 0.5–70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat power-law component suddenly appeared in the spectra that extends to very high energies with the power-law photon index of {1.49}-0.03+0.04. Such a flat power-law component has never been reported from Cyg X-3. Interestingly the fitted power-law model in 25–70 keV, when extrapolated to the radio frequency, predicts the radio flux density to be consistent with the trend measured from the RATAN-600 telescope at 11.2 GHz. This provides direct evidence of the synchrotron origin of flat X-ray power-law component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 ± 0.08 when 11.2 GHz radio flux density increases from ∼100 to ∼478 mJy.
NASA Technical Reports Server (NTRS)
Turner, T. J.; Weaver, K. A.; Mushotzky, R. F.; Holt, S. S.; Madejski, G. M.
1991-01-01
The X-ray spectra of 25 Seyfert galaxies measured with the Solid State Spectrometer on the Einstein Observatory have been investigated. This new investigation utilizes simultaneous data from the Monitor Proportional Counter, and automatic correction for systematic effects in the Solid State Spectrometer which were previously handled subjectively. It is found that the best-fit single-power-law indices generally agree with those previously reported, but that soft excesses of some form are inferred for about 48 percent of the sources. One possible explanation of the soft excess emission is a blend of soft X-ray lines, centered around 0.8 keV. The implications of these results for accretion disk models are discussed.
The First Focused Hard X-Ray Images of the Sun with NuSTAR
NASA Technical Reports Server (NTRS)
Grefenstette, Brian W.; Glesener, Lindsay; Kruckner, Sam; Hudson, Hugh; Hannah, Iain G.; Smith, David M.; Vogel, Julia K.; White, Stephen M.; Madsen, Kristin K.; Marsh, Andrew J.;
2016-01-01
We present results from the first campaign of dedicated solar observations undertaken by the Nuclear Spectroscopic Telescope ARray (NuSTAR) hard X-ray (HXR) telescope. Designed as an astrophysics mission, NuSTAR nonetheless has the capability of directly imaging the Sun at HXR energies (3 keV) with an increase in sensitivity of at least two magnitude compared to current non-focusing telescopes. In this paper we describe the scientific areas where NuSTAR will make major improvements on existing solar measurements. We report on the techniques used to observe the Sun with NuSTAR, their limitations and complications, and the procedures developed to optimize solar data quality derived from our experience with the initial solar observations. These first observations are briefly described, including the measurement of the Fe K-shell lines in a decaying X-class flare, HXR emission from high in the solar corona, and full-disk HXR images of the Sun.
Cancer diagnosis using a conventional x-ray fluorescence camera with a cadmium-telluride detector
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Enomoto, Toshiyuki; Hagiwara, Osahiko; Abudurexiti, Abulajiang; Sato, Koetsu; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-10-01
X-ray fluorescence (XRF) analysis is useful for mapping various atoms in objects. Bremsstrahlung X-rays are selected using a 3.0 mm-thick aluminum filter, and these rays are absorbed by indium, cerium and gadolinium atoms in objects. Then XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by atomic mapping are shown on a personal computer monitor. The scan steps of the x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out atomic mapping using the X-ray camera, and Kα photons from cerium and gadolinium atoms were produced from cancerous regions in nude mice.
NASA Astrophysics Data System (ADS)
Enomoto, Toshiyuki; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Watanabe, Manabu; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun
2011-04-01
X-ray fluorescence (XRF) analysis is useful for mapping various molecules in objects. Bremsstrahlung X-rays are selected using a 3.0-mm-thick aluminum filter, and these rays are absorbed by iodine, cerium, and gadolinium molecules in objects. Next, XRF is produced from the objects, and photons are detected by a cadmium-telluride detector. The Kα photons are discriminated using a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x- y stage in conjunction with a two-stage controller, and X-ray images obtained by molecular mapping are shown on a personal computer monitor. The scan steps of x and y axes were both 2.5 mm, and the photon-counting time per mapping point was 0.5 s. We carried out molecular mapping using the X-ray camera, and Kα photons from cerium and gadolinium molecules were produced from cancerous regions in nude mice.
KSWAGS: A Swift X-Ray and UV Survey of the Kepler Field 1
NASA Technical Reports Server (NTRS)
Smith, Krista Lynne; Boyd, Patricia T.; Mushotzky, Richard F.; Gehrels, Neil; Edelson, Rick; Howell, Steve B.; Gelino, Dawn M.; Brown, Alexander; Young, Steve
2015-01-01
We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of approximately 6 square degrees of the Kepler field using the Swift XRT and UVOT. We detect 93 unique X-ray sources with S/N greater or equal to 3 with the XRT, of which 60 have UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the fX / fV ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or AGN with certainty, we construct SEDs using the 2MASS, UBV and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields.
Electronic system for data acquisition to study radiation effects on operating MOSFET transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alves de Oliveira, Juliano; Assis de Melo, Marco Antônio; Guazzelli da Silveira, Marcilei A.
In this work we present the development of an acquisition system for characterizing transistors under X-ray radiation. The system is able to carry out the acquisition and to storage characteristic transistor curves. To test the acquisition system we have submitted polarized P channel MOS transistors under continuous 10-keV X-ray doses up to 1500 krad. The characterization system can operate in the saturation region or in the linear region in order to observe the behavior of the currents or voltages involved during the irradiation process. Initial tests consisted of placing the device under test (DUT) in front of the X-ray beammore » direction, while its drain current was constantly monitored through the prototype generated in this work, the data are stored continuously and system behavior was monitored during the test. In order to observe the behavior of the DUT during the radiation tests, we used an acquisition system that consists of an ultra-low consumption16-bit Texas Instruments MSP430 microprocessor. Preliminary results indicate linear behavior of the voltage as a function of the exposure time and fast recovery. These features may be favorable to use this device as a radiation dosimeter to monitor low rate X-ray.« less
Lung function imaging methods in Cystic Fibrosis pulmonary disease.
Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R
2017-05-17
Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; Agn Storm Team
2015-01-01
The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.
Cygnus X-1: A Case for a Magnetic Accretion Disk?
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.
1996-01-01
With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.
LPI Thresholds in Longer Scale Length Plasmas Driven by the Nike Laser*
NASA Astrophysics Data System (ADS)
Weaver, J.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Holland, G.; Lehmberg, R. H.; McLean, E.; Manka, C.
2010-11-01
The Krypton-Fluoride (KrF) laser is an attractive driver for inertial confinement fusion due to its short wavelength (248nm), large bandwidth (1-3 THz), and beam smoothing by induced spatial incoherence. Experiments with the Nike KrF laser have demonstrated intensity thresholds for laser plasma instabilities (LPI) higher than reported for other high power lasers operating at longer wavelengths (>=351 nm). The previous Nike experiments used short pulses (350 ps FWHM) and small spots (<260 μm FWHM) that created short density scale length plasmas (Ln˜50-70 μm) from planar CH targets and demonstrated the onset of two-plasmon decay (2φp) at laser intensities ˜2x10^15 W/cm^2. This talk will present an overview of the current campaign that uses longer pulses (0.5-4.0 ns) to achieve greater density scale lengths (Ln˜100-200 μm). X-rays, emission near ^1/2φo and ^3/2φo harmonics, and reflected laser light have been monitored for onset of 2φp. The longer density scale lengths will allow better comparison to results from other laser facilities. *Work supported by DoE/NNSA and ONR.
X-Ray Optics at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.;
2015-01-01
NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.
A new method to calibrate the absolute sensitivity of a soft X-ray streak camera
NASA Astrophysics Data System (ADS)
Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali
2016-12-01
In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.
Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids.
Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Kim, Hae Koo; Lee, Sang Joon
2010-07-27
X-ray-based imaging is one of the most powerful and convenient methods in terms of versatility in applicable energy and high performance in use. Different from conventional nuclear medicine imaging, contrast agents are required in X-ray imaging especially for effectively targeted and molecularly specific functions. Here, in contrast to much reported static accumulation of the contrast agents in targeted organs, dynamic visualization in a living organism is successfully accomplished by the particle-traced X-ray imaging for the first time. Flow phenomena across perforated end walls of xylem vessels in rice are monitored by a gold nanoparticle (AuNP) (approximately 20 nm in diameter) as a flow tracing sensor working in nontransparent biofluids. AuNPs are surface-modified to control the hydrodynamic properties such as hydrodynamic size (DH), zeta-potential, and surface plasmonic properties in aqueous conditions. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray nanoscopy (XN), and X-ray microscopy (XM) are used to correlate the interparticle interactions with X-ray absorption ability. Cluster formation and X-ray contrast ability of the AuNPs are successfully modulated by controlling the interparticle interactions evaluated as flow-tracing sensors.
Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments
NASA Astrophysics Data System (ADS)
Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony
Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.
NASA Technical Reports Server (NTRS)
Jordan, E. H.; Pease, D. M.
1988-01-01
A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.
NASA Technical Reports Server (NTRS)
Pasham, Dheeraj R.; Strohmayer, Tod E.
2013-01-01
We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.
NASA Technical Reports Server (NTRS)
Ray, Paul S.; Chakrabarty, Deepto; Wilson-Hodge, Colleen A.; Philips, Bernard F.; Remillard, Ronald A.; Levine, Alan M.; Wood, Kent S.; Wolff, Michael T.; Gwon, Chul S.; Strohmayer, Tod E.;
2010-01-01
The Advanced X-ray Timing Array (AXTAR) is a mission concept for X-ray timing of compact objects that combines very large collecting area, broadband spectral coverage, high time resolution, highly flexible scheduling, and an ability to respond promptly to time-critical targets of opportunity. It is optimized for sub-millisecond timing of bright Galactic X-ray sources in order to study phenomena at the natural time scales of neutron star surfaces and black hole event horizons, thus probing the physics of ultra-dense matter, strongly curved spacetimes, and intense magnetic fields. AXTAR s main instrument, the Large Area Timing Array (LATA) is a collimated instrument with 2 50 keV coverage and over 3 square meters effective area. The LATA is made up of an array of super-modules that house 2-mm thick silicon pixel detectors. AXTAR will provide a significant improvement in effective area (a factor of 7 at 4 keV and a factor of 36 at 30 keV) over the RXTE PCA. AXTAR will also carry a sensitive Sky Monitor (SM) that acts as a trigger for pointed observations of X-ray transients in addition to providing high duty cycle monitoring of the X-ray sky. We review the science goals and technical concept for AXTAR and present results from a preliminary mission design study
Lightweight Target Generates Bright, Energetic X-Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazi, A
Radiography with x rays is a long-established method to see inside objects, from human limbs to weapon parts. Livermore scientists have a continuing need for powerful x rays for such applications as backlighting, or illuminating, inertial confinement fusion (ICF) experiments and imaging still or exploding materials for the nation's Stockpile Stewardship Program. X-radiography is one of the prime diagnostics for ICF experiments because it captures the fine detail needed to determine what happens to nearly microscopic targets when they are compressed by laser light. For example, Livermore scientists participating in the National Ignition Facility's (NIF's) 18-month-long Early Light experimental campaign,more » which ended in 2004, used x rays to examine hydrodynamic instabilities in jets of plasma. In these experiments, one laser beam irradiated a solid target of titanium, causing it to form a high-temperature plasma that generated x rays of about 4.65 kiloelectronvolts (keV). These x rays backlit a jet of plasma formed when two other laser beams hit a plastic ablator and sent a shock to an aluminum washer. Livermore physicist Kevin Fournier of the Physics and Advanced Technologies Directorate leads a team that is working to increase the efficiency of converting laser energy into x rays so the resulting images provide more information about the object being illuminated. The main characteristics of x-ray sources are energy and brightness. ''As experimental targets get larger and as compression of the targets increases, the backlighter sources must be brighter and more energetic'', says Fournier. The more energetic the x rays, the further they penetrate an object. The brighter the source--that is, the more photons it has--the clearer the image. historically, researchers have used solid targets such as thin metal foils to generate x rays. however, when photon energies are greater than a few kiloelectronvolts, the conversion efficiency of solid targets is only a fraction of 1 percent. Solid targets have low efficiencies because much of the laser energy is deposited far from the target's x-ray emitting region, and the energy is carried by the relatively slow process of thermal conduction. ''The laser beam ablates material from the massive target, and that material moves away from the target's surface'', says Fournier. With a nanosecond pulse or longer, the laser interacts with the blow-off plasma rather than the remaining bulk sample. As a result, much of the laser's energy goes into the kinetic energy of the blow-off material, not into heating the bulk of the foil.« less
Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745
NASA Astrophysics Data System (ADS)
Sharon, Keren; Bayliss, Matthew B.; Dahle, Håkon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva
2017-01-01
SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τAB = 47.7 ± 6.0 days and τAC = -722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τAD = 502 ± 68 days, τAE = 611 ± 75 days, and τAF = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13337.
Eta Carinae in the Context of the Most Massive Stars
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Damineli, Augusto
2009-01-01
Eta Car, with its historical outbursts, visible ejecta and massive, variable winds, continues to challenge both observers and modelers. In just the past five years over 100 papers have been published on this fascinating object. We now know it to be a massive binary system with a 5.54-year period. In January 2009, Car underwent one of its periodic low-states, associated with periastron passage of the two massive stars. This event was monitored by an intensive multi-wavelength campaign ranging from -rays to radio. A large amount of data was collected to test a number of evolving models including 3-D models of the massive interacting winds. August 2009 was an excellent time for observers and theorists to come together and review the accumulated studies, as have occurred in four meetings since 1998 devoted to Eta Car. Indeed, Car behaved both predictably and unpredictably during this most recent periastron, spurring timely discussions. Coincidently, WR140 also passed through periastron in early 2009. It, too, is a intensively studied massive interacting binary. Comparison of its properties, as well as the properties of other massive stars, with those of Eta Car is very instructive. These well-known examples of evolved massive binary systems provide many clues as to the fate of the most massive stars. What are the effects of the interacting winds, of individual stellar rotation, and of the circumstellar material on what we see as hypernovae/supernovae? We hope to learn. Topics discussed in this 1.5 day Joint Discussion were: Car: the 2009.0 event: Monitoring campaigns in X-rays, optical, radio, interferometry WR140 and HD5980: similarities and differences to Car LBVs and Eta Carinae: What is the relationship? Massive binary systems, wind interactions and 3-D modeling Shapes of the Homunculus & Little Homunculus: what do we learn about mass ejection? Massive stars: the connection to supernovae, hypernovae and gamma ray bursters Where do we go from here? (future directions) The Science Organizing Committee: Co-chairs: Augusto Damineli (Brazil) & Theodore R. Gull (USA). Members: D. John Hillier (USA), Gloria Koenigsberger (Mexico), Georges Meynet (Switzerland), Nidia Morrell (Chile), Atsuo T. Okazaki (Japan), Stanley P. Owocki (USA), Andy M.T. Pol- lock (Spain), Nathan Smith (USA), Christiaan L. Sterken (Belgium), Nicole St Louis (Canada), Karel A. van der Hucht (Netherlands), Roberto Viotti (Italy) and GerdWeigelt (Germany)
PROPERTIES OF THE 24 DAY MODULATION IN GX 13+1 FROM NEAR-INFRARED AND X-RAY OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corbet, Robin H. D.; Pearlman, Aaron B.; Buxton, Michelle
2010-08-10
A 24 day period for the low-mass X-ray binary (LMXB) GX 13+1 was previously proposed on the basis of seven years of RXTE All-Sky Monitor (ASM) observations and it was suggested that this was the orbital period of the system. This would make it one of the longest known orbital periods for a Galactic LMXB powered by Roche lobe overflow. We present here the results of (1) K-band photometry obtained with the SMARTS Consortium CTIO 1.3 m telescope on 68 nights over a 10 month interval; (2) continued monitoring with the RXTE ASM, analyzed using a semi-weighted power spectrum insteadmore » of the data filtering technique previously used; and (3) Swift Burst Alert Telescope (BAT) hard X-ray observations. Modulation near 24 days is seen in both the K band and additional statistically independent ASM X-ray observations. However, the modulation in the ASM is not strictly periodic. The periodicity is also not detected in the Swift BAT observations, but modulation at the same relative level as seen with the ASM cannot be ruled out. If the 24 day period is the orbital period of system, this implies that the X-ray modulation is caused by structure that is not fixed in location. A possible mechanism for the X-ray modulation is the dipping behavior recently reported from XMM-Newton observations.« less
"X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"
NASA Technical Reports Server (NTRS)
Halpern, Jules P.; Kaaret, Philip
1999-01-01
This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.
X-Ray modeling of η Carinae & WR 140 from SPH simulations
NASA Astrophysics Data System (ADS)
Russell, Christopher M. P.; Corcoran, Michael F.; Okazaki, Atsuo T.; Madura, Thomas I.; Owocki, Stanley P.
2011-07-01
The colliding wind binary (CWB) systems η Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we apply 3D hydrodynamic simulations of the wind-wind collision using smoothed particle hydrodynamics (SPH). We find adiabatic simulations that account for the absorption of X-rays from an assumed point source of X-ray emission at the apex of the wind-collision shock cone can closely match the RXTE light curves of both η Car and WR140. This point-source model can also explain the early recovery of η Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of η Car. Our more recent models account for the extended emission and absorption along the full wind-wind interaction shock front. For WR140, the computed X-ray light curves again match the RXTE observations quite well. But for η Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiative forces via an anti-gravity approach into the SPH code are also discussed.
Earth Occultation Monitoring with the Fermi Gamma Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2014-01-01
Using the Gamma Ray Burst Monitor (GBM) on-board Fermi, we are monitoring the hard X-ray/soft gamma ray sky using the Earth occultation technique (EOT). Each time a source in our catalog is occulted by (or exits occultation by) the Earth, we measure its flux using the change in count rates due to the occultation. Currently we are using CTIME data with 8 energy channels spanning 8 keV to 1 MeV for the GBM NaI detectors for daily monitoring. Light curves, updated daily, are available on our website http://heastro.phys.lsu.edu/gbm. Our software is also capable of performing the Earth occultation monitoring using up to 128 energy bands, or any combination of those bands, using our 128-channel, 4-s CSPEC data. The GBM BGO detectors, sensitive from about 200 keV to 40 keV, can also be used with this technique. In our standard application of the EOT, we use a catalog of sources to drive the measurements. To ensure that our catalog is complete, our team has developed an Earth occultation imaging method. In this talk, I will describe both techniques and the current data products available. I will highlight recent and important results from the GBM EOT, including the current status of our observations of hard X-ray variations in the Crab Nebula.
X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study
NASA Astrophysics Data System (ADS)
Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo
2015-11-01
A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.
X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study
Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo
2015-01-01
A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420
X-ray beam method for displacement measurement in hostile environments
NASA Technical Reports Server (NTRS)
Jordan, Eric H.; Pease, D. M.; Canistraro, H.; Brew, Dale
1989-01-01
A new method of extensometry using an X-ray beam was devised, and the results of current testing reveal it to be highly feasible. This technique has been shown to provide a non-contacting system that is immune to problems associated with density variations in gaseous environments, that plague currently available optical methods. This advantage is a result of the non-refracting penetrating nature of X-rays. The method is based on X-ray-induced X-ray fluorescence of targets, which subsequently serve as fudicial markers. Some target materials have melting points over 1600 degrees C which will facilitate measurement at extremely high temperatures. A highly focused intense X-ray beam, which is produced using a Johansen 'bent crystal', is then scanned across the target, which responds by fluorescing X-rays when stimulated by the incident beam. This secondary radiation is monitored using a detector. By carefully measuring beam orientation, change in target edge position can be determined. Many variations on this basic theme are now possible such as two targets demarcating a gage length, or a beam shadowing method using opaque targets.
Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron
Chang, Dong Woo; Kim, Bora; Shin, Jae Hoon; Yun, Young Min; Je, Jung Ho; Hwu, Yeu kuang; Yoon, Jung Hee
2011-01-01
The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification. PMID:21586868
V458 Vul (Nova Vul 2007) becomes a highly-variable supersoft X-ray source
NASA Astrophysics Data System (ADS)
Drake, J. J.; Page, K. L.; Osborne, J. P.; Beardmore, A. P.; Ness, J.-U.; Starrfield, S.; Schwarz, G.; Tsujimoto, M.; Wesson, R.; Bode, M.; Rodriguez-Gil, P.; Gaensicke, B.; Steeghs, D.; Knigge, C.; Takei, D.; Zijlstra, A.
2008-09-01
Swift X-ray Telescope (XRT) monitoring observations of V458 Vul (Nova Vul 2007, S. Nakano, IAUC 8861) have found it to be entering a new phase characterised by a highly variable supersoft X-ray component accompanied by partially anti-correlated variations in the ultraviolet. An earlier report of entry into the supersoft phase (ATel #1246) has proven premature. XRT observations obtained from 2008 June 18 - September 1 found the nova to have declined in X-ray luminosity by a factor of 3 to an average of 0.02 count/s in the 0.3-10 keV band compared with the 2007 November-December period (ATel #1603).
NASA Technical Reports Server (NTRS)
1993-01-01
Lixi, Inc. has built a thriving business on NASA-developed x-ray technology. The Low Intensity X-ray Imaging scope (LIXI) was designed to use less than one percent of radiation required by conventional x-ray devices. It is portable and can be used for a variety of industrial inspection systems as well as medical devices. A food processing plant uses the new LIXI Conveyor system to identify small bone fragments in chicken. The chicken packages on a conveyor belt enter an x-ray chamber and the image is displayed on a monitor. Defects measuring less than a millimeter can be detected. An important advantage of the system is its ability to inspect 100 percent of the product right on the production line.
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
Probing the gravitational Faraday rotation using quasar X-ray microlensing
Chen, Bin
2015-01-01
The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051
Wedding, Jason L.; Harris, Hugh H.; Bader, Christie A.; ...
2016-11-23
Optical fluorescence microscopy was used in conjunction with X-ray fluorescence microscopy to monitor the stability and intracellular distribution of the luminescent rhenium(I) complex fac-[Re(CO) 3(phen)L], where phen = 1,10-phenathroline and L = 5-(4-iodophenyl)tetrazolato, in 22Rv1 cells. The rhenium complex showed no signs of ancillary ligand dissociation, a conclusion based on data obtained via X-ray fluorescence imaging aligning iodine and rhenium distributions. A diffuse reticular localisation was detected for the complex, in the nuclear/perinuclear region of cells, by either optical or X-ray fluorescence techniques. Furthermore, X-ray fluorescence also showed that the Re-I complex disrupted the homeostasis of some biologically relevant elements,more » such as chlorine, potassium and zinc.« less
Monitoring of the Y2K Outburst of Cyg X-3 with BeppoSAX
NASA Astrophysics Data System (ADS)
Palazzi, E.; dal Fiume, D.; Amati, L.; del Sordo, S.; Frontera, F.; Masetti, N.; Orlandini, M.; Santangelo, A.; Segreto, A.
2001-09-01
The latest outburst of Cyg X-3, occurred during year 2000, was extensively monitored with the BeppoSAX satellite, which observed the source 6 times at different brightness levels. We here report on these observations, in which the X-ray spectrum appears very complex and strongly evolving as the brightness of the object changes.
X-ray Variations at the Orbital Period from Cygnus X-1 IN the High/Soft State
NASA Astrophysics Data System (ADS)
Boroson, Bram; Vrtilek, Saeqa Dil
2010-02-01
Orbital variability has been found in the X-ray hardness of the black hole candidate Cygnus X-1 during the soft/high X-ray state using light curves provided by the Rossi X-ray Timing Explorer's All-Sky Monitor. We are able to set broad limits on how the mass-loss rate and X-ray luminosity vary between the hard and soft states. The folded light curve shows diminished flux in the soft X-ray band at phi = 0 (defined as the time of the superior conjunction of the X-ray source). Models of the orbital variability provide slightly superior fits when the absorbing gas is concentrated in neutral clumps and better explain the strong variability in hardness. In combination with the previously established hard/low state dips, our observations give a lower limit to the mass-loss rate in the soft state (\\dot{M}<2× 10^{-6} M_{⊙} yr-1) than the limit in the hard state (\\dot{M}<4× 10^{-6} M_{⊙} yr-1). Without a change in the wind structure between X-ray states, the greater mass-loss rate during the low/hard state would be inconsistent with the increased flaring seen during the high-soft state.
The weak-line T Tauri star V410 Tau. I. A multi-wavelength study of variability
NASA Astrophysics Data System (ADS)
Stelzer, B.; Fernández, M.; Costa, V. M.; Gameiro, J. F.; Grankin, K.; Henden, A.; Guenther, E.; Mohanty, S.; Flaccomio, E.; Burwitz, V.; Jayawardhana, R.; Predehl, P.; Durisen, R. H.
2003-12-01
We present the results of an intensive coordinated monitoring campaign in the optical and X-ray wavelength ranges of the low-mass, pre-main sequence star V410 Tau carried out in November 2001. The aim of this project was to study the relation between various indicators for magnetic activity that probe different emitting regions and would allow us to obtain clues on the interplay of the different atmospheric layers: optical photometric star spot (rotation) cycle, chromospheric Hα emission, and coronal X-rays. Our optical photometric monitoring has allowed us to measure the time of the minimum of the lightcurve with high precision. Joining the result with previous data we provide a new estimate for the dominant periodicity of V410 Tau (1.871970 +/- 0.000010 d). This updated value removes systematic offsets of the time of minimum observed in data taken over the last decade. The recurrence of the minimum in the optical lightcurve over such a long timescale emphasizes the extraordinary stability of the largest spot. This is confirmed by radial velocity measurements: data from 1993 and 2001 fit almost exactly onto each other when folded with the new period. The combination of the new data from November 2001 with published measurements taken during the last decade allows us to examine long-term changes in the mean light level of the photometry of V410 Tau. A variation on the timescale of 5.4 yr is suggested. Assuming that this behavior is truly cyclic V410 Tau is the first pre-main sequence star on which an activity cycle is detected. Two X-ray pointings were carried out with the Chandra satellite simultaneously with the optical observations, and centered near the maximum and minimum levels of the optical lightcurve. A relation of their different count levels to the rotation period of the dominating spot is not confirmed by a third Chandra observation carried out some months later, during another minimum of the 1.87 d cycle. Similarly we find no indications for a correlation of the Hα emission with the spots' rotational phase. The lack of detected rotational modulation in two important activity diagnostics seems to argue against a direct association of chromospheric and coronal emission with the spot distribution.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.;
2018-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained
STROBE-X: X-Ray Timing Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Gendreau, K.; Arzoumanian, Z.; Chakrabarty, D.; Remillard, R.; Feroci, M.; Maccarone, T.; Wood, K.; Jenke, P.
2017-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Thomas J.; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; Jenke, Peter
2017-08-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.
Probing the X-ray Emission from the Massive Star Cluster Westerlund 2
NASA Astrophysics Data System (ADS)
Lopez, Laura
2017-09-01
We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.
Discovery of a new X-ray transient in the globular cluster Liller 1
NASA Astrophysics Data System (ADS)
Homan, Jeroen; van den Berg, Maureen; Heinke, Craig; Pooley, David; Degenaar, Nathalie; van den Eijnden, Jakob; Bahramian, Arash; Gendreau, Keith; Arzoumanian, Zaven
2018-05-01
We report on the discovery of a new X-ray transient in the globular cluster Liller 1 with Chandra. Swift/XRT monitoring observations of the globular cluster Liller 1 in early April 2018 revealed low-level activity (around 0.1 ct/s) in the core of the cluster.
Reliability of an x-ray system for calibrating and testing personal radiation dosimeters
NASA Astrophysics Data System (ADS)
Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.
2018-03-01
Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.
1979-01-01
An Uhuru class Ar-CO2 gas filled proportional counter sealed with a 1.5 mil beryllium window and sensitive to X-rays in the energy bandwidth from 1.5 to 22 keV is presented. This device is coaligned with the X-ray telescope aboard the Einstein Observatory and takes data as a normal part of the Observatory operations.
77 FR 45342 - Maxfield and Oberton Holdings, LLC; Complaint
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
..., including x-rays and monitoring for infection and internal damage. 27. Since March 2009 to approximately... had to undergo x-rays, CT scans, endoscopy, and an appendectomy to remove them. The girl's father had... attraction of the magnets to the metal equipment used to retrieve the magnets. 22. Children who undergo...
Nova Lup 2016 during the X-ray decay phase
NASA Astrophysics Data System (ADS)
Orio, Marina; Beardmore, Andrew; Page, Kim; Osborne, Julian
2017-09-01
Nova Lup 2016 (ASASSN-16kt; see ATel #9538, #9539, #8550, #9554, #9587, #9594 and #9644) has been regularly monitored with Swift since the observations published in ATel #10632 that revealed a luminous supersoft X-ray source with a peak XRT count rate of 61.1(+-)0.1 cts/s on 2017/2/22.
Results from OSO-IV - The long term behavior of X-ray emitting regions.
NASA Technical Reports Server (NTRS)
Krieger, A.; Paolini, F.; Vaiana, G. S.; Webb, D.
1972-01-01
Analysis of images of the sun obtained with the aid of a grazing incidence X-ray telescope on board the OSO IV spacecraft in the 2.5 to 12-A waveband nearly continuously from Oct. 27, 1967, to May 12, 1968. The instrument had sufficient spatial resolution (one and four arc minutes) and temporal resolution (5 to 20 min) to estimate the spatial characteristics of X-ray emitting regions and to monitor the temporal behavior of individual active regions. Variations in the absence of flares of as much as a factor of 10 in the X-ray output of individual regions were observed, with typical durations ranging from several hours to several days. The X-ray time variations are related to observations at optical and radio wavelengths. The results are interpreted under the assumption that the X-ray time variations are caused by temperature changes in the coronal portions of active regions. The contribution of radiative losses to the energy budget of the coronal active region is estimated.