Sample records for x-ray multilayers optimized

  1. Normal-incidence reflectance of optimized W/B4C x-ray multilayers in the range 1.4 nm < λ < 2.4 nm

    NASA Astrophysics Data System (ADS)

    Windt, David L.; Gullikson, Eric M.; Walton, Christopher C.

    2002-12-01

    We have fabricated W/B4C multilayers having periods in the range d = 0.8-1.2 nm and measured their soft-x-ray performance near normal incidence in the wavelength range 1.4 < λ < 2.4 nm. By adjusting the fractional layer thickness of W we have produced structures having interface widths σ ~ 0.29 nm (i.e., as determined from normal-incidence reflectometry), thus having optimal soft-x-ray performance. We describe our results and discuss their implications, particularly with regard to the development of short-wavelength normal-incidence x-ray optics.

  2. Imaging Research With Non-Periodic Multilayers for Inertial Confinement Fusion Diagnostic Experiments

    NASA Astrophysics Data System (ADS)

    L. Wang, F.; Mu, B. Z.; Wang, Z. S.; Gu, C. S.; Zhang, Z.; Qin, S. J.; Chen, L. Y.

    A grazing Kirkpatrick-Baez (K-B) microscope was designed for hard x-ray (8keV; Cu Ka radiation) imaging in Inertial Confinement Fusion (ICF) diagnostic experiments. Ray tracing software was used to simulate optical system performance. The optimized theoretical resolution of K-B microscope was about 2 micron and better than 10 micron in 200 micron field of view. Tungsten and boron carbide were chosen as multilayer materials and the multilayer was deposited onto the silicon wafer substrate and the reflectivity was measured by x-ray diffraction (XRD). The reflectivity of supermirror was about 20 % in 0.3 % of bandwidth. 8keV Cu target x-ray tube source was used in x-ray imaging experiments and the magnification of 1x and 2x x-ray images were obtained.

  3. Global optimization and reflectivity data fitting for x-ray multilayer mirrors by means of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Pareschi, Giovanni

    2001-01-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thicknesses, densities, roughness). Non-linear fitting of experimental data with simulations requires to use initial values sufficiently close to the optimum value. This is a difficult task when the space topology of the variables is highly structured, as in our case. The application of global optimization methods to fit multilayer reflectivity data is presented. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (e.g. selection, crossover, mutation) on the members of the parent generation. The pressure of selection drives the population to include 'good' individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C multilayers recorded at the ESRF BM5 are presented. This method could be also applied to the help in the design of multilayers optimized for a target application, like for an astronomical grazing-incidence hard X-ray telescopes.

  4. Imaging Schwarzschild multilayer X-ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Baker, Phillip C.; Shealy, David L.; Core, David B.; Walker, Arthur B. C., Jr.; Barbee, Troy W., Jr.; Kerstetter, Ted

    1993-01-01

    We have designed, analyzed, fabricated, and tested Schwarzschild multilayer X-ray microscopes. These instruments use flow-polished Zerodur mirror substrates which have been coated with multilayers optimized for maximum reflectivity at normal incidence at 135 A. They are being developed as prototypes for the Water Window Imaging X-Ray Microscope. Ultrasmooth mirror sets of hemlite grade sapphire have been fabricated and they are now being coated with multilayers to reflect soft X-rays at 38 A, within the biologically important 'water window'. In this paper, we discuss the fabrication of the microscope optics and structural components as well as the mounting of the optics and assembly of the microscopes. We also describe the optical alignment, interferometric and visible light testing of the microscopes, present interferometrically measured performance data, and provide the first results of optical imaging tests.

  5. Modeling multilayer x-ray reflectivity using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.

    2000-06-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.

  6. Studying Pulsed Laser Deposition conditions for Ni/C-based multi-layers

    NASA Astrophysics Data System (ADS)

    Bollmann, Tjeerd R. J.

    2018-04-01

    Nickel carbon based multi-layers are a viable route towards future hard X-ray and soft γ-ray focusing telescopes. Here, we study the Pulsed Laser Deposition growth conditions of such bilayers by Reflective High Energy Electron Diffraction, X-ray Reflectivity and Diffraction, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy and cross-sectional Transmission Electron Microscopy analysis, with emphasis on optimization of process pressure and substrate temperature during growth. The thin multi-layers are grown on a treated SiO substrate resulting in Ni and C layers with surface roughnesses (RMS) of ≤0.2 nm. Small droplets resulting during melting of the targets surface increase the roughness, however, and cannot be avoided. The sequential process at temperatures beyond 300 °C results into intermixing between the two layers, being destructive for the reflectivity of the multi-layer.

  7. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE PAGES

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman; ...

    2014-01-20

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  8. Ion polished Cr/Sc attosecond multilayer mirrors for high water window reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guggenmos, Alexander; Radünz, Stefan; Rauhut, Roman

    Recent advances in the development of attosecond soft X-ray sources ranging into the water window spectral range, between the 1s states of carbon and oxygen (284 eV–543 eV), are also driving the development of suited broadband multilayer optics for steering and shaping attosecond pulses. The relatively low intensity of current High Harmonic Generation (HHG) soft X-ray sources calls for an efficient use of photons, thus the development of low-loss multilayer optics is of uttermost importance. Here, we report about the realization of broadband Cr/Sc attosecond multilayer mirrors with nearly atomically smooth interfaces by an optimized ion beam deposition and assistedmore » interface polishing process. This yields to our knowledge highest multilayer mirror reflectivity at 300 eV near normal incidence. The results are verified by transmission electron microscopy (TEM) and soft/hard X-ray reflectometry.« less

  9. Background-reducing X-ray multilayer mirror

    DOEpatents

    Bloch, Jeffrey J.; Roussel-Dupre', Diane; Smith, Barham W.

    1992-01-01

    Background-reducing x-ray multilayer mirror. A multiple-layer "wavetrap" deposited over the surface of a layered, synthetic-microstructure soft x-ray mirror optimized for reflectivity at chosen wavelengths is disclosed for reducing the reflectivity of undesired, longer wavelength incident radiation incident thereon. In three separate mirror designs employing an alternating molybdenum and silicon layered, mirrored structure overlaid by two layers of a molybdenum/silicon pair anti-reflection coating, reflectivities of near normal incidence 133, 171, and 186 .ANG. wavelengths have been optimized, while that at 304 .ANG. has been minimized. The optimization process involves the choice of materials, the composition of the layer/pairs as well as the number thereof, and the distance therebetween for the mirror, and the simultaneous choice of materials, the composition of the layer/pairs, and their number and distance for the "wavetrap."

  10. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  11. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  12. Finite-element modelling of multilayer X-ray optics.

    PubMed

    Cheng, Xianchao; Zhang, Lin

    2017-05-01

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.

  13. Finite-element modelling of multilayer X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xianchao; Zhang, Lin

    Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical sizemore » 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6), which causes low solution accuracy; and the number of elements is still very large (10 6). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.« less

  14. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  15. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christensen, F. E.; Craig, W. W.; Windt, D. L.; Jimenez-Garate, M. A.; Hailey, C. J.; Harrison, F. A.; Mao, P. H.; Chakan, J. M.; Ziegler, E.; Honkimaki, V.

    2000-09-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10<~E<~80keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution of the bilayer thicknesses, and that the coatings are uniform at the 5% level over the mirror surface. Finally, we apply the measurements to predict effective areas achievable for HEFT and Con-X HXT using these W/Si designs.

  16. Multilayer and grazing incidence X-ray/EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1992-01-01

    The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.

  17. Obtaining high resolution XUV coronal images

    NASA Technical Reports Server (NTRS)

    Golub, L.; Spiller, E.

    1992-01-01

    Photographs obtained during three flights of an 11 inch diameter normal incident soft X-ray (wavelength 63.5 A) telescope are analyzed and the data are compared to the results expected from tests of the mirror surfaces. Multilayer coated X ray telescopes have the potential for 0.01 arcsec resolution, and there is optimism that such high quality mirrors can be built. Some of the factors which enter into the performance actually achieved in practice are as follows: quality of the mirror substrate, quality of the multilayer coating, and number of photons collected. Measurements of multilayer mirrors show that the actual performance achieved in the solar X-ray images demonstrates a reduction in the scattering compared to that calculated from the topography of the top surface of the multilayer. In the brief duration of a rocket flight, the resolution is also limited by counting statistics from the number of photons collected. At X-ray Ultraviolet (XUV) wavelengths from 171 to 335 A the photon flux should be greater than 10(exp 10) ph/sec, so that a resolution better than 0.1 arcsec might be achieved, if mirror quality does not provide a limit first. In a satellite, a large collecting area will be needed for the highest resolution.

  18. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  19. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  20. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  1. Development of Multilayer Coatings for Hard X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Broadway, David M.; Ramsey, Brian; Gregory, Don

    2017-01-01

    Broadband X-ray multilayer coatings are under development at NASA MSFC for use on future astronomical X-ray telescopes. Multilayer coatings deposited onto the reflecting surfaces of X-ray optics can provide a large bandpass enabling observations of higher energy astrophysical objects and phenomena.

  2. Breakthroughs in photonics 2013: X-ray optics

    DOE PAGES

    Soufli, Regina

    2014-04-01

    Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.

  3. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  4. Characterization of ion beam sputtered deposited W/Si multilayers by grazing incidence x-ray diffraction and x-ray reflectivity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay

    2016-05-23

    W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less

  5. Development and production of a multilayer-coated x-ray reflecting stack for the Athena mission

    NASA Astrophysics Data System (ADS)

    Massahi, S.; Ferreira, D. D. M.; Christensen, F. E.; Shortt, B.; Girou, D. A.; Collon, M.; Landgraf, B.; Barriere, N.; Krumrey, M.; Cibik, L.; Schreiber, S.

    2016-07-01

    The Advanced Telescope for High-Energy Astrophysics, Athena, selected as the European Space Agency's second large-mission, is based on the novel Silicon Pore Optics X-ray mirror technology. DTU Space has been working for several years on the development of multilayer coatings on the Silicon Pore Optics in an effort to optimize the throughput of the Athena optics. A linearly graded Ir/B4C multilayer has been deposited on the mirrors, via the direct current magnetron sputtering technique, at DTU Space. This specific multilayer, has through simulations, been demonstrated to produce the highest reflectivity at 6 keV, which is a goal for the scientific objectives of the mission. A critical aspect of the coating process concerns the use of photolithography techniques upon which we will present the most recent developments in particular related to the cleanliness of the plates. Experiments regarding the lift-off and stacking of the mirrors have been performed and the results obtained will be presented. Furthermore, characterization of the deposited thin-films was performed with X-ray reflectometry at DTU Space and in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II.

  6. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  7. Micro X-ray diffraction analysis of thin films using grazing-exit conditions.

    PubMed

    Noma, T; Iida, A

    1998-05-01

    An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.

  8. Time-Resolved, High-Resolution, X-Ray Microscopy of In-Vitro Biological and Life Science Specimens with the Aid of Laser Plasmas

    DTIC Science & Technology

    1994-06-30

    transmissive Fresnel lens. We have made considerable effort in the last few years to explore the potential of x-ray multilayer-coated Schwarzschild x-ray...ray mirror fabrication and efficient x-ray mirror design. A 120mm diameter, NA = 0.35, 15X Schwarzschild microscope coated with Ni/C multilayer mios for...et al 2 developed a smaller, 33mm diameter, NA - 0.28, 15X Schwarzschild microscope coated with a W/C multilayer mirror for 4.4nm, in the socalled

  9. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  10. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  11. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  12. Multilayer films with sharp, stable interfaces for use in EUV and soft X-ray application

    DOEpatents

    Barbee, Jr., Troy W.; Bajt, Sasa

    2002-01-01

    The reflectivity and thermal stability of Mo/Si (molybdenum/silicon) multilayer films, used in soft x-ray and extreme ultraviolet region, is enhanced by deposition of a thin layer of boron carbide (e.g., B.sub.4 C) between alternating layers of Mo and Si. The invention is useful for reflective coatings for soft X-ray and extreme ultraviolet optics, multilayer for masks, coatings for other wavelengths and multilayers for masks that are more thermally stable than pure Mo/Si multilayers

  13. Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal

    2016-05-23

    X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less

  14. X-Ray Standing Waves on Surfaces

    DTIC Science & Technology

    1993-01-01

    dependent distributional changes of iodine on Pt 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film 7. Conclusions 8. Acknowledgments...4B. 6.3 X-ray standing wave study of a Langmuir - Blodgett multilayer film As mentioned previously the total external reflection condition occurs...for a Zn atom layer embedded in the top arachidate bilayer of a Langmuir - Blodgett (LB) multilayer film which was deposited on the surface of a gold

  15. Formation of silicides in annealed periodic multilayers

    NASA Astrophysics Data System (ADS)

    Maury, H.; Jonnard, P.; Le Guen, K.; André, J.-M.

    2009-05-01

    Periodic multilayers of nanometric period are widely used as optical components for the X-ray and extreme UV (EUV) ranges, in X-ray space telescopes, X-ray microscopes, EUV photolithography or synchrotron beamlines for example. Their optical performances depend on the quality of the interfaces between the various layers: chemical interdiffusion or mechanical roughness shifts the application wavelength and can drastically decrease the reflectance. Since under high thermal charge interdiffusion is known to get enhanced, the study of the thermal stability of such structures is essential to understand how interfacial compounds develop. We have characterized X-ray and EUV siliconcontaining multilayers (Mo/Si, Sc/Si and Mg/SiC) as a function of the annealing temperature (up to 600°C) using two non-destructive methods. X-ray emission from the silicon atoms, describing the Si valence states, is used to determine the chemical nature of the compounds present in the interphases while X-ray reflectivity in the hard and soft X-ray ranges can be related to the optical properties. In the three cases, interfacial metallic (Mo, Sc, Mg) silicides are evidenced and the thickness of the interphase increases with the annealing temperature. For Mo/Si and Sc/Si multilayers, silicides are even present in the as-prepared multilayers. Characteristic parameters of the stacks are determined: composition of the interphases, thickness and roughness of the layers and interphases if any. Finally, we have evidenced the maximum temperature of application of these multilayers to minimize interdiffusion.

  16. A Compact X-Ray System for Macromolecular Crystallography. 5

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  17. Exploring interface morphology of a deeply buried layer in periodic multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Gangadhar; Srivastava, A. K.; Tiwari, M. K., E-mail: mktiwari@rrcat.gov.in

    2016-06-27

    Long-term durability of a thin film device is strongly correlated with the nature of interface structure associated between different constituent layers. Synthetic periodic multilayer structures are primarily employed as artificial X-ray Bragg reflectors in many applications, and their reflection efficiency is predominantly dictated by the nature of the buried interfaces between the different layers. Herein, we demonstrate the applicability of the combined analysis approach of the X-ray reflectivity and grazing incidence X-ray fluorescence measurements for the reliable and precise determination of a buried interface structure inside periodic X-ray multilayer structures. X-ray standing wave field (XSW) generated under Bragg reflection conditionmore » is used to probe the different constituent layers of the W- B{sub 4}C multilayer structure at 10 keV and 12 keV incident X-ray energies. Our results show that the XSW assisted fluorescence measurements are markedly sensitive to the location and interface morphology of a buried layer structure inside a periodic multilayer structure. The cross sectional transmission electron microscopy results obtained on the W-B{sub 4}C multilayer structure provide a deeper look on the overall reliability and accuracy of the XSW method. The method described here would also be applicable for nondestructive characterization of a wide range of thin film based semiconductor and optical devices.« less

  18. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE PAGES

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie; ...

    2015-05-04

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  19. Achieving hard X-ray nanofocusing using a wedged multilayer Laue lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaojing; Conley, Raymond; Bouet, Nathalie

    We report on the fabrication and the characterization of a wedged multilayer Laue lens for x-ray nanofocusing. The lens was fabricated using a sputtering deposition technique, in which a specially designed mask was employed to introduce a thickness gradient in the lateral direction of the multilayer. X-ray characterization shows an efficiency of 27% and a focus size of 26 nm at 14.6 keV, in a good agreement with theoretical calculations. These results indicate that the desired wedging is achieved in the fabricated structure. We anticipate that continuous development on wedged MLLs will advance x-ray nanofocusing optics to new frontiers andmore » enrich capabilities and opportunities for hard X-ray microscopy.« less

  20. Cr/B 4C multilayer mirrors: Study of interfaces and X-ray reflectance

    DOE PAGES

    Burcklen, C.; Soufli, R.; Gullikson, E.; ...

    2016-03-24

    Here, we present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B 4C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B 4C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L 2,3 absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulatedmore » refractive index (optical constants) values for Cr.« less

  1. Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources.

    PubMed

    Störmer, M; Gabrisch, H; Horstmann, C; Heidorn, U; Hertlein, F; Wiesmann, J; Siewert, F; Rack, A

    2016-05-01

    X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity at higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.

  2. Ultra-precision fabrication of 500 mm long and laterally graded Ru/C multilayer mirrors for X-ray light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Störmer, M., E-mail: michael.stoermer@hzg.de; Gabrisch, H.; Horstmann, C.

    2016-05-15

    X-ray mirrors are needed for beam shaping and monochromatization at advanced research light sources, for instance, free-electron lasers and synchrotron sources. Such mirrors consist of a substrate and a coating. The shape accuracy of the substrate and the layer precision of the coating are the crucial parameters that determine the beam properties required for various applications. In principal, the selection of the layer materials determines the mirror reflectivity. A single layer mirror offers high reflectivity in the range of total external reflection, whereas the reflectivity is reduced considerably above the critical angle. A periodic multilayer can enhance the reflectivity atmore » higher angles due to Bragg reflection. Here, the selection of a suitable combination of layer materials is essential to achieve a high flux at distinct photon energies, which is often required for applications such as microtomography, diffraction, or protein crystallography. This contribution presents the current development of a Ru/C multilayer mirror prepared by magnetron sputtering with a sputtering facility that was designed in-house at the Helmholtz-Zentrum Geesthacht. The deposition conditions were optimized in order to achieve ultra-high precision and high flux in future mirrors. Input for the improved deposition parameters came from investigations by transmission electron microscopy. The X-ray optical properties were investigated by means of X-ray reflectometry using Cu- and Mo-radiation. The change of the multilayer d-spacing over the mirror dimensions and the variation of the Bragg angles were determined. The results demonstrate the ability to precisely control the variation in thickness over the whole mirror length of 500 mm thus achieving picometer-precision in the meter-range.« less

  3. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    PubMed

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  4. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  5. A Compact X-Ray System for Macromolecular Crystallography

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  6. Fabrication and characterization of W/B4C lamellar multilayer grating and NbC/Si multilayer phase-shift reflector

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Bhartiya, S.; Singh, A.; Majhi, A.; Gome, A.; Dhawan, R.; Nayak, M.; Sahoo, P. K.; Rai, S. K.; Reddy, V. R.

    2017-08-01

    We present fabrication and structural analysis of two different multilayer grating structures. W/B4C based lamellar multilayer grating (LMG) was studied for high resolution monochomator application near soft x-ray region ( 1.5 keV). Whereas NbC/Si based multilayer phase-shift reflector (MPR) was studied for high reflection at normal incidence near Si L-edge ( 99 eV) and simultaneously to suppress the unwanted vacuum ultraviolet / infrared radiation. The grating patterns of different periods down to D = 10 micron were fabricated on Si substrates by using photolithography, and multilayers (MLs) of different periodicity (d = 10 to 2 nm) and number of layer pairs (15 to 100) were coated using sputtering techniques by optimizing the process parameters. The LMG and MPR samples are characterized by x-ray reflectivity (XRR) and atomic force microscopy (AFM) measurements. XRR results show successive higher order Bragg peaks that reveal a well-defined vertical periodic structure in LMG, MPR and ML structures. The lateral periodicity of the grating and depth of the rectangular groves were analyzed using AFM. The AFM results show good quality of lateral periodic structures in terms of groove profile. The effect of the process parameters on the microstructure (both on vertical and lateral patterns) of ML, LMG and MPR were analyzed.

  7. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, Evgeny

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  8. Simulation and optimization of a soft gamma-ray concentrator using thin film multilayer structures

    NASA Astrophysics Data System (ADS)

    Shirazi, Farzane; Bloser, Peter F.; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.

    2017-08-01

    We are reporting the investigation result of using multilayer thin film structures for channeling and concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. This will enable future telescopes for higher energies with same mission parameters already proven by NuSTAR. A suitable arrangement of bent multilayer structures of alternating low and high-density materials will channel soft gamma-ray photons via total external reflection and then concentrate the incident radiation to a point. We present the latest results of producing Ir/Si and W/Si multilayers with the required thicknesses and smoothness by using magnetron sputter technique. In addition to experimental works, we have been working on gamma-ray tracking model of the concentrator by IDL, making use of optical properties calculated by the IMD software. This modeling allows us to calculate efficiency and track photon for different energy bands and materials and compare them with experimental result. Also, we describe combine concentrator modeling result and detector simulation by MEGAlib to archive a complete package of gamma-ray telescope simulation. This technology offers the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and providing greatly increased sensitivity for modest cost and complexity and opening the field up to balloon-borne instruments.

  9. Hard x-ray characterization of a HEFT single-reflection prototype

    NASA Astrophysics Data System (ADS)

    Christensen, Finn E.; Craig, William W.; Hailey, Charles J.; Jimenez-Garate, Mario A.; Windt, David L.; Harrison, Fiona A.; Mao, Peter H.; Ziegler, Eric; Honkimaki, Veijo; Sanchez del Rio, Manuel; Freund, Andreas K.; Ohler, M.

    2000-07-01

    We have measured the hard X-ray reflectivity and imaging performance from depth graded W/Si multilayer coated mirror segments mounted in a single reflection cylindrical prototype for the hard X-ray telescopes to be flown on the High Energy Focusing Telescope (HEFT) balloon mission. Data have been obtained in the energy range from 18 - 170 keV at the European Synchrotron Radiation Facility and at the Danish Space Research Institute at 8 keV. The modeling of the reflectivity data demonstrate that the multilayer structure can be well described by the intended power law distribution of the bilayer thicknesses optimized for the telescope performance and we find that all the data is consistent with an interfacial width of 4.5 angstroms. We have also demonstrated that the required 5% uniformity of the coatings is obtained over the mirror surface and we have shown that it is feasible to use similar W/Si coatings for much higher energies than the nominal energy range of HEFT leading the way for designing Gamma-ray telescopes for future astronomical applications. Finally we have demonstrate 35 arcsecond Half Power Diameter imaging performance of the one bounce prototype throughout the energy range of the HEFT telescopes.

  10. Hard X-Ray Scanning Microscope with Multilayer Laue Lens Nanofocusing Optics

    ScienceCinema

    Nazaretski, Evgeny

    2018-06-13

    Evgeny Nazaretski, a physicist at Brookhaven Lab’s National Synchrotron Light Source II, spearheaded the development of a one-of-a-kind x-ray microscope with novel nanofocusing optics called multilayer Laue lenses.

  11. Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B.; Allen, Maxwell J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C., Jr.

    1991-01-01

    The Multispectral Solar Telescope Array is a rocket-borne observatory which encompasses seven compact soft X-ray/EUV, multilayer-coated, and two compact far-UV, interference film-coated, Cassegrain and Ritchey-Chretien telescopes. Extensive measurements are presented on the efficiency and spectral bandpass of the X-ray/EUV telescopes. Attention is given to systematic errors and measurement errors.

  12. Repair of high performance multilayer coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaines, D.P.; Ceglio, N.M.; Vernon, S.P.

    1991-07-01

    Fabrication and environmental damage issues may require that the multilayer x-ray reflection coatings used in soft x-ray projection lithography be replaced or repaired. Two repair strategies were investigated. The first was to overcoat defective multilayers with a new multilayer. The feasibility of this approach was demonstrated by depositing high reflectivity (61% at 130 {Angstrom}) molybdenum silicon (Mo/Si) multilayers onto fused silica figured optics that had already been coated with a Mo/Si multilayer. Because some types of damage mechanisms and fabrication errors are not repairable by this method, a second method of repair was investigated. The multilayer was stripped from themore » optical substrate by etching a release layer which was deposited onto the substrate beneath the multilayer. The release layer consisted of a 1000 {Angstrom} aluminum film deposited by ion beam sputtering or by electron beam evaporation, with a 300 {Angstrom} SiO{sub 2} protective overcoat. The substrates were superpolished zerodur optical flats. The normal incidence x-ray reflectivity of multilayers deposited on these aluminized substrates was degraded, presumably due to the roughness of the aluminum films. Multilayers, and the underlying release layers, have been removed without damaging the substrates.« less

  13. Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS)

    NASA Technical Reports Server (NTRS)

    Murray, Stephen S.; Pierce, David L. (Technical Monitor)

    2002-01-01

    The Polarimeter for Low Energy X-ray Astrophysical Sources (PLEXAS) is an astrophysics mission concept for measuring the polarization of X-ray sources at low energies below the C-K band (less than 277 eV). PLEXAS uses the concept of variations in the reflectivity of a multilayered X-ray telescope as a function of the orientation of an X-rays polarization vector with respect to the reflecting surface of the optic. By selecting an appropriate multilayer, and rotating the X-ray telescope while pointing to a source, there will be a modulation in the source intensity, as measured at the focus of the telescope, which is proportional to the degree of polarization in the source.

  14. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  15. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  16. High-order multilayer coated blazed gratings for high resolution soft x-ray spectroscopy

    DOE PAGES

    Voronov, Dmitriy L.; Goray, Leonid I.; Warwick, Tony; ...

    2015-02-17

    A grand challenge in soft x-ray spectroscopy is to drive the resolving power of monochromators and spectrometers from the 10 4 achieved routinely today to well above 10 5. This need is driven mainly by the requirements of a new technique that is set to have enormous impact in condensed matter physics, Resonant Inelastic X-ray Scattering (RIXS). Unlike x-ray absorption spectroscopy, RIXS is not limited by an energy resolution dictated by the core-hole lifetime in the excitation process. Using much higher resolving power than used for normal x-ray absorption spectroscopy enables access to the energy scale of soft excitations inmore » matter. These excitations such as magnons and phonons drive the collective phenomena seen in correlated electronic materials such as high temperature superconductors. RIXS opens a new path to study these excitations at a level of detail not formerly possible. However, as the process involves resonant excitation at an energy of around 1 keV, and the energy scale of the excitations one would like to see are at the meV level, to fully utilize the technique requires the development of monochromators and spectrometers with one to two orders of magnitude higher energy resolution than has been conventionally possible. Here we investigate the detailed diffraction characteristics of multilayer blazed gratings. These elements offer potentially revolutionary performance as the dispersive element in ultra-high resolution x-ray spectroscopy. In doing so, we have established a roadmap for the complete optimization of the grating design. Traditionally 1st order gratings are used in the soft x-ray region, but we show that as in the optical domain, one can work in very high spectral orders and thus dramatically improve resolution without significant loss in efficiency.« less

  17. {ital In-situ} x-ray investigation of hydrogen charging in thin film bimetallic electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; Wiesmann, H.; Ruckman, M.W.

    Hydrogen uptake and discharge by thin metallic films under potentiostatic control was studied using x-ray diffraction at the National Synchrotron Light Source (NSLS). The formation of metal-hydrogen phases in Pd, Pd-capped Nb and Pd/Nb multilayer electrode structures was deduced from x-ray diffraction data and correlated with the cyclic voltammetry (CV) peaks. The x-ray data was also used to construct a plot of the hydrogen concentration as a function of cell potential for a multilayered thin film. {copyright} {ital 1997 Materials Research Society.}

  18. X-ray polarimeter with a transmission multilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamoto, Shunji; Murakami, Hiroshi; Shishido, Youich

    2010-02-15

    We fabricated a novel x-ray polarimeter with a transmission multilayer and measured its performance with synchrotron radiation. A self standing multilayer with seven Mo/Si bilayers was installed with an incident angle of 45 deg. in front of a back-illuminated CCD. The multilayer can be rotated around the normal direction of the CCD keeping an incident angle of 45 deg. This polarimeter can be easily installed along the optical axis of x-ray optics. By using the CCD as a photon counting detector with a moderate energy resolution, the polarization of photons in a designed energy band can be measured along withmore » the image. At high photon energies, where the multilayer is transparent, the polarimeter can be used for imaging and spectroscopic observations. We confirmed a modulation factor of 45% with 45% and 17% transmission for P- and S-polarization, respectively.« less

  19. Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns

    DOEpatents

    Hau-Riege, Stefan Peter [Fremont, CA

    2007-05-01

    The invention applies techniques for image reconstruction from X-ray diffraction patterns on the three-dimensional imaging of defects in EUVL multilayer films. The reconstructed image gives information about the out-of-plane position and the diffraction strength of the defect. The positional information can be used to select the correct defect repair technique. This invention enables the fabrication of defect-free (since repaired) X-ray Mo--Si multilayer mirrors. Repairing Mo--Si multilayer-film defects on mask blanks is a key for the commercial success of EUVL. It is known that particles are added to the Mo--Si multilayer film during the fabrication process. There is a large effort to reduce this contamination, but results are not sufficient, and defects continue to be a major mask yield limiter. All suggested repair strategies need to know the out-of-plane position of the defects in the multilayer.

  20. Passivating overcoat bilayer for multilayer reflective coatings for extreme ultraviolet lithography

    DOEpatents

    Montcalm, Claude; Stearns, Daniel G.; Vernon, Stephen P.

    1999-01-01

    A passivating overcoat bilayer is used for multilayer reflective coatings for extreme ultraviolet (EUV) or soft x-ray applications to prevent oxidation and corrosion of the multilayer coating, thereby improving the EUV optical performance. The overcoat bilayer comprises a layer of silicon or beryllium underneath at least one top layer of an elemental or a compound material that resists oxidation and corrosion. Materials for the top layer include carbon, palladium, carbides, borides, nitrides, and oxides. The thicknesses of the two layers that make up the overcoat bilayer are optimized to produce the highest reflectance at the wavelength range of operation. Protective overcoat systems comprising three or more layers are also possible.

  1. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE PAGES

    Kelly, B. G.; Loether, A.; Unruh, K. M.; ...

    2017-02-01

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  2. X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation in Ni-Pt multilayers [X-ray diffraction study of laser-driven solid-state diffusional mixing and new phase formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, B. G.; Loether, A.; Unruh, K. M.

    An in situ optical pump and x-ray probe technique has been utilized to study photoinitiated solid-state diffusion in a Ni-Pt multilayer system. Hard x-ray diffraction has been used to follow the systematic growth of the NiPt alloy as a function of laser intensity and total energy deposited. It is observed that new phase growth can be driven in as little as one laser pulse, and that repeated photoexcitation can completely convert the entire multilayer structure into a single metallic alloy. In conclusion, the data suggest that lattice strain relaxation takes place prior to atomic diffusion and the formation of amore » NiPt alloy.« less

  3. Development of High Resolution Hard X-Ray Telescope with Multilayer Coatings

    NASA Technical Reports Server (NTRS)

    Brinton, John C. (Technical Monitor); Gorenstein, Paul

    2004-01-01

    The major objective of this program is the development of a focusing hard X-ray telescope with moderately high angular resolution, i .e. comparable to the telescopes of XMM-Newton. The key ingredients of the telescope are a depth graded multilayer coatings and electroformed nickel substrates that are considerably lighter weight than those of previous missions such as XMM-Newton, which have had conventional single metal layer reflective coatings and have operated at much lower energy X-rays. The ultimate target mission for this technology is the Hard X-Ray Telescope (HXT) of the Constellation X-Ray Mission. However, it is applicable to potential SMEX and MIDEX programs as well.

  4. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE PAGES

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; ...

    2013-04-12

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  5. A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica

    A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less

  6. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  7. Hard X-ray mirrors for Nuclear Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descalle, M. A.; Brejnholt, N.; Hill, R.

    Research performed under this LDRD aimed to demonstrate the ability to detect and measure hard X-ray emissions using multilayer X-ray reflective optics above 400 keV, to enable the development of inexpensive and high-accuracy mirror substrates, and to investigate applications of hard X-ray mirrors of interest to the nuclear security community. Experiments conducted at the European Synchrotron Radiation Facility demonstrated hard X-ray mirror reflectivity up to 650 keV for the first time. Hard X-ray optics substrates must have surface roughness under 3 to 4 Angstrom rms, and three materials were evaluated as potential substrates: polycarbonates, thin Schott glass and a newmore » type of flexible glass called Willow Glass®. Chemical smoothing and thermal heating of the surface of polycarbonate samples, which are inexpensive but have poor intrinsic surface characteristics, did not yield acceptable surface roughness. D263 Schott glass was used for the focusing optics of the NASA NuSTAR telescope. The required specialized hardware and process were costly and motivated experiments with a modified non-contact slumping technique. The surface roughness of the glass was preserved and the process yielded cylindrical shells with good net shape pointing to the potential advantage of this technique. Finally, measured surface roughness of 200 and 130 μm thick Willow Glass sheets was between 2 and 2.5 A rms. Additional results of flexibility tests and multilayer deposition campaigns indicated it is a promising substrate for hard X-ray optics. The detection of U and Pu characteristics X-ray lines and gamma emission lines in a high background environment was identified as an area for which X-ray mirrors could have an impact and where focusing optics could help reduce signal to noise ratio by focusing signal onto a smaller detector. Hence the first one twelvetant of a Wolter I focusing optics for the 90 to 140 keV energy range based on aperiodic multilayer coating was designed. Finally, we conducted the first demonstration that reflective multilayer mirrors could be used as diagnostic for HED experiment with an order of magnitude improvement in signal-to-noise ratio for the multilayer optic compared a transmission crystal spectrometer.« less

  8. Spectral tailoring of nanoscale EUV and soft x-ray multilayer optics

    NASA Astrophysics Data System (ADS)

    Huang, Qiushi; Medvedev, Viacheslav; van de Kruijs, Robbert; Yakshin, Andrey; Louis, Eric; Bijkerk, Fred

    2017-03-01

    Extreme ultraviolet and soft X-ray (XUV) multilayer optics have experienced significant development over the past few years, particularly on controlling the spectral characteristics of light for advanced applications like EUV photolithography, space observation, and accelerator- or lab-based XUV experiments. Both planar and three dimensional multilayer structures have been developed to tailor the spectral response in a wide wavelength range. For the planar multilayer optics, different layered schemes are explored. Stacks of periodic multilayers and capping layers are demonstrated to achieve multi-channel reflection or suppression of the reflective properties. Aperiodic multilayer structures enable broadband reflection both in angles and wavelengths, with the possibility of polarization control. The broad wavelength band multilayer is also used to shape attosecond pulses for the study of ultrafast phenomena. Narrowband multilayer monochromators are delivered to bridge the resolution gap between crystals and regular multilayers. High spectral purity multilayers with innovated anti-reflection structures are shown to select spectrally clean XUV radiation from broadband X-ray sources, especially the plasma sources for EUV lithography. Significant progress is also made in the three dimensional multilayer optics, i.e., combining micro- and nanostructures with multilayers, in order to provide new freedom to tune the spectral response. Several kinds of multilayer gratings, including multilayer coated gratings, sliced multilayer gratings, and lamellar multilayer gratings are being pursued for high resolution and high efficiency XUV spectrometers/monochromators, with their advantages and disadvantages, respectively. Multilayer diffraction optics are also developed for spectral purity enhancement. New structures like gratings, zone plates, and pyramids that obtain full suppression of the unwanted radiation and high XUV reflectance are reviewed. Based on the present achievement of the spectral tailoring multilayer optics, the remaining challenges and opportunities for future researches are discussed.

  9. OSA Proceedings of the Topical Meeting on Soft-X-Ray Projection Lithography Held in Monterey, California on 10-12 April 1991. Volume 12

    DTIC Science & Technology

    1992-05-22

    Carbide because of its high thermal the mirror on its backside or edge. Shott Zerodur conductivity. Edge cooling causes a larger exceeded the limit by about...Characterization Angstrom-level noncontact profiling of mirrors for soft x-ray lithography............ 134 Paul Glenn Nonspecular Scattering from X-Ray...structed by patterning a Mo/Si Tropel Division of GCA Corporation. multilayer coated silicon wafer. The mirrors were coated at AT&T Bell The multilayer

  10. Physics of X-ray Multilayer Structures: Summaries of Papers Presented at the Physics of X-ray Multilayer Structures Topical Meeting Held in Jackson Hole, Wyoming on March 2-5, 1992. (1992 Technical Digest Series Volume 7).

    DTIC Science & Technology

    1992-03-01

    Synchrotron Radiation Facility, France. A novel method for depositing large size multilayers is de - GRAND ROOM scribed. A plasma produced by distributed...explained by the uphill diffusion of metal Univ. Paris, France. The Born approximation is applied to de - atoms. (p. 27) scribe the diffractive properties of...D. G. TuAl Roughness evolution in films and multilayer struc- Steams, Lawrence Livermore National Laboratory. The de - tuns, M. G. Lagally, Univ

  11. Multilayer X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Shealy, D. L.; Hoover, R. B.; Gabardi, D. R.

    1986-01-01

    An assessment of the imaging properties of multilayer X-ray imaging systems with spherical surfaces has been made. A ray trace analysis was performed to investigate the effects of using spherical substrates (rather than the conventional paraboloidal/hyperboloidal contours) for doubly reflecting Cassegrain telescopes. These investigations were carried out for mirrors designed to operate at selected soft X-ray/XUV wavelengths that are of significance for studies of the solar corona/transition region from the Stanford/MSFC Rocket X-Ray Telescope. The effects of changes in separation of the primary and secondary elements were also investigated. These theoretical results are presented as well as the results of ray trace studies to establish the resolution and vignetting effects as a function of field angle and system parameters.

  12. Extended asymmetric-cut multilayer X-ray gratings.

    PubMed

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  13. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    NASA Astrophysics Data System (ADS)

    Voronov, D. L.; Gawlitza, P.; Cambie, R.; Dhuey, S.; Gullikson, E. M.; Warwick, T.; Braun, S.; Yashchuk, V. V.; Padmore, H. A.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr+ ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.

  14. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Cambie, R.; Dhuey, S.

    2012-05-01

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. To minimize the shadowing effects, we used an ion-beam sputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in order to minimizemore » degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr{sup +} ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  15. Conformal growth of Mo/Si multilayers on grating substrates using collimated ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D. L.; Gawlitza, Peter; Cambie, Rossana

    2012-05-07

    Deposition of multilayers on saw-tooth substrates is a key step in the fabrication of multilayer blazed gratings (MBG) for extreme ultraviolet and soft x-rays. Growth of the multilayers can be perturbed by shadowing effects caused by the highly corrugated surface of the substrates, which results in distortion of the multilayer stack structure and degradation of performance of MBGs. In this study, to minimize the shadowing effects, we used an ion-beamsputtering machine with a highly collimated atomic flux to deposit Mo/Si multilayers on saw-tooth substrates. The sputtering conditions were optimized by finding a balance between smoothening and roughening processes in ordermore » to minimize degradation of the groove profile in the course of deposition and at the same time to keep the interfaces of a multilayer stack smooth enough for high efficiency. An optimal value of energy of 200 eV for sputtering Kr + ions was found by deposition of test multilayers on flat substrates at a range of ion energies. Two saw-tooth substrates were deposited at energies of 200 eV and 700 eV for the sputtering ions. It was found that reduction of the ion energy improved the blazing performance of the MBG and resulted in a 40% gain in the diffraction efficiency due to better replication of the groove profile by the multilayer. As a result of the optimization performed, an absolute diffraction efficiency of 28.8% was achieved for the 2nd blaze order of the MBG with a groove density of 7350 lines/mm at a wavelength of 13.5 nm. Lastly, details of the growth behavior of the multilayers on flat and saw-tooth substrates are discussed in terms of the linear continuous model of film growth.« less

  16. Enhancement of soft X-ray reflectivity and interface stability in nitridated Pd/Y multilayer mirrors.

    PubMed

    Xu, Dechao; Huang, Qiushi; Wang, Yiwen; Li, Pin; Wen, Mingwu; Jonnard, Philippe; Giglia, Angelo; Kozhevnikov, Igor V; Wang, Kun; Zhang, Zhong; Wang, Zhanshan

    2015-12-28

    Pd/Y multilayer mirrors operating in the soft X-ray region are characterized by a high theoretical reflectance, reaching 65% at normal incidence in the 8-12 nm wavelength range. However, a severe intermixing of neighboring Pd and Y layers results in an almost total disappearance of the interfaces inside the multilayer structures fabricated by direct current magnetron sputtering and thus a dramatic reflectivity decrease. Based on grazing incidence X-ray reflectometry and X-ray photoelectron spectroscopy, we demonstrate that the stability of the interfaces in Pd/Y multilayer structures can be essentially improved by adding a small amount of nitrogen (4-8%) to the working gas (Ar). High resolution transmission electron microscopy shows that the interlayer width is only 0.9 nm and 0.6 nm for Y(N)-on-Pd(N) and Pd(N)-on-Y(N) interfaces, respectively. A well-defined crystalline texture of YN (200) is observed on the electron diffraction pattern. As a result, the measured reflectance of the Pd(N)/Y(N) multilayer achieves 30% at λ = 9.3 nm. The peak reflectivity value is limited by the remaining interlayers and the formation of the YN compound inside the yttrium layers, resulting in an increased absorption.

  17. Characterization of multilayer coated replicated Wolter optics for imaging x-ray emission from pulsed power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ames, Andrew; Ampleford, David; Bourdon, Chris

    Here, we have developed a process for indirectly coating small diameter electroformed nickel replicated optics with multilayers to increase their response at high energy (i.e. >10 keV). The ability to fabricate small diameter multilayer-coated full-shell Wolter X-ray optics with narrow bandpass opens the door to several applications within astronomy and also provides a path for cross-fertilization to other fields. We report on the characterization and evaluation of the first two prototype X-ray Wolter optics to be delivered to the Z Pulsed Power Facility at Sandia National Laboratories. The intent is to develop and field several optics as part of anmore » imaging system with targeted spectral ranges.« less

  18. Characterization of multilayer coated replicated Wolter optics for imaging x-ray emission from pulsed power

    DOE PAGES

    Ames, Andrew; Ampleford, David; Bourdon, Chris; ...

    2017-08-29

    Here, we have developed a process for indirectly coating small diameter electroformed nickel replicated optics with multilayers to increase their response at high energy (i.e. >10 keV). The ability to fabricate small diameter multilayer-coated full-shell Wolter X-ray optics with narrow bandpass opens the door to several applications within astronomy and also provides a path for cross-fertilization to other fields. We report on the characterization and evaluation of the first two prototype X-ray Wolter optics to be delivered to the Z Pulsed Power Facility at Sandia National Laboratories. The intent is to develop and field several optics as part of anmore » imaging system with targeted spectral ranges.« less

  19. Characterization of multilayer coated replicated Wolter optics for imaging x-ray emission from pulsed power

    NASA Astrophysics Data System (ADS)

    Ames, A.; Ampleford, D.; Bourdon, C.; Bruni, R.; Kilaru, K.; Kozioziemski, B.; Pivovaroff, M.; Ramsey, B.; Romaine, S.; Vogel, J.; Walton, C.; Wu, M.

    2017-08-01

    We have developed a process for indirectly coating arbitrarily small diameter electroformed nickel replicated optics with multilayers to increase their response at high energy (i.e. >10 keV). The ability to fabricate small diameter multilayer coated full shell Wolter X-ray optics with narrow bandpass opens the door to several applications within astronomy and also provides a path for cross-fertilization to other fields. We report on the characterization and evaluation of the first two prototype X-ray Wolter optics to be delivered to the Z Pulsed Power Facility at Sandia National Laboratories. The intent is to develop and field several optics as part of an imaging system with targeted spectral ranges.

  20. Direct and inverse problems of studying the properties of multilayer nanostructures based on a two-dimensional model of X-ray reflection and scattering

    NASA Astrophysics Data System (ADS)

    Khachaturov, R. V.

    2014-06-01

    A mathematical model of X-ray reflection and scattering by multilayered nanostructures in the quasi-optical approximation is proposed. X-ray propagation and the electric field distribution inside the multilayered structure are considered with allowance for refraction, which is taken into account via the second derivative with respect to the depth of the structure. This model is used to demonstrate the possibility of solving inverse problems in order to determine the characteristics of irregularities not only over the depth (as in the one-dimensional problem) but also over the length of the structure. An approximate combinatorial method for system decomposition and composition is proposed for solving the inverse problems.

  1. A normal incidence, high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1984-01-01

    Efforts directed toward the completion of an X-ray telescope assembly design, the procurement of major components, and the coordination of optical fabrication and X-ray multilayer testing are reported.

  2. In-situ stress measurement of single and multilayer thin-films used in x-ray astronomy optics applications

    NASA Astrophysics Data System (ADS)

    Broadway, David M.; Ramsey, Brian D.; O'Dell, Stephen L.; Gurgew, Danielle

    2017-09-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  3. Production and Performance of the InFOCmicronS 20-40 keV Graded Multilayer Mirror

    NASA Technical Reports Server (NTRS)

    Berendse, F.; Owens, S. M.; Serlemitsos, P. J.; Tueller, J.; Chan, K.-W.; Soong, Y.; Krimm, H.; Baumgartner, W. H.; Tamura, K.; Okajima, T.; hide

    2002-01-01

    The International Focusing Optics Collaboration for micron Crab Sensitivity (InFOC micronS) balloon-borne hard x-ray incorporates graded multilayer technology to obtain significant effective area at energies previously inaccessible to x-ray optics. The telescope mirror consists of 2040 segmented thin aluminum foils coated with replicated Pt/C multilayers. A sample of these foils was scanned using a pencil-beam reflectometer to determine, multilayer quality. The results of the reflectometer measurements demonstrate our capability to produce large quantity of foils while maintaining high-quality multilayers with a mean Nevot-Croce interface roughness of 0.5nm. We characterize the performance of the complete InFOC micronS telescope with a pencil beam raster scan to determine the effective area and encircled energy function of the telescope. The effective area of the complete telescope is 78, 42 and 22 square centimeters at 20 30 and 40 keV. respectively. The measured encircled energy fraction of the mirror has a half-power diameter of 2.0 plus or minus 0.5 arcmin (90% confidence). The mirror successfully obtained an image of the accreting black hole Cygnus X-1 during a balloon flight in July, 2001. The successful completion and flight test of this telescope demonstrates that graded-multilayer telescopes can be manufactured with high reliability for future x-ray telescope missions such as Constellation-X.

  4. Layer-by-layer design method for soft-X-ray multilayers

    NASA Technical Reports Server (NTRS)

    Yamamoto, Masaki; Namioka, Takeshi

    1992-01-01

    A new design method effective for a nontransparent system has been developed for soft-X-ray multilayers with the aid of graphic representation of the complex amplitude reflectance in a Gaussian plane. The method provides an effective means of attaining the absolute maximum reflectance on a layer-by-layer basis and also gives clear insight into the evolution of the amplitude reflectance on a multilayer as it builds up. An optical criterion is derived for the selection of a proper pair of materials needed for designing a high-reflectance multilayer. Some examples are given to illustrate the usefulness of this design method.

  5. X ray microscope/telescope test and alignment

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C.; Hoover, Richard B.

    1991-01-01

    The tasks performed by the Center for Applied Optics (CAO) in support of the Normal Incidence Multilayer X-Ray Optics Program are detailed. The Multi-Spectral Solar Telescope Array (MSSTA) was launched on a Terrier-boosted Black Brant sounding rocket from White Sands Missile Range on 13 May 1991. High resolution images of the sun in the soft x ray to extreme ultraviolet (EUV) regime were obtained with normal-incidence Cassegrain, Ritchey-Chretien, and Herschelian telescopes mounted in the sounding rocket. MSSTA represents the first use of multilayer optics to study a very broad range of x ray and EUV solar emissions. Energy-selective properties of multilayer-coated optics allow distinct groups of emission lines to be isolated in the solar corona and transition region. Features of the near and far coronal structures including magnetic loops of plasmas, coronal plumes, coronal holes, faint structures, and cool prominences are visible in these images. MSSTA successfully obtained unprecedented information regarding the structure and dynamics of the solar atmosphere in the temperature range of 10(exp 4)-10(exp 7) K. The performance of the MSSTA has demonstrated a unique combination of ultra-high spatial resolution and spectral differentiation by use of multilayer optics.

  6. High Precision Grids for Neutron, Hard X-Ray, and Gamma-Ray Imaging Systems

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2002-01-01

    Fourier telescopes permit observations over a very broad band of energy. They generally include synthetic spatial filtering structures, known as multilayer grids or grid pairs consisting of alternate layers of absorbing and transparent materials depending on whether neutrons or photons are being imaged. For hard x-rays and gamma rays high (absorbing) and low (transparent) atomic number elements, termed high-Z and low-Z materials may be used. Fabrication of these multilayer grid structures is not without its difficulties. Herein the alternate layers of the higher material and the lower material are inserted in a polyhedron, transparent to photons of interest, through an open face of the polyhedron. The inserted layers are then uniformly compressed to form a multilayer grid.

  7. Radiation hardness of molybdenum silicon multilayers designed for use in a soft-x-ray projection lithography system.

    PubMed

    Gaines, D P; Spitzer, R C; Ceglio, N M; Krumrey, M; Ulm, G

    1993-12-01

    A molybdenum silicon multilayer is irradiated with 13.4-nm radiation to investigate changes in multilayer performance under simulated soft-x-ray projection lithography (SXPL) conditions. The wiggler-undulator at the Berlin electron storage ring BESSY is used as a quasi-monochromatic source of calculable spectral radiant intensity and is configured to simulate an incident SXPL x-ray spectrum. The test multilayer receives a radiant exposure of 240 J/mm(2) in an exposure lasting 8.9 h. The corresponding average incident power density is 7.5 mW/mm(2). The absorbed dose of 7.8 × 10(10) J/kg (7.8 × 10(12) rad) is equivalent to 1.2 times the dose that would be absorbed by a multilayer coating on the first imaging optic in a hypothetical SXPL system during 1 year of operation. Surface temperature increases do not exceed 2 °C during the exposure. Normal-incidence reflectance measurements at λ(0) = 13.4 nm performed before radiation exposure are in agreement with measurements performed after the exposure, indicating that no sign icant damage had occurred.

  8. Design and fabrication of x-ray Kirkpatrick-Baez microscope for ICF

    NASA Astrophysics Data System (ADS)

    Mu, Baozhong; Wang, Zhanshan; Huang, Shengling; Yi, Shengzhen; Shen, Zhengxiang

    2007-12-01

    A hard x-ray (8 keV, Kα line of Cu) Kirkpatrick-Baez (KB) microscope was designed for the diagnostics of inertial confinement fusion (ICF). Three main parts including optical design, fabrication of multilayers, and alignment method were discussed in this paper. According to the deduced equation of aberration in whole field, an optical system was designed, which gives attention to not only spatial resolution but also the collection efficiency. Tungsten (W) and boron carbide (B4C) were chosen as multilayer materials and the non-periodic multilayer with 40 layers was deposited. The measured reflectivity by XRD is better than 18% in the bandwidth range of about 0.3%. Super accurately alignment is another difficulty in the application of KB microscope. To meet the requirements of pointing and co-focusing, a binocular laser pointer which is flexible enough was designed. Finally, an 8keV x-ray tube was used as source in x-ray imaging experiment and images with magnification of 2× were obtained.

  9. A compressed sensing X-ray camera with a multilayer architecture

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  10. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  11. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  12. The Multi-Spectral Solar Telescope Array. II - Soft X-ray/EUV reflectivity of the multilayer mirrors

    NASA Technical Reports Server (NTRS)

    Barbee, Troy W., Jr.; Weed, J. W.; Hoover, Richard B. C., Jr.; Allen, Max J.; Lindblom, Joakim F.; O'Neal, Ray H.; Kankelborg, Charles C.; Deforest, Craig E.; Paris, Elizabeth S.; Walker, Arthur B. C.

    1992-01-01

    We have developed seven compact soft X-ray/EUV (XUV) multilayer coated and two compact FUV interference film coated Cassegrain and Ritchey-Chretien telescopes for a rocket borne observatory, the Multi-Spectral Solar Telescope Array. We report here on extensive measurements of the efficiency and spectral bandpass of the XUV telescopes carried out at the Stanford Synchrotron Radiation Laboratory.

  13. Optimization of Al2O3/TiO2/Al 2O3 Multilayer Antireflection Coating With X-Ray Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Li, Chao

    Broadband multilayer antireflection coatings (ARCs) are keys to improving solar cell efficiencies. The goal of this dissertation is to optimize the multilayer Al2O3/TiO2/Al2O 3 ARC designed for a III-V space multi-junction solar cell with understanding influences of post-annealing and varying deposition parameters on the optical properties. Accurately measuring optical properties is important in accessing optical performances of ARCs. The multilayer Al2O3/TiO 2/Al2O3 ARC and individual Al2O 3 and TiO2 layers were characterized by a novel X-ray reflectivity (XRR) method and a combined method of grazing-incidence small angle X-ray scattering (GISAXS), atomic force microscopy (AFM), and XRR developed in this study. The novel XRR method combining an enhanced Fourier analysis with specular XRR simulation effectively determines layer thicknesses and surface and interface roughnesses and/or grading with sub-nanometer precision, and densities less than three percent uncertainty. Also, the combined method of GISAXS, AFM, and XRR characterizes the distribution of pore size with one-nanometer uncertainty. Unique to this method, the diffuse scattering from surface and interface roughnesses is estimated with surface parameters (root mean square roughness sigma, lateral correlation length ξ, and Hurst parameter h) obtained from AFM, and layer densities, surface grading and interface roughness/grading obtained from specular XRR. It is then separated from pore scattering. These X-ray scattering techniques obtained consistent results and were validated by other techniques including optical reflectance, spectroscopic ellipsometry (SE), glancing incidence X-ray diffraction, transmission electron microscopy and energy dispersive X-ray spectroscopy. The ARCs were deposited by atomic layer deposition with standard parameters at 200 °C. The as-deposited individual Al2O3 layer on Si is porous and amorphous as indicated by the combined methods of GISAXS, AFM, and XRR. Both post-annealing at 400 °C for 40 min in air and varying ALD parameters can eliminate pores, and lead to consistent increases in density and refractive index determined by the XRR method, SE, and optical reflectance measurements. After annealing, the layer remains amorphous. On the other hand, the as-deposited TiO 2 layer is non-porous and amorphous. It is densified and crystallized after annealing at 400 °C for 10 min in air. The multilayer Al2O 3/TiO2/Al2O3 ARC deposited on Si has surface and interface roughnesses and/or grading on the order of one nanometer. Annealing at 400 °C for 10 min in air induces densification and crystallization of the amorphous TiO2 layer as well as possible chemical reactions between TiO2 and Si diffusing from the substrate. On the other hand, Al2O3 layers remain amorphous after annealing. The thickness of the top Al2O3 layer decreases - likely due to interdiffusion between the top two layers and loss of hydrogen from hydroxyl groups initially present in the ALD layers. The thickness of the bottom Al2O3 layer increases, probably due to the diffusion of Si atoms into the bottom layer. In addition, the multilayer Al 2O3/TiO2/Al2O3 ARC was deposited on AlInP (30nm) / GaInP (100nm) / GaAs that includes the topmost layers of III-V multi-junction solar cells. Reflectance below 5 % is achieved within nearly the whole wavelength range of the current-limiting sub-cell. Also, internal scattering occurs in the TiO2 layer possibly associated with the initiated crystallization in the TiO2 layer while absent in the amorphous Al2O3 layers.

  14. Chemical and morphological characterization of III-V strained layered heterostructures

    NASA Astrophysics Data System (ADS)

    Gray, Allen Lindsay

    This dissertation describes investigations into the chemical and morphological characterization of III-V strained layered heterostructures by high-resolution x-ray diffraction. The purpose of this work is two-fold. The first was to use high-resolution x-ray diffraction coupled with transmission electron microscopy to characterize structurally a quaternary AlGaAsSb/InGaAsSb multiple quantum well heterostructure laser device. A method for uniquely determining the chemical composition of the strain quaternary quantum well, information previously thought to be unattainable using high resolution x-ray diffraction is thoroughly described. The misconception that high-resolution x-ray diffraction can separately find the well and barrier thickness of a multi-quantum well from the pendellosung fringe spacing is corrected, and thus the need for transmission electron microscopy is motivated. Computer simulations show that the key in finding the well composition is the intensity of the -3rd order satellite peaks in the diffraction pattern. The second part of this work addresses the evolution of strain relief in metastable multi-period InGaAs/GaAs multi-layered structures by high-resolution x-ray reciprocal space maps. Results are accompanied by transmission electron and differential contrast microscopy. The evolution of strain relief is tracked from a coherent "pseudomorphic" growth to a dislocated state as a function of period number by examining the x-ray diffuse scatter emanating from the average composition (zeroth-order) of the multi-layer. Relaxation is determined from the relative positions of the substrate with respect to the zeroth-order peak. For the low period number, the diffuse scatter from the multi-layer structure region arises from periodic, coherent crystallites. For the intermediate period number, the displacement fields around the multi-layer structure region transition to random coherent crystallites. At the higher period number, displacement fields of overlapping dislocations from relaxation of the random crystallites cause the initial stages of relaxation of the multi-layer structure. At the highest period number studied, relaxation of the multi-layer structure becomes bi-modal characterized by overlapping dislocations caused by mosaic block relaxation and periodically spaced misfit dislocations formed by 60°-type dislocations. The relaxation of the multi-layer structure has an exponential dependence on the diffuse scatter length-scale, which is shown to be a sensitive measure of the onset of relaxation.

  15. Innovative diffraction gratings for high-resolution resonant inelastic soft x-ray scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voronov, D.L.; Warwick, T.; Gullikson, E. M.

    2016-07-27

    High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs viamore » numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4{sup th} or 5{sup th} order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.« less

  16. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    NASA Astrophysics Data System (ADS)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  17. Higher Sensitivity in X-Ray Photography

    NASA Technical Reports Server (NTRS)

    Buggle, R. N.

    1986-01-01

    Hidden defects revealed if X-ray energy decreased as exposure progresses. Declining-potential X-ray photography detects fractures in thin metal sheet covered by unbroken sheet of twice thickness. Originally developed to check solder connections on multilayer circuit boards, technique has potential for other nondestructive testing.

  18. Spacer layer thickness dependent structural and magnetic properties of Co/Si multilayers

    NASA Astrophysics Data System (ADS)

    Roy, Ranjan; Singh, Dushyant; Kumar, M. Senthil

    2018-05-01

    In this article, the study of high resolution x-ray diffraction and magnetization of sputter deposited Co/Si multilayer is reported. Multilayers are prepared at ambient temperature by dc magnetron sputtering. Structural properties are studied by high resolution x-ray diffraction. Magnetic properties are studied at room temperature by vibrating sample magnetometer. Structural properties show that the Co layer is polycrystalline and the Si layer is amorphous. The magnetization study indicates that the samples are soft ferromagnetic in nature. The study of magnetization also shows that the easy axis of magnetization lies in the plane of the film.

  19. FABRICATION AND OPTOELECTRONIC PROPERTIES OF MgxZn1-xO ULTRATHIN FILMS BY LANGMUIR-BLODGETT TECHNOLOGY

    NASA Astrophysics Data System (ADS)

    Tang, Dongyan; Feng, Qian; Jiang, Enying; He, Baozhu

    2012-08-01

    By transferring MgxZn1-xO sol and stearic acid onto a hydrophilic silicon wafer or glass plate, the Langmuir-Blodgett (LB) multilayers of MgxZn1-xO (x:0, 0.2, 0.4) were deposited. After calcinations at 350°C for 0.5 h and at 500°C for 3 h, MgxZn1-xO ultrathin films were fabricated. The optimized parameters for monolayer formation and multilayer deposition were determined by the surface pressure-surface (Π-A) area and the transfer coefficient, respectively. The expended areas of stearic acid with MgxZn1-xO sols under Π-A isotherms inferred the interaction of stearic acid with MgxZn1-xO sols during the formation of monolayer at air-water interface. X-ray diffraction (XRD) was used to determine the crystal structures of MgxZn1-xO nanoparticles and ultrathin films. The surface morphologies of MgxZn1-xO ultrathin films were observed by scanning probe microscopy (AFM). And the optoelectronic properties of MgxZn1-xO were detected and discussed based on photoluminescence (PL) spectra.

  20. A compressed sensing X-ray camera with a multilayer architecture

    DOE PAGES

    Wang, Zhehui; Laroshenko, O.; Li, S.; ...

    2018-01-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  1. A compressed sensing X-ray camera with a multilayer architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Laroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  2. A multilayered approach to superconducting tunnel junction x ray detectors

    NASA Technical Reports Server (NTRS)

    Rippert, E. D.; Song, S. N.; Ketterson, J. B.; Maglic, S. R.; Lomatch, S.; Thomas, C.; Cheida, M. A.; Ulmer, M. P.

    1992-01-01

    'First generation' superconducting tunnel junction X-ray detectors (characterized by a single tunnel junction in direct contact with its substrate, with totally external amplification) remain more than an order of magnitude away from their theoretical energy resolutions which are in the order of eV's. The difficulties that first generation devices are encountering are being attacked by a 'second generation' of superconducting X-ray detector designs including quasiparticle trapping configurations and Josephson junction arrays. A second generation design concept, the multilayered superconducting tunnel junction X-ray detector, consisting of tens to hundreds of tunnel junctions stacked on top of one another (a superlattice), is presented. Some of the possibilities of this engineered materials approach include the tuning of phonon transmission characteristics of the material, suppression of parasitic quasiparticle trapping and intrinsic amplification.

  3. Highly efficient blazed grating with multilayer coating for tender X-ray energies.

    PubMed

    Senf, F; Bijkerk, F; Eggenstein, F; Gwalt, G; Huang, Q; Kruijs, R; Kutz, O; Lemke, S; Louis, E; Mertin, M; Packe, I; Rudolph, I; Schäfers, F; Siewert, F; Sokolov, A; Sturm, J M; Waberski, Ch; Wang, Z; Wolf, J; Zeschke, T; Erko, A

    2016-06-13

    For photon energies of 1 - 5 keV, blazed gratings with multilayer coating are ideally suited for the suppression of stray and higher orders light in grating monochromators. We developed and characterized a blazed 2000 lines/mm grating coated with a 20 period Cr/C- multilayer. The multilayer d-spacing of 7.3 nm has been adapted to the line distance of 500 nm and the blaze angle of 0.84° in order to provide highest efficiency in the photon energy range between 1.5 keV and 3 keV. Efficiency of the multilayer grating as well as the reflectance of a witness multilayer which were coated simultaneously have been measured. An efficiency of 35% was measured at 2 keV while a maximum efficiency of 55% was achieved at 4 keV. In addition, a strong suppression of higher orders was observed which makes blazed multilayer gratings a favorable dispersing element also for the low X-ray energy range.

  4. X-ray diffraction analysis of residual stress in zirconia dental composites

    NASA Astrophysics Data System (ADS)

    Allahkarami, Masoud

    Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.

  5. A mirror for lab-based quasi-monochromatic parallel x-rays

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  6. Deposition and characterization of B4C/CeO2 multilayers at 6.x nm extreme ultraviolet wavelengths

    NASA Astrophysics Data System (ADS)

    Sertsu, M. G.; Giglia, A.; Brose, S.; Park, D.; Wang, Z. S.; Mayer, J.; Juschkin, L.; Nicolosi, P.

    2016-03-01

    New multilayers of boron carbide/cerium dioxide (B4C/CeO2) combination on silicon (Si) substrate are manufactured to represent reflective-optics candidates for future lithography at 6.x nm wavelength. This is one of only a few attempts to make multilayers of this kind. Combination of several innovative experiments enables detailed study of optical properties, structural properties, and interface profiles of the multilayers in order to open up a room for further optimization of the manufacturing process. The interface profile is visualized by high-angle annular dark-field imaging which provides highly sensitive contrast to atomic number. Synchrotron based at-wavelength extreme ultraviolet (EUV) reflectance measurements near the boron (B) absorption edge allow derivation of optical parameters with high sensitivity to local atom interactions. X-ray reflectivity measurements at Cu-Kalpha (8 keV ) determine the period of multilayers with high in-depth resolution. By combining these measurements and choosing robust nonlinear curve fitting algorithms, accuracy of the results has been significantly improved. It also enables a comprehensive characterization of multilayers. Interface diffusion is determined to be a major cause for the low reflectivity performance. Optical constants of B4C and CeO2 layers are derived in EUV wavelengths. Besides, optical properties and asymmetric thicknesses of inter-diffusion layers (interlayers) in EUV wavelengths near the boron edge are determined. Finally, ideal reflectivity of the B4C/CeO2 combination is calculated by using optical constants derived from the proposed measurements in order to evaluate the potentiality of the design.

  7. Development of W/C soft x-ray multilayer mirror by ion beam sputtering (IBS) system for below 50A wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, A.; Bhattacharyya, D.

    A home-made Ion Beam Sputtering (IBS) system has been developed in our laboratory. Using the IBS system single layer W and single layer C film has been deposited at 1000eV Ar ion energy and 10mA ion current. The W-film has been characterized by grazing Incidence X-ray reflectrometry (GIXR) technique and Atomic Force Microscope technique. The single layer C-film has been characterized by Spectroscopic Ellipsometric technique. At the same deposition condition 25-layer W/C multilayer film has been deposited which has been designed for using as mirror at 30 Degree-Sign grazing incidence angle around 50A wavelength. The multilayer sample has been characterizedmore » by measuring reflectivity of CuK{alpha} radiation and soft x-ray radiation around 50A wavelength.« less

  8. Portable mini-chamber for temperature dependent studies using small angle and wide angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Dev, Arun Singh; Kumar, Dileep; Potdar, Satish; Pandit, Pallavi; Roth, Stephan V.; Gupta, Ajay

    2018-04-01

    The present work describes the design and performance of a vacuum compatible portable mini chamber for temperature dependent GISAXS and GIWAXS studies of thin films and multilayer structures. The water cooled body of the chamber allows sample annealing up to 900 K using ultra high vacuum compatible (UHV) pyrolytic boron nitride heater, thus making it possible to study the temperature dependent evolution of structure and morphology of two-dimensional nanostructured materials. Due to its light weight and small size, the chamber is portable and can be accommodated at synchrotron facilities worldwide. A systematic illustration of the versatility of the chamber has been demonstrated at beamline P03, PETRA-III, DESY, Hamburg, Germany. Temperature dependent grazing incidence small angle x-ray scattering (GISAXS) and grazing incidence wide angle x-ray scattering (GIWAXS) measurements were performed on oblique angle deposited Co/Ag multilayer structure, which jointly revealed that the surface diffusion in Co columns in Co/Ag multilayer enhances by increasing temperature from RT to ˜573 K. This results in a morphology change from columnar tilted structure to densely packed morphological isotropic multilayer.

  9. High-resolution high-efficiency multilayer Fresnel zone plates for soft and hard x-rays

    NASA Astrophysics Data System (ADS)

    Sanli, Umut T.; Keskinbora, Kahraman; Gregorczyk, Keith; Leister, Jonas; Teeny, Nicolas; Grévent, Corinne; Knez, Mato; Schütz, Gisela

    2015-09-01

    X-ray microscopy enables high spatial resolutions, high penetration depths and characterization of a broad range of materials. Calculations show that nanometer range resolution is achievable in the hard X-ray regime by using Fresnel zone plates (FZPs) if certain conditions are satisfied. However, this requires, among other things, aspect ratios of several thousands. The multilayer (ML) type FZPs, having virtually unlimited aspect ratios, are strong candidates to achieve single nanometer resolutions. Our research is focused on the fabrication of ML-FZPs which encompasses deposition of multilayers over a glass fiber via the atomic layer deposition (ALD), which is subsequently sliced in the optimum thickness for the X-ray energy by a focused ion beam (FIB). We recently achieved aberration free imaging by resolving 21 nm features with an efficiency of up to 12.5 %, the highest imaging resolution achieved by an ML-FZP. We also showed efficient focusing of 7.9 keV X-rays down to 30 nm focal spot size (FWHM). For resolutions below ~10 nm, efficiencies would decrease significantly due to wave coupling effects. To compensate this effect high efficiency, low stress materials have to be researched, as lower intrinsic stresses will allow fabrication of larger FZPs with higher number of zones, leading to high light intensity at the focus. As a first step we fabricated an ML-FZP with a diameter of 62 μm, an outermost zone width of 12 nm and 452 active zones. Further strategies for fabrication of high resolution high efficiency multilayer FZPs will also be discussed.

  10. Development of X-ray Microscopy at IPOE

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Mu, B.; Huang, Q.; Huang, C.; Yi, S.; Zhang, Z.; Wang, F.; Wang, Z.; Chen, L.

    2011-09-01

    In order to meet the different requirements of applications in synchrotron radiation and plasma diagnosis in China, focusing and imaging optics based on Kirkpatrick-Baez (KB) mirrors, compound refractive lenses (CRLs), and multilayer Laue lenses (MLLs) were studied in our lab. A one-dimensional KB microscope using mirrors with a dual-periodic multilayer coating was developed. The multilayer mirror can reflect both 4.75 keV (Ti K-line) and 8.05 keV (Cu K-line) simultaneously, which makes alignment easier. For hard x-ray microscopy, CRL was studied. Using a SU-8 resist planar parabolic CRL, a focal line of 28.8-μm width was obtained. To focus hard x-rays to nanometer levels efficiently, an MLL was fabricated using a WSi2/Si multilayer. The MLL consists of 324 alternating WSi2 and Si layers with a total thickness of 7.9 μm. (Recently, a much thicker multilayer has been deposited with a layer number of n = 1582 and a total thickness of 27 μm.) After deposition, the sample was sliced and polished into an approximate ideal aspect ratio (depth of the zone plate to outmost layer thickness); the measured results show an intact structure remains, and the surface roughness of the cross section is about 0.4 nm after grinding and polishing processes.

  11. Modeling of Interface and Internal Disorder Applied to XRD Analysis of Ag-Based Nano-Multilayers.

    PubMed

    Ariosa, Daniel; Cancellieri, Claudia; Araullo-Peters, Vicente; Chiodi, Mirco; Klyatskina, Elizaveta; Janczak-Rusch, Jolanta; Jeurgens, Lars P H

    2018-06-20

    Multilayered structures are a promising route to tailor electronic, magnetic, optical, and/or mechanical properties and durability of functional materials. Sputter deposition at room temperature, being an out-of-equilibrium process, introduces structural defects and confers to these nanosystems an intrinsic thermodynamical instability. As-deposited materials exhibit a large amount of internal atomic displacements within each constituent block as well as severe interface roughness between different layers. To access and characterize the internal multilayer disorder and its thermal evolution, X-ray diffraction investigation and analysis are performed systematically at differently grown Ag-Ge/aluminum nitride (AlN) multilayers (co-deposited, sequentially deposited with and without radio frequency (RF) bias) samples and after high-temperature annealing treatment. We report here on model calculations based on a kinematic formalism describing the displacement disorder both within the multilayer blocks and at the interfaces to reproduce the experimental X-ray diffraction intensities. Mixing and displacements at the interface are found to be considerably reduced after thermal treatment for co- and sequentially deposited Ag-Ge/AlN samples. The application of a RF bias during the deposition causes the highest interface mixing and introduces random intercalates in the AlN layers. X-ray analysis is contrasted to transmission electron microscopy pictures to validate the approach.

  12. Metallic multilayers at the nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankowski, A.F.

    1994-11-01

    The development of multilayer structures has been driven by a wide range of commercial applications requiring enhanced material behaviors. Innovations in physical vapor deposition technologies, in particular magnetron sputtering, have enabled the synthesis of metallic-based structures with nanoscaled layer dimensions as small as one-to-two monolayers. Parameters used in the deposition process are paramount to the Formation of these small layer dimensions and the stability of the structure. Therefore, optimization of the desired material properties must be related to assessment of the actual microstructure. Characterization techniques as x-ray diffraction and high resolution microscopy are useful to reveal the interface and layermore » structure-whether ordered or disordered crystalline, amorphous, compositionally abrupt or graded, and/or lattice strained Techniques for the synthesis of metallic multilayers with subnanometric layers will be reviewed with applications based on enhancing material behaviors as reflectivity and magnetic anisotropy but with emphasis on experimental studies of mechanical properties.« less

  13. Characteristics of the Energetic Igniters Through Integrating B/Ti Nano-Multilayers on TaN Film Bridge

    NASA Astrophysics Data System (ADS)

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Cai, XianYao; Deng, XinWu; Xiong, Jie; Zhang, WanLi

    2015-05-01

    The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10 ppm/°C. The scanning electron microscopy demonstrates that the layered structure of the B/Ti multilayer films is clearly visible with sharp and smooth interfaces. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 45 V reveal an excellent explosion performance by (B/Ti) n /TaN integration film bridge with small ignition delay time, high explosion temperature, much more bright flash of light, and much large quantities of the ejected product particles than TaN film bridge.

  14. Oxidation preventative capping layer for deep-ultra-violet and soft x-ray multilayers

    DOEpatents

    Prisbrey, Shon T.

    2004-07-06

    The invention uses iridium and iridium compounds as a protective capping layer on multilayers having reflectivity in the deep ultra-violet to soft x-ray regime. The iridium compounds can be formed in one of two ways: by direct deposition of the iridium compound from a prepared target or by depositing a thin layer (e.g., 5-50 angstroms) of iridium directly onto an element. The deposition energy of the incoming iridium is sufficient to activate the formation of the desired iridium compound. The compounds of most interest are iridium silicide (IrSi.sub.x) and iridium molybdenide (IrMo.sub.x).

  15. Fabrication and Properties of Multilayer Structures

    DTIC Science & Technology

    1983-09-01

    according to both the high x-ray count and a Read camera pattern which showed only the 111 8 SiC reflection in a tight ± 30 distribution about the substrate...structural rearrangement. X-ray analysis of the deposited films at the composition of Pd2 Si using a Read camera indicated strong texturing. The...Phys. 35, 547 (1964). 11. C.A. Neubauer and J.R. Randen, Proc. IEEE 52, 1234 (1964). 12. W.A. Tiller, "Fabrication and Properties of Multilayer

  16. Structural and magnetic properties of granular CoPd multilayers

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Figueroa, A. I.; Bartolomé, F.; Rubín, J.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Brookes, N. B.; Wilhelm, F.; Rogalev, A.; Bartolomé, J.

    2016-02-01

    Multilayers of bimetallic CoPd alloyed and assembled nanoparticles, prepared by room temperature sequential sputtering deposition on amorphous alumina, were studied by means of high-resolution transmission electron microscopy, x-ray diffraction, SQUID-based magnetometry and x-ray magnetic circular dichroism. Alloying between Co and Pd in these nanoparticles gives rise to a high perpendicular magnetic anisotropy. Their magnetic properties are temperature dependent: at low temperature, the multilayers are ferromagnetic with a high coercive field; at intermediate temperature the behavior is of a soft-ferromagnet, and at higher temperature, the perpendicular magnetic anisotropy in the nanoparticles disappears. The magnetic orbital moment to spin moment ratio is enhanced compared with Co bare nanoparticles and Co fcc bulk.

  17. Multilayer diffraction at 104 keV

    NASA Technical Reports Server (NTRS)

    Krieger, Allen S.; Blake, Richard L.; Siddons, D. P.

    1993-01-01

    We have measured the diffraction peak of a W:Si synthetic multilayer reflector at 104 keV using the High Energy Bonse-Hart Camera at the X-17B hard X-ray wiggler beam line of the National Synchrotron Light Source at Brookhaven National Laboratory. The characteristics of the diffraction peak are described and compared to theory.

  18. Effect of dry air on interface smoothening in reactive sputter deposited Co/Ti multilayer

    NASA Astrophysics Data System (ADS)

    Biswas, A.; Porwal, A.; Bhattacharya, Debarati; Prajapat, C. L.; Ghosh, Arnab; Nand, Mangla; Nayak, C.; Rai, S.; Jha, S. N.; Singh, M. R.; Bhattacharyya, D.; Basu, S.; Sahoo, N. K.

    2017-09-01

    Top surface roughness and interface roughness are one of the key elements which determine the performance of X-ray and neutron thin film multilayer devices. It has been observed that by mixing air with argon in sputtering ambience during deposition of Co layers, polarized neutron reflectivity (PNR) of Co/Ti supermirror polarizers can be improved substantially. Cross-sectional HRTEM measurement reveals that sharper interfaces in the supermirror can be achieved in case of deposition of the multilayer under mixed ambience of argon and air. In order to investigate this interface modification mechanism further, in this communication two sets of tri-layer Co/Ti/Co samples and 20-layer Co/Ti periodic multilayer samples have been prepared; in one set all the layers are deposited only under argon ambience and in the other set, Co layers are deposited under a mixed ambience of argon and air. These samples have been characterized by measuring specular and non-specular X-ray reflectivities (GIXR) with X-rays of 1.54 Å wavelength and polarized neutron reflectivity (PNR) with neutron of 2.5 Å wavelength at grazing angle of incidence. It has been observed that the X-ray and neutron specular reflectivities at Bragg peaks of 20 layer periodic multilayer increase when Co layers are deposited under mixed ambience of argon and air. The detail information regarding the effect of air on the interfaces and magnetic properties has been obtained by fitting the measured spectra. The above information has subsequently been supplemented by XRD and magnetic measurements on the samples. XPS and XANES measurements have also been carried out to investigate whether cobalt oxide or cobalt nitride layers are being formed due to use of air in sputtering ambience.

  19. Design and analysis of multilayer x ray/XUV microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1990-01-01

    The design and analysis of a large number of normal incidence multilayer x ray microscopes based on the spherical mirror Schwarzschild configuration is examined. Design equations for the spherical mirror Schwarzschild microscopes are summarized and used to evaluate mirror parameters for microscopes with magnifications ranging from 2 to 50x. Ray tracing and diffraction analyses are carried out for many microscope configurations to determine image resolution as a function of system parameters. The results are summarized in three publication included herein. A preliminary study of advanced reflecting microscope configurations, where aspherics are used in place of the spherical microscope mirror elements, has indicated that the aspherical elements will improve off-axis image resolution and increase the effective field of view.

  20. Development of X-ray laser media. Measurement of gain and development of cavity resonators for wavelengths near 130 angstroms, volume 3

    NASA Astrophysics Data System (ADS)

    Forsyth, J. M.

    1983-02-01

    In this document the authors summarize our investigation of the reflecting properties of X-ray multilayers. The breadth of this investigation indicates the utility of the difference equation formalism in the analysis of such structure. The formalism is particularly useful in analyzing multilayers whose structure is not a simple periodic bilayer. The complexity in structure can be either intentional, as in multilayers made by in-situ reflectance monitoring, or it can be a consequence of a degradation mechanism, such as random thickness errors or interlayer diffusion. Both the analysis of thickness errors and the analysis of interlayer diffusion are conceptually simple, effectively one dimensional problems that are straightforwared to pose. In the authors analysis of in-situ reflectance monitoring, they provide a quantitative understanding of an experimentally successful process that has not previously been treated theoretically. As X-ray multilayers come into wider use, there will undoubtedly be an increasing need for a more precise understanding of their reflecting properties. Thus, it is expected that in the future more detailed modeling will be undertaken of less easily specified structures than those above. The authors believe that their formalism will continue to prove useful in the modeling of these more complex structures. One such structure that may be of interest is that of a multilayer degraded by interfacial roughness.

  1. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  2. Formation of (Ti,Al)N/Ti{sub 2}AlN multilayers after annealing of TiN/TiAl(N) multilayers deposited by ion beam sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolique, V.; Jaouen, M.; Cabioc'h, T.

    2008-04-15

    By using ion beam sputtering, TiN/TiAl(N) multilayers of various modulation wavelengths ({lambda}=8, 13, and 32 nm) were deposited onto silicon substrates at room temperature. After annealing at 600 deg. C in vacuum, one obtains for {lambda}=13 nm a (Ti,Al)N/Ti{sub 2}AlN multilayer as it is evidenced from x-ray diffraction, high resolution transmission electron microscopy, and energy filtered electron imaging experiments. X-ray photoelectron spectroscopy (XPS) experiments show that the as-deposited TiAl sublayers contain a noticeable amount of nitrogen atoms which mean concentration varies with the period {lambda}. They also evidenced the diffusion of aluminum into TiN sublayers after annealing. Deduced from thesemore » observations, we propose a model to explain why this solid-state phase transformation depends on the period {lambda} of the multilayer.« less

  3. Study of multilayered SiGe semiconductor structures by X-ray diffractometry, grazing-incidence X-ray reflectometry, and secondary-ion mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunin, P. A., E-mail: yunin@ipmras.ru; Drozdov, Yu. N.; Drozdov, M. N.

    2013-12-15

    In this publication, we report the results of studying a multilayerd nonperiodic SiGe/Si structure by the methods of X-ray diffractometry, grazing-angle X-ray reflectometry, and secondary-ion mass spectrometry (SIMS). Special attention is paid to the processing of the component distribution profile using the SIMS method and to consideration of the most significant experimental distortions introduced by this method. A method for processing the measured composition distribution profile with subsequent consideration of the influence of matrix effects, variation in the etching rate, and remnants of ion sputtering is suggested. The results of such processing are compared with a structure model obtained uponmore » combined analysis of X-ray diffractometry and grazing-angle reflectometry data. Good agreement between the results is established. It is shown that the combined use of independent techniques makes it possible to improve the methods of secondary-ion mass spectrometry and grazing-incidence reflectometry as applied to an analysis of multilayered heteroepitaxial structures (to increase the accuracy and informativity of these methods)« less

  4. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Xu, W.; Bouet, N.

    2016-06-27

    We have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  5. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Xu, W., E-mail: weihexu@bnl.gov; Bouet, N.

    2016-06-27

    We have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  6. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Xu, W.; Bouet, N.

    In this study, we have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  7. Development and characterization of monolithic multilayer Laue lens nanofocusing optics

    DOE PAGES

    Nazaretski, E.; Xu, W.; Bouet, N.; ...

    2016-06-27

    In this study, we have developed an experimental approach to bond two independent linear Multilayer Laue Lenses (MLLs) together. A monolithic MLL structure was characterized using ptychography at 12 keV photon energy, and we demonstrated 12 nm and 24 nm focusing in horizontal and vertical directions, respectively. Fabrication of 2D MLL optics allows installation of these focusing elements in more conventional microscopes suitable for x-ray imaging using zone plates, and opens easier access to 2D imaging with high spatial resolution in the hard x-ray regime.

  8. Method for fabricating beryllium-based multilayer structures

    DOEpatents

    Skulina, Kenneth M.; Bionta, Richard M.; Makowiecki, Daniel M.; Alford, Craig S.

    2003-02-18

    Beryllium-based multilayer structures and a process for fabricating beryllium-based multilayer mirrors, useful in the wavelength region greater than the beryllium K-edge (111 .ANG. or 11.1 nm). The process includes alternating sputter deposition of beryllium and a metal, typically from the fifth row of the periodic table, such as niobium (Nb), molybdenum (Mo), ruthenium (Ru), and rhodium (Rh). The process includes not only the method of sputtering the materials, but the industrial hygiene controls for safe handling of beryllium. The mirrors made in accordance with the process may be utilized in soft x-ray and extreme-ultraviolet projection lithography, which requires mirrors of high reflectivity (>60%) for x-rays in the range of 60-140 .ANG. (60-14.0 nm).

  9. Hard X-ray multilayer zone plate with 25-nm outermost zone width

    NASA Astrophysics Data System (ADS)

    Takano, H.; Sumida, K.; Hirotomo, H.; Koyama, T.; Ichimaru, S.; Ohchi, T.; Takenaka, H.; Kagoshima, Y.

    2017-06-01

    We have improved the performance of a previously reported multilayer zone plate by reducing its outermost zone width, using the same multilayer materials (MoSi2 and Si) and fabrication technique. The focusing performance was evaluated at the BL24XU of SPring-8 using 20-keV X-rays. The line spread function (LSF) in the focal plane was measured using a dark-field knife-edge scan method, and the point spread function was obtained from the LSF through a tomographic reconstruction principle. The spatial resolution was estimated to be 30 nm, which is in relatively good agreement with the calculated diffraction-limited value of 25 nm, while the measured diffraction efficiency of the +1st order was 24%.

  10. Impact of B 4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors

    DOE PAGES

    Ghafoor, Naureen; Eriksson, Fredrik; Aquila, Andrew; ...

    2017-01-01

    We investigate the influence of B 4C incorporation during magnetron sputter deposition of Cr/Sc multilayers intended for soft X-ray reflective optics. Chemical analysis suggests formation of metal: boride and carbide bonds which stabilize an amorphous layer structure, resulting in smoother interfaces and an increased reflectivity. A near-normal incidence reflectivity of 11.7%, corresponding to a 67% increase, is achieved at λ = 3.11 nm upon adding 23 at.% (B + C). The advantage is significant for the multilayer periods larger than 1.8 nm, where amorphization results in smaller interface widths, for example, giving 36% reflectance and 99.89% degree of polarization nearmore » Brewster angle for a multilayer polarizer. The modulated ion-energy-assistance during the growth is considered vital to avoid intermixing during the interface formation even when B + C are added.« less

  11. Impact of B 4C co-sputtering on structure and optical performance of Cr/Sc multilayer X-ray mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghafoor, Naureen; Eriksson, Fredrik; Aquila, Andrew

    We investigate the influence of B 4C incorporation during magnetron sputter deposition of Cr/Sc multilayers intended for soft X-ray reflective optics. Chemical analysis suggests formation of metal: boride and carbide bonds which stabilize an amorphous layer structure, resulting in smoother interfaces and an increased reflectivity. A near-normal incidence reflectivity of 11.7%, corresponding to a 67% increase, is achieved at λ = 3.11 nm upon adding 23 at.% (B + C). The advantage is significant for the multilayer periods larger than 1.8 nm, where amorphization results in smaller interface widths, for example, giving 36% reflectance and 99.89% degree of polarization nearmore » Brewster angle for a multilayer polarizer. The modulated ion-energy-assistance during the growth is considered vital to avoid intermixing during the interface formation even when B + C are added.« less

  12. High efficiency replicated x-ray optics and fabrication method

    DOEpatents

    Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.

    2001-01-01

    Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.

  13. Solar Absorber Cu 2 ZnSnS 4 and its Parent Multilayers ZnS/SnS 2 /Cu 2 S Synthesized by Atomic Layer Deposition and Analyzed by X-ray Photoelectron Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Riha, Shannon C.; Zinovev, Alexander V.

    2015-06-01

    Presented here are results of x-ray photoelectron spectroscopy (XPS) on multilayers of metal-sulfide binaries ZnS, SnS2, and Cu2S grown by atomic layer deposition (ALD) on Si substrates, and of Cu2ZnSnS4 (CZTS) formed upon 450 °C annealing of the parent multilayer ZnS/SnS2/Cu2S. Survey and detailed spectral analysis of the multilayer ZnS/SnS2/Cu2S are presented step-wise, as each layer was sequentially added by ALD. The set of data is finalized with spectra of the resulting alloy CZTS. XPS analyses indicate significant mixing between SnS2 and Cu2S, which favors CZTS formation within the ALD approach.

  14. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    NASA Astrophysics Data System (ADS)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  15. Experimental and numerical study on transverse piezoelectricity of xBiInO3-(1 - x)PbTiO3 films by multilayer cantilevers

    NASA Astrophysics Data System (ADS)

    Sun, Ke-xue; Zhang, Shu-yi; Shui, Xiu-ji; Wasa, Kiyotaka

    2018-02-01

    The effective transverse piezoelectric coefficient of the piezoelectric films xBiInO3-(1 - x)PbTiO3 (x = 0,0.10,0.15,0.20) were studied experimentally and numerically by multilayer cantilevers. The xBiInO3-(1 - x)PbTiO3 thin films were deposited on (101)SrRuO3/(100)Pt/(100)MgO substrates and then covered with Pt electrode by RF-magnetron sputtering method. In experiments, the tip vibration amplitudes of the cantilevers for different x of the films were measured, in which the optimized compositions for maximizing the tip vibration can be found. Meanwhile, based on the bending model of multilayer piezoelectric cantilevers, the tip-deflection and transverse piezoelectricity of the cantilevers were simulated by COMSOL software. By comparing the experimental and numerical results, both are in agreement very well, and the mechanism of the optimized transverse piezoelectricity of the cantilevers was proposed finally.

  16. Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration

    NASA Astrophysics Data System (ADS)

    Kohmura, Yoshiki; Zhakhovsky, Vasily; Takei, Dai; Suzuki, Yoshio; Takeuchi, Akihisa; Inoue, Ichiro; Inubushi, Yuichi; Inogamov, Nail; Ishikawa, Tetsuya; Yabashi, Makina

    2018-03-01

    A narrow zero-intensity spot arising from an x-ray vortex has huge potential for future applications such as nanoscopy and nanofabrication. We here present an X-ray Free Electron Laser (XFEL) experiment with a focused vortex wavefront which generated high aspect ratio nanoneedles on a Cr/Au multi-layer (ML) specimen. A sharp needle with a typical width and height of 310 and 600 nm was formed with a high occurrence rate at the center of a 7.71 keV x-ray vortex on this ML specimen, respectively. The observed width exceeds the diffraction limit, and the smallest structures ever reported using an intense-XFEL ablation were fabricated. We found that the elemental composition of the nanoneedles shows a significant difference from that of the unaffected area of Cr/Au ML. All these results are well explained by the molecular dynamics simulations, leading to the elucidation of the needle formation mechanism on an ultra-fast timescale.

  17. Chemical Doping Effects in Multilayer MoS2 and its Application in Complementary Inverter.

    PubMed

    Yoo, Hocheon; Hong, Seongin; On, Sungmin; Ahn, Hyungju; Lee, Han-Koo; Hong, Young Ki; Kim, Sunkook; Kim, Jae-Joon

    2018-06-19

    Multilayer MoS2 has been gaining interests as a new semiconducting material for flexible displays, memory devices, chemical/bio sensors, and photodetectors. However, conventional multilayer MoS2 devices have exhibited limited performances due to the Schottky barrier (SB) and defects. Here, we demonstrate PDPP3T doping effects in multilayer MoS2, which results in improved electrical characteristics (~3.2X mobility compared to the baseline and a high current on/off ratio of 106). Synchrotron-based study using X-ray photoelectron spectroscopy (XPS) and grazing-incidence wide-angle X-ray diffraction (GIWAXD) provides mechanisms that align the edge-on crystallites (97.5 %) of the PDPP3T as well as a larger interaction with MoS2 that leads to dipole and charge transfer effects (at annealing temperature of 300 °C), which support the observed enhancement of the electrical characteristics. Furthermore, we demonstrate a hybrid CMOS inverter using the PDPP3T-doped MoS2 and organic DNTT transistors as n- and p-channels, respectively. The proposed hybrid inverter offers an ultra-high voltage gain of ~205 V/V.

  18. Microstructure and composition analysis of low-Z/low-Z multilayers by combining hard and resonant soft X-ray reflectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, P. N., E-mail: pnrao@rrcat.gov.in; Rai, S. K.; Srivastava, A. K.

    2016-06-28

    Microstructure and composition analysis of periodic multilayer structure consisting of a low electron density contrast (EDC) material combination by grazing incidence hard X-ray reflectivity (GIXR), resonant soft X-ray reflectivity (RSXR), and transmission electron microscopy (TEM) are presented. Measurements of reflectivity at different energies allow combining the sensitivity of GIXR data to microstructural parameters like layer thicknesses and interfacing roughness, with the layer composition sensitivity of RSXR. These aspects are shown with an example of 10-period C/B{sub 4}C multilayer. TEM observation reveals that interfaces C on B{sub 4}C and B{sub 4}C on C are symmetric. Although GIXR provides limited structural informationmore » when EDC between layers is low, measurements using a scattering technique like GIXR with a microscopic technique like TEM improve the microstructural information of low EDC combination. The optical constants of buried layers have been derived by RSXR. The derived optical constants from the measured RSXR data suggested the presence of excess carbon into the boron carbide layer.« less

  19. Characteristics of the Energetic Igniters Through Integrating B/Ti Nano-Multilayers on TaN Film Bridge.

    PubMed

    Yan, YiChao; Shi, Wei; Jiang, HongChuan; Cai, XianYao; Deng, XinWu; Xiong, Jie; Zhang, WanLi

    2015-12-01

    The energetic igniters through integrating B/Ti nano-multilayers on tantalum nitride (TaN) ignition bridge are designed and fabricated. The X-ray diffraction (XRD) and temperature coefficient of resistance (TCR) results show that nitrogen content has a great influence on the crystalline structure and TCR. TaN films under nitrogen ratio of 0.99 % exhibit a near-zero TCR value of approximately 10 ppm/°C. The scanning electron microscopy demonstrates that the layered structure of the B/Ti multilayer films is clearly visible with sharp and smooth interfaces. The electrical explosion characteristics employing a capacitor discharge firing set at the optimized charging voltage of 45 V reveal an excellent explosion performance by (B/Ti) n /TaN integration film bridge with small ignition delay time, high explosion temperature, much more bright flash of light, and much large quantities of the ejected product particles than TaN film bridge.

  20. Structure and magnetism in Co/X, Fe/Si, and Fe/(FeSi) multilayers

    NASA Astrophysics Data System (ADS)

    Franklin, Michael Ray

    Previous studies have shown that magnetic behavior in multilayers formed by repeating a bilayer unit comprised of a ferromagnetic layer and a non-magnetic spacer layer can be affected by small structural differences. For example, a macroscopic property such as giant magnetoresistance (GMR) is believed to depend significantly upon interfacial roughness. In this study, several complimentary structural probes were used to carefully characterize the structure of several sputtered multilayer systems-Co/Ag, Co/Cu, Co/Mo, Fe/Si, and Fe//[FeSi/]. X-ray diffraction (XRD) studies were used to examine the long-range structural order of the multilayers perpendicular to the plane of the layers. Transmission electron diffraction (TED) studies were used to probe the long-range order parallel to the layer plane. X-ray Absorption Fine Structure (XAFS) studies were used to determine the average local structural environment of the ferromagnetic atoms. For the Co/X systems, a simple correlation between crystal structure and saturation magnetization is discovered for the Co/Mo system. For the Fe/X systems, direct evidence of an Fe-silicide is found for the /[FeSi/] spacer layer but not for the Si spacer layer. Additionally, differences were observed in the magnetic behavior between the Fe in the nominally pure Fe layer and the Fe contained in the /[FeSi/] spacer layers.

  1. Carbon buffer layers for smoothing superpolished glass surfaces as substrates for molybdenum /silicon multilayer soft-x-ray mirrors.

    PubMed

    Stock, H J; Hamelmann, F; Kleineberg, U; Menke, D; Schmiedeskamp, B; Osterried, K; Heidemann, K F; Heinzmann, U

    1997-03-01

    Zerodur and BK7 glass substrates (developed by Fa. Glaswerke Schott, D-55014 Mainz, Germany) from Carl Zeiss Oberkochen polished to a standard surface roughness of varsigma = 0.8 nm rms were coated with a C layer by electron-beam evaporation in the UHV. The roughness of the C-layer surfaces is reduced to 0.6 nm rms. A normal-incidence reflectance of 50% at a wavelength of 13 nm was measured for a Mo/Si multilayer soft-x-ray mirror with 30 double layers (N = 30) deposited onto the BK7/C substrate, whereas a similar Mo/Si multilayer (N = 30) evaporated directly onto the bare BK7 surface turned out to show a reflectance of only 42%.

  2. Development of Ni-based multilayers for future focusing soft gamma ray telescopes

    NASA Astrophysics Data System (ADS)

    Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.

    2015-09-01

    Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.

  3. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  4. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  5. High resolution microtomography for density and spatial infomation about wood structures

    Treesearch

    Barbara Illman; Betsy Dowd

    1999-01-01

    Microtomography has successfully been used to characterize loss of structural integrity of wood. Tomographic images were generated with the newly developed third generation x-ray computed microtomography (XCMT) instrument at the X27A beamline at the national Synchrotron Light source (NSLS). The beamline is equipped with high-flux x-ray monochromator based on multilayer...

  6. Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses

    DOE PAGES

    Huang, Xiaojing; Xu, Weihe; Nazaretski, Evgeny; ...

    2017-04-05

    Here, we report scanning hard x-ray imaging with a monolithic focusing optic consisting of two multilayer Laue lenses (MLLs) bonded together. With optics pre-characterization and accurate control of the bonding process, we show that a common focal plane for both MLLs can be realized at 9.317 keV. Using bonded MLLs, we obtained a scanning transmission image of a star test pattern with a resolution of 50 × 50 nm 2. By applying a ptychography algorithm, we obtained a probe size of 17 × 38 nm 2 and an object image with a resolution of 13 × 13 nm 2. Finally,more » the significant reduction in alignment complexity for bonded MLLs will greatly extend the application range in both scanning and full-field x-ray microscopies.« less

  7. Hard x-ray scanning imaging achieved with bonded multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaojing; Xu, Weihe; Nazaretski, Evgeny

    Here, we report scanning hard x-ray imaging with a monolithic focusing optic consisting of two multilayer Laue lenses (MLLs) bonded together. With optics pre-characterization and accurate control of the bonding process, we show that a common focal plane for both MLLs can be realized at 9.317 keV. Using bonded MLLs, we obtained a scanning transmission image of a star test pattern with a resolution of 50 × 50 nm 2. By applying a ptychography algorithm, we obtained a probe size of 17 × 38 nm 2 and an object image with a resolution of 13 × 13 nm 2. Finally,more » the significant reduction in alignment complexity for bonded MLLs will greatly extend the application range in both scanning and full-field x-ray microscopies.« less

  8. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  9. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    2016-08-30

    The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm 2 spatial resolution x-ray fluorescence images.

  10. Soft X-ray Foucault test: A path to diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  11. X-ray optics made from thin plastic foils

    NASA Astrophysics Data System (ADS)

    Schnopper, Herbert W.; Silver, Eric H.; Ingram, Russell H.; Christensen, Finn E.; Hussain, Ahsen M.; Barbera, Marco; Romaine, Suzanne E.; Collura, Alfonso; Kenter, Almus T.; Bandler, Simon; Murray, Stephen S.

    1999-09-01

    New design concepts and materials can be used to produce very lightweight, thin foil approximations, to Wolter I and other x-ray optics. Structures are designed around a central hub and spacers that connect one spoked wheels. Figure defining, thin pins span the distance between the wheels. Thin, metal coated or multilayered, plastic foils can be formed into cones, cylinders or spirals for x-ray telescopes or lenses. Imaging and spectroscopic data obtained with x- ray lenses are presented and they indicate that a 60 cm diameter, 4.65 m focal length x-ray telescope can have a half power diameter of < 2 arcmin.

  12. EUV Spectroscopy of High-redshift X-ray Objects

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael Paul; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.

    2010-03-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGNs for example, will have their maxima redshifted into the EUV waveband ( 90-912 Å/0.1-0.01 keV). Consequently, a wealth of spectral diagnostics, provided by, for example, the Fe L-shell complex ( 60-6 Å/0.2-2.0 keV) and the O VII/VIII lines ( 20 Å/0.5 keV), will be lost to X-ray instruments operating at traditional ( 0.5-10 keV) and higher X-ray energies. There are precedents in other wavebands. For example, HST evolutionary studies will become largely the province of JWST. Despite the successes of EUVE, the ROSAT WFC, and the Chandra LETG, the EUV continues to be unappreciated and under-utilized, partly because of a preconception that absorption by neutral galactic Hydrogen in the ISM prevents any useful extragalactic measurements at all EUV wavelengths and, until recently, by a lack of a suitable enabling technology. Thus, if future planned X-ray missions (e.g., IXO, Gen-X) are optimized again for traditional X-ray energies, their performance (effective area, resolving power) will be cut off at ultrasoft X-ray energies or at best be radically reduced in the EUV. This opens up a critical gap in performance located right at short EUV wavelengths, where the critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nano-laminate fabrication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs.

  13. Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon

    2017-05-01

    We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.

  14. Soft X-ray multilayers produced by sputtering and molecular beam epitaxy (MBE) - Substrate and interfacial roughness

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick A.; Slaughter, J. M.; Powers, K. D.; Falco, Charles M.

    1988-01-01

    Roughness measurements were made on uncoated silicon wafers and float glass using a WYKO TOPO-3D phase shifting interferometry, and the results are reported. The wafers are found to be slightly smoother than the flat glass. The effects of different cleaning methods and of the deposition of silicon 'buffer layers' on substrate roughness are examined. An acid cleaning method is described which gives more consistent results than detergent cleaning. Healing of the roughness due to sputtered silicon buffer layers was not observed on the length scale probed by the WYKO. Sputtered multilayers are characterized using both the WYKO interferometer and low-angle X-ray diffraction in order to yield information about the roughness of the top surface and of the multilayer interfaces. Preliminary results on film growth using molecular beam epitaxy are also presented.

  15. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.

  16. Molecular adsorption and multilayer growth of pentacene on Cu(100):Layer structure and energetics

    NASA Astrophysics Data System (ADS)

    Satta, M.; Iacobucci, S.; Larciprete, R.

    2007-04-01

    We used the partial charge tight binding method to perform a full structure optimization to determine equilibrium adsorption geometries, energetics, and local charge redistribution for molecular adsorption and multilayer growth of pentacene on Cu(100). We found that single molecule adsorption induces only a localized perturbation of the metal lattice which is limited to the topmost layers. At saturation coverage four stable topologies (Brick, Wave, Lines and Zigzag) were identified, all based on pentacene molecules lying flat on the metal surface and with the central phenyl ring adsorbed in top position. Only two (Brick and Wave) out of the four structures are able to sustain multilayer growth. In both cases, assembling beyond the second layer corresponds to a transition from the flat to a tilted geometry, in which the pentacenes adopt a face-plane-face arrangement leading to a herringbone structure. The energetics of the different structure are reported as a function of the molecular number density of the pentacene multilayer by calculating cohesive, stress, and electrostatic energies. The dominant tilted molecular orientation in the pentacene multilayer is in agreement with the average tilt angle of 65° between the molecular plane and the Cu surface derived by near edge x-ray absorption spectroscopy of a four monolayer pentacene film deposited on Cu(100).

  17. Interface structure in nanoscale multilayers near continuous-to-discontinuous regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, P. C.; Majhi, A.; Nayak, M., E-mail: mnayak@rrcat.gov.in

    2016-07-28

    Interfacial atomic diffusion, reaction, and formation of microstructure in nanoscale level are investigated in W/B{sub 4}C multilayer (ML) system as functions of thickness in ultrathin limit. Hard x-ray reflectivity (XRR) and x-ray diffuse scattering in conjunction with x-ray absorption near edge spectroscopy (XANES) in soft x-ray and hard x-ray regimes and depth profiling x-ray photoelectron spectroscopy (XPS) have been used to precisely evaluate detailed interfacial structure by systematically varying the individual layer thickness from continuous-to-discontinuous regime. It is observed that the interfacial morphology undergoes an unexpected significant modification as the layer thickness varies from continuous-to-discontinuous regime. The interfacial atomic diffusionmore » increases, the physical density of W layer decreases and that of B{sub 4}C layer increases, and further more interestingly the in-plane correlation length decreases substantially as the layer thickness varies from continuous-to-discontinuous regime. This is corroborated using combined XRR and x-ray diffused scattering analysis. XANES and XPS results show formation of more and more tungsten compounds at the interfaces as the layer thickness decreases below the percolation threshold due to increase in the contact area between the elements. The formation of compound enhances to minimize certain degree of disorder at the interfaces in the discontinuous region that enables to maintain the periodic structure in ML. The degree of interfacial atomic diffusion, interlayer interaction, and microstructure is correlated as a function of layer thickness during early stage of film growth.« less

  18. High Reflectance Nanoscale V/Sc Multilayer for Soft X-ray Water Window Region.

    PubMed

    Huang, Qiushi; Yi, Qiang; Cao, Zhaodong; Qi, Runze; Loch, Rolf A; Jonnard, Philippe; Wu, Meiyi; Giglia, Angelo; Li, Wenbin; Louis, Eric; Bijkerk, Fred; Zhang, Zhong; Wang, Zhanshan

    2017-10-10

    V/Sc multilayer is experimentally demonstrated for the first time as a high reflectance mirror for the soft X-ray water window region. It primarily works at above the Sc-L edge (λ = 3.11 nm) under near normal incidence while a second peak appears at above the V-L edge (λ = 2.42 nm) under grazing incidence. The V/Sc multilayer fabricated with a d-spacing of 1.59 nm and 30 bilayers has a smaller interface width (σ = 0.27 and 0.32 nm) than the conventional used Cr/Sc (σ = 0.28 and 0.47 nm). For V/Sc multilayer with 30 bilayers, the introduction of B 4 C barrier layers has little improvement on the interface structure. As the number of bilayers increasing to 400, the growth morphology and microstructure of the V/Sc layers evolves with slightly increased crystallization. Nevertheless, the surface roughness remains to be 0.25 nm. A maximum soft X-ray reflectance of 18.4% is measured at λ = 3.129 nm at 9° off-normal incidence using the 400-bilayers V/Sc multilayer. According to the fitted model, an s-polarization reflectance of 5.2% can also be expected at λ = 2.425 nm under 40° incidence. Based on the promising experimental results, further improvement of the reflectance can be achieved by using a more stable deposition system, exploring different interface engineering methods and so on.

  19. Improvement of mechanical and tribological properties in steel surfaces by using titanium-aluminum/titanium-aluminum nitride multilayered system

    NASA Astrophysics Data System (ADS)

    Ipaz, L.; Caicedo, J. C.; Esteve, J.; Espinoza-Beltran, F. J.; Zambrano, G.

    2012-02-01

    Improvement of mechanical and tribological properties on AISI D3 steel surfaces coated with [Ti-Al/Ti-Al-N]n multilayer systems deposited in various bilayer periods (Λ) via magnetron co-sputtering pulsed d.c. method, from a metallic binary target; has been studied in this work exhaustively. The multilayer coatings were characterized in terms of structural, chemical, morphological, mechanical and tribological properties by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy, nanoindentation, pin-on-disc and scratch tests, respectively. The failure mode mechanisms were studied by optical microscopy. Results from X-ray diffraction analysis revealed that the crystal structure of TiAl/TiAlN multilayer coatings has a tetragonal and FCC NaCl-type lattice structures for Ti-Al and Ti-Al-N, respectively, i.e., it was found to be non-isostructural multilayers. An enhancement of both hardness and elastic modulus up to 29 GPa and 260 GPa, respectively, was observed as the bilayer periods (Λ) in the coatings were decreased. The sample with a bilayer period (Λ) of 25 nm and bilayer number n = 100 showed the lowest friction coefficient (∼0.28) and the highest critical load (45 N), corresponding to 2.7 and 1.5 times better than those values for the coating deposited with n = 1, respectively. These results indicate an enhancement of mechanical, tribological and adhesion properties, comparing to the [Ti-Al/Ti-Al-N]n multilayer systems with 1 bilayer at 26%, 63% and 33%, respectively. This enhancement in hardness and toughness for multilayer coatings could be attributed to the different mechanisms for layer formation with nanometric thickness such as the novel Ti-Al/Ti-Al-N effect and the number of interfaces that act as obstacles for the crack deflection and dissipation of crack energy.

  20. Analysis of multilayer and single layer X-ray detectors for contrast-enhanced mammography using imaging task

    NASA Astrophysics Data System (ADS)

    Allec, Nicholas; Abbaszadeh, Shiva; Karim, Karim S.

    2011-03-01

    A multilayer (single-shot) detector has previously been proposed for contrast-enhanced mammography. The multilayer detector has the benefit of avoiding motion artifacts due to simultaneous acquisition of both high and low energy images. A single layer (dual-shot) detector has the benefit of better control over the energy separation since the incident beams can be produced and filtered separately. In this paper the performance of the multilayer detector is compared to that of a single layer detector using an ideal observer detectability index which is determined from an extended cascaded systems model and a defined imaging task. The detectors are assumed to have amorphous selenium direct conversion layers, however the same theoretical techniques used here may be applied to other types of integrating detectors. The anatomical noise caused by variation of glandularity within the breast is known to dominate the noise power spectrum at low frequencies due to its inverse power law dependence and is thus taken into account in our model to provide an accurate estimate of the detectability index. The conditions leading to the optimal detectability index, such as tube voltage, filtration, and weight factor are reported for both detector designs.

  1. The NuSTAR Mission: Implementation and Science Prospects

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2009-01-01

    NuSTAR is NASA's next X-ray observatory scheduled to be launched in 2011. It will have two multi-layered X-ray mirror assemblies capable of focusing X-rays in the band of 5 to 80 keV, providing unprecedented detection and imaging sensitivity in a band that only coded-mask or collimated detection has been possible. In this talk I will describe the instrumentation and the prospects of using it to perform various kinds of astronomical studies.

  2. Grazing Incidence Nickel Replicated Optics for Hard X-ray Telescopes

    NASA Technical Reports Server (NTRS)

    Peturzzo, J. J., III; Elsner, R. F.; Joy, M. K.; ODell, S. L.; Weisskopf, M. C.

    1997-01-01

    The requirements for future hard x-ray (up to 50 keV) telescopes are lightweight, high angular resolution optics with large collecting areas. Grazing incidence replicated optics are an excellent candidate for this, type of mission, providing better angular resolution, comparable area/unit mass, and simpler fabrication than multilayer-coated foils. Most importantly, the technology to fabricate the required optics currently exists. A comparison of several hard x-ray telescope designs will be presented.

  3. High numerical aperture multilayer Laue lenses

    DOE PAGES

    Morgan, Andrew J.; Prasciolu, Mauro; Andrejczuk, Andrzej; ...

    2015-06-01

    The ever-increasing brightness of synchrotron radiation sources demands improved X-ray optics to utilise their capability for imaging and probing biological cells, nanodevices, and functional matter on the nanometer scale with chemical sensitivity. Here we demonstrate focusing a hard X-ray beam to an 8 nm focus using a volume zone plate (also referred to as a wedged multilayer Laue lens). This lens was constructed using a new deposition technique that enabled the independent control of the angle and thickness of diffracting layers to microradian and nanometer precision, respectively. This ensured that the Bragg condition is satisfied at each point along themore » lens, leading to a high numerical aperture that is limited only by its extent. We developed a phase-shifting interferometric method based on ptychography to characterise the lens focus. The precision of the fabrication and characterisation demonstrated here provides the path to efficient X-ray optics for imaging at 1 nm resolution.« less

  4. Local atomic structure of Fe/Cr multilayers: Depth-resolved method

    NASA Astrophysics Data System (ADS)

    Babanov, Yu. A.; Ponomarev, D. A.; Devyaterikov, D. I.; Salamatov, Yu. A.; Romashev, L. N.; Ustinov, V. V.; Vasin, V. V.; Ageev, A. L.

    2017-10-01

    A depth-resolved method for the investigation of the local atomic structure by combining data of X-ray reflectivity and angle-resolved EXAFS is proposed. The solution of the problem can be divided into three stages: 1) determination of the element concentration profile with the depth z from X-ray reflectivity data, 2) determination of the X-ray fluorescence emission spectrum of the element i absorption coefficient μia (z,E) as a function of depth and photon energy E using the angle-resolved EXAFS data Iif (E , ϑl) , 3) determination of partial correlation functions gij (z , r) as a function of depth from μi (z , E) . All stages of the proposed method are demonstrated on a model example of a multilayer nanoheterostructure Cr/Fe/Cr/Al2O3. Three partial pair correlation functions are obtained. A modified Levenberg-Marquardt algorithm and a regularization method are applied.

  5. X-ray optics made from thin plastic foils

    NASA Astrophysics Data System (ADS)

    Schnopper, H. W.; Barbera, M.; Ingram, R.; Silver, E.; Romaine, S.; Bandler, S.; Murray, S.; Christensen, F. E.; Hussain, A.; Collura, A.

    2000-10-01

    New design concepts and materials can be used to produce lightweight, thin foil approximations, to Wolter I and other X-ray optics. Structures are designed around a central hub and spacers that connect two (or three) spoked wheels. Figure defining, thin pins span the distance between the wheels. Thin, metal coated or multilayered, plastic foils can be formed into full cones, cylinders or spirals for X-ray telescopes or lenses. High resolution X-ray scattering data were obtained for single foils at Cu K (8 KeV). Multi-energy (0.28 - 8 KeV) data were obtained with a multichannel plate imager in a 17 m beam line with a point-to-point focusing, cylindrical X-ray lens with 14 shells. The largest shell has a diameter of 175 mm and a length of 100 mm. Typical images have a FWHM of 20 arcsec. The results indicate that a 60 cm diameter, 4.65 m focal length X-ray telescope can have an HPD of considerably less than 2 arcmin. This research is supported, in part by NASA Grant NAG5-5268, ONR Grant N00014-95-1-1248, and by institutional funding from the Smithsonian Astrophysical Observatory. The SAO multilayer facility receives support from NASA Grant NAG5-5095. This work made use of the MRSEC Shared Experimental Facilities at MIT supported by NSF Grant DMR94-00334.

  6. Electrical enhancement of direct methanol fuel cells by metal-plasma ion implantation Pt-Ru/C multilayer catalysts.

    PubMed

    Weng, Ko-Wei; Chen, Yung-Lin; Chen, Ya-Chi; Lin, Tai-Nan

    2009-02-01

    Direct methanol fuel cells (DMFC) have been widely studied owing to their simple cell configuration, high volume energy density, short start-up time, high operational reliability and other favorable characteristics. However, major limitations include high production cost, poisoning of the catalyst and methanol crossover. This study adopts a simple technique for preparing Pt-Ru/C multilayer catalysts, including magnetron sputtering (MS) and metal-plasma ion implantation (MPII). The Pt catalysts were sputtered onto the gas diffusion layer (GDL), followed by the implantation of Ru catalysts using MPII (at an accelerating voltage of 20 kV and an implantation dose of 1 x 10(16) ions/cm2). Pt-Ru is repeatedly processed to prepare Pt-Ru/C multilayer catalysts. The catalyst film structure and microstructure were analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electronic microscopy (SEM), respectively. The cell performance was tested using a potential stat/galvano-stat. The results reveal that the membrane electrode assembly (MEA) of four multilayer structures enhances the cell performance of DMFC. The measured power density is 2.2 mW/cm2 at a methanol concentration of 2 M, with an OCV of 0.493 V.

  7. X-ray reflectivity study of formation of multilayer porous anodic oxides of silicon.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Y.; Fenollosa, R.; Parkhutik, V.

    1999-07-21

    The paper reports data on the kinetics of anodic oxide films growth on silicon in aqueous solutions of phosphoric acids as well as a study of the morphology of the oxides grown in a special regime of the oscillating anodic potential. X-ray reflectivity measurements were performed on the samples of anodic oxides using an intense synchrotron radiation source. They have a multilayer structure as revealed by theoretical fitting of the reflectivity data. The oscillations of the anodic potential are explained in terms of synchronized oxidation/dissolution reactions at the silicon surface and accumulation of mechanic stress in the oxide film.

  8. Relating structure with morphology: A comparative study of perfect Langmuir Blodgett multilayers

    NASA Astrophysics Data System (ADS)

    Mukherjee, Smita; Datta, Alokmay; Giglia, Angelo; Mahne, Nichole; Nannarone, Stefano

    2008-01-01

    Atomic force microscopy and X-ray reflectivity of metal-stearate (MSt) Langmuir-Blodgett films on hydrophilic Silicon (1 0 0), show dramatic reduction in 'pinhole' defects when metal M is changed from Cd to Co, along with excellent periodicity in multilayer, with hydrocarbon tails tilted 9.6° from vertical for CoSt (untilted for CdSt). Near edge X-ray absorption fine structure (NEXAFS) and Fourier transform infra-red (FTIR) spectroscopies indicate bidentate bridging metal-carboxylate coordination in CoSt (unidentate in CdSt), underscoring role of headgroup structure in determining morphology. FTIR studies also show increased packing density in CoSt, consistent with increased coverage.

  9. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  10. Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER

    NASA Astrophysics Data System (ADS)

    Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele

    2004-02-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.

  11. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer

    PubMed Central

    Song, Jeong-Gyu; Ryu, Gyeong Hee; Lee, Su Jeong; Sim, Sangwan; Lee, Chang Wan; Choi, Taejin; Jung, Hanearl; Kim, Youngjun; Lee, Zonghoon; Myoung, Jae-Min; Dussarrat, Christian; Lansalot-Matras, Clement; Park, Jusang; Choi, Hyunyong; Kim, Hyungjun

    2015-01-01

    The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1−xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1−xWxOy. Various spectroscopic and microscopic results indicate that the synthesized Mo1−xWxS2 alloys have complete mixing of Mo and W atoms and tunable band gap by systematically controlled composition and layer number. Based on this, we synthesize a vertically composition-controlled (VCC) Mo1−xWxS2 multilayer using five continuous super-cycles with different cycle ratios for each super-cycle. Angle-resolved X-ray photoemission spectroscopy, Raman and ultraviolet–visible spectrophotometer results reveal that a VCC Mo1−xWxS2 multilayer has different vertical composition and broadband light absorption with strong interlayer coupling within a VCC Mo1−xWxS2 multilayer. Further, we demonstrate that a VCC Mo1−xWxS2 multilayer photodetector generates three to four times greater photocurrent than MoS2- and WS2-based devices, owing to the broadband light absorption. PMID:26204328

  12. Structural and Dynamical Aspects of Electrodeposition

    DTIC Science & Technology

    1993-05-01

    Lfquido Utilizando Ondas Estacionarias de Rayos X " Investigaci6n y Ciencia (Scientific American in Spanish) (invited and submitted) 10. Bommarito, G. M...investigations researchers have emphasized the underpotential deposition of metal mono and multilayers employing electrochemical, x -ray based and ultra high...of adsorbate employed. 2. The underpotential deposition of copper on an iodine covered platinum surface by x -ray based techniques with emphasis on: a

  13. X-Ray Performance of Multilayer Diffraction Diagnostics

    DTIC Science & Technology

    1989-11-13

    wafers to fused quartz and superpolished Zerodur were used. Multilayers were deposited onto Si wafer substrates nd cleaved to rectangular sections 3.2...except it was noted that for depositions made on the supersmooth quartz and Zerodur substrates that the multilayer surfaces were slightly smoother than...values from the multilavers deposited on supersmooth quartz and Zerodur substrates were noticeabLe Lower than the U/Si multilav;ers on silicon

  14. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  15. Effects of interfaces on the thermal conductivity in Si/Si0.75Ge0.25 multilayer with varying Au layers

    NASA Astrophysics Data System (ADS)

    Hu, Yangsen; Wu, Zhenghua; Ye, Fengjie; Hu, Zhiyu

    2018-02-01

    The manoeuvre of thermal transport property across multilayer films with inserted metal layers through controlling the metal-nonmetal interfaces is of fundamental interest. In this work, amorphous Si/Si0.75Ge0.25 multilayer films inserted with varying Au layers were fabricated by magnetron sputtering. The structure and sharp interface of multilayers films were characterized by low angle x-ray diffraction (LAXRD), grazing incidence small angle x-ray scattering (GISAXS) and scanning electron microscopy (SEM). A differential 3ω method was applied to measure the effective thermal conductivity. The measurements show that thermal conductivity has changed as varying Au layers. Thermal conductivity increased from 0.94 to 1.31 Wm-1K-1 while Si0.75Ge0.25 layer was replaced by different Au layers, which was attributed to the strong electron-phonon coupling and interface thermal resistance in a metal-nonmetal multilayered system. Theoretical calculation combined with experimental results indicate that the thermal conductivity of the multilayer film could be facilely controlled by introducing different number of nanoconstructed metal-nonmetal interfaces, which provide a more insightful understanding of the thermal transport manipulation mechanism of the thin film system with inserting metal layers.

  16. Hard X-Ray And Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul; Johnson, William B. (Technical Monitor)

    2001-01-01

    The development of a hard X-ray telescope requires new technology for both substrates and coatings. Our activities in these two areas were carried out virtually in parallel during most of the past few years. They are converging on the production of our first integral conical, substrate electroformed mirror that will be coated with a graded d-spacing multilayer. Its imaging properties and effective area will be measured in hard X-ray beams. We discuss each of these activities separately in the following two sections.

  17. Small-Angle X-ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

  18. Small Angle X ray Scattering (SAXS) Instrument Performance and Validation Using Silver Nanoparticles

    DTIC Science & Technology

    2016-12-01

    Intercalibration of small-angle X- Ray and neutron-scattering data. Journal of Applied Crystallography . 1988;21:629–638. 7. Zhang F, Ilavsky J, Long GG...Materials Transactions A. 2009;41:1151–1158. 8. Kusz J, Bohm H. Performance of a confocal multilayer X-ray optic. Journal of Applied Crystallography ...Journal of Applied Crystallography . 2004;37:369–380. 10. Orthaber D, Bergmann A, Glatter O. SAXS experiments on absolute scale with Kratky systems using

  19. Heterointerface engineering of broken-gap InAs/GaSb multilayer structures.

    PubMed

    Liu, Jheng-Sin; Zhu, Yan; Goley, Patrick S; Hudait, Mantu K

    2015-02-04

    Broken-gap InAs/GaSb strain balanced multilayer structures were grown by molecular beam epitaxy (MBE), and their structural, morphological, and band alignment properties were analyzed. Precise shutter sequence during the MBE growth process, enable to achieve the strain balanced structure. Cross-sectional transmission electron microscopy exhibited sharp heterointerfaces, and the lattice line extended from the top GaSb layer to the bottom InAs layer. X-ray analysis further confirmed a strain balanced InAs/GaSb multilayer structure. A smooth surface morphology with surface roughness of ∼0.5 nm was demonstrated. The effective barrier height -0.15 eV at the GaSb/InAs heterointerface was determined by X-ray photoelectron spectroscopy, and it was further corroborated by simulation. These results are important to demonstrate desirable characteristics of mixed As/Sb material systems for high-performance and low-power tunnel field-effect transistor applications.

  20. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: The effect of substrate on magnetic properties of Co/Cu multilayer nanowire arrays

    NASA Astrophysics Data System (ADS)

    Ren, Yong; Wang, Jian-Bo; Liu, Qing-Fang; Han, Xiang-Hua; Xue, De-Sheng

    2009-08-01

    Ordered Co/Cu multilayer nanowire arrays have been fabricated into anodic aluminium oxide templates with Ag and Cu substrate by direct current electrodeposition. This paper studies the morphology, structure and magnetic properties by transmission electron microscopy, selective area electron diffraction, x-ray diffraction, and vibrating sample magnetometer. X-ray diffraction patterns reveal that both as-deposited nanowire arrays films exhibit face-centred cubic structure. Magnetic measurements indicate that the easy magnetization direction of Co/Cu multilayer nanowire arrays films on Ag substrate is perpendicular to the long axis of nanowire, whereas the easy magnetization direction of the sample with Cu substrate is parallel to the long axis of nanowire. The change of easy magnetization direction attributed to different substrates, and the magnetic properties of the nanowire arrays are discussed.

  1. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    PubMed

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  2. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    PubMed Central

    Antipov, S.; Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059

  3. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S.; Baryshev, Sergey; Butler, J. E.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources formore » secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.« less

  4. Development of Grazing Incidence Optics for Neutron Imaging and Scattering

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.

    2012-01-01

    Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be developed. The availability of these technologies would bring new capabilities to neutron instrumentation and, hence, lead to new scientific breakthroughs. We have established a program to adopt the electroformed nickel replication optics technique for neutron applications and to develop the neutron multilayer replication technology.

  5. JGIXA - A software package for the calculation and fitting of grazing incidence X-ray fluorescence and X-ray reflectivity data for the characterization of nanometer-layers and ultra-shallow-implants

    NASA Astrophysics Data System (ADS)

    Ingerle, D.; Pepponi, G.; Meirer, F.; Wobrauschek, P.; Streli, C.

    2016-04-01

    Grazing incidence XRF (GIXRF) is a very surface sensitive, nondestructive analytical tool making use of the phenomenon of total external reflection of X-rays on smooth polished surfaces. In recent years the method experienced a revival, being a powerful tool for process analysis and control in the fabrication of semiconductor based devices. Due to the downscaling of the process size for semiconductor devices, junction depths as well as layer thicknesses are reduced to a few nanometers, i.e. the length scale where GIXRF is highly sensitive. GIXRF measures the X-ray fluorescence induced by an X-ray beam incident under varying grazing angles and results in angle dependent intensity curves. These curves are correlated to the layer thickness, depth distribution and mass density of the elements in the sample. But the evaluation of these measurements is ambiguous with regard to the exact distribution function for the implants as well as for the thickness and density of nanometer-thin layers. In order to overcome this ambiguity, GIXRF can be combined with X-ray reflectometry (XRR). This is straightforward, as both techniques use similar measurement procedures and the same fundamental physical principles can be used for a combined data evaluation strategy. Such a combined analysis removes ambiguities in the determined physical properties of the studied sample and, being a correlative spectroscopic method, also significantly reduces experimental uncertainties of the individual techniques. In this paper we report our approach to a correlative data analysis, based on a concurrent calculation and fitting of simultaneously recorded GIXRF and XRR data. Based on this approach we developed JGIXA (Java Grazing Incidence X-ray Analysis), a multi-platform software package equipped with a user-friendly graphic user interface (GUI) and offering various optimization algorithms. Software and data evaluation approach were benchmarked by characterizing metal and metal oxide layers on Silicon as well as Arsenic implants in Silicon. The results of the different optimization algorithms have been compared to test the convergence of the algorithms. Finally, simulations for Iron nanoparticles on bulk Silicon and on a W/C multilayer are presented, using the assumption of an unaltered X-ray Standing Wave above the surface.

  6. Study of interface correlation in W/C multilayer structure by specular and non-specular grazing incidence X-ray reflectivity measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, A., E-mail: arupb@barc.gov.in; Bhattacharyya, D.; Sahoo, N. K.

    2015-10-28

    W/C/W tri-layer thin film samples have been deposited on c-Si substrates in a home-built Ion Beam Sputtering system at 1.5 × 10{sup −3} Torr Ar working pressure and 10 mA grid current. The tri-layer samples have been deposited at different Ar{sup +} ion energies between 0.6 and 1.2 keV for W layer deposition and the samples have been characterized by specular and non-specular grazing incidence X-ray reflectivity (GIXR) measurements. By analyzing the GIXR spectra, various interface parameters have been obtained for both W-on-C and C-on-W interfaces and optimum Ar{sup +} ion energy for obtaining interfaces with low imperfections has been found. Subsequently, multilayermore » W/C samples with 5-layer, 7-layer, 9-layer, and 13-layer have been deposited at this optimum Ar{sup +} ion energy. By fitting the specular and diffused GIXR data of the multilayer samples with the parameters of each interface as fitting variables, different interface parameters, viz., interface width, in-plane correlation length, interface roughness, and interface diffusion have been estimated for each interface and their variation across the depth of the multilayers have been obtained. The information would be useful in realizing W/C multilayers for soft X-ray mirror application in the <100 Å wavelength regime. The applicability of the “restart of the growth at the interface” model in the case of these ion beam sputter deposited W/C multilayers has also been investigated in the course of this study.« less

  7. Development of extreme ultraviolet and soft x-ray multilayer optics for scientific studies with femtosecond/attosecond sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aquila, Andrew Lee

    The development of multilayer optics for extreme ultraviolet (EUV) radiation has led to advancements in many areas of science and technology, including materials studies, EUV lithography, water window microscopy, plasma imaging, and orbiting solar physics imaging. Recent developments in femtosecond and attosecond EUV pulse generation from sources such as high harmonic generation lasers, combined with the elemental and chemical specificity provided by EUV radiation, are opening new opportunities to study fundamental dynamic processes in materials. Critical to these efforts is the design and fabrication of multilayer optics to transport, focus, shape and image these ultra-fast pulses This thesis describes themore » design, fabrication, characterization, and application of multilayer optics for EUV femtosecond and attosecond scientific studies. Multilayer mirrors for bandwidth control, pulse shaping and compression, tri-material multilayers, and multilayers for polarization control are described. Characterization of multilayer optics, including measurement of material optical constants, reflectivity of multilayer mirrors, and metrology of reflected phases of the multilayer, which is critical to maintaining pulse size and shape, were performed. Two applications of these multilayer mirrors are detailed in the thesis. In the first application, broad bandwidth multilayers were used to characterize and measure sub-100 attosecond pulses from a high harmonic generation source and was performed in collaboration with the Max-Planck institute for Quantum Optics and Ludwig- Maximilians University in Garching, Germany, with Professors Krausz and Kleineberg. In the second application, multilayer mirrors with polarization control are useful to study femtosecond spin dynamics in an ongoing collaboration with the T-REX group of Professor Parmigiani at Elettra in Trieste, Italy. As new ultrafast x-ray sources become available, for example free electron lasers, the multilayer designs described in this thesis can be extended to higher photon energies, and such designs can be used with those sources to enable new scientific studies, such as molecular bonding, phonon, and spin dynamics.« less

  8. Very high resolution UV and X-ray spectroscopy and imagery of solar active regions

    NASA Technical Reports Server (NTRS)

    Bruner, M.; Brown, W. A.; Haisch, B. M.

    1987-01-01

    A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.

  9. NASA Tech Briefs, April 2005

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Gas-Tolerant Device Senses Electrical Conductivity of Liquid Nanoactuators Based on Electrostatic Forces on Dielectrics Replaceable Microfluidic Cartridges for a PCR Biosensor CdZnTe Image Detectors for Hard-X-Ray Telescopes High-Aperture-Efficiency Horn Antenna Full-Circle Resolver-to-Linear-Analog Converter Continuous, Full-Circle Arctangent Circuit Advanced Three-Dimensional Display System Automatic Focus Adjustment of a Microscope Topics covered include: FastScript3D - A Companion to Java 3D; Generating Mosaics of Astronomical Images; Simulating Descent and Landing of a Spacecraft; Simulating Vibrations in a Complex Loaded Structure; Rover Sequencing and Visualization Program; Software Template for Instruction in Mathematics; Support for User Interfaces for Distributed Systems; Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells; Multi-Layer Laminated Thin Films for Inflatable Structures; Two-Step Laser Ranging for Precise Tracking of a Spacecraft; Growing Aligned Carbon Nanotubes for Interconnections in ICs; Multilayer Composite Pressure Vessels; Texturing Blood-Glucose-Monitoring Optics Using Oxygen Beams; Fault-Tolerant Heat Exchanger; Atomic Clock Based on Opto-Electronic Oscillator; Microfocus/Polycapillary-Optic Crystallographic X-Ray Sys; Depth-Penetrating Luminescence Thermography of Thermal- Barrier Coatings; One-Dimensional Photonic Crystal Superprisms; Measuring Low-Order Aberrations in a Segmented Telescope; Mapping From an Instrumented Glove to a Robot Hand; Application of the Hilbert-Huang Transform to Financial Data; Optimizing Parameters for Deep-Space Optical Communication; and Low-Shear Microencapsulation and Electrostatic Coating.

  10. Postassembly chemical modification of a highly ordered organosilane multilayer: new insights into the structure, bonding, and dynamics of self-assembling silane monolayers.

    PubMed

    Wen, Ke; Maoz, Rivka; Cohen, Hagai; Sagiv, Jacob; Gibaud, Alain; Desert, Anne; Ocko, Benjamin M

    2008-03-01

    Experimental evidence derived from a comprehensive study of a self-assembled organosilane multilayer film system undergoing a process of postassembly chemical modification that affects interlayer-located polar groups of the constituent molecules while preserving its overall molecular architecture allows a quantitative evaluation of both the degree of intralayer polymerization and that of interlayer covalent bonding of the silane headgroups in a highly ordered layer assembly of this type. The investigated system consists of a layer-by-layer assembled multilayer of a bifunctional n-alkyl silane with terminal alcohol group that is in situ converted, via a wet chemical oxidation process conducted on the entire multilayer, to the corresponding carboxylic acid function. A combined chemical-structural analysis of data furnished by four different techniques, Fourier transform infrared spectroscopy (FTIR), synchrotron X-ray scattering, X-ray photoelectron spectroscopy (XPS), and contact angle measurements, demonstrates that the highly ordered 3D molecular arrangement of the initial alcohol-silane multilayer stack is well preserved upon virtually quantitative conversion of the alcohol to carboxylic acid and the concomitant irreversible cleavage of interlayer covalent bonds. Thus, the correlation of quantitative chemical and structural data obtained from such unreacted and fully reacted film samples offers an unprecedented experimental framework within which it becomes possible to differentiate between intralayer and interlayer covalent bonding. In addition, the use of a sufficiently thick multilayer effectively eliminates the interfering contributions of the underlying silicon oxide substrate to both the X-ray scattering and XPS data. The present findings contribute a firm experimental basis to the elucidation of the self-assembly mechanism, the molecular organization, and the modes and dynamics of intra- and interlayer bonding prevailing in highly ordered organosilane films; with further implications for the rational exploitation of some of the unique options such supramolecular surface entities can offer in the advancement of a chemical nanofabrication methodology.

  11. Spectroscopic characterization of novel multilayer mirrors intended for astronomical and laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Eugene N.; Mednikov, Konstantin N.; Pertsov, Andrei A.; Pirozhkov, Alexander S.; Reva, Anton A.; Shestov, Sergei V.; Ul'yanov, Artem S.; Vishnyakov, Eugene A.

    2009-05-01

    We report measurements of the reflection spectra of (i) concave (spherical and parabolic) Mo/Si, Mg/Si, and Al/Zr multilayer mirrors (MMs) intended for imaging solar spectroscopy in the framework of the TESIS/CORONAS-FOTON Satellite Project and of (ii) an aperiodic Mo/Si MM optimized for maximum uniform reflectivity in the 125-250 Å range intended for laboratory applications. The reflection spectra were measured in the configuration of a transmission grating spectrometer employing the radiation of a tungsten laser-driven plasma as the source. The function of detectors was fulfilled by backside-illuminated CCDs coated with Al or Zr/Si multilayer absorption filters. High-intensity second-order interference reflection peaks at wavelengths of about 160 Å were revealed in the reflection spectra of the 304-Å Mo/Si MMs. By contrast, the second-order reflection peak in the spectra of the new-generation narrow-band (~12 Å FWHM) 304-Å Mg/Si MMs is substantially depressed. Manifestations of the NEXAFS structure of the L2, 3 absorption edges of Al and Al2O3 were observed in the spectra recorded. The broadband Mo/Si MM was employed as the focusing element of spectrometers in experiments involving (i) the charge exchange of multiply charged ions with the donor atoms of a rare-gas jet; (ii) the spectroscopic characterization of a debris-free soft X-ray radiation source excited by Nd laser pulses in a Xe jet (iii) near-IR-to-soft-X-ray frequency conversion (double Doppler effect) occurring in the retroreflection from the relativistic electron plasma wake wave (flying mirror) driven by a multiterawatt laser in a pulsed helium jet.

  12. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  13. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  14. Optical performance of W/B4C multilayer mirror in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Majhi, A.; Nayak, M.

    2018-03-01

    W/B4C x-ray multilayers (MLs) with 300 layer pairs and a period in the range of d = 2-1.6 nm are fabricated and investigated for the x-ray optical element in the soft x-ray regime. The structural analyses of the MLs are carried out by using hard x-ray reflectivity (HXR) measurements at 8.047 keV. Well-defined successive higher order Bragg peaks (up to 3rd order) in HXR data collected up to glancing incidence angles of ˜9° reveal a good quality of the periodic structure. The ML mirrors have an average interface width of ˜0.35 nm and have a compressive residual stress of ˜0.183 GPa and 0. 827 GPa for d = 1.62 nm and d = 1.98 nm, respectively. MLs maintain structural stability over a long time, with a slight increase in interface widths of the W layers by 0.1 nm due to self-diffusion. Soft x-ray reflectivity (SXR) performances are evaluated in the energy range of 650 to 1500 eV. At energy ˜ 1489 eV, measured reflectivities (energy resolution, ΔE) are ˜ 10% (19 eV) and 4.5% (13 eV) at glancing incident angles of 12.07° and 15° for MLs having periods of 1.98 nm and 1.62 nm, respectively. The optical performance from 1600 eV to 4500 eV is theoretically analysed by considering the measured structural parameters. The structure-stress-optical performance is correlated on the basis of the mechanism of film growth. The implications of W/B4C MLs are discussed, particularly with respect to the development of ML optics with high spectral selectivity and reflectance for soft x-ray instruments.

  15. Design and development of the SIMBOL-X hard x-ray optics

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Attinà, P.; Basso, S.; Borghi, G.; Burkert, W.; Buzzi, R.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Cusumano, G.; Dell'Orto, E.; Freyberg, M.; Hartner, G. D.; Gorenstein, P.; Mattaini, E.; Mazzoleni, F.; Parodi, G.; Romaine, S.; Spiga, D.; Tagliaferri, G.; Valtolina, R.; Valsecchi, G.; Vernani, D.

    2008-07-01

    The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells. This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812 arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development activities.

  16. Investigation of the Effect of Residual Stress Gradient on the Wear Behavior of PVD Thin Films

    NASA Astrophysics Data System (ADS)

    Tlili, B.; Nouveau, C.; Guillemot, G.; Besnard, A.; Barkaoui, A.

    2018-02-01

    The control of residual stresses has been seldom investigated in multilayer coatings dedicated to improvement of wear behavior. Here, we report the preparation and characterization of superposed structures composed of Cr, CrN and CrAlN layers. Nano-multilayers CrN/CrAlN and Cr/CrN/CrAlN were deposited by Physical Vapor Deposition (PVD) onto Si (100) and AISI4140 steel substrates. The Cr, CrN and CrAlN monolayers were developed with an innovative approach in PVD coatings technologies corresponding to deposition with different residual stresses levels. Composition and wear tracks morphologies of the coatings were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction and 3D-surface analyzer. The mechanical properties (hardness, residual stresses and wear) were investigated by nanoindentation, interferometry and micro-tribometry (fretting-wear tests). Observations suggest that multilayer coatings are composed mostly of nanocrystalline. The residual stresses level in the films has practically affected all the physicochemical and mechanical properties as well as the wear behavior. Consequently, it is demonstrated that the coating containing moderate stresses has a better wear behavior compared to the coating developed with higher residual stresses. The friction contact between coated samples and alumina balls shows also a large variety of wear mechanisms. In particular, the abrasive wear of the coatings was a combination of plastic deformation, fine microcracking and microspallation. The application of these multilayers will be wood machining of green wood.

  17. Calibration and standards beamline 6.3.2 at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, J.H.; Gullikson, E.M.; Koike, M.

    1997-04-01

    More sophisticated optics for the x-ray, soft x-ray and far ultraviolet spectral regions being developed for synchrotron radiation research and many other applications, require accurate calibration and standards facilities for measuring reflectivity of mirrors and multilayer coatings, transmission of thin films, bandpass of multilayers, efficiency of gratings or detectors, etc. For this purpose beamline 6.3.2 was built at the ALS. Its energy coverage, versatility, simplicity and convenience also make it useful for a wide range of other experiments. The paper describes the components of this beamline, consisting of: a four jaw aperture; a horizontal focusing mirror; a monochromator; exit slit;more » vertical focusing mirror; mechanical and vacuum system; reflectometer; filter wheels; and data acquisition system.« less

  18. Preparation and characterization of the nanoporous ultrathin multilayer films based on molybdenum polyoxometalate (Mo 38) n

    NASA Astrophysics Data System (ADS)

    Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.

    2003-11-01

    Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.

  19. SIBYLS - a SAXS and Protein Crystallography Beamline at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trame, C.; MacDowell, A.A.; Celestre, R.S.

    2004-05-12

    The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{delta}E{approx}1/110). Flux rates with Si(111) crystals for PX are measured as 2x1011 hv/sec through a 100{mu}m pinhole at 12.4KeV. For SAXS the flux is up to 3x1013photons/sec at 10KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less

  20. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating

    PubMed Central

    Liu, J. P.; Kirchhoff, J.; Zhou, L.; Zhao, M.; Grapes, M. D.; Dale, D. S.; Tate, M. D.; Philipp, H. T.; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C.

    2017-01-01

    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s−1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases. PMID:28664887

  1. Magnetic properties of Co/Rh (001) multilayers studied by x-ray magnetic-circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Mayo, E.; Lederman, D.; Hallin, E.; Sham, T. K.; O'brien, W. L.; Harp, G. R.

    1998-11-01

    The layer-averaged magnetic moments of Co and Rh have been measured in sputter deposited Co/Rh (001) multilayer thin films using the x-ray magnetic circular dichroism. The Rh moments were measured at both the L and M absorption edges, where we find that the Rh moment decreases as a function of increasing Rh layer thickness (tRh). The decline of the layer-averaged Rh moment is well described in terms of a simple dilution, implying that the Rh moment is confined to the interfacial region. We find that the Co moment remains largely unaffected, maintaining a bulklike value of 1.7μB in the region preceding the first antiferromagnetic coupling peak where tRh ranges from 0 to 4 Å. We also find, via application of the dichroism sum rules, that the ratio / for Co increases ~10% for this same region. Finally, we contrast the magnetic behavior of the Co/Rh (001) and Fe/Rh (001) multilayer systems.

  2. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating

    DOE PAGES

    Liu, J. P.; Kirchhoff, J.; Zhou, L.; ...

    2017-06-15

    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s -1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks,more » and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases.« less

  3. Thin Shell, Segmented X-Ray Mirrors

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2010-01-01

    Thin foil mirrors were introduced as a means of achieving high throughput in an X-ray astronomical imaging system in applications for which high angular resolution were not necessary. Since their introduction, their high filling factor, modest mass, relative ease of construction, and modest cost have led to their use in numerous X-ray observatories, including the Broad Band X-ray Telescope, ASCA, and Suzaku. The introduction of key innovations, including epoxy replicated surfaces, multilayer coatings, and glass mirror substrates, has led to performance improvements, and in their becoming widely used for X-ray astronomical imaging at energies above 10 keV. The use of glass substrates has also led to substantial improvement in angular resolution, and thus their incorporation into the NASA concept for the International X-ray Observatory with a planned 3 in diameter aperture. This paper traces the development of foil mirrors from their inception in the 1970's through their current and anticipated future applications.

  4. Physics of reflective optics for the soft gamma-ray photon energy range

    DOE PAGES

    Fernandez-Perea, Monica; Descalle, Marie -Anne; Soufli, Regina; ...

    2013-07-12

    Traditional multilayer reflective optics that have been used in the past for imaging at x-ray photon energies as high as 200 keV are governed by classical wave phenomena. However, their behavior at higher energies is unknown, because of the increasing effect of incoherent scattering and the disagreement between experimental and theoretical optical properties of materials in the hard x-ray and gamma-ray regimes. Here, we demonstrate that multilayer reflective optics can operate efficiently and according to classical wave physics up to photon energies of at least 384 keV. We also use particle transport simulations to quantitatively determine that incoherent scattering takesmore » place in the mirrors but it does not affect the performance at the Bragg angles of operation. Furthermore, our results open up new possibilities of reflective optical designs in a spectral range where only diffractive optics (crystals and lenses) and crystal monochromators have been available until now.« less

  5. Comparison of Mg-based multilayers for solar He II radiation at 30.4 nm wavelength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Jingtao; Zhou Sika; Li Haochuan

    2010-07-10

    Mg-based multilayers, including SiC/Mg, Co/Mg, B4C/Mg, and Si/Mg, are investigated for solar imaging and a He II calibration lamp at a 30.4 nm wavelength. These multilayers were fabricated by a magnetron sputtering method and characterized by x-ray reflection. The reflectivities of these multilayers were measured by synchrotron radiation. Near-normal-incidence reflectivities of Co/Mg and SiC/Mg multilayer mirrors are as high as 40.3% and 44.6%, respectively, while those of B4C/Mg and Si/Mg mirrors are too low for application. The measured results suggest that SiC/Mg, Co/Mg multilayers are promising for a 30.4 nm wavelength.

  6. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  7. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    NASA Astrophysics Data System (ADS)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  8. Stress Compensating Multilayers

    NASA Technical Reports Server (NTRS)

    Broadway, David M.; Ramsey, Brian D.; O'dell, Stephen; Gurgew, Danielle

    2017-01-01

    We present in-situ stress measurement results for single and multilayer thin-films deposited by magnetron sputtering. In particular, we report on the influence of the material interfaces on the ensuing stress in both the transient and steady-state regimes of film growth. This behavior is used to determine the appropriate thicknesses of the constituent layers that will result in a net tensile stress in multilayers composed of various material combinations. These multilayers can then be used to compensate the compressive integrated stress in single and multilayer EUV and x-ray optical coatings. The use of multilayers to compensate the integrated stress might be advantageous because, unlike single layers of chromium, the roughness is not expected to increase with the total thickness of the multilayer. In this paper, we demonstrate the technique for W/Si and Mo/Si multilayers and discuss its application to other material combinations.

  9. REDSoX: Monte-Carlo ray-tracing for a soft x-ray spectroscopy polarimeter

    NASA Astrophysics Data System (ADS)

    Günther, Hans M.; Egan, Mark; Heilmann, Ralf K.; Heine, Sarah N. T.; Hellickson, Tim; Frost, Jason; Marshall, Herman L.; Schulz, Norbert S.; Theriault-Shay, Adam

    2017-08-01

    X-ray polarimetry offers a new window into the high-energy universe, yet there has been no instrument so far that could measure the polarization of soft X-rays (about 17-80 Å) from astrophysical sources. The Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is a proposed sounding rocket experiment that uses a focusing optic and splits the beam into three channels. Each channel has a set of criticalangle transmission (CAT) gratings that disperse the x-rays onto a laterally graded multilayer (LGML) mirror, which preferentially reflects photons with a specific polarization angle. The three channels are oriented at 120 deg to each other and thus measure the three Stokes parameters: I, Q, and U. The period of the LGML changes with position. The main design challenge is to arrange the gratings so that they disperse the spectrum in such a way that all rays are dispersed onto the position on the multi-layer mirror where they satisfy the local Bragg condition despite arriving on the mirror at different angles due to the converging beam from the focusing optics. We present a polarimeteric Monte-Carlo ray-trace of this design to assess non-ideal effects from e.g. mirror scattering or the finite size of the grating facets. With mirror properties both simulated and measured in the lab for LGML mirrors of 80-200 layers we show that the reflectivity and the width of the Bragg-peak are sufficient to make this design work when non-ideal effects are included in the simulation. Our simulations give us an effective area curve, the modulation factor and the figure of merit for the REDSoX polarimeter. As an example, we simulate an observation of Mk 421 and show that we could easily detect a 20% linear polarization.

  10. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  11. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  12. X-ray focusing with efficient high-NA multilayer Laue lenses

    DOE PAGES

    Bajt, Sasa; Prasciolu, Mauro; Fleckenstein, Holger; ...

    2018-03-23

    Multilayer Laue lenses are volume diffraction elements for the efficient focusing of X-rays. With a new manufacturing technique that we introduced, it is possible to fabricate lenses of sufficiently high numerical aperture (NA) to achieve focal spot sizes below 10 nm. The alternating layers of the materials that form the lens must span a broad range of thicknesses on the nanometer scale to achieve the necessary range of X-ray deflection angles required to achieve a high NA. This poses a challenge to both the accuracy of the deposition process and the control of the materials properties, which often vary withmore » layer thickness. We introduced a new pair of materials—tungsten carbide and silicon carbide—to prepare layered structures with smooth and sharp interfaces and with no material phase transitions that hampered the manufacture of previous lenses. Using a pair of multilayer Laue lenses (MLLs) fabricated from this system, we achieved a two-dimensional focus of 8.4 × 6.8 nm 2 at a photon energy of 16.3 keV with high diffraction efficiency and demonstrated scanning-based imaging of samples with a resolution well below 10 nm. The high NA also allowed projection holographic imaging with strong phase contrast over a large range of magnifications. Furthermore, an error analysis indicates the possibility of achieving 1 nm focusing.« less

  13. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  14. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  15. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE PAGES

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.; ...

    2017-08-09

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  16. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  17. Reversible Li-ion conversion reaction for a Ti xGe alloy in a Ti/Ge multilayer

    DOE PAGES

    Chen, Xiao; Fister, Tim T.; Esbenshade, Jennifer; ...

    2017-02-13

    Group IV inter-metallics electrochemically alloy with Li with stoichiometries as high as Li 4.4M (M=Si, Ge, Sn or Pb). Furthermore, this provides the second highest known specific capacity (after pure lithium metal) for lithium ion batteries, but the dramatic volume change during cycling greatly limits their use as anodes in Li-ion batteries. We describe an approach to overcome this limitation by constructing electrodes using a Ge/Ti multilayer architecture. In operando X-ray reflectivity and ex situ transmission electron microscopy are used to characterize the hetero-layer structure at various lithium stoichiometries along a lithiation/delithiation cycle. The as-deposited multilayer spontaneously forms a one-dimensionalmore » Ti xGe/Ti/Ti xGe core-shell planar structure embedded in a Ge matrix. The interfacial Ti xGe alloy is observed to be electrochemically active and exhibits reversible phase separation (i.e. a conversion reaction). Including the germanium components, the overall multilayer structure exhibits a 2.3-fold reversible vertical expansion and contraction and is shown to have improved capacity and capacity retention with respect to a Ge film with equivalent active material thickness.« less

  18. NuSTAR and IXO Missions

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    NuSTAR (Nuclear Spectroscopic Telescope Array) and IXO (International X-ray Observatory) missions are two of NASA X-ray missions for the coming decade. NuSTAR is a small explorer class mission that will for the first time use a multilayer-coated X-ray mirror assemblies to focus X-rays up to 80 keV. Among other objectives, its major science objective will be to conduct surveys to identify hard X-ray sources and to resolve the diffuse X-ray background. IXO, a collaborative mission of NASA, ESA, and JAXA, will be an observatory class mission. It will have a 3m in diameter X-ray mirror assembly with unprecedented photon collection area with a suite of focal plane detectors: a grating system, a large format CCD imaging system, a calorimeter, a polarimeter, and a high resolution and fast timing detector. It will significantly advance the spectroscopic studies of black holes, neutron stars, AGN, IGM, and nearly every other aspect of the X-ray universe. In this talk I will describe the instruments and scientific objectives of these two missions.

  19. Fe/Rh (100) multilayer magnetism probed by x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Tomaz, M. A.; Ingram, D. C.; Harp, G. R.; Lederman, D.; Mayo, E.; O'brien, W. L.

    1997-09-01

    We report the layer-averaged magnetic moments of both Fe and Rh in sputtered Fe/Rh (100) multilayer thin films as measured by x-ray magnetic circular dichroism. We observe two distinct regimes in these films. The first is characterized by Rh moments of at least 1μB, Fe moments enhanced as much as 30% above bulk, and a bct crystal structure. The second regime is distinguished by sharp declines of both Fe and Rh moments accompanied by a transition to an fct crystal lattice. The demarcation between the two regions is identified as the layer thickness for which both bct and fct phases first coexist, which we term the critical thickness tcrit. We attribute the change in magnetic behavior to the structural transformation.

  20. Achieving diffraction-limited nanometer-scale X-ray point focus with two crossed multilayer Laue lenses: alignment challenges

    DOE PAGES

    Yan, Hanfei; Huang, Xiaojing; Bouet, Nathalie; ...

    2017-10-16

    In this article, we discuss misalignment-induced aberrations in a pair of crossed multilayer Laue lenses used for achieving a nanometer-scale x-ray point focus. We thoroughly investigate the impacts of two most important contributions, the orthogonality and the separation distance between two lenses. We find that misalignment in the orthogonality results in astigmatism at 45º and other inclination angles when coupled with a separation distance error. Theoretical explanation and experimental verification are provided. We show that to achieve a diffraction-limited point focus, accurate alignment of the azimuthal angle is required to ensure orthogonality between two lenses, and the required accuracy ismore » scaled with the ratio of the focus size to the aperture size.« less

  1. Hybrid SnO2/TiO2 Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds

    PubMed Central

    Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir

    2016-01-01

    In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900

  2. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE PAGES

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.; ...

    2016-02-05

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  3. Multimodality hard-x-ray imaging of a chromosome with nanoscale spatial resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hanfei; Nazaretski, Evgeny; Lauer, Kenneth R.

    Here, we developed a scanning hard x-ray microscope using a new class of x-ray nano-focusing optic called a multilayer Laue lens and imaged a chromosome with nanoscale spatial resolution. The combination of the hard x-ray's superior penetration power, high sensitivity to elemental composition, high spatial-resolution and quantitative analysis creates a unique tool with capabilities that other microscopy techniques cannot provide. Using this microscope, we simultaneously obtained absorption-, phase-, and fluorescence-contrast images of Pt-stained human chromosome samples. The high spatial-resolution of the microscope and its multi-modality imaging capabilities enabled us to observe the internal ultra-structures of a thick chromosome without sectioningmore » it.« less

  4. Polyphenylsilole multilayers--an insight from X-ray electron spectroscopy and density functional theory.

    PubMed

    Diller, Katharina; Ma, Yong; Luo, Yi; Allegretti, Francesco; Liu, Jianzhao; Tang, Ben Zhong; Lin, Nian; Barth, Johannes V; Klappenberger, Florian

    2015-12-14

    We present a combined investigation by means of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy of condensed multilayers of two polyphenylsiloles, namely hexaphenylsilole (HPS) and tetraphenylsilole (TPS). Both compounds exhibit very similar spectroscopic signatures, whose interpretation is aided by density functional theory (DFT) calculations. High-resolution XPS spectra of the Si 2p and C 1s core levels of these multilayers indicate a positively charged silicon ion flanked by two negatively charged adjacent carbon atoms in the silole core of both molecules. This result is corroborated quantitatively by DFT calculations on isolated HPS (TPS) molecules, which show a natural bond orbital partial charge of +1.67 e (+1.58 e) on the silicon and -0.34 e (-0.58 e) on the two neighbouring carbon atoms in the silole ring. These charges are conserved in direct contact with a Cu(111) substrate for films of submonolayer coverage, as evidenced by the Si 2p XPS data. The C K-edge NEXAFS spectra of HPS and TPS multilayers exhibit distinct and differing features. Their main characteristics reappear in the simulated spectra and are assigned to the different inequivalent carbon species in the molecule. The angle-dependent measurements hardly reveal any dichroism, i.e., the molecular π-systems are not uniformly oriented parallel or perpendicular with respect to the surface. Changes in the growth conditions of TPS, i.e., a reduction of the substrate temperature from 240 K to 80 K during deposition, lead to a broadening of both XPS and NEXAFS signatures, as well as an upward shift of the Si 2p and C 1s binding energies, indicative of a less ordered growth mode at low temperature.

  5. Progressive magnetic softening of ferromagnetic layers in multilayer ferromagnet-nonmagnet systems and the role of granularity

    NASA Astrophysics Data System (ADS)

    Sahu, Siddharth S.; Siva, Vantari; Pradhan, Paresh C.; Nayak, Maheswar; Senapati, Kartik; Sahoo, Pratap K.

    2017-06-01

    We report a study of the structural and magnetic behavior of the topmost magnetic layer in a ferromagnet-nonmagnet (Co-Au) multilayer system. Glancing angle X-ray diffraction measurements performed on a series of multilayers showed a gradual decrease in the grain size of the topmost magnetic layer with the increasing number of bilayers. Concurrently, the magnetic hardness and magneto-crystalline anisotropy of the top Co layer were found to decrease, as observed by magneto-optical Kerr effect measurements. This magnetic softening has been discussed in the light of Herzer's random anisotropy model. Micromagnetic simulations of the multilayer system also corroborated these observations.

  6. Epitaxial growth and properties of YBa2Cu3O(x)-Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) trilayer structure by laser ablation

    NASA Astrophysics Data System (ADS)

    Boikov, Iu. A.; Esaian, S. K.; Ivanov, Z. G.; Brorsson, G.; Claeson, T.; Lee, J.; Safari, A.

    1992-08-01

    YBa2Cu3O(x)Pb(Zr(0.6)Ti(0.4))O3-YBa2Cu3O(x) multilayer structure has been grown on SrTiO3 and Al2O3 substrates using laser ablation. The deposition conditions for the growth of trilayers and their properties are studied in this investigation. Scanning electron microscope images and X-ray diffraction analyses indicate that all the constituent films in the trilayer grow epitaxially on SrTiO3 and were highly oriented on Al2O3. Transport measurements on these multilayers show that top YBa2Cu3O(x) films have good superconducting properties.

  7. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- andmore » right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.« less

  8. Growing Cutting-edge X-ray Optics

    ScienceCinema

    Conley, Ray

    2018-03-02

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015.

  9. RBS Depth Profiling Analysis of (Ti, Al)N/MoN and CrN/MoN Multilayers.

    PubMed

    Han, Bin; Wang, Zesong; Devi, Neena; Kondamareddy, K K; Wang, Zhenguo; Li, Na; Zuo, Wenbin; Fu, Dejun; Liu, Chuansheng

    2017-12-01

    (Ti, Al)N/MoN and CrN/MoN multilayered films were synthesized on Si (100) surface by multi-cathodic arc ion plating system with various bilayer periods. The elemental composition and depth profiling of the films were investigated by Rutherford backscattering spectroscopy (RBS) using 2.42 and 1.52 MeV Li 2+ ion beams and different incident angles (0°, 15°, 37°, and 53°). The microstructures of (Ti, Al)N/MoN multilayered films were evaluated by X-ray diffraction. The multilayer periods and thickness of the multilayered films were characterized by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) and then compared with RBS results.

  10. SIBYLS - A SAXS and protein crystallography beamline at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trame, Christine; MacDowell, Alastair A.; Celestre, Richard S.

    2003-08-22

    The new Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the Advanced Light Source will be dedicated to Macromolecular Crystallography (PX) and Small Angle X-ray Scattering (SAXS). SAXS will provide structural information of macromolecules in solutions and will complement high resolution PX studies on the same systems but in a crystalline state. The x-ray source is one of the 5 Tesla superbend dipoles recently installed at the ALS that allows for a hard x-ray program to be developed on the relatively low energy Advanced Light Source (ALS) ring (1.9 GeV). The beamline is equipped with fast interchangeable monochromator elements,more » consisting of either a pair of single Si(111) crystals for crystallography, or a pair of multilayers for the SAXS mode data collection (E/{Delta}E {approx} 1/110). Flux rates with Si(111) crystals for PX are measured as 2 x 10{sup 11} hv/sec/400 mA through a 100 {micro}m pinhole at 12.4 KeV. For SAXS the flux is up to 3 x 10{sup 13} photons/sec at 10 KeV with all apertures open when using the multilayer monochromator elements. The performance characteristics of this unique beamline will be described.« less

  11. Gamma-ray mirror technology for NDA of spent fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Descalle, M. A.; Ruz-Armendariz, J.; Decker, T.

    Direct measurements of gamma rays emitted by fissile material have been proposed as an alternative to measurements of the gamma rays from fission products. From a safeguards applications perspective, direct detection of uranium (U) and plutonium (Pu) K-shell fluorescence emission lines and specific lines from some of their isotopes could lead to improved shipper-receiver difference or input accountability at the start of Pu reprocessing. However, these measurements are difficult to implement when the spent fuel is in the line-of-sight of the detector, as the detector is exposed to high rates dominated by fission product emissions. To overcome the combination ofmore » high rates and high background, grazing incidence multilayer mirrors have been proposed as a solution to selectively reflect U and Pu hard X-ray and soft gamma rays in the 90 to 420 keV energy into a high-purity germanium (HPGe) detector shielded from the direct line-of-sight of spent fuel. Several groups demonstrated that K-shell fluorescence lines of U and Pu in spent fuel could be detected with Ge detectors. In the field of hard X-ray optics the performance of reflective multilayer coated reflective optics was demonstrated up to 645 keV at the European Synchrotron Radiation Facility. Initial measurements conducted at Oak Ridge National Laboratory with sealed sources and scoping experiments conducted at the ORNL Irradiated Fuels Examination Laboratory (IFEL) with spent nuclear fuel further demonstrated the pass-band properties of multilayer mirrors for reflecting specific emission lines into 1D and 2D HPGe detectors, respectively.« less

  12. X-ray diffraction and X-ray standing-wave study of the lead stearate film structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.

    2016-05-15

    A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less

  13. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    NASA Astrophysics Data System (ADS)

    Dragone, A.; Kenney, C.; Lozinskaya, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.; Wang, Zhehui

    2016-11-01

    A multilayer stacked X-ray camera concept is described. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detection [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.

  14. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, andmore » without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.« less

  15. Surface studies of solids using integral x-ray-induced photoemission yield

    DOE PAGES

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-11-22

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permitmore » extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.« less

  16. Surface studies of solids using integral X-ray-induced photoemission yield

    PubMed Central

    Stoupin, Stanislav; Zhernenkov, Mikhail; Shi, Bing

    2016-01-01

    X-ray induced photoemission yield contains structural information complementary to that provided by X-ray Fresnel reflectivity, which presents an advantage to a wide variety of surface studies if this information is made easily accessible. Photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure and carries structural information that extends well beyond the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence. PMID:27874041

  17. Recent results of synchrotron radiation induced total reflection X-ray fluorescence analysis at HASYLAB, beamline L

    NASA Astrophysics Data System (ADS)

    Streli, C.; Pepponi, G.; Wobrauschek, P.; Jokubonis, C.; Falkenberg, G.; Záray, G.; Broekaert, J.; Fittschen, U.; Peschel, B.

    2006-11-01

    At the Hamburger Synchrotronstrahlungslabor (HASYLAB), Beamline L, a vacuum chamber for synchrotron radiation-induced total reflection X-ray fluorescence analysis, is now available which can easily be installed using the adjustment components for microanalysis present at this beamline. The detector is now in the final version of a Vortex silicon drift detector with 50-mm 2 active area from Radiant Detector Technologies. With the Ni/C multilayer monochromator set to 17 keV extrapolated detection limits of 8 fg were obtained using the 50-mm 2 silicon drift detector with 1000 s live time on a sample containing 100 pg of Ni. Various applications are presented, especially of samples which are available in very small amounts: As synchrotron radiation-induced total reflection X-ray fluorescence analysis is much more sensitive than tube-excited total reflection X-ray fluorescence analysis, the sampling time of aerosol samples can be diminished, resulting in a more precise time resolution of atmospheric events. Aerosols, directly sampled on Si reflectors in an impactor were investigated. A further application was the determination of contamination elements in a slurry of high-purity Al 2O 3. No digestion is required; the sample is pipetted and dried before analysis. A comparison with laboratory total reflection X-ray fluorescence analysis showed the higher sensitivity of synchrotron radiation-induced total reflection X-ray fluorescence analysis, more contamination elements could be detected. Using the Si-111 crystal monochromator also available at beamline L, XANES measurements to determine the chemical state were performed. This is only possible with lower sensitivity as the flux transmitted by the crystal monochromator is about a factor of 100 lower than that transmitted by the multilayer monochromator. Preliminary results of X-ray absorption near-edge structure measurements for As in xylem sap from cucumber plants fed with As(III) and As(V) are reported. Detection limits of 170 ng/l of As in xylem sap were achieved.

  18. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging.

    PubMed

    Alric, Christophe; Taleb, Jacqueline; Le Duc, Géraldine; Mandon, Céline; Billotey, Claire; Le Meur-Herland, Alice; Brochard, Thierry; Vocanson, Francis; Janier, Marc; Perriat, Pascal; Roux, Stéphane; Tillement, Olivier

    2008-05-07

    Functionalized gold nanoparticles were applied as contrast agents for both in vivo X-ray and magnetic resonance imaging. These particles were obtained by encapsulating gold cores within a multilayered organic shell which is composed of gadolinium chelates bound to each other through disulfide bonds. The contrast enhancement in MRI stems from the presence of gadolinium ions which are entrapped in the organic shell, whereas the gold core provides a strong X-ray absorption. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in the lungs, spleen, and liver.

  19. TiCN/TiNbCN multilayer coatings with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Caicedo, J. C.; Amaya, C.; Yate, L.; Gómez, M. E.; Zambrano, G.; Alvarado-Rivera, J.; Muñoz-Saldaña, J.; Prieto, P.

    2010-08-01

    Enhancement of mechanical properties by using a TiCN/TiNbCN multilayered system with different bilayer periods ( Λ) and bilayer numbers ( n) via magnetron sputtering technique was studied in this work. The coatings were characterized in terms of structural, chemical, morphological and mechanical properties by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nanoindentation. Results of the X-ray analysis showed reflections associated to FCC (1 1 1) crystal structure for TiCN/TiNbCN films. AFM analysis revealed a reduction of grain size and roughness when the bilayer number is increased and the bilayer period is decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period ( Λ) was 15 nm ( n = 200), yielding the highest hardness (42 GPa) and elastic modulus (408 GPa). The values for the hardness and elastic modulus are 1.6 and 1.3 times greater than the coating with n = 1, respectively. The enhancement effects in multilayer coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain the increase in hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayers taking into account the thickness reduction at individual single layers that make the multilayered system. The Hall-Petch model based on dislocation motion within layers and across layer interfaces, has been successfully applied to multilayers to explain this hardness enhancement.

  20. Reversible Li-Ion Conversion Reaction for a TixGe Alloy in a Ti/Ge Multilayer.

    PubMed

    Chen, Xiao; Fister, Tim T; Esbenshade, Jennifer; Shi, Bing; Hu, Xianyi; Wu, Jinsong; Gewirth, Andrew A; Bedzyk, Michael J; Fenter, Paul

    2017-03-08

    Group IV intermetallics electrochemically alloy with Li with stoichiometries as high as Li 4.4 M (M = Si, Ge, Sn, or Pb). This provides the second highest known specific capacity (after pure lithium metal) for lithium-ion batteries, but the dramatic volume change during cycling greatly limits their use as anodes in Li-ion batteries. We describe an approach to overcome this limitation by constructing electrodes using a Ge/Ti multilayer architecture. In operando X-ray reflectivity and ex situ transmission electron microscopy are used to characterize the heterolayer structure at various lithium stoichiometries along a lithiation/delithiation cycle. The as-deposited multilayer spontaneously forms a one-dimensional Ti x Ge/Ti/Ti x Ge core-shell planar structure embedded in a Ge matrix. The interfacial Ti x Ge alloy is observed to be electrochemically active and exhibits reversible phase separation (i.e., a conversion reaction). Including the germanium components, the overall multilayer structure exhibits a 2.3-fold reversible vertical expansion and contraction and is shown to have improved capacity and capacity retention with respect to a Ge film with equivalent active material thickness.

  1. A soft gamma-ray concentrator using thin-film multilayer structures

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Aliotta, Paul H.; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Shirazi, Farzane; Tsavalas, John G.; Wong, Emily N.; Kippen, R. Marc

    2015-09-01

    We have begun to investigate the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Building on initial investigations at Los Alamos National Laboratory, we are investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness using magnetron sputter and pulsed laser deposition techniques. We present the initial results of tests aimed at fabricating such structures by combining magnetron sputtering with either spin coating or pulsed laser deposition, and demonstrating gamma-ray channeling of 122 keV photons in the laboratory. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.

  2. Magnetic x-ray dichroism in ultrathin epitaxial films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tobin, J.G.; Goodman, K.W.; Cummins, T.R.

    1997-04-01

    The authors have used Magnetic X-ray Linear Dichroism (MXLD) and Magnetic X-ray Circular Dichroism (MXCD) to study the magnetic properties of epitaxial overlayers in an elementally specific fashion. Both MXLD and MXCD Photoelectron Spectroscopy were performed in a high resolution mode at the Spectromicroscopy Facility of the ALS. Circular Polarization was obtained via the utilization of a novel phase retarder (soft x-ray quarter wave plate) based upon transmission through a multilayer film. The samples were low temperature Fe overlayers, magnetic alloy films of NiFe and CoNi, and Gd grown on Y. The authors results include a direct comparison of highmore » resolution angle resolved Photoelectron Spectroscopy performed in MXLD and MXCD modes as well as structural studies with photoelectron diffraction.« less

  3. Simulation and Optimization of Soft Gamma-Ray Concentrator Using Thin Film Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Shirazi, Farzane; Bloser, Peter F.; Aliotta, Paul H.; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Tsavalas, John G.; Wong, Emily N.; Kippen, R. Marc

    2016-04-01

    We are reporting the investigation result of channeling and concentrating soft gamma rays (above 100 keV) using multilayer thin films of alternating low and high-density materials. This will enable future telescopes for higher energies with same mission parameters already proven by NuSTAR. Base on initial investigations at Los Alamos National Laboratory (LANL) we are investigating of producing these multilayers with the required thicknesses and smoothness using magnetron sputter (MS) and pulsed laser deposition (PLD) techniques. A suitable arrangement of bent multilayer structures of alternating low and high-density materials will channel soft gamma-ray photons via total external reflection and then concentrate the incident radiation to a point. The high-energy astrophysics group at the UNH Space Science Center (SSC) is testing these structures for their ability to channel 122 keV gamma rays in the laboratory. In addition of experimental works, we have been working on gamma ray tracing model of the concentrator by IDL, making use of optical properties calculated by the IMD software. This modeling allows us to calculate efficiency and focal length for different energy bands and materials and compare them with experimental result. Also we will combine concentrator modeling result and detector simulation by Geant4 to archive a complete package of gamma-ray telescope simulation. If successful, this technology will offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments and providing greatly increased sensitivity for modest cost and complexity.

  4. Hard X-Ray and Wide Focusing Telescopes

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1998-01-01

    Studies are being carried out to compare the performance of several different separation materials used in the replication process. This report presents the results obtained during the second year of a program which consists of replicating smooth, thin substrates, depositing multilayer coatings upon them, and evaluating their performance. Replication and multilayer coatings are both critically important to the development of focussing hard X-ray telescopes that function up to 100 keV. The activities of the current year include extending the comparison between sputtered amorphous carbon and evaporated gold to include sputtered as well as evaporated gold. The figure of merit being the smoothness of the replica which has a direct effect on the specular reflectivity. These results were obtained with epoxy replication, but they should be applicable to electroformed nickel, the process we expect to use for the ultimate replicated optics.

  5. X-ray absorption fine structure analysis of molybdenum added to BaTiO3-based ceramics used for multilayer ceramic capacitors

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichiro; Shimura, Tetsuo; Ryu, Minoru; Iwazaki, Yoshiki

    2017-04-01

    The effect of slight molybdenum doping of perovskite-type BaTiO3-based ceramics on the reliability of a multilayer ceramic capacitor (MLCC) and on the valence state of molybdenum in the BaTiO3-based ceramics has been investigated by highly accelerated lifetime tests and X-ray absorption fine structure analysis. The molybdenum added to the BaTiO3-based ceramics is located at Ti sites and improves the highly accelerated lifetime and lowers the initial dielectric resistivity in MLCCs. Through sintering in a reducing atmosphere, which is an important process in the fabrication of BaTiO3-based MLCCs, the oxidation state of the molybdenum added could be adjusted from +6 to a value close to +4.

  6. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  7. X-ray microtomography experiments using a diffraction tube and a focusing multilayer-mirror

    NASA Astrophysics Data System (ADS)

    Gurker, N.; Nell, R.; Backfrieder, W.; Kandutsch, J.; Sarg, K.; Prevrhal, S.; Nentwich, C.

    1994-10-01

    A first-generation (i.e. translate-rotate) micro X-ray transmission computed tomography system has been developed, which utilizes a standard 2.2 kW long-fine-focus diffraction tube with Cu-anode as the X-ray source, a spherical W/C multilayer-mirror to condense and spectrally select the CuKα-radiation (8.04 keV) from the tube and a scintillation counter to detect the X-ray photons; in the present configuration the optical system demagnifies the original source size in the direction parallel to the imaged object slice by a factor of 5, where a small slit captures the radiation and thus gives an intense microscopic (pseudo-) source of monochromatic X-radiation in close vicinity of the scanned specimen. The system provides tomographic images of small objects (up to 25 mm in diameter) reconstructed as 128 × 128 matrices with resolutions between ˜ 20 and 200 μm in ≥ 10 min. The software package which is available for image reconstruction includes filtered backprojection, correcting backprojection (ART, MART) and a new type of weighted backprojection, which turns out to be a simplified version of MART (SMART). A dedicated scan- and reconstruction-procedure demonstrates the feasibility to image selected regions-of-interest within the investigated specimen slice with (up to 1 order of magnitude) higher spatial resolution than their surroundings without major artefacts (Zoom-CT). The hard-and software-components of this CT-system are discussed, several examples are given and perspectives of further development are outlined.

  8. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Iaroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  9. Surface modified MXene Ti3C2 multilayers by aryl diazonium salts leading to large-scale delamination

    NASA Astrophysics Data System (ADS)

    Wang, Hongbing; Zhang, Jianfeng; Wu, Yuping; Huang, Huajie; Li, Gaiye; Zhang, Xin; Wang, Zhuyin

    2016-10-01

    Herein we report a simple and facile method to delaminate MXene Ti3C2 multilayers by the assistance of surface modification using aryl diazonium salts. The basic strategy involved the preparation of layered MAX Ti3AlC2 and the exfoliation of Ti3AlC2 into Ti3C2 multilayers, followed by Na+ intercalation and surface modification using sulfanilic acid diazonium salts. The resulting chemically grafted Ti3C2 flakes were characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) to confirm the presence of the surface organic species. Ultraviolet-visible spectroscopy revealed that surface-modified MXene Ti3C2 sheets disperse well in water and the solutions obey Lambert-Beer's law. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to demonstrate the morphology and structure of delaminating MXene Ti3C2 flakes. The results indicated that chemical modification for MXene multilayers by aryl diazonium salts induced swelling that conversely weakened the bonds between MX layers, hence leading to large-scale delamination of multilayered MXene Ti3C2via mild sonication. Advantages of the present approach rely not only on the simplicity and efficiency of the delamination procedure but also on the grafting of aryl groups to MXene surfaces, highly suitable for further applications of the newly discovered two-dimensional materials.

  10. Structural characterization and low-temperature properties of Ru/C multilayer monochromators with different periodic thicknesses.

    PubMed

    Jiang, Hui; He, Yan; He, Yumei; Li, Aiguo; Wang, Hua; Zheng, Yi; Dong, Zhaohui

    2015-11-01

    Ru/C multilayer monochromators with different periodic thicknesses were investigated using X-ray grazing-incidence reflectivity, diffuse scattering, Bragg imaging, morphology testing, etc. before and after cryogenic cooling. Quantitative analyses enabled the determination of the key multilayer structural parameters for samples with different periodic thicknesses, especially the influence from the ruthenium crystallization. The results also reveal that the basic structures and reflection performance keep stable after cryogenic cooling. The low-temperature treatment smoothed the surfaces and interfaces and changed the growth characteristic to a low-frequency surface figure. This study helps with the understanding of the structure evolution of multilayer monochromators during cryogenic cooling and presents sufficient experimental proof for using cryogenically cooled multilayer monochromators in a high-thermal-load undulator beamline.

  11. Fabrication and Characteristics of Al/PTFE Multilayers and Application in Micro-initiator

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxin; Jiang, Hongchuan; Zhao, Xiaohui; Zhang, Wanli; Li, Yanrong

    2017-12-01

    In this paper, a micro-initiator was designed and fabricated by integrating Al/PTFE multilayers with a Cu film bridge. The regularity layer structure and interface composition of Al/PTFE multilayers was analysed by transmission electron microscope and X-ray photoelectron spectroscopy, respectively. The heat release reaction in Al/PTFE multilayers can be triggered with reaction temperature of 430 °C, and the overall heat of reaction is 3192 J/g. Al/PTFE multilayers with bilayer thickness of 200 nm was alternately deposited on a Cu film bridge to improve the electric explosion performances. Compared to Cu film bridge, the Al/PTFE/Cu integrated film bridge exhibits improved performances with longer explosion duration time, more violent explosion phenomenon and larger quantities of ejected product particles.

  12. Analysis of Multilayer Devices for Superconducting Electronics by High-Resolution Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy

    DOE PAGES

    Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...

    2017-02-15

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  13. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  14. The ASTRO-H X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Takahashi, Tadayuki; Mitsuda, Kazuhisa; Kelley, Richard; Aarts, Henri; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steve; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Asai, Makoto; Audard, Marc; Awaki, Hisamitsu; Azzarello, Philipp; Baluta, Chris; Bamba, Aya; Bando, Nobutaka; Bautz, Mark; Blandford, Roger; Boyce, Kevin; Brown, Greg; Cackett, Ed; Chernyakova, Mara; Coppi, Paolo; Costantini, Elisa; de Plaa, Jelle; den Herder, Jan-Willem; DiPirro, Michael; Done, Chris; Dotani, Tadayasu; Doty, John; Ebisawa, Ken; Eckart, Megan; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew; Ferrigno, Carlo; Foster, Adam; Fujimoto, Ryuichi; Fukazawa, Yasushi; Funk, Stefan; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi; Gandhi, Poshak; Gendreau, Keith; Gilmore, Kirk; Haas, Daniel; Haba, Yoshito; Hamaguchi, Kenji; Hatsukade, Isamu; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko; Hirose, Kazuyuki; Hornschemeier, Ann; Hoshino, Akio; Hughes, John; Hwang, Una; Iizuka, Ryo; Inoue, Yoshiyuki; Ishibashi, Kazunori; Ishida, Manabu; Ishimura, Kosei; Ishisaki, Yoshitaka; Ito, Masayuki; Iwata, Naoko; Iyomoto, Naoko; Kaastra, Jelle; Kallman, Timothy; Kamae, Tuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawahara, Hajime; Kawaharada, Madoka; Kawai, Nobuyuki; Kawasaki, Shigeo; Khangaluyan, Dmitry; Kilbourne, Caroline; Kimura, Masashi; Kinugasa, Kenzo; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Kosaka, Tatsuro; Koujelev, Alex; Koyama, Katsuji; Krimm, Hans; Kubota, Aya; Kunieda, Hideyo; LaMassa, Stephanie; Laurent, Philippe; Lebrun, Francois; Leutenegger, Maurice; Limousin, Olivier; Loewenstein, Michael; Long, Knox; Lumb, David; Madejski, Grzegorz; Maeda, Yoshitomo; Makishima, Kazuo; Marchand, Genevieve; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian; Miller, Jon; Miller, Eric; Mineshige, Shin; Minesugi, Kenji; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Toshio; Murakami, Hiroshi; Mushotzky, Richard; Nagano, Hosei; Nagino, Ryo; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Namba, Yoshiharu; Natsukari, Chikara; Nishioka, Yusuke; Nobukawa, Masayoshi; Nomachi, Masaharu; O'Dell, Steve; Odaka, Hirokazu; Ogawa, Hiroyuki; Ogawa, Mina; Ogi, Keiji; Ohashi, Takaya; Ohno, Masanori; Ohta, Masayuki; Okajima, Takashi; Okamoto, Atsushi; Okazaki, Tsuyoshi; Ota, Naomi; Ozaki, Masanobu; Paerels, Fritzs; Paltani, Stéphane; Parmar, Arvind; Petre, Robert; Pohl, Martin; Porter, F. Scott; Ramsey, Brian; Reis, Rubens; Reynolds, Christopher; Russell, Helen; Safi-Harb, Samar; Sakai, Shin-ichiro; Sameshima, Hiroaki; Sanders, Jeremy; Sato, Goro; Sato, Rie; Sato, Yohichi; Sato, Kosuke; Sawada, Makoto; Serlemitsos, Peter; Seta, Hiromi; Shibano, Yasuko; Shida, Maki; Shimada, Takanobu; Shinozaki, Keisuke; Shirron, Peter; Simionescu, Aurora; Simmons, Cynthia; Smith, Randall; Sneiderman, Gary; Soong, Yang; Stawarz, Lukasz; Sugawara, Yasuharu; Sugita, Hiroyuki; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takeda, Shin-ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tamura, Keisuke; Tanaka, Takaaki; Tanaka, Yasuo; Tashiro, Makoto; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi; Uchida, Hiroyuki; Uchiyama, Yasunobu; Uchiyama, Hideki; Ueda, Yoshihiro; Ueno, Shiro; Uno, Shinichiro; Urry, Meg; Ursino, Eugenio; de Vries, Cor; Wada, Atsushi; Watanabe, Shin; Werner, Norbert; White, Nicholas; Yamada, Takahiro; Yamada, Shinya; Yamaguchi, Hiroya; Yamasaki, Noriko; Yamauchi, Shigeo; Yamauchi, Makoto; Yatsu, Yoichi; Yonetoku, Daisuke; Yoshida, Atsumasa; Yuasa, Takayuki

    2012-09-01

    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-12 keV with high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, V.V.; Conley, R.; Anderson, E.H.

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binarypseudo-random (BPR) gratings and arrays has been suggested and and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer. Here we describe the details of development of binarypseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electronmore » microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi{sub 2}/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML testsamples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less

  16. Structural morphology study of Cd2+ induced Langmuir Blodgett multilayer films of arachidic acid

    NASA Astrophysics Data System (ADS)

    Roy, Dhrubojyoti; Das, Nayan Mani; Gupta, P. S.

    2013-04-01

    The organization and headgroup co-ordination of Cadmium Arachidate (CdAA) molecule in Langmuir-Blodgett (LB) multilayer films deposited on hydrophilic Glass (SiO2) and Silicon (100) substrate at normal subphase pH (6.8) are studied. X-ray diffraction (XRD) and X-ray reflectivity (XRR) study reveals ordered layer by layer organization with uniform packing of CdAA molecules, and with a small tilt angle of alkyl chain of CdAA molecule equal to 6.8° ± 1.75°. Electron density profiles (EDPs) shows that the coverage of films remains almost constant with increase in bilayer thickness which indicate very little presence of pinhole defects. AFM study for 25 ML shows that coverage of the film remain intact upto 22nd ML and then decreases sharply due to presence of pinhole defects. Fourier transform infrared spectroscopy (FTIR) study is also consistent with XRD and XRR study of ordered deposition of CdAA molecule. FTIR and X-ray photoelectron spectroscopy (XPS) study indicates the formation of unidentate bridging metal-carboxylate coordination type headgroups consistent with one cadmium metal ion between two carboxylate (COO) groups in each headgroup structure.

  17. Multilayer Black Phosphorus Exfoliated with the Aid of Sodium Hydroxide: An Improvement in Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Liu, Wanying; Zhu, Yabo; Chen, Zhiyan; Lei, Jia; Feng, Peizhong

    2018-05-01

    We generated multilayer black phosphorus (MBP) as a precipitate in centrifugation under 3000 rpm for 25 min, preceded by liquid exfoliation, in which saturated sodium hydroxide (NaOH(s)) was added as an exfoliation auxiliary. The MBP exfoliated with NaOH(s) was characterized by scanning electron microscope, energy dispersive x-ray detector, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Its electrochemical performance was investigated by cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy. It was found that the appropriate amount of NaOH(s) can make MBP present a ladder-shaped structure or plackets on the layer edge, which may provide more active sites and channels for charge storage to improve its electrochemical performance. The specific capacitance of MBP samples exfoliated with appropriate amounts of NaOH(s) can quickly enter a relatively stable range of 110-90 F/g after the 75th cycle, and finally stabilize at about 90 F/g after thousands of cycles under the current density of 2 A/g, which demonstrates their good stability in the range of long charge/discharge cycles. MBP exhibits double-layer capacitance properties.

  18. Chromatic X-ray magnifying method and apparatus by Bragg reflective planes on the surface of Abbe sphere

    DOEpatents

    Thoe, Robert S.

    1991-01-01

    Method and apparatus for producing sharp, chromatic, magnified images of X-ray emitting objects, are provided. The apparatus, which constitutes an X-ray microscope or telescope, comprises a connected collection of Bragg reflecting planes, comprised of either a bent crystal or a synthetic multilayer structure, disposed on and adjacent to a locus determined by a spherical surface. The individual Bragg planes are spatially oriented to Bragg reflect radiation from the object location toward the image location. This is accomplished by making the Bragg planes spatially coincident with the surfaces of either a nested series of prolate ellipsoids of revolution, or a nested series of spheres. The spacing between the Bragg reflecting planes can be tailored to control the wavelengths and the amount of the X-radiation that is Bragg reflected to form the X-ray image.

  19. Formation of Multilayer Cu Islands Embedded beneath the Surface of Graphite: Characterization and Fundamental Insights

    DOE PAGES

    Lii-Rosales, Ann; Han, Yong; Evans, James W.; ...

    2018-02-06

    Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less

  20. Formation of Multilayer Cu Islands Embedded beneath the Surface of Graphite: Characterization and Fundamental Insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lii-Rosales, Ann; Han, Yong; Evans, James W.

    Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less

  1. Order of Magnitude Sensitivity Increase in X-ray Fluorescence Computed Tomography (XFCT) Imaging With an Optimized Spectro-Spatial Detector Configuration: Theory and Simulation

    PubMed Central

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong

    2014-01-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110° to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 µg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging. PMID:24770916

  2. Order of magnitude sensitivity increase in X-ray Fluorescence Computed Tomography (XFCT) imaging with an optimized spectro-spatial detector configuration: theory and simulation.

    PubMed

    Ahmad, Moiz; Bazalova, Magdalena; Xiang, Liangzhong; Xing, Lei

    2014-05-01

    The purpose of this study was to increase the sensitivity of XFCT imaging by optimizing the data acquisition geometry for reduced scatter X-rays. The placement of detectors and detector energy window were chosen to minimize scatter X-rays. We performed both theoretical calculations and Monte Carlo simulations of this optimized detector configuration on a mouse-sized phantom containing various gold concentrations. The sensitivity limits were determined for three different X-ray spectra: a monoenergetic source, a Gaussian source, and a conventional X-ray tube source. Scatter X-rays were minimized using a backscatter detector orientation (scatter direction > 110(°) to the primary X-ray beam). The optimized configuration simultaneously reduced the number of detectors and improved the image signal-to-noise ratio. The sensitivity of the optimized configuration was 10 μg/mL (10 pM) at 2 mGy dose with the mono-energetic source, which is an order of magnitude improvement over the unoptimized configuration (102 pM without the optimization). Similar improvements were seen with the Gaussian spectrum source and conventional X-ray tube source. The optimization improvements were predicted in the theoretical model and also demonstrated in simulations. The sensitivity of XFCT imaging can be enhanced by an order of magnitude with the data acquisition optimization, greatly enhancing the potential of this modality for future use in clinical molecular imaging.

  3. Fabrication of imaging X-ray optics

    NASA Astrophysics Data System (ADS)

    Catura, R. C.; Joki, E. G.; Brookover, W. J.

    The design, fabrication, and performance of optics for X-ray astronomy and laboratory applications are described and illustrated with diagrams, drawings, graphs, photographs, and sample images. Particular attention is given to the Wolter I telescope developed for spectroscopic observation of 8-30-A cosmic X-ray sources from a rocketborne X-ray Objective Grating Spectrometer; this instrument employs three nested paraboloid-hyperboloid mirrors of 5083 Al alloy, figured by diamond turning and covered with a thin coating of acrylic lacquer prior to deposition of a 40-nm-thick layer of Sn. In calibration tests at NASA Marshall, the FWHM of the line-spread function at 1.33 nm was found to be 240 microns, corresponding to 21 arcsec. Also presented are the results of reflectivity measurements on C and W multilayers sputtered on Si and fusion glass substrates.

  4. Structure determination of a multilayer with an island-like overlayer using hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isomura, N., E-mail: isomura@mosk.tytlabs.co.jp; Kataoka, K.; Horibuchi, K.

    We use hard X-ray photoelectron spectroscopy (HAXPES) to obtain the surface structure of a multilayer Au/SiO{sub 2}/Si substrate sample with an island-like overlayer. Photoelectron intensities are measured as a function of incident photon energy (PE) and take-off angle (TOA, measured from the sample surface). The Au layer coverage and Au and SiO{sub 2} layer thicknesses are obtained by the PE dependence, and are used for the following TOA analysis. The Au island lateral width in the cross section is obtained by the TOA dependence, including information about surface roughness, in consideration of the island shadowing at small TOAs. In bothmore » cases, curve-fitting analysis is conducted. The surface structure, which consists of layer thicknesses, overlayer coverage and island width, is determined nondestructively by a combination of PE and TOA dependent HAXPES measurements.« less

  5. Design and analysis of a fast, two-mirror soft-x-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Jin, L.; Hoover, R. B.

    1992-01-01

    During the past several years, a number of investigators have addressed the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft-x-ray applications using multilayer coatings. Some of these systems have demonstrated diffraction limited resolution for small numerical apertures. Rigorously aplanatic, two-aspherical mirror Head microscopes can provide near diffraction limited resolution for very large numerical apertures. The relationships between the numerical aperture, mirror radii and diameters, magnifications, and total system length for Schwarzschild microscope configurations are summarized. Also, an analysis of the characteristics of the Head-Schwarzschild surfaces will be reported. The numerical surface data predicted by the Head equations were fit by a variety of functions and analyzed by conventional optical design codes. Efforts have been made to determine whether current optical substrate and multilayer coating technologies will permit construction of a very fast Head microscope which can provide resolution approaching that of the wavelength of the incident radiation.

  6. Soft X-Ray Optics by Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  7. Modification of carbon composites by nanoceramic compounds

    NASA Astrophysics Data System (ADS)

    Stoch, A.; Jastrzebski, W.; Długoń, E.; Stoch, G. J.; Błażewicz, S.; Adamczyk, A.; Tatarzyńska, K.

    2005-06-01

    Carbon-carbon composites (C/C) exhibit excellent high-temperature mechanical properties but their air oxidation limits their use at temperatures above 500 °C to inert atmosphere. Variety of coatings has been used to protect C/C composites from oxidation. In this work C/C composite substrates were covered with ceramic multilayer coats by electrophoretic deposition from ceramic sols such as silica sol, alumina sol and silica-lumina sol. Sol particles were of nano-sized dimensions. Deposited coats were annealed at 900-1500 °C. Oxidation tests at 600 °C reveal that the best protection of C/C composite against oxidation gives the multilayer coat formed by three or four electrophoretic depositions. The phase composition in the final annealed layers was analyzed by Infrared spectroscopy (FTIR) and by X-ray diffraction analysis (XRD). Morphology and chemical composition was observed using Scanning electron microscopy (SEM) with energy dispersive X-ray microanalysis (EDS).

  8. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  9. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  10. Comparative analysis of high-performance infrared avalanche InxGa1-xAsyP1-y and Hg1-xCdxTe heterophotodiodes

    NASA Astrophysics Data System (ADS)

    Kholodnov, Viacheslav; Drugova, Albina; Nikitin, Mikhail; Chekanova, Galina

    2012-10-01

    Technology of infrared (IR) avalanche photodiodes (APDs) gradually moves from simple single element APD to 2D focal plane arrays (FPA). Spectral covering of APDs is expanded continuously from classic 1.3 μm to longer wavelengths due to using of narrow-gap semiconductor materials like Hg1-xCdxTe. APDs are of great interest to developers and manufacturers of different optical communication, measuring and 3D reconstruction thermal imaging systems. Major IR detector materials for manufacturing of high-performance APDs became heteroepitaxial structures InxGa1-xAsyP1-y and Hg1-xCdxTe. Progress in IR APD technology was achieved through serious improvement in material growing techniques enabling forming of multilayer heterostuctures with separate absorption and multiplication regions (SAM). Today SAM-APD design can be implemented both on InxGa1-xAsyP1-y and Hg1-xCdxTe multilayer heteroepitaxial structures. To create the best performance optimal design avalanche heterophotodiode (AHPD) it is necessary to carry out a detailed theoretical analysis of basic features of generation, avalanche breakdown and multiplication of charge carriers in proper heterostructure. Optimization of AHPD properties requires comprehensive estimation of AHPD's pixel performance depending on pixel's multi-layer structure design, layers doping, distribution of electric field in the structure and operating temperature. Objective of the present article is to compare some features of 1.55 μm SAM-AHPDs based on InxGa1-xAsyP1-y and Hg1-xCdxTe.

  11. Preparation, characterization, and infrared emissivity property of optically active polyurethane/TiO{sub 2}/SiO{sub 2} multilayered microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Yong; Zhou Yuming, E-mail: ymzhou@seu.edu.cn; Ge Jianhua

    Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. LPU/TiO{sub 2}/SiO{sub 2} was characterized by FT-IR, UV-vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), SEM and TEM, and the infrared emissivity value (8-14 {mu}m) was investigated in addition. The results indicated that titania and polyurethane had been successfully coated onto the surfaces of silica microspheres. LPU/TiO{sub 2}/SiO{sub 2} exhibited clearly multilayered core-shell construction. The infrared emissivity values reduced along with the increase of covering layers thus provedmore » that the interfacial interactions had direct influence on the infrared emissivity. Besides, LPU/TiO{sub 2}/SiO{sub 2} multilayered microspheres based on the optically active polyurethane took advantages of the orderly secondary structure and strengthened interfacial synergistic actions. Consequently, it possessed the lowest infrared emissivity value. - Graphical Abstract: Optically active polyurethane/titania/silica (LPU/TiO{sub 2}/SiO{sub 2}) multilayered core-shell composite microspheres were prepared by the combination of titania deposition on the surface of silica spheres and subsequent polymer grafting. Highlights: > Optically active polyurethane based on tyrosine was used for the modification of nanoparticles. > LPU/TiO{sub 2}/SiO{sub 2} multilayered core-shell microspheres were prepared and characterized. > Interfacial interactions and secondary structure affected the infrared emissivity of composite.« less

  12. Stress analysis of ZrO2/SiO2 multilayers deposited on different substrates with different thickness periods

    NASA Astrophysics Data System (ADS)

    Shao, Shuying; Shao, Jianda; He, Hongbo; Fan, Zhengxiu

    2005-08-01

    The effects of repeating thickness periods on stress are studied in ZrO2/SiO2 multilayers deposited by electron-beam evaporation on BK7 glass and fused-silica substrates. The results show that the residual stress is compressive and decreases with an increase of the periods of repeating thickness in the ZrO2/SiO2 multilayers. At the same time, the residual stress in multilayers deposited on BK7 glass is less than that of samples deposited on fused silica. The variation of the microstructure examined by x-ray diffraction shows that microscopic deformation does not correspond to macroscopic stress, which may be due to variation of the interface stress.

  13. A concept for a soft gamma-ray concentrator using thin-film multilayer structures

    NASA Astrophysics Data System (ADS)

    Bloser, Peter F.; Shirazi, Farzane; Echt, Olof; Krzanowski, James E.; Legere, Jason S.; McConnell, Mark L.; Tsavalas, John G.; Wong, Emily N.; Aliotta, Paul H.

    2016-07-01

    We are investigating the use of thin-film, multilayer structures to form optics capable of concentrating soft gamma rays with energies greater than 100 keV, beyond the reach of current grazing-incidence hard X-ray mirrors. Alternating layers of low- and high-density materials (e.g., polymers and metals) will channel soft gamma-ray photons via total external reflection. A suitable arrangement of bent structures will then concentrate the incident radiation to a point. Gamma-ray optics made in this way offer the potential for soft gamma-ray telescopes with focal lengths of less than 10 m, removing the need for formation flying spacecraft and opening the field up to balloon-borne instruments. Following initial investigations conducted at Los Alamos National Laboratory, we have constructed and tested a prototype structure using spin coating combined with magnetron sputtering. We are now investigating whether it is possible to grow such flexible multi-layer structures with the required thicknesses and smoothness more quickly by using magnetron sputter and pulsed laser deposition techniques. We present the latest results of our fabrication and gamma-ray channeling tests, and describe our modeling of the sensitivity of potential concentrator-based telescope designs. If successful, this technology offers the potential for transformational increases in sensitivity while dramatically improving the system-level performance of future high-energy astronomy missions through reduced mass and complexity.

  14. Cross-sectional transmission electron microscopic study of irradiation induced nano-crystallization of nickel in a W/Ni multilayer.

    PubMed

    Bagchi, Sharmistha; Lalla, N P

    2008-06-11

    The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.

  15. Performance of ASTRO-H Hard X-Ray Telescope (HXT)

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Kunieda, Hideyo; Ishida, Manabu; Matsumoto, Hironori; Furuzawa, Akihiro; Haba, Yohsito; Hayashi, Takayuki; Iizuka, Ryo; Ishibashi, Kazunori; Itoh, Masayuki; hide

    2016-01-01

    The Japanese X-ray Astronomy Satellite, Hitomi (ASTRO-H) carries hard X-ray imaging system, covering the energy band from 5 keV to 80 keV. The hard X-ray imaging system consists of two hard X-ray telescopes (HXT) and two hard X-ray imagers (HXI). The HXT employs tightly-nested, conically-approximated thin foil Wolter-I optics. The mirror surfaces of HXT were coated with PtC depth-graded multilayers. We carried out ground calibrations of HXTs at the synchrotron radiation facility SPring-8 BL20B2 in Japan, and found that total effective area of two HXTs was about 350 sq cm at 30 keV, and the half power diameter of HXT was about 1.9. After the launch of Hitomi, Hitomi observed several targets during the initial functional verification of the onboard instruments. The Hitomi software and calibration team (SCT) provided the Hitomis data of G21.5-0.9, a pulsar wind nebula, to the hardware team for the purpose of the instrument calibration. Through the analysis of the in-flight data, we have confirmed that the X-ray performance of HXTs in orbit was consistent with that estimated by the ground calibrations.

  16. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya

    Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less

  17. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-07

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  18. Multi-Layer Organic Squaraine-Based Photodiode for Indirect X-Ray Detection

    NASA Astrophysics Data System (ADS)

    Iacchetti, Antonio; Binda, Maddalena; Natali, Dario; Giussani, Mattia; Beverina, Luca; Fiorini, Carlo; Peloso, Roberta; Sampietro, Marco

    2012-10-01

    The paper presents an organic-based photodiode coupled to a CsI(Tl) scintillator to realize an X-ray detector. A suitable blend of an indolic squaraine derivative and of fullerene derivative has been used for the photodiode, thus allowing external quantum efficiency in excess of 10% at a wavelength of 570 nm, well matching the scintillator output spectrum. Thanks to the additional deposition of a 15 nm thin layer of a suitable low electron affinity polymer, carriers injection from the metal into the organic semiconductor has been suppressed, and dark current density as low as has been obtained, which is comparable to standard Si-based photodiodes. By using a collimated X-ray beam impinging onto the scintillator mounted over the photodiode we have been able to measure current variations in the order of 150 pA on a dark current floor of less than 50 pA when operating the X-ray tube in switching mode, thus proving the feasibility of indirect X-ray detection by means of organic semiconductors.

  19. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    DOE PAGES

    Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya; ...

    2016-11-29

    Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less

  20. Spin and orbital magnetic moments of Fe and Co in Co/Fe and Fe/Co multilayers on Si from L2,3 edge X-ray Magnetic Circular Dichroism Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vemuru, Krishnamurthy; Rosenberg, Richard; Mankey, Gary

    Nanostructured FeCo thin films are interesting for magnetic recording applications due to their high saturation magnetization, high Curie temperature and low magnetocrystalline anisotropy. It is desirable to know how the magnetism is modified by the nanostructrure. We report Fe L 2 , 3 edge and Co L2 , 3 edge x-ray magnetic circular dichroism (XMCD) investigations of element specific spin and orbital magnetism of Fe and Co in two multilayer samples: (S1) Si/SiO2/[Co 0.8 nm/Fe 1.6 nm]x32/W (2nm) and (S2) Si/SiO2/[Co 1.6 nm/Fe 0.8 nm]x32/W (2nm) thin films at room temperature. Sum rule analysis of XMCD at Fe L2 , 3 edge in sample S1 shows that the orbital moment of Fe is strongly enhanced and the spin moment is strongly reduced as compared to the values found in bulk Fe. Details of sum rule analysis will be presented to compare and contrast spin magnetic moments and orbital magnetic moments of Fe and Co in the two multilayer samples. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

  1. Adhesive Bioactive Coatings Inspired by Sea Life.

    PubMed

    Rego, Sónia J; Vale, Ana C; Luz, Gisela M; Mano, João F; Alves, Natália M

    2016-01-19

    Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan, and hyaluronic acid modified with catechol groups, which are the main components responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The buildup of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring, and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. It was found that the constructed films promote the formation of bonelike apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

  2. EUV spectroscopy of high-redshift x-ray objects

    NASA Astrophysics Data System (ADS)

    Kowalski, M. P.; Wolff, M. T.; Wood, K. S.; Barbee, T. W., Jr.; Barstow, M. A.

    2010-07-01

    As astronomical observations are pushed to cosmological distances (z>3) the spectral energy distributions of X-ray objects, AGN for example, will be redshifted into the EUV waveband. Consequently, a wealth of critical spectral diagnostics, provided by, for example, the Fe L-shell complex and the O VII/VIII lines, will be lost to future planned X-ray missions (e.g., IXO, Gen-X) if operated at traditional X-ray energies. This opens up a critical gap in performance located at short EUV wavelengths, where critical X-ray spectral transitions occur in high-z objects. However, normal-incidence multilayer-grating technology, which performs best precisely at such wavelengths, together with advanced nanolaminate replication techniques have been developed and are now mature to the point where advanced EUV instrument designs with performance complementary to IXO and Gen-X are practical. Such EUV instruments could be flown either independently or as secondary instruments on these X-ray missions. We present here a critical examination of the limits placed on extragalactic EUV measurements by ISM absorption, the range where high-z measurements are practical, and the requirements this imposes on next-generation instrument designs. We conclude with a discussion of a breakthrough technology, nanolaminate replication, which enables such instruments.

  3. Combined evaluation of grazing incidence X-ray fluorescence and X-ray reflectivity data for improved profiling of ultra-shallow depth distributions☆

    PubMed Central

    Ingerle, D.; Meirer, F.; Pepponi, G.; Demenev, E.; Giubertoni, D.; Wobrauschek, P.; Streli, C.

    2014-01-01

    The continuous downscaling of the process size for semiconductor devices pushes the junction depths and consequentially the implantation depths to the top few nanometers of the Si substrate. This motivates the need for sensitive methods capable of analyzing dopant distribution, total dose and possible impurities. X-ray techniques utilizing the external reflection of X-rays are very surface sensitive, hence providing a non-destructive tool for process analysis and control. X-ray reflectometry (XRR) is an established technique for the characterization of single- and multi-layered thin film structures with layer thicknesses in the nanometer range. XRR spectra are acquired by varying the incident angle in the grazing incidence regime while measuring the specular reflected X-ray beam. The shape of the resulting angle-dependent curve is correlated to changes of the electron density in the sample, but does not provide direct information on the presence or distribution of chemical elements in the sample. Grazing Incidence XRF (GIXRF) measures the X-ray fluorescence induced by an X-ray beam incident under grazing angles. The resulting angle dependent intensity curves are correlated to the depth distribution and mass density of the elements in the sample. GIXRF provides information on contaminations, total implanted dose and to some extent on the depth of the dopant distribution, but is ambiguous with regard to the exact distribution function. Both techniques use similar measurement procedures and data evaluation strategies, i.e. optimization of a sample model by fitting measured and calculated angle curves. Moreover, the applied sample models can be derived from the same physical properties, like atomic scattering/form factors and elemental concentrations; a simultaneous analysis is therefore a straightforward approach. This combined analysis in turn reduces the uncertainties of the individual techniques, allowing a determination of dose and depth profile of the implanted elements with drastically increased confidence level. Silicon wafers implanted with Arsenic at different implantation energies were measured by XRR and GIXRF using a combined, simultaneous measurement and data evaluation procedure. The data were processed using a self-developed software package (JGIXA), designed for simultaneous fitting of GIXRF and XRR data. The results were compared with depth profiles obtained by Secondary Ion Mass Spectrometry (SIMS). PMID:25202165

  4. Characterization of TiN/B-C-N multilayers by transmission electron microscopy, ion beam backscattering, and low angle x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, H.; Fayeulle, S.; Nastasi, M.

    1997-10-01

    The effects of Ar ion irradiation on the structure and stability of multilayered DC sputtered thin films of TiN/B-C-N have been studied. An increase of the bilayer repeat length to a maximum of 12.8% and departure of nitrogen from the film was observed indicating the interdiffusion between TiN and B-C-N layers. For the highest dose (5 {times} 10{sup 16} ions/cm{sup 2}) the multilayered structure partly disappears. The various mechanisms are discussed in terms of stress-driven diffusion and viscous flow of atoms.

  5. Micromechanical Properties of Nanostructured Clay-Oxide Multilayers Synthesized by Layer-by-Layer Self-Assembly.

    PubMed

    Hou, Dongwei; Zhang, Guoping; Pant, Rohit Raj; Wei, Zhongxin; Shen, Shuilong

    2016-11-08

    Clay-based nanostructured multilayers, such as clay-polymer multilayers and clay-oxide multilayers, have attracted growing attention owing to their remarkable mechanical properties and promising application in various fields. In this paper, synthesis of a new kind of nanostructured clay-oxide multilayers by layer-by-layer self-assembly was explored. Nano-mechanical characterization of 18 clay-based multilayer samples, prepared under as-deposited (i.e., air-dried) and annealing conditions at 400 °C/600 °C with different precursor cations and multilayer structure, were carried out using nanoindentation testing, atomic force microscopy (AFM), and X-ray diffraction (XRD). The influencing factors, including as-deposited and annealing conditions and clay concentrations on the mechanical properties were analyzed. Results show that all of the multilayers exhibit high bonding strength between interlayers. Higher modulus and hardness of clay-based multilayers were obtained with lower clay concentrations than that with higher clay concentrations. Different relationships between the modulus and hardness and the annealing temperature exist for a specific type of clay-oxide multilayer. This work offers the basic and essential knowledge on design of clay-based nanostructured multilayers by layer-by-layer self-assembly.

  6. Single and multi-layered core-shell structures based on ZnO nanorods obtained by aerosol assisted chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Pizá-Ruiz, P.

    2015-07-15

    Core–shell nanorod structures were prepared by a sequential synthesis using an aerosol assisted chemical vapor deposition technique. Several samples consisting of ZnO nanorods were initially grown over TiO{sub 2} film-coated borosilicate glass substrates, following the synthesis conditions reported elsewhere. Later on, a uniform layer consisting of individual Al, Ni, Ti or Fe oxides was grown onto ZnO nanorod samples forming the so-called single MO{sub x}/ZnO nanorod core–shell structures, where MO{sub x} was the metal oxide shell. Additionally, a three-layer core–shell sample was developed by growing Fe, Ti and Fe oxides alternately, onto the ZnO nanorods. The microstructure of the core–shellmore » materials was characterized by grazing incidence X-ray diffraction, scanning and transmission electron microscopy. Energy dispersive X-ray spectroscopy was employed to corroborate the formation of different metal oxides. X-ray diffraction outcomes for single core–shell structures showed solely the presence of ZnO as wurtzite and TiO{sub 2} as anatase. For the multi-layered shell sample, the existence of Fe{sub 2}O{sub 3} as hematite was also detected. Morphological observations suggested the existence of an outer material grown onto the nanorods and further microstructural analysis by HR-STEM confirmed the development of core–shell structures in all cases. These studies also showed that the individual Al, Fe, Ni and Ti oxide layers are amorphous; an observation that matched with X-ray diffraction analysis where no apparent extra oxides were detected. For the multi-layered sample, the development of a shell consisting of three different oxide layers onto the nanorods was found. Overall results showed that no alteration in the primary ZnO core was produced during the growth of the shells, indicating that the deposition technique used herein was and it is suitable for the synthesis of homogeneous and complex nanomaterials high in quality and purity. In addition, materials absorptance determined from the total transmittance and reflectance spectra revealed a broader absorption interval including visible light, indicating potential uses of these nanostructures on solar energy appliances. - Graphical abstract: Display Omitted - Highlights: • Uniform ZnO nanorods (core)–metal oxide (shell) were obtained sequentially by AACVD. • Shells were structured of homogeneous single or multi-layered non-mixed metal oxides. • ZnO nanorod core was preserved during the shell synthesis. • Optical absorptance revealed visible interval absorption for FeO{sub x} shell samples. • Materials can be suitable for photocatalytic or photovoltaic applications.« less

  7. Research in the Optical Sciences.

    DTIC Science & Technology

    1984-10-01

    cannot tolerate the high temperatures used for 9 conventional hard MgF, depositions. The ion beam processing led to durable films (in some cases more...sputter epitaxy techniques for the production of high-reflectivity mirrors for near-normal incidence in the x-ray-ultraviolet (X- UV ) wavelength range...codes for X- UV multilayer mirror design, (2) acquisition of a data base of optical constants in this wavelength range, (3) theoretical designs of

  8. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  9. X-ray resonant magnetic scattering ellipsometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z.; Randall, K.J.; Gluskin, E.

    1996-09-01

    It is very difficult to characterize the polarization of a synchrotron radiation source in the soft and/or intermediate x-ray energy region particularly from 1 to 2 keV. Conventional multilayer mirror or single-crystal polarimeters do not work over this energy region because their throughput (the reflectivities combined with the phase shift) becomes insignificant. In this paper, we present a new ellipsometer scheme that is able to fully characterize the polarization of synchrotron radiation sources in this energy region. It is based on the dichroic x-ray resonant ferromagnetic scattering that yields information on both the polarization of the x-ray and the materialmore » (element specific) dielectric-constant tensor [C.-C. Kao {ital et} {ital al}., Phys. Rev. B {bold 50}, 9599 (1994)] due to the interband ferromagnetic Kerr effect [B.R. Cooper, Phys. Rev. A {bold 139}, 1504 (1965)]. {copyright} {ital 1996 American Institute of Physics.}« less

  10. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE PAGES

    Xu, Weihe; Schlossberger, Noah; Xu, Wei; ...

    2017-11-15

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  11. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE PAGES

    Nazaretski, E.; Yan, H.; Lauer, K.; ...

    2017-10-05

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  12. Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazaretski, E.; Yan, H.; Lauer, K.

    A hard X-ray scanning microscope installed at the Hard X-ray Nanoprobe beamline of the National Synchrotron Light Source II has been designed, constructed and commissioned. The microscope relies on a compact, high stiffness, low heat dissipation approach and utilizes two types of nanofocusing optics. It is capable of imaging with ~15 nm × 15 nm spatial resolution using multilayer Laue lenses and 25 nm × 26 nm resolution using zone plates. Fluorescence, diffraction, absorption, differential phase contrast, ptychography and tomography are available as experimental techniques. The microscope is also equipped with a temperature regulation system which allows the temperature ofmore » a sample to be varied in the range between 90 K and 1000 K. The constructed instrument is open for general users and offers its capabilities to the material science, battery research and bioscience communities.« less

  13. High resolution tip-tilt positioning system for a next generation MLL-based x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Weihe; Schlossberger, Noah; Xu, Wei

    Multilayer Laue lenses (MLLs) are x-ray focusing optics with the potential to focus hard x-rays down to a single nanometer level. In order to achieve point focus, an MLL microscope needs to have the capability to perform tip-tilt motion of MLL optics and to hold the angular position for an extended period of time. Here, we present a 2D tip-tilt system that can achieve an angular resolution of over 100 microdegree with a working range of 4°, by utilizing a combination of laser interferometer and mini retroreflector. The linear dimensions of the developed system are about 30 mm in allmore » directions, and the thermal dissipation of the system during operation is negligible. Compact design and high angular resolution make the developed system suitable for MLL optics alignment in the next generation of MLL-based x-ray microscopes.« less

  14. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)

    DOE PAGES

    Halim, Joseph; Cook, Kevin M.; Naguib, Michael; ...

    2015-12-01

    A detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented in this work for select MXenes—a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Thus we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi-layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti 3C 2T x, Ti 2CT x, Ti 3CNTx, Nb 2CT x and Nb 4C 3T x, where T represents surface groups that this work attempts to quantify. In all themore » cases, the presence of three surface terminations, single bondO, single bondOH and single bondF, in addition to OH-terminations relatively strongly bonded to H 2O molecules, was confirmed. Moreover, from XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications.« less

  15. Investigation of superlattice device structures

    NASA Technical Reports Server (NTRS)

    Gergis, I. S.; Manasevit, H. M.; Lin, A. L.; Jones, A. B.

    1985-01-01

    This report describes the investigation of growth properties, and the structure of epitaxial multilayer Si(Si(1x)Ge(x)) films grown on bulk Silicon Substrates. It also describes the fabrication and characterization of MOSFET and MESFET devices made on these epitaxial films. Films were grown in a CVD reactor using hydrides of Si and Ge with H2 and He as carrier gases. Growth temperatures were between 900 C and 1050 C with most films grown at 1000 C. Layer thickness was between 300A and 2000A and total film thickness was between 0.25 micro m and 7 micro m. The Ge content (X) in the alloy layers was between .05 and 0.2. N-type multilayer films grown on (100) p-type Si showed Hall mobility in the range 1000 to 1500 sq cm/v for an average carrier concentration of approx. 10 to the 16th power/cu cm. This is up to 50% higher than the Hall mobility observed in epitaxial Si films grown under the same conditions and with the same average carrier concentration. The mobility enhancement occurred in films with average carrier concentration (n) from 0.7 x 10 to the 16th power to 2 x 10 to the 17th power/cu cm, and total film thickness greater than 1.0 micro m. No mobility enhancement was seen in n-type multilayer films grown on (111) Si or in p-type multilayer films. The structure of the films was investigated was using SEM, TEM, AES, SIMS, and X-ray double crystal diffraction techniques. The film composition profile (AES, SIMS) showed that the transition region between layers is of the order of about 100A. The TEM examination revealed a well defined layered structure with fairly sharp interfaces and good crystalline quality. It also showed that the first few layers of the film (closest to the substrate) are uneven, most probably due to the initial growth pattern of the epitaxial film where growth occurs first in isolated islands that eventually growth and coalesce. The X-ray diffraction measurement determined the elastic strain and strain relief in the alloy layers of the film and the elastic strain in the intervening Si layers.

  16. NuSTAR on-ground calibration: II. Effective area

    NASA Astrophysics Data System (ADS)

    Brejnholt, Nicolai F.; Christensen, Finn E.; Westergaard, Niels J.; Hailey, Charles J.; Koglin, Jason E.; Craig, William W.

    2012-09-01

    The Nuclear Spectroscopic Telescope ARray (NuSTAR) was launched in June 2012 carrying the first focusing hard X-ray (5-80keV) optics to orbit. The multilayer coating was carried out at the Technical University of Denmark (DTU Space). In this article we introduce the NuSTAR multilayer reference database and its implementation in the NuSTAR optic response model. The database and its implementation is validated using on-ground effective area calibration data and used to estimate in-orbit performance.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missert, Nancy; Kotula, Paul G.; Rye, Michael

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  18. Anomalous x-ray diffraction on InAs/GaAs quantum dot systems

    NASA Astrophysics Data System (ADS)

    Schulli, T. U.; Sztucki, M.; Chamard, V.; Metzger, T. H.; Schuh, D.

    2002-07-01

    Free-standing InAs quantum dots on a GaAs (001) substrate have been investigated using grazing incidence x-ray diffraction. To suppress the strong scattering contribution from the GaAs substrate, we performed anomalous diffraction experiments at the superstructure (200) reflection, showing that the relative intensities from the dots and the substrate undergo a significant change with the x-ray energy below and above the As K edge. Since the signal from the substrate material can essentially be suppressed, this method is ideally suited for the investigation of strain, shape, and interdiffusion of buried quantum dots and quantum dots embedded in heteroepitaxial multilayers. In addition, we show that it can be used as a tool for studying wetting layers.

  19. Installation of Multiple Application X-ray Imaging Undulator Microscope (MAXIMUM) at ALS: Final report, 8/15/95-8/15/96

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    MAXIMUM is short for Multiple Application X-ray IMaging Undulator Microscope, a project started in 1988 by our group at the Synchrotron Radiation Center of the University of Wisconsin-Madison. It is a scanning x-ray photoemission microscope that uses a multilayer-coated Schwarzschild objective as the focusing element. It was designed primarily for materials science studies of lateral variations in surface chemistry. Suitable problems include: lateral inhomogeneities in Schottky barrier formation, heterojunction formation, patterned samples and devices, insulating samples. Any system which has interesting properties that are not uniform as a function of spatial dimension can potentially be studied with MAXIMUM. 6 figs.,more » 3 tabs.« less

  20. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    NASA Astrophysics Data System (ADS)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  1. A novel multi-detection technique for three-dimensional reciprocal-space mapping in grazing-incidence X-ray diffraction.

    PubMed

    Schmidbauer, M; Schäfer, P; Besedin, S; Grigoriev, D; Köhler, R; Hanke, M

    2008-11-01

    A new scattering technique in grazing-incidence X-ray diffraction geometry is described which enables three-dimensional mapping of reciprocal space by a single rocking scan of the sample. This is achieved by using a two-dimensional detector. The new set-up is discussed in terms of angular resolution and dynamic range of scattered intensity. As an example the diffuse scattering from a strained multilayer of self-assembled (In,Ga)As quantum dots grown on GaAs substrate is presented.

  2. Nondispersive neutron focusing method beyond the critical angle of mirrors

    DOEpatents

    Ice, Gene E.

    2008-10-21

    This invention extends the Kirkpatrick-Baez (KB) mirror focusing geometry to allow nondispersive focusing of neutrons with a convergence on a sample much larger than is possible with existing KB optical schemes by establishing an array of at least three mirrors and focusing neutrons by appropriate multiple deflections via the array. The method may be utilized with supermirrors, multilayer mirrors, or total external reflection mirrors. Because high-energy x-rays behave like neutrons in their absorption and reflectivity rates, this method may be used with x-rays as well as neutrons.

  3. Research with Large Area Imaging X-Ray Telescope Sounding Rocket Program

    NASA Technical Reports Server (NTRS)

    Gorenstein, Paul

    1999-01-01

    We are engaged in a program to develop focussing hard X-ray telescopes in a double conical or Wolter 1 geometry that function up to 100 keV by employing small graze angles and multilayer coatings. Directly polished substrates are not an option because they are too thick to be nested efficiently. The only alternative is to fabricate the very thin substrates by replication. Our objective is the production of integral cylindrical substrates because they should result in better angular resolution than segmented foil geometries. In addition, integral cylinders would be more resistant to possible stress from deep multilayer coatings than segmented ones. Both electroforming of nickel (method of SkX, JET-X, and XMM) and epoxy replication are under consideration. Both processes can utilize the same types of mandrels and separation agents- While electroforming can produce substrates that are thin, the high density of the nickel may result in high weight optics for some missions. For convenience, experimentation with replication and coating is being carried out initially on flats. Our replication studies include trials with gold and carbon separation agents. This paper reports on our efforts with epoxy replicated optics.

  4. Anomalous Hall effect assisted by interfacial chemical reaction in perpendicular Co/Pt multilayers

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Jiang, Shaolong; Teng, Jiao

    2018-05-01

    To uncover the underlying mechanism of Mg effect on the improved anomalous Hall effect (AHE) of perpendicular [Pt/Co]3/Mg/HfO2 multilayers, the X-ray photoelectron spectroscopy analysis has been carried out. It is found that Mg interlayer at the Co/HfO2 interface could prevent the Co oxidation to some extent via interfacial chemical reaction. As a result, A large anomalous Hall resistivity (ρAH) is obtained in perpendicular [Pt/Co]3/Mg/HfO2 multilayers, with a maximum ρAH of 3.02 μΩ cm, which is 59% larger than that in Co/Pt multilayers without Mg insertion. This effective modification of the AHE based on interfacial chemical reaction provides a promising pathway for spintronic applications.

  5. Aperiodic Mo/Si multilayers for hard x-rays

    DOE PAGES

    Pardini, Tom; Alameda, Jennifer; Platonov, Yuriy; ...

    2016-08-04

    In this work we have developed aperiodic Molybdenum/Silicon (Mo/Si) multilayers (MLs) to reflect 16.25 keV photons at a grazing angle of incidence of 0.6° ± 0.05°. To the best of our knowledge this is the first time this material system has been used to fabricate aperiodic MLs for hard x-rays. At these energies new hurdles arise. First of all a large number of bilayers is required to reach saturation. This poses a challenge from the manufacturing point of view, as thickness control of each ML period becomes paramount. The latter is not well defined a priori, due to the thicknessmore » of the interfacial silicide layers which has been observed to vary as a function of Mo and Si thickness. Additionally an amorphous-to-crystalline transition for Mo must be avoided in order maintain reasonably low roughness at the interfaces. This transition is well within the range of thicknesses pertinent to this study. Despite these difficulties our data demonstrates that we achieved reasonably flat ML response across the angular acceptance of ± 0.05°, with an experimentally confirmed average reflectivity of 28%. Such a ML prescription is well suited for applications in the field of hard x-ray imaging of highly diverging sources.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    V Yashchuk; R Conley; E Anderson

    Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanningmore » (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less

  7. Accurate calibration and control of relative humidity close to 100% by X-raying a DOPC multilayer

    DOE PAGES

    Ma, Yicong; Ghosh, Sajal K.; Bera, Sambhunath; ...

    2015-01-01

    Here in this study, we have designed a compact sample chamber that can achieve accurate and continuous control of the relative humidity (RH) in the vicinity of 100%. A 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) multilayer can be used as a humidity sensor by measuring its inter-layer repeat distance (d-spacing) via X-ray diffraction. We convert from DOPC d-spacing to RH according to a theory given in the literature and previously measured data of DOPC multilamellar vesicles in polyvinylpyrrolidone (PVP) solutions. This curve can be used for calibration of RH close to 100%, a regime where conventional sensors do not have sufficient accuracy. We demonstratemore » that this control method can provide RH accuracies of 0.1 to 0.01%, which is a factor of 10–100 improvement compared to existing methods of humidity control. Our method provides fine tuning capability of RH continuously for a single sample, whereas the PVP solution method requires new samples to be made for each PVP concentration. The use of this cell also potentially removes the need for an X-ray or neutron beam to pass through bulk water if one wishes to work close to biologically relevant conditions of nearly 100% RH.« less

  8. Effect of periodic number of [Si/Sb80Te20]x multilayer film on its laser-induced crystallization studied by coherent phonon spectroscopy

    PubMed Central

    2012-01-01

    The periodic number dependence of the femtosecond laser-induced crystallization threshold of [Si(5nm)/Sb80Te20(5nm)]x nanocomposite multilayer films has been investigated by coherent phonon spectroscopy. Coherent optical phonon spectra show that femtosecond laser-irradiated crystallization threshold of the multilayer films relies obviously on the periodic number of the multilayer films and decreases with the increasing periodic number. The mechanism of the periodic number dependence is also studied. Possible mechanisms of reflectivity and thermal conductivity losses as well as the effect of the glass substrate are ruled out, while the remaining superlattice structure effect is ascribed to be responsible for the periodic number dependence. The sheet resistance of multilayer films versus a lattice temperature is measured and shows a similar periodic number dependence with one of the laser irradiation crystallization power threshold. In addition, the periodic number dependence of the crystallization temperature can be fitted well with an experiential formula obtained by considering coupling exchange interactions between adjacent layers in a superlattice. Those results provide us with the evidence to support our viewpoint. Our results show that the periodic number of multilayer films may become another controllable parameter in the design and parameter optimization of multilayer phase change films. PMID:23173850

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ice, G.E.; Barbee, T.; Bionta, R.

    The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E{>=}5 keV) microprobes. New x-ray optics have been demonstrated which show promise for achieving intense submicron hard x-ray probes. These probes will be used for extraordinary elemental detection by x-ray fluorescence/absorption and for microdiffraction to identify phase and strain. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature makes the development of an advanced hard x-ray microprobe an important national goal. In this workshop state-of-the-art hard x-ray microprobe optics were described and future directions were discussed. Genemore » Ice, Oak Ridge National Laboratory (ORNL), presented an overview of the current status of hard x-ray microprobe optics and described the use of crystal spectrometers to improve minimum detectable limits in fluorescent microprobe experiments. Al Thompson, Lawrence Berkeley Laboratory (LBL), described work at the Center for X-ray Optics to develop a hard x-ray microprobe based on Kirkpatrick-Baez (KB) optics. Al Thompson also showed the results of some experimental measurements with their KB optics. Malcolm Howells presented a method for bending elliptical mirrors and Troy Barbee commented on the use of graded d spacings to achieve highest efficiency in KB multilayer microfocusing. Richard Bionta, Lawrence Livermore National Laboratory (LLNL), described the development of the first hard x-ray zone plates and future promise of so called {open_quotes}jelly roll{close_quotes} or sputter slice zone plates. Wenbing Yun, Argonne National Laboratory (ANL), described characterization of jelly roll and lithographically produced zone plates and described the application of zone plates to focus extremely narrow bandwidths by nuclear resonance. This report summarizes the presentations of the workshop subgroup on hard x-ray microprobes.« less

  10. Compound formation and superconductivity in Au-Si: X-ray absorption measurements on ion-beam-mixed Au-Si films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, Y.; Jisrawi, N.; Liang, G.

    Multilayered Au-Si thin films have been deposited with the net compositions ''Au/sub 1-//sub x/Si/sub x/,'' x = 0.29, 0.5, and 0.8. After ion-beam mixing these films exhibited superconductivity in the 0.3--1.2 K range despite the nonsuperconducting character of both Au and Si. Near-edge x-ray absorption spectroscopy (XAS) measurements on the Au L/sub 3/ edge in these films indicate that metastable Au-Si compound formation occurs in these ion-mixed materials. Specifically, the XAS measurements indicate changes in Au 5d-orbital occupancy and changes in the local Au structural environment which are both consistent with local compound formation.

  11. Diffraction properties of multilayer Laue lenses with an aperture of 102 µm and WSi 2/Al bilayers

    DOE PAGES

    Kubec, Adam; Kujala, Naresh; Conley, Raymond; ...

    2015-01-01

    Here, we report on the characterization of a multilayer Laue lens (MLL) with large acceptance, made of a novel WSi2/Al bilayer system. Fabrication of multilayers with large deposition thickness is required to obtain MLL structures with sufficient apertures capable of accepting the full lateral coherence length of x-rays at typical nanofocusing beamlines. To date, the total deposition thickness has been limited by stress-buildup in the multilayer. We were able to grow WSi2/Al with low grown-in stress, and asses the degree of stress reduction. X-ray diffraction experiments were conducted at beamline 1-BM at the Advanced Photon Source. We used monochromatic x-raysmore » with a photon energy of 12 keV and a bandwidth of ΔE/E=5.4 ∙ 10 -4. The MLL was grown with parallel layer interfaces, and was designed to have a large focal length of 9.6 mm. The mounted lens was 2.7 mm in width. We found and quantified kinks and bending of sections of the MLL. Sections with bending were found to partly have a systematic progression in the interface angles. We also observed kinking in some, but not all, areas. The measurements are compared with dynamic diffraction calculations made with Coupled Wave Theory. Finally our data are plotted showing the diffraction efficiency as a function of the external tilting angle of the entire mounted lens. This way of plotting the data was found to provide an overview into the diffraction properties of the whole lens, and enabled the following layer tilt analyses.« less

  12. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  13. Research in the Optical Sciences.

    DTIC Science & Technology

    1985-07-01

    led to durable films (in some cases more durable than the substrate itself), with AR properties. The ion bombardment of the film, and of the substrate...incidence in the x-ray-ultraviolet (X- UV ) wave’ength range (10 to 300 A). SUMMARY 01- RESULTS The research completed during the first year of this...contract has consisted of (1) implementation of several computer codes for X- UV multilayer mirror design, (2) acquisition of a data base of optical

  14. Beam profile and coherence properties of synchrotron beams after reflection on modified multilayer mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rack, Alexander, E-mail: alexander.rack@esrf.fr; Vivo, Amparo; Morawe, Christian

    2016-07-27

    Multilayer mirrors present an attractive alternative for reflective hard X-ray monochromators due to their increased bandwidth compared with crystal-based systems. An issue remains the strong modulations in the reflected beam profile, i.e. an irregular stripe pattern. This is a major problem for micro-imaging applications, where multilayer-based monochromators are frequently employed to deliver higher photon flux density. A subject of particular interest is how to overcome beam profile modifications, namely the stripe patterns, induced by the reflection on a multilayer. For multilayer coatings in general it is known that the substrate and its surface quality significantly influence the performance of suchmore » kind of mirrors as the coating reproduces to a certain degree roughness and shape of the substrate. Our studies have shown that modified coatings can significantly change the impact of the multilayer reflection on the beam profile. We will present recent results as well as a critical review.« less

  15. Lasers, extreme UV and soft X-ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilsen, Joseph

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less

  16. Fabrication of multilayered Ge nanocrystals embedded in SiO xGeN y films

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang, Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-09-01

    Multilayered Ge nanocrystals embedded in SiO xGeN y films have been fabricated on Si substrate by a (Ge + SiO 2)/SiO xGeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction.

  17. Preparation of SmBCO layer for the surface optimization of GdYBCO film by MOCVD process based on a simple self-heating technology

    NASA Astrophysics Data System (ADS)

    Zhao, Ruipeng; Zhang, Fei; Liu, Qing; Xia, Yudong; Lu, Yuming; Cai, Chuanbing; Tao, Bowan; Li, Yanrong

    2018-07-01

    The MOCVD process was adopted to grow the REBa2Cu3O7-δ ((REBCO), RE = rare earth elements) films on the LaMnO3 (LMO) templates. Meanwhile, the LMO-template tapes are heated by the joule effect after applying a heating current through the Hastelloy metal substrates. The surface of GdYBCO films prepared by MOCVD method is prone to form outgrowths. So the surface morphology of GdYBCO film is optimized by depositing the SmBCO layer, which is an important process method for the preparation of high-quality multilayer REBCO films. At last, the GdYBCO/SmBCO/GdYBCO multilayer films were successfully prepared on the LMO templates based on the simple self-heating method. It is demonstrated that the GdYBCO surface was well improved by the characterization analysis of scanning electron microscope. And the Δω of REBCO (005) and Δφ of REBCO (103), which were performed by an X-ray diffraction system, are respectively 1.3° and 3.3° What's more, the critical current density (Jc) has been more than 3 MA/cm2 (77 K, 0 T) and the critical current (Ic) basically shows a trend of good linear increase with the increase of the number of REBCO layers.

  18. Advanced coatings for next generation lithography

    NASA Astrophysics Data System (ADS)

    Naujok, P.; Yulin, S.; Kaiser, N.; Tünnermann, A.

    2015-03-01

    Beyond EUV lithography at 6.X nm wavelength has a potential to extend EUVL beyond the 11 nm node. To implement B-based mirrors and to enable their industrial application in lithography tools, a reflectivity level of > 70% has to be reached in near future. The authors will prove that transition from conventional La/B4C to promising LaN/B4C multilayer coatings leads to enhanced optical properties. Currently a near normal-incidence reflectivity of 58.1% @ 6.65 nm is achieved by LaN/B4C multilayer mirrors. The introduction of ultrathin diffusion barriers into the multilayer design to reach the targeted reflectivity of 70% was also tested. The optimization of multilayer design and deposition process for interface-engineered La/C/B4C multilayer mirrors resulted in peak reflectivity of 56.8% at the wavelength of 6.66 nm. In addition, the thermal stability of several selected multilayers was investigated and will be discussed.

  19. Eight-channel Kirkpatrick-Baez microscope for multiframe x-ray imaging diagnostics in laser plasma experiments.

    PubMed

    Yi, Shengzhen; Zhang, Zhe; Huang, Qiushi; Zhang, Zhong; Mu, Baozhong; Wang, Zhanshan; Fang, Zhiheng; Wang, Wei; Fu, Sizu

    2016-10-01

    Because grazing-incidence Kirkpatrick-Baez (KB) microscopes have better resolution and collection efficiency than pinhole cameras, they have been widely used for x-ray imaging diagnostics of laser inertial confinement fusion. The assembly and adjustment of a multichannel KB microscope must meet stringent requirements for image resolution and reproducible alignment. In the present study, an eight-channel KB microscope was developed for diagnostics by imaging self-emission x-rays with a framing camera at the Shenguang-II Update (SGII-Update) laser facility. A consistent object field of view is ensured in the eight channels using an assembly method based on conical reference cones, which also allow the intervals between the eight images to be tuned to couple with the microstrips of the x-ray framing camera. The eight-channel KB microscope was adjusted via real-time x-ray imaging experiments in the laboratory. This paper describes the details of the eight-channel KB microscope, its optical and multilayer design, the assembly and alignment methods, and results of imaging in the laboratory and at the SGII-Update.

  20. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    PubMed

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. A Compact X-Ray System for Support of High Throughput Crystallography

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  2. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  3. Quantitative x-ray phase imaging at the nanoscale by multilayer Laue lenses

    PubMed Central

    Yan, Hanfei; Chu, Yong S.; Maser, Jörg; Nazaretski, Evgeny; Kim, Jungdae; Kang, Hyon Chol; Lombardo, Jeffrey J.; Chiu, Wilson K. S.

    2013-01-01

    For scanning x-ray microscopy, many attempts have been made to image the phase contrast based on a concept of the beam being deflected by a specimen, the so-called differential phase contrast imaging (DPC). Despite the successful demonstration in a number of representative cases at moderate spatial resolutions, these methods suffer from various limitations that preclude applications of DPC for ultra-high spatial resolution imaging, where the emerging wave field from the focusing optic tends to be significantly more complicated. In this work, we propose a highly robust and generic approach based on a Fourier-shift fitting process and demonstrate quantitative phase imaging of a solid oxide fuel cell (SOFC) anode by multilayer Laue lenses (MLLs). The high sensitivity of the phase to structural and compositional variations makes our technique extremely powerful in correlating the electrode performance with its buried nanoscale interfacial structures that may be invisible to the absorption and fluorescence contrasts. PMID:23419650

  4. Holographic rugate structures for x-ray optics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jannson, T.; Savant, G.

    1990-03-19

    Physical Optics Corporation (POC) has proposed and investigated a novel approach to x-ray optics during this DOE-sponsored three-year program, based on our well-established technologies in volume holography and holographic materials. With these technologies, a majority of conventional XUV optical elements, such as uniform and nonuniform gratings/multilayers, lenses, slanted (non-Snellian) mirrors, Fresnel zone-plates, concentrators/collimators, beam splitters, Fabry-Perot etalons, and binary optical elements, can be fabricated using a unified, low cost process. Furthermore, volume holography offer nonconventional optical elements, such as x-ray holographic optical elements (HOEs) with any desirable wavefront formation characteristics and multiple gratings multiplexed in the same volume to performmore » different operations for different wavelengths, that are difficult or even impossible to produce with the existing technologies.« less

  5. Layered synthetic microstructures as Bragg diffractors for X rays and extreme ultraviolet - Theory and predicted performance

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Barbee, T. W., Jr.

    1981-01-01

    The theory of X-ray diffraction by periodic structures is applied to the layered synthetic microstructures (LSMs) made possible by recent developments in thin film technology, and approximate formulas for estimating their performance are presented. A more complete computation scheme based on optical multilayer theory is also described, and it is shown that the diffracting properties may be tailored to specific applications by adjusting the refractive indices and thicknesses of the component layers. The theory may be modified to take account of imperfections in the LMS structure, and the properties of nonperiodic structures thereby computed. Structures with high integrated reflectivity constructed according to the methods defined have potential application in many areas of X-ray or EUV research and instrumentation.

  6. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotronmore » techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.« less

  7. Tunable anomalous hall effect induced by interfacial catalyst in perpendicular multilayers

    NASA Astrophysics Data System (ADS)

    Zhang, J. Y.; Peng, W. L.; Sun, Q. Y.; Liu, Y. W.; Dong, B. W.; Zheng, X. Q.; Yu, G. H.; Wang, C.; Zhao, Y. C.; Wang, S. G.

    2018-04-01

    The interfacial structures, playing a critical role on the transport properties and the perpendicular magnetic anisotropy in thin films and multilayers, can be modified by inserting an ultrathin functional layer at the various interfaces. The anomalous Hall effect (AHE) in the multilayers with core structure of Ta/CoFeB/X/MgO/Ta (X: Hf or Pt) is tuned by interfacial catalytic engineering. The saturation anomalous Hall resistance (RAH) is increased by 16.5% with 0.1 nm Hf insertion compared with the reference sample without insertion. However, the RAH value is decreased by 9.0% with 0.1 nm Pt insertion. The interfacial states were characterized by the X-ray photoelectron spectroscopy (XPS). The XPS results indicate that a strong bonding between Hf and O for Hf insertion, but no bonding between Pt and O for Pt insertion. The bonding between metal and oxygen leads to various oxygen migration behavior at the interfaces. Therefore, the opposite behavior about the RAH originates from the different oxygen behavior due to various interfacial insertion. This work provides a new approach to manipulate spin transport property for the potential applications.

  8. SmNiO3/NdNiO3 thin film multilayers

    NASA Astrophysics Data System (ADS)

    Girardot, C.; Pignard, S.; Weiss, F.; Kreisel, J.

    2011-06-01

    Rare earth nickelates RENiO3 (RE =rare earth), which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of RE nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by metal-organic chemical vapor deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by x-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded RE nickelate layers.

  9. Enhancement of the barrier performance in organic/inorganic multilayer thin-film structures by annealing of the parylene layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Namsu, E-mail: nkim@keti.re.kr; Components and Materials Physics Research Center, #68 Yatop-dong, Korea Electronics Technology Institute, Bundang-gu, 463-816; Graham, Samuel

    2014-10-15

    Highlights: • High performance thin-film barrier structure for encapsulation was fabricated. • By annealing parylene in encapsulation structure, the barrier performance was improved. • The effective water vapor transmission rate is 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day. - Abstract: A multilayered barrier structure was fabricated by chemical vapor deposition of parylene and subsequent plasma-enhanced chemical vapor deposition of SiO{sub x} or SiN{sub x}. The barrier performance against water vapor ingress was significantly improved by annealing the parylene layer before the deposition of either SiO{sub x} or SiN{sub x}. The mechanism of this enhancement was investigated using atomic forcemore » microscopy, Raman spectroscopy, and X-ray diffraction. The surface roughness of the parylene before the deposition of either SiO{sub x} or SiN{sub x} was found to correlate closely with the barrier performance of the multilayered structures. In addition, removing absorbed water vapor in the film by annealing results in a lower water vapor transmission rate in the transient region and a longer lag time. Annealing the parylene leads to a large decrease in the effective water vapor transmission rate, which reaches 7.2 ± 3.0 × 10{sup −6} g/m{sup 2}/day.« less

  10. Spectroscopic investigation of the wettability of multilayer graphene using highly ordered pyrolytic graphite as a model material.

    PubMed

    Ashraf, Ali; Wu, Yanbin; Wang, Michael C; Aluru, Narayana R; Dastgheib, Seyed A; Nam, SungWoo

    2014-11-04

    We report the intrinsic water contact angle (WCA) of multilayer graphene, explore different methods of cleaning multilayer graphene, and evaluate the efficiency of those methods on the basis of spectroscopic analysis. Highly ordered pyrolytic graphite (HOPG) was used as a model material system to study the wettability of the multilayer graphene surface by WCA measurements. A WCA value of 45° ± 3° was measured for a clean HOPG surface, which can serve as the intrinsic WCA for multilayer graphene. A 1 min plasma treatment (100 W) decreased the WCA to 6°, owing to the creation of surface defects and functionalization by oxygen-containing groups. Molecular dynamics simulations of water droplets on the HOPG surface with or without the oxygen-containing defect sites confirmed the experimental results. Heat treatment at near atmospheric pressure and wet chemical cleaning methods using hydrofluoric acid and chloroform did not change the WCA significantly. Low-pressure, high-temperature annealing under argon and hydrogen reduced the WCA to 54°, close to the intrinsic WCA of HOPG. Raman spectroscopy and atomic force microscopy did not show any significant change for the HOPG surface after this treatment, confirming low-pressure, high-temperature annealing as an effective technique to clean multilayer graphene without damaging the surface. Time-of-flight secondary ion mass spectrometry indicated the existence of hydrocarbon species on the surface of the HOPG sample that was exposed to air for <5 min and the absence of these impurities in the bulk. X-ray photoelectron spectroscopy analyses of the sample surfaces after the different cleaning techniques were performed to correlate the WCA to the surface chemistry. X-ray photoelectron spectroscopy results revealed that the WCA value changed drastically, depending on the amounts of oxygen-containing and hydrocarbon-containing groups on the surface.

  11. Metastable and equilibrium phase formation in sputter-deposited Ti/Al multilayer thin films

    NASA Astrophysics Data System (ADS)

    Lucadamo, G.; Barmak, K.; Lavoie, C.; Cabral, C., Jr.; Michaelsen, C.

    2002-06-01

    The sequence and kinetics of metastable and equilibrium phase formation in sputter deposited multilayer thin films was investigated by combining in situ synchrotron x-ray diffraction (XRD) with ex situ electron diffraction and differential scanning calorimetry (DSC). The sequence included both cubic and tetragonal modifications of the equilibrium TiAl3 crystal structure. Values for the formation activation energies of the various phases in the sequence were determined using the XRD and DSC data obtained here, as well as activation energy data reported in the literature.

  12. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flippo, Kirk Adler; DeVolder, Barbara Gloria; Doss, Forrest William

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Lastly, four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  13. High-Resolution Hard X-Ray and Gamma-Ray Spectrometers Based on Superconducting Absorbers Coupled to Superconducting Transition Edge Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van den Berg, M.; Chow, D.; Loshak, A.

    2000-09-21

    We are developing detectors based on bulk superconducting absorbers coupled to superconducting transition edge sensors (TES) for high-resolution spectroscopy of hard X-rays and soft gamma-rays. We have achieved an energy resolution of 70 eV FWHM at 60 keV using a 1 x 1 x 0.25 mm{sup 3} Sn absorber coupled to a Mo/Cu multilayer TES with a transition temperature of 100 mK. The response of the detector is compared with a simple model using only material properties data and characteristics derived from IV-measurements. We have also manufactured detectors using superconducting absorbers with a higher stopping power, such as Pb andmore » Ta. We present our first measurements of these detectors, including the thermalization characteristics of the bulk superconducting absorbers. The differences in performance between the detectors are discussed and an outline of the future direction of our detector development efforts is given.« less

  14. Tracking of buried layers during plasma-assisted femtosecond laser drilling of compound targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhvaniya, I. A., E-mail: irina.zhvaniya@physics.msu.ru; Garmatina, A. A.; Makarov, I. A.

    It was shown that drilling of multi-layered target placed in the air by tightly focused femtosecond laser radiation with high fluence (up to 1000 J/cm{sup 2}) can be monitored online using plasma-induced X-ray emission and second harmonic of incident laser radiation. The technique based on X-rays registration is appeared to be more flexible than the method based on detection of second harmonic since its accuracy depends crucially on the target type. We demonstrated that the X-ray signal clearly indicates the transition from one layer to another during the microdrilling of targets consisting of 2–4 layers of titanium foil when a lasermore » beam is focused beneath the target surface at a depth comparable to the layer thickness. The diagnostics of microchannel production in the chicken eggshell was performed for the first time. It was found that the presence of albumen beneath the shell accounts for longtime generation of X-ray pulses.« less

  15. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V; Conley, Raymond; Anderson, Erik H

    Verification of the reliability of metrology data from high quality x-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)} and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010)]. Here we describe the details ofmore » development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize x-ray microscopes. Corresponding work with x-ray microscopes is in progress.« less

  17. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, A.M.

    1998-04-28

    An aspheric optical element is disclosed formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin ({approx}100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application. 4 figs.

  18. Forming aspheric optics by controlled deposition

    DOEpatents

    Hawryluk, Andrew M.

    1998-01-01

    An aspheric optical element formed by depositing material onto a spherical surface of an optical element by controlled deposition to form an aspheric surface of desired shape. A reflecting surface, single or multi-layer, can then be formed on the aspheric surface by evaporative or sputtering techniques. Aspheric optical elements are suitable for deep ultra-violet (UV) and x-ray wavelengths. The reflecting surface may, for example, be a thin (.about.100 nm) layer of aluminum, or in some cases the deposited modifying layer may function as the reflecting surface. For certain applications, multi-layer reflective surfaces may be utilized, such as chromium-carbon or tungsten-carbon multi-layer, with the number of layers and thickness being determined by the intended application.

  19. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Zheng, Huajun; Tang, Fengqiu; Lim, Melvin; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou; (Max) Lu, Gao Qing

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g -1) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors.

  20. WE-E-18A-01: Large Area Avalanche Amorphous Selenium Sensors for Low Dose X-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheuermann, J; Goldan, A; Zhao, W

    2014-06-15

    Purpose: A large area indirect flat panel imager (FPI) with avalanche gain is being developed to achieve x-ray quantum noise limited low dose imaging. It uses a thin optical sensing layer of amorphous selenium (a-Se), known as High-Gain Avalanche Rushing Photoconductor (HARP), to detect optical photons generated from a high resolution x-ray scintillator. We will report initial results in the fabrication of a solid-state HARP structure suitable for a large area FPI. Our objective is to establish the blocking layer structures and defect suppression mechanisms that provide stable and uniform avalanche gain. Methods: Samples were fabricated as follows: (1) ITOmore » signal electrode. (2) Electron blocking layer. (3) A 15 micron layer of intrinsic a-Se. (4) Transparent hole blocking layer. (5) Multiple semitransparent bias electrodes to investigate avalanche gain uniformity over a large area. The sample was exposed to 50ps optical excitation pulses through the bias electrode. Transient time of flight (TOF) and integrated charge was measured. A charge transport simulation was developed to investigate the effects of varying blocking layer charge carrier mobility on defect suppression, avalanche gain and temporal performance. Results: Avalanche gain of ∼200 was achieved experimentally with our multi-layer HARP samples. Simulations using the experimental sensor structure produced the same magnitude of gain as a function of electric field. The simulation predicted that the high dark current at a point defect can be reduced by two orders of magnitude by blocking layer optimization which can prevent irreversible damage while normal operation remained unaffected. Conclusion: We presented the first solid state HARP structure directly scalable to a large area FPI. We have shown reproducible and uniform avalanche gain of 200. By reducing mobility of the blocking layers we can suppress defects and maintain stable avalanche. Future work will optimize the blocking layers to prevent lag and ghosting.« less

  1. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.

  2. Evaluation of electrical properties of Cr/CrN nano-multilayers for electronic applications.

    PubMed

    Marulanda, D M; Olaya, J J; Patiño, E J

    2011-06-01

    The electrical properties of Cr/CrN nano-multilayers produced by Unbalanced Magnetron Sputtering have been studied as a function of bilayer period and total thickness. Two groups of multilayers were produced: in the first group the bilayer period varied between 20 nm, 100 nm and 200 nm with total thickness of 1 microm, and in the second group the bilayer period varied between 25 nm, 50 nm and 100 nm and a total thickness of 100 nm. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) were used in order to investigate the microstructure characteristics of the multilayers, and the Four Point Probe (FPP) method was used to evaluate in-plane and transverse electrical resistivity. XRD results show (111) and (200) orientations for all the CrN coatings and the presence of a multilayer structure was confirmed through SEM studies. Transverse electrical resistivity results show that this property is strongly dependent on the bilayer period.

  3. Diagnostics for Z-pinch implosion experiments on PTS

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Huang, X. B.; Zhou, S. T.; Zhang, S. Q.; Dan, J. K.; Li, J.; Cai, H. C.; Wang, K. L.; Ouyang, K.; Xu, Q.; Duan, S. C.; Chen, G. H.; Wang, M.; Feng, S. P.; Yang, L. B.; Xie, W. P.; Deng, J. J.

    2014-12-01

    The preliminary experiments of wire array implosion were performed on PTS, a 10 MA z-pinch driver with a 70 ns rise time. A set of diagnostics have been developed and fielded on PTS to study pinch physics and implosion dynamics of wire array. Radiated power measurement for soft x-rays was performed by multichannel filtered x-ray diode array, and flat spectral responses x-ray diode detector. Total x-ray yield was measured by a calibrated, unfiltered nickel bolometer which was also used to obtain pinch power. Multiple time-gated pinhole cameras were used to produce spatial-resolved images of x-ray self-emission from plasmas. Two time-integrated pinhole cameras were used respectively with 20-μm Be filter and with multilayer mirrors to record images produced by >1-keV and 277±5 eV self-emission. An optical streak camera was used to produce radial implosion trajectories, and an x-ray streak camera paired with a horizontal slit was used to record a continuous time-history of emission with one-dimensional spatial resolution. A frequency-doubled Nd:YAG laser (532 nm) was used to produce four frame laser shadowgraph images with 6 ns time interval. We will briefly describe each of these diagnostics and present some typical results from them.

  4. Photocatalytic degradation effect of malachite green and catalytic hydrogenation by UV-illuminated CeO2/CdO multilayered nanoplatelet arrays: Investigation of antifungal and antimicrobial activities.

    PubMed

    Maria Magdalane, C; Kaviyarasu, K; Judith Vijaya, J; Jayakumar, C; Maaza, M; Jeyaraj, B

    2017-04-01

    CeO 2 /CdO multi-layered nanoplatelet arrays have been synthesized by sol-gel method at two different temperatures using Citrus limonum fruit extract and the effect of particle size on the photocatalytic performance is studied. The particle size and phases was analysed by X-ray diffraction pattern (XRD) which brought out the formation of cubic phase in the synthesized samples. Field Emission Scanning electron microscopy (FESEM) revealed the surface morphology and made up of cumulative form of platelet shaped arrays with an average size of 10nm. The elemental composition and the purity of the nanomaterials were confirmed by Energy Dispersive X-ray spectroscopy (EDX). CeO 2 /CdO multilayered binary metal oxide nanoplatelet arrays were formed which was further explored with Fourier transform infrared spectroscopy (FTIR), it reveals that the nanocomposites contain CeO and CdO bonds. Determination of the direct and indirect bandgap energy of the nanoplatelet arrays was carried out by UV-Vis-DRS studies. In MG degradation, both the hole (h + ) and hydroxyl radical (OH) played a major role than the superoxide radical (O 2 - ). Possible photo degradation mechanisms are proposed and discussed in this article. CeO 2 /CdO multi-layered nanoplatelet arrays showed antibacterial activity and among the tested ones, it showed better growth inhibition towards P. aeruginosa MTCC73. Thus, this greener synthetic procedure was a highly effective method due to low-cost, highly effective UV light responsive material for environmental safety. Copyright © 2017. Published by Elsevier B.V.

  5. A Normal Incidence X-ray Telescope (NIXT) Sounding Rocket Payload

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1996-01-01

    During the past year the changeover from the normal incidence X ray telescope (NIXT) program to the new TXI sounding rocket program was completed. The NIXT effort, aimed at evaluating the viability of the remaining portions of the NIXT hardware and design has been finished and the portions of the NIXT which are viable and flightworthy, such as filters, mirror mounting hardware, electronic and telemetry interface systems, are now part of the new rocket payload. The backup NIXT multilayer-coated X ray telescope and its mounting hardware have been completely fabricated and are being stored for possible future use in the TXI rocket. The h-alpha camera design is being utilized in the TXI program for real-time pointing verification and control via telemetry. Two papers, summarizing scientific results from the NIXT rocket program were published this year.

  6. X-ray source development for EXAFS measurements on the National Ignition Facility.

    PubMed

    Coppari, F; Thorn, D B; Kemp, G E; Craxton, R S; Garcia, E M; Ping, Y; Eggert, J H; Schneider, M B

    2017-08-01

    Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.

  7. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces.

    PubMed

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-21

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  8. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    PubMed Central

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-01-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces. PMID:26996815

  9. Fabrication, characterization, and biological assessment of multilayer laminin γ2 DNA coatings on titanium surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Guoli; Zhang, Jing; Dong, Wenjing; Liu, Li; Shi, Jue; Wang, Huiming

    2016-03-01

    The purpose of this work was to fabricate a multilayer laminin γ2 DNA coating on a titanium surface and evaluate its biological properties. A multilayer laminin γ2 DNA coating was fabricated on titanium using a layer-by-layer assembly technique. The rate of coating degradation was evaluated by detecting the amount of cDNA remaining. Surface analysis using X-ray photoelectron spectroscopy, atomic force microscopy, and surface contact angle measurements revealed the multilayer structure to consist of cationic lipid and confirmed that a laminin γ2 DNA layer could be fabricated on titanium via the layer-by-layer assembly process. The transfection efficiency was highest for five layers in the multilayer structure. HEK293 cells cultured on the multilayer films displayed significantly higher adhesion activity than the control group. The expression of laminin γ2 and the co-localization of integrin β4 and plectin were more obvious in HN4 cells cultured on the multilayer laminin γ2 DNA coating, while weak immunoreactivities were observed in the control group. We concluded that the DNA-loaded multilayer provided a surface with good biocompatibility and that the multilayer laminin γ2 DNA coating might be effective in improving cell adhesion and the formation of hemidesmosomes on titanium surfaces.

  10. Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkens, H. L.; Nikroo, A.; Wall, D. R.

    2007-05-15

    Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into themore » traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice, exposed DU oxidizes in air and other chemicals necessary to hohlraum production, so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques, including characterization by Auger electron spectroscopy, which is used to verify sample composition and the amount of oxygen uptake over time.« less

  11. Surface roughness evaluation on mandrels and mirror shells for future X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Sironi, Giorgia; Spiga, D.

    2008-07-01

    More X-ray missions that will be operating in near future, like particular SIMBOL-X, e-Rosita, Con-X/HXT, SVOM/XIAO and Polar-X, will be based on focusing optics manufactured by means of the Ni electroforming replication technique. This production method has already been successfully exploited for SAX, XMM and Swift-XRT. Optical surfaces for X-ray reflection have to be as smooth as possible also at high spatial frequencies. Hence it will be crucial to take under control microroughness in order to reduce the scattering effects. A high rms microroughness would cause the degradation of the angular resolution and loss of effective area. Stringent requirements have therefore to be fixed for mirror shells surface roughness depending on the specific energy range investigated, and roughness evolution has to be carefully monitored during the subsequent steps of the mirror-shells realization. This means to study the roughness evolution in the chain mandrel, mirror shells, multilayer deposition and also the degradation of mandrel roughness following iterated replicas. Such a study allows inferring which phases of production are the major responsible of the roughness growth and could help to find solutions optimizing the involved processes. The exposed study is carried out in the context of the technological consolidation related to SIMBOL-X, along with a systematic metrological study of mandrels and mirror shells. To monitor the roughness increase following each replica, a multiinstrumental approach was adopted: microprofiles were analysed by means of their Power Spectral Density (PSD) in the spatial frequency range 1000-0.01 μm. This enables the direct comparison of roughness data taken with instruments characterized by different operative ranges of frequencies, and in particular optical interferometers and Atomic Force Microscopes. The performed analysis allowed us to set realistic specifications on the mandrel roughness to be achieved, and to suggest a limit for the maximum number of a replica a mandrel can undergo before being refurbished.

  12. Atomic Scale Studies of Magnetic Multilayers

    NASA Astrophysics Data System (ADS)

    Plisch, M. J.; Muller, D. A.; Katine, J. A.; Silcox, J.; Buhrman, R. A.

    1998-03-01

    The structure of interfaces in magnetic multilayers plays a crucial role in determining their transport properties(S.S.P. Parkin, Phys. Rev. Lett. 71), 1641 (1993).. A scanning transmission electron microscope (STEM) which can focus a 100 kV electron beam down to 2Åis used to make spatially resolved measurements across magnetic multilayers. Previous x-ray absorption measurements suggest that the Cu d electrons play a large role in coupling the Co layers(M.G. Samant, et. al., Phys. Rev. Lett. 72), 1112 (1994).. With electon energy loss spectroscopy (EELS), information on the spatial variation of Cu d states can be obtained. Interfacial structure and bonding have been examined in multilayers with 80 ÅCu/50 ÅCo periods (with no GMR) and 9 ÅCu/13 ÅCo periods (with greater than 50% GMR). A heteroepitaxial grain structure persisting across many multilayer periods has been seen in the short period structure, but not in the long period structure. There is mixing at the Cu/Co interface and the Cu d states near the interface are significantly modified by the Co. Fe/Cr multilayers have also been examined.

  13. Multilayered sandwich-like architecture containing large-scale faceted Al–Cu–Fe quasicrystal grains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Dongxia; He, Zhanbing, E-mail: hezhanbing@ustb.edu.cn

    Faceted quasicrystals are structurally special compared with traditional crystals. Although the application of faceted quasicrystals has been expected, wide-scale application has not occurred owing to the limited exposure of the facets. Using a facile method of heat treatment, we synthesize a multilayered sandwich-like structure with each layer composed of large-scale pentagonal-dodecahedra of Al–Cu–Fe quasicrystals. Moreover, there are channels between the adjacent Al–Cu–Fe layers that serve to increase the exposure of the facets of quasicrystals. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction are used to characterize the multilayered architecture, and the generation mechanisms of this special structure are alsomore » discussed. - Highlights: • A multilayered sandwich-like structure is produced by a facile method. • Each layer is covered by large-scale faceted Al–Cu–Fe quasicrystals. • There are channels between the adjacent Al–Cu–Fe layers.« less

  14. Alternate Multilayer Gratings with Enhanced Diffraction Efficiency in the 500-5000 eV Energy Domain

    NASA Astrophysics Data System (ADS)

    Polack, François; Lagarde, Bruno; Idir, Mourad; Cloup, Audrey Liard; Jourdain, Erick; Roulliay, Marc; Delmotte, Franck; Gautier, Julien; Ravet-Krill, Marie-Françoise

    2007-01-01

    An alternate multilayer (AML) grating is a 2 dimensional diffraction structure formed on an optical surface, having a 0.5 duty cycle in the in-plane and in the in-depth direction. It can be made by covering a shallow depth laminar grating with a multilayer stack. We show here that their 2D structure confer AML gratings a high angular and energetic selectivity and therefore enhanced diffraction properties, when used in grazing incidence. In the tender X-ray range (500eV - 5000 eV) they behave much like blazed gratings. Over 15% efficiency has been measured on a 1200 lines/mm Mo/Si AML grating in the 1.2 - 1.5 keV energy range. Computer simulations show that selected multilayer materials such as Cr/C should allow diffraction efficiency over 50% at photon energies over 3 keV.

  15. Self-organization during growth of ZrN/SiN{sub x} multilayers by epitaxial lateral overgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallqvist, A.; Fager, H.; Hultman, L.

    ZrN/SiN{sub x} nanoscale multilayers were deposited on ZrN seed layers grown on top of MgO(001) substrates by dc magnetron sputtering with a constant ZrN thickness of 40 Å and with an intended SiN{sub x} thickness of 2, 4, 6, 8, and 15 Å at a substrate temperature of 800 °C and 6 Å at 500 °C. The films were investigated by X-ray diffraction, high-resolution scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. The investigations show that the SiN{sub x} is amorphous and that the ZrN layers are crystalline. Growth of epitaxial cubic SiN{sub x}—known to take place on TiN(001)—onmore » ZrN(001) is excluded to the monolayer resolution of this study. During the course of SiN{sub x} deposition, the material segregates to form surface precipitates in discontinuous layers for SiN{sub x} thicknesses ≤6 Å that coalesce into continuous layers for 8 and 15 Å thickness at 800 °C, and for 6 Å at 500 °C. The SiN{sub x} precipitates are aligned vertically. The ZrN layers in turn grow by epitaxial lateral overgrowth on the discontinuous SiN{sub x} in samples deposited at 800 °C with up to 6 Å thick SiN{sub x} layers. Effectively a self-organized nanostructure can be grown consisting of strings of 1–3 nm large SiN{sub x} precipitates along apparent column boundaries in the epitaxial ZrN.« less

  16. Kilovoltage radiotherapy for companion animals: dosimetric comparison of 300 kV, 450 kV, and 6 MV X-ray beams.

    PubMed

    Seo, Jaehyeon; Son, Jaeman; Cho, Yeona; Park, Nohwon; Kim, Dong Wook; Kim, Jinsung; Yoon, Myonggeun

    2018-04-12

    Radiotherapy for the treatment of cancer in companion animals is currently administered using megavoltage X-ray machines. Because these machines are expensive, most animal hospitals do not perform radiotherapy. This study evaluated the ability of relatively inexpensive kilovoltage X-ray machines to treat companion animals. A simulation study based on a treatment planning system was performed for tumors of the brain (non-infectious meningoencephalitis), nasal cavity (malignant nasal tumors), forefoot (malignant muscular tumors), and abdomen (malignant intestinal tumors). The results of kilovoltage (300 kV and 450 kV) and megavoltage (6 MV) X-ray beams were compared. Whereas 300 kV and 6 MV X-ray beams provided optimal radiation dose homogeneity and conformity, respectively, for brain tumors, 6 MV X-rays provided optimal homogeneity and radiation conformity for nasal cavity, forefoot and abdominal tumors. Although megavoltage X-ray beams provided better radiation dose distribution in most treated animals, the differences between megavoltage and kilovoltage X-ray beams were relatively small. The similar therapeutic effects of kilovoltage and 6 MV X-ray beams suggest that kilovoltage X-ray beams may be effective alternatives to megavoltage X-ray beams in treating cancers in companion animals.

  17. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  18. Laboratory and In-Flight In-Situ X-ray Imaging and Scattering Facility for Materials, Biotechnology and Life Sciences

    NASA Technical Reports Server (NTRS)

    2003-01-01

    We propose a multifunctional X-ray facility for the Materials, Biotechnology and Life Sciences Programs to visualize formation and behavior dynamics of materials, biomaterials, and living organisms, tissues and cells. The facility will combine X-ray topography, phase micro-imaging and scattering capabilities with sample units installed on the goniometer. This should allow, for the first time, to monitor under well defined conditions, in situ, in real time: creation of imperfections during growth of semiconductors, metal, dielectric and biomacromolecular crystals and films, high-precision diffraction from crystals within a wide range of temperatures and vapor, melt, solution conditions, internal morphology and changes in living organisms, tissues and cells, diffraction on biominerals, nanotubes and particles, radiation damage, also under controlled formation/life conditions. The system will include an ultrabright X-ray source, X-ray mirror, monochromator, image-recording unit, detectors, and multipurpose diffractometer that fully accommodate and integrate furnaces and samples with other experimental environments. The easily adjustable laboratory and flight versions will allow monitoring processes under terrestrial and microgravity conditions. The flight version can be made available using a microsource combined with multilayer or capillary optics.

  19. Water window imaging x ray microscope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A high resolution x ray microscope for imaging microscopic structures within biological specimens has an optical system including a highly polished primary and secondary mirror coated with identical multilayer coatings, the mirrors acting at normal incidence. The coatings have a high reflectivity in the narrow wave bandpass between 23.3 and 43.7 angstroms and have low reflectivity outside of this range. The primary mirror has a spherical concave surface and the secondary mirror has a spherical convex surface. The radii of the mirrors are concentric about a common center of curvature on the optical axis of the microscope extending from the object focal plane to the image focal plane. The primary mirror has an annular configuration with a central aperture and the secondary mirror is positioned between the primary mirror and the center of curvature for reflecting radiation through the aperture to a detector. An x ray filter is mounted at the stage end of the microscope, and film sensitive to x rays in the desired band width is mounted in a camera at the image plane of the optical system. The microscope is mounted within a vacuum chamber for minimizing the absorption of x rays in air from a source through the microscope.

  20. Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Naik, P. A.; Chakera, J. A.

    2014-04-15

    We report an experimental study on the optimization of a laser plasma based x-ray source of ultra-short duration K-α line radiation. The interaction of pulses from a CPA based Ti:sapphire laser (10 TW, 45 fs, 10 Hz) system with magnesium, titanium, iron and copper solid target generates bright 1-8 keV K-α x-ray radiation. The x-ray yield was optimized with the laser pulse duration (at fixed fluence) which is varied in the range of 45 fs to 1.4 ps. It showed a maximum at laser pulse duration of ∼740 fs, 420 fs, 350 and 250 fs for Mg (1.3 keV), Timore » (4.5 keV), Fe (6.4 keV) and Cu (8.05 keV) respectively. The x-ray yield is observed to be independent of the sign of the chirp. The scaling of the K-α yield (I{sub x} ∝ I{sub L}{sup β}) for 45 fs and optimized pulse duration were measured for laser intensities in the region of 3 × 10{sup 14} – 8 × 10{sup 17}. The x-ray yield shows a much faster scaling exponent β = 1.5, 2.1, 2.4 and 2.6 for Mg, Ti, Fe and Cu respectively at optimized pulse duration compared to scaling exponent of 0.65, 1.3, 1.5, and 1.7 obtained for 45 fs duration laser pulses. The laser to x-ray energy conversion efficiencies obtained for different target materials are η{sub Mg} = 1.2 × 10{sup −5}, η{sub Ti} = 3.1 × 10{sup −5}, η{sub Fe} = 2.7 × 10{sup −5}, η{sub Cu} = 1.9 × 10{sup −5}. The results have been explained from the efficient generation of optimal energy hot electrons at longer laser pulse duration. The faster scaling observed at optimal pulse duration indicates that the x-ray source is generated at the target surface and saturation of x-ray emission would appear at larger laser fluence. An example of utilization of the source for measurement of shock-wave profiles in a silicon crystal by time resolved x-ray diffraction is also presented.« less

  1. X-ray source development for EXAFS measurements on the National Ignition Facility

    DOE PAGES

    Coppari, F.; Thorn, D. B.; Kemp, G. E.; ...

    2017-08-28

    We present that extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. Finally, EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first timemore » on the NIF laser, and the requirements for optimization have been established.« less

  2. Laser-produced lithium plasma as a narrow-band extended ultraviolet radiation source for photoelectron spectroscopy.

    PubMed

    Schriever, G; Mager, S; Naweed, A; Engel, A; Bergmann, K; Lebert, R

    1998-03-01

    Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-alpha line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-mum lateral resolution.

  3. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  4. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahesh, M; Gingold, E; Jones, A

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panelmore » digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.« less

  5. Synthesis of carbon-encapsulated metal nanoparticles from wood char

    Treesearch

    Yicheng Du; Chuji Wang; Hossein Toghiani; Zhiyong Cai; Xiaojian Liu; Jilei Zhang; Qiangu Yan

    2010-01-01

    Carbon-encapsulated metal nanoparticles were synthesized by thermal treatment of wood char, with or without transition metal ions pre-impregnated, at 900ºC to 1,100ºC. Nanoparticles with concentric multilayer shells were observed. The nanoparticles were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction...

  6. Chirality in Magnetic Multilayers Probed by the Symmetry and the Amplitude of Dichroism in X-Ray Resonant Magnetic Scattering

    NASA Astrophysics Data System (ADS)

    Chauleau, Jean-Yves; Legrand, William; Reyren, Nicolas; Maccariello, Davide; Collin, Sophie; Popescu, Horia; Bouzehouane, Karim; Cros, Vincent; Jaouen, Nicolas; Fert, Albert

    2018-01-01

    Chirality in condensed matter has recently become a topic of the utmost importance because of its significant role in the understanding and mastering of a large variety of new fundamental physical mechanisms. Versatile experimental approaches, capable to reveal easily the exact winding of order parameters, are therefore essential. Here we report x-ray resonant magnetic scattering as a straightforward tool to reveal directly the properties of chiral magnetic systems. We show that it can straightforwardly and unambiguously determine the main characteristics of chiral magnetic distributions: i.e., its chiral nature, the quantitative winding sense (clockwise or counterclockwise), and its type, i.e., Néel [cycloidal] or Bloch [helical]. This method is model independent, does not require a priori knowledge of the magnetic parameters, and can be applied to any system with magnetic domains ranging from a few nanometers (wavelength limited) to several microns. By using prototypical multilayers with tailored magnetic chiralities driven by spin-orbit-related effects at Co |Pt interfaces, we illustrate the strength of this method.

  7. In-vacuum multi-modal monochromator for synchrotron-based hard x-ray micro-imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renier, M., E-mail: renier@esrf.fr; Rack, A.; Valade, J. P.

    2016-07-27

    The original monochromator design we present consists in a high-vacuum vessel comprising three monochromators mounted side-by-side: a Lauë/Lauë, a Bragg/Bragg, and a double-multilayer monochromator. The selection of one monochromator type is done remotely by sliding laterally the crystal support in the monochromator vessel. In this way, exotic combinations such as Lauë/Bragg are also possible. Installation and commissioning of the new monochromator at ESRF beamline ID19 was carried out 2013-2014 (the multilayers not being installed yet). Beamline ID19 offers not only superb beam characteristics for phase-contrast imaging with a high level of sensitivity but also compared to other synchrotron X-ray imagingmore » facilities a large beam of currently up to 7 cm × 1.3 cm. A wide energy range can be accessed in a fixed-exit mode (depending on the optics chosen the accessible energy range is between 10 keV and 200 keV). A beryllium exit window (10 cm × 10 cm active opening) completes the monochromator assembly.« less

  8. Interdiffusion in nanometer-scale multilayers investigated by in situ low-angle x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Hua; Bai, Hai Yang; Zhang, Ming; Zhao, J. H.; Zhang, X. Y.; Wang, W. K.

    1999-04-01

    An in situ low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena in various metal-metal and metal-amorphous Si nanometer-scale compositionally modulated multilayers (ML's). The temperature-dependent interdiffusivities are obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. Activation enthalpies and preexponential factors for the interdiffusion in the Fe-Ti, Ag-Bi, Fe-Mo, Mo-Si, Ni-Si, Nb-Si, and Ag-Si ML's are determined. Activation enthalpies and preexponential factors for the interdiffusion in the ML's are very small compared with that in amorphous alloys and crystalline solids. The relation between the atomic-size difference and interdiffusion in the ML's are investigated. The observed interdiffusion characteristics are compared with that in amorphous alloys and crystalline α-Zr, α-Ti, and Si. The experimental results suggest that a collective atomic-jumping mechanism govern the interdiffusion in the ML's, the collective proposal involving 8-15 atoms moving between extended nonequilibrium defects by thermal activation. The role of the interdiffusion in the solid-state reaction in the ML's is also discussed.

  9. Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.

    PubMed

    Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H

    2012-02-10

    We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.

  10. High proton conductivity in the molecular interlayer of a polymer nanosheet multilayer film.

    PubMed

    Sato, Takuma; Hayasaka, Yuta; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2015-05-12

    High proton conductivity was achieved in a polymer multilayer film with a well-defined two-dimensional lamella structure. The multilayer film was prepared by deposition of poly(N-dodecylacryamide-co-acrylic acid) (p(DDA/AA)) monolayers onto a solid substrate using the Langmuir-Blodgett technique. Grazing-angle incidence X-ray diffraction measurement of a 30-layer film of p(DDA/AA) showed strong diffraction peaks in the out-of-plane direction at 2θ = 2.26° and 4.50°, revealing that the multilayer film had a highly uniform layered structure with a monolayer thickness of 2.0 nm. The proton conductivity of the p(DDA/AA) multilayer film parallel to the layer plane direction was 0.051 S/cm at 60 °C and 98% relative humidity with a low activation energy of 0.35 eV, which is comparable to perfluorosulfonic acid membranes. The high conductivity and low activation energy resulted from the formation of uniform two-dimensional proton-conductive nanochannels in the hydrophilic regions of the multilayer film. The proton conductivity of the multilayer film perpendicular to the layer plane was determined to be 2.1 × 10(-13) S/cm. Therefore, the multilayer film showed large anisotropic conductivity with an anisotropic ratio of 2.4 × 10(11).

  11. Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Å range

    NASA Astrophysics Data System (ADS)

    Vishnyakov, E. A.; Kopylets, I. A.; Kondratenko, V. V.; Kolesnikov, A. O.; Pirozhkov, A. S.; Ragozin, E. N.; Shatokhin, A. N.

    2018-03-01

    Three broadband aperiodic Sb/B4C multilayer mirrors were synthesised for the purposes of soft X-ray optics and spectroscopy in the wavelength range beyond the L-edge of Si (λ < 124 Å), and their reflection spectra were measured. The multilayer structures were optimised for maximum uniform reflectivity in the ranges 100–120 Å, 95–105 Å and 90–100 Å. The reflection spectra were recorded using a laboratory laser-plasma radiation source and an electronic detector with a 2D spatial resolution (a CCD matrix with 13 × 13 μm sized pixels). The experimental spectra are compared with theoretical calculations. The effect of lower antimony and B4C layer densities on the reflection spectra is discussed.

  12. Damage mechanisms of MoN/SiN multilayer optics for next-generation pulsed XUV light sources.

    PubMed

    Sobierajski, R; Bruijn, S; Khorsand, A R; Louis, E; van de Kruijs, R W E; Burian, T; Chalupsky, J; Cihelka, J; Gleeson, A; Grzonka, J; Gullikson, E M; Hajkova, V; Hau-Riege, S; Juha, L; Jurek, M; Klinger, D; Krzywinski, J; London, R; Pelka, J B; Płociński, T; Rasiński, M; Tiedtke, K; Toleikis, S; Vysin, L; Wabnitz, H; Bijkerk, F

    2011-01-03

    We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.

  13. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    PubMed

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  14. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    PubMed

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  15. Prospect of space-based interferometry at EUV and soft X-ray wavelengths

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.; Chakrabarti, Supriya

    1992-01-01

    We review the current capabilities of high-resolution, spectroscopic, space-borne instrumentation available for both solar and stellar observations in the EUV and soft X-ray wavelength regimes, and describe the basic design of a compact, all-reflection interferometer based on the spatial heterodyne technique; this is capable of producing a resolving power (lambda/Delta-lambda) of about 20,000 in the 100-200 A region using presently available multilayer optical components. Such an instrument can be readily constructed with existing technology. Due to its small size and lack of moving parts, it is ideally suited to spaceborne applications. Based on best estimates of the efficiency of this instrument at soft X-ray wavelengths, we review the possible use of this high-resolution interferometer in obtaining high-resolution full-disk spectroscopy of the sun. We also discuss its possible use for observations of diffuse sources such as the EUV interstellar background radiation.

  16. Generation of X-rays by electrons recycling through thin internal targets of cyclic accelerators

    NASA Astrophysics Data System (ADS)

    Kaplin, V.; Kuznetsov, S.; Uglov, S.

    2018-05-01

    The use of thin (< 10‑3 radiation length) internal targets in cyclic accelerators leads to multiple passes (recycling effect) of electrons through them. The multiplicity of electron passes (M) is determined by the electron energy, accelerator parameters, the thickness, structure and material of a target and leads to an increase in the effective target thickness and the efficiency of radiation generation. The increase of M leads to the increase in the emittance of electron beams which can change the characteristics of radiation processes. The experimental results obtained using the Tomsk synchrotron and betatron showed the possibility of increasing the yield and brightness of coherent X-rays generated by the electrons passing (recycling) through thin crystals and periodic multilayers placed into the chambers of accelerators, when the recycling effect did not influence on the spectral and angular characteristics of generated X-rays.

  17. Langmuir-Blodgett and X-ray diffraction studies of isolated photosystem II reaction centers in monolayers and multilayers: physical dimensions of the complex.

    PubMed

    Uphaus, R A; Fang, J Y; Picorel, R; Chumanov, G; Wang, J Y; Cotton, T M; Seibert, M

    1997-04-01

    The photosystem II (PSII) reaction center (RC) is a hydrophobic intrinsic protein complex that drives the water-oxidation process of photosynthesis. Unlike the bacterial RC complex, an X-ray crystal structure of the PSII RC is not available. In order to determine the physical dimensions of the isolated PSII RC complex, we applied Langmuir techniques to determine the cross-sectional area of an isolated RC in a condensed monolayer film. Low-angle X-ray diffraction results obtained by examining Langmuir-Blodgett multilayer films of alternating PSII RC/Cd stearate monolayers were used to determine the length (or height; z-direction, perpendicular to the plane of the original membrane) of the complex. The values obtained for a PSII RC monomer were 26 nm2 and 4.8 nm, respectively, and the structural integrity of the RC in the multilayer film was confirmed by several approaches. Assuming a cylindrical-type RC structure, the above dimensions lead to a predicted volume of about 125 nm3. This value is very close to the expected volume of 118 nm3, calculated from the known molecular weight and partial specific volume of the PSII RC proteins. This same type of comparison was also made with the Rhodobacter sphaeroides RC based on published data, and we conclude that the PSII RC is much shorter in length and has a more regular solid geometric structure than the bacterial RC. Furthermore, the above dimensions of the PSII RC and those of PSII core (RC plus proximal antenna) proteins protruding outside the plane of the PSII membrane into the lumenal space as imaged by scanning tunneling microscopy (Seibert, Aust. J. Pl. Physiol. 22, 161-166, 1995) fit easily into the known dimensions of the PSII core complex visualized by others as electron-density projection maps. From this we conclude that the in situ PSII core complex is a dimeric structure containing two copies of the PSII RC.

  18. Soft x-ray coherent diffraction imaging on magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Shi, Xiaowen; Lee, James; Mishra, Shrawan; Parks, Daniel; Tyliszczak, Tolek; Shapiro, David; Roy, Sujoy; Kevan, Steve; Stxm Team At Als Collaboration; Soft X-Ray Microscopy Group At Als Collaboration; Soft X-ray scattering at ALS, LBL Team

    2014-03-01

    Coherent soft X-rays diffraction imaging enable coherent magnetic resonance scattering at transition metal L-edge to be probed so that magnetic domains could be imaged with very high spatial resolution with phase contrast, reaching sub-10nm. One of the overwhelming advantages of using coherent X-rays is the ability to resolve phase contrast images with linearly polarized light with both phase and absorption contrast comparing to real-space imaging, which can only be studied with circularly polarized light with absorption contrast only. Here we report our first results on high-resolution of magnetic domains imaging of CoPd multilayer thin film with coherent soft X-ray ptychography method. We are aiming to resolve and understand magnetic domain wall structures with the highest obtainable resolution here at Advanced Light Source. In principle types of magnetic domain walls could be studied so that Neel or Bloch walls can be distinguished by imaging. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02- 05CH11231).

  19. Wavefront aberrations of x-ray dynamical diffraction beams.

    PubMed

    Liao, Keliang; Hong, Youli; Sheng, Weifan

    2014-10-01

    The effects of dynamical diffraction in x-ray diffractive optics with large numerical aperture render the wavefront aberrations difficult to describe using the aberration polynomials, yet knowledge of them plays an important role in a vast variety of scientific problems ranging from optical testing to adaptive optics. Although the diffraction theory of optical aberrations was established decades ago, its application in the area of x-ray dynamical diffraction theory (DDT) is still lacking. Here, we conduct a theoretical study on the aberration properties of x-ray dynamical diffraction beams. By treating the modulus of the complex envelope as the amplitude weight function in the orthogonalization procedure, we generalize the nonrecursive matrix method for the determination of orthonormal aberration polynomials, wherein Zernike DDT and Legendre DDT polynomials are proposed. As an example, we investigate the aberration evolution inside a tilted multilayer Laue lens. The corresponding Legendre DDT polynomials are obtained numerically, which represent balanced aberrations yielding minimum variance of the classical aberrations of an anamorphic optical system. The balancing of classical aberrations and their standard deviations are discussed. We also present the Strehl ratio of the primary and secondary balanced aberrations.

  20. Compensation of X-ray mirror shape-errors using refractive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawhney, Kawal, E-mail: Kawal.sawhney@diamond.ac.uk; Laundy, David; Pape, Ian

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the sizemore » of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.« less

  1. Direct method for imaging elemental distribution profiles with long-period x-ray standing waves

    NASA Astrophysics Data System (ADS)

    Kohli, Vaibhav; Bedzyk, Michael J.; Fenter, Paul

    2010-02-01

    A model-independent Fourier-inversion method for imaging elemental profiles from multilayer and total-external reflection x-ray standing wave (XSW) data is developed for the purpose of understanding the assembly of atoms, ions, and molecules at well-defined interfaces in complex environments. The direct-method formalism is derived for the case of a long-period XSW generated by low-angle specular reflection in an attenuating overlayer medium. It is validated through comparison with simulated and experimental data to directly obtain an elemental distribution contained within the overlayer. We demonstrate this formalism by extracting the one-dimensional profile of Ti normal to the surface for a TiO2/Si/Mo trilayer deposited on a Si substrate using the TiKα fluorescence yield measured in air and under an aqueous electrolyte. The model-independent results demonstrate reduced coherent fractions for the in situ results associated with an incoherency of the x-ray beam (which are attributed to fluorescence excitation by diffusely or incoherently scattered x-rays). The uniqueness and limitations of the approach are discussed.

  2. Structure and Properties of Azobenzene Thin-Films

    NASA Astrophysics Data System (ADS)

    Allen, R. A.

    1987-09-01

    Available from UMI in association with The British Library. A number of monomer and polymer materials, all containing the azobenzene group, have been deposited as Langmuir-Blodgett (LB) multilayers and their structures and physical properties studied. LB films of two monomeric materials exhibited liquid crystal phase changes that were investigated by optical microscopy and X-ray diffraction. Multilayers built up from one of the materials exhibited a phase change upon aging and this demonstrated that the LB technique had produced a structure that was not the equilibrium state. A monomer material possessing a fluorocarbon chain was found to initially deposit as an LB film in a Z-type manner, but changed to Y-type deposition with increasing multilayer thickness. A correlation was observed between this behaviour and the surface potential changes that were brought about when deposition took place on an aluminium substrate. The feasibility of building up alternating multilayers of monomer and polymer materials was demonstrated. Combining these two classes of material in the same LB film may confer on it the mechanical durability of the polymers and the highly ordered structure and potentially interesting physical properties of the monomer. The structures developed here may prove to have high second harmonic generation capabilities. Polymer materials were built up into relatively thick Y-type LB multilayers and studied by X-ray diffraction. Only poorly defined layered structures were found. Polymer materials were also cast into thin films from the melt and from solution. One of the compounds developed a high degree of anisotropy in its structure after exposure to linearly polarised white light. A birefringence of up to Deltan = 0.21 was measured. In contrast, LB films formed from the same material could not be ordered in the same manner and this appeared to result from the very close packing that takes place in such structures.

  3. X-ray Intermolecular Structure Factor (XISF): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-06-01

    XISF is a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained. XISF has been optimized for performance and can separate intermolecular structure factors of complex molecules.

  4. X-ray Intermolecular Structure Factor ( XISF ): separation of intra- and intermolecular interactions from total X-ray scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Q.; Benmore, C. J.; Yarger, J. L.

    2015-05-09

    XISFis a MATLAB program developed to separate intermolecular structure factors from total X-ray scattering structure factors for molecular liquids and amorphous solids. The program is built on a trust-region-reflective optimization routine with the r.m.s. deviations of atoms physically constrained.XISFhas been optimized for performance and can separate intermolecular structure factors of complex molecules.

  5. X-ray Polarimetry with a Micro-Pattern Gas Detector

    NASA Technical Reports Server (NTRS)

    Hill, Joe

    2005-01-01

    Topics covered include: Science drivers for X-ray polarimetry; Previous X-ray polarimetry designs; The photoelectric effect and imaging tracks; Micro-pattern gas polarimeter design concept. Further work includes: Verify results against simulator; Optimize pressure and characterize different gases for a given energy band; Optimize voltages for resolution and sensitivity; Test meshes with 80 micron pitch; Characterize ASIC operation; and Quantify quantum efficiency for optimum polarization sensitivity.

  6. Surface Morphology of Liquid and Solid Thin Films via X-Ray Reflectivity.

    NASA Astrophysics Data System (ADS)

    Shindler, Joseph Daniel

    X-ray reflectivity can be used to measure the spatial variations in the electron density on length scales from Angstroms to microns. It is sensitive to atomic scale roughness, interdiffusion in buried layers, the thickness of multilayer stacks, and in-plane correlations in each of these cases. We have pioneered the use of a high intensity, moderate resolution configuration for x-ray reflectivity which utilizes a bent crystal graphite monochromator. With this technique we can obtain a beam intensity one hundred times greater than is possible using the high resolution rotating anode configuration, while we have shown that the resulting instrumental resolution is appropriate for the vast majority of thin film work. For all of the systems studied, we were able to measure the weak diffuse scattering signal to probe the in-plane length scales of interfacial roughness, a measurement which had previously only been attempted at synchrotron sources. Studied systems include thin films and surfaces with a wide range of structural order and surface morphologies. Interest in liquid films has been of a fundamental nature. Theories on the expected film evolution with changing thickness and temperature are currently being tested with scattering experiments. We have pursued the issues of film/substrate wetting and conformality, focussing on the temperature dependence of these phenomena near the triple point. Despite the heterogeneity of the substrate potential, we see a very sharp wetting transition at or near the triple point, although below the triple point the film is still smooth, consistent with a uniform layer. We also see a loss of conformality as the fluid films thicken; this is consistent with theory and with other recent experiments. The properties of a multilayer solid film depend not only on the magnitude of the roughness of each interface, but also on the conformality between interfaces and the length scales of the roughness--i.e., whether the roughness is on the atomic lengths of interdiffusion, crystalline order lengths of faceting, or even longer lengths due to other processes. In a joint project with Alcoa, we combined the methods of x-ray Bragg diffraction and small angle reflectivity to probe aluminum thin films as precursors to true multilayer films, correlating grain size and orientation with the magnitude and length-scales of surface roughness. We also correlated all film properties with such parameters as the deposition method, substrate roughness, and film thickness.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delcamp, E.; Lagarde, B.; Polack, F.

    Though optimization softwares are commonly used in visible optical design, none seems to exist for soft X-ray optics. It is shown here that optimization techniques can be applied with some advantages to X-UV monochromator design. A merit function, suitable for minimizing the aberrations is proposed, and the general method of computation is described. Samples of the software inputs and outputs are presented, and compared to reference data. As an example of application to soft X-ray monochromator design, the optimization of the soft X-ray monochromator of the ESRF microscopy beamline is presented. Good agreement between the predicted resolution of a modifiedmore » PGM monochromator and experimental measurements is reported.« less

  8. Innovative soft magnetic multilayers with enhanced in-plane anisotropy and ferromagnetic resonance frequency for integrated RF passive devices

    NASA Astrophysics Data System (ADS)

    Falub, Claudiu V.; Bless, Martin; Hida, Rachid; MeduÅa, Mojmír; Ammann, Arnold

    2018-04-01

    We present an innovative, economical method for manufacturing soft magnetic materials that may pave the way for integrated thin film magnetic cores with dramatically improved properties. Soft magnetic multilayered thin films based on the Fe-28%Co20%B (at.%) and Co-4.5%Ta4%Zr (at.%) amorphous alloys are deposited on 8" bare Si and Si/200nm-thermal-SiO2 wafers in an industrial, high-throughput Evatec LLS EVO II magnetron sputtering system. The multilayers consist of stacks of alternating 80-nm-thick ferromagnetic layers and 4-nm-thick Al2O3 dielectric interlayers. Since in our dynamic sputter system the substrate cage rotates continuously, such that the substrates face different targets alternatively, each ferromagnetic sublayer in the multilayer consists of a fine structure comprising alternating CoTaZr and FeCoB nanolayers with very sharp interfaces. We adjust the thickness of these individual nanolayers between 0.5 and 1.5 nm by changing the cage rotation speed and the power of each gun, which is an excellent mode to engineer new, composite ferromagnetic materials. Using X-ray reflectometry (XRR) we reveal that the interfaces between the FeCoB and CoTaZr nanolayers are perfectly smooth with roughness of 0.2-0.3 nm. Kerr magnetometry and B-H looper measurements for the as-deposited samples show that the coercivity of these thin films is very low, 0.2-0.3 Oe, and gradually scales up with the thickness of FeCoB nanolayers, i.e. with the increase of the overall Fe content from 0 % (e.g. CoTaZr-based multilayers) to 52 % (e.g. FeCoB-based multilayers). We explain this trend in the random anisotropy model, based on considerations of grain size growth, as revealed by glancing angle X-ray diffraction (GAXRD), but also because of the increase of magnetostriction with the increase of Fe content as shown by B-H looper measurements performed on strained wafers. The unexpected enhancement of the in-plane anisotropy field from 18.3 Oe and 25.8 Oe for the conventional CoTaZr- and FeCoB-based multilayers, respectively, up to ˜48 Oe for the nanostructured multilayers with FeCoB/CoTaZr nano-bilayers is explained based on interface anisotropy contribution. These novel soft magnetic multilayers, with enhanced in-plane anisotropy, allow operation at higher frequencies, as revealed by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior.

  9. Spectral imaging using clinical megavoltage beams and a novel multi-layer imager

    NASA Astrophysics Data System (ADS)

    Myronakis, Marios; Fueglistaller, Rony; Rottmann, Joerg; Hu, Yue-Houng; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2017-12-01

    We assess the feasibility of clinical megavoltage (MV) spectral imaging for material and bone separation with a novel multi-layer imager (MLI) prototype. The MLI provides higher detective quantum efficiency and lower noise than conventional electronic portal imagers. Simulated experiments were performed using a validated Monte Carlo model of the MLI to estimate energy absorption and energy separation between the MLI components. Material separation was evaluated experimentally using solid water and aluminum (Al), copper (Cu) and gold (Au) for 2.5 MV, 6 MV and 6 MV flattening filter free (FFF) clinical photon beams. An anthropomorphic phantom with implanted gold fiducials was utilized to further demonstrate bone/gold separation. Weighted subtraction imaging was employed for material and bone separation. The weighting factor (w) was iteratively estimated, with the optimal w value determined by minimization of the relative signal difference (Δ {{S}R} ) and signal-difference-to-noise ratio (SDNR) between material (or bone) and the background. Energy separation between layers of the MLI was mainly the result of beam hardening between components with an average energy separation between 34 and 47 keV depending on the x-ray beam energy. The minimum average energy of the detected spectrum in the phosphor layer was 123 keV in the top layer of the MLI with the 2.5 MV beam. The w values that minimized Δ {{S}R} and SDNR for Al, Cu and Au were 0.89, 0.76 and 0.64 for 2.5 MV; for 6 MV FFF, w was 0.98, 0.93 and 0.77 respectively. Bone suppression in the anthropomorphic phantom resulted in improved visibility of the gold fiducials with the 2.5 MV beam. Optimization of the MLI design is required to achieve optimal separation at clinical MV beam energies.

  10. Reactions in Electrodeposited Cu/Sn and Cu/Ni/Sn Nanoscale Multilayers for Interconnects

    PubMed Central

    Chia, Pay Ying; Haseeb, A. S. M. A.; Mannan, Samjid Hassan

    2016-01-01

    Miniaturization of electronic devices has led to the development of 3D IC packages which require ultra-small-scale interconnections. Such small interconnects can be completely converted into Cu-Sn based intermetallic compounds (IMCs) after reflow. In an effort to improve IMC based interconnects, an attempt is made to add Ni to Cu-Sn-based IMCs. Multilayer interconnects consisting of stacks of Cu/Sn/Cu/Sn/Cu or Cu/Ni/Sn/Ni/Sn/Cu/Ni/Sn/Ni/Cu with Ni = 35 nm, 70 nm, and 150 nm were electrodeposited sequentially using copper pyrophosphate, tin methanesulfonic, and nickel Watts baths, respectively. These multilayer interconnects were investigated under room temperature aging conditions and for solid-liquid reactions, where the samples were subjected to 250 °C reflow for 60 s and also 300 °C for 3600 s. The progress of the reaction in the multilayers was monitored by using X-ray Diffraction, Scanning Electron Microscope, and Energy dispersive X-ray Spectroscopy. FIB-milled samples were also prepared for investigation under room temperature aging conditions. Results show that by inserting a 70 nanometres thick Ni layer between copper and tin, premature reaction between Cu and Sn at room temperature can be avoided. During short reflow, the addition of Ni suppresses formation of Cu3Sn IMC. With increasing Ni thickness, Cu consumption is decreased and Ni starts acting as a barrier layer. On the other hand, during long reflow, two types of IMC were found in the Cu/Ni/Sn samples which are the (Cu,Ni)6Sn5 and (Cu,Ni)3Sn, respectively. Details of the reaction sequence and mechanisms are discussed. PMID:28773552

  11. Measurements of molybdenum radiation in the Alcator C-Mod tokamak using a multilayer mirror soft x-ray polychromator

    NASA Astrophysics Data System (ADS)

    May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Graf, M. A.; Fournier, K.; Goldstein, W. L.

    1995-01-01

    A photometrically calibrated polychromator utilizing layered synthetic microstructure coated flats (also known as multilayer mirrors, MLMs) as dispersive elements is operating on the Alcator C-Mod tokamak to measure the molybdenum emissions in the XUV. Molybdenum, the first wall material in C-Mod, is the dominant high Z impurity in the plasma. Three spectral regions are measured by three separate MLM-detector channels. The characteristic charge states in the region between 30-40 Å are Mo xv to Mo xx, between 65-90 Å are Mo xxiv to Mo xxvi, and between 110-130 Å are Mo xxxi and Mo xxxii. The instrument's spectral resolution varies from 0.4 Å at λ=30 Å to 7 Å at λ=130 Å. The temporal resolution is typically 1.0 ms, but sampling rates of less than 1 ms are possible. The instrument was photometrically calibrated at The Johns Hopkins University using a Manson soft x-ray light source. Power loss estimates from Mo xxiv to Mo xxvi, Mo xxxi, and Mo xxxii have been obtained during ohmic and ICRF plasmas using the mist transport code to model the molybdenum charge state distributions in the plasma. The Mo concentrations have also been determined. Mo contributes ˜0.1 to the Zeff of 1.3 during ohmic plasmas. This contribution increases during ICRF heating to ˜0.5 of the Zeff of 2. The polychromator functions as a time-resolved soft x-ray emission power loss monitor.

  12. Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    NASA Astrophysics Data System (ADS)

    Vivas, L. G.; Rubín, J.; Figueroa, A. I.; Bartolomé, F.; García, L. M.; Deranlot, C.; Petroff, F.; Ruiz, L.; González-Calbet, J. M.; Pascarelli, S.; Brookes, N. B.; Wilhelm, F.; Chorro, M.; Rogalev, A.; Bartolomé, J.

    2016-05-01

    Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by CoPd alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L 10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3 d -4 d bands associated to the Co and Pd chemical arrangement in a L 10 structure type.

  13. Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods

    NASA Astrophysics Data System (ADS)

    Rogers, Adam; Safi-Harb, Samar; Fiege, Jason

    2015-08-01

    The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. Withmore » ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and potentially revolutionary science involves soft excitations such as magnons and phonons; in general, these are well below the resolution that can be probed by today’s optical systems. The study of these low-energy excitations will only move forward if advances are made in high-resolution gratings for the soft X-ray energy region, and higher-resolution crystal analyzers for the hard X-ray region. In almost all the forefront areas of X-ray science today, the main limitation is our ability to focus, monochromate, and manipulate X-rays at the level required for these advanced measurements. To address these issues, the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) sponsored a workshop, X-ray Optics for BES Light Source Facilities, which was held March 27–29, 2013, near Washington, D.C. The workshop addressed a wide range of technical and organizational issues. Eleven working groups were formed in advance of the meeting and sought over several months to define the most pressing problems and emerging opportunities and to propose the best routes forward for a focused R&D program to solve these problems. The workshop participants identified eight principal research directions (PRDs), as follows: Development of advanced grating lithography and manufacturing for high-energy resolution techniques such as soft X-ray inelastic scattering. Development of higher-precision mirrors for brightness preservation through the use of advanced metrology in manufacturing, improvements in manufacturing techniques, and in mechanical mounting and cooling. Development of higher-accuracy optical metrology that can be used in manufacturing, verification, and testing of optomechanical systems, as well as at wavelength metrology that can be used for quantification of individual optics and alignment and testing of beamlines. Development of an integrated optical modeling and design framework that is designed and maintained specifically for X-ray optics. Development of nanolithographic techniques for improved spatial resolution and efficiency of zone plates. Development of large, perfect single crystals of materials other than silicon for use as beam splitters, seeding monochromators, and high-resolution analyzers. Development of improved thin-film deposition methods for fabrication of multilayer Laue lenses and high-spectral-resolution multilayer gratings. Development of supports, actuator technologies, algorithms, and controls to provide fully integrated and robust adaptive X-ray optic systems. Development of fabrication processes for refractive lenses in materials other than silicon. The workshop participants also addressed two important nontechnical areas: our relationship with industry and organization of optics within the light source facilities. Optimization of activities within these two areas could have an important effect on the effectiveness and efficiency of our overall endeavor. These are crosscutting managerial issues that we identified as areas that needed further in-depth study, but they need to be coordinated above the individual facilities. Finally, an issue that cuts across many of the optics improvements listed above is routine access to beamlines that ideally are fully dedicated to optics research and/or development. The success of the BES X-ray user facilities in serving a rapidly increasing user community has led to a squeezing of beam time for vital instrumentation activities. Dedicated development beamlines could be shared with other R&D activities, such as detector programs and novel instrument development. In summary, to meet the challenges of providing the highest-quality X-ray beams for users and to fully utilize the high-brightness sources of today and those that are on the horizon, it will be critical to make strategic investments in X-ray optics R&D. This report can provide guidance and direction for effective use of investments in the field of X-ray optics and potential approaches to develop a better-coordinated program of X-ray optics development within the suite of BES synchrotron radiation facilities. Due to the importance and complexity of the field, the need for tight coordination between BES light source facilities and with industry, as well as the rapid evolution of light source capabilities, the workshop participants recommend holding similar workshops at least biannually.« less

  15. Taguchi's technique: an effective method for improving X-ray medical radiographic screen performance.

    PubMed

    Vlachogiannis, J G

    2003-01-01

    Taguchi's technique is a helpful tool to achieve experimental optimization of a large number of decision variables with a small number of off-line experiments. The technique appears to be an ideal tool for improving the performance of X-ray medical radiographic screens under a noise source. Currently there are very many guides available for improving the efficiency of X-ray medical radiographic screens. These guides can be refined using a second-stage parameter optimization. based on Taguchi's technique, selecting the optimum levels of controllable X-ray radiographic screen factors. A real example of the proposed technique is presented giving certain performance criteria. The present research proposes the reinforcement of X-ray radiography by Taguchi's technique as a novel hardware mechanism.

  16. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  17. A normal incidence high resolution X-ray telescope for solar coronal observations

    NASA Technical Reports Server (NTRS)

    Golub, Leon

    1987-01-01

    The preflight preparation of the multilayer mirror fabrication and testing, integration and testing, and WSMR activities are described. Post-flight analysis shows that all payload systems and subsystems performed well within acceptable limits, with the sole exception of the light-blocking prefilters. Suggested corrective actions were discussed. Refurbishment and reflight are then described.

  18. Synthesis of a fiber-optic magnetostrictive sensor (FOMS) pixel for RF magnetic field imaging

    NASA Astrophysics Data System (ADS)

    Rengarajan, Suraj

    The principal objective of this dissertation was to synthesize a sensor element with properties specifically optimized for integration into arrays capable of imaging RF magnetic fields. The dissertation problem was motivated by applications in nondestructive eddy current testing, smart skins, etc., requiring sensor elements that non-invasively detect millimeter-scale variations over several square meters, in low level magnetic fields varying at frequencies in the 100 kHz-1 GHz range. The poor spatial and temporal resolution of FOMS elements available prior to this dissertation research, precluded their use in non-invasive large area mapping applications. Prior research had been focused on large, discrete devices for detecting extremely low level magnetic fields varying at a few kHz. These devices are incompatible with array integration and imaging applications. The dissertation research sought to overcome the limitations of current technology by utilizing three new approaches; synthesizing magnetostrictive thin films and optimizing their properties for sensor applications, integrating small sensor elements into an array compatible fiber optic interferometer, and devising a RF mixing approach to measure high frequency magnetic fields using the integrated sensor element. Multilayer thin films were used to optimize the magnetic properties of the magnetostrictive elements. Alternating soft (Nisb{80}Fesb{20}) and hard (Cosb{50}Fesb{50}) magnetic alloy layers were selected for the multilayer and the layer thicknesses were varied to obtain films with a combination of large magnetization, high frequency permeability and large magnetostrictivity. X-Ray data and measurement of the variations in the magnetization, resistivity and magnetostriction with layer thicknesses, indicated that an interfacial layer was responsible for enhancing the sensing performance of the multilayers. A FOMS pixel was patterned directly onto the sensing arm of a fiber-optic interferometer, by sputtering a multilayer film with favorable sensor properties. After calibrating the interferometer response with a piezo, the mechanical and magnetic responses of the FOMS element were evaluated for various test fields. High frequency magnetic fields were detected using a local oscillator field to downconvert the RF signal fields to the lower mechanical resonant frequency of the element. A field sensitivity of 0.3 Oe/cm sensor element length was demonstrated at 1 MHz. A coherent magnetization rotation model was developed to predict the magnetostrictive response of the element, and identify approaches for optimizing its performance. This model predicts that an optimized element could resolve ˜1 mm variations in fields varying at frequencies >10 MHz with a sensitivity of ˜10sp{-3} Oe/mm. The results demonstrate the potential utility of integrating this device as a FOMS pixel in RF magnetic field imaging arrays.

  19. The life science X-ray scattering beamline at NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  20. The life science X-ray scattering beamline at NSLS-II

    DOE PAGES

    DiFabio, Jonathan; Yang, Lin; Chodankar, Shirish; ...

    2015-09-30

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ~0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  1. The life science x-ray scattering beamline at NSLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiFabio, Jonathan; Chodankar, Shirish; Pjerov, Sal

    We report the current development status of the High Brightness X-ray Scattering for Life Sciences (or Life Science X-ray Scattering, LiX) beamline at the NSLS-II facility of Brookhaven National Laboratory. This instrument will operate in the x-ray energy range of 2.1-18 keV, provide variable beam sizes from 1 micron to ∼0.5 mm, and support user experiments in three scientific areas: (1) high-throughput solution scattering, in-line size exclusion chromatography and flow mixers-based time-resolved solution scattering of biological macro-molecules, (2) diffraction from single- and multi-layered lipid membranes, and (3) scattering-based scanning probe imaging of biological tissues. In order to satisfy the beammore » stability required for these experiments and to switch rapidly between different types of experiments, we have adopted a secondary source with refractive lenses for secondary focusing, a detector system consisting of three Pilatus detectors, and specialized experimental modules that can be quickly exchanged and each dedicated to a defined set of experiments. The construction of this beamline is on schedule for completion in September 2015. User experiments are expected to start in Spring 2016.« less

  2. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  3. X-ray transparent microfluidic chips for high-throughput screening and optimization of in meso membrane protein crystallization

    PubMed Central

    Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.

    2017-01-01

    Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762

  4. Speeding up nanomagnetic logic by DMI enhanced Pt/Co/Ir films

    NASA Astrophysics Data System (ADS)

    Ziemys, Grazvydas; Ahrens, Valentin; Mendisch, Simon; Csaba, Gyorgy; Becherer, Markus

    2018-05-01

    We investigated a new type of multilayer film for Nanomagnetic Logic with perpendicular anisotropy (pNML) enhanced by the Dzyaloshinskii-Moriya interaction (DMI). The DMI effect provides an additional energy term and widens the design space for pNML film optimization. In this work we added an Ir layer between Co and Pt to our standard pNML multilayer (ML) film stack - [Co/Pt]x4. Multilayer stacks of films with and w/o Ir were sputtered and patterned to nanowires of 400 nm width by means of focused ion beam lithography (FIB). For comparability of the films they were tuned to show identical anisotropy for multilayer stacks with and w/o Ir. The field-driven domain wall (DW) velocity in the nanowires was measured by using wide-field MOKE microscopy. We found a strong impact of Ir on the DW velocity being up to 2 times higher compared to the standard [Co/Pt]x4 ML films. Moreover, the maximum velocity is reached at much lower magnetic field, which is beneficial for pNML operation. These results pave the way for pNML with higher clocking rates and at the same time allow a further reduce power consumption.

  5. A normal incidence X-ray telescope sounding rocket payload

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress is reported on the following major activities on the X-ray telescope: (1) complete design of the entire telescope assembly and fabrication of all front-end components was completed; (2) all rocket skin sections, including bulkheads, feedthroughs and access door, were specified; (3) fabrication, curing and delivery of the large graphite-epoxy telescope tube were completed; (4) an engineering analysis of the primary mirror vibration test was completed and a decision made to redesign the mirror attachment system to a kinematic three-point mount; (5) detail design of the camera control, payload and housekeeping electronics were completed; and (6) multilayer mirror plates with 2d spacings of 50 A and 60 A were produced.

  6. Depth distribution of secondary phases in kesterite Cu 2ZnSnS 4 by angle-resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.

    The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  7. Depth distribution of secondary phases in kesterite Cu 2ZnSnS 4 by angle-resolved X-ray absorption spectroscopy

    DOE PAGES

    Just, J.; Lützenkirchen-Hecht, D.; Müller, O.; ...

    2017-12-12

    The depth distribution of secondary phases in the solar cell absorber material Cu 2ZnSnS 4 (CZTS) is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES) analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  8. Advanced water window x-ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Lin, J.

    1992-01-01

    The project was focused on the design and analysis of an advanced water window soft-x-ray microscope. The activities were accomplished by completing three tasks contained in the statement of work of this contract. The new results confirm that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use aspherical mirror surfaces and to use graded multilayer coatings on the secondary (to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater). The results are included in a manuscript which is enclosed in the Appendix.

  9. (Indium, Aluminum) co-doped Zinc Oxide as a Novel Material System for Quantum-Well Multilayer Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Teehan, Sean

    Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2sigmaT/kappa, where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature and kappa is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2. Theoretically it has been proven that by engineering nanostructures with lower dimensionality one can significantly increase ZT. A superlattice, or a system of 2-dimensional multilayer quantum wells has previously shown the potential to be used for thermoelectric structures. However, the use of conventional materials within these structures has only allowed this at low temperatures and has utilized cross-plane transport. This study focuses on both high temperature range operation and the in-plane transport properties of such structures, which benefit from both quantum confinement and an enhancement in density of states near EF. The n-type structures are fabricated by alternately sputtering barrier and well materials of Al-doped ZnO (AZO) and indium co-doped AZO, respectively. Samples investigated consist of 50 periods with targeted layer thicknesses of 10nm, which results in sufficient sampling material as well as quantum well effects. The indium doping level within the quantum well was controlled by varying the target power, and ultimately results in a 3x improvement in power factor (S 2sigma) over the parent bulk materials. The film characterization was determined by X-ray reflectometry, transmission electron microscopy, X-ray diffraction, auger electron spectroscopy, as well as other relevant techniques. In addition, process optimization was performed on material parameters such as layer thickness, interface roughness, and band-gap offset which all play a major role in determining the thermoelectric performance. Within this study we theoretically and experimentally have developed correlations between each of these material parameters and its overall effect on thermoelectric performance.

  10. Interface mediated enhanced mixing of multilayered Ni-Bi thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Siva, V.; Chettah, A.; Ojha, S.; Tripathi, A.; Kanjilal, D.; Sahoo, Pratap K.

    2017-10-01

    We report the effect of ion beam mixing of Ni/Bi multilayers using 100 MeV Au ions as a function of irradiation fluences. X-ray diffraction study reveals the higher magnitude of NiBi3 and NiBi phases compared to elemental Ni and Bi after ion irradiation. We observe an evolution of grainy structures to a molten-like surface with increasing ion fluences. These features were also reflected in the Rutherford Backscattering spectrometry spectra, in terms of the enhanced mixing with increasing ion fluences. The experimental findings were understood on the basis of inelastic thermal spike model calculations.

  11. Stress insensitive multilayer chip inductor with ferrite core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishwas, B.; Madhuri, W., E-mail: madhuriw12@gmail.com; Rao, N. Madhusudan

    2015-06-24

    Mg{sub 0.25}Cu{sub 0.25}Zn{sub 0.5}Fe{sub 2}O{sub 4} is synthesized by sol gel auto combustion technique. The obtained ferrite powder is finally sintered in a microwave furnace at 850°C. Multilayer chip inductor (MLCI) of two layers is prepared by screen printing technique. The sintered ferrite is characterized by X-ray diffraction. The frequency response of dielectric constant is studied in the frequency range of 100Hz to 5MHz. Dielectric polarization is discussed in the light of Maxwell-Wagner interfacial polarization. The prepared MLCI is studied for stress sensitivity in the range of 0 to 8 MPa.

  12. Preparation and analysis of multilayer composites based on polyelectrolyte complexes

    NASA Astrophysics Data System (ADS)

    Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.

    2016-11-01

    A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.

  13. High performance EUV multilayer structures insensitive to capping layer optical parameters.

    PubMed

    Pelizzo, Maria Guglielmina; Suman, Michele; Monaco, Gianni; Nicolosi, Piergiorgio; Windt, David L

    2008-09-15

    We have designed and tested a-periodic multilayer structures containing protective capping layers in order to obtain improved stability with respect to any possible changes of the capping layer optical properties (due to oxidation and contamination, for example)-while simultaneously maximizing the EUV reflection efficiency for specific applications, and in particular for EUV lithography. Such coatings may be particularly useful in EUV lithographic apparatus, because they provide both high integrated photon flux and higher stability to the harsh operating environment, which can affect seriously the performance of the multilayer-coated projector system optics. In this work, an evolutive algorithm has been developed in order to design these a-periodic structures, which have been proven to have also the property of stable performance with respect to random layer thickness errors that might occur during coating deposition. Prototypes have been fabricated, and tested with EUV and X-ray reflectometry, and secondary electron spectroscopy. The experimental results clearly show improved performance of our new a-periodic coatings design compared with standard periodic multilayer structures.

  14. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  15. Optimizing X-Ray Optical Prescriptions for Wide-Field Applications

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2010-01-01

    X-ray telescopes with spatial resolution optimized over the field of view (FOV) are of special interest for missions, such as WFXT, focused on moderately deep and deep surveys of the x-ray sky, and for solar x-ray observations. Here we report on the present status of an on-going study of the properties of Wolter I and polynominal grazing incidence designs with a view to gain a deeper insight into their properties and simply the design process. With these goals in mind, we present some results in the complementary topics of (1) properties of Wolter I x-ray optics and polynominal x-ray optic ray tracing. Of crucial importance for the design of wide-field x-ray optics is the optimization criteria. Here we have adopted the minimization of a merit function, M, which measures the spatial resolution averaged over the FOV: M= ((integral of d phi) between the limits of 0 and 2 pi) (integral of d theta theta w(theta) sigma square (theta,phi) between the limits of 0 and theta(sub FOV)) (integral of d phi between the limits of 0 and phi/4) (Integral of d theta theta w(theta) between the limits of 0 and theta(sub FOV) where w(theta(sub 1) is a weighting function and Merit function: sigma-square (theta, phi) = summation of (x,y,z) [-<(x,y,z)> (exp 2)] is the spatial variance for a point source on the sky at polar and azimuthal off-axis angles (theta,phi).

  16. Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai Coherent Light Facility

    NASA Astrophysics Data System (ADS)

    Li, Kai; Deng, Haixiao

    2018-07-01

    The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.

  17. A hybrid method for transient wave propagation in a multilayered solid

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Xie, Zhoumin

    2009-08-01

    We present a hybrid method for the evaluation of transient elastic-wave propagation in a multilayered solid, integrating reverberation matrix method with the theory of generalized rays. Adopting reverberation matrix formulation, Laplace-Fourier domain solutions of elastic waves in the multilayered solid are expanded into the sum of a series of generalized-ray group integrals. Each generalized-ray group integral containing Kth power of reverberation matrix R represents the set of K-times reflections and refractions of source waves arriving at receivers in the multilayered solid, which was computed by fast inverse Laplace transform (FILT) and fast Fourier transform (FFT) algorithms. However, the calculation burden and low precision of FILT-FFT algorithm limit the application of reverberation matrix method. In this paper, we expand each of generalized-ray group integrals into the sum of a series of generalized-ray integrals, each of which is accurately evaluated by Cagniard-De Hoop method in the theory of generalized ray. The numerical examples demonstrate that the proposed method makes it possible to calculate the early-time transient response in the complex multilayered-solid configuration efficiently.

  18. Layer-by-layer assembled multilayer films of exfoliated layered double hydroxide and carboxymethyl-β-cyclodextrin for selective capacitive sensing of acephatemet.

    PubMed

    Gong, Jingming; Han, Xinmei; Zhu, Xiaolei; Guan, Zhangqiong

    2014-11-15

    Novel organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of cationic exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets and carboxymethyl-β-cyclodextrin (CMCD) as a polyanion onto a glassy carbon electrode (GCE) via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of X-ray powder diffraction (XRD), infrared spectroscopy (IR), and scanning electron microscopy (SEM). These films were found to possess a long range stacking order in the normal direction of the substrate with a continuous and uniform morphology. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/CMCD)n multilayer film, combining the individual properties of CMCD (a high supramolecule recognition and enrichment capability) together with LDH nanosheets (a rigid inorganic matrix), can be applied to a sensitive, simple, and label-free capacitive detection of acephatemet (AM). Molecular docking calculations further disclose that the selective sensing behavior toward AM may be attributed to the specific binding ability of CMCD to AM. Under the optimized conditions, the capacitive change of AM was proportional to its concentration ranging from 0.001 to 0.10 μg mL(-1) and 0.1 to 0.8 μg mL(-1) with a detection limit 0.6 ng mL(-1) (S/N=3). Toward the goal for practical applications, this simple probe was further evaluated by monitoring AM in real samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Numerical optimization of a picosecond pulse driven Ni-like Nb x-ray laser at 20.3 nm

    NASA Astrophysics Data System (ADS)

    Lu, X.; Zhong, J. Y.; Li, Y. J.; Zhang, J.

    2003-07-01

    Detailed simulations of a Ni-like Nb x-ray laser pumped by a nanosecond prepulse followed by a picosecond main pulse are presented. The atomic physics data are obtained using the Cowan code [R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, CA, 1981)]. The optimization calculations are performed in terms of the intensity of prepulse and the time delay between the prepulse and the main pulse. A high gain over 150 cm-1 is obtained for the optimized drive pulse configuration. The ray-tracing calculations suggest that the total pump energy for a saturated x-ray laser can be reduced to less than 1 J.

  20. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  1. Hierarchical multimodal tomographic x-ray imaging at a superbend

    NASA Astrophysics Data System (ADS)

    Stampanoni, M.; Marone, F.; Mikuljan, G.; Jefimovs, K.; Trtik, P.; Vila-Comamala, J.; David, C.; Abela, R.

    2008-08-01

    Over the last decade, synchrotron-based X-ray tomographic microscopy has established itself as a fundamental tool for non-invasive, quantitative investigations of a broad variety of samples, with application ranging from space research and materials science to biology and medicine. Thanks to the brilliance of modern third generation sources, voxel sizes in the micrometer range are routinely achieved by the major X-ray microtomography devices around the world, while the isotropic 100 nm barrier is reached and trespassed only by few instruments. The beamline for TOmographic Microscopy and Coherent rAdiology experiments (TOMCAT) of the Swiss Light Source at the Paul Scherrer Institut, operates a multimodal endstation which offers tomographic capabilities in the micrometer range in absorption contrast - of course - as well as phase contrast imaging. Recently, the beamline has been equipped with a full field, hard X-rays microscope with a theoretical pixel size down to 30 nm and a field of view of 50 microns. The nanoscope performs well at X-ray energies between 8 and 12 keV, selected from the white beam of a 2.9 T superbend by a [Ru/C]100 fixed exit multilayer monochromator. In this work we illustrate the experimental setup dedicated to the nanoscope, in particular the ad-hoc designed X-ray optics needed to produce a homogeneous, square illumination of the sample imaging plane as well as the magnifying zone plate. Tomographic reconstructions at 60 nm voxel size will be shown and discussed.

  2. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes)

    NASA Astrophysics Data System (ADS)

    Halim, Joseph; Cook, Kevin M.; Naguib, Michael; Eklund, Per; Gogotsi, Yury; Rosen, Johanna; Barsoum, Michel W.

    2016-01-01

    In this work, a detailed high resolution X-ray photoelectron spectroscopy (XPS) analysis is presented for select MXenes-a recently discovered family of two-dimensional (2D) carbides and carbonitrides. Given their 2D nature, understanding their surface chemistry is paramount. Herein we identify and quantify the surface groups present before, and after, sputter-cleaning as well as freshly prepared vs. aged multi-layered cold pressed discs. The nominal compositions of the MXenes studied here are Ti3C2Tx, Ti2CTx, Ti3CNTx, Nb2CTx and Nb4C3Tx, where T represents surface groups that this work attempts to quantify. In all the cases, the presence of three surface terminations, sbnd O, sbnd OH and sbnd F, in addition to OH-terminations relatively strongly bonded to H2O molecules, was confirmed. From XPS peak fits, it was possible to establish the average sum of the negative charges of the terminations for the aforementioned MXenes. Based on this work, it is now possible to quantify the nature of the surface terminations. This information can, in turn, be used to better design and tailor these novel 2D materials for various applications.

  3. Magnetic and structural X-ray dichroïsms of metallic multilayers

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Fontaine, A.; Baudelet, F.; Minr, S.; Giorgetti, C.; Dartyge, E.; Bobo, J. F.; Piecuch, M.

    1995-05-01

    Fe/Cu and Co/Cu multilayers are intensively studied because of their exceptional magnetic properties, i.e., their giant magnetoresistance and the oscillations of the magnetic coupling between magnetic layers as a function of the thickness of the copper spacer [S.S. Parkin et al., Phys. Rev. Lett. 66 (1991) 2152; F. Petroff et al., Phys. Rev. B 44 (1991) 5355]. Spectroscopic approaches to the understanding of the coupling of ferromagnetic layers through a noble metal layer have been recently introduced, in particular spin-resolved photoemission [N.B. Brookes et al., Phys. Rev. Lett. 67 (1991) 354; C. Carbone et al., PRL 71 (1993) 2805] inverse photoemission [J.E. Ortega et al., Phys. Rev. Lett. 69 (1992) 844; Phys. Rev. B 47 (1993) 1540] and magnetic circular dichroism [S. Pizzini et al., MRS Symp. Proc., vol. 313 (1993); M.G. Samant et al. Phys. Rev. Lett. 72 (1994) 2152; S. Pizzini et al., Phys. Rev. Lett. 74 (1995) 1470]. X-ray absorption spectroscopy appears to be effective both for determination of the local structure, specific to the bidimensionality of the system but also for the electron symmetry-dependent evaluation of the spin polarisation of the noble metal as well as the magnetic element.

  4. A general theory of interference fringes in x-ray phase grating imaging.

    PubMed

    Yan, Aimin; Wu, Xizeng; Liu, Hong

    2015-06-01

    The authors note that the concept of the Talbot self-image distance in x-ray phase grating interferometry is indeed not well defined for polychromatic x-rays, because both the grating phase shift and the fractional Talbot distances are all x-ray wavelength-dependent. For x-ray interferometry optimization, there is a need for a quantitative theory that is able to predict if a good intensity modulation is attainable at a given grating-to-detector distance. In this work, the authors set out to meet this need. In order to apply Fourier analysis directly to the intensity fringe patterns of two-dimensional and one-dimensional phase grating interferometers, the authors start their derivation from a general phase space theory of x-ray phase-contrast imaging. Unlike previous Fourier analyses, the authors evolved the Wigner distribution to obtain closed-form expressions of the Fourier coefficients of the intensity fringes for any grating-to-detector distance, even if it is not a fractional Talbot distance. The developed theory determines the visibility of any diffraction order as a function of the grating-to-detector distance, the phase shift of the grating, and the x-ray spectrum. The authors demonstrate that the visibilities of diffraction orders can serve as the indicators of the underlying interference intensity modulation. Applying the theory to the conventional and inverse geometry configurations of single-grating interferometers, the authors demonstrated that the proposed theory provides a quantitative tool for the grating interferometer optimization with or without the Talbot-distance constraints. In this work, the authors developed a novel theory of the interference intensity fringes in phase grating x-ray interferometry. This theory provides a quantitative tool in design optimization of phase grating x-ray interferometers.

  5. Multiwall carbon nanotube embedded phenolic resin-based carbon foam for the removal of As (V) from contaminated water

    NASA Astrophysics Data System (ADS)

    Rani Agrawal, Pinki; Singh, Nahar; Kumari, Saroj; Dhakate, Sanjay R.

    2018-03-01

    It is well proposed that micron or nano size filters requires to separate adsorbent from water after removal of adsorbate. However, even after filtration trace quantity of adsorbent remains in purified water, which deteriorates the quality of water for potability. To overcome these problems, multi walled carbon nanotube (MWCNT) loaded Carbon Foam (CF) was fabricated by a sacrificial template process. In this process, multi walled carbon nanotubes (MWCNTs) and phenolic resin mixture was used for the impregnation of the polyurethane (PU) template. Impregnated PU Foam stabilized and carbonized to get MWCNTs embedded Carbon Foam (CF). The MWCNT loaded CF (MWCNTs-CF) was used for the removal of As (V) species from water. The proposed foam efficiently removes arsenic (As (V)) from water and it can be easily separated from water after purification without any sophisticated tools. The adsorption capacity of the proposed material was found to be 90.5 μg*g-1 at optimized condition of pH, time and concentration, which is excellent in comparison to several other materials utilized for removal of As (V). Kinetic and isotherm studies reveal that the multilayer adsorption over heterogeneous surface follows pseudo second order kinetics. The adsorption phenomena were further confirmed by several characterization techniques like scanning electron microscope (SEM), x-ray diffraction (XRD) spectroscopy and x-ray photoelectron spectroscopy (XPS).

  6. Designing the X-Ray Microcalorimeter Spectrometer for Optimal Science Return

    NASA Technical Reports Server (NTRS)

    Ptak, Andrew; Bandler, Simon R.; Bookbinder, Jay; Kelley, Richard L.; Petre, Robert; Smith, Randall K.; Smith, Stephen

    2013-01-01

    Recent advances in X-ray microcalorimeters enable a wide range of possible focal plane designs for the X-ray Microcalorimeter Spectrometer (XMS) instrument on the future Advanced X-ray Spectroscopic Imaging Observatory (AXSIO) or X-ray Astrophysics Probe (XAP). Small pixel designs (75 microns) oversample a 5-10" PSF by a factor of 3-6 for a 10 m focal length, enabling observations at both high count rates and high energy resolution. Pixel designs utilizing multiple absorbers attached to single transition-edge sensors can extend the focal plane to cover a significantly larger field of view, albeit at a cost in maximum count rate and energy resolution. Optimizing the science return for a given cost and/or complexity is therefore a non-trivial calculation that includes consideration of issues such as the mission science drivers, likely targets, mirror size, and observing efficiency. We present a range of possible designs taking these factors into account and their impacts on the science return of future large effective-area X-ray spectroscopic missions.

  7. Multispectral variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    A multispectral, variable magnification, glancing incidence, x-ray telescope capable of broadband, high resolution imaging of solar and stellar x-ray and extreme ultraviolet radiation sources is discussed. The telescope includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable mirror carriers, each providing a different magnification, are positioned behind the primary focus at an inclination to the optical axis. Each carrier has a series of ellipsoidal mirrors, and each mirror has a concave surface covered with a multilayer (layered synthetic microstructure) coating to reflect a different desired wavelength. The mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A detector such as an x-ray sensitive photographic film is positioned at the second respective focus of each mirror so that each mirror may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected mirror on the second carrier to receive the radiation.

  8. Alternative difference analysis scheme combining R -space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less

  9. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    PubMed

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  10. DCTune Perceptual Optimization of Compressed Dental X-Rays

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.; Null, Cynthia H. (Technical Monitor)

    1997-01-01

    In current dental practice, x-rays of completed dental work are often sent to the insurer for verification. It is faster and cheaper to transmit instead digital scans of the x-rays. Further economies result if the images are sent in compressed form. DCtune is a technology for optimizing DCT quantization matrices to yield maximum perceptual quality for a given bit-rate, or minimum bit-rate for a given perceptual quality. In addition, the technology provides a means of setting the perceptual quality of compressed imagery in a systematic way. The purpose of this research was, with respect to dental x-rays: (1) to verify the advantage of DCTune over standard JPEG; (2) to verify the quality control feature of DCTune; and (3) to discover regularities in the optimized matrices of a set of images. Additional information is contained in the original extended abstract.

  11. Design survey of X-ray/XUV projection lithography systems

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Viswanathan, V. K.

    1991-02-01

    Several configurations of two- to four-multilayer mirror systems that have been proposed for use in soft-X-ray projection lithography are examined. The performance capabilities of spherical and aspherical two-mirror projection systems are compared, and a two-spherical-mirror four-reflection system that can resolve 0.1-micron features over a 10 x 10 mm field is described. It is emphasized that three-mirror systems show promise of high resolution in telescope applications, but have not been fully analyzed for projection lithography applications. It has been shown that a four-mirror aspheric system can be designed to meet the resolution requirements, but a trade-off must be made between reducing distortion below 10 microns over the field of view and increasing the modulation transfer function greater than 50 percent at spatial frequency of 5000 cycles/mm.

  12. Element-selective investigation of domain structure in CoPd and FePd alloys using small-angle soft X-ray scattering

    NASA Astrophysics Data System (ADS)

    Weier, C.; Adam, R.; Frömter, R.; Bach, J.; Winkler, G.; Kobs, A.; Oepen, H. P.; Grychtol, P.; Kapteyn, H. C.; Murnane, M. M.; Schneider, C. M.

    2014-03-01

    Recent optical pump-probe experiments on magnetic multilayers and alloys identified perpendicular spin superdiffusion as one of possible mechanisms responsible for femtosecond magnetization dynamics. On the other hand, no strong evidence for the ultrafast lateral spin transport has been reported, so far. To address this question, we studied magnetic domain structure of CoPd and FePd thin films using small-angle scattering of soft X-rays. By tuning the synchrotron-generated X-rays to the absorption edges of Fe or Co we recorded Fourier images of the magnetic domain structure corresponding to a chosen element. Applying in - situ magnetic fields resulted in pronounced rearrangement of domain structure that was clearly observed in scattering images. Our analysis of both the stand-alone, as well as magnetically coupled CoPd/FePd layers provides insight into the formation of domains under small magnetic field perturbations and pave the way to better understanding of transient changes expected in magneto-dynamic measurements.

  13. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Bradley M.; Stuckelberger, Michael; Jeffries, April

    The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less

  14. X-ray fluorescence at nanoscale resolution for multicomponent layered structures: A solar cell case study

    DOE PAGES

    West, Bradley M.; Stuckelberger, Michael; Jeffries, April; ...

    2017-01-01

    The study of a multilayered and multicomponent system by spatially resolved X-ray fluorescence microscopy poses unique challenges in achieving accurate quantification of elemental distributions. This is particularly true for the quantification of materials with high X-ray attenuation coefficients, depth-dependent composition variations and thickness variations. A widely applicable procedure for use after spectrum fitting and quantification is described. This procedure corrects the elemental distribution from the measured fluorescence signal, taking into account attenuation of the incident beam and generated fluorescence from multiple layers, and accounts for sample thickness variations. Deriving from Beer–Lambert's law, formulae are presented in a general integral formmore » and numerically applicable framework. Here, the procedure is applied using experimental data from a solar cell with a Cu(In,Ga)Se 2 absorber layer, measured at two separate synchrotron beamlines with varied measurement geometries. This example shows the importance of these corrections in real material systems, which can change the interpretation of the measured distributions dramatically.« less

  15. An examination of the sensitivity and systematic error of the NASA GEMS Bragg Reflection Polarimeter using Monte-Carlo simulations

    NASA Astrophysics Data System (ADS)

    Allured, Ryan; Okajima, Takashi; Soufli, Regina; Fernández-Perea, Mónica; Daly, Ryan O.; Marlowe, Hannah; Griffiths, Scott T.; Pivovaroff, Michael J.; Kaaret, Philip

    2012-10-01

    The Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission is designed to measure the linear polarization of astrophysical sources in a narrow band centered at about 500 eV. X-rays are focused by Wolter I mirrors through a 4.5 m focal length to a time projection chamber (TPC) polarimeter, sensitive between 2{10 keV. In this optical path lies the BRP multilayer reflector at a nominal 45 degree incidence angle. The reflector reflects soft X-rays to the BRP detector and transmits hard X-rays to the TPC. As the spacecraft rotates about the optical axis, the reflected count rate will vary depending on the polarization of the incident beam. However, false polarization signals may be produced due to misalignments and spacecraft pointing wobble. Monte-Carlo simulations have been carried out, showing that the false modulation is below the statistical uncertainties for the expected focal plane offsets of < 2 mm.

  16. In-line phase retarder and polarimeter for conversion of linear to circular polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kortright, J.B.; Smith, N.V.; Denlinger, J.D.

    1997-04-01

    An in-line polarimeter including phase retarder and linear polarizer was designed and commissioned on undulator beamline 7.0 for the purpose of converting linear to circular polarization for experiments downstream. In commissioning studies, Mo/Si multilayers at 95 eV were used both as the upstream, freestanding phase retarder and the downstream linear polarized. The polarization properties of the phase retarder were characterized by direct polarimetry and by collecting MCD spectra in photoemission from Gd and other magnetic surfaces. The resonant birefringence of transmission multilayers results from differing distributions of s- and p-component wave fields in the multilayer when operating near a structuralmore » (Bragg) interference condition. The resulting phase retardation is especially strong when the interference is at or near the Brewster angle, which is roughly 45{degrees} in the EUV and soft x-ray ranges.« less

  17. Mechanical and corrosive behavior of Ti/TiN multilayer films with different modulation periods

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Leng, Y. X.; Qi, F.; Tao, T.; Huang, N.

    2007-04-01

    Ti/TiN multilayer films with different periods Λ (Λ = λTiN + λTi) were synthesized on 17-4PH stainless steel and silicon wafer using unbalanced magnetron sputtering. The microstructure of the films was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as hardness, sliding wear behavior and adhesion were analyzed by means of micro-hardness, ball-on-disc and scratch tests. The anodic polarization characteristics were measured in a 3% NaCl solution at room temperature to examine the corrosion resistance. Moreover, the corrosion resistance in a 350 °C water vapor ambience also was analyzed. XRD revealed a gradual TiNx transition layer between Ti and TiN. The SEM results confirmed the periodicity of the Ti/TiN multilayer films. The hardness and wear resistance of the Ti/TiN multilayer films increased with decrease of the modulation period. The adhesion strength between Ti/TiN multilayer films and 17-4PH substrate was improved with proper modulation period. The Ti/TiN multilayer films can for a corrosion protective coating on 17-4PH stainless steel in 3% NaCl solution, however the corrosion resistance at 350 °C vapor ambience decreased for the period Λ below 200 nm.

  18. Laser plasma source for soft x-ray imaging in CIOM

    NASA Astrophysics Data System (ADS)

    Shao, Zhongxing; Wang, Zhanshan; Xu, Fengming; Lu, Junxia; Chen, Xingdan

    1997-10-01

    We previously reported 18 nm Schwartzchild microscope by using a laser plasma source. Now we are planning to improve our Nd:YAG laser system and the multilayers mirror of Mo/B4C instead of Mo/Si, for producing shorter wavelength radiation and developing a new soft x-ray imaging setup. To compress the pulse width of the laser, the SBS (Stimulated Brillouin Scattering) cells is available. To short the wavelength to the 4th harmonics of the laser with high as 0.4 J energy per pulse, the hindrance is the low, less than 20%, nonlinear conversion efficiency. In this paper we are going to briefly introduce the new method to overcome the hindrance and the configuration of the SBS cell.

  19. Normal-incidence soft X-ray telescopes

    NASA Technical Reports Server (NTRS)

    Spiller, Eberhard; Mccorkle, R. A.; Wilczynski, J. S.; Golub, Leon; Nystrom, G.; Takacs, P. Z.; Welch, C.

    1991-01-01

    Photos obtained during 5 min of observation time from the flight of a 25-cm-diameter normal-incidence soft-X-ray (63.5 A) telescope on September 11, 1989, are analyzed, and the data are compared to the results expected from tests of the mirror surfaces. These tests cover a range of spatial periods from 25 cm to 1 A. The photos demonstrate a resolution close to the photon shot-noise limit and a reduction in the scattering of the multilayer mirror compared to a single surface for scattering angles above 1 arcmin, corrresponding to surface irregularities with spatial periods below 10 microns. These results are used to predict the possible performance of future telescopes. Sounding rocket observations might be able to reach a resolution around 0.1 arcsec.

  20. Magnetostatic focal spot correction for x-ray tubes operating in strong magnetic fields using iterative optimization

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Conolly, Steven M.; Fahrig, Rebecca

    2012-01-01

    Purpose: Combining x-ray fluoroscopy and MR imaging systems for guidance of interventional procedures has become more commonplace. By designing an x-ray tube that is immune to the magnetic fields outside of the MR bore, the two systems can be placed in close proximity to each other. A major obstacle to robust x-ray tube design is correcting for the effects of the magnetic fields on the x-ray tube focal spot. A potential solution is to design active shielding that locally cancels the magnetic fields near the focal spot. Methods: An iterative optimization algorithm is implemented to design resistive active shielding coils that will be placed outside the x-ray tube insert. The optimization procedure attempts to minimize the power consumption of the shielding coils while satisfying magnetic field homogeneity constraints. The algorithm is composed of a linear programming step and a nonlinear programming step that are interleaved with each other. The coil results are verified using a finite element space charge simulation of the electron beam inside the x-ray tube. To alleviate heating concerns an optimized coil solution is derived that includes a neodymium permanent magnet. Any demagnetization of the permanent magnet is calculated prior to solving for the optimized coils. The temperature dynamics of the coil solutions are calculated using a lumped parameter model, which is used to estimate operation times of the coils before temperature failure. Results: For a magnetic field strength of 88 mT, the algorithm solves for coils that consume 588 A/cm2. This specific coil geometry can operate for 15 min continuously before reaching temperature failure. By including a neodymium magnet in the design the current density drops to 337 A/cm2, which increases the operation time to 59 min. Space charge simulations verify that the coil designs are effective, but for oblique x-ray tube geometries there is still distortion of the focal spot shape along with deflections of approximately 3 mm in the radial and circumferential directions on the anode. Conclusions: Active shielding is an attractive solution for correcting the effects of magnetic fields on the x-ray focal spot. If extremely long fluoroscopic exposure times are required, longer operation times can be achieved by including a permanent magnet with the active shielding design. PMID:22957623

  1. Multimodal hard x-ray imaging with resolution approaching 10 nm for studies in material science

    NASA Astrophysics Data System (ADS)

    Yan, Hanfei; Bouet, Nathalie; Zhou, Juan; Huang, Xiaojing; Nazaretski, Evgeny; Xu, Weihe; Cocco, Alex P.; Chiu, Wilson K. S.; Brinkman, Kyle S.; Chu, Yong S.

    2018-03-01

    We report multimodal scanning hard x-ray imaging with spatial resolution approaching 10 nm and its application to contemporary studies in the field of material science. The high spatial resolution is achieved by focusing hard x-rays with two crossed multilayer Laue lenses and raster-scanning a sample with respect to the nanofocusing optics. Various techniques are used to characterize and verify the achieved focus size and imaging resolution. The multimodal imaging is realized by utilizing simultaneously absorption-, phase-, and fluorescence-contrast mechanisms. The combination of high spatial resolution and multimodal imaging enables a comprehensive study of a sample on a very fine length scale. In this work, the unique multimodal imaging capability was used to investigate a mixed ionic-electronic conducting ceramic-based membrane material employed in solid oxide fuel cells and membrane separations (compound of Ce0.8Gd0.2O2‑x and CoFe2O4) which revealed the existence of an emergent material phase and quantified the chemical complexity at the nanoscale.

  2. Ultra-thin layer packaging for implantable electronic devices

    NASA Astrophysics Data System (ADS)

    Hogg, A.; Aellen, T.; Uhl, S.; Graf, B.; Keppner, H.; Tardy, Y.; Burger, J.

    2013-07-01

    State of the art packaging for long-term implantable electronic devices generally uses reliable metal and glass housings; however, these are limited in the miniaturization potential and cost reduction. This paper focuses on the development of biocompatible hermetic thin-film packaging based on poly-para-xylylene (Parylene-C) and silicon oxide (SiOx) multilayers for smart implantable microelectromechanical systems (MEMS) devices. For the fabrication, a combined Parylene/SiOx single-chamber deposition system was developed. Topological aspects of multilayers were characterized by atomic force microscopy and scanning electron microscopy. Material compositions and layer interfaces were analyzed by Fourier transform infrared spectrometry and x-ray photoelectron spectroscopy. To evaluate the multilayer corrosion protection, water vapor permeation was investigated using a calcium mirror test. The calcium mirror test shows very low water permeation rates of 2 × 10-3 g m-2 day-1 (23 °C, 45% RH) for a 4.7 µm multilayer, which is equivalent to a 1.9 mm pure Parylene-C coating. According to the packaging standard MIL-STD-883, the helium gas tightness was investigated. These helium permeation measurements predict that a multilayer of 10 µm achieves the hermeticity acceptance criterion required for long-term implantable medical devices.

  3. NASA Tech Briefs, May 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Test Waveform Applications for JPL STRS Operating Environment; Pneumatic Proboscis Heat-Flow Probe; Method to Measure Total Noise Temperature of a Wireless Receiver During Operation; Cursor Control Device Test Battery; Functional Near-Infrared Spectroscopy Signals Measure Neuronal Activity in the Cortex; ESD Test Apparatus for Soldering Irons; FPGA-Based X-Ray Detection and Measurement for an X-Ray Polarimeter; Sequential Probability Ratio Test for Spacecraft Collision Avoidance Maneuver Decisions; Silicon/Carbon Nanotube Photocathode for Splitting Water; Advanced Materials and Fabrication Techniques for the Orion Attitude Control Motor; Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements; RF Reference Switch for Spaceflight Radiometer Calibration; An Offload NIC for NASA, NLR, and Grid Computing; Multi-Scale CNT-Based Reinforcing Polymer Matrix Composites for Lightweight Structures; Ceramic Adhesive and Methods for On-Orbit Repair of Re-Entry Vehicles; Self-Healing Nanocomposites for Reusable Composite Cryotanks; Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications; Aerogel-Based Multilayer Insulation with Micrometeoroid Protection; Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders; Optimized Radiator Geometries for Hot Lunar Thermal Environments; A Mission Concept: Re-Entry Hopper-Aero-Space-Craft System on-Mars (REARM-Mars); New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications; Reliability of CCGA 1152 and CCGA 1272 Interconnect Packages for Extreme Thermal Environments; Using a Blender to Assess the Microbial Density of Encapsulated Organisms; Mixed Integer Programming and Heuristic Scheduling for Space Communication; Video Altimeter and Obstruction Detector for an Aircraft; Control Software for Piezo Stepping Actuators; Galactic Cosmic Ray Event-Based Risk Model (GERM) Code; Sasquatch Footprint Tool; and Multi-User Space Link Extension (SLE) System.

  4. Thermotropic phase transitions in model membranes of the outer skin layer based on ceramide 6

    NASA Astrophysics Data System (ADS)

    Gruzinov, A. Yu.; Kiselev, M. A.; Ermakova, E. V.; Zabelin, A. V.

    2014-01-01

    The lipid intercellular matrix stratum corneum of the outer skin layer is a multilayer membrane consisting of a complex mixture of different lipids: ceramides, fatty acids, cholesterol, and its derivatives. The basis of the multilayer membrane is the lipid bilayer, i.e., a two-dimensional liquid crystal. Currently, it is known that the main way of substance penetration through the skin is the lipid matrix. The complexity of the actual biological system does not allow reliable direct study of its properties; therefore, system modeling is often used. Phase transitions in the lipid system whose composition simulates the native lipid matrix are studied by the X-ray synchrotron radiation diffraction method.

  5. Properties of thin silver films with different thickness

    NASA Astrophysics Data System (ADS)

    Zhao, Pei; Su, Weitao; Wang, Reng; Xu, Xiaofeng; Zhang, Fengshan

    2009-01-01

    In order to investigate optical properties of silver films with different film thickness, multilayer composed of thin silver film sandwiched between ZnS films are sputtered on the float glass. The crystal structures, optical and electrical properties of films are characterized by various techniques, such as X-ray diffraction (XRD), spectrum analysis, etc. The optical constants of thin silver film are calculated by fitting the transmittance ( T) and reflectance ( R) spectrum of the multilayer. Electrical and optical properties of silver films thinner than 6.2 nm exhibit sharp change. However, variation becomes slow as film thickness is larger than 6.2 nm. The experimental results indicate that 6.2 nm is the optimum thickness for properties of silver.

  6. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  7. Registration of pencil beam proton radiography data with X-ray CT.

    PubMed

    Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo

    2017-10-01

    Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute sums of squared differences and corrections of range errors showed very good accuracy and robustness with respect to three confounding factors: measurement noise, calibration error, and spot spacing. It is therefore a suitable algorithm to use in the in vivo range verification framework, allowing to separate in postprocessing the proton range uncertainty due to setup errors from the other sources of uncertainty. © 2017 American Association of Physicists in Medicine.

  8. Optical Enhancement in Optoelectronic Devices Using Refractive Index Grading Layers.

    PubMed

    Lee, Illhwan; Park, Jae Yong; Gim, Seungo; Kim, Kisoo; Cho, Sang-Hwan; Choi, Chung Sock; Song, Seung-Yong; Lee, Jong-Lam

    2016-02-10

    We enhanced the optical transmittance of a multilayer barrier film by inserting a refractive index grading layer (RIGL). The result indicates that the Fresnel reflection, induced by the difference of refractive indices between Si(x)N(y) and SiO2, is reduced by the RIGL. To eliminate the Fresnel reflection while maintaining high transmittance, the optimized design of grading structures with the RIGL was conducted using an optical simulator. With the RIGL, we achieved averaged transmittance in the visible wavelength region by 89.6%. It is found that the optimized grading structure inserting the multilayer barrier film has a higher optical transmittance (89.6%) in the visible region than that of a no grading sample (82.6%). Furthermore, luminance is enhanced by 14.5% (from 10,190 to 11,670 cd m(-2) at 30 mA cm(-2)) when the grading structure is applied to organic light-emitting diodes. Finally, the results offer new opportunities in development of multilayer barrier films, which assist industrialization of very cost-effective flexible organic electronic devices.

  9. Superconductivity in ion-beam-mixed layered Au-Si thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jisrawi, N.M.; McLean, W.L.; Stoffel, N.G.

    The superconducting properties of thin films made by mixing alternating layers of Au and Si using ion-beam bombardment correlate with the formation of metastable metallic phases in what is otherwise a simple eutectic system. Transmission-electron-microscopy measurements reveal the superconducting phases to be amorphous. Compound formation and the nature of Au-Si bonding in these metastable phases are demonstrated from x-ray photoelectron spectroscopy and from a previous study of x-ray-absorption spectroscopy. After mixing with a beam of Xe ions, multilayered films with an average nominal composition Au{sub {ital x}}Si{sub 1{minus}{ital x}}, where {ital x}=0.2, 0.4, 0.5, 0.72, and 0.8, exhibited superconducting transitionmore » temperatures in the range 0.2--1.2 K. A double transition feature in the magnetic field dependence of the resistivity is attributed to the formation of more than one metastable metallic phase in the same sample as the ion dose increases.« less

  10. Synthesis, structural, DFT studies, docking and antibacterial activity of a xanthene based hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Naseem, Saira; Khalid, Muhammad; Tahir, Muhammad Nawaz; Halim, Mohammad A.; Braga, Ataualpa A. C.; Naseer, Muhammad Moazzam; Shafiq, Zahid

    2017-09-01

    Herein, we present the synthesis of novel xanthene-based hydrazone (1). The chemical structure of 1 was resolved using spectroscopic techniques such as NMR, FT-IR, UV-VIS and X-ray crystallographic approaches. X-ray diffraction analysis shows that the compound (1) crystallizes in triclinic crystal lattice with the Pbar1 space group and diffused to form multi-layered structure due to non-covalent interactions such as intramolecular hydrogen bonding (H.B). In addition to experimental investigation, density functional theory (DFT) calculation with M06-2X/6-31G(d,p) and B3LYP/6-31G(d,p) level of theories was performed on compound (1) to obtain optimized geometry, spectroscopic and electronic properties. DFT optimized geometry shows good agreement with the experimental XRD structure. The hyper conjugative interactions and hydrogen bonding network are responsible for the stability of compound (1) as revealed by natural bond orbital (NBO) calculation. Moreover, hydrogen bonding network in the dimer is confirmed by FT-IR and thermodynamic studies showing excellent agreement with XRD and NBO findings. TD-DFT/UV-VIS analysis provides insight that maximum excitation is found in 1 which shows good agreement with experimental UV-VIS result. The global reactivity parameters are calculated using the energies of frontier molecular orbitals also disclosed that the compound is more stable might be due to hydrogen bonding network. Experimental and molecular docking studies indicated that this compound has anti-bacterial and anti-diabetic properties. The binding affinity of this compound against the multidrug efflux pump subunit AcrB OS=Escherichia coli (strain K12) and Human Pancreatic Alpha-Amylase is -9.2 and -10.00 kcal/mol which are higher than the control drugs. Pi-Pi, Pi-anaion, amide-pi and pi-alkyl bonds play key role in drug-protein complexes.

  11. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  12. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  13. Structural and electrical characterization of annealed Si1-xCx/SiC thin film prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Shi-Hua; Liu, Jian

    2014-05-01

    Si-rich Si1—xCx /SiC multilayer thin films are prepared using magnetron sputtering, subsequently followed by thermal annealing in the range of 800-1200 °C. The influences of annealing temperature (Ta) on the formation of Si and/or SiC nanocrystals (NCs) and on the electrical characteristics of the multilayer film are investigated by using a variety of analytical techniques, including X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectrometry (FT-IR), current—voltage (I—V) technique, and capacitance-voltage (C—V) technique. XRD and Raman analyses indicate that Si NCs begin to form in samples for Ta >= 800 °C. At annealing temperatures of 1000 °C or higher, the formation of Si NCs is accompanied by the formation of SiC NCs. With the increase in the annealing temperature, the shift of FT-IR Si—C bond absorption spectra toward a higher wave number along with the change of band shape can be explained by a Si—C transitional phase between the loss of substitutional carbon and the formation of SiC precipitates and a precursor for the growth of SiC crystalline. The C—V and I—V results indicate that the interface quality of Si1—xCx/SiC multilayer film is improved significantly and the leakage current is reduced rapidly for Ta >= 1000 °C, which can be ascribed to the formation of Si and SiC NCs.

  14. Flash X-ray with image enhancement applied to combustion events

    NASA Astrophysics Data System (ADS)

    White, K. J.; McCoy, D. G.

    1983-10-01

    Flow visualization of interior ballistic processes by use of X-rays has placed more stringent requirements on flash X-ray techniques. The problem of improving radiographic contrast of propellants in X-ray transparent chambers was studied by devising techniques for evaluating, measuring and reducing the effects of scattering from both the test object and structures in the test area. X-ray film and processing is reviewed and techniques for evaluating and calibrating these are outlined. Finally, after X-ray techniques were optimized, the application of image enhancement processing which can improve image quality is described. This technique was applied to X-ray studies of the combustion of very high burning rate (VHBR) propellants and stick propellant charges.

  15. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  16. Diagnostics for the optimization of an 11 keV inverse Compton scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chauchat, A.-S.; Brasile, J.-P.; Le Flanchec, V.; Nègre, J.-P.; Binet, A.; Ortega, J.-M.

    2013-04-01

    In a scope of a collaboration between Thales Communications & Security and CEA DAM DIF, 11 keV Xrays were produced by inverse Compton scattering on the ELSA facility. In this type of experiment, X-ray observation lies in the use of accurate electron and laser beam interaction diagnostics and on fitted X-ray detectors. The low interaction probability between < 100 μm width, 12 ps [rms] length electron and photon pulses requires careful optimization of pulse spatial and temporal covering. Another issue was to observe 11 keV X-rays in the ambient radioactive noise of the linear accelerator. For that, we use a very sensitive detection scheme based on radio luminescent screens.

  17. Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2014-12-15

    In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hannachi, Amira, E-mail: amira.hannachi88@gmail.com; Maghraoui-Meherzi, Hager

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferentialmore » orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like. - Graphical Abstract: We report the preparation of different phases of manganese sulfide thin films (γ, β and α-MnS) by chemical bath deposition method. The effects of deposition parameters such as deposition time and temperature, concentrations of precursors and multi-layer deposition on MnS thin films structure and morphology were investigated. The influence of thermal annealing under nitrogen atmosphere at different temperature on MnS properties was also studied. Different manganese precursors as well as different complexing agent were also used. - Highlights: • γ and β-MnS films were deposited on substrate using the chemical bath deposition. • The effect of deposition parameters on MnS film properties has been investigated. • Multi-layer deposition was also studied to increase film thickness. • The effect of annealing under N{sub 2} at different temperature was investigated.« less

  19. Characteristics of extreme ultraviolet emission from high-Z plasmas

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  20. Optimal Design for Parameter Estimation in EEG Problems in a 3D Multilayered Domain

    DTIC Science & Technology

    2014-03-30

    dipole, C(x) = q δ(x − rq), where δ is the Dirac distribution, rq is a fixed point in the brain which represents the dipole location, and q is the dipole...again based on the formulations discussed above, we consider a function F of the form F (x, θ) = qδ(x− rq), where δ denotes the dirac distribution...Inverse Problems, 12, (1996), 565–577. [5] H.T. Banks, M.W. Buksas and T. Lin, Electromagnetic Material Interrogation Using Conductive Inter- faces and

  1. Generation of Bright, Spatially Coherent Soft X-Ray High Harmonics in a Hollow Waveguide Using Two-Color Synthesized Laser Pulses.

    PubMed

    Jin, Cheng; Stein, Gregory J; Hong, Kyung-Han; Lin, C D

    2015-07-24

    We investigate the efficient generation of low-divergence high-order harmonics driven by waveform-optimized laser pulses in a gas-filled hollow waveguide. The drive waveform is obtained by synthesizing two-color laser pulses, optimized such that highest harmonic yields are emitted from each atom. Optimization of the gas pressure and waveguide configuration has enabled us to produce bright and spatially coherent harmonics extending from the extreme ultraviolet to soft x rays. Our study on the interplay among waveguide mode, atomic dispersion, and plasma effect uncovers how dynamic phase matching is accomplished and how an optimized waveform is maintained when optimal waveguide parameters (radius and length) and gas pressure are identified. Our analysis should help laboratory development in the generation of high-flux bright coherent soft x rays as tabletop light sources for applications.

  2. Dependence of optimal initial density on laser parameters for multi-keV x-ray radiators generated by nanosecond laser-produced underdense plasma

    NASA Astrophysics Data System (ADS)

    Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun

    2016-01-01

    Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.

  3. Development of X-ray micro-focus computed tomography to image and quantify biofilms in central venous catheter models in vitro.

    PubMed

    Niehaus, Wilmari L; Howlin, Robert P; Johnston, David A; Bull, Daniel J; Jones, Gareth L; Calton, Elizabeth; Mavrogordato, Mark N; Clarke, Stuart C; Thurner, Philipp J; Faust, Saul N; Stoodley, Paul

    2016-09-01

    Bacterial infections of central venous catheters (CVCs) cause much morbidity and mortality, and are usually diagnosed by concordant culture of blood and catheter tip. However, studies suggest that culture often fails to detect biofilm bacteria. This study optimizes X-ray micro-focus computed tomography (X-ray µCT) for the quantification and determination of distribution and heterogeneity of biofilms in in vitro CVC model systems.Bacterial culture and scanning electron microscopy (SEM) were used to detect Staphylococcus epidermidis ATCC 35984 biofilms grown on catheters in vitro in both flow and static biofilm models. Alongside this, X-ray µCT techniques were developed in order to detect biofilms inside CVCs. Various contrast agent stains were evaluated using energy-dispersive X-ray spectroscopy (EDS) to further optimize these methods. Catheter material and biofilm were segmented using a semi-automated matlab script and quantified using the Avizo Fire software package. X-ray µCT was capable of distinguishing between the degree of biofilm formation across different segments of a CVC flow model. EDS screening of single- and dual-compound contrast stains identified 10 nm gold and silver nitrate as the optimum contrast agent for X-ray µCT. This optimized method was then demonstrated to be capable of quantifying biofilms in an in vitro static biofilm formation model, with a strong correlation between biofilm detection via SEM and culture. X-ray µCT has good potential as a direct, non-invasive, non-destructive technology to image biofilms in CVCs, as well as other in vivo medical components in which biofilms accumulate in concealed areas.

  4. Sublattice reversal in GaAs/Ge/GaAs (113)B heterostructures and its application to THz emitting devices based on a coupled multilayer cavity

    NASA Astrophysics Data System (ADS)

    Lu, Xiangmeng; Kumagai, Naoto; Minami, Yasuo; Kitada, Takahiro

    2018-04-01

    We fabricated a coupled multilayer cavity with a GaAs/Ge/GaAs sublattice reversal structure for terahertz emission application. Sublattice reversal in GaAs/Ge/GaAs was confirmed by comparing the anisotropic etching profile of an epitaxial sample with those of reference (113)A and (113)B GaAs substrates. The interfaces of GaAs/Ge/GaAs were evaluated at the atomic level by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX) mapping. Defect-free GaAs/Ge/GaAs heterostructures were observed in STEM images and the sublattice lattice was directly seen through atomic arrangements in EDX mapping. A GaAs/AlAs coupled multilayer cavity with a sublattice reversal structure was grown on the (113)B GaAs substrate after the confirmation of sublattice reversal. Smooth GaAs/AlAs interfaces were formed over the entire region of the coupled multilayer cavity structure both below and above the Ge layer. Two cavity modes with a frequency difference of 2.9 THz were clearly observed.

  5. Aluminum/vacuum multilayer configuration for spatial high-energy electron shielding via electron return effects induced by magnetic field.

    PubMed

    Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da

    2017-06-26

    Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.

  6. Simulation and Laboratory results of the Hard X-ray Polarimeter: X-Calibur

    NASA Astrophysics Data System (ADS)

    Guo, Qingzhen; Beilicke, M.; Kislat, F.; Krawczynski, H.

    2014-01-01

    X-ray polarimetry promises to give qualitatively new information about high-energy sources, such as binary black hole (BH) systems, Microquasars, active galactic nuclei (AGN), GRBs, etc. We designed, built and tested a hard X-ray polarimeter 'X-Calibur' to be flown in the focal plane of the InFOCuS grazing incidence hard X-ray telescope in 2014. X-Calibur combines a low-Z Compton scatterer with a CZT detector assembly to measure the polarization of 20- 80 keV X-rays making use of the fact that polarized photons Compton scatter preferentially perpendicular to the E field orientation. X-Calibur achieves a high detection efficiency of order unity. We optimized of the design of the instrument based on Monte Carlo simulations of polarized and unpolarized X-ray beams and of the most important background components. We have calibrated and tested X-Calibur extensively in the laboratory at Washington University and at the Cornell High-Energy Synchrotron Source (CHESS). Measurements using the highly polarized synchrotron beam at CHESS confirm the polarization sensitivity of the instrument. In this talk we report on the optimization of the design of the instrument based on Monte Carlo simulations, as well as results of laboratory calibration measurements characterizing the performance of the instrument.

  7. A graphite crystal polarimeter for stellar X-ray astronomy.

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Berthelsdorf, R.; Epstein, G.; Linke, R.; Mitchell, D.; Novick, R.; Wolff, R. S.

    1972-01-01

    The first crystal X-ray polarimeter to be used for X-ray astronomy is described. Polarization is measured by modulation of the X rays diffracted at an average 45 deg glancing angle from large, curved graphite crystal panels as these rotate about an axis parallel to the incident X-ray flux. Arrangement of the crystal panels, the design of the detector, and the signal-processing circuitry were optimized to minimize systematic effects produced by off-axis pointing of the rocket and cosmic ray induced events. The in-flight performance of the instrument in relation to the observed background signal is discussed.

  8. Gain measurements and spatial coherence in neon-like x-ray lasers

    NASA Astrophysics Data System (ADS)

    Krishnan, J.; Cairns, C.; Dwivedi, L.; Holden, M.; Key, M. H.; Lewis, C. L. S.; MacPhee, A.; Neely, D.; Norreys, P. A.; Pert, G. J.; Ramsden, S. A.; Smith, C. G.; Tallents, G. J.; Zhang, J.

    1995-05-01

    Many of the applications with x-ray lasers require high quality output radiation with properties such as short wavelength and a high degree of coherence (longitudinal and spatial). Ne-like Yttrium (Z=39) is potentially a bright and monochromatic XUV lasing medium. The output at 15.5 nm is monochromatic due to the overlap of the J=2-1 and J=0-1 lines. A gain coefficient of 3±1 was obtained at 15.5 nm by irradiating 100 μm wide yttrium stripes at 6×1013 W/cm2 with 1.06 μm, 650 ps pulses from the Rutherford Appleton Laboratory VULCAN laser. We have investigated improving x-ray laser spatial coherence utilizing a series of amplifiers instead of the standard double target configuration. An ``injector-amplifier'' scheme was successfully demonstrated with the Ne-like Ge x-ray laser. A spatially small and coherent part of the 23 nm beam from the standard double target geometry has been relayed using a W/Si multilayer mirror onto a single or double target configuration situated at a distance of ˜1.5 m from the mirror and pumped by two 150 mm diameter beams of VULCAN laser. A beam ``foot-print monitor'' was employed with a flat mirror to relay 23 nm output onto a film pack to record the spatial variation of the x-ray laser beam. Analyzing the fringes obtained through a cross-wire placed in front of the beam shows that an increase in spatial coherence was achieved by adding amplifiers to the x-ray laser beam line.

  9. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  10. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  11. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity < 0.04° ) multilayers of fused bR membranes permitted, for the first time, application of powerful interface-sensitive x-ray scattering techniques to a membrane-protein system. (ii) Interactions between the particles chemically attached or absorbed onto the surfaces of flexible giant phospholipid vesicles. Using video-enhanced light microscopy we have observed a membrane-distortion induced attraction between the particles with the interaction range of the order of particle diameter. Fluid membranes decorated with many particles exhibited: (i) a finite-sized two-dimensional closed packed aggregates and (ii) a one-dimensional ring-like aggregates. (iii) Structure, stability and interactions in the cationic lipid-DNA complexes. Cationic liposomes complexed with DNA are among the most promising synthetic non-viral carriers of DNA vectors currently used in gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.

  12. Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Zichao; Leyffer, Sven; Wild, Stefan M.

    2016-01-01

    Fluorescence tomographic reconstruction, based on the detection of photons coming from fluorescent emission, can be used for revealing the internal elemental composition of a sample. On the other hand, conventional X-ray transmission tomography can be used for reconstructing the spatial distribution of the absorption coefficient inside a sample. In this work, we integrate both X-ray fluorescence and X-ray transmission data modalities and formulate a nonlinear optimization-based approach for reconstruction of the elemental composition of a given object. This model provides a simultaneous reconstruction of both the quantitative spatial distribution of all elements and the absorption effect in the sample. Mathematicallymore » speaking, we show that compared with the single-modality inversion (i.e., the X-ray transmission or fluorescence alone), the joint inversion provides a better-posed problem, which implies a better recovery. Therefore, the challenges in X-ray fluorescence tomography arising mainly from the effects of self-absorption in the sample are partially mitigated. The use of this technique is demonstrated on the reconstruction of several synthetic samples.« less

  13. The Yttrium Effect on Nanoscale Structure, Mechanical Properties, and High-Temperature Oxidation Resistance of (Ti0.6Al0.4)1- x Y x N Multilayer Coatings

    NASA Astrophysics Data System (ADS)

    Wang, Jingxian; Yazdi, Mohammad Arab Pour; Lomello, Fernando; Billard, Alain; Kovács, András; Schuster, Frédéric; Guet, Claude; White, Timothy J.; Wouters, Yves; Pascal, Céline; Sanchette, Frédéric; Dong, ZhiLi

    2017-09-01

    As machine tool coating specifications become increasingly stringent, the fabrication of protective titanium aluminum nitride (Ti-Al-N) films by physical vapor deposition (PVD) is progressively more demanding. Nanostructural modification through the incorporation of metal dopants can enhance coating mechanical properties. However, dopant selection and their near-atomic-scale role in performance optimization is limited. Here, yttrium was alloyed in multilayered Ti-Al-N films to tune microstructures, microchemistries, and properties, including mechanical characteristics, adhesion, wear resistance, and resilience to oxidation. By regulating processing parameters, the multilayer period (Λ) and Y content could be adjusted, which, in turn, permitted tailoring of grain nucleation and secondary phase formation. With the composition fixed at x = 0.024 in (Ti0.6Al0.4)1- x Y x N and Λ increased from 5.5 to 24 nm, the microstructure transformed from acicular grains with 〈111〉 preferred orientation to equiaxed grains with 〈200〉 texture, while the hardness (40.8 ± 2.8 GPa to 29.7 ± 4.9 GPa) and Young's modulus (490 ± 47 GPa to 424 ± 50 GPa) concomitantly deteriorated. Alternately, when Λ = 5.5 nm and x in (Ti0.6Al0.4)1- x Y x N was raised from 0 to 0.024, the hardness was enhanced (28.7 ± 7.3 GPa to 40.8 ± 2.8 GPa) while adhesion and wear resistance were not compromised. The Ti-Al-N adopted a rock-salt type structure with Y displacing either Ti or Al and stabilizing a secondary wurtzite phase. Moreover, Y effectively retarded coating oxidation at 1073 K (800 °C) in air by inhibiting grain boundary oxygen diffusion.

  14. BEAM OPTIMIZATION STUDY FOR AN X-RAY FEL OSCILLATOR AT THE LCLS-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Weilun; Huang, S.; Liu, K.X.

    2016-06-01

    The 4 GeV LCLS-II superconducting linac with high repetition beam rate enables the possibility to drive an X-Ray FEL oscillator at harmonic frequencies *. Compared to the regular LCLS-II machine setup, the oscillator mode requires a much longer bunch length with a relatively lower current. Also a flat longitudinal phase space distribution is critical to maintain the FEL gain since the X-ray cavity has extremely narrow bandwidth. In this paper, we study the longitudinal phase space optimization including shaping the initial beam from the injector and optimizing the bunch compressor and dechirper parameters. We obtain a bunch with a flatmore » energy chirp over 400 fs in the core part with current above 100 A. The optimization was based on LiTrack and Elegant simulations using LCLS-II beam parameters.« less

  15. ZrO2 Layer Thickness Dependent Electrical and Dielectric Properties of BST/ZrO2/BST Multilayer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahoo, S. K.; Misra, D.; Agrawal, D. C.

    2011-01-01

    Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less

  16. Single-drop optimization of protein crystallization.

    PubMed

    Meyer, Arne; Dierks, Karsten; Hilterhaus, Dierk; Klupsch, Thomas; Mühlig, Peter; Kleesiek, Jens; Schöpflin, Robert; Einspahr, Howard; Hilgenfeld, Rolf; Betzel, Christian

    2012-08-01

    A completely new crystal-growth device has been developed that permits charting a course across the phase diagram to produce crystalline samples optimized for diffraction experiments. The utility of the device is demonstrated for the production of crystals for the traditional X-ray diffraction data-collection experiment, of microcrystals optimal for data-collection experiments at a modern microbeam insertion-device synchrotron beamline and of nanocrystals required for data collection on an X-ray laser beamline.

  17. On the stability of the zinc x-ray laser beam quality using a half cavity

    NASA Astrophysics Data System (ADS)

    Prag, A. R.; Mocek, T.; Kozlova, M.; Rus, B.

    2002-11-01

    At the Prague Asterix Laser System Center (PALS) the Asterix laser delivering up to 700 J in 0.5 ns is used as a pump source for x-ray laser experiments and applications. The prepulse technique was applied which is known to improve the neon-like x-ray laser at the J = 0 - 1 transition dramatically. Since Zn slab targets were used the output wavelength was 21.2 nm. A prepulse having up to 20 J precedes the main pulse by 10 ns. The main beam and the prepulse beam are focussed by two different optical systems separately and their foci are superimposed at the target surface. By implementing a half-cavity for double-pass amplification using a Mo/Si multilayer mirror - which can be used for 100 shots - the x-ray laser output was more than 10 times stronger than at the single pass in a 3 cm long plasma. Double-pass amplification was observed to be most efficient when the pump pulse was at least 150 ps longer than the round trip time (approximately 260 ps) in the half-cavity. Under this fundamental condition the x-ray laser reached saturation in the double-pass regime containing approx4mJ energy which was proved to be enough for applications. In this contribution, the x-ray laser features like divergence in two dimensions, the beam quality (symmetry), and the pointing angle are investigated over 110 shots. To characterize the stability of the x-ray laser the shot distribution, the mean value and the standard deviation for these parameters are evaluated. For 18 shots of a one-day-series these values are given, and a statistical analysis carrying out a chi-squared test characterize the Zn x-ray laser as a robust tool suitable for future applications.

  18. A computational study of bulk porous two-dimensional polymers related to graphyne.

    PubMed

    Sánchez-González, A; Dobado, J A; Torneiro, M

    2016-08-03

    Over the last twelve years there has been an explosion in the area of reticular chemistry with several classes of carbonaceous or carbon-rich reticular compounds coming into the scene and/or suffering an exponential growth in the number of related studies. Examples are MOFs, COFs, graphene and 2D polymers. π-Conjugated reticular compounds in particular are of great interest due to their optoelectronic properties. In this study we use density functional theory methods with periodic boundary conditions to investigate the stacking arrangements of bulk 2D polymer multilayer porous graphyne A, the related carbon allotrope multilayer graphyne B, and the analog bulk 2D polymer C in which the triple bonds of A are substituted by double bonds. The results show that for the three materials the eclipsed stacking arrangements are considerably less stable than staggered and slipped arrangements, with the more stable structures being slipped, staggered and off-centered-staggered arrangements for A, B and C, respectively. To shed light on the π-π interactions responsible for the geometry and relative energies of the different stacking modes we analyze the topology of the electron density using the electron localization function. In addition, simulated patterns for powder X-ray diffraction have been obtained from the optimized systems, which can be used for identification of the bulk 2D reticular compounds in future syntheses.

  19. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    PubMed

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  20. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology

    PubMed Central

    Siewert, F.; Buchheim, J.; Zeschke, T.; Störmer, M.; Falkenberg, G.; Sankari, R.

    2014-01-01

    To fully exploit the ultimate source properties of the next-generation light sources, such as free-electron lasers (FELs) and diffraction-limited storage rings (DLSRs), the quality requirements for gratings and reflective synchrotron optics, especially mirrors, have significantly increased. These coherence-preserving optical components for high-brightness sources will feature nanoscopic shape accuracies over macroscopic length scales up to 1000 mm. To enable high efficiency in terms of photon flux, such optics will be coated with application-tailored single or multilayer coatings. Advanced thin-film fabrication of today enables the synthesis of layers on the sub-nanometre precision level over a deposition length of up to 1500 mm. Specifically dedicated metrology instrumentation of comparable accuracy has been developed to characterize such optical elements. Second-generation slope-measuring profilers like the nanometre optical component measuring machine (NOM) at the BESSY-II Optics laboratory allow the inspection of up to 1500 mm-long reflective optical components with an accuracy better than 50 nrad r.m.s. Besides measuring the shape on top of the coated mirror, it is of particular interest to characterize the internal material properties of the mirror coating, which is the domain of X-rays. Layer thickness, density and interface roughness of single and multilayer coatings are investigated by means of X-ray reflectometry. In this publication recent achievements in the field of slope measuring metrology are shown and the characterization of different types of mirror coating demonstrated. Furthermore, upcoming challenges to the inspection of ultra-precise optical components designed to be used in future FEL and DLSR beamlines are discussed. PMID:25177985

  1. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources.

    PubMed

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-09-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu K α wavelength with a photon flux of up to 10 9 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source.

  2. Towards shot-noise limited diffraction experiments with table-top femtosecond hard x-ray sources

    PubMed Central

    Holtz, Marcel; Hauf, Christoph; Weisshaupt, Jannick; Salvador, Antonio-Andres Hernandez; Woerner, Michael; Elsaesser, Thomas

    2017-01-01

    Table-top laser-driven hard x-ray sources with kilohertz repetition rates are an attractive alternative to large-scale accelerator-based systems and have found widespread applications in x-ray studies of ultrafast structural dynamics. Hard x-ray pulses of 100 fs duration have been generated at the Cu Kα wavelength with a photon flux of up to 109 photons per pulse into the full solid angle, perfectly synchronized to the sub-100-fs optical pulses from the driving laser system. Based on spontaneous x-ray emission, such sources display a particular noise behavior which impacts the sensitivity of x-ray diffraction experiments. We present a detailed analysis of the photon statistics and temporal fluctuations of the x-ray flux, together with experimental strategies to optimize the sensitivity of optical pump/x-ray probe experiments. We demonstrate measurements close to the shot-noise limit of the x-ray source. PMID:28795079

  3. Nanoparticle augmented radiation treatment decreases cancer cell proliferation.

    PubMed

    Townley, Helen E; Rapa, Elizabeth; Wakefield, Gareth; Dobson, Peter J

    2012-05-01

    We report significant and controlled cell death using novel x-ray-activatable titania nanoparticles (NPs) doped with lanthanides. Preferential incorporation of such materials into tumor tissue can enhance the effect of radiation therapy. Herein, the incorporation of gadolinium into the NPs is designed to optimize localized energy absorption from a conventional medical x-ray. This result is further optimized by the addition of other rare earth elements. Upon irradiation, energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species (ROS). The authors report significant and controlled cell death using x-ray-activated titania nanoparticles doped with lanthanides as enhancers. Upon irradiation X-ray energy is transferred to the titania crystal structure, resulting in the generation of reactive oxygen species. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    PubMed

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Reflex Triode X-Ray Source Research on Gamble

    DTIC Science & Technology

    2007-06-01

    dosimeters ( TLDs ) located at the vacuum window (18-27 cm from the converter), near the pinhole camera and near the image plate. II. EXPERIMENTAL...MeV- electron beams to thin converters in order to optimize emission of sub-100- keV x-rays. Thin converters reduce self-absorption of low-energy...x-rays, but the beam electrons must pass many times through the converter for efficient x-ray production. The triode configuration was found to be

  6. Three Dimensional Transient Analysis of Microstrip Circuits in Multilayered Anisotropic Media

    DTIC Science & Technology

    1991-11-14

    dimensions, resonance is possible within the low gigahertz frequency range. Because the effects of diffraction during proximity-print x-ray lithography ...facilitate lead passage. The simulation results, comparing radi- paksgo and sourcl ation from a gasketed and ungasketed heatsink with an dMD TPI as... lithography are of critical importance, a number of previous researchers have attempted to calculate the diffraction patterns and minimum achievable

  7. Dr. John H. Hopps Jr. Defense Research Scholars Program

    DTIC Science & Technology

    2014-12-16

    Summer 2011) Post -Graduation Plans • Employed as a mechanical engineer at Allegion. • Applying to graduate programs in industrial design and mechanical...Summer 2010) • Multi-Layer Mirror Design for Ultra-Soft X-Rays, Ecole Polytechnique (Summer 2011) Post -Graduation Plans • Post Baccalaureate Research...the year off to work while others planned on strengthening their applications by broadening their research skills in post baccalaureate programs

  8. Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications

    DTIC Science & Technology

    2010-03-01

    polymerization b block BF3•Et2O boron trifluoride diethyl etherate BNL Brookhaven National Labs BF3•Et2O boron trifluoride diethyl etherate BSA...surface characterization of the polymers. We also acknowledge Brookhaven National Laboratory ( BNL ) where the NEXAFS surface characterization was...National Synchrotron Light Source at Brookhaven National Laboratory ( BNL ). The X-ray beam was elliptically polarized (polarization factor = 0.85

  9. A broadband x-ray imaging spectroscopy with high-angular resolution: the FORCE mission

    NASA Astrophysics Data System (ADS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawa, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawa, Yasushi; Tsunemi, Hiroshi; Takahashi, Tadayuki; Zhang, William W.

    2016-07-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead Xray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of < 15 in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 104 M⊙) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (102-104 M⊙) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 102 M⊙) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its silicon strip detector with SOI-CMOS silicon pixel detector, allowing an extension of the low energy threshold down to 1 keV or even less.

  10. Inkjet printable-photoactive all inorganic perovskite films with long effective photocarrier lifetimes

    NASA Astrophysics Data System (ADS)

    Ilie, C. C.; Guzman, F.; Swanson, B. L.; Evans, I. R.; Costa, P. S.; Teeter, J. D.; Shekhirev, M.; Benker, N.; Sikich, S.; Enders, A.; Dowben, P. A.; Sinitskii, A.; Yost, A. J.

    2018-05-01

    Photoactive perovskite quantum dot films, deposited via an inkjet printer, have been characterized by x-ray diffraction and x-ray photoelectron spectroscopy. The crystal structure and bonding environment are consistent with CsPbBr3 perovskite quantum dots. The current–voltage (I–V) and capacitance–voltage (C–V) transport measurements indicate that the photo-carrier drift lifetime can exceed 1 ms for some printed perovskite films. This far exceeds the dark drift carrier lifetime, which is below 50 ns. The printed films show a photocarrier density 109 greater than the dark carrier density, making these printed films ideal candidates for application in photodetectors. The successful printing of photoactive-perovskite quantum dot films of CsPbBr3, indicates that the rapid prototyping of various perovskite inks and multilayers is realizable.

  11. Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems

    NASA Astrophysics Data System (ADS)

    Romanov, Volodymyr; Burke, Eric; Grubsky, Victor

    2017-02-01

    Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.

  12. Study of surfactant mediated growth of Ni/V superlattices

    NASA Astrophysics Data System (ADS)

    Amir, S. M.; Gupta, Mukul; Potdar, Satish; Gupta, Ajay; Stahn, Jochen

    2013-07-01

    The Ni/V multilayers are useful as soft x-ray mirrors, polarizers, and phase retarders. For these applications, it is necessary that the interfaces roughness and interdiffusion must be as small as possible. The V-on-Ni and Ni-on-V interfaces are asymmetric due to the difference in the surface free energy of Ni and V. In this work, we report Ag surfactant mediated growth of Ni/V superlattices prepared using ion beam sputter deposition technique. These superlattices were studied using x-ray and neutron scattering techniques. It was found that when added in an optimum amount, Ag surfactant results in reduced interface roughness and interdiffusion across the interfaces. Obtained results can be understood with the surfactant floating-off mechanism leading to a balance in the surface free energy of Ni and V.

  13. RXTE observations of AGN

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.; Heindl, W. A.; Blanco, P. R.; Gruber, D. E.; Marsden, D. C.; Pelling, M. R.; Jahoda, K.; Madejski, G.; Swank, J. H.; Zdziarski, A. A.; hide

    1997-01-01

    The Rossi X-ray Timing Explorer (RXTE) observed three active galaxies during its in-orbit verification phase: NGC 4151; NGC 4945, and MCG 8-11-11. All three were detected from 2 keV to more than 100 keV by a combination of the proportional counter array (PCA) and the high energy X-ray timing experiment (HEXTE). The PCA contains five, xenon/methane, multilayer, multiwire, gas proportional counters covering the 2 to 60 keV range, while HEXTE is an array of eight NaI/CsI phoswich scintillation counters covering the 15 to 250 keV range. The three active galaxies represent the classes of Seyfert 1, Seyfert 2 and intermediate Seyfert galaxies. The results of the fitting of various models containing partial covering fractions, Compton reflection components and high energy spectral breaks are discussed.

  14. Band alignment of ZnO/multilayer MoS{sub 2} interface determined by x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: liuwj@szu.edu.cn; He, Jiazhu; Chen, Le

    2016-08-15

    The energy band alignment between ZnO and multilayer (ML)-MoS{sub 2} was characterized using high-resolution x-ray photoelectron spectroscopy. The ZnO film was deposited using an atomic layer deposition tool, and ML-MoS{sub 2} was grown by chemical vapor deposition. A valence band offset (VBO) of 3.32 eV and a conduction band offset (CBO) of 1.12 eV were obtained for the ZnO/ML-MoS{sub 2} interface without any treatment. With CHF{sub 3} plasma treatment, a VBO and a CBO across the ZnO/ML-MoS{sub 2} interface were found to be 3.54 eV and 1.34 eV, respectively. With the CHF{sub 3} plasma treatment, the band alignment of the ZnO/ML-MoS{sub 2} interface hasmore » been changed from type II or staggered band alignment to type III or misaligned one, which favors the electron-hole pair separation. The band alignment difference is believed to be dominated by the down-shift in the core level of Zn 2p or the interface dipoles, which is caused by the interfacial layer rich in F.« less

  15. Microstructure characteristics of Ni/WC composite cladding coatings

    NASA Astrophysics Data System (ADS)

    Yang, Gui-rong; Huang, Chao-peng; Song, Wen-ming; Li, Jian; Lu, Jin-jun; Ma, Ying; Hao, Yuan

    2016-02-01

    A multilayer tungsten carbide particle (WCp)-reinforced Ni-based alloy coating was fabricated on a steel substrate using vacuum cladding technology. The morphology, microstructure, and formation mechanism of the coating were studied and discussed in different zones. The microstructure morphology and phase composition were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy. In the results, the coating presents a dense and homogeneous microstructure with few pores and is free from cracks. The whole coating shows a multilayer structure, including composite, transition, fusion, and diffusion-affected layers. Metallurgical bonding was achieved between the coating and substrate because of the formation of the fusion and diffusion-affected layers. The Ni-based alloy is mainly composed of γ-Ni solid solution with finely dispersed Cr7C3/Cr23C6, CrB, and Ni+Ni3Si. WC particles in the composite layer distribute evenly in areas among initial Ni-based alloying particles, forming a special three-dimensional reticular microstructure. The macrohardness of the coating is HRC 55, which is remarkably improved compared to that of the substrate. The microhardness increases gradually from the substrate to the composite zone, whereas the microhardness remains almost unchanged in the transition and composite zones.

  16. Development of a Prototype Nickel Optic for the Constellation-X Hard-X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Basso, S.; Bruni, R. J.; Citerio, O.; Engelhaupt, D.; Ghigo, M.; Gorenstien, P.; Mazzoleni, F.; ODell, S. L.; Pareschi, G.; Ramsey, B. D.

    2003-01-01

    The Constellation-X mission, planned for launch in 2011, will feature an array of hard-x ray telescopes with a total collecting area goal of 1500 square centimeters at 40 keV. Various technologies are currently being investigated for the optics of these telescopes including multilayer-coated Eletroformed-Nickel-Replicated (ENR) shells. The attraction of the ENR process is that the resulting full-shell optics are inherently stable and offer the promise of good angular resolution and enhanced instrument sensitivity. The challenge for this process is to meet a relatively tight weight budget with a relatively dense material (rho nickel = 9 grams per cubic centimeters.) To demonstrate the viability of the ENR process we are fabricating a prototype HXT mirror module to be tested against a competing segmented-glass-shell optic. The ENR prototype will consist of 5 shells of diameters from 150 mm to 280 mm and of 426 mm total length. To meet the stringent weight budget for Con-X, the shells will be only 150 micron thick. The innermost of these will be coated with Iridium, while the remainder will be coated with graded-density multilayers. Mandrels for these shells are currently under fabrication (Jan 03), with the first shells scheduled for production in February 03. A tentative date of late Summer has been set for prototype testing. Issues currently being addressed are the control of stresses in the multiplayer coating and ways of mitigating their effects on the figure of the necessarily thin shells. Also, the fabrication, handling and mounting of these shells without inducing permanent figure distortions. A full status report on the prototype optic will be presented along with test results as available.

  17. Polyelectrolyte-mediated assembly of copper-phthalocyanine tetrasulfonate multilayers and the subsequent production of nanoparticulate copper oxide thin films.

    PubMed

    Chickneyan, Zarui Sara; Briseno, Alejandro L; Shi, Xiangyang; Han, Shubo; Huang, Jiaxing; Zhou, Feimeng

    2004-07-01

    An approach to producing films of nanometer-sized copper oxide particulates, based on polyelectrolyte-mediated assembly of the precursor, copper(II)phthalocyanine tetrasulfonate (CPTS), is described. Multilayered CPTS and polydiallyldimethylammonium chloride (PDADMAC) were alternately assembled on different planar substrates via the layer-by-layer (LbL) procedure. The growth of CPTS multilayers was monitored by UV-visible spectrometry and quartz crystal microbalance (QCM) measurements. Both the UV-visible spectra and the QCM data showed that a fixed amount of CPTS could be attached to the substrate surface for a given adsorption cycle. Cyclic voltammograms at the CPTS/PDADMAC-covered gold electrode exhibited a decrease in peak currents with the layer number, indicating that the permeability of CPTS multilayers on the electrodes had diminished. When these CPTS multilayered films were calcined at elevated temperatures, uniform thin films composed of nanoparticulate copper oxide could be produced. Ellipsometry showed that the thickness of copper oxide nanoparticulate films could be precisely tailored by varying the thickness of CPTS multilayer films. The morphology and roughness of CPTS multilayer and copper oxide thin films were characterized by atomic force microscopy. X-ray diffraction (XRD) measurements indicated that these thin films contained both CuO and Cu2O nanoparticles. The preparation of such copper oxide thin films with the use of metal complex precursors represents a new route for the synthesis of inorganic oxide films with a controlled thickness.

  18. Variable magnification glancing incidence x ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A multispectral glancing incidence x ray telescope is disclosed, which capable of broadband, high resolution imaging of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more ellipsoidal mirrors are positioned behind the primary focus at an inclination to the optical axis, each mirror having a concave surface coated with a multilayer synthetic microstructure coating to reflect a desired wavelength. The ellipsoidal mirrors are segments of respective ellipsoids having a common first focus coincident with the primary focus. A detector such as an x ray sensitive photographic film is positioned at the second focus of each of the ellipsoids so that each of the ellipsoidal mirrors may reflect the image at the first focus to the detector. In one embodiment the mirrors are inclined at different angles and has its respective second focus at a different location, separate detectors being located at the respective second focus. The mirrors are arranged so that the magnification and field of view differ, and a solenoid activated arm may withdraw at least one mirror from the beam to select the mirror upon which the beam is to impinge so that selected magnifications and fields of view may be detected.

  19. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  20. Performance of the Multi-Spectral Solar Telescope Array. III - Optical characteristics of the Ritchey-Chretien and Cassegrain telescopes

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Baker, Phillip C.; Hadaway, James B.; Johnson, R. B.; Peterson, Cynthia; Gabardi, David R.; Walker, Arthur B., Jr.; Lindblom, J. F.; Deforest, Craig; O'Neal, R. H.

    1991-12-01

    The Multi-Spectral Solar Telescope Array (MSSTA), which is a sounding-rocket-borne observatory for investigating the sun in the soft X-ray/EUV and FUV regimes of the electromagnetic spectrum, utilizes single reflection multilayer coated Herschelian telescopes for wavelengths below 100 A, and five doubly reflecting multilayer coated Ritchey-Chretien and two Cassegrain telescopes for selected wavelengths in the EUV region between 100 and 1000 A. The paper discusses the interferometric alignment, testing, focusing, visible light testing, and optical performance characteristics of the Ritchey-Chretien and Cassegrain telescopes of MSSTA. A schematic diagram of the MSSTA Ritchey-Chretien telescope is presented together with diagrams of the system autocollimation testing.

Top