Sample records for x-ray pixel detectors

  1. Small Pixel Hybrid CMOS X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  2. X-ray characterization of a multichannel smart-pixel array detector.

    PubMed

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  3. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  4. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  5. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  6. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    PubMed

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  7. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.

    PubMed

    Koerner, Lucas J; Gruner, Sol M

    2011-03-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.

  8. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    PubMed Central

    Koerner, Lucas J.; Gruner, Sol M.

    2011-01-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901

  9. Pixelated transmission-mode diamond X-ray detector.

    PubMed

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-11-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60-100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼ 1 kHz, which leads to an image sampling rate of ∼ 30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5-15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10(-2) to 90 W mm(-2). Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%).

  10. Pixelated transmission-mode diamond X-ray detector

    PubMed Central

    Zhou, Tianyi; Ding, Wenxiang; Gaowei, Mengjia; De Geronimo, Gianluigi; Bohon, Jen; Smedley, John; Muller, Erik

    2015-01-01

    Fabrication and testing of a prototype transmission-mode pixelated diamond X-ray detector (pitch size 60–100 µm), designed to simultaneously measure the flux, position and morphology of an X-ray beam in real time, are described. The pixel density is achieved by lithographically patterning vertical stripes on the front and horizontal stripes on the back of an electronic-grade chemical vapor deposition single-crystal diamond. The bias is rotated through the back horizontal stripes and the current is read out on the front vertical stripes at a rate of ∼1 kHz, which leads to an image sampling rate of ∼30 Hz. This novel signal readout scheme was tested at beamline X28C at the National Synchrotron Light Source (white beam, 5–15 keV) and at beamline G3 at the Cornell High Energy Synchrotron Source (monochromatic beam, 11.3 keV) with incident beam flux ranges from 1.8 × 10−2 to 90 W mm−2. Test results show that the novel detector provides precise beam position (positional noise within 1%) and morphology information (error within 2%), with an additional software-controlled single channel mode providing accurate flux measurement (fluctuation within 1%). PMID:26524304

  11. 50 μm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Konstantinidis, A C; Zheng, Y; Anaxagoras, T; Speller, R D; Kanicki, J

    2015-12-07

    Wafer-scale CMOS active pixel sensors (APSs) have been developed recently for x-ray imaging applications. The small pixel pitch and low noise are very promising properties for medical imaging applications such as digital breast tomosynthesis (DBT). In this work, we evaluated experimentally and through modeling the imaging properties of a 50 μm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). A modified cascaded system model was developed for CMOS APS x-ray detectors by taking into account the device nonlinear signal and noise properties. The imaging properties such as modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) were extracted from both measurements and the nonlinear cascaded system analysis. The results show that the DynAMITe x-ray detector achieves a high spatial resolution of 10 mm(-1) and a DQE of around 0.5 at spatial frequencies  <1 mm(-1). In addition, the modeling results were used to calculate the image signal-to-noise ratio (SNRi) of microcalcifications at various mean glandular dose (MGD). For an average breast (5 cm thickness, 50% glandular fraction), 165 μm microcalcifications can be distinguished at a MGD of 27% lower than the clinical value (~1.3 mGy). To detect 100 μm microcalcifications, further optimizations of the CMOS APS x-ray detector, image aquisition geometry and image reconstruction techniques should be considered.

  12. Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science

    PubMed Central

    Jungmann-Smith, J. H.; Bergamaschi, A.; Brückner, M.; Cartier, S.; Dinapoli, R.; Greiffenberg, D.; Huthwelker, T.; Maliakal, D.; Mayilyan, D.; Medjoubi, K.; Mezza, D.; Mozzanica, A.; Ramilli, M.; Ruder, Ch.; Schädler, L.; Schmitt, B.; Shi, X.; Tinti, G.

    2016-01-01

    JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e− electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a ‘software mask’ or a ‘cluster finding’ algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy

  13. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging

    PubMed Central

    Muir, Ryan D.; Pogranichney, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2014-01-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment. PMID:25178010

  14. Linear fitting of multi-threshold counting data with a pixel-array detector for spectral X-ray imaging.

    PubMed

    Muir, Ryan D; Pogranichney, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2014-09-01

    Experiments and modeling are described to perform spectral fitting of multi-threshold counting measurements on a pixel-array detector. An analytical model was developed for describing the probability density function of detected voltage in X-ray photon-counting arrays, utilizing fractional photon counting to account for edge/corner effects from voltage plumes that spread across multiple pixels. Each pixel was mathematically calibrated by fitting the detected voltage distributions to the model at both 13.5 keV and 15.0 keV X-ray energies. The model and established pixel responses were then exploited to statistically recover images of X-ray intensity as a function of X-ray energy in a simulated multi-wavelength and multi-counting threshold experiment.

  15. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  16. Note: application of a pixel-array area detector to simultaneous single crystal X-ray diffraction and X-ray absorption spectroscopy measurements.

    PubMed

    Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M

    2014-04-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.

  17. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  18. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  19. Fully 3D-Integrated Pixel Detectors for X-Rays

    DOE PAGES

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; ...

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch,more » yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e - rms and a conversion gain of 69.5 μV/e - with 2.6 e - rms and 2.7 μV/e - rms pixel-to-pixel variations, respectively, were measured.« less

  20. Recent X-ray hybrid CMOS detector developments and measurements

    NASA Astrophysics Data System (ADS)

    Hull, Samuel V.; Falcone, Abraham D.; Burrows, David N.; Wages, Mitchell; Chattopadhyay, Tanmoy; McQuaide, Maria; Bray, Evan; Kern, Matthew

    2017-08-01

    The Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors (TIS), have progressed their efforts to improve soft X-ray Hybrid CMOS detector (HCD) technology on multiple fronts. Having newly acquired a Teledyne cryogenic SIDECARTM ASIC for use with HxRG devices, measurements were performed with an H2RG HCD and the cooled SIDECARTM. We report new energy resolution and read noise measurements, which show a significant improvement over room temperature SIDECARTM operation. Further, in order to meet the demands of future high-throughput and high spatial resolution X-ray observatories, detectors with fast readout and small pixel sizes are being developed. We report on characteristics of new X-ray HCDs with 12.5 micron pitch that include in-pixel CDS circuitry and crosstalk-eliminating CTIA amplifiers. In addition, PSU and TIS are developing a new large-scale array Speedster-EXD device. The original 64 × 64 pixel Speedster-EXD prototype used comparators in each pixel to enable event driven readout with order of magnitude higher effective readout rates, which will now be implemented in a 550 × 550 pixel device. Finally, the detector lab is involved in a sounding rocket mission that is slated to fly in 2018 with an off-plane reflection grating array and an H2RG X-ray HCD. We report on the planned detector configuration for this mission, which will increase the NASA technology readiness level of X-ray HCDs to TRL 9.

  1. X-ray photon correlation spectroscopy using a fast pixel array detector with a grid mask resolution enhancer.

    PubMed

    Hoshino, Taiki; Kikuchi, Moriya; Murakami, Daiki; Harada, Yoshiko; Mitamura, Koji; Ito, Kiminori; Tanaka, Yoshihito; Sasaki, Sono; Takata, Masaki; Jinnai, Hiroshi; Takahara, Atsushi

    2012-11-01

    The performance of a fast pixel array detector with a grid mask resolution enhancer has been demonstrated for X-ray photon correlation spectroscopy (XPCS) measurements to investigate fast dynamics on a microscopic scale. A detecting system, in which each pixel of a single-photon-counting pixel array detector, PILATUS, is covered by grid mask apertures, was constructed for XPCS measurements of silica nanoparticles in polymer melts. The experimental results are confirmed to be consistent by comparison with other independent experiments. By applying this method, XPCS measurements can be carried out by customizing the hole size of the grid mask to suit the experimental conditions, such as beam size, detector size and sample-to-detector distance.

  2. Spectral correction algorithm for multispectral CdTe x-ray detectors

    NASA Astrophysics Data System (ADS)

    Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.

    2017-09-01

    Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.

  3. Analog pixel array detectors.

    PubMed

    Ercan, A; Tate, M W; Gruner, S M

    2006-03-01

    X-ray pixel array detectors (PADs) are generally thought of as either digital photon counters (DPADs) or X-ray analog-integrating pixel array detectors (APADs). Experiences with APADs, which are especially well suited for X-ray imaging experiments where transient or high instantaneous flux events must be recorded, are reported. The design, characterization and experimental applications of several APAD designs developed at Cornell University are discussed. The simplest design is a ;flash' architecture, wherein successive integrated X-ray images, as short as several hundred nanoseconds in duration, are stored in the detector chips for later off-chip digitization. Radiography experiments using a prototype flash APAD are summarized. Another design has been implemented that combines flash capability with the ability to continuously stream X-ray images at slower (e.g. milliseconds) rates. Progress is described towards radiation-hardened APADs that can be tiled to cover a large area. A mixed-mode PAD, design by combining many of the attractive features of both APADs and DPADs, is also described.

  4. Spatial resolution of a hard x-ray CCD detector.

    PubMed

    Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  5. Tutorial on X-ray photon counting detector characterization.

    PubMed

    Ren, Liqiang; Zheng, Bin; Liu, Hong

    2018-01-01

    Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.

  6. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    PubMed

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm -1 ) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  7. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  8. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  9. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  10. Accurate determination of segmented X-ray detector geometry

    PubMed Central

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; White, Thomas A.; Chapman, Henry N.; Barty, Anton

    2015-01-01

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical for many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. We show that the refined detector geometry greatly improves the results of experiments. PMID:26561117

  11. Accurate determination of segmented X-ray detector geometry

    DOE PAGES

    Yefanov, Oleksandr; Mariani, Valerio; Gati, Cornelius; ...

    2015-10-22

    Recent advances in X-ray detector technology have resulted in the introduction of segmented detectors composed of many small detector modules tiled together to cover a large detection area. Due to mechanical tolerances and the desire to be able to change the module layout to suit the needs of different experiments, the pixels on each module might not align perfectly on a regular grid. Several detectors are designed to permit detector sub-regions (or modules) to be moved relative to each other for different experiments. Accurate determination of the location of detector elements relative to the beam-sample interaction point is critical formore » many types of experiment, including X-ray crystallography, coherent diffractive imaging (CDI), small angle X-ray scattering (SAXS) and spectroscopy. For detectors with moveable modules, the relative positions of pixels are no longer fixed, necessitating the development of a simple procedure to calibrate detector geometry after reconfiguration. We describe a simple and robust method for determining the geometry of segmented X-ray detectors using measurements obtained by serial crystallography. By comparing the location of observed Bragg peaks to the spot locations predicted from the crystal indexing procedure, the position, rotation and distance of each module relative to the interaction region can be refined. Furthermore, we show that the refined detector geometry greatly improves the results of experiments.« less

  12. The HEXITEC Hard X-Ray Pixelated CdTe Imager for Fast Solar Observations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Christe, Steven D.; Ryan, Daniel; Inglis, Andrew R.; Shih, Albert Y.; Gregory, Kyle; Wilson, Matt; Seller, Paul; Gaskin, Jessica; Wilson-Hodge, Colleen

    2016-01-01

    There is an increasing demand in solar and astrophysics for high resolution X-ray spectroscopic imaging. Such observations would present ground breaking opportunities to study the poorly understood high energy processes in our solar system and beyond, such as solar flares, X-ray binaries, and active galactic nuclei. However, such observations require a new breed of solid state detectors sensitive to high energy X-rays with fine independent pixels to sub-sample the point spread function (PSF) of the X-ray optics. For solar observations in particular, they must also be capable of handling very high count rates as photon fluxes from solar flares often cause pile up and saturation in present generation detectors. The Rutherford Appleton Laboratory (RAL) has recently developed a new cadmium telluride (CdTe) detector system, called HEXITEC (High Energy X-ray Imaging Technology). It is an 80 x 80 array of 250 micron independent pixels sensitive in the 2-200 keV band and capable of a high full frame read out rate of 10 kHz. HEXITEC provides the smallest independently read out CdTe pixels currently available, and are well matched to the few arcsecond PSF produced by current and next generation hard X-ray focusing optics. NASA's Goddard and Marshall Space Flight Centers are collaborating with RAL to develop these detectors for use on future space borne hard X-ray focusing telescopes. We show the latest results on HEXITEC's imaging capability, energy resolution, high read out rate, and reveal it to be ideal for such future instruments.

  13. High-energy X-ray diffraction using the Pixium 4700 flat-panel detector.

    PubMed

    Daniels, J E; Drakopoulos, M

    2009-07-01

    The Pixium 4700 detector represents a significant step forward in detector technology for high-energy X-ray diffraction. The detector design is based on digital flat-panel technology, combining an amorphous Si panel with a CsI scintillator. The detector has a useful pixel array of 1910 x 2480 pixels with a pixel size of 154 microm x 154 microm, and thus it covers an effective area of 294 mm x 379 mm. Designed for medical imaging, the detector has good efficiency at high X-ray energies. Furthermore, it is capable of acquiring sequences of images at 7.5 frames per second in full image mode, and up to 60 frames per second in binned region of interest modes. Here, the basic properties of this detector applied to high-energy X-ray diffraction are presented. Quantitative comparisons with a widespread high-energy detector, the MAR345 image plate scanner, are shown. Other properties of the Pixium 4700 detector, including a narrow point-spread function and distortion-free image, allows for the acquisition of high-quality diffraction data at high X-ray energies. In addition, high frame rates and shutterless operation open new experimental possibilities. Also provided are the necessary data for the correction of images collected using the Pixium 4700 for diffraction purposes.

  14. A Low-Noise X-ray Astronomical Silicon-On-Insulator Pixel Detector Using a Pinned Depleted Diode Structure.

    PubMed

    Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2017-12-23

    This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO₂ interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e - rms , low dark current density of 56 pA/cm² at -35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV.

  15. A Low-Noise X-ray Astronomical Silicon-On-Insulator Pixel Detector Using a Pinned Depleted Diode Structure

    PubMed Central

    Kamehama, Hiroki; Kawahito, Shoji; Shrestha, Sumeet; Nakanishi, Syunta; Yasutomi, Keita; Takeda, Ayaki; Tsuru, Takeshi Go

    2017-01-01

    This paper presents a novel full-depletion Si X-ray detector based on silicon-on-insulator pixel (SOIPIX) technology using a pinned depleted diode structure, named the SOIPIX-PDD. The SOIPIX-PDD greatly reduces stray capacitance at the charge sensing node, the dark current of the detector, and capacitive coupling between the sensing node and SOI circuits. These features of the SOIPIX-PDD lead to low read noise, resulting high X-ray energy resolution and stable operation of the pixel. The back-gate surface pinning structure using neutralized p-well at the back-gate surface and depleted n-well underneath the p-well for all the pixel area other than the charge sensing node is also essential for preventing hole injection from the p-well by making the potential barrier to hole, reducing dark current from the Si-SiO2 interface and creating lateral drift field to gather signal electrons in the pixel area into the small charge sensing node. A prototype chip using 0.2 μm SOI technology shows very low readout noise of 11.0 e−rms, low dark current density of 56 pA/cm2 at −35 °C and the energy resolution of 200 eV(FWHM) at 5.9 keV and 280 eV (FWHM) at 13.95 keV. PMID:29295523

  16. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  17. CCD sensors in synchrotron X-ray detectors

    NASA Astrophysics Data System (ADS)

    Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.

    1988-04-01

    The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.

  18. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  19. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  20. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  1. Development of a High Dynamic Range Pixel Array Detector for Synchrotrons and XFELs

    NASA Astrophysics Data System (ADS)

    Weiss, Joel Todd

    Advances in synchrotron radiation light source technology have opened new lines of inquiry in material science, biology, and everything in between. However, x-ray detector capabilities must advance in concert with light source technology to fully realize experimental possibilities. X-ray free electron lasers (XFELs) place particularly large demands on the capabilities of detectors, and developments towards diffraction-limited storage ring sources also necessitate detectors capable of measuring very high flux [1-3]. The detector described herein builds on the Mixed Mode Pixel Array Detector (MM-PAD) framework, developed previously by our group to perform high dynamic range imaging, and the Adaptive Gain Integrating Pixel Detector (AGIPD) developed for the European XFEL by a collaboration between Deustsches Elektronen-Synchrotron (DESY), the Paul-Scherrer-Institute (PSI), the University of Hamburg, and the University of Bonn, led by Heinz Graafsma [4, 5]. The feasibility of combining adaptive gain with charge removal techniques to increase dynamic range in XFEL experiments is assessed by simulating XFEL scatter with a pulsed infrared laser. The strategy is incorporated into pixel prototypes which are evaluated with direct current injection to simulate very high incident x-ray flux. A fully functional 16x16 pixel hybrid integrating x-ray detector featuring several different pixel architectures based on the prototypes was developed. This dissertation describes its operation and characterization. To extend dynamic range, charge is removed from the integration node of the front-end amplifier without interrupting integration. The number of times this process occurs is recorded by a digital counter in the pixel. The parameter limiting full well is thereby shifted from the size of an integration capacitor to the depth of a digital counter. The result is similar to that achieved by counting pixel array detectors, but the integrators presented here are designed to tolerate a

  2. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Iaroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  3. Dose-dependent X-ray measurements using a 64×64 hybrid GaAs pixel detector with photon counting

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Rogalla, M.; Runge, K.; Soeldner-Rembold, A.; Smith, K. M.; Snoeys, W.; Watt, J.

    2001-03-01

    New developments in medical imaging head towards semiconductor detectors flip-chip bonded to CMOS readout chips. In this work, detectors fabricated on SI-GaAs bulk material were bonded to Photon Counting Chips. This PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube. First, a dose calibration of the X-ray tube was performed. Fixed pattern noise in flood exposure images was determined for a fixed dose and an image correction method, which uses a gain map, was applied. For characterising the imaging properties, the signal-to-noise ratio (SNR) was calculated as function of exposure dose. Finally, the dynamic range of the system was estimated. Developed in the framework of the MEDIPIX collaboration: CERN, Universities of Freiburg, Glasgow, Naples and Pisa.

  4. Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    NASA Technical Reports Server (NTRS)

    Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument.

  5. a-Si:H TFT-silicon hybrid low-energy x-ray detector

    DOE PAGES

    Shin, Kyung -Wook; Karim, Karim S.

    2017-03-15

    Direct conversion crystalline silicon X-ray imagers are used for low-energy X-ray photon (4-20 keV) detection in scientific research applications such as protein crystallography. In this paper, we demonstrate a novel pixel architecture that integrates a crystalline silicon X-ray detector with a thin-film transistor amorphous silicon pixel readout circuit. We describe a simplified two-mask process to fabricate a complete imaging array and present preliminary results that show the fabricated pixel to be sensitive to 5.89-keV photons from a low activity Fe-55 gamma source. Furthermore, this paper presented can expedite the development of high spatial resolution, low cost, direct conversion imagers formore » X-ray diffraction and crystallography applications.« less

  6. PantherPix hybrid pixel γ-ray detector for radio-therapeutic applications

    NASA Astrophysics Data System (ADS)

    Neue, G.; Benka, T.; Havránek, M.; Hejtmánek, M.; Janoška, Z.; Kafka, V.; Korchak, O.; Lednický, D.; Marčišovská, M.; Marčišovský, M.; Popule, J.; Şmarhák, J.; Şvihra, P.; Tomášek, L.; Vrba, V.; Konček, O.; Semmler, M.

    2018-02-01

    This work focuses on the design of a semiconductor pixelated γ-ray camera with a pixel size of 1 mm2. The cost of semiconductor manufacturing is mainly driven by economies of scale, which makes silicon the cheapest semiconductor material due to its widespread utilization. The energy of γ-photons used in radiation therapy are in a range, in which the dominant interaction mechanism is Compton scattering in every conceivable sensor material. Since the Compton scattering cross section is linearly dependent upon Z, it is less rewarding to utilize high Z sensor materials, than it is in the case of X-ray detectors (X-rays interact also via the photoelectric effect whose cross section scales proportional to Zn, where n is ≈ 4,5). For the stated reasons it was decided to use the low Z material silicon (Z = 14) despite its worse detection efficiency. The proposed detector is designed as a portal detector to be used in radiation cancer therapy. The purpose of the detector is to ensure correct patient alignment, spatial dose monitoring and to provide the feedback necessary for an emergency shutdown should the spatial dose rate profile deviate from the treatment plan. Radiation therapy equipment is complex and thus failure prone and the consequences of malfunction are often life threatening. High spatial resolution and high detection efficiency are not a high design priority. The detector design priorities are focused up on radiation hardness, robustness and the ability to cover a large area cost efficiently. The quintessential idea of the PanterPix detector exploits the relaxed spatial resolution requirement to achieve the stated goals. The detector is composed of submodules, each submodule consisting of a Si sensor with an array of fully depleted detection diodes and 8 miniature custom design readout ASICs collecting and measuring the minuscule charge packets generated due to ionization in the PN junctions.

  7. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  8. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  9. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    PubMed

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  10. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of

  11. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the Decadal Review, including missions with science that over-laps with that of IXO and ATHENA, as well as other missions addressing science topics beyond those of IXO and ATHENA. An X-ray Surveyor mission was recently endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible realization of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been working on these developments for the past several years.

  12. Characteristic of x-ray tomography performance using CdTe timepix detector

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; O'Shea, V.; Maneuski, D.

    2017-01-01

    X-ray Computed Tomography (CT) is a non-destructive technique for visualizing interior features within solid objects, and for obtaining digital information on their 3-D geometries and properties. The selection of CdTe Timepix detector has a sufficient performance of imaging detector is based on quality of detector performance and energy resolution. The study of Modulation Transfer Function (MTF) shows a 70% contrast at 4 lp/mm was achieved for the 55 µm pixel pitch detector with the 60 kVp X-ray tube and 5 keV noise level. No significant degradation in performance was observed for X-ray tube energies of 20 - 60 keV. The paper discusses the application of the CdTe Timepix detector to produce a good quality image of X-ray tomography imaging.

  13. Characterization and development of an event-driven hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher

    2015-06-01

    Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for

  14. Image quality of a pixellated GaAs X-ray detector

    NASA Astrophysics Data System (ADS)

    Sun, G. C.; Makham, S.; Bourgoin, J. C.; Mauger, A.

    2007-02-01

    X-ray detection requires materials with large atomic numbers Z in order to absorb the radiation efficiently. In case of X-ray imaging, fluorescence is a limiting factor for the spatial resolution and contrast at energies above the kα threshold. Since both the energy and yield of the fluorescence of a given material increase with the atomic number, there is an optimum value of Z. GaAs, which can now be epitaxially grown as self-supported thick layers to fulfil the requirements for imaging (good homogeneity of the electronic properties) corresponds to this optimum. Image performances obtained with this material are evaluated in terms of line spread function and modulation transfer function, and a comparison with CsI is made. We evaluate the image contrast obtained for a given object contrast with GaAs and CsI detectors, in the photon energy range of medical applications. Finally, we discuss the minimum object size, which can be detected by these detectors in of mammography conditions. This demonstrates that an object of a given size can be detected using a GaAs detector with a dose at least 100 times lower than using a CsI detector.

  15. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC

  16. X-ray Hybrid CMOS Detectors : Recent progress in development and characterization

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy; Falcone, Abraham; Burrows, David N.

    2017-08-01

    PennState high energy astronomy laboratory has been working on the development and characterization of Hybrid CMOS Detectors (HCDs) for last few years in collaboration with Teledyne Imaging Sensors (TIS). HCDs are preferred over X-ray CCDs due to their higher and flexible read out rate, radiation hardness and low power which make them more suitable for next generation large area X-ray telescopic missions. An H2RG detector with 36 micron pixel pitch and 18 micron ROIC, has been selected for a sounding rocket flight in 2018. The H2RG detector provides ~2.5 % energy resolution at 5.9 keV and ~7 e- read noise when coupled to a cryo-SIDECAR. We could also detect a clear Oxygen line (~0.5 keV) from the detector implying a lower energy threshold of ~0.3 keV. Further improvement in the energy resolution and read noise is currently under progress. We have been working on the characterization of small pixel HCDs (12.5 micron pixel; smallest pixel HCDs developed so far) which is important for the development of next generation high resolution X-ray spectroscopic instrument based on HCDs. Event recognition in HCDs is another exciting prospect which have been successfully shown to work with a 64 X 64 pixel prototype SPEEDSTAR-EXD which use comparators at each pixel to read out only those pixels having detectable signal, thereby providing an order of magnitude improvement in the read out rate. Currently, we are working on the development of a large area SPEEDSTAR-EXD array for the development of a full fledged instrument. HCDs due to their fast read out, can also be explored as a large FOV instrument to study GRB afterglows and variability and spectroscopic study of other astrophysical transients. In this context, we are characterizing a Lobster-HCD system at multiple energies and multiple off-axis angles for future rocket or CubeSate experiments. In this presentation, I will briefly present these new developments and experiments with HCDs and the analysis techniques.

  17. Charge-coupled-device X-ray detector performance model

    NASA Technical Reports Server (NTRS)

    Bautz, M. W.; Berman, G. E.; Doty, J. P.; Ricker, G. R.

    1987-01-01

    A model that predicts the performance characteristics of CCD detectors being developed for use in X-ray imaging is presented. The model accounts for the interactions of both X-rays and charged particles with the CCD and simulates the transport and loss of charge in the detector. Predicted performance parameters include detective and net quantum efficiencies, split-event probability, and a parameter characterizing the effective thickness presented by the detector to cosmic-ray protons. The predicted performance of two CCDs of different epitaxial layer thicknesses is compared. The model predicts that in each device incomplete recovery of the charge liberated by a photon of energy between 0.1 and 10 keV is very likely to be accompanied by charge splitting between adjacent pixels. The implications of the model predictions for CCD data processing algorithms are briefly discussed.

  18. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    NASA Astrophysics Data System (ADS)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  19. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip

    2011-10-15

    Purpose: To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. Methods: A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. Inmore » this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO{sub 4} scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. Results: The focal spots were measured at about 1 x 2 mm{sup 2} using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. Conclusions: A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.« less

  20. High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters

    NASA Technical Reports Server (NTRS)

    Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.

    2003-01-01

    Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout

  1. Characterization of chromium compensated GaAs as an X-ray sensor material for charge-integrating pixel array detectors

    NASA Astrophysics Data System (ADS)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.

    2018-01-01

    We studied the properties of chromium compensated GaAs when coupled to charge integrating ASICs as a function of detector temperature, applied bias and X-ray tube energy. The material is a photoresistor and can be biased to collect either electrons or holes by the pixel circuitry. Both are studied here. Previous studies have shown substantial hole trapping. This trapping and other sensor properties give rise to several non-ideal effects which include an extended point spread function, variations in the effective pixel size, and rate dependent offset shifts. The magnitude of these effects varies with temperature and bias, mandating good temperature uniformity in the sensor and very good temperature stabilization, as well as a carefully selected bias voltage.

  2. The Dosepix detector—an energy-resolving photon-counting pixel detector for spectrometric measurements

    NASA Astrophysics Data System (ADS)

    Zang, A.; Anton, G.; Ballabriga, R.; Bisello, F.; Campbell, M.; Celi, J. C.; Fauler, A.; Fiederle, M.; Jensch, M.; Kochanski, N.; Llopart, X.; Michel, N.; Mollenhauer, U.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W.; Michel, T.

    2015-04-01

    The Dosepix detector is a hybrid photon-counting pixel detector based on ideas of the Medipix and Timepix detector family. 1 mm thick cadmium telluride and 300 μm thick silicon were used as sensor material. The pixel matrix of the Dosepix consists of 16 x 16 square pixels with 12 rows of (200 μm)2 and 4 rows of (55 μm)2 sensitive area for the silicon sensor layer and 16 rows of pixels with 220 μm pixel pitch for CdTe. Besides digital energy integration and photon-counting mode, a novel concept of energy binning is included in the pixel electronics, allowing energy-resolved measurements in 16 energy bins within one acquisition. The possibilities of this detector concept range from applications in personal dosimetry and energy-resolved imaging to quality assurance of medical X-ray sources by analysis of the emitted photon spectrum. In this contribution the Dosepix detector, its response to X-rays as well as spectrum measurements with Si and CdTe sensor layer are presented. Furthermore, a first evaluation was carried out to use the Dosepix detector as a kVp-meter, that means to determine the applied acceleration voltage from measured X-ray tubes spectra.

  3. A tetrahedron beam computed tomography benchtop system with a multiple pixel field emission x-ray tube.

    PubMed

    Xu, Xiaochao; Kim, Joshua; Laganis, Philip; Schulze, Derek; Liang, Yongguang; Zhang, Tiezhi

    2011-10-01

    To demonstrate the feasibility of Tetrahedron Beam Computed Tomography (TBCT) using a carbon nanotube (CNT) multiple pixel field emission x-ray (MPFEX) tube. A multiple pixel x-ray source facilitates the creation of novel x-ray imaging modalities. In a previous publication, the authors proposed a Tetrahedron Beam Computed Tomography (TBCT) imaging system which comprises a linear source array and a linear detector array that are orthogonal to each other. TBCT is expected to reduce scatter compared with Cone Beam Computed Tomography (CBCT) and to have better detector performance. Therefore, it may produce improved image quality for image guided radiotherapy. In this study, a TBCT benchtop system has been developed with an MPFEX tube. The tube has 75 CNT cold cathodes, which generate 75 x-ray focal spots on an elongated anode, and has 4 mm pixel spacing. An in-house-developed, 5-row CT detector array using silicon photodiodes and CdWO(4) scintillators was employed in the system. Hardware and software were developed for tube control and detector data acquisition. The raw data were preprocessed for beam hardening and detector response linearity and were reconstructed with an FDK-based image reconstruction algorithm. The focal spots were measured at about 1 × 2 mm(2) using a star phantom. Each cathode generates around 3 mA cathode current with 2190 V gate voltage. The benchtop system is able to perform TBCT scans with a prolonged scanning time. Images of a commercial CT phantom were successfully acquired. A prototype system was developed, and preliminary phantom images were successfully acquired. MPFEX is a promising x-ray source for TBCT. Further improvement of tube output is needed in order for it to be used in clinical TBCT systems.

  4. Homogeneity study of a GaAs:Cr pixelated sensor by means of X-rays

    NASA Astrophysics Data System (ADS)

    Billoud, T.; Leroy, C.; Papadatos, C.; Pichotka, M.; Pospisil, S.; Roux, J. S.

    2018-04-01

    Direct conversion semiconductor detectors have become an indispensable tool in radiation detection by now. In order to obtain a high detection efficiency, especially when detecting X or γ rays, high-Z semiconductor sensors are necessary. Like other compound semiconductors GaAs, compensated by chromium (GaAs:Cr), suffers from a number of defects that affect the charge collection efficiency and homogeneity of the material. A precise knowledge of this problem is important to predict the performance of such detectors and eventually correct their response in specific applications. In this study we analyse the homogeneity and mobility-lifetime products (μe τe) of a 500 μ m thick GaAs:Cr pixelated sensor connected to a Timepix chip. The detector is irradiated by 23 keV X-rays, each pixel recording the number of photon interactions and the charge they induce on its electrode. The μe τe products are extracted on a per-pixel basis, using the Hecht equation corrected for the small pixel effect. The detector shows a good time stability in the experimental conditions. Significant inhomogeneities are observed in photon counting and charge collection efficiencies. An average μe τe of 1.0 ṡ 10‑4 cm2V‑1 is found, and compared with values obtained by other methods for the same material. Solutions to improve the response are discussed.

  5. Large area x-ray detectors for cargo radiography

    NASA Astrophysics Data System (ADS)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  6. Microradiography with Semiconductor Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubek, Jan; Cejnarova, Andrea; Dammer, Jiri

    High resolution radiography (with X-rays, neutrons, heavy charged particles, ...) often exploited also in tomographic mode to provide 3D images stands as a powerful imaging technique for instant and nondestructive visualization of fine internal structure of objects. Novel types of semiconductor single particle counting pixel detectors offer many advantages for radiation imaging: high detection efficiency, energy discrimination or direct energy measurement, noiseless digital integration (counting), high frame rate and virtually unlimited dynamic range. This article shows the application and potential of pixel detectors (such as Medipix2 or TimePix) in different fields of radiation imaging.

  7. Multi-energy x-ray detector calibration for Te and impurity density (nZ) measurements of MCF plasmas

    NASA Astrophysics Data System (ADS)

    Maddox, J.; Pablant, N.; Efthimion, P.; Delgado-Aparicio, L.; Hill, K. W.; Bitter, M.; Reinke, M. L.; Rissi, M.; Donath, T.; Luethi, B.; Stratton, B.

    2016-11-01

    Soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, ne 2 Z eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emitted from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.

  8. Fluorescence X-ray absorption spectroscopy using a Ge pixel array detector: application to high-temperature superconducting thin-film single crystals.

    PubMed

    Oyanagi, H; Tsukada, A; Naito, M; Saini, N L; Lampert, M O; Gutknecht, D; Dressler, P; Ogawa, S; Kasai, K; Mohamed, S; Fukano, A

    2006-07-01

    A Ge pixel array detector with 100 segments was applied to fluorescence X-ray absorption spectroscopy, probing the local structure of high-temperature superconducting thin-film single crystals (100 nm in thickness). Independent monitoring of pixel signals allows real-time inspection of artifacts owing to substrate diffractions. By optimizing the grazing-incidence angle theta and adjusting the azimuthal angle phi, smooth extended X-ray absorption fine structure (EXAFS) oscillations were obtained for strained (La,Sr)2CuO4 thin-film single crystals grown by molecular beam epitaxy. The results of EXAFS data analysis show that the local structure (CuO6 octahedron) in (La,Sr)2CuO4 thin films grown on LaSrAlO4 and SrTiO3 substrates is uniaxially distorted changing the tetragonality by approximately 5 x 10(-3) in accordance with the crystallographic lattice mismatch. It is demonstrated that the local structure of thin-film single crystals can be probed with high accuracy at low temperature without interference from substrates.

  9. Fabrication of an X-Ray Imaging Detector

    NASA Technical Reports Server (NTRS)

    Alcorn, G. E.; Burgess, A. S.

    1986-01-01

    X-ray detector array yields mosaic image of object emitting 1- to 30-keV range fabricated from n-doped silicon wafer. In proposed fabrication technique, thin walls of diffused n+ dopant divide wafer into pixels of rectangular cross section, each containing central electrode of thermally migrated p-type metal. This pnn+ arrangement reduces leakage current by preventing transistor action caused by pnp structure of earlier version.

  10. Small-angle solution scattering using the mixed-mode pixel array detector.

    PubMed

    Koerner, Lucas J; Gillilan, Richard E; Green, Katherine S; Wang, Suntao; Gruner, Sol M

    2011-03-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 10(7) 10 keV X-rays, a maximum flux rate of 10(8) X-rays pixel(-1) s(-1), and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements.

  11. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types

    NASA Technical Reports Server (NTRS)

    Wassell, Edward J.; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L; Chiao, Meng P.; Chang, Meng Ping; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; hide

    2016-01-01

    We develop superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting the specifications of X-ray imaging spectrometers, including high count rate, high energy resolution, and large field of view. In particular, a focal plane composed of two subarrays: one of fine pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit Instrument on the European Space Agencys ATHENA mission. We have based the subarrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all-gold X-ray absorber on 50 and 75 micron pitch, where the Mo/Au TES sits atop a thick metal heatsinking layer, have shown high resolution and can accommodate high count rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au, and an added bismuth layer in a 250-sq micron absorber. To tune the parameters of each subarray requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single-ion milling step. We demonstrate methods for integrating the heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each subarray, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T(sub c)) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these 'hybrid' arrays will be presented.

  12. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector

    PubMed Central

    Jorgensen, Steven M.; Vercnocke, Andrew J.; Rundle, David S.; Butler, Philip H.; McCollough, Cynthia H.; Ritman, Erik L.

    2016-01-01

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = −0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches. PMID:27795606

  13. Evaluation of a photon counting Medipix3RX CZT spectral x-ray detector.

    PubMed

    Jorgensen, Steven M; Vercnocke, Andrew J; Rundle, David S; Butler, Philip H; McCollough, Cynthia H; Ritman, Erik L

    2016-08-28

    We assessed the performance of a cadmium zinc telluride (CZT)-based Medipix3RX x-ray detector as a candidate for micro-computed tomography (micro-CT) imaging. This technology was developed at CERN for the Large Hadron Collider. It features an array of 128 by 128, 110 micrometer square pixels, each with eight simultaneous threshold counters, five of which utilize real-time charge summing, significantly reducing the charge sharing between contiguous pixels. Pixel response curves were created by imaging a range of x-ray intensities by varying x-ray tube current and by varying the exposure time with fixed x-ray current. Photon energy-related assessments were made by flooding the detector with the tin foil filtered emission of an I-125 radioisotope brachytherapy seed and sweeping the energy threshold of each of the four charge-summed counters of each pixel in 1 keV steps. Long term stability assessments were made by repeating exposures over the course of one hour. The high properly-functioning pixel yield (99%), long term stability (linear regression of whole-chip response over one hour of acquisitions: y = -0.0038x + 2284; standard deviation: 3.7 counts) and energy resolution (2.5 keV FWHM (single pixel), 3.7 keV FWHM across the full image) make this device suitable for spectral micro-CT. The charge summing performance effectively reduced the measurement corruption caused by charge sharing which, when unaccounted for, shifts the photon energy assignment to lower energies, degrading both count and energy accuracy. Effective charge summing greatly improves the potential for calibrated, energy-specific material decomposition and K edge difference imaging approaches.

  14. Materials identification using a small-scale pixellated x-ray diffraction system

    NASA Astrophysics Data System (ADS)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  15. First light from a very large area pixel array for high-throughput x-ray polarimetry

    NASA Astrophysics Data System (ADS)

    Bellazzini, R.; Spandre, G.; Minuti, M.; Baldini, L.; Brez, A.; Cavalca, F.; Latronico, L.; Omodei, N.; Massai, M. M.; Sgrò, C.; Costa, E.; Soffitta, P.; Krummenacher, F.; de Oliveira, R.

    2006-06-01

    We report on a large active area (15x15mm2), high channel density (470 pixels/mm2), self-triggering CMOS analog chip that we have developed as pixelized charge collecting electrode of a Micropattern Gas Detector. This device, which represents a big step forward both in terms of size and performance, is the last version of three generations of custom ASICs of increasing complexity. The CMOS pixel array has the top metal layer patterned in a matrix of 105600 hexagonal pixels at 50μm pitch. Each pixel is directly connected to the underneath full electronics chain which has been realized in the remaining five metal and single poly-silicon layers of a standard 0.18μm CMOS VLSI technology. The chip has customizable self-triggering capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way it is possible to reduce significantly the readout time and the data volume by limiting the signal output only to those pixels belonging to the region of interest. The very small pixel area and the use of a deep sub-micron CMOS technology has brought the noise down to 50 electrons ENC. Results from in depth tests of this device when coupled to a fine pitch (50μm on a triangular pattern) Gas Electron Multiplier are presented. The matching of readout and gas amplification pitch allows getting optimal results. The application of this detector for Astronomical X-Ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation when working with two gas mixtures and two different photon energies is shown. Results from a full MonteCarlo simulation for several galactic and extragalactic astronomical sources are also reported.

  16. Data processing for soft X-ray diagnostics based on GEM detector measurements for fusion plasma imaging

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Byszuk, A.; Juszczyk, B.; Wojenski, A.; Zabolotny, W.; Zienkiewicz, P.

    2015-12-01

    The measurement system based on GEM - Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement fusion plasmas. The Triple Gas Electron Multiplier (T-GEM) is presented as soft X-ray (SXR) energy and position sensitive detector. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. So, it is the software part of the project between the electronic hardware and physics applications. The project is original and it was developed by the paper authors. Multi-channel measurement system and essential data processing for X-ray energy and position recognition are considered. Several modes of data acquisition determined by hardware and software processing are introduced. Typical measuring issues are deliberated for the enhancement of data quality. The primary version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures initially for the investigation purpose. Two detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Fundamental output characteristics are presented for one and two dimensional detector structure. Representative results for reference source and tokamak plasma are demonstrated.

  17. Development of a mercuric iodide detector array for in-vivo x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.; Tornai, M.P.

    A nineteen element mercuric iodide (HgI{sub 2}) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm{sup 2}) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm{sup 2}. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalkmore » between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI{sub 2} x-ray detector with active area of about 3 mm{sup 2} and thickness of 500 {mu}m.« less

  18. Microwave Kinetic Inductance Detectors: Large Format X-ray Spectral Imagers for the Next Generation of X-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Eckart, Megan E.; Mazin, B. A.; Bumble, B.; Golwala, S. R.; Zmuidzinas, J.; Day, P. K.; Harrison, F. A.

    2006-09-01

    Microwave Kinetic Inductance Detectors (MKIDs) have the potential to provide megapixel imagers with few eV spectral resolution for future X-ray missions such as Gen-X. MKIDs offer the advantage over many other cryogenic detector technologies that they can be easily multiplexed, so that arrays with many thousand pixels are readily achievable. In addition, the readout electronics can be operated at room temperature, a significant advantage for space applications. MKIDs exploit the dependence of surface impedance of a superconductorwith the quasiparticle density. Quasiparticles are created by absorption of X-rays, with number proportional to the X-ray energy. The impedance change may be sensitively measured using a thin-film resonant circuit. The practical application of MKIDs for photon detection requires a method of efficiently coupling the photon energy to the MKID. To apply the MKID scheme to X-ray detection we pattern tantalum strips with aluminum MKIDs attached at each end. An incident X-ray is absorbed in the Ta and creates millions of quasiparticle excitations, which diffuse to each end of the strip, finally entering the Al resonators where they are trapped and sensed. Simultaneous monitoring of the signal at both ends of the strip allow position and energy determination for each photon. We have demonstrated working strip detectors in the laboratory, and will present our measurements of the quasiparticle diffusion constant and the quasiparticle lifetime in tantalum, the aluminum quasiparticle lifetime, and the energy resolution of the detector. We will also discuss ideas for future detector designs and suggest ultimate performance goals for X-ray astronomy applications.

  19. Energy dependent features of X-ray signals in a GridPix detector

    NASA Astrophysics Data System (ADS)

    Krieger, C.; Kaminski, J.; Vafeiadis, T.; Desch, K.

    2018-06-01

    We report on the calibration of an argon/isobutane (97.7%/2.3%)-filled GridPix detector with soft X-rays (277 eV to 8 keV) using the variable energy X-ray source of the CAST Detector Lab at CERN. We study the linearity and energy resolution of the detector using both the number of pixels hit and the total measured charge as energy measures. For the latter, the energy resolution σE / E is better than 10% (20%) for energies above 2 keV (0.5 keV). Several characteristics of the recorded events are studied.

  20. Spectral X-Ray Diffraction using a 6 Megapixel Photon Counting Array Detector.

    PubMed

    Muir, Ryan D; Pogranichniy, Nicholas R; Muir, J Lewis; Sullivan, Shane Z; Battaile, Kevin P; Mulichak, Anne M; Toth, Scott J; Keefe, Lisa J; Simpson, Garth J

    2015-03-12

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  1. Spectral x-ray diffraction using a 6 megapixel photon counting array detector

    NASA Astrophysics Data System (ADS)

    Muir, Ryan D.; Pogranichniy, Nicholas R.; Muir, J. Lewis; Sullivan, Shane Z.; Battaile, Kevin P.; Mulichak, Anne M.; Toth, Scott J.; Keefe, Lisa J.; Simpson, Garth J.

    2015-03-01

    Pixel-array array detectors allow single-photon counting to be performed on a massively parallel scale, with several million counting circuits and detectors in the array. Because the number of photoelectrons produced at the detector surface depends on the photon energy, these detectors offer the possibility of spectral imaging. In this work, a statistical model of the instrument response is used to calibrate the detector on a per-pixel basis. In turn, the calibrated sensor was used to perform separation of dual-energy diffraction measurements into two monochromatic images. Targeting applications include multi-wavelength diffraction to aid in protein structure determination and X-ray diffraction imaging.

  2. Two-dimensional imaging detectors for structural biology with X-ray lasers.

    PubMed

    Denes, Peter

    2014-07-17

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors--monolithic or hybrid--are the standard for XFELs today. For structural biology, improvements are needed for today's 10-100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Small-angle solution scattering using the mixed-mode pixel array detector

    PubMed Central

    Koerner, Lucas J.; Gillilan, Richard E.; Green, Katherine S.; Wang, Suntao; Gruner, Sol M.

    2011-01-01

    Solution small-angle X-ray scattering (SAXS) measurements were obtained using a 128 × 128 pixel X-ray mixed-mode pixel array detector (MMPAD) with an 860 µs readout time. The MMPAD offers advantages for SAXS experiments: a pixel full-well of >2 × 107 10 keV X-rays, a maximum flux rate of 108 X-rays pixel−1 s−1, and a sub-pixel point-spread function. Data from the MMPAD were quantitatively compared with data from a charge-coupled device (CCD) fiber-optically coupled to a phosphor screen. MMPAD solution SAXS data from lysozyme solutions were of equal or better quality than data captured by the CCD. The read-noise (normalized by pixel area) of the MMPAD was less than that of the CCD by an average factor of 3.0. Short sample-to-detector distances were required owing to the small MMPAD area (19.2 mm × 19.2 mm), and were revealed to be advantageous with respect to detector read-noise. As predicted by the Shannon sampling theory and confirmed by the acquisition of lysozyme solution SAXS curves, the MMPAD at short distances is capable of sufficiently sampling a solution SAXS curve for protein shape analysis. The readout speed of the MMPAD was demonstrated by continuously monitoring lysozyme sample evolution as radiation damage accumulated. These experiments prove that a small suitably configured MMPAD is appropriate for time-resolved solution scattering measurements. PMID:21335900

  4. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  5. A novel x-ray detector design with higher DQE and reduced aliasing: Theoretical analysis of x-ray reabsoprtion in detector converter material

    NASA Astrophysics Data System (ADS)

    Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.

    2016-03-01

    The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.

  6. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types.

    PubMed

    Wassell, E J; Adams, J S; Bandler, S R; Betancourt-Martinez, G L; Chiao, M P; Chang, M P; Chervenak, J A; Datesman, A M; Eckart, M E; Ewin, A J; Finkbeiner, F M; Ha, J Y; Kelley, R; Kilbourne, C A; Miniussi, A R; Sakai, K; Porter, F; Sadleir, J E; Smith, S J; Wakeham, N A; Yoon, W

    2017-06-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (T c ) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

  7. Fabrication of X-ray Microcalorimeter Focal Planes Composed of Two Distinct Pixel Types

    PubMed Central

    Wassell, E. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chiao, M. P.; Chang, M. P.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Ha, J. Y.; Kelley, R.; Kilbourne, C. A.; Miniussi, A. R.; Sakai, K.; Porter, F.; Sadleir, J. E.; Smith, S. J.; Wakeham, N. A.; Yoon, W.

    2017-01-01

    We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency’s Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these “hybrid” arrays will be presented. PMID:28804229

  8. Test apparatus to monitor time-domain signals from semiconductor-detector pixel arrays

    NASA Astrophysics Data System (ADS)

    Haston, Kyle; Barber, H. Bradford; Furenlid, Lars R.; Salçin, Esen; Bora, Vaibhav

    2011-10-01

    Pixellated semiconductor detectors, such as CdZnTe, CdTe, or TlBr, are used for gamma-ray imaging in medicine and astronomy. Data analysis for these detectors typically estimates the position (x, y, z) and energy (E) of each interacting gamma ray from a set of detector signals {Si} corresponding to completed charge transport on the hit pixel and any of its neighbors that take part in charge sharing, plus the cathode. However, it is clear from an analysis of signal induction, that there are transient signal on all pixel electrodes during the charge transport and, when there is charge trapping, small negative residual signals on all electrodes. If we wish to optimally obtain the event parameters, we should take all these signals into account. We wish to estimate x,y,z and E from the set of all electrode signals, {Si(t)}, including time dependence, using maximum-likelihood techniques[1]. To do this, we need to determine the probability of the electrode signals, given the event parameters {x, y, z, E}, i.e. Pr( {Si(t)} | {x, y, z, E} ). Thus we need to map the detector response of all pixels, {Si(t)}, for a large number of events with known x,y,z and E.In this paper we demonstrate the existence of the transient signals and residual signals and determine their magnitudes. They are typically 50-100 times smaller than the hit-pixel signals. We then describe development of an apparatus to measure the response of a 16-pixel semiconductor detector and show some preliminary results. We also discuss techniques for measuring the event parameters for individual gamma-ray interactions, a requirement for determining Pr( {Si(t)} | {x, y, z, E}).

  9. Multi-energy x-ray detector calibration for T e and impurity density (n Z) measurements of MCF plasmas

    DOE PAGES

    Maddox, J.; Pablant, N.; Efthimion, P.; ...

    2016-09-07

    Here, soft x-ray detection with the new "multi-energy" PILATUS3 detector systems holds promise as a magnetically confined fusion (MCF) plasma diagnostic for ITER and beyond. The measured x-ray brightness can be used to determine impurity concentrations, electron temperatures, n 2 eZ eff products, and to probe the electron energy distribution. However, in order to be effective, these detectors which are really large arrays of detectors with photon energy gating capabilities must be precisely calibrated for each pixel. The energy-dependence of the detector response of the multi-energy PILATUS3 system with 100 K pixels has been measured at Dectris Laboratory. X-rays emittedmore » from a tube under high voltage bombard various elements such that they emit x-ray lines from Zr-Lα to Ag-Kα between 1.8 and 22.16 keV. Each pixel on the PILATUS3 can be set to a minimum energy threshold in the range from 1.6 to 25 keV. This feature allows a single detector to be sensitive to a variety of x-ray energies, so that it is possible to sample the energy distribution of the x-ray continuum and line-emission. PILATUS3 can be configured for 1D or 2D imaging of MCF plasmas with typical spatial energy and temporal resolution of 1 cm, 0.6 keV, and 5 ms, respectively.« less

  10. Operation of an InGrid based X-ray detector at the CAST experiment

    NASA Astrophysics Data System (ADS)

    Krieger, Christoph; Desch, Klaus; Kaminski, Jochen; Lupberger, Michael

    2018-02-01

    The CERN Axion Solar Telescope (CAST) is searching for axions and other particles which could be candidates for DarkMatter and even Dark Energy. These particles could be produced in the Sun and detected by a conversion into soft X-ray photons inside a strong magnetic field. In order to increase the sensitivity for physics beyond the Standard Model, detectors with a threshold below 1 keV as well as efficient background rejection methods are required to compensate for low energies and weak couplings resulting in very low detection rates. Those criteria are fulfilled by a detector utilizing the combination of a pixelized readout chip with an integrated Micromegas stage. These InGrid (Integrated Grid) devices can be build by photolithographic postprocessing techniques, resulting in a close to perfect match of grid and pixels facilitating the detection of single electrons on the chip surface. The high spatial resolution allows for energy determination by simple electron counting as well as for an event-shape based analysis as background rejection method. Tests at an X-ray generator revealed the energy threshold of an InGrid based X-ray detector to be well below the carbon Kα line at 277 eV. After the successful demonstration of the detectors key features, the detector was mounted at one of CAST's four detector stations behind an X-ray telescope in 2014. After several months of successful operation without any detector related interruptions, the InGrid based X-ray detector continues data taking at CAST in 2015. During operation at the experiment, background rates in the order of 10-5 keV-1 cm-2 s-1 have been achieved by application of a likelihood based method discriminating the non-photon background originating mostly from cosmic rays. For continued operation in 2016, an upgraded InGrid based detector is to be installed among other improvements including decoupling and sampling of the signal induced on the grid as well as a veto scintillator to further lower the

  11. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  12. VIPIC: a custom-made detector for X-ray speckle measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, Abdul K.; Siddons, D. Peter; Deptuch, Grzegorz

    2016-03-01

    The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuousmore » acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex ano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales.« less

  13. LAMBDA 2M GaAs—A multi-megapixel hard X-ray detector for synchrotrons

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Smoljanin, S.; Pithan, F.; Sarajlic, M.; Rothkirch, A.; Yu, Y.; Liermann, H. P.; Morgenroth, W.; Winkler, B.; Jenei, Z.; Stawitz, H.; Becker, J.; Graafsma, H.

    2018-01-01

    Synchrotrons can provide very intense and focused X-ray beams, which can be used to study the structure of matter down to the atomic scale. In many experiments, the quality of the results depends strongly on detector performance; in particular, experiments studying dynamics of samples require fast, sensitive X-ray detectors. "LAMBDA" is a photon-counting hybrid pixel detector system for experiments at synchrotrons, based on the Medipix3 readout chip. Its main features are a combination of comparatively small pixel size (55 μm), high readout speed at up to 2000 frames per second with no time gap between images, a large tileable module design, and compatibility with high-Z sensors for efficient detection of higher X-ray energies. A large LAMBDA system for hard X-ray detection has been built using Cr-compensated GaAs as a sensor material. The system is composed of 6 GaAs tiles, each of 768 by 512 pixels, giving a system with approximately 2 megapixels and an area of 8.5 by 8.5 cm2. While the sensor uniformity of GaAs is not as high as that of silicon, its behaviour is stable over time, and it is possible to correct nonuniformities effectively by postprocessing of images. By using multiple 10 Gigabit Ethernet data links, the system can be read out at the full speed of 2000 frames per second. The system has been used in hard X-ray diffraction experiments studying the structure of samples under extreme pressure in diamond anvil cells. These experiments can provide insight into geological processes. Thanks to the combination of high speed readout, large area and high sensitivity to hard X-rays, it is possible to obtain previously unattainable information in these experiments about atomic-scale structure on a millisecond timescale during rapid changes of pressure or temperature.

  14. a Portable Pixel Detector Operating as AN Active Nuclear Emulsion and its Application for X-Ray and Neutron Tomography

    NASA Astrophysics Data System (ADS)

    Vykydal, Z.; Jakubek, J.; Holy, T.; Pospisil, S.

    2006-04-01

    This work is devoted to the development of a USB1.1 (Universal Serial Bus) based read out system for the Medipix2 detector to achieve maximum portability of this position sensitive detecting device. All necessary detector support is integrated into one compact system (80 × 50 × 20 mm3) including the detector bias source (up to 100 V). The read out interface can control external I2C <X-REF REFID="9789812773678_0123FN002">X-REF> based devices, so in case of tomography it is easy to synchronize detector shutter with stepper motor control. An additional significant advantage of the USB interface is the support of back side pulse processing. This feature enables to determine the energy additionally to the position of a heavy charged particle hitting the sensor. Due to the small pixel dimensions it is also possible to distinguish the type of single quanta of radiation from the track created in the pixel detector as in case of an active nuclear emulsion.

  15. High dynamic range pixel architecture for advanced diagnostic medical x-ray imaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izadi, Mohammad Hadi; Karim, Karim S.

    2006-05-15

    The most widely used architecture in large-area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, small PPS output signals are swamped by external column charge amplifier and data line thermal noise, which reduce the minimum readable sensor input signal. In contrast to PPS circuits, on-pixel amplifiers in a-Si technology reduce readout noise to levels that can meet even the stringent requirements for low noise digital x-ray fluoroscopy (<1000 noise electrons). However, larger voltagesmore » at the pixel input cause the output of the amplified pixel to become nonlinear thus reducing the dynamic range. We reported a hybrid amplified pixel architecture based on a combination of PPS and amplified pixel designs that, in addition to low noise performance, also resulted in large-signal linearity and consequently higher dynamic range [K. S. Karim et al., Proc. SPIE 5368, 657 (2004)]. The additional benefit in large-signal linearity, however, came at the cost of an additional pixel transistor. We present an amplified pixel design that achieves the goals of low noise performance and large-signal linearity without the need for an additional pixel transistor. Theoretical calculations and simulation results for noise indicate the applicability of the amplified a-Si pixel architecture for high dynamic range, medical x-ray imaging applications that require switching between low exposure, real-time fluoroscopy and high-exposure radiography.« less

  16. The Speedster-EXD- A New Event-Driven Hybrid CMOS X-ray Detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2016-01-01

    The Speedster-EXD is a new 64×64 pixel, 40-μm pixel pitch, 100-μm depletion depth hybrid CMOS x-ray detector with the capability of reading out only those pixels containing event charge, thus enabling fast effective frame rates. A global charge threshold can be specified, and pixels containing charge above this threshold are flagged and read out. The Speedster detector has also been designed with other advanced in-pixel features to improve performance, including a low-noise, high-gain capacitive transimpedance amplifier that eliminates interpixel capacitance crosstalk (IPC), and in-pixel correlated double sampling subtraction to reduce reset noise. We measure the best energy resolution on the Speedster-EXD detector to be 206 eV (3.5%) at 5.89 keV and 172 eV (10.0%) at 1.49 keV. The average IPC to the four adjacent pixels is measured to be 0.25%±0.2% (i.e., consistent with zero). The pixel-to-pixel gain variation is measured to be 0.80%±0.03%, and a Monte Carlo simulation is applied to better characterize the contributions to the energy resolution.

  17. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahim Farah, Fahim Farah; Deptuch, Grzegorz W.; Hoff, James R.

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array withoutmore » any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.« less

  18. Design methodology: edgeless 3D ASICs with complex in-pixel processing for pixel detectors

    NASA Astrophysics Data System (ADS)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    The design methodology for the development of 3D integrated edgeless pixel detectors with in-pixel processing using Electronic Design Automation (EDA) tools is presented. A large area 3 tier 3D detector with one sensor layer and two ASIC layers containing one analog and one digital tier, is built for x-ray photon time of arrival measurement and imaging. A full custom analog pixel is 65μm x 65μm. It is connected to a sensor pixel of the same size on one side, and on the other side it has approximately 40 connections to the digital pixel. A 32 x 32 edgeless array without any peripheral functional blocks constitutes a sub-chip. The sub-chip is an indivisible unit, which is further arranged in a 6 x 6 array to create the entire 1.248cm x 1.248cm ASIC. Each chip has 720 bump-bond I/O connections, on the back of the digital tier to the ceramic PCB. All the analog tier power and biasing is conveyed through the digital tier from the PCB. The assembly has no peripheral functional blocks, and hence the active area extends to the edge of the detector. This was achieved by using a few flavors of almost identical analog pixels (minimal variation in layout) to allow for peripheral biasing blocks to be placed within pixels. The 1024 pixels within a digital sub-chip array have a variety of full custom, semi-custom and automated timing driven functional blocks placed together. The methodology uses a modified mixed-mode on-top digital implementation flow to not only harness the tool efficiency for timing and floor-planning but also to maintain designer control over compact parasitically aware layout. The methodology uses the Cadence design platform, however it is not limited to this tool.

  19. Miniaturized X-ray telescope for VZLUSAT-1 nanosatellite with Timepix detector

    NASA Astrophysics Data System (ADS)

    Baca, T.; Platkevic, M.; Jakubek, J.; Inneman, A.; Stehlikova, V.; Urban, M.; Nentvich, O.; Blazek, M.; McEntaffer, R.; Daniel, V.

    2016-10-01

    We present the application of a Timepix detector on the VZLUSAT-1 nanosatellite. Timepix is a compact pixel detector (256×256 square pixels, 55×55 μm each) sensitive to hard X-ray radiation. It is suitable for detecting extraterrestrial X-rays due to its low noise characteristics, which enables measuring without special cooling. This project aims to verify the practicality of the detector in conjunction with 1-D Lobster-Eye optics to observe celestial sources between 5 and 20 keV. A modified USB interface (developed by IEAP at CTU in Prague) is used for low-level control of the Timepix. An additional 8-bit Atmel microcontroller is dedicated for commanding the detector and to process the data onboard the satellite. We present software methods for onboard post-processing of captured images, which are suitable for implementation under the constraints of the low-powered embedded hardware. Several measuring modes are prepared for different scenarios including single picture exposure, solar UV-light triggered exposure, and long-term all-sky monitoring. The work has been done within Medipix2 collaboration. The satellite is planned for launch in April 2017 as a part of the QB50 project with an end of life expectancy in 2019.

  20. Comparison of lens- and fiber-coupled CCD detectors for X-ray computed tomography

    PubMed Central

    Uesugi, K.; Hoshino, M.; Yagi, N.

    2011-01-01

    X-ray imaging detectors with an identical phosphor and a CCD chip but employing lens- and fiber-coupling between them have been compared. These are designed for X-ray imaging experiments, especially computed tomography, at the medium-length beamline at the SPring-8 synchrotron radiation facility. It was found that the transmittance of light to the CCD is about four times higher in the fiber-coupled detector. The uniformity of response in the lens-coupled detector has a global shading of up to 40%, while pixel-to-pixel variation owing to a chicken-wire pattern was dominant in the fiber-coupled detector. Apart from the higher transmittance, the fiber-coupled detector has a few characteristics that require attention when it is used for computed tomography, which are browning of the fiber, discontinuity in the image, image distortion, and dark spots in the chicken-wire pattern. Thus, it is most suitable for high-speed tomography of samples that tend to deform, for example biological and soft materials. PMID:21335908

  1. An Algorithm of an X-ray Hit Allocation to a Single Pixel in a Cluster and Its Test-Circuit Implementation

    DOE PAGES

    Deptuch, Grzegorz W.; Fahim, Farah; Grybos, Pawel; ...

    2017-06-28

    An on-chip implementable algorithm for allocation of an X-ray photon imprint, called a hit, to a single pixel in the presence of charge sharing in a highly segmented pixel detector is described. Its proof-of-principle implementation is also given supported by the results of tests using a highly collimated X-ray photon beam from a synchrotron source. The algorithm handles asynchronous arrivals of X-ray photons. Activation of groups of pixels, comparisons of peak amplitudes of pulses within an active neighborhood and finally latching of the results of these comparisons constitute the three procedural steps of the algorithm. A grouping of pixels tomore » one virtual pixel, that recovers composite signals and event driven strobes, to control comparisons of fractional signals between neighboring pixels are the actuators of the algorithm. The circuitry necessary to implement the algorithm requires an extensive inter-pixel connection grid of analog and digital signals, that are exchanged between pixels. A test-circuit implementation of the algorithm was achieved with a small array of 32 × 32 pixels and the device was exposed to an 8 keV highly collimated to a diameter of 3-μm X-ray beam. Furthermore, the results of these tests are given in this paper assessing physical implementation of the algorithm.« less

  2. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  3. Development of High Resolution Mirrors and Cd-Zn-Te Detectors for Hard X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Speegle, Chet O.; Gaskin, Jessica; Sharma, Dharma; Engelhaupt, Darell; Six, N. Frank (Technical Monitor)

    2002-01-01

    We describe the fabrication and implementation of a high-resolution conical, grazing- incidence, hard X-ray (20-70 keV) telescope. When flown aboard stratospheric balloons, these mirrors are used to image cosmic sources such as supernovae, neutron stars, and quasars. The fabrication process involves generating super-polished mandrels, mirror shell electroforming, and mirror testing. The cylindrical mandrels consist of two conical segments; each segment is approximately 305 mm long. These mandrels are first, precision ground to within approx. 1.0 micron straightness along each conical segment and then lapped and polished to less than 0.5 micron straightness. Each mandrel segment is the super-polished to an average surface roughness of approx. 3.25 angstrom rms. By mirror shell replication, this combination of good figure and low surface roughness has enabled us to achieve 15 arcsec, confirmed by X-ray measurements in the Marshall Space Flight Center 102 meter test facility. To image the focused X-rays requires a focal plane detector with appropriate spatial resolution. For 15 arcsec optics of 6 meter focal length, this resolution must be around 200 microns. In addition, the detector must have a high efficiency, relatively high energy resolution, and low background. We are currently developing Cadmium-Zinc-Telluride fine-pixel detectors for this purpose. The detectors under study consist of a 16x16 pixel array with a pixel pitch of 300 microns and are 1 mm and 2 mm thick. At 60 keV, the measured energy resolution is around 2%.

  4. Characterization of pixelated TlBr detectors with Tl electrodes

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Onodera, Toshiyuki; Kim, Seong-Yun; Shoji, Tadayoshi; Ishii, Keizo

    2014-05-01

    A 4.36-mm-thick pixelated thallium bromide (TlBr) detector with Tl electrodes was fabricated from a crystal grown by the traveling molten zone method using zone-purified material. The detector had four 1×1 mm2 pixelated anodes. The detector performance was characterized at room temperature. The mobility-lifetime products of electrons for each pixel of the TlBr detector were measured to be >2.8×10-3 cm2/V. The four pixelated anodes of the detector exhibited energy resolutions of 1.5-1.8% full width at half maximum (FWHM) for 662-keV gamma rays for single-pixel events with the depth correction method. An energy resolution of 4.5% FWHM for 662-keV gamma rays was obtained from a reconstructed energy spectrum using two-pixel events from the two pixelated anodes on the detector.

  5. A pixelated x-ray detector for diffraction imaging at next-generation high-rate FEL sources

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Forti, F.; Casarosa, G.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2017-08-01

    The PixFEL collaboration has developed the building blocks for an X-ray imager to be used in applications at FELs. In particular, slim edge pixel detectors with high detection efficiency over a broad energy range, from 1 to 12 keV, have been developed. Moreover, a multichannel readout chip, called PFM2 (PixFEL front-end Matrix 2) and consisting of 32 × 32 cells, has been designed and fabricated in a 65 nm CMOS technology. The pixel pitch is 110 μm, the overall area is around 16 mm2. In the chip, different solutions have been implemented for the readout channel, which includes a charge sensitive amplifier (CSA) with dynamic signal compression, a time-variant shaper and an A-to-D converter with a 10 bit resolution. The CSA can be configured in four different gain modes, so as to comply with photon energies in the 1 to 10 keV range. The paper will describe in detail the channel architecture and present the results from the characterization of PFM2. It will discuss the design of a new version of the chip, called PFM3, suitable for post-processing with peripheral, under-pad through silicon vias (TSVs), which are needed to develop four-side buttable chips and cover large surfaces with minimum inactive area.

  6. Position-Sensitive CZT Detectors for High Energy X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Matteson, J.; Coburn, W.; Heindl, W.; Peterson, L.; Pelling, M.; Rothschild, R.; Skelton, R.; Hink, P.; Slavis, K.

    1998-05-01

    We report recent progress on CZT (Cadmium Zinc Telluride) detectors by the UCSD/WU collaboration. CZT, a room- temperature semiconductor, is a very promising detector material for high energy X-ray astronomy. It can operate from <10 keV to >200 keV, and give sub-keV energy resolution and sub-mm spatial resolution. We have developed an advanced CZT detector that uses two innovations to improve spectral response, give it 3-D localization of energy loss events, and reduce background at high altitudes and in space. The detector measures 12 x 12 x 2 mm(3) and was manufactured by eV Products. Each face has a strip readouts with 500 micron pitch electrodes. The 2 faces' strips are orthogonal, which provides x-y localization into 500 micron pixels. One innovation is "steering electrodes", which are located between the anode strips. They improve the anode charge collection and energy resolution, and tailing due to hole trapping is nearly totally eliminated. The energy resolution at 60 keV is 4 keV and the peak to valley ratio is 50. The other innovation is 3-D localization of energy losses. This is done by comparing the signals from the anode strips, cathode strips, and steering electrodes. There is a strong depth of interaction signature, which can be used to accept events which interact close to the cathode strips (where X-rays of interest are incident) and reject deeper interactions (which are likely to be background). The detector was tested in a balloon flight at 108,000 feet in October 1997. Background was reduced by passive shielding, consisting of lead graded with tin and copper. The lead thickness was changed by command during the flight, and was 7, 2, and 0 mm thick. With the 2 mm thickness the 20 - 40 keV background for the central 30 pixels was 8x10(-4) c/cm(2) -s-keV when the depth of interaction signature was used to reject background, and 7 times greater when this information was not used. The lower background is 12 times less than other workers have obtained

  7. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    NASA Astrophysics Data System (ADS)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray

  8. Simultaneous measurement of X-ray specular reflection and off-specular diffuse scattering from liquid surfaces using a two-dimensional pixel array detector: the liquid-interface reflectometer of BL37XU at SPring-8.

    PubMed

    Yano, Yohko F; Uruga, Tomoya; Tanida, Hajime; Toyokawa, Hidenori; Terada, Yasuko; Yamada, Hironari

    2010-07-01

    An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution. The approach is also demonstrated on an aqueous solution of 1-dodecyl-3-methylimidazolium chloride. The monolayer in which the dodecyl chain faces upwards and the Cl(-) anion locates next to the imidazolium ring formed on the water surface was found to be laterally homogeneous. The use of a pixel array detector will be particularly powerful for in situ measurements to investigate both out-of-plane and in-plane structures simultaneously, not only for liquid surfaces but also for other thin films.

  9. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  10. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  11. The Cryogenic Anti-Coincidence detector for ATHENA X-IFU: pulse analysis of the AC-S7 single pixel prototype

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Argan, A.; Lotti, S.; Macculi, C.; Piro, L.; Biasotti, M.; Corsini, D.; Gatti, F.; Torrioli, G.

    2016-07-01

    The ATHENA observatory is the second large-class mission in ESA Cosmic Vision 2015-2025, with a launch foreseen in 2028 towards the L2 orbit. The mission addresses the science theme "The Hot and Energetic Universe", by coupling a high-performance X-ray Telescope with two complementary focal-plane instruments. One of these is the X-ray Integral Field Unit (X-IFU): it is a TES based kilo-pixel order array able to provide spatially resolved high-resolution spectroscopy (2.5 eV at 6 keV) over a 5 arcmin FoV. The X-IFU sensitivity is degraded by the particles background expected at L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the background level and enable the mission science goals, a Cryogenic Anticoincidence (CryoAC) detector is placed < 1 mm below the TES array. It is a 4- pixel TES based detector, with wide Silicon absorbers sensed by Ir:Au TESes. The CryoAC development schedule foresees by Q1 2017 the delivery of a Demonstration Model (DM) to the X-IFU FPA development team. The DM is a single-pixel detector that will address the final design of the CryoAC. It will verify some representative requirements at single-pixel level, especially the detector operation at 50 mK thermal bath and the threshold energy at 20 keV. To reach the final DM design we have developed and tested the AC-S7 prototype, with 1 cm2 absorber area sensed by 65 Ir TESes. Here we will discuss the pulse analysis of this detector, which has been illuminated by the 60 keV line from a 241Am source. First, we will present the analysis performed to investigate pulses timings and spectrum, and to disentangle the athermal component of the pulses from the thermal one. Furthermore, we will show the application to our dataset of an alternative method of pulse processing, based upon Principal Component Analysis (PCA). This kind of analysis allow us to recover better energy spectra than achievable with traditional methods

  12. X-Ray Detector Research at MSFC for Space Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica

    2006-01-01

    NASA's Vision for Space Exploration has specific goals aimed at exploring the Solar System. This vision, under presidential mandate includes landing humans on the moon before the end of the next decade, paving the way for eventual journeys to Mars and beyond. The first missions to the moon will be in the form of both Orbiters and Landers, with the goal of paving the way for human return. One of the instruments we are currently working on,in collaboration with Brookhaven National Laboratory, is a lunar orbiter fluorescent x-ray spectrometer to finely map the light elements (down to Carbon) on surface of the moon. Funded NASA s Planetary Instrument Definition and Development Program the instrument is based on silicon drift detector arrays read out by custom ASICs. These offer the promise of high spectral resolution, necessary for resolving weak lines against a strong background continuum, and very low power requirements, necessary for large areas (greater than 500 square centimeters) required for future lunar missions. Further, the inherent radiation hardness of these detectors makes them ideal candidates for exploring the Jovian system, where the harsh radiation environment from Jupiter s radiation belts creates unfavorable detector conditions. Looking beyond our solar system, in the hard x-ray regime (20-80keV.), we are studying Cadmium-Zinc-Telluride pixilated detectors as feasible candidates for focal plane detectors of a hard x-ray telescope. This energy region bridges the gap between thermal and non-thermal x-ray emission from astronomical sources, will allow us to better understand supernovae nucleosynthesis (such as through the Ti-44 lines at 68keV and 78keV), Active Galactic Nuclei and other compact objects, more completely. The detectors that we are characterizing are 2mm in thickness and are pixilated with a 16x16 array of 300 micrometer pitch pixels (50micometer gap). These detectors are designed at Rutherford Appleton Laboratory, material is from e

  13. A Test Stand to Characterize and Contribute to the Development of DEPFET X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Falcone, Abe

    The field of X-ray astronomy is currently looking forward to several new missions (e.g Athena, BeppiColumbo, and IXPE which is a new SMEX polarimeter), and there is the possibility of a flag-ship mission (e.g. the Lynx X-ray Surveyor) and/or other SMEX through probe class missions in the long-term future with many mission concepts being developed (e.g. ARCUS). The X-ray detec-tors for these future missions must be developed to suitable maturity to be proposed for flight, and expertise operating the newest versions of the detectors must be acquired by potential mis-sion designers and proposers. There are several silicon X-ray imaging active pixel sensor (APS) detectors being developed at this time (hybrid CMOS, monolithic CMOS, and DEPFETs), and each of these have their own advantages and levels of maturity, while they all provide enhanced radia-tion hardness, lower power operation, and versatile readout modes. Of the new APS X-ray detec-tors being developed, the DEPleted p-channel Field Effect Transistors (DEPFETs) have exhibited the best noise performance to-date. While they do require larger pixel structures than their com-petitors, the low noise performance of these detectors makes them an excellent choice for many mission applications (e.g. they will be launched on 2 ESA missions, Athena & BepiColumbo), and their further development could benefit other missions, particularly future missions that might be led by NASA and US scientists. Up until now, the development of these detectors has been lim-ited to only two groups located in Germany; one group is at Max Planck Institute and the other is PNSensors which is comprised of engineers and scientists that previously led the DEPFET design work at Max Planck. We propose to engage one of these groups in order to: (a) acquire newly de-signed test DEPFET detectors built by PNSensor, through a very-low-cost arrangement, (b) build a test stand that can operate these detectors and gain valuable experience running them in

  14. Flexible amorphous silicon PIN diode x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  15. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  16. Applications of a pnCCD detector coupled to columnar structure CsI(Tl) scintillator system in ultra high energy X-ray Laue diffraction

    NASA Astrophysics Data System (ADS)

    Shokr, M.; Schlosser, D.; Abboud, A.; Algashi, A.; Tosson, A.; Conka, T.; Hartmann, R.; Klaus, M.; Genzel, C.; Strüder, L.; Pietsch, U.

    2017-12-01

    Most charge coupled devices (CCDs) are made of silicon (Si) with typical active layer thicknesses of several microns. In case of a pnCCD detector the sensitive Si thickness is 450 μm. However, for silicon based detectors the quantum efficiency for hard X-rays drops significantly for photon energies above 10 keV . This drawback can be overcome by combining a pixelated silicon-based detector system with a columnar scintillator. Here we report on the characterization of a low noise, fully depleted 128×128 pixels pnCCD detector with 75×75 μm2 pixel size coupled to a 700 μm thick columnar CsI(Tl) scintillator in the photon range between 1 keV to 130 keV . The excellent performance of the detection system in the hard X-ray range is demonstrated in a Laue type X-ray diffraction experiment performed at EDDI beamline of the BESSY II synchrotron taken at a set of several GaAs single crystals irradiated by white synchrotron radiation. With the columnar structure of the scintillator, the position resolution of the whole system reaches a value of less than one pixel. Using the presented detector system and considering the functional relation between indirect and direct photon events Laue diffraction peaks with X-ray energies up to 120 keV were efficiently detected. As one of possible applications of the combined CsI-pnCCD system we demonstrate that the accuracy of X-ray structure factors extracted from Laue diffraction peaks can be significantly improved in hard X-ray range using the combined CsI(Tl)-pnCCD system compared to a bare pnCCD.

  17. CdZnTe Image Detectors for Hard-X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Chen, C. M. Hubert; Cook, Walter R.; Harrison, Fiona A.; Lin, Jiao Y. Y.; Mao, Peter H.; Schindler, Stephen M.

    2005-01-01

    Arrays of CdZnTe photodetectors and associated electronic circuitry have been built and tested in a continuing effort to develop focal-plane image sensor systems for hard-x-ray telescopes. Each array contains 24 by 44 pixels at a pitch of 498 m. The detector designs are optimized to obtain low power demand with high spectral resolution in the photon- energy range of 5 to 100 keV. More precisely, each detector array is a hybrid of a CdZnTe photodetector array and an application-specific integrated circuit (ASIC) containing an array of amplifiers in the same pixel pattern as that of the detectors. The array is fabricated on a single crystal of CdZnTe having dimensions of 23.6 by 12.9 by 2 mm. The detector-array cathode is a monolithic platinum contact. On the anode plane, the contact metal is patterned into the aforementioned pixel array, surrounded by a guard ring that is 1 mm wide on three sides and is 0.1 mm wide on the fourth side so that two such detector arrays can be placed side-by-side to form a roughly square sensor area with minimal dead area between them. Figure 1 shows two anode patterns. One pattern features larger pixel anode contacts, with a 30-m gap between them. The other pattern features smaller pixel anode contacts plus a contact for a shaping electrode in the form of a grid that separates all the pixels. In operation, the grid is held at a potential intermediate between the cathode and anode potentials to steer electric charges toward the anode in order to reduce the loss of charges in the inter-anode gaps. The CdZnTe photodetector array is mechanically and electrically connected to the ASIC (see Figure 2), either by use of indium bump bonds or by use of conductive epoxy bumps on the CdZnTe array joined to gold bumps on the ASIC. Hence, the output of each pixel detector is fed to its own amplifier chain.

  18. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  19. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector.

    PubMed

    Giewekemeyer, Klaus; Philipp, Hugh T; Wilke, Robin N; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W; Shanks, Katherine S; Zozulya, Alexey V; Salditt, Tim; Gruner, Sol M; Mancuso, Adrian P

    2014-09-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10(8) 8-keV photons pixel(-1) s(-1), and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10(10) photons µm(-2) s(-1) within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while `still' images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  20. Characterization of energy response for photon-counting detectors using x-ray fluorescence

    PubMed Central

    Ding, Huanjun; Cho, Hyo-Min; Barber, William C.; Iwanczyk, Jan S.; Molloi, Sabee

    2014-01-01

    Purpose: To investigate the feasibility of characterizing a Si strip photon-counting detector using x-ray fluorescence. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on an edge illuminated Si strip detector. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing silver (Ag), iodine (I), barium (Ba), and gadolinium (Gd), were placed in small plastic containers with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known fluorescence energies. The energy resolutions and charge-sharing fractions were also obtained from analytical fittings of the recorded fluorescence spectra. An analytical model, which employed four parameters that can be determined from the fluorescence calibration, was used to estimate the detector response function. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The average gain and offset of all pixels for detector energy calibration were determined to be 6.95 mV/keV and −66.33 mV, respectively. The detector’s energy resolution remained at approximately 2.7 keV for low energies, and increased slightly at 45 keV. The average charge-sharing fraction was estimated to be 36% within the investigated energy range of 20–45 keV. The simulated detector output based on the proposed response function agreed well with the experimental measurement. Conclusions: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the

  1. Tests of UFXC32k chip with CdTe pixel detector

    NASA Astrophysics Data System (ADS)

    Maj, P.; Taguchi, T.; Nakaye, Y.

    2018-02-01

    The paper presents the performance of the UFXC32K—a hybrid pixel detector readout chip working with CdTe detectors. The UFXC32K has a pixel pitch of 75 μm and can cope with both input signal polarities. This functionality allows operating with widely used silicon sensors collecting holes and CdTe sensors collecting electrons. This article describes the chip focusing on solving the issues connected to high-Z sensor material, namely high leakage currents, slow charge collection time and thick material resulting in increased charge-sharring effects. The measurements were conducted with higher X-ray energies including 17.4 keV from molybdenum. Conclusions drawn inside the paper show the UFXC32K's usability for CdTe sensors in high X-ray energy applications.

  2. Amorphous In-Ga-Zn-O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy

    2014-09-01

    The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67-3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In-Ga-Zn-O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. The indirect x-ray detector is based on a combination of a novel low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. The result demonstrates that a large charge gain of 31-122 is achieved for the proposed high-mobility (5-20 cm2/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10(-13) A) and OPD (<10(-8) A/cm2) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the detector entrance exposure per projection can be reduced from 1 to 0

  3. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena

    NASA Astrophysics Data System (ADS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.; Porter, F. S.; Sadleir, J. E.; Sakai, K.; Wakeham, N. A.; Wassell, E. J.; Yoon, W.; Bennett, D. A.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Morgan, K. M.; Pappas, C. G.; Reintsema, C. N.; Swetz, D. S.; Ullom, J. N.; Irwin, K. D.; Akamatsu, H.; Gottardi, L.; den Hartog, R.; Jackson, B. D.; van der Kuur, J.; Barret, D.; Peille, P.

    2016-07-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 keV. The instrument will provide unprecedented spectral resolution of 2.5 eV at energies of up to 7 keV and will accommodate photon fluxes of 1 mCrab (90 cps) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28" pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 × 18 small pixel array (SPA) of 2" pixels in the central 36" region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 mCrab (900 cps) or alternately for improved spectral performance (< 1.5 eV) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  4. Pixel CdTe semiconductor module to implement a sub-MeV imaging detector for astrophysics

    NASA Astrophysics Data System (ADS)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Álvarez, J.-M.; Ullán, M.; Pellegrini, G.; Lozano, M.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2017-03-01

    Stellar explosions are relevant and interesting astrophysical phenomena. Since long ago we have been working on the characterization of nova and supernova explosions in X and gamma rays, with the use of space missions such as INTEGRAL, XMM-Newton and Swift. We have been also involved in feasibility studies of future instruments in the energy range from several keV up to a few MeV, in collaboration with other research institutes, such as GRI, DUAL and e-ASTROGAM. High sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators, e.g., Supernovae, Classical Novae, Supernova Remnants (SNRs), Gamma-Ray Bursts (GRBs). In order to fulfil the combined requirement of high detection efficiency with good spatial and energy resolution, an initial module prototype based on CdTe pixel detectors is being developed. The detector dimensions are 12.5mm x 12.5mm x 2mm, with a pixel pitch of 1mm x 1mm. Each pixel is bump bonded to a fanout board made of Sapphire substrate and routed to the corresponding input channel of the readout ASIC, to measure pixel position and pulse height for each incident gamma-ray photon. An ohmic CdTe pixel detector has been characterised by means of 57Co, 133Ba and 22Na sources. Based on this, its spectroscopic performance and the influence of charge sharing is reported here. The pixel study is complemented by the simulation of the CdTe module performance using the GEANT 4 and MEGALIB tools, which will help us to optimise the pixel size selection.

  5. First tests of Timepix detectors based on semi-insulating GaAs matrix of different pixel size

    NASA Astrophysics Data System (ADS)

    Zaťko, B.; Kubanda, D.; Žemlička, J.; Šagátová, A.; Zápražný, Z.; Boháček, P.; Nečas, V.; Mora, Y.; Pichotka, M.; Dudák, J.

    2018-02-01

    In this work, we have focused on Timepix detectors coupled with the semi-insulating GaAs material sensor. We used undoped bulk GaAs material with the thickness of 350 μm. We prepared and tested four pixelated detectors with 165 μm and 220 μm pixel size with two versions of technology preparation, without and with wet chemically etched trenches around each pixel. We have carried out adjustment of GaAs Timepix detectors to optimize their performance. The energy calibration of one GaAs Timepix detector in Time-over-threshold mode was performed with the use of 241Am and 133Ba radioisotopes. We were able to detect γ-photons with the energy up to 160 keV. The X-ray imaging quality of GaAs Timepix detector was tested with X-ray source using various samples. After flat field we obtained very promising imaging performance of tested GaAs Timepix detectors.

  6. Recent Developments in Transition-Edge Strip Detectors for Solar X-Rays

    NASA Technical Reports Server (NTRS)

    Rausch, Adam J.; Deiker, Steven W.; Hilton, Gene; Irwin, Kent D.; Martinez-Galarce, Dennis S.; Shing, Lawrence; Stern, Robert A.; Ullom, Joel N.; Vale, Leila R.

    2008-01-01

    LMSAL and NIST are developing position-sensitive x-ray strip detectors based on Transition Edge Sensor (TES) microcalorimeters optimized for solar physics. By combining high spectral (E/ delta E approximately equals 1600) and temporal (single photon delta t approximately equals 10 micro s) resolutions with imaging capabilities, these devices will be able to study high-temperature (>l0 MK) x-ray lines as never before. Diagnostics from these lines should provide significant new insight into the physics of both microflares and the early stages of flares. Previously, the large size of traditional TESs, along with the heat loads associated with wiring large arrays, presented obstacles to using these cryogenic detectors for solar missions. Implementing strip detector technology at small scales, however, addresses both issues: here, a line of substantially smaller effective pixels requires only two TESs, decreasing both the total array size and the wiring requirements for the same spatial resolution. Early results show energy resolutions of delta E(sub fwhm) approximately equals 30 eV and spatial resolutions of approximately 10-15 micron, suggesting the strip-detector concept is viable.

  7. High-Resolution Detector For X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Withrow, William K.; Pusey, Marc L.; Yost, Vaughn H.

    1988-01-01

    Proposed x-ray-sensitive imaging detector offers superior spatial resolution, counting-rate capacity, and dynamic range. Instrument based on laser-stimulated luminescence and reusable x-ray-sensitive film. Detector scans x-ray film line by line. Extracts latent image in film and simultaneously erases film for reuse. Used primarily for protein crystallography. Principle adapted to imaging detectors for electron microscopy and fluorescence spectroscopy and general use in astronomy, engineering, and medicine.

  8. Energy weighted x-ray dark-field imaging.

    PubMed

    Pelzer, Georg; Zang, Andrea; Anton, Gisela; Bayer, Florian; Horn, Florian; Kraus, Manuel; Rieger, Jens; Ritter, Andre; Wandner, Johannes; Weber, Thomas; Fauler, Alex; Fiederle, Michael; Wong, Winnie S; Campbell, Michael; Meiser, Jan; Meyer, Pascal; Mohr, Jürgen; Michel, Thilo

    2014-10-06

    The dark-field image obtained in grating-based x-ray phase-contrast imaging can provide information about the objects' microstructures on a scale smaller than the pixel size even with low geometric magnification. In this publication we demonstrate that the dark-field image quality can be enhanced with an energy-resolving pixel detector. Energy-resolved x-ray dark-field images were acquired with a 16-energy-channel photon-counting pixel detector with a 1 mm thick CdTe sensor in a Talbot-Lau x-ray interferometer. A method for contrast-noise-ratio (CNR) enhancement is proposed and validated experimentally. In measurements, a CNR improvement by a factor of 1.14 was obtained. This is equivalent to a possible radiation dose reduction of 23%.

  9. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  10. Advances in X-ray Mapping for Characterization of Microstructures: Silicon Drift Detectors, Microcalorimeters, X-ray Spectrum Imaging, and Data Mining

    NASA Astrophysics Data System (ADS)

    Newbury, D. E.

    2006-05-01

    X-ray mapping, performed with the electron probe microanalyzer (EPMA) or scanning electron microscope/energy dispersive x-ray spectrometer (SEM/EDS), is one of the most popular modes of studying chemically heterogeneous microstructures [1]. Despite the maturity of the technique, now in its 50th anniversary year [2], recent remarkable advances in instrumentation and software will provide microanalysts with an even more effective and efficient microstructural characterization tool: (1) Increased x-ray mapping speed: The silicon drift detector (SDD) [3] is a new form of the familiar silicon EDS that uses the same detection physics but with a radically different design that outperforms the classic Si-EDS in nearly every way [4]: (1) the SDD operates requires only Peltier cooling to -20 oC to - 50 oC; (2) for a given detector active area, the SDD has superior resolution; (3) the SDD achieves the same resolution but with a peaking time that is 5 to 8 times faster; and (4) maximum output count rate (OCR) ranges from about 14 kHz at optimum resolution (134 eV at MnKa for a 50 mm2 area) to 500 kHz (217 eV). This OCR performance enables rapid x-ray mapping collection in the x-ray spectrum image (XSI) mode, in which a complete EDS spectrum (2048 10eV-channels) is captured at each pixel (e.g., 10 ms dwell with 1.3 ms overhead per pixel, or 185 seconds for a 128x128 pixel map). XSI collection captures all possible spectral information within the limits imposed by the spectrometer and the primary beam dose. (2) EDS with WDS resolution: The microcalorimeter EDS measures the temperature rise when a single x-ray photon is absorbed in a metal target [5]. Demonstrated resolution is 4.5 eV at Mn Ka for a broad energy range (0.2 - 10 keV) spectrometer and 2 eV (AlKa) for a low photon energy range (0.2 - 2.0 keV) version. The low energy spectrometer is sensitive to peak shape and position changes associated with chemical bonding, opening the possibility of EDS chemical-state mapping. (3

  11. Small area silicon diffused junction X-ray detectors

    NASA Technical Reports Server (NTRS)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  12. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  13. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3  ×  3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  14. Serial data acquisition for the X-ray plasma diagnostics with selected GEM detector structures

    NASA Astrophysics Data System (ADS)

    Czarski, T.; Chernyshova, M.; Pozniak, K. T.; Kasprowicz, G.; Zabolotny, W.; Kolasinski, P.; Krawczyk, R.; Wojenski, A.; Zienkiewicz, P.

    2015-10-01

    The measurement system based on GEM—Gas Electron Multiplier detector is developed for X-ray diagnostics of magnetic confinement tokamak plasmas. The paper is focused on the measurement subject and describes the fundamental data processing to obtain reliable characteristics (histograms) useful for physicists. The required data processing have two steps: 1—processing in the time domain, i.e. events selections for bunches of coinciding clusters, 2—processing in the planar space domain, i.e. cluster identification for the given detector structure. So, it is the software part of the project between the electronic hardware and physics applications. The whole project is original and it was developed by the paper authors. The previous version based on 1-D GEM detector was applied for the high-resolution X-ray crystal spectrometer KX1 in the JET tokamak. The current version considers 2-D detector structures for the new data acquisition system. The fast and accurate mode of data acquisition implemented in the hardware in real time can be applied for the dynamic plasma diagnostics. Several detector structures with single-pixel sensors and multi-pixel (directional) sensors are considered for two-dimensional X-ray imaging. Final data processing is presented by histograms for selected range of position, time interval and cluster charge values. Exemplary radiation source properties are measured by the basic cumulative characteristics: the cluster position distribution and cluster charge value distribution corresponding to the energy spectra. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics

  15. Amorphous selenium direct detection CMOS digital x-ray imager with 25 micron pixel pitch

    NASA Astrophysics Data System (ADS)

    Scott, Christopher C.; Abbaszadeh, Shiva; Ghanbarzadeh, Sina; Allan, Gary; Farrier, Michael; Cunningham, Ian A.; Karim, Karim S.

    2014-03-01

    We have developed a high resolution amorphous selenium (a-Se) direct detection imager using a large-area compatible back-end fabrication process on top of a CMOS active pixel sensor having 25 micron pixel pitch. Integration of a-Se with CMOS technology requires overcoming CMOS/a-Se interfacial strain, which initiates nucleation of crystalline selenium and results in high detector dark currents. A CMOS-compatible polyimide buffer layer was used to planarize the backplane and provide a low stress and thermally stable surface for a-Se. The buffer layer inhibits crystallization and provides detector stability that is not only a performance factor but also critical for favorable long term cost-benefit considerations in the application of CMOS digital x-ray imagers in medical practice. The detector structure is comprised of a polyimide (PI) buffer layer, the a-Se layer, and a gold (Au) top electrode. The PI layer is applied by spin-coating and is patterned using dry etching to open the backplane bond pads for wire bonding. Thermal evaporation is used to deposit the a-Se and Au layers, and the detector is operated in hole collection mode (i.e. a positive bias on the Au top electrode). High resolution a-Se diagnostic systems typically use 70 to 100 μm pixel pitch and have a pre-sampling modulation transfer function (MTF) that is significantly limited by the pixel aperture. Our results confirm that, for a densely integrated 25 μm pixel pitch CMOS array, the MTF approaches the fundamental material limit, i.e. where the MTF begins to be limited by the a-Se material properties and not the pixel aperture. Preliminary images demonstrating high spatial resolution have been obtained from a frst prototype imager.

  16. Transition-Edge Sensor Pixel Parameter Design of the Microcalorimeter Array for the X-Ray Integral Field Unit on Athena

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Betancourt-Martinez, G. L.; Chervenak, J. A.; Chiao, M. P.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; hide

    2016-01-01

    The focal plane of the X-ray integral field unit (X-IFU) for ESA's Athena X-ray observatory will consist of approximately 4000 transition edge sensor (TES) x-ray microcalorimeters optimized for the energy range of 0.2 to 12 kiloelectronvolts. The instrument will provide unprecedented spectral resolution of approximately 2.5 electronvolts at energies of up to 7 kiloelectronvolts and will accommodate photon fluxes of 1 milliCrab (90 counts per second) for point source observations. The baseline configuration is a uniform large pixel array (LPA) of 4.28 arcseconds pixels that is read out using frequency domain multiplexing (FDM). However, an alternative configuration under study incorporates an 18 by × 18 small pixel array (SPA) of 2 arcseconds pixels in the central approximately 36 arcseconds region. This hybrid array configuration could be designed to accommodate higher fluxes of up to 10 milliCrabs (900 counts per second) or alternately for improved spectral performance (less than 1.5 electronvolts) at low count-rates. In this paper we report on the TES pixel designs that are being optimized to meet these proposed LPA and SPA configurations. In particular we describe details of how important TES parameters are chosen to meet the specific mission criteria such as energy resolution, count-rate and quantum efficiency, and highlight performance trade-offs between designs. The basis of the pixel parameter selection is discussed in the context of existing TES arrays that are being developed for solar and x-ray astronomy applications. We describe the latest results on DC biased diagnostic arrays as well as large format kilo-pixel arrays and discuss the technical challenges associated with integrating different array types on to a single detector die.

  17. Low-temperature X-ray detectors for precise Lamb shift measurements on hydrogen-like heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kluge, H.-J.; Liebisch, U.; McCammon, D.; Meier, H. J.; Sebastián, O.; Stahle, C. K.; Weber, M.

    2000-04-01

    The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman- α transitions in 208Pb81+ or 238U91+ with sufficient accuracy a high resolving calorimetric detector for hard X-rays ( E⩽100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/ 4He dilution refrigerator with a side arm which fits to the geometry of the internal target of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.3 mm 2×66 μm Sn absorber an energy resolution of Δ EFWHM=75 eV is obtained for 60 keV X-rays.

  18. Building large area CZT imaging detectors for a wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Chammas, N.; Barthelemy, S.; Baker, R.; Gehrels, N.; Nelson, K. E.; Labov, S.; Collins, J.; Cook, W. R.; McLean, R.; Harrison, F.

    2009-07-01

    We have constructed a moderately large area (32cm), fine pixel (2.5 mm pixel, 5 mm thick) CZT imaging detector which constitutes the first section of a detector module (256cm) developed for a balloon-borne wide-field hard X-ray telescope, ProtoEXIST1. ProtoEXIST1 is a prototype for the High Energy Telescope (HET) in the Energetic X-ray imaging Survey Telescope (EXIST), a next generation space-borne multi-wavelength telescope. We have constructed a large (nearly gapless) detector plane through a modularization scheme by tiling of a large number of 2cm×2cm CZT crystals. Our innovative packaging method is ideal for many applications such as coded-aperture imaging, where a large, continuous detector plane is desirable for the optimal performance. Currently we have been able to achieve an energy resolution of 3.2 keV (FWHM) at 59.6 keV on average, which is exceptional considering the moderate pixel size and the number of detectors in simultaneous operation. We expect to complete two modules (512cm) within the next few months as more CZT becomes available. We plan to test the performance of these detectors in a near space environment in a series of high altitude balloon flights, the first of which is scheduled for Fall 2009. These detector modules are the first in a series of progressively more sophisticated detector units and packaging schemes planned for ProtoEXIST2 & 3, which will demonstrate the technology required for the advanced CZT imaging detectors (0.6 mm pixel, 4.5m area) required in EXIST/HET.

  19. Development of X-Ray Microcalorimeter Imaging Spectrometers for the X-Ray Surveyor Mission Concept

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Adams, Joseph S.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Betncourt-Martinez, Gabriele; Miniussi, Antoine R.; hide

    2016-01-01

    Four astrophysics missions are currently being studied by NASA as candidate large missions to be chosen inthe 2020 astrophysics decadal survey.1 One of these missions is the X-Ray Surveyor (XRS), and possibleconfigurations of this mission are currently under study by a science and technology definition team (STDT). Oneof the key instruments under study is an X-ray microcalorimeter, and the requirements for such an instrument arecurrently under discussion. In this paper we review some different detector options that exist for this instrument,and discuss what array formats might be possible. We have developed one design option that utilizes eithertransition-edge sensor (TES) or magnetically coupled calorimeters (MCC) in pixel array-sizes approaching 100kilo-pixels. To reduce the number of sensors read out to a plausible scale, we have assumed detector geometriesin which a thermal sensor such a TES or MCC can read out a sub-array of 20-25 individual 1 pixels. In thispaper we describe the development status of these detectors, and also discuss the different options that exist forreading out the very large number of pixels.

  20. Development of Position-sensitive Transition-edge Sensor X-ray Detectors

    NASA Technical Reports Server (NTRS)

    Smith, S. J.; Bandler, S. R.; Brekosky, R. P.; Brown, A.-D.; Chervenak, J. A.; Eckard, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. s.; hide

    2008-01-01

    We report on the development of position-sensitive transition-edge sensors (PoST's) for future x-ray astronomy missions such as the International X-ray Observatory (IXO), currently under study by NASA and ESA. PoST's consist of multiple absorbers each with a different thermal coupling to one or more transition-edge sensor (TES). This differential thermal coupling between absorbers and TES's results in different characteristic pulse shapes and allows position discrimination between the different pixels. The development of PoST's is motivated by a desire to achieve maximum focal-plane area with the least number of readout channels and as such. PoST's are ideally suited to provide a focal-plane extension to the Constellation-X microcalorimeter array. We report the first experimental results of our latest one and two channel PoST's, which utilize fast thermalizing electroplated Au/Bi absorbers coupled to low noise Mo/Au TES's - a technology already successfully implemented in our arrays of single pixel TES's. We demonstrate 6 eV energy resolution coupled with spatial sensitivity in the keV energy range. We also report on the development of signal processing algorithms to optimize energy and position sensitivity of our detectors.

  1. First experimental feasibility study of VIPIC: a custom-made detector for X-ray speckle measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumaiz, Abdul K.; Siddons, D. Peter; Deptuch, Grzegorz

    2016-02-10

    The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allowscontinuousacquisition ofmore » data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex nano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operatecontinuouslyin the microsecond time frame, while at the same time probing longer timescales.« less

  2. First experimental feasibility study of VIPIC: a custom-made detector for X-ray speckle measurements

    PubMed Central

    Rumaiz, Abdul K.; Siddons, D. Peter; Deptuch, Grzegorz; Maj, Piotr; Kuczewski, Anthony J.; Carini, Gabriella A.; Narayanan, Suresh; Dufresne, Eric M.; Sandy, Alec; Bradford, Robert; Fluerasu, Andrei; Sutton, Mark

    2016-01-01

    The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuous acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex nano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales. PMID:26917126

  3. Amorphous In–Ga–Zn–O thin-film transistor active pixel sensor x-ray imager for digital breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu

    Purpose: The breast cancer detection rate for digital breast tomosynthesis (DBT) is limited by the x-ray image quality. The limiting Nyquist frequency for current DBT systems is around 5 lp/mm, while the fine image details contained in the high spatial frequency region (>5 lp/mm) are lost. Also today the tomosynthesis patient dose is high (0.67–3.52 mGy). To address current issues, in this paper, for the first time, a high-resolution low-dose organic photodetector/amorphous In–Ga–Zn–O thin-film transistor (a-IGZO TFT) active pixel sensor (APS) x-ray imager is proposed for next generation DBT systems. Methods: The indirect x-ray detector is based on a combination of a novelmore » low-cost organic photodiode (OPD) and a cesium iodide-based (CsI:Tl) scintillator. The proposed APS x-ray imager overcomes the difficulty of weak signal detection, when small pixel size and low exposure conditions are used, by an on-pixel signal amplification with a significant charge gain. The electrical performance of a-IGZO TFT APS pixel circuit is investigated by SPICE simulation using modified Rensselaer Polytechnic Institute amorphous silicon (a-Si:H) TFT model. Finally, the noise, detective quantum efficiency (DQE), and resolvability of the complete system are modeled using the cascaded system formalism. Results: The result demonstrates that a large charge gain of 31–122 is achieved for the proposed high-mobility (5–20 cm{sup 2}/V s) amorphous metal-oxide TFT APS. The charge gain is sufficient to eliminate the TFT thermal noise, flicker noise as well as the external readout circuit noise. Moreover, the low TFT (<10{sup −13} A) and OPD (<10{sup −8} A/cm{sup 2}) leakage currents can further reduce the APS noise. Cascaded system analysis shows that the proposed APS imager with a 75 μm pixel pitch can effectively resolve the Nyquist frequency of 6.67 lp/mm, which can be further improved to ∼10 lp/mm if the pixel pitch is reduced to 50 μm. Moreover, the

  4. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  5. Techniques for precise energy calibration of particle pixel detectors.

    PubMed

    Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  6. Charge Sharing and Charge Loss in a Cadmium-Zinc-Telluride Fine-Pixel Detector Array

    NASA Technical Reports Server (NTRS)

    Gaskin, J. A.; Sharma, D. P.; Ramsey, B. D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a Cadmium-Zinc-Telluride (CZT) multi-pixel detector is ideal for hard x-ray astrophysical observation. As part of on-going research at MSFC (Marshall Space Flight Center) to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750micron pitch), lmm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300micron pitch). Future work will enable us to compare the simulated results for the finer array to measured values.

  7. Modeling of Pixelated Detector in SPECT Pinhole Reconstruction.

    PubMed

    Feng, Bing; Zeng, Gengsheng L

    2014-04-10

    A challenge for the pixelated detector is that the detector response of a gamma-ray photon varies with the incident angle and the incident location within a crystal. The normalization map obtained by measuring the flood of a point-source at a large distance can lead to artifacts in reconstructed images. In this work, we investigated a method of generating normalization maps by ray-tracing through the pixelated detector based on the imaging geometry and the photo-peak energy for the specific isotope. The normalization is defined for each pinhole as the normalized detector response for a point-source placed at the focal point of the pinhole. Ray-tracing is used to generate the ideal flood image for a point-source. Each crystal pitch area on the back of the detector is divided into 60 × 60 sub-pixels. Lines are obtained by connecting between a point-source and the centers of sub-pixels inside each crystal pitch area. For each line ray-tracing starts from the entrance point at the detector face and ends at the center of a sub-pixel on the back of the detector. Only the attenuation by NaI(Tl) crystals along each ray is assumed to contribute directly to the flood image. The attenuation by the silica (SiO 2 ) reflector is also included in the ray-tracing. To calculate the normalization for a pinhole, we need to calculate the ideal flood for a point-source at 360 mm distance (where the point-source was placed for the regular flood measurement) and the ideal flood image for the point-source at the pinhole focal point, together with the flood measurement at 360 mm distance. The normalizations are incorporated in the iterative OSEM reconstruction as a component of the projection matrix. Applications to single-pinhole and multi-pinhole imaging showed that this method greatly reduced the reconstruction artifacts.

  8. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  9. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  10. Calorimetric low-temperature detectors for high resolution x-ray spectroscopy on stored highly stripped heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kraft, S.; McCammon, D.; Meier, H. J.; Shrivastava, A.; Stahle, C. K.; Weber, M.

    2002-02-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208Pb81+ or 238U91+ with sufficient accuracy, a high resolution calorimetric detector for hard x-rays (E<=100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm2×47 μm Pb absorber an energy resolution of ΔEFWHM=65 eV is obtained for 60 keV x-rays. .

  11. X-Ray Detector for 1 to 30 keV

    NASA Technical Reports Server (NTRS)

    Alcorn, G.; Jackson, J., Jr; Grant, P.; Marshall, F.

    1983-01-01

    Array of silicon X-ray detecting diodes measures photon energy and provides image of X-ray pattern. Regardless of thickness of new X-ray detector, depletion region extends through it. Impinging X-rays generate electrons in quantities proportional to X-ray energy. X-ray detector is mated to chargecoupled-device array for image generation and processing. Useful in industrial part inspection, pulsed-plasma research and medical application.

  12. Development of Tiled Imaging CZT Detectors for Sensitive Wide-Field Hard X-Ray Surveys to EXIST

    NASA Technical Reports Server (NTRS)

    Grindlay, J.; Hong, J.; Allen, B.; Barthelmy, S.; Baker, R.

    2011-01-01

    Motivated by the proposed EXIST mission, a "medium-class" space observatory to survey black holes and the Early Universe proposed to the 2010 NAS/NRC Astronomy and Astrophysics Decadal Survey, we have developed the first "large" area 256 sq cm close-tiled (0.6 mm gaps) hard X-ray (20-600 keV) imaging detector employing pixelated (2.5 mm) CdZnTe (CZT) detectors, each 2 x 2 x 0.5 cubic cm. We summarize the design, development and operation of this detector array (8 x 8 CZTs) and its performance as the imager for a coded aperture telescope on a high altitude (40 km) balloon flight in October. 2009, as the ProtoEX1STl payload. We then outline our current development of a second-generation imager, ProtcEXIST2. with 0.6 mm pixels on a 32 x 32 array on each CZT, and how it will lead to the ultimate imaging system needed for EXIST. Other applications of this technology will also be mentioned.

  13. Recent progress and development of a speedster-EXD: a new event-triggered hybrid CMOS x-ray detector

    NASA Astrophysics Data System (ADS)

    Griffith, Christopher V.; Falcone, Abraham D.; Prieskorn, Zachary R.; Burrows, David N.

    2015-08-01

    We present the characterization of a new event-driven X-ray hybrid CMOS detector developed by Penn State University in collaboration with Teledyne Imaging Sensors. Along with its low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up, the Speedster-EXD has been designed with the capability to limit its readout to only those pixels containing charge, thus enabling even faster effective frame rates. The threshold for the comparator in each pixel can be set by the user so that only pixels with signal above the set threshold are read out. The Speedster-EXD hybrid CMOS detector also has two new in-pixel features that reduce noise from known noise sources: (1) a low-noise, high-gain CTIA amplifier to eliminate crosstalk from interpixel capacitance (IPC) and (2) in-pixel CDS subtraction to reduce kTC noise. We present the read noise, dark current, IPC, energy resolution, and gain variation measurements of one Speedster-EXD detector.

  14. X-Ray Detector Simulations - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less

  15. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  16. Development of multi-pixel x-ray source using oxide-coated cathodes.

    PubMed

    Kandlakunta, Praneeth; Pham, Richard; Khan, Rao; Zhang, Tiezhi

    2017-07-07

    Multiple pixel x-ray sources facilitate new designs of imaging modalities that may result in faster imaging speed, improved image quality, and more compact geometry. We are developing a high-brightness multiple-pixel thermionic emission x-ray (MPTEX) source based on oxide-coated cathodes. Oxide cathodes have high emission efficiency and, thereby, produce high emission current density at low temperature when compared to traditional tungsten filaments. Indirectly heated micro-rectangular oxide cathodes were developed using carbonates, which were converted to semiconductor oxides of barium, strontium, and calcium after activation. Each cathode produces a focal spot on an elongated fixed anode. The x-ray beam ON and OFF control is performed by source-switching electronics, which supplies bias voltage to the cathode emitters. In this paper, we report the initial performance of the oxide-coated cathodes and the MPTEX source.

  17. Laser pixelation of thick scintillators for medical imaging applications: x-ray studies

    NASA Astrophysics Data System (ADS)

    Sabet, Hamid; Kudrolli, Haris; Marton, Zsolt; Singh, Bipin; Nagarkar, Vivek V.

    2013-09-01

    To achieve high spatial resolution required in nuclear imaging, scintillation light spread has to be controlled. This has been traditionally achieved by introducing structures in the bulk of scintillation materials; typically by mechanical pixelation of scintillators and fill the resultant inter-pixel gaps by reflecting materials. Mechanical pixelation however, is accompanied by various cost and complexity issues especially for hard, brittle and hygroscopic materials. For example LSO and LYSO, hard and brittle scintillators of interest to medical imaging community, are known to crack under thermal and mechanical stress; the material yield drops quickly with large arrays with high aspect ratio pixels and therefore the pixelation process cost increases. We are utilizing a novel technique named Laser Induced Optical Barriers (LIOB) for pixelation of scintillators that overcomes the issues associated with mechanical pixelation. In this technique, we can introduce optical barriers within the bulk of scintillator crystals to form pixelated arrays with small pixel size and large thickness. We applied LIOB to LYSO using a high-frequency solid-state laser. Arrays with different crystal thickness (5 to 20 mm thick), and pixel size (0.8×0.8 to 1.5×1.5 mm2) were fabricated and tested. The width of the optical barriers were controlled by fine-tuning key parameters such as lens focal spot size and laser energy density. Here we report on LIOB process, its optimization, and the optical crosstalk measurements using X-rays. There are many applications that can potentially benefit from LIOB including but not limited to clinical/pre-clinical PET and SPECT systems, and photon counting CT detectors.

  18. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  19. A history of hybrid pixel detectors, from high energy physics to medical imaging

    NASA Astrophysics Data System (ADS)

    Delpierre, P.

    2014-05-01

    The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.

  20. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-03-03

    A method and apparatus for x-ray measurement of certain properties of a solid material are disclosed. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  1. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, David S.; Ruud, Clay O.

    1998-01-01

    A method and apparatus for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided.

  2. Large angle solid state position sensitive x-ray detector system

    DOEpatents

    Kurtz, D.S.; Ruud, C.O.

    1998-07-21

    A method and apparatus are disclosed for x-ray measurement of certain properties of a solid material. In distinction to known methods and apparatus, this invention employs a specific fiber-optic bundle configuration, termed a reorganizer, itself known for other uses, for coherently transmitting visible light originating from the scintillation of diffracted x-radiation from the solid material gathered along a substantially one dimensional linear arc, to a two-dimensional photo-sensor array. The two-dimensional photodetector array, with its many closely packed light sensitive pixels, is employed to process the information contained in the diffracted radiation and present the information in the form of a conventional x-ray diffraction spectrum. By this arrangement, the angular range of the combined detector faces may be increased without loss of angular resolution. Further, the prohibitively expensive coupling together of a large number of individual linear diode photodetectors, which would be required to process signals generated by the diffracted radiation, is avoided. 7 figs.

  3. Cascaded systems analysis of charge sharing in cadmium telluride photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Cunningham, Ian A

    2018-05-01

    Single-photon-counting (SPC) and spectroscopic x-ray detectors are under development in academic and industry laboratories for medical imaging applications. The spatial resolution of SPC and spectroscopic x-ray detectors is an important design criterion. The purpose of this article was to extend the cascaded systems approach to include a description of the spatial resolution of SPC and spectroscopic x-ray imaging detectors. A cascaded systems approach was used to model reabsorption of characteristic x rays, Coulomb repulsion, and diffusion in SPC and spectroscopic x-ray detectors. In addition to reabsorption, diffusion, and Coulomb repulsion, the model accounted for x-ray conversion to electron-hole (e-h) pairs, integration of e-h pairs in detector elements, electronic noise, and energy thresholding. The probability density function (PDF) describing the number of e-h pairs was propagated through each stage of the model and was used to derive new theoretical expressions for the large-area gain and modulation transfer function (MTF) of CdTe SPC x-ray detectors, and the energy bin sensitivity functions and MTFs of CdTe spectroscopic detectors. Theoretical predictions were compared with the results of MATLAB-based Monte Carlo (MC) simulations and published data. Comparisons were also made with the MTF of energy-integrating systems. Under general radiographic conditions, reabsorption, diffusion, and Coulomb repulsion together artificially inflate count rates by 20% to 50%. For thicker converters (e.g. 1000 μm) and larger detector elements (e.g. 500 μm pixel pitch) these processes result in modest inflation (i.e. ∼10%) in apparent count rates. Our theoretical and MC analyses predict that SPC MTFs will be degraded relative to those of energy-integrating systems for fluoroscopic, general radiographic, and CT imaging conditions. In most cases, this degradation is modest (i.e., ∼10% at the Nyquist frequency). However, for thicker converters, the SPC MTF can be degraded

  4. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  5. In-Vivo Real-Time X-ray μ-Imaging

    NASA Astrophysics Data System (ADS)

    Dammer, Jiri; Holy, Tomas; Jakubek, Jan; Jakubek, Martin; Pospisil, Stanislav; Vavrík, Daniel

    2007-11-01

    The technique of X-ray transmission imaging is available for more than 100 years and it is still one of the fastest and easiest ways how to study the internal structure of living biological samples. The advances in semiconductor technology in last years make possible to fabricate new types of X-ray detectors with direct conversion of interacting X-ray photon to an electric signal. Especially semiconductor pixel detectors seem to be very promising. Compared to the film technique they bring single-quantum and real-time digital information about the studied object with high resolution, high sensitivity and broad dynamic range. These pixel detector-based imaging stand promising as a new tool in the field of small animal imaging, for cancer research and for observation of dynamic processes inside organisms. These detectors open up for instance new possibilities for researchers to perform non-invasive studies of tissue for mutations or pathologies and to monitor disease progression or response to therapy.

  6. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  7. Nuclear resonant scattering measurements on (57)Fe by multichannel scaling with a 64-pixel silicon avalanche photodiode linear-array detector.

    PubMed

    Kishimoto, S; Mitsui, T; Haruki, R; Yoda, Y; Taniguchi, T; Shimazaki, S; Ikeno, M; Saito, M; Tanaka, M

    2014-11-01

    We developed a silicon avalanche photodiode (Si-APD) linear-array detector for use in nuclear resonant scattering experiments using synchrotron X-rays. The Si-APD linear array consists of 64 pixels (pixel size: 100 × 200 μm(2)) with a pixel pitch of 150 μm and depletion depth of 10 μm. An ultrafast frontend circuit allows the X-ray detector to obtain a high output rate of >10(7) cps per pixel. High-performance integrated circuits achieve multichannel scaling over 1024 continuous time bins with a 1 ns resolution for each pixel without dead time. The multichannel scaling method enabled us to record a time spectrum of the 14.4 keV nuclear radiation at each pixel with a time resolution of 1.4 ns (FWHM). This method was successfully applied to nuclear forward scattering and nuclear small-angle scattering on (57)Fe.

  8. Detection of X-ray spectra and images by Timepix

    NASA Astrophysics Data System (ADS)

    Urban, M.; Nentvich, O.; Stehlikova, V.; Sieger, L.

    2017-07-01

    X-ray monitoring for astrophysical applications mainly consists of two parts - optics and detector. The article describes an approach based on a combination of Lobster Eye (LE) optics with Timepix detector. Timepix is a semiconductor detector with 256 × 256 pixels on one electrode and a second electrode is common. Usage of the back-side-pulse from an common electrode of pixelated detector brings the possibility of an additional spectroscopic or trigger signal. In this article are described effects of the thermal stabilisation, and the cooling effect of the detector working as single pixel.

  9. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  10. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  11. Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less

  12. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  13. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics

    NASA Technical Reports Server (NTRS)

    Bandler, S. R.; Adams, J. S.; Bailey, C. N.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing small-pixel transition-edge-sensor (TES) for solar physics and astrophysics applications. These large format close-packed arrays are fabricated on solid silicon substrates and are designed to accommodate count-rates of up to a few hundred counts/pixel/second at a FWHM energy resolution approximately 2 eV at 6 keV. We have fabricated versions that utilize narrow-line planar and stripline wiring. We present measurements of the performance and uniformity of kilo-pixel arrays, incorporating TESs with single 65-micron absorbers on a 7s-micron pitch, as well as versions with more than one absorber attached to the TES, 4-absorber and 9-absorber "Hydras". We have also fabricated a version of this detector optimized for lower energies and lower count-rate applications. These devices have a lower superconducting transition temperature and are operated just above the 40mK heat sink temperature. This results in a lower heat capacity and low thermal conductance to the heat sink. With individual single pixels of this type we have achieved a FWHM energy resolution of 0.9 eV with 1.5 keV Al K x-rays, to our knowledge the first x-ray microcalorimeter with sub-eV energy resolution. The 4-absorber and 9-absorber versions of this type achieved FWHM energy resolutions of 1.4 eV and 2.1 eV at 1.5 keV respectively. We will discuss the application of these devices for new astrophysics mission concepts.

  14. An efficient computational approach to model statistical correlations in photon counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faby, Sebastian; Maier, Joscha; Sawall, Stefan

    2016-07-15

    Purpose: To introduce and evaluate an increment matrix approach (IMA) describing the signal statistics of energy-selective photon counting detectors including spatial–spectral correlations between energy bins of neighboring detector pixels. The importance of the occurring correlations for image-based material decomposition is studied. Methods: An IMA describing the counter increase patterns in a photon counting detector is proposed. This IMA has the potential to decrease the number of required random numbers compared to Monte Carlo simulations by pursuing an approach based on convolutions. To validate and demonstrate the IMA, an approximate semirealistic detector model is provided, simulating a photon counting detector inmore » a simplified manner, e.g., by neglecting count rate-dependent effects. In this way, the spatial–spectral correlations on the detector level are obtained and fed into the IMA. The importance of these correlations in reconstructed energy bin images and the corresponding detector performance in image-based material decomposition is evaluated using a statistically optimal decomposition algorithm. Results: The results of IMA together with the semirealistic detector model were compared to other models and measurements using the spectral response and the energy bin sensitivity, finding a good agreement. Correlations between the different reconstructed energy bin images could be observed, and turned out to be of weak nature. These correlations were found to be not relevant in image-based material decomposition. An even simpler simulation procedure based on the energy bin sensitivity was tested instead and yielded similar results for the image-based material decomposition task, as long as the fact that one incident photon can increase multiple counters across neighboring detector pixels is taken into account. Conclusions: The IMA is computationally efficient as it required about 10{sup 2} random numbers per ray incident on a detector pixel

  15. Modeling and Measuring Charge-Sharing in Hard X-ray Imagers Using HEXITEC CdTe Detectors

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel F.; Christe, Steven D.; Shih, Albert Y.; Baumgartner, Wayne H.; Wilson, Matthew D.; Seller, Paul; Gaskin, Jessica A.; Inglis, Andrew

    2017-01-01

    The Rutherford Appleton Laboratory's HEXITEC ASIC has been designed to provide fine pixelated X-ray spectroscopic imaging in combination with a CdTe or CZT detector layer. Although HEXITEC's small pixels enable higher spatial resolution as well as higher spectral resolution via the small-pixel effect, they also increase the probability of charge sharing, a process which degrades spectral performance by dividing the charge induced by a single photon among multiple pixels. In this paper, we investigate the effect of this process on a continuum X-ray spectrum below the Cd and Te fluorescence energies (23 keV). This is done by comparing laboratory measurements with simulations performed with a custom designed model of the HEXITEC ASIC. We find that the simulations closely match the observations implying that we have an adequate understanding of both charge sharing and the HEXITEC ASIC itself. These results can be used to predict the distortion of a spectrum measured with HEXITEC and will help determine to what extent it can be corrected. They also show that models like this one are important tools in developing and interpreting observations from ASICs like HEXITEC.

  16. Photodiode area effect on performance of X-ray CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.

    2018-02-01

    Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.

  17. Measurements with MÖNCH, a 25 μm pixel pitch hybrid pixel detector

    NASA Astrophysics Data System (ADS)

    Ramilli, M.; Bergamaschi, A.; Andrae, M.; Brückner, M.; Cartier, S.; Dinapoli, R.; Fröjdh, E.; Greiffenberg, D.; Hutwelker, T.; Lopez-Cuenca, C.; Mezza, D.; Mozzanica, A.; Ruat, M.; Redford, S.; Schmitt, B.; Shi, X.; Tinti, G.; Zhang, J.

    2017-01-01

    MÖNCH is a hybrid silicon pixel detector based on charge integration and with analog readout, featuring a pixel size of 25×25 μm2. The latest working prototype consists of an array of 400×400 identical pixels for a total active area of 1×1 cm2. Its design is optimized for the single photon regime. An exhaustive characterization of this large area prototype has been carried out in the past months, and it confirms an ENC in the order of 35 electrons RMS and a dynamic range of ~4×12 keV photons in high gain mode, which increases to ~100×12 keV photons with the lowest gain setting. The low noise levels of MÖNCH make it a suitable candidate for X-ray detection at energies around 1 keV and below. Imaging applications in particular can benefit significantly from the use of MÖNCH: due to its extremely small pixel pitch, the detector intrinsically offers excellent position resolution. Moreover, in low flux conditions, charge sharing between neighboring pixels allows the use of position interpolation algorithms which grant a resolution at the micrometer-level. Its energy reconstruction and imaging capabilities have been tested for the first time at a low energy beamline at PSI, with photon energies between 1.75 keV and 3.5 keV, and results will be shown.

  18. Characterization of Pixelated Cadmium-Zinc-Telluride Detectors for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    Comparisons of charge sharing and charge loss measurements between two pixelated Cadmium-Zinc-Telluride (CdZnTe) detectors are discussed. These properties along with the detector geometry help to define the limiting energy resolution and spatial resolution of the detector in question. The first detector consists of a 1-mm-thick piece of CdZnTe sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). Signal readout is via discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). This crystal is bonded to a custom-built readout chip (ASIC) providing all front-end electronics to each of the 256 independent pixels. These detectors act as precursors to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation.

  19. Cryogenic, high-resolution x-ray detector with high count rate capability

    DOEpatents

    Frank, Matthias; Mears, Carl A.; Labov, Simon E.; Hiller, Larry J.; Barfknecht, Andrew T.

    2003-03-04

    A cryogenic, high-resolution X-ray detector with high count rate capability has been invented. The new X-ray detector is based on superconducting tunnel junctions (STJs), and operates without thermal stabilization at or below 500 mK. The X-ray detector exhibits good resolution (.about.5-20 eV FWHM) for soft X-rays in the keV region, and is capable of counting at count rates of more than 20,000 counts per second (cps). Simple, FET-based charge amplifiers, current amplifiers, or conventional spectroscopy shaping amplifiers can provide the electronic readout of this X-ray detector.

  20. Uncooled spectrometer for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Sieger, Ladislav

    2017-05-01

    In the field of X-ray detection for Astrophysics there are mainly two objectives; first is to create 2D images as a result of sensing radiation by detectors consisting of a pixels matrix and the second is a spectral analysis of the incident radiation. For spectral analysis, the basis is usually the principle of diffraction. This paper describes the new design of X-ray spectrometer based on Timepix detector with optics positioned in front of it. The advantage of this setup is the ability to get the image and spectrum from the same devices. With other modifications is possible to shift detection threshold into areas of soft X-ray radiation.

  1. High resolution collimator system for X-ray detector

    DOEpatents

    Eberhard, Jeffrey W.; Cain, Dallas E.

    1987-01-01

    High resolution in an X-ray computerized tomography (CT) inspection system is achieved by using a collimator/detector combination to limit the beam width of the X-ray beam incident on a detector element to the desired resolution width. In a detector such as a high pressure Xenon detector array, a narrow tapered collimator is provided above a wide detector element. The collimator slits have any desired width, as small as a few mils at the top, the slit width is easily controlled, and they are fabricated on standard machines. The slit length determines the slice thickness of the CT image.

  2. Performance comparison of small-pixel CdZnTe radiation detectors with gold contacts formed by sputter and electroless deposition

    NASA Astrophysics Data System (ADS)

    Bell, S. J.; Baker, M. A.; Duarte, D. D.; Schneider, A.; Seller, P.; Sellin, P. J.; Veale, M. C.; Wilson, M. D.

    2017-06-01

    Recent improvements in the growth of wide-bandgap semiconductors, such as cadmium zinc telluride (CdZnTe or CZT), has enabled spectroscopic X/γ-ray imaging detectors to be developed. These detectors have applications covering homeland security, industrial analysis, space science and medical imaging. At the Rutherford Appleton Laboratory (RAL) a promising range of spectroscopic, position sensitive, small-pixel Cd(Zn)Te detectors have been developed. The challenge now is to improve the quality of metal contacts on CdZnTe in order to meet the demanding energy and spatial resolution requirements of these applications. The choice of metal deposition method and fabrication process are of fundamental importance. Presented is a comparison of two CdZnTe detectors with contacts formed by sputter and electroless deposition. The detectors were fabricated with a 74 × 74 array of 200 μm pixels on a 250 μm pitch and bump-bonded to the HEXITEC ASIC. The X/γ-ray emissions from an 241Am source were measured to form energy spectra for comparison. It was found that the detector with contacts formed by electroless deposition produced the best uniformity and energy resolution; the best pixel produced a FWHM of 560 eV at 59.54 keV and 50% of pixels produced a FWHM better than 1.7 keV . This compared with a FWHM of 1.5 keV for the best pixel and 50% of pixels better than 4.4 keV for the detector with sputtered contacts.

  3. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    NASA Astrophysics Data System (ADS)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  4. Low dose digital X-ray imaging with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei

    2015-03-01

    Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.

  5. Velocity map imaging using an in-vacuum pixel detector.

    PubMed

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan; Jungmann, Julia; Visschers, Jan; Vrakking, Marc J J

    2009-10-01

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256 x 256 square pixels, 55 x 55 microm2) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 micros. Results of the first time application of the Medipix2 detector to VMI are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.

  6. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    PubMed Central

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  7. Status of the Micro-X Sounding Rocket X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Goldfinger, D. C.; Adams, J. S.; Baker, R.; Bandler, S. R.; Danowski, M. E.; Doriese, W. B.; Eckart, M. E.; Figueroa-Feliciano, E.; Hilton, G. C.; Hubbard, A. J. F.; hide

    2016-01-01

    Micro-X is a sounding rocket borne X-ray telescope that utilizes transition edge sensors to perform imaging spectroscopy with a high level of energy resolution. Its 2.1m focal length X-ray optic has an effective area of 300 sq cm, a field of view of 11.8 arcmin, and a bandpass of 0.12.5 keV. The detector array has 128 pixels and an intrinsic energy resolution of 4.5 eV FWHM. The integration of the system has progressed with functional tests of the detectors and electronics complete, and performance characterization of the detectors is underway. We present an update of ongoing progress in preparation for the upcoming launch of the instrument.

  8. The Cryogenic AntiCoincidence detector for ATHENA X-IFU: a scientific assessment of the observational capabilities in the hard X-ray band

    NASA Astrophysics Data System (ADS)

    D'Andrea, M.; Lotti, S.; Macculi, C.; Piro, L.; Argan, A.; Gatti, F.

    2017-12-01

    ATHENA is a large X-ray observatory, planned to be launched by ESA in 2028 towards an L2 orbit. One of the two instruments of the payload is the X-IFU: a cryogenic spectrometer based on a large array of TES microcalorimeters, able to perform integral field spectrography in the 0.2-12 keV band (2.5 eV FWHM at 6 keV). The X-IFU sensitivity is highly degraded by the particle background expected in the L2 orbit, which is induced by primary protons of both galactic and solar origin, and mostly by secondary electrons. To reduce the particle background level and enable the mission science goals, the instrument incorporates a Cryogenic AntiCoincidence detector (CryoAC). It is a 4 pixel TES based detector, placed < 1 mm below the main array. In this paper we report a scientific assessment of the CryoAC observational capabilities in the hard X-ray band (E > 10 keV). The aim of the study has been to understand if the present detector design can be improved in order to enlarge the X-IFU scientific capability on an energy band wider than the TES array. This is beyond the CryoAC baseline, being this instrument aimed to operate as anticoincidence particle detector and not conceived to perform X-ray observations.

  9. Automatic tool alignment in a backscatter X-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-11-17

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a medical device is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  10. Automatic tool alignment in a backscatter x-ray scanning system

    DOEpatents

    Garretson, Justin; Hobart, Clinton G.; Gladwell, Thomas S.; Monda, Mark J.

    2015-06-16

    Technologies pertaining to backscatter x-ray scanning systems are described herein. The backscatter x-ray scanning system includes an x-ray source, which directs collimated x-rays along a plurality of output vectors towards a target. A detector detects diffusely reflected x-rays subsequent to respective collimated x-rays impacting the target, and outputs signals indicative of parameters of the detected x-rays. An image processing system generates an x-ray image based upon parameters of the detected x-rays, wherein each pixel in the image corresponds to a respective output vector. A user selects a particular portion of the image, and a tool is positioned such that its directional axis is coincident with the output vector corresponding to at least one pixel in the portion of the image.

  11. In-flight performance of the soft x-ray spectrometer detector system on Astro-H

    NASA Astrophysics Data System (ADS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kilbourne, Caroline Anne; Leutenegger, Maurice A.; McCammon, Daniel; Mitsuda, Kazuhisa; Sato, Kosuke; Seta, Hiromi; Sawada, Makoto; Sneiderman, Gary A.; Szymkowiak, Andrew E.; Takei, Yoh; Tashiro, Makoto S.; Tsujimoto, Masahiro; Watanabe, Tomomi; Yamada, Shinya

    2018-01-01

    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  12. Advancing the Technology of Monolithic CMOS detectors for their use as X-ray Imaging Spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus

    The Smithsonian Astrophysical Observatory (SAO) proposes a two year program to further advance the scientific capabilities of monolithic CMOS detectors for use as x-ray imaging spectrometers. This proposal will build upon the progress achieved with funding from a previous APRA proposal that ended in 2013. As part of that previous proposal, x- ray optimized, highly versatile, monolithic CMOS imaging detectors and technology were developed and tested. The performance and capabilities of these devices were then demonstrated, with an emphasis on the performance advantages these devices have over CCDs and other technologies. The developed SAO/SRI-Sarnoff CMOS devices incorporate: Low noise, high sensitivity ("gain") pixels; Highly parallel on-chip signal chains; Standard and very high resistivity (30,000Ohm-cm) Si; Back-Side thinning and passivation. SAO demonstrated the performance benefits of each of these features in these devices. This new proposal high-lights the performance of this previous generation of devices, and segues into new technology and capability. The high sensitivity ( 135uV/e) 6 Transistor (6T) Pinned Photo Diode (PPD) pixels provided a large charge to voltage conversion gain to the detect and resolve even small numbers of photo electrons produced by x-rays. The on-chip, parallel signal chain processed an entire row of pixels in the same time that a CCD requires to processes a single pixel. The resulting high speed operation ( 1000 times faster than CCD) provide temporal resolution while mitigating dark current and allowed room temperature operation. The high resistivity Si provided full (over) depletion for thicker devices which increased QE for higher energy x-rays. In this proposal, SAO will investigate existing NMOS and existing PMOS devices as xray imaging spectrometers. Conventional CMOS imagers are NMOS. NMOS devices collect and measure photo-electrons. In contrast, PMOS devices collect and measure photo-holes. PMOS devices have various

  13. Thermal detectors as single photon X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.

    1985-01-01

    In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.

  14. Velocity map imaging using an in-vacuum pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gademann, Georg; Huismans, Ymkje; Gijsbertsen, Arjan

    The use of a new type in-vacuum pixel detector in velocity map imaging (VMI) is introduced. The Medipix2 and Timepix semiconductor pixel detectors (256x256 square pixels, 55x55 {mu}m{sup 2}) are well suited for charged particle detection. They offer high resolution, low noise, and high quantum efficiency. The Medipix2 chip allows double energy discrimination by offering a low and a high energy threshold. The Timepix detector allows to record the incidence time of a particle with a temporal resolution of 10 ns and a dynamic range of 160 {mu}s. Results of the first time application of the Medipix2 detector to VMImore » are presented, investigating the quantum efficiency as well as the possibility to operate at increased background pressure in the vacuum chamber.« less

  15. Development of mercuric iodide uncooled x ray detectors and spectrometers

    NASA Technical Reports Server (NTRS)

    Iwanczyk, Jan S.

    1990-01-01

    The results obtained in the development of miniature, lowpower, light weight mercuric iodide, HgI2, x ray spectrometers for future space missions are summarized. It was demonstrated that HgI2 detectors can be employed in a high resolution x ray spectrometer, operating in a scanning electron microscope. Also, the development of HgI2 x ray detectors to augment alpha backscattering spectrometers is discussed. These combination instruments allow for the identification of all chemical elements, with the possible exception of hydrogen, and their respective concentrations. Additionally, further investigations of questions regarding radiation damage effects in the HgI2 x ray detectors are reported.

  16. Novel detector design for reducing intercell x-ray cross-talk in the variable resolution x-ray CT scanner: a Monte Carlo study.

    PubMed

    Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib

    2011-03-01

    The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.

  17. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  18. Design Studies of a CZT-based Detector Combined with a Pixel-Geometry-Matching Collimator for SPECT Imaging.

    PubMed

    Weng, Fenghua; Bagchi, Srijeeta; Huang, Qiu; Seo, Youngho

    2013-10-01

    Single Photon Emission Computed Tomography (SPECT) suffers limited efficiency due to the need for collimators. Collimator properties largely decide the data statistics and image quality. Various materials and configurations of collimators have been investigated in many years. The main thrust of our study is to evaluate the design of pixel-geometry-matching collimators to investigate their potential performances using Geant4 Monte Carlo simulations. Here, a pixel-geometry-matching collimator is defined as a collimator which is divided into the same number of pixels as the detector's and the center of each pixel in the collimator is a one-to-one correspondence to that in the detector. The detector is made of Cadmium Zinc Telluride (CZT), which is one of the most promising materials for applications to detect hard X-rays and γ -rays due to its ability to obtain good energy resolution and high light output at room temperature. For our current project, we have designed a large-area, CZT-based gamma camera (20.192 cm×20.192 cm) with a small pixel pitch (1.60 mm). The detector is pixelated and hence the intrinsic resolution can be as small as the size of the pixel. Materials of collimator, collimator hole geometry, detection efficiency, and spatial resolution of the CZT detector combined with the pixel-matching collimator were calculated and analyzed under different conditions. From the simulation studies, we found that such a camera using rectangular holes has promising imaging characteristics in terms of spatial resolution, detection efficiency, and energy resolution.

  19. Monolithic CMOS imaging x-ray spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff is developing monolithic CMOS detectors optimized for x-ray astronomy. The goal of this multi-year program is to produce CMOS x-ray imaging spectrometers that are Fano noise limited over the 0.1-10keV energy band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Small format test devices from a previous wafer fabrication run (2011-2012) have recently been back-thinned and tested for response below 1keV. These devices perform as expected in regards to dark current, read noise, spectral response and Quantum Efficiency (QE). We demonstrate that running these devices at rates ~> 1Mpix/second eliminates the need for cooling as shot noise from any dark current is greatly mitigated. The test devices were fabricated on 15μm, high resistivity custom (~30kΩ-cm) epitaxial silicon and have a 16 by 192 pixel format. They incorporate 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels which have ~40μV/electron sensitivity and a highly parallel analog CDS signal chain. Newer, improved, lower noise detectors have just been fabricated (October 2013). These new detectors are fabricated on 9μm epitaxial silicon and have a 1k by 1k format. They incorporate similar 16μm pitch, 6TPPD pixels but have ~ 50% higher sensitivity and much (3×) lower read noise. These new detectors have undergone preliminary testing for functionality in Front Illuminated (FI) form and are presently being prepared for back thinning and packaging. Monolithic CMOS devices such as these, would be ideal candidate detectors for the focal planes of Solar, planetary and other space-borne x-ray astronomy missions. The high through-put, low noise and excellent low energy response, provide high dynamic range and good time resolution; bright, time varying x-ray features could be temporally and

  20. Comparison of high resolution x-ray detectors with conventional FPDs using experimental MTFs and apodized aperture pixel design for reduced aliasing

    NASA Astrophysics Data System (ADS)

    Shankar, A.; Russ, M.; Vijayan, S.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    Apodized Aperture Pixel (AAP) design, proposed by Ismailova et.al, is an alternative to the conventional pixel design. The advantages of AAP processing with a sinc filter in comparison with using other filters include non-degradation of MTF values and elimination of signal and noise aliasing, resulting in an increased performance at higher frequencies, approaching the Nyquist frequency. If high resolution small field-of-view (FOV) detectors with small pixels used during critical stages of Endovascular Image Guided Interventions (EIGIs) could also be extended to cover a full field-of-view typical of flat panel detectors (FPDs) and made to have larger effective pixels, then methods must be used to preserve the MTF over the frequency range up to the Nyquist frequency of the FPD while minimizing aliasing. In this work, we convolve the experimentally measured MTFs of an Microangiographic Fluoroscope (MAF) detector, (the MAF-CCD with 35μm pixels) and a High Resolution Fluoroscope (HRF) detector (HRF-CMOS50 with 49.5μm pixels) with the AAP filter and show the superiority of the results compared to MTFs resulting from moving average pixel binning and to the MTF of a standard FPD. The effect of using AAP is also shown in the spatial domain, when used to image an infinitely small point object. For detectors in neurovascular interventions, where high resolution is the priority during critical parts of the intervention, but full FOV with larger pixels are needed during less critical parts, AAP design provides an alternative to simple pixel binning while effectively eliminating signal and noise aliasing yet allowing the small FOV high resolution imaging to be maintained during critical parts of the EIGI.

  1. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    NASA Astrophysics Data System (ADS)

    Veale, M. C.; Adkin, P.; Booker, P.; Coughlan, J.; French, M. J.; Hart, M.; Nicholls, T.; Schneider, A.; Seller, P.; Pape, I.; Sawhney, K.; Carini, G. A.; Hart, P. A.

    2017-12-01

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 105 12 keV photons per image readout at 4.5 MHz. In this paper results from the testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. The performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.

  2. Comparing performances of a CdTe X-ray spectroscopic detector and an X-ray dual-energy sandwich detector

    NASA Astrophysics Data System (ADS)

    Gorecki, A.; Brambilla, A.; Moulin, V.; Gaborieau, E.; Radisson, P.; Verger, L.

    2013-11-01

    Multi-energy (ME) detectors are becoming a serious alternative to classical dual-energy sandwich (DE-S) detectors for X-ray applications such as medical imaging or explosive detection. They can use the full X-ray spectrum of irradiated materials, rather than disposing only of low and high energy measurements, which may be mixed. In this article, we intend to compare both simulated and real industrial detection systems, operating at a high count rate, independently of the dimensions of the measurements and independently of any signal processing methods. Simulations or prototypes of similar detectors have already been compared (see [1] for instance), but never independently of estimation methods and never with real detectors. We have simulated both an ME detector made of CdTe - based on the characteristics of the MultiX ME100 and - a DE-S detector - based on the characteristics of the Detection Technology's X-Card 1.5-64DE model. These detectors were compared to a perfect spectroscopic detector and an optimal DE-S detector. For comparison purposes, two approaches were investigated. The first approach addresses how to distinguise signals, while the second relates to identifying materials. Performance criteria were defined and comparisons were made over a range of material thicknesses and with different photon statistics. Experimental measurements in a specific configuration were acquired to checks simulations. Results showed good agreement between the ME simulation and the ME100 detector. Both criteria seem to be equivalent, and the ME detector performs 3.5 times better than the DE-S detector with same photon statistics based on simulations and experimental measurements. Regardless of the photon statistics ME detectors appeared more efficient than DE-S detectors for all material thicknesses between 1 and 9 cm when measuring plastics with an attenuation signature close that of explosive materials. This translates into an improved false detection rate (FDR): DE

  3. The UCSD high energy X-ray timing experiment cosmic ray particle anticoincidence detector

    NASA Technical Reports Server (NTRS)

    Hink, P. L.; Rothschild, R. E.; Pelling, M. R.; Macdonald, D. R.; Gruber, D. E.

    1991-01-01

    The HEXTE, part of the X-Ray Timing Explorer (XTE), is designed to make high sensitivity temporal and spectral measurements of X-rays with energies between 15 and 250 keV using NaI/CsI phoswich scintillation counters. To achieve the required sensitivity it is necessary to provide anticoincidence of charged cosmic ray particles incident upon the instrument, some of which interact to produce background X-rays. The proposed cosmic ray particle anticoincidence shield detector for HEXTE uses a novel design based on plastic scintillators and wavelength-shifter bars. It consists of five segments, each with a 7 mm thick plastic scintillator, roughly 50 cm x 50 cm in size, coupled to two wavelength-shifter bars viewed by 1/2 inch photomultiplier tubes. These segments are configured into a five-sided, box-like structure around the main detector system. Results of laboratory testing of a model segment, and calculations of the expected performance of the flight segments and particle anticoincidence detector system are presented to demonstrate that the above anticoincidence detector system satisfies its scientific requirements.

  4. Imaging properties of pixellated scintillators with deep pixels

    NASA Astrophysics Data System (ADS)

    Barber, H. Bradford; Fastje, David; Lemieux, Daniel; Grim, Gary P.; Furenlid, Lars R.; Miller, Brian W.; Parkhurst, Philip; Nagarkar, Vivek V.

    2014-09-01

    We have investigated the light-transport properties of scintillator arrays with long, thin pixels (deep pixels) for use in high-energy gamma-ray imaging. We compared 10x10 pixel arrays of YSO:Ce, LYSO:Ce and BGO (1mm x 1mm x 20 mm pixels) made by Proteus, Inc. with similar 10x10 arrays of LSO:Ce and BGO (1mm x 1mm x 15mm pixels) loaned to us by Saint-Gobain. The imaging and spectroscopic behaviors of these scintillator arrays are strongly affected by the choice of a reflector used as an inter-pixel spacer (3M ESR in the case of the Proteus arrays and white, diffuse-reflector for the Saint-Gobain arrays). We have constructed a 3700-pixel LYSO:Ce Prototype NIF Gamma-Ray Imager for use in diagnosing target compression in inertial confinement fusion. This system was tested at the OMEGA Laser and exhibited significant optical, inter-pixel cross-talk that was traced to the use of a single-layer of ESR film as an inter-pixel spacer. We show how the optical cross-talk can be mapped, and discuss correction procedures. We demonstrate a 10x10 YSO:Ce array as part of an iQID (formerly BazookaSPECT) imager and discuss issues related to the internal activity of 176Lu in LSO:Ce and LYSO:Ce detectors.

  5. New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kilbourne, Caroline

    We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.

  6. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE PAGES

    Veale, M. C.; Adkin, P.; Booker, P.; ...

    2017-12-04

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  7. Characterisation of the high dynamic range Large Pixel Detector (LPD) and its use at X-ray free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veale, M. C.; Adkin, P.; Booker, P.

    The STFC Rutherford Appleton Laboratory have delivered the Large Pixel Detector (LPD) for MHz frame rate imaging at the European XFEL. The detector system has an active area of 0.5 m × 0.5 m and consists of a million pixels on a 500 μm pitch. Sensors have been produced from 500 μm thick Hammamatsu silicon tiles that have been bump bonded to the readout ASIC using a silver epoxy and gold stud technique. Each pixel of the detector system is capable of measuring 10 5 12 keV photons per image readout at 4.5 MHz. In this paper results from themore » testing of these detectors at the Diamond Light Source and the Linac Coherent Light Source (LCLS) are presented. As a result, the performance of the detector in terms of linearity, spatial uniformity and the performance of the different ASIC gain stages is characterised.« less

  8. Medical imaging: Material change for X-ray detectors

    NASA Astrophysics Data System (ADS)

    Rowlands, John A.

    2017-10-01

    The X-ray sensitivity of radiology instruments is limited by the materials used in their detectors. A material from the perovskite family of semiconductors could allow lower doses of X-rays to be used for medical imaging. See Letter p.87

  9. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor.

    PubMed

    Hamann, Elias; Koenig, Thomas; Zuber, Marcus; Cecilia, Angelica; Tyazhev, Anton; Tolbanov, Oleg; Procz, Simon; Fauler, Alex; Baumbach, Tilo; Fiederle, Michael

    2015-03-01

    High resistivity gallium arsenide is considered a suitable sensor material for spectroscopic X-ray imaging detectors. These sensors typically have thicknesses between a few hundred μm and 1 mm to ensure a high photon detection efficiency. However, for small pixel sizes down to several tens of μm, an effect called charge sharing reduces a detector's spectroscopic performance. The recently developed Medipix3RX readout chip overcomes this limitation by implementing a charge summing circuit, which allows the reconstruction of the full energy information of a photon interaction in a single pixel. In this work, we present the characterization of the first Medipix3RX detector assembly with a 500 μm thick high resistivity, chromium compensated gallium arsenide sensor. We analyze its properties and demonstrate the functionality of the charge summing mode by means of energy response functions recorded at a synchrotron. Furthermore, the imaging properties of the detector, in terms of its modulation transfer functions and signal-to-noise ratios, are investigated. After more than one decade of attempts to establish gallium arsenide as a sensor material for photon counting detectors, our results represent a breakthrough in obtaining detector-grade material. The sensor we introduce is therefore suitable for high resolution X-ray imaging applications.

  10. Reduction of a grid moiré pattern by integrating a carbon-interspaced high precision x-ray grid with a digital radiographic detector.

    PubMed

    Yoon, Jai-Woong; Park, Young-Guk; Park, Chun-Joo; Kim, Do-Il; Lee, Jin-Ho; Chung, Nag-Kun; Choe, Bo-Young; Suh, Tae-Suk; Lee, Hyoung-Koo

    2007-11-01

    The stationary grid commonly used with a digital x-ray detector causes a moiré interference pattern due to the inadequate sampling of the grid shadows by the detector pixels. There are limitations with the previous methods used to remove the moiré such as imperfect electromagnetic interference shielding and the loss of image information. A new method is proposed for removing the moiré pattern by integrating a carbon-interspaced high precision x-ray grid with high grid line uniformity with the detector for frequency matching. The grid was aligned to the detector by translating and rotating the x-ray grid with respect to the detector using microcontrolled alignment mechanism. The gap between the grid and the detector surface was adjusted with micrometer precision to precisely match the projected grid line pitch to the detector pixel pitch. Considering the magnification of the grid shadows on the detector plane, the grids were manufactured such that the grid line frequency was slightly higher than the detector sampling frequency. This study examined the factors that affect the moiré pattern, particularly the line frequency and displacement. The frequency of the moiré pattern was found to be sensitive to the angular displacement of the grid with respect to the detector while the horizontal translation alters the phase but not the moiré frequency. The frequency of the moiré pattern also decreased with decreasing difference in frequency between the grid and the detector, and a moiré-free image was produced after complete matching for a given source to detector distance. The image quality factors including the contrast, signal-to-noise ratio and uniformity in the images with and without the moiré pattern were investigated.

  11. Novel Drift Structures for Silicon and Compound Semiconductor X-Ray and Gamma-Ray Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley E. Patt; Jan S. Iwanczyk

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that we discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current (both bulk silicon dark current and surface dark current) and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector.

  12. The low energy detector of Simbol-X

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.

    2008-07-01

    Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.

  13. DQE simulation of a-Se x-ray detectors using ARTEMIS

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Badano, Aldo

    2016-03-01

    Detective Quantum Efficiency (DQE) is one of the most important image quality metrics for evaluating the spatial resolution performance of flat-panel x-ray detectors. In this work, we simulate the DQE of amorphous selenium (a-Se) xray detectors with a detailed Monte Carlo transport code (ARTEMIS) for modeling semiconductor-based direct x-ray detectors. The transport of electron-hole pairs is achieved with a spatiotemporal model that accounts for recombination and trapping of carriers and Coulombic effects of space charge and external applied electric field. A range of x-ray energies has been simulated from 10 to 100 keV. The DQE results can be used to study the spatial resolution characteristics of detectors at different energies.

  14. Novel drift structures for silicon and compound semiconductor X-ray and gamma-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Iwanczyk, J.S.

    Recently developed silicon- and compound-semiconductor-based drift detector structures have produced excellent performance for charged particles, X-rays, and gamma rays and for low-signal visible light detection. The silicon drift detector (SDD) structures that the authors discuss relate to direct X-ray detectors and scintillation photon detectors coupled with scintillators for gamma rays. Recent designs include several novel features that ensure very low dark current and hence low noise. In addition, application of thin window technology ensures a very high quantum efficiency entrance window on the drift photodetector. The main features of the silicon drift structures for X rays and light detection aremore » very small anode capacitance independent of the overall detector size, low noise, and high throughput. To take advantage of the small detector capacitance, the first stage of the electronics needs to be integrated into the detector anode. In the gamma-ray application, factors other than electronic noise dominate, and there is no need to integrate the electronics into the anode. Thus, a different drift structure is needed in conjunction with a high-Z material. The main features in this case are large active detector volume and electron-only induced signal.« less

  15. Ground calibrations of the X-ray detector system of the Solar Intensity X-ray Spectrometer (SIXS) on board BepiColombo

    NASA Astrophysics Data System (ADS)

    Huovelin, Juhani; Lehtolainen, Arto; Genzer, Maria; Korpela, Seppo; Esko, Eero; Andersson, Hans

    2014-05-01

    SIXS includes X-ray and particle detector systems for the BepiColombo Mercury Planetary Orbiter (MPO). Its task is to monitor the direct solar X-rays and energetic particles in a wide field of view in the energy range of 1-20 keV (X-rays), 0.1-3 MeV (electrons) and 1-30 MeV (protons). The main purpose of these measurements is to provide quantitative information on the high energy radiation incident on Mercury's surface which causes the X-ray glow of the planet measured by the MIXS instrument. The X-ray and particle measurements of SIXS are also useful for investigations of the solar corona and the magnetosphere of Mercury. The ground calibrations of the X-ray detectors of the SIXS flight model were carried out in the X-ray laboratory of the Helsinki University during May and June 2012. The aim of the ground calibrations was to characterize the performance of the SIXS instrument's three High-Purity Silicon PIN X-ray detectors and verify that they fulfil their scientific performance requirements. The calibrations included the determination of the beginning of life energy resolution at different operational temperatures, determination of the detector's sensitivity within the field of view as a function of the off-axis and roll angles, pile-up tests for determining the speed of the read out electronics, measurements of the low energy threshold of the energy scale, a cross-calibration with the SMART-1 XSM flight spare detector, and the determination of the temperature dependence of the energy scale. An X-ray tube and the detectors' internal Ti coated 55Fe calibration sources were used as primary X-ray sources. In addition, two external fluorescence sources were used as secondary X-ray sources in the determination of the energy resolutions and in the comparison calibration with the SMART-1 XSM. The calibration results show that the detectors fulfill all of the scientific performance requirements. The ground calibration data combined with the instrument house-keeping data

  16. THCOBRA X-ray imaging detector operating in pure Kr

    NASA Astrophysics Data System (ADS)

    Carramate, L. F. N. D.; Silva, A. L. M.; Azevedo, C. D. R.; Fortes, I.; Monteiro, S. G.; Sousa, S.; Ribeiro, F. M.; De Francesco, S.; Covita, D. S.; Veloso, J. F. C. A.

    2017-05-01

    MicroPattern Gaseous Detectors (MPGD) have been explored for X-ray imaging, namely for photon counting imaging which allows the improvement of image quality and the collection of more information than the conventional commercial systems. A 2D-THCOBRA based detector was developed, studied and used to acquire X-ray transmission images. The 2D-THCOBRA structure used has an active area of 2.8 × 2.8 cm2 and allows obtaining the position and energy information of each single photon that interacts with the detector. It is filled with pure Kr at 1 bar operating in a sealed mode. Within this work the performance of the detector is evaluated in terms of charge gain, count rate, time stability, energy and spatial resolutions. The detector presents a charge gain of 2 × 104 and an energy resolution of 23% for 5.9 keV, showing gain stability along time for a count rate of about 1 × 105 Hz/mm2. It presents a spatial resolution of 600 μm (σ = 255 μm) and 500 μm (σ = 213 μm) for x and y directions, respectively, and, considering energy bins about 650 μm (σ = 277 μm) for approximately 16.5 keV. X-ray transmission images of some samples presented here show good prospects for X-ray imaging applications.

  17. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  18. Graphical user interface for a dual-module EMCCD x-ray detector array

    NASA Astrophysics Data System (ADS)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  19. Directly-deposited blocking filters for high-performance silicon x-ray detectors

    NASA Astrophysics Data System (ADS)

    Bautz, M.; Kissel, S.; Masterson, R.; Ryu, K.; Suntharalingam, V.

    2016-07-01

    Silicon X-ray detectors often require blocking filters to mitigate noise and out-of-band signal from UV and visible backgrounds. Such filters must be thin to minimize X-ray absorption, so direct deposition of filter material on the detector entrance surface is an attractive approach to fabrication of robust filters. On the other hand, the soft (E < 1 keV) X-ray spectral resolution of the detector is sensitive to the charge collection efficiency in the immediate vicinity of its entrance surface, so it is important that any filter layer is deposited without disturbing the electric field distribution there. We have successfully deposited aluminum blocking filters, ranging in thickness from 70 to 220nm, on back-illuminated CCD X-ray detectors passivated by means of molecular beam epitaxy. Here we report measurements showing that directly deposited filters have little or no effect on soft X-ray spectral resolution. We also find that in applications requiring very large optical density (> OD 6) care must be taken to prevent light from entering the sides and mounting surfaces of the detector. Our methods have been used to deposit filters on the detectors of the REXIS instrument scheduled to fly on OSIRIS-ReX later this year.

  20. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    PubMed

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  1. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers

    NASA Astrophysics Data System (ADS)

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-01

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 109 Mcps mm-2 in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (<=10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous. The

  2. Performance simulation of an x-ray detector for spectral CT with combined Si and Cd[Zn]Te detection layers.

    PubMed

    Herrmann, Christoph; Engel, Klaus-Jürgen; Wiegert, Jens

    2010-12-21

    The most obvious problem in obtaining spectral information with energy-resolving photon counting detectors in clinical computed tomography (CT) is the huge x-ray flux present in conventional CT systems. At high tube voltages (e.g. 140 kVp), despite the beam shaper, this flux can be close to 10⁹ Mcps mm⁻² in the direct beam or in regions behind the object, which are close to the direct beam. Without accepting the drawbacks of truncated reconstruction, i.e. estimating missing direct-beam projection data, a photon-counting energy-resolving detector has to be able to deal with such high count rates. Sub-structuring pixels into sub-pixels is not enough to reduce the count rate per pixel to values that today's direct converting Cd[Zn]Te material can cope with (≤ 10 Mcps in an optimistic view). Below 300 µm pixel pitch, x-ray cross-talk (Compton scatter and K-escape) and the effect of charge diffusion between pixels are problematic. By organising the detector in several different layers, the count rate can be further reduced. However this alone does not limit the count rates to the required level, since the high stopping power of the material becomes a disadvantage in the layered approach: a simple absorption calculation for 300 µm pixel pitch shows that the required layer thickness of below 10 Mcps/pixel for the top layers in the direct beam is significantly below 100 µm. In a horizontal multi-layer detector, such thin layers are very difficult to manufacture due to the brittleness of Cd[Zn]Te. In a vertical configuration (also called edge-on illumination (Ludqvist et al 2001 IEEE Trans. Nucl. Sci. 48 1530-6, Roessl et al 2008 IEEE NSS-MIC-RTSD 2008, Conf. Rec. Talk NM2-3)), bonding of the readout electronics (with pixel pitches below 100 µm) is not straightforward although it has already been done successfully (Pellegrini et al 2004 IEEE NSS MIC 2004 pp 2104-9). Obviously, for the top detector layers, materials with lower stopping power would be advantageous

  3. Diamond Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Gobbi, B.; Grim, G. P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; mac Lynne, L.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L. S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J. L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  4. Room temperature X- and gamma-ray detectors using thallium bromide crystals

    NASA Astrophysics Data System (ADS)

    Hitomi, K.; Muroi, O.; Shoji, T.; Suehiro, T.; Hiratate, Y.

    1999-10-01

    Thallium bromide (TlBr) is a compound semiconductor with wide band gap (2.68eV) and high X- and γ-ray stopping power. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using purified material. Two types of room temperature X- and γ-ray detectors were fabricated from the TlBr crystals: TlBr detectors with high detection efficiency for positron annihilation γ-ray (511keV) detection and TlBr detectors with high-energy resolution for low-energy X-ray detection. The detector of the former type demonstrated energy resolution of 56keV FWHM (11%) for 511keV γ-rays. Energy resolution of 1.81keV FWHM for 5.9keV was obtained from the detector of the latter type. In order to analyze noise characteristics of the detector-preamplifier assembly, the equivalent noise charge (ENC) was measured as a function of the amplifier shaping time for the high-resolution detector. This analysis shows that parallel white noise and /1/f noise were dominant noise sources in the detector system. Current-voltage characteristics of the TlBr detector with a small Peltier cooler were also measured. Significant reduction of the detector leakage current was observed for the cooled detectors.

  5. Novel energy resolving x-ray pinhole camera on Alcator C-Mod.

    PubMed

    Pablant, N A; Delgado-Aparicio, L; Bitter, M; Brandstetter, S; Eikenberry, E; Ellis, R; Hill, K W; Hofer, P; Schneebeli, M

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009)] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  6. Energy discriminating x-ray camera utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Purkhet, Abderyim; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Wantanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Tanaka, Etsuro; Kawai, Toshiaki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-07-01

    An energy-discriminating x-ray camera is useful for performing monochromatic radiography using polychromatic x rays. This x-ray camera was developed to carry out K-edge radiography using iodine-based contrast media. In this camera, objects are exposed by a cone beam from a cerium x-ray generator, and penetrating x-ray photons are detected by a cadmium telluride detector with an amplifier unit. The optimal x-ray photon energy and the energy width are selected out using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x-y stage driven by a two-stage controller, and radiograms obtained by energy discriminating are shown on a personal computer monitor. In radiography, the tube voltage and current were 60 kV and 36 μA, respectively, and the x-ray intensity was 4.7 μGy/s. Cerium K-series characteristic x rays are absorbed effectively by iodine-based contrast media, and iodine K-edge radiography was performed using x rays with energies just beyond iodine K-edge energy 33.2 keV.

  7. 3D track reconstruction capability of a silicon hybrid active pixel detector

    NASA Astrophysics Data System (ADS)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  8. Measurements with Si and GaAs pixel detectors bonded to photon counting readout chips

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Campbell, M.; Goeppert, R.; Ludwig, J.; Mikulec, B.; Runge, K.; Smith, K. M.; Snoeys, W.

    2001-06-01

    Detectors fabricated with SI-GaAs and Si bulk material were bonded to Photon Counting Chips (PCC), developed in the framework of the MEDIPIX Collaboration. The PCC consists of a matrix of 64×64 identical square pixels (170 μm×170 μm) with a 15-bit counter in each cell. We investigated the imaging properties of these detector systems under exposure of a dental X-ray tube at room temperature. The image homogeneity and the mean count rate were determined via flood exposure images and compared. Exposures for GaAs detectors exhibit a 3 times larger spread in count rate per image in comparison to Si detectors. This also results in a 3 times worse signal to noise ratio. IV-characteristics and X-ray images at different values of the detectors bias voltage were also taken and show a 30 times higher leakage current for GaAs. The Si detector is fully active beginning from 70 V, whereas the GaAs detector does not reach full charge collection. The presampling modulation transfer function of both assembly types was measured via slit images and gives a spatial resolution of 4.3 lp/mm for both detector systems.

  9. Development of 4-Sides Buttable CdTe-ASIC Hybrid Module for X-ray Flat Panel Detector

    NASA Astrophysics Data System (ADS)

    Tamaki, Mitsuru; Mito, Yoshio; Shuto, Yasuhiro; Kiyuna, Tatsuya; Yamamoto, Masaya; Sagae, Kenichi; Kina, Tooru; Koizumi, Tatsuhiro; Ohno, Ryoichi

    2009-08-01

    A 4-sides buttable CdTe-ASIC hybrid module suitable for use in an X-ray flat panel detector (FPD) has been developed by applying through silicon via (TSV) technology to the readout ASIC. The ASIC has 128 times 256 channels of charge integration type readout circuitry and an area of 12.9 mm times 25.7 mm. The CdTe sensor of 1 mm thickness, having the same area and pixel of 100 mum pitch, was fabricated from the Cl-doped CdTe single crystal grown by traveling heater method (THM). Then the CdTe pixel sensor was hybridized with the ASIC using the bump-bonding technology. The basic performance of this 4-sides buttable module was evaluated by taking X-ray images, and it was compared with that of a commercially available indirect type CsI(Tl) FPD. A prototype CdTe FPD was made by assembling 9 pieces of the 4-sides buttable modules into 3 times 3 arrays in which the neighboring modules were mounted on the interface board. The FPD covers an active area of 77 mm times 39 mm. The results showed the great potential of this 4-sides buttable module for the new real time X-ray FPD with high spatial resolution.

  10. Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.

    PubMed

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen

    2011-03-16

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  11. XIPE: the x-ray imaging polarimetry explorer

    NASA Astrophysics Data System (ADS)

    Soffitta, P.; Bellazzini, R.; Bozzo, E.; Burwitz, V.; Castro-Tirado, A.; Costa, E.; Courvoisier, T.; Feng, H.; Gburek, S.; Goosmann, R.; Karas, V.; Matt, G.; Muleri, F.; Nandra, K.; Pearce, M.; Poutanen, J.; Reglero, V.; Sabau Maria, D.; Santangelo, A.; Tagliaferri, G.; Tenzer, C.; Vink, J.; Weisskopf, M. C.; Zane, S.; Agudo, I.; Antonelli, A.; Attina, P.; Baldini, L.; Bykov, A.; Carpentiero, R.; Cavazzuti, E.; Churazov, E.; Del Monte, E.; De Martino, D.; Donnarumma, I.; Doroshenko, V.; Evangelista, Y.; Ferreira, I.; Gallo, E.; Grosso, N.; Kaaret, P.; Kuulkers, E.; Laranaga, J.; Latronico, L.; Lumb, D. H.; Macian, J.; Malzac, J.; Marin, F.; Massaro, E.; Minuti, M.; Mundell, C.; Ness, J. U.; Oosterbroek, T.; Paltani, S.; Pareschi, G.; Perna, R.; Petrucci, P.-O.; Pinazo, H. B.; Pinchera, M.; Rodriguez, J. P.; Roncadelli, M.; Santovincenzo, A.; Sazonov, S.; Sgro, C.; Spiga, D.; Svoboda, J.; Theobald, C.; Theodorou, T.; Turolla, R.; Wilhelmi de Ona, E.; Winter, B.; Akbar, A. M.; Allan, H.; Aloisio, R.; Altamirano, D.; Amati, L.; Amato, E.; Angelakis, E.; Arezu, J.; Atteia, J.-L.; Axelsson, M.; Bachetti, M.; Ballo, L.; Balman, S.; Bandiera, R.; Barcons, X.; Basso, S.; Baykal, A.; Becker, W.; Behar, E.; Beheshtipour, B.; Belmont, R.; Berger, E.; Bernardini, F.; Bianchi, S.; Bisnovatyi-Kogan, G.; Blasi, P.; Blay, P.; Bodaghee, A.; Boer, M.; Boettcher, M.; Bogdanov, S.; Bombaci, I.; Bonino, R.; Braga, J.; Brandt, W.; Brez, A.; Bucciantini, N.; Burderi, L.; Caiazzo, I.; Campana, R.; Campana, S.; Capitanio, F.; Cappi, M.; Cardillo, M.; Casella, P.; Catmabacak, O.; Cenko, B.; Cerda-Duran, P.; Cerruti, C.; Chaty, S.; Chauvin, M.; Chen, Y.; Chenevez, J.; Chernyakova, M.; Cheung, C. C. Teddy; Christodoulou, D.; Connell, P.; Corbet, R.; Coti Zelati, F.; Covino, S.; Cui, W.; Cusumano, G.; D'Ai, A.; D'Ammando, F.; Dadina, M.; Dai, Z.; De Rosa, A.; de Ruvo, L.; Degenaar, N.; Del Santo, M.; Del Zanna, L.; Dewangan, G.; Di Cosimo, S.; Di Lalla, N.; Di Persio, G.; Di Salvo, T.; Dias, T.; Done, C.; Dovciak, M.; Doyle, G.; Ducci, L.; Elsner, R.; Enoto, T.; Escada, J.; Esposito, P.; Eyles, C.; Fabiani, S.; Falanga, M.; Falocco, S.; Fan, Y.; Fender, R.; Feroci, M.; Ferrigno, C.; Forman, W.; Foschini, L.; Fragile, C.; Fuerst, F.; Fujita, Y.; Gasent-Blesa, J. L.; Gelfand, J.; Gendre, B.; Ghirlanda, G.; Ghisellini, G.; Giroletti, M.; Goetz, D.; Gogus, E.; Gomez, J.-L.; Gonzalez, D.; Gonzalez-Riestra, R.; Gotthelf, E.; Gou, L.; Grandi, P.; Grinberg, V.; Grise, F.; Guidorzi, C.; Gurlebeck, N.; Guver, T.; Haggard, D.; Hardcastle, M.; Hartmann, D.; Haswell, C.; Heger, A.; Hernanz, M.; Heyl, J.; Ho, L.; Hoormann, J.; Horak, J.; Huovelin, J.; Huppenkothen, D.; Iaria, R.; Inam Sitki, C.; Ingram, A.; Israel, G.; Izzo, L.; Burgess, M.; Jackson, M.; Ji, L.; Jiang, J.; Johannsen, T.; Jones, C.; Jorstad, S.; Kajava, J. J. E.; Kalamkar, M.; Kalemci, E.; Kallman, T.; Kamble, A.; Kislat, F.; Kiss, M.; Klochkov, D.; Koerding, E.; Kolehmainen, M.; Koljonen, K.; Komossa, S.; Kong, A.; Korpela, S.; Kowalinski, M.; Krawczynski, H.; Kreykenbohm, I.; Kuss, M.; Lai, D.; Lan, M.; Larsson, J.; Laycock, S.; Lazzati, D.; Leahy, D.; Li, H.; Li, J.; Li, L.-X.; Li, T.; Li, Z.; Linares, M.; Lister, M.; Liu, H.; Lodato, G.; Lohfink, A.; Longo, F.; Luna, G.; Lutovinov, A.; Mahmoodifar, S.; Maia, J.; Mainieri, V.; Maitra, C.; Maitra, D.; Majczyna, A.; Maldera, S.; Malyshev, D.; Manfreda, A.; Manousakis, A.; Manuel, R.; Margutti, R.; Marinucci, A.; Markoff, S.; Marscher, A.; Marshall, H.; Massaro, F.; McLaughlin, M.; Medina-Tanco, G.; Mehdipour, M.; Middleton, M.; Mignani, R.; Mimica, P.; Mineo, T.; Mingo, B.; Miniutti, G.; Mirac, S. M.; Morlino, G.; Motlagh, A. V.; Motta, S.; Mushtukov, A.; Nagataki, S.; Nardini, F.; Nattila, J.; Navarro, G. J.; Negri, B.; Negro, Matteo; Nenonen, S.; Neustroev, V.; Nicastro, F.; Norton, A.; Nucita, A.; O'Brien, P.; O'Dell, S.

    2016-07-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially- resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics. Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest Observer competitive program and it is organized as a consortium across Europe with main contributions from Italy, Germany, Spain, United Kingdom, Poland, Sweden.

  12. Coded aperture detector: an image sensor with sub 20-nm pixel resolution.

    PubMed

    Miyakawa, Ryan; Mayer, Rafael; Wojdyla, Antoine; Vannier, Nicolas; Lesser, Ian; Aron-Dine, Shifrah; Naulleau, Patrick

    2014-08-11

    We describe the coded aperture detector, a novel image sensor based on uniformly redundant arrays (URAs) with customizable pixel size, resolution, and operating photon energy regime. In this sensor, a coded aperture is scanned laterally at the image plane of an optical system, and the transmitted intensity is measured by a photodiode. The image intensity is then digitally reconstructed using a simple convolution. We present results from a proof-of-principle optical prototype, demonstrating high-fidelity image sensing comparable to a CCD. A 20-nm half-pitch URA fabricated by the Center for X-ray Optics (CXRO) nano-fabrication laboratory is presented that is suitable for high-resolution image sensing at EUV and soft X-ray wavelengths.

  13. Spatial resolution of a spherical x-ray crystal spectrometer at various magnifications

    DOE PAGES

    Gao, Lan; Hill, K. W.; Bitter, M.; ...

    2016-08-23

    Here, a high spatial resolution of a few μm is often required for probing small-scale high-energy-density plasmas using high resolution x-ray imaging spectroscopy. This resolution can be achieved by adjusting system magnification to overcome the inherent limitation of the detector pixel size. Laboratory experiments on investigating the relation between spatial resolution and system magnification for a spherical crystal spectrometer are presented. Tungsten Lβ 2 rays from a tungsten-target micro-focus x-ray tube were diffracted by a Ge 440 crystal, which was spherically bent to a radius of 223 mm, and imaged onto an x-ray CCD with 13-μm pixel size. The source-to-crystalmore » (p) and crystal-to-detector (q) distances were varied to produce spatial magnifications ( M = q/p) ranging from 2 to 10. The inferred instrumental spatial width reduces with increasing system magnification M. However, the experimental measurement at each M is larger than the theoretical value of pixel size divided by M. Future work will focus on investigating possible broadening mechanisms that limit the spatial resolution.« less

  14. Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT).

    PubMed

    Ahmad, Moiz; Bazalova-Carter, Magdalena; Fahrig, Rebecca; Xing, Lei

    2015-05-01

    In this work, we demonstrated that an optimized detector angular configuration based on the anisotropic energy distribution of background scattered X-rays improves X-ray fluorescence computed tomography (XFCT) detection sensitivity. We built an XFCT imaging system composed of a bench-top fluoroscopy X-ray source, a CdTe X-ray detector, and a phantom motion stage. We imaged a 6.4-cm-diameter phantom containing different concentrations of gold solution and investigated the effect of detector angular configuration on XFCT image quality. Based on our previous theoretical study, three detector angles were considered. The X-ray fluorescence detector was first placed at 145 (°) (approximating back-scatter) to minimize scatter X-rays. XFCT image quality was compared to images acquired with the detector at 60 (°) (forward-scatter) and 90 (°) (side-scatter). The datasets for the three different detector positions were also combined to approximate an isotropically arranged detector. The sensitivity was optimized with detector in the 145 (°) back-scatter configuration counting the 78-keV gold Kβ1 X-rays. The improvement arose from the reduced energy of scattered X-ray at the 145 (°) position and the large energy separation from gold K β1 X-rays. The lowest detected concentration in this configuration was 2.5 mgAu/mL (or 0.25% Au with SNR = 4.3). This concentration could not be detected with the 60 (°) , 90 (°) , or isotropic configurations (SNRs = 1.3, 0, 2.3, respectively). XFCT imaging dose of 14 mGy was in the range of typical clinical X-ray CT imaging doses. To our knowledge, the sensitivity achieved in this experiment is the highest in any XFCT experiment using an ordinary bench-top X-ray source in a phantom larger than a mouse ( > 3 cm).

  15. Hard x-ray and gamma-ray imaging and spectroscopy using scintillators coupled to silicon drift detectors

    NASA Astrophysics Data System (ADS)

    Lechner, P.; Eckhard, R.; Fiorini, C.; Gola, A.; Longoni, A.; Niculae, A.; Peloso, R.; Soltau, H.; Strüder, L.

    2008-07-01

    Silicon Drift Detectors (SDDs) are used as low-capacitance photon detectors for the optical light emitted by scintillators. The scintillator crystal is directly coupled to the SDD entrance window. The entrance window's transmittance can be optimized for the scintillator characteristic by deposition of a wavelength-selective anti-reflective coating. Compared to conventional photomultiplier tubes the SDD readout offers improved energy resolution and avoids the practical problems of incompatibility with magnetic fields, instrument volume and requirement of high voltage. A compact imaging spectrometer for hard X-rays and γ-rays has been developed by coupling a large area (29 × 26 mm2) monolithic SDD array with 77 hexagonal cells to a single non-structured CsI-scintillator of equal size. The scintillation light generated by the absorption of an energetic photon is seen by a number of detector cells and the position of the photon interaction is reconstructed by the centroid method. The measured spatial resolution of the system (<= 500 μm) is considerably smaller than the SDD cell size (3.2 mm) and in the order required at the focal plane of high energy missions. The energy information is obtained by summing the detector cell signals. Compared to direct converting pixelated detectors, e.g. CdTe with equal position resolution the scintillator-SDD combination requires a considerably lower number of readout channels. In addition it has the advantages of comprehensive material experience, existing technologies, proven long term stability, and practically unlimited availability of high quality material.

  16. Elemental X-ray Imaging Using the Maia Detector Array: The Benefits and Challenges of Large Solid-Angle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, C.G.; De Geronimo, G.; Kirkham, R.

    2009-11-13

    The fundamental parameter method for quantitative SXRF and PIXE analysis and imaging using the dynamic analysis method is extended to model the changing X-ray yields and detector sensitivity with angle across large detector arrays. The method is implemented in the GeoPIXE software and applied to cope with the large solid-angle of the new Maia 384 detector array and its 96 detector prototype developed by CSIRO and BNL for SXRF imaging applications at the Australian and NSLS synchrotrons. Peak-to-background is controlled by mitigating charge-sharing between detectors through careful optimization of a patterned molybdenum absorber mask. A geological application demonstrates the capabilitymore » of the method to produce high definition elemental images up to {approx}100 M pixels in size.« less

  17. Optimization of niobium tunnel junctions as X-ray detectors

    NASA Technical Reports Server (NTRS)

    Saulnier, Gregory G.; Zacher, Robert A.; Van Vechten, Deborah; Boyer, Craig; Lovellette, Michael N.; Fritz, Gilbert G.; Soulen, Robert J.; Kang, Joonhee; Blamire, Mark; Kirk, Eugenie C. G.

    1992-01-01

    We report on our ongoing work using Nb/Al/AlO(x)/Nb junctions for the detection of X-rays. Detectors based on superconducting tunneling junctions offer the prospect of resolution over an order of magnitude higher than is obtainable with the current generation of semiconductor-based detectors. Results of measurements taken at 1.85 K (a temperature achievable with current space flight technology) include the current-voltage (I-V) curve, subgap current vs temperature, the dependence of the superconducting current on the applied magnetic field (Fraunhofer pattern), X-ray pulses, and the spectra from a 6 keV X-ray source which gave an intrinsic device resolution of approximately 700 eV. The collection of more than 10 exp 5 electrons per 6 keV photon is established.

  18. In-Flight Performance of the Soft X-Ray Spectrometer Detector System on ASTRO-H

    NASA Technical Reports Server (NTRS)

    Porter, Frederick S.; Boyce, Kevin R.; Chiao, Meng P.; Eckart, Megan E.; Fujimoto, Ryuichi; Ishisaki, Yoshitaka; Kelley, Richard L.; Kilbourne, Carolina A.; Leutenegger, Maurice A.; McCammon, Dan; hide

    2016-01-01

    The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 microsecond. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.

  19. Bismuth Passivation Technique for High-Resolution X-Ray Detectors

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Hess, Larry

    2013-01-01

    The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).

  20. Development of EXITE2: a large-area imaging phoswich detector/telescope for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Manandhar, Raj P.; Lum, Kenneth S.; Eikenberry, Stephen S.; Krockenberger, Martin; Grindlay, Jonathan E.

    1993-11-01

    We review design considerations and present preliminary details of the performance of a new imaging system for hard X-ray astronomy in the 20 - 600 keV energy range. The detector is a 40 cm X 40 cm NaI(Tl)/CsI(Na) phoswich module, read out by a 7 X 7 array of square PMTs. The detector comprises the main part of the next generation Energetic X-ray Imaging Telescope Experiment (EXITE2), which had its first flight on 13 June 1993 from Palestine, Texas. Imaging is accomplished via the coded-aperture mask technique. The mask consists of 16 mm square lead/tin/copper pixels arranged in a cyclically repeated 13 X 11 uniformly redundant array pattern at a focal length of 2.5 m, giving 22 arcmin resolution. The field of view, determined by the lead/brass collimator (16 mm pitch) is 4.65 degrees FWHM. We anticipate a 3 sigma sensitivity of 1 X 10(superscript -5) photons cm(superscript -2) s(superscript -1) keV(superscript -1) at 100 keV in a 10(superscript 4) sec balloon observation. The electronics incorporate two on-board computers, providing a future capability to record the full data stream and telemeter compressed data. The design of the current detector and electronics allows an upgrade to EXITE3, which adds a proportional counter front-end to achieve lower background and better spatial and spectral resolution below approximately 100 keV.

  1. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    NASA Astrophysics Data System (ADS)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  2. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOEpatents

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  3. A multilayered approach to superconducting tunnel junction x ray detectors

    NASA Technical Reports Server (NTRS)

    Rippert, E. D.; Song, S. N.; Ketterson, J. B.; Maglic, S. R.; Lomatch, S.; Thomas, C.; Cheida, M. A.; Ulmer, M. P.

    1992-01-01

    'First generation' superconducting tunnel junction X-ray detectors (characterized by a single tunnel junction in direct contact with its substrate, with totally external amplification) remain more than an order of magnitude away from their theoretical energy resolutions which are in the order of eV's. The difficulties that first generation devices are encountering are being attacked by a 'second generation' of superconducting X-ray detector designs including quasiparticle trapping configurations and Josephson junction arrays. A second generation design concept, the multilayered superconducting tunnel junction X-ray detector, consisting of tens to hundreds of tunnel junctions stacked on top of one another (a superlattice), is presented. Some of the possibilities of this engineered materials approach include the tuning of phonon transmission characteristics of the material, suppression of parasitic quasiparticle trapping and intrinsic amplification.

  4. Novel x-ray silicon detector for 2D imaging and high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Castoldi, Andrea; Gatti, Emilio; Guazzoni, Chiara; Longoni, Antonio; Rehak, Pavel; Strueder, Lothar

    1999-10-01

    A novel x-ray silicon detector for 2D imaging has been recently proposed. The detector, called Controlled-Drift Detector, is operated in integrate-readout mode. Its basic feature is the fast transport of the integrated charge to the output electrode by means of a uniform drift field. The drift time of the charge packet identifies the pixel of incidence. A new architecture to implement the Controlled- Drift Detector concept will be presented. The potential wells for the integration of the signal charge are obtained by means of a suitable pattern of deep n-implants and deep p-implants. During the readout mode the signal electrons are transferred in the drift channel that flanks each column of potential wells where they drift towards the collecting electrode at constant velocity. The first experimental measurements demonstrate the successful integration, transfer and drift of the signal electrons. The low output capacitance of the readout electrode together with the on- chip front-end electronics allows high resolution spectroscopy of the detected photons.

  5. Electron imaging with Medipix2 hybrid pixel detector.

    PubMed

    McMullan, G; Cattermole, D M; Chen, S; Henderson, R; Llopart, X; Summerfield, C; Tlustos, L; Faruqi, A R

    2007-01-01

    The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.

  6. Gaseous detectors for energy dispersive X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Veloso, J. F. C. A.; Silva, A. L. M.

    2018-01-01

    The energy resolution capability of gaseous detectors is being used in the last years to perform studies on the detection of characteristic X-ray lines emitted by elements when excited by external radiation sources. One of the most successful techniques is the Energy Dispersive X-ray Fluorescence (EDXRF) analysis. Recent developments in the new generation of micropatterned gaseous detectors (MPGDs), triggered the possibility not only of recording the photon energy, but also of providing position information, extending their application to EDXRF imaging. The relevant features and strategies to be applied in gaseous detectors in order to better fit the requirements for EDXRF imaging will be reviewed and discussed, and some application examples will be presented.

  7. Technological aspects of GEM detector design and assembling for soft x-ray application

    NASA Astrophysics Data System (ADS)

    Kowalska-Strzeciwilk, E.; Chernyshova, M.

    2016-09-01

    Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.

  8. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE PAGES

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris; ...

    2015-01-01

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  9. Optimizing detector geometry for trace element mapping by X-ray fluorescence.

    PubMed

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2015-05-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. Copyright © 2015. Published by Elsevier B.V.

  10. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    PubMed Central

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris; Kirz, Janos; Vogt, Stefan

    2016-01-01

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples. PMID:25600825

  11. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie-Charlotte; Jacobsen, Chris

    Trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral response of energy dispersivemore » detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. We conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  12. Optimizing detector geometry for trace element mapping by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yue; Gleber, Sophie -Charlotte; Jacobsen, Chris

    We report that trace metals play critical roles in a variety of systems, ranging from cells to photovoltaics. X-Ray Fluorescence (XRF) microscopy using X-ray excitation provides one of the highest sensitivities available for imaging the distribution of trace metals at sub-100 nm resolution. With the growing availability and increasing performance of synchrotron light source based instruments and X-ray nanofocusing optics, and with improvements in energy-dispersive XRF detectors, what are the factors that limit trace element detectability? To address this question, we describe an analytical model for the total signal incident on XRF detectors with various geometries, including the spectral responsemore » of energy dispersive detectors. This model agrees well with experimentally recorded X-ray fluorescence spectra, and involves much shorter calculation times than with Monte Carlo simulations. With such a model, one can estimate the signal when a trace element is illuminated with an X-ray beam, and when just the surrounding non-fluorescent material is illuminated. From this signal difference, a contrast parameter can be calculated and this can in turn be used to calculate the signal-to-noise ratio (S/N) for detecting a certain elemental concentration. We apply this model to the detection of trace amounts of zinc in biological materials, and to the detection of small quantities of arsenic in semiconductors. In conclusion, we conclude that increased detector collection solid angle is (nearly) always advantageous even when considering the scattered signal. However, given the choice between a smaller detector at 90° to the beam versus a larger detector at 180° (in a backscatter-like geometry), the 90° detector is better for trace element detection in thick samples, while the larger detector in 180° geometry is better suited to trace element detection in thin samples.« less

  13. ART-XC/SRG: joint calibration of mirror modules and x-ray detectors

    NASA Astrophysics Data System (ADS)

    Tkachenko, A.; Pavlinsky, M.; Levin, V.; Akimov, V.; Krivchenko, A.; Rotin, A.; Kuznetsova, M.; Lapshov, I.; Yaskovich, A.; Oleinikov, V.; Gubarev, M.; Ramsey, B.

    2017-08-01

    The Astronomical Roentgen Telescope - X-ray Concentrator (ART-XC) is a hard x-ray instrument with energy response 6-30 keV that will to be launched on board of the Spectrum Roentgen Gamma (SRG) Mission. ART-XC consists of seven co-aligned mirror modules coupled with seven focal plane CdTe double-sided strip detectors. The mirror modules had been fabricated and calibrated at the NASA Marshall Space Flight Center (MSFC). The Russian Space Research Institute (IKI) has developed and tested the X-ray detectors. The joint x-ray calibration of the mirror modules and focal plane detectors was carried out at the IKI test facility. Details of the calibration procedure and an overview of the results are presented here.

  14. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Moser, Hans-Günther; DEPFET Collaboration

    2016-09-01

    The Belle II experiment at KEK (Tsukuba, Japan) will explore heavy flavour physics (B, charm and tau) at the starting of 2018 with unprecedented precision. Charged particles are tracked by a two-layer DEPFET pixel device (PXD), a four-layer silicon strip detector (SVD) and the central drift chamber (CDC). The PXD will consist of two layers at radii of 14 mm and 22 mm with 8 and 12 ladders, respectively. The pixel sizes will vary, between 50 μm×(55-60) μm in the first layer and between 50 μm×(70-85) μm in the second layer, to optimize the charge sharing efficiency. These innermost layers have to cope with high background occupancy, high radiation and must have minimal material to reduce multiple scattering. These challenges are met using the DEPFET technology. Each pixel is a FET integrated on a fully depleted silicon bulk. The signal charge collected in the 'internal gate' modulates the FET current resulting in a first stage amplification and therefore very low noise. This allows very thin sensors (75 μm) reducing the overall material budget of the detector (0.21% X0). Four fold multiplexing of the column parallel readout allows read out a full frame of the pixel matrix in only 20 μs while keeping the power consumption low enough for air cooling. Only the active electronics outside the detector acceptance has to be cooled actively with a two phase CO2 system. Furthermore the DEPFET technology offers the unique feature of an electronic shutter which allows the detector to operate efficiently in the continuous injection mode of superKEKB.

  15. X-ray metrology of an array of active edge pixel sensors for use at synchrotron light sources

    NASA Astrophysics Data System (ADS)

    Plackett, R.; Arndt, K.; Bortoletto, D.; Horswell, I.; Lockwood, G.; Shipsey, I.; Tartoni, N.; Williams, S.

    2018-01-01

    We report on the production and testing of an array of active edge silicon sensors as a prototype of a large array. Four Medipix3RX.1 chips were bump bonded to four single chip sized Advacam active edge n-on-n sensors. These detectors were then mounted into a 2 by 2 array and tested on B16 at Diamond Light Source with an x-ray beam spot of 2um. The results from these tests, compared with optical metrology demonstrate that this type of sensor is sensitive to the physical edge of the silicon, with only a modest loss of efficiency in the final two rows of pixels. We present the efficiency maps recorded with the microfocus beam and a sample powder diffraction measurement. These results give confidence that this sensor technology can be used effectively in larger arrays of detectors at synchrotron light sources.

  16. Phonon-mediated superconducting transition-edge sensor X-ray detectors for use in astronomy

    NASA Astrophysics Data System (ADS)

    Leman, Steven W.; Martinez-Galarce, Dennis S.; Brink, Paul L.; Cabrera, Blas; Castle, Joseph P.; Morse, Kathleen; Stern, Robert A.; Tomada, Astrid

    2004-09-01

    Superconducting Transition-Edge Sensors (TESs) are generating a great deal of interest in the areas of x-ray astrophysics and space science, particularly to develop them as large-array, imaging x-ray spectrometers. We are developing a novel concept that is based on position-sensitive macro-pixels placing TESs on the backside of a silicon or germanium absorber. Each x-ray absorbed will be position (X/δX and Y/δY ~ 100) and energy (E/δE ~ 1000) resolved via four distributed TES readouts. In the future, combining such macropixels with advances in multiplexing could lead to 30 by 30 arrays of close-packed macro-pixels equivalent to imaging instruments of 10 megapixels or more. We report on our progress to date and discuss its application to a plausible solar satellite mission and plans for future development.

  17. Characterization of a spectroscopic detector for application in x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Dooraghi, Alex A.; Fix, Brian J.; Smith, Jerel A.; Brown, William D.; Azevedo, Stephen G.; Martz, Harry E.

    2017-09-01

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-location and FWHM measurements are +/- 0.4 and +/- 0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 +/- 5 ns. This is consistent with the manufacturer's quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9 % (typical) and 12 % (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of 20 mm shows an underestimation of attenuation by about 10 % at 60 keV. This error is due to partial energy deposition from higher energy (>60 keV) photons into a lower-energy ( 60 keV) bin, reducing the apparent attenuation. A radiograph of a polytetrafluoroethylene (PTFE) cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is

  18. Characterization of a spectroscopic detector for application in x-ray computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dooraghi, A. A.; Fix, B. J.; Smith, J. A.

    Recent advances in cadmium telluride (CdTe) energy-discriminating pixelated detectors have enabled the possibility of Multi-Spectral X-ray Computed Tomography (MSXCT) to incorporate spectroscopic information into CT. MultiX ME 100 V2 is a CdTe-based spectroscopic x-ray detector array capable of recording energies from 20 to 160 keV in 1.1 keV energy bin increments. Hardware and software have been designed to perform radiographic and computed tomography tasks with this spectroscopic detector. Energy calibration is examined using the end-point energy of a bremsstrahlung spectrum and radioisotope spectral lines. When measuring the spectrum from Am-241 across 500 detector elements, the standard deviation of the peak-locationmore » and FWHM measurements are ±0.4 and ±0.6 keV, respectively. As these values are within the energy bin size (1.1 keV), detector elements are consistent with each other. The count rate is characterized, using a nonparalyzable model with a dead time of 64 ± 5 ns. This is consistent with the manufacturer’s quoted per detector-element linear-deviation at 2 Mpps (million photons per sec) of 8.9% (typical) and 12% (max). When comparing measured and simulated spectra, a low-energy tail is visible in the measured data due to the spectral response of the detector. If no valid photon detections are expected in the low-energy tail, then a background subtraction may be applied to allow for a possible first-order correction. If photons are expected in the low-energy tail, a detailed model must be implemented. A radiograph of an aluminum step wedge with a maximum height of about 20 mm shows an underestimation of attenuation by about 10% at 60 keV. This error is due to partial energy deposition from higher-energy (> 60 keV) photons into a lower-energy (~60 keV) bin, reducing the apparent attenuation. A radiograph of a PTFE cylinder taken using a bremsstrahlung spectrum from an x-ray voltage of 100 kV filtered by 1.3 mm Cu is reconstructed using Abel

  19. Spectral structure of a polycapillary lens shaped X-ray beam

    NASA Astrophysics Data System (ADS)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  20. Compound semiconductor detectors for X-ray astronomy: Spectroscopic measurements and material characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bavdaz, M.; Kraft, S.; Peacock, A.

    1998-12-31

    The use of some specific compound semiconductors in the fabrication of high energy X-ray detectors shows significant potential for X-ray astrophysics space missions. The authors are currently investigating three high purity crystals--CdZnTe, GaAs and TlBr--as the basis for future hard X-ray detectors (above 10 keV). In this paper the authors present the first results on CdZnTe and GaAs based detectors and evaluate the factors currently still constraining the performance. Energy resolutions (FWHM) of 0.9 keV and 1.1 keV at 14 keV and 60 keV, respectively, have been obtained with an epitaxial GaAs detector, while 0.7 keV and 1.5 keV FWHMmore » were measured at the same energies with a CdZnTe detector. Based on these results it is clear, that the next generation of X-ray astrophysics missions now in the planning phase may well consider extending the photon energy range up to {approximately} 100 keV by use of efficient detectors with reasonable spectroscopic capabilities.« less

  1. Ground-based x-ray calibration of the Astro-H/Hitomi soft x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Iizuka, Ryo; Hayashi, Takayuki; Maeda, Yoshitomo; Ishida, Manabu; Tomikawa, Kazuki; Sato, Toshiki; Kikuchi, Naomichi; Okajima, Takashi; Soong, Yang; Serlemitsos, Peter J.; Mori, Hideyuki; Izumiya, Takanori; Minami, Sari

    2018-01-01

    We present the summary of the on-ground calibration of two soft x-ray telescopes (SXT-I and SXT-S), developed by NASA's Goddard Space Flight Center (GSFC), onboard Astro-H/Hitomi. After the initial x-ray measurements with a diverging beam at the GSFC 100-m beamline, we performed the full calibration of the x-ray performance, using the 30-m x-ray beamline facility at the Institute of Space and Astronautical Science of Japan Aerospace Exploration Agency in Japan. We adopted a raster scan method with a narrow x-ray pencil beam with a divergence of ˜15″. The on-axis effective area (EA), half-power diameter, and vignetting function were measured at several energies between 1.5 and 17.5 keV. The detailed results appear in tables and figures in this paper. We measured and evaluated the performance of the SXT-S and the SXT-I with regard to the detector-limited field-of-view and the pixel size of the paired flight detector, i.e., SXS and the SXI, respectively. The primary items measured are the EA, image quality, and stray light for on-axis and off-axis sources. The accurate measurement of these parameters is vital to make the precise response function of the ASTRO-H SXTs. This paper presents the definitive results of the ground-based calibration of the ASTRO-H SXTs.

  2. Single crystal CVD diamond membranes as Position Sensitive X-ray Detector

    NASA Astrophysics Data System (ADS)

    Desjardins, K.; Menneglier, C.; Pomorski, M.

    2017-12-01

    Transparent X-ray Beam Position Monitor (XBPM) has been specifically developed for low energy X-ray beamlines (1.4 keV < E < 5 keV) allowing to transmit more than 80% of 2 keV energy beam. The detector is based on a free-standing single crystal CVD diamond membrane of 4 μm thickness with position-sensitive DLC (Diamond-Like Carbon) resistive electrodes in duo-lateral configuration. The measured X-ray beam induced current (XBIC) due to the interaction of X-rays with diamond membrane allows precise monitoring of the absolute beam flux and the beam position (by the reconstruction of its center-of-gravity) at beam transmissions reaching 95%. This detector has been installed at SOLEIL synchrotron on the SIRIUS beamline monochromator output and it has shown charge collection efficiency (CCE) reaching 100% with no lag-effects and excellent beam intensity sensitivity monitoring. X-ray beam mapping of the detector showed an XBIC response inhomogeneity of less than 10% across the membrane, corresponding mainly to the measured variation of the diamond plate thickness. The measured beam position resolution is at sub-micron level depending on the beam flux and the readout electronics bandwidth.

  3. Evaluation of a ''CMOS'' Imager for Shadow Mask Hard X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Desai, Upendra D.; Orwig, Larry E.; Oergerle, William R. (Technical Monitor)

    2002-01-01

    We have developed a hard x-ray coder that provides high angular resolution imaging capability using a coarse position sensitive image plane detector. The coder consists of two Fresnel zone plates. (FZP) Two such 'FZP's generate Moire fringe patterns whose frequency and orientation define the arrival direction of a beam with respect to telescope axis. The image plane detector needs to resolve the Moire fringe pattern. Pixilated detectors can be used as an image plane detector. The recently available 'CMOS' imager could provide a very low power large area image plane detector for hard x-rays. We have looked into a unit made by Rad-Icon Imaging Corp. The Shadow-Box 1024 x-ray camera is a high resolution 1024xl024 pixel detector of 50x50 mm area. It is a very low power, stand alone camera. We present some preliminary results of our investigation of evaluation of such camera.

  4. Ultrafast secondary emission X-ray imaging detectors: A possible application to TRD

    NASA Astrophysics Data System (ADS)

    Akkerman, A.; Breskin, A.; Chechik, R.; Elkind, V.; Gibrekhterman, A.; Majewski, S.

    1992-05-01

    Fist high accuracy, X-ray imaging at high photon flux can be achieved when coupling thin solid convertors to gaseous electron multipliers, operating at low gas pressures. Secondary electrons emitted from the convertor foil are multiplied in several successive amplification elements. The obvious advantages of solid X-ray convertors, as compared to gaseous conversion, are the production of parallax-free images and the fast (subnanosecond) response. These X-ray detectors have many potential applications in basic and applied research. Of particular interest is the possibility of an efficient and ultrafast high resolution imaging of transition radiation (TR), with a reduced d E/d x background. We present experimental results on the operation of secondary emission X-ray (SEX) detectors, their detection efficiency, localization and time resolution. The experimental work is accompanied by mathematical modelling and computer simulation of transition radiation detectors (TRDs) based on CsI TR convertors.

  5. Design of T-GEM detectors for X-ray diagnostics on JET

    NASA Astrophysics Data System (ADS)

    Rzadkiewicz, J.; Dominik, W.; Scholz, M.; Chernyshova, M.; Czarski, T.; Czyrkowski, H.; Dabrowski, R.; Jakubowska, K.; Karpinski, L.; Kasprowicz, G.; Kierzkowski, K.; Pozniak, K.; Salapa, Z.; Zabolotny, W.; Blanchard, P.; Tyrrell, S.; Zastrow, K.-D.; JET EFDA Contributors

    2013-08-01

    Upgraded high-resolution X-ray diagnostics on JET is expected to monitor the plasma radiation emitted by W46+ and Ni26+ ions at 2.4 keV and 7.8 keV photon energies, respectively. Both X-ray lines will be monitored by new generation energy-resolved micropattern gas detectors with 1-D position reconstruction capability. The detection structure is based on triple GEM (T-GEM) amplification structure followed by the strip readout electrode. This article presents a design of new detectors and prototype detector tests.

  6. Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Datesman, Aaron M.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chang, Meng-Ping; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Ha, Jong Yoon; hide

    2017-01-01

    We have developed large-format, close-packed X-ray microcalorimeter arrays fabricated on solid substrates, designed to achieve high energy resolution with count rates up to a few hundred counts per second per pixel for X-ray photon energies upto 8 keV. Our most recent arrays feature 31-micron absorbers on a 35-micron pitch, reducing the size of pixels by about a factor of two. This change will enable an instrument with significantly higher angular resolution. In order to wire out large format arrays with an increased density of smaller pixels, we have reduced the lateral size of both the microstrip wiring and the Mo/Au transition-edge sensors (TES). We report on the key physical properties of these small TESs and the fine Nb leads attached, including the critical currents and weak-link properties associated with the longitudinal proximity effect.

  7. Quantification of the Conditioning Phase in Cooled Pixelated TlBr Detectors

    NASA Astrophysics Data System (ADS)

    Koehler, Will; He, Zhong; O'Neal, Sean; Yang, Hao; Kim, Hadong; Cirignano, Leonard; Shah, Kanai

    2015-08-01

    Thallium-bromide (TlBr) is currently under investigation as an alternative room-temperature semiconductor gamma-ray spectrometer due to its favorable material properties (large bandgap, high atomic numbers, and high density). Previous work has shown that 5 mm thick pixelated TlBr detectors can achieve sub-1% FWHM energy resolution at 662 keV for single-pixel events. These results are limited to - 20° C operation where detector performance is stable. During the first one to five days of applied bias at - 20° C, many TlBr detectors undergo a conditioning phase, where the energy resolution improves and the depth-dependent electron drift velocity stabilizes. In this work, the spectroscopic performance, drift velocity, and freed electron concentrations of multiple 5 mm thick pixelated TlBr detectors are monitored throughout the conditioning phase. Additionally, conditioning is performed twice on the same detector at different times to show that improvement mechanisms relax when the detector is stored without bias. We conclude that the improved spectroscopy results from internal electric field stabilization and uniformity caused by fewer trapped electrons.

  8. Development and application of variable-magnification x-ray Bragg optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Keiichi, E-mail: keiichi.hirano@kek.jp; Takahashi, Yumiko; Sugiyama, Hiroshi

    2016-07-27

    A novel x-ray Bragg optics was developed for variable-magnification of an x-ray beam, and was combined with a module of the PILATUS pixel detector. A feasibility test of this optical system was carried out at the vertical-wiggler beamline BL-14B of the Photon Factory. By tuning the magnification factor, we could successfully control the spatial resolution of the optical system between 28 μm and 280 μm. X-ray absorption-contrast images of a leaf were observed at various magnification factors.

  9. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  10. Dosimetric properties of high energy current (HEC) detector in keV x-ray beams.

    PubMed

    Zygmanski, Piotr; Shrestha, Suman; Elshahat, Bassem; Karellas, Andrew; Sajo, Erno

    2015-04-07

    We introduce a new x-ray radiation detector. The detector employs high-energy current (HEC) formed by secondary electrons consisting predominantly of photoelectrons and Auger electrons, to directly convert x-ray energy to detector signal without externally applied power and without amplification. The HEC detector is a multilayer structure composed of thin conducting layers separated by dielectric layers with an overall thickness of less than a millimeter. It can be cut to any size and shape, formed into curvilinear surfaces, and thus can be designed for a variety of QA applications. We present basic dosimetric properties of the detector as function of x-ray energy, depth in the medium, area and aspect ratio of the detector, as well as other parameters. The prototype detectors show similar dosimetric properties to those of a thimble ionization chamber, which operates at high voltage. The initial results obtained for kilovoltage x-rays merit further research and development towards specific medical applications.

  11. Analysis of painted arts by energy sensitive radiographic techniques with the Pixel Detector Timepix

    NASA Astrophysics Data System (ADS)

    Zemlicka, J.; Jakubek, J.; Kroupa, M.; Hradil, D.; Hradilova, J.; Mislerova, H.

    2011-01-01

    Non-invasive techniques utilizing X-ray radiation offer a significant advantage in scientific investigations of painted arts and other cultural artefacts such as painted artworks or statues. In addition, there is also great demand for a mobile analytical and real-time imaging device given the fact that many fine arts cannot be transported. The highly sensitive hybrid semiconductor pixel detector, Timepix, is capable of detecting and resolving subtle and low-contrast differences in the inner composition of a wide variety of objects. Moreover, it is able to map the surface distribution of the contained elements. Several transmission and emission techniques are presented which have been proposed and tested for the analysis of painted artworks. This study focuses on the novel techniques of X-ray transmission radiography (conventional and energy sensitive) and X-ray induced fluorescence imaging (XRF) which can be realised at the table-top scale with the state-of-the-art pixel detector Timepix. Transmission radiography analyses the changes in the X-ray beam intensity caused by specific attenuation of different components in the sample. The conventional approach uses all energies from the source spectrum for the creation of the image while the energy sensitive alternative creates images in given energy intervals which enable identification and separation of materials. The XRF setup is based on the detection of characteristic radiation induced by X-ray photons through a pinhole geometry collimator. The XRF method is extremely sensitive to the material composition but it creates only surface maps of the elemental distribution. For the purpose of the analysis several sets of painted layers have been prepared in a restoration laboratory. The composition of these layers corresponds to those of real historical paintings from the 19th century. An overview of the current status of our methods will be given with respect to the instrumentation and the application in the field of

  12. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    PubMed

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for

  13. Hard X-ray Detector Calibrations for the FOXSI Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Lopez, A.; Glesener, L.; Buitrago Casas, J. C.; Han, R.; Ishikawa, S. N.; Christe, S.; Krucker, S.

    2015-12-01

    In the study of high-energy solar flares, detailed X-ray images and spectra of the Sun are required. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment is used to test direct-focusing X-ray telescopes and Double-sided Silicon Strip Detectors (DSSD) for solar flare study and to further understand coronal heating. The measurement of active region differential emission measures, flare temperatures, and possible quiet-Sun emission requires a precisely calibrated spectral response. This poster describes recent updates in the calibration of FOXSI's DSSDs based on new calibration tests that were performed after the second flight. The gain for each strip was recalculated using additional radioactive sources. Additionally, the varying strip sensitivity across the detectors was investigated and based on these measurements, the flight images were flatfielded. These improvements lead to more precise X-ray data for future FOXSI flights and show promise for these new technologies in imaging the Sun.

  14. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  15. TES-Based X-Ray Microcalorimeter Performances Under AC Bias and FDM for Athena

    NASA Technical Reports Server (NTRS)

    Akamatsu, H.; Gottardi, L.; de Vries, C. P.; Adams, J. S.; Bandler, S. R.; Bruijn, M. P.; Chervenak, J. A.; Eckart, M. E.; Finkbeiner, F. M.; Gao, J. R.; hide

    2016-01-01

    Athena is a European X-ray observatory, scheduled for launch in 2028. Athena will employ a high-resolution imaging spectrometer called X-ray integral field unit (X-IFU), consisting of an array of 4000 transition edge sensor (TES) microcalorimeter pixels. For the readout of X-IFU, we are developing frequency domain multiplexing, which is the baseline readout system. In this paper, we report on the performance of a TES X-ray calorimeter array fabricated at Goddard Space Flight Center (GSFC) at MHz frequencies for the baseline of X-IFU detector. During single-pixel AC bias characterization, we measured X-ray energy resolutions (at 6 keV) of about 2.9 eV at both 2.3 and 3.7 MHz. Furthermore, in the multiplexing mode, we measured X-ray energy resolutions of about 2.9 eV at 1.3 and 1.7 MHz.

  16. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  17. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Mitsuya, Y.; Fushie, T.; Murata, K.; Kawamura, A.; Koishikawa, A.; Toyokawa, H.; Takahashi, H.

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 μm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  18. [Definition of quantum efficiency of X-ray detectors].

    PubMed

    Zelikman, M I

    2001-01-01

    Different definitions available in the literature on the quantum efficiency of X-ray detectors are presented and compared. The relationship of this parameter to spatial frequencies for quantum accounting receivers and energy accumulating ones is analyzed. A procedure is proposed for evaluating the quantum efficiency of the detectors in the area of zero spatial frequencies, which is rather simple and requires no special testing equipment.

  19. Use of simulation to optimize the pinhole diameter and mask thickness for an x-ray backscatter imaging system

    NASA Astrophysics Data System (ADS)

    Vella, A.; Munoz, Andre; Healy, Matthew J. F.; Lane, David; Lockley, D.

    2017-08-01

    The PENELOPE Monte Carlo simulation code was used to determine the optimum thickness and aperture diameter of a pinhole mask for X-ray backscatter imaging in a security application. The mask material needs to be thick enough to absorb most X-rays, and the pinhole must be wide enough for sufficient field of view whilst narrow enough for sufficient image spatial resolution. The model consisted of a fixed geometry test object, various masks with and without pinholes, and a 1040 x 1340 pixels' area detector inside a lead lined camera housing. The photon energy distribution incident upon masks was flat up to selected energy limits. This artificial source was used to avoid the optimisation being specific to any particular X-ray source technology. The pixelated detector was modelled by digitising the surface area represented by the PENELOPE phase space file and integrating the energies of the photons impacting within each pixel; a MATLAB code was written for this. The image contrast, signal to background ratio, spatial resolution, and collimation effect were calculated at the simulated detector as a function of pinhole diameter and various thicknesses of mask made of tungsten, tungsten/epoxy composite or bismuth alloy. A process of elimination was applied to identify suitable masks for a viable X-ray backscattering security application.

  20. Precision tracking with a single gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.

    2015-09-01

    The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.

  1. Hard x-ray response of a CdZnTe ring-drift detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, A.; Hartog, R. den; Quarati, F.

    We present the results of an experimental study of a special type of CdZnTe detector of hard x and {gamma} rays--A-drift detector. The device consists of a double ring electrode structure surrounding a central point anode with a guard plane surrounding the outer anode ring. The detector can be operated in two distinctively different modes of charge collection--pseudohemispherical and pseudodrift. We study the detector response profiles obtained by scanning the focused x-ray beam over the whole detector area, specifically the variations in count rate, peak position, and energy resolution for x rays from 10 to 100 keV. In addition, atmore » 662 keV the energy resolution was shown to be 4.8 keV, more than a factor of 2 better than for CdZnTe coplanar grid detectors. To interpret the experimental data, we derive an analytical expression for the spatial distribution of the electric field inside the detector and neglecting carrier diffusion, and identify carrier collection patterns for both modes of operation within the drift model approximation. We show that this model provides a good understanding of measured profiles.« less

  2. Calibration of the hard x-ray detectors for the FOXSI solar sounding rocket

    NASA Astrophysics Data System (ADS)

    Athiray, P. S.; Buitrago-Casas, Juan Camilo; Bergstedt, Kendra; Vievering, Juliana; Musset, Sophie; Ishikawa, Shin-nosuke; Glesener, Lindsay; Takahashi, Tadayuki; Watanabe, Shin; Courtade, Sasha; Christe, Steven; Krucker, Säm.; Goetz, Keith; Monson, Steven

    2017-08-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment conducts direct imaging and spectral observation of the Sun in hard X-rays, in the energy range 4 to 20 keV. These high-sensitivity observations are used to study particle acceleration and coronal heating. FOXSI is designed with seven grazing incidence optics modules that focus X-rays onto seven focal plane detectors kept at a 2m distance. FOXSI-1 was flown with seven Double-sided Si Strip Detectors (DSSD), and two of them were replaced with CdTe detectors for FOXSI-2. The upcoming FOXSI-3 flight will carry DSSD and CdTe detectors with upgraded optics for enhanced sensitivity. The detectors are calibrated using various radioactive sources. The detector's spectral response matrix was constructed with diagonal elements using a Gaussian approximation with a spread (sigma) that accounts for the energy resolution of the detector. Spectroscopic studies of past FOXSI flight data suggest that the inclusion of lower energy X-rays could better constrain the spectral modeling to yield a more precise temperature estimation of the hot plasma. This motivates us to carry out an improved calibration to better understand the finer-order effects on the spectral response, especially at lower energies. Here we report our improved calibration of FOXSI detectors using experiments and Monte-Carlo simulations.

  3. Wide Bandgap Semiconductor Detector Optimization for Flash X-Ray Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roecker, Caleb Daniel; Schirato, Richard C.

    2017-11-17

    Charge trapping, resulting in a decreased and spatially dependent electric field, has long been a concern for wide bandgap semiconductor detectors. While significant work has been performed to characterize this degradation at varying temperatures and radiation environments, this work concentrates upon examining the event-to-event response in a flash X-ray environment. The following work investigates if charge trapping is a problem for CZT detectors, with particular emphasis on flash X-ray radiation fields at cold temperatures. Results are compared to a non-flash radiation field, using an Am-241 alpha source and similar temperature transitions. Our ability to determine if a response change occurredmore » was hampered by the repeatability of our flash X-ray systems; a small response change was observed with the Am-241 source. Due to contrast of these results, we are in the process of revisiting the Am-241 measurements in the presence of a high radiation environment. If the response change is more pronounced in the high radiation environment, a similar test will be performed in the flash X-ray environment.« less

  4. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu; Konstantinidis, Anastasios C.

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterizedmore » and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT

  5. A versatile indirect detector design for hard X-ray microimaging

    NASA Astrophysics Data System (ADS)

    Douissard, P.-A.; Cecilia, A.; Rochet, X.; Chapel, X.; Martin, T.; van de Kamp, T.; Helfen, L.; Baumbach, T.; Luquot, L.; Xiao, X.; Meinhardt, J.; Rack, A.

    2012-09-01

    Indirect X-ray detectors are of outstanding importance for high resolution imaging, especially at synchrotron light sources: while consisting mostly of components which are widely commercially available, they allow for a broad range of applications in terms of the X-ray energy employed, radiation dose to the detector, data acquisition rate and spatial resolving power. Frequently, an indirect detector consists of a thin-film single crystal scintillator and a high-resolution visible light microscope as well as a camera. In this article, a novel modular-based indirect design is introduced, which offers several advantages: it can be adapted for different cameras, i.e. different sensor sizes, and can be trimmed to work either with (quasi-)monochromatic illumination and the correspondingly lower absorbed dose or with intense white beam irradiation. In addition, it allows for a motorized quick exchange between different magnifications / spatial resolutions. Developed within the European project SCINTAX, it is now commercially available. The characteristics of the detector in its different configurations (i.e. for low dose or for high dose irradiation) as measured within the SCINTAX project will be outlined. Together with selected applications from materials research, non-destructive evaluation and life sciences they underline the potential of this design to make high resolution X-ray imaging widely available.

  6. The Dram As An X-Ray Sensor

    NASA Astrophysics Data System (ADS)

    Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung

    1987-01-01

    A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.

  7. Design and Optimization of Multi-Pixel Transition-Edge Sensors for X-Ray Astronomy Applications

    NASA Technical Reports Server (NTRS)

    Smith, Stephen J.; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron Michael; Eckart, Megan E.; Ewin, Audrey J.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2017-01-01

    Multi-pixel transition-edge sensors (TESs), commonly referred to as 'hydras', are a type of position sensitive micro-calorimeter that enables very large format arrays to be designed without commensurate increase in the number of readout channels and associated wiring. In the hydra design, a single TES is coupled to discrete absorbers via varied thermal links. The links act as low pass thermal filters that are tuned to give a different characteristic pulse shape for x-ray photons absorbed in each of the hydra sub pixels. In this contribution we report on the experimental results from hydras consisting of up to 20 pixels per TES. We discuss the design trade-offs between energy resolution, position discrimination and number of pixels and investigate future design optimizations specifically targeted at meeting the readout technology considered for Lynx.

  8. [Design of longitudinal auto-tracking of the detector on X-ray in digital radiography].

    PubMed

    Yu, Xiaomin; Jiang, Tianhao; Liu, Zhihong; Zhao, Xu

    2018-04-01

    One algorithm is designed to implement longitudinal auto-tracking of the the detector on X-ray in the digital radiography system (DR) with manual collimator. In this study, when the longitudinal length of field of view (LFOV) on the detector is coincided with the longitudinal effective imaging size of the detector, the collimator half open angle ( Ψ ), the maximum centric distance ( e max ) between the center of X-ray field of view and the projection center of the focal spot, and the detector moving distance for auto-traking can be calculated automatically. When LFOV is smaller than the longitudinal effective imaging size of the detector by reducing Ψ , the e max can still be used to calculate the detector moving distance. Using this auto-tracking algorithm in DR with manual collimator, the tested results show that the X-ray projection is totally covered by the effective imaging area of the detector, although the center of the field of view is not aligned with the center of the effective imaging area of the detector. As a simple and low-cost design, the algorithm can be used for longitudinal auto-tracking of the detector on X-ray in the manual collimator DR.

  9. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    PubMed

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  10. Development of fast parallel multi-technique scanning X-ray imaging at Synchrotron Soleil

    NASA Astrophysics Data System (ADS)

    Medjoubi, K.; Leclercq, N.; Langlois, F.; Buteau, A.; Lé, S.; Poirier, S.; Mercère, P.; Kewish, C. M.; Somogyi, A.

    2013-10-01

    A fast multimodal scanning X-ray imaging scheme is prototyped at Soleil Synchrotron. It permits the simultaneous acquisition of complementary information on the sample structure, composition and chemistry by measuring transmission, differential phase contrast, small-angle scattering, and X-ray fluorescence by dedicated detectors with ms dwell time per pixel. The results of the proof of principle experiments are presented in this paper.

  11. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors

    PubMed Central

    Marrs, Michael A.; Raupp, Gregory B.

    2016-01-01

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm2 and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate. PMID:27472329

  12. Substrate and Passivation Techniques for Flexible Amorphous Silicon-Based X-ray Detectors.

    PubMed

    Marrs, Michael A; Raupp, Gregory B

    2016-07-26

    Flexible active matrix display technology has been adapted to create new flexible photo-sensing electronic devices, including flexible X-ray detectors. Monolithic integration of amorphous silicon (a-Si) PIN photodiodes on a flexible substrate poses significant challenges associated with the intrinsic film stress of amorphous silicon. This paper examines how altering device structuring and diode passivation layers can greatly improve the electrical performance and the mechanical reliability of the device, thereby eliminating one of the major weaknesses of a-Si PIN diodes in comparison to alternative photodetector technology, such as organic bulk heterojunction photodiodes and amorphous selenium. A dark current of 0.5 pA/mm² and photodiode quantum efficiency of 74% are possible with a pixelated diode structure with a silicon nitride/SU-8 bilayer passivation structure on a 20 µm-thick polyimide substrate.

  13. Quantitative Measurements of X-ray Intensity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugh, M. J., Schneider, M.

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials thatmore » are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.« less

  14. In situ two-dimensional imaging quick-scanning XAFS with pixel array detector.

    PubMed

    Tanida, Hajime; Yamashige, Hisao; Orikasa, Yuki; Oishi, Masatsugu; Takanashi, Yu; Fujimoto, Takahiro; Sato, Kenji; Takamatsu, Daiko; Murayama, Haruno; Arai, Hajime; Matsubara, Eiichiro; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2011-11-01

    Quick-scanning X-ray absorption fine structure (XAFS) measurements were performed in transmission mode using a PILATUS 100K pixel array detector (PAD). The method can display a two-dimensional image for a large area of the order of a centimetre with a spatial resolution of 0.2 mm at each energy point in the XAFS spectrum. The time resolution of the quick-scanning method ranged from 10 s to 1 min per spectrum depending on the energy range. The PAD has a wide dynamic range and low noise, so the obtained spectra have a good signal-to-noise ratio.

  15. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    NASA Astrophysics Data System (ADS)

    Hong, Jaesub; Allen, Branden; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-12-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6 ' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm × 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technology readiness for space application. During the flight both telescopes performed as well as on the ground. We report the results of ground calibration and the initial results for the detector performance in the balloon flight.

  16. FOXSI: Properties of optics and detectors for hard-X rays

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Krucker, Sam; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a state-of-the-art direct focusing X-ray telescope designed to observe the Sun. This experiment completed its second flight onboard a sounding rocket last December 11, 2014 from the White Sands Missile Range in New Mexico. The optics use a set of iridium-coated nickel/cobalt mirrors made using a replication technique based on an electroformed perfect polished surface. Since this technique creates full shells that no need to be co-aligned with other segments, an angular resolution of up to ~5 arcsec is gotten. The FOXSI focal plane consists of seven double-sided strip detectors. Five Silicon and 2 CdTe detectors were used during the second flight.We present on various properties of Wolter-I optics that are applicable to solar HXR observation, including ray-tracing simulations of the single-bounce (“ghost ray”) patterns from sources outside the field of view and angular resolution for different source angles and effective area measurements of the FOXSI optics. We also present the detectors calibration results, paying attention to energy resolution (~0.5 keV), energy thresholds (~4-15 keV for Silicon and ~4-20 keV for CdTe detectors), and spatial coherence of these values over the entire detector.

  17. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Theobald, W.; Regan, S. P.

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  18. Silicon pixel-detector R&D for CLIC

    NASA Astrophysics Data System (ADS)

    Nürnberg, A.

    2016-11-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.

  19. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Abderyim, Purkhet; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahasi, Kiyomi; Sato, Shigehiro; Ogawae, Akira; Onagawa, Jun

    2010-07-01

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  20. Large-Format Dual-Counter Pixelated X-Ray Detector Platform: Phase II Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Adam; Williams, George; Huntington, Andrew

    2016-10-10

    Within the program, a Voxtel led team demonstrated both prototype (48 x 48, 130-μm pitch, VX-798) and full-format (192 x 192, 100-μm pitch, VX-810) versions of a high-dynamic-range, x-ray photon-counting (HDR-XPC) sensor. Within the program the following tasks were completed: 1) integration and evaluation of the VX-798 prototype camera at the Advanced Photon Source beamline at Argonne National Labs; 2) the design, simulation, and fabrication of the full-format VX-810 ROIC was completed; 3) fabrication of thick, fully depleted silicon photodiodes optimized for x-ray photon collection; 4) hybridization of the VX-810 ROIC to the photodiode array in the creation of themore » optically sensitive FPA (FPA), and 4) development of an evaluation camera to enable electrical and optical characterization of the sensor.« less

  1. Development of a position sensitive X-ray detector for use in a light weight X-ray diffractometer

    NASA Technical Reports Server (NTRS)

    Semmler, R. A.

    1971-01-01

    A position sensitive proportional counter for use in an X-ray diffractometer is developed to permit drastic reductions in the power and weight requirements of the X-ray source and the elimination of the power, weight, and complexity of a moving slit. The final detector constructed and tested has a window spanning 138 and a free standing anode curved along an arc of 7.1 cm radius. Demonstration spectra of a quartz sample in a Debye-Sherrer geometry indicate a spatial resolution of 0.4 - 0.5 mm (0.3 - 0.4 theta). The lunar diffractometer consumed 25 watts in the X-ray generator and weighed about 20 pounds.

  2. The Detector and Readout Systems of the Micro-X High Resolution Microcalorimeter X-Ray Imaging Rocket

    NASA Astrophysics Data System (ADS)

    Wikus, P.; Doriese, W. B.; Eckart, M. E.; Adams, J. S.; Bandler, S. R.; Brekosky, R. P.; Chervenak, J. A.; Ewin, A. J.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Galeazzi, M.; Hilton, G.; Irwin, K. D.; Kelley, R. L.; Kilbourne, C. A.; Leman, S. W.; McCammon, D.; Porter, F. S.; Reintsema, C. D.; Rutherford, J. M.; Trowbridge, S. N.

    2009-12-01

    The Micro-X sounding rocket experiment will deploy an imaging transition-edge-sensor (TES) microcalorimeter spectrometer to observe astrophysical sources in the 0.2-3.0 keV band. The instrument has been designed at a systems level, and the first items of flight hardware are presently being built. In the first flight, planned for January 2011, the spectrometer will observe a recently discovered Silicon knot in the Puppis-A supernova remnant. Here we describe the design of the Micro-X science instrument, focusing on the instrument's detector and detector assembly. The current design of the 2-dimensional spectrometer array contains 128 close-packed pixels with a pitch of 600 μm. The conically approximated Wolter-1 mirror will map each of these pixels to a 0.95 arcmin region on the sky; the field of view will be 11.4 arcmin. Targeted energy resolution of the TESs is about 2 eV over the full observing band. A SQUID time-division multiplexer (TDM) will read out the array. The detector time constants will be engineered to approximately 2 ms to match the TDM, which samples each pixel at 32.6 kHz, limited only by the telemetry system of the rocket. The detector array and two SQUID stages of the TDM readout system are accommodated in a lightweight Mg enclosure, which is mounted to the 50 mK stage of an adiabatic demagnetization refrigerator. A third SQUID amplification stage is located on the 1.6 K liquid He stage of the cryostat. An on-board 55-Fe source will fluoresce a Ca target, providing 3.69 and 4.01 keV calibration lines that will not interfere with the scientifically interesting energy band.

  3. A CMOS-based high-resolution fluoroscope (HRF) detector prototype with 49.5μm pixels for use in endovascular image guided interventions (EIGI)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Bednarek, D. R.; Rudin, S.

    2017-03-01

    X-ray detectors to meet the high-resolution requirements for endovascular image-guided interventions (EIGIs) are being developed and evaluated. A new 49.5-micron pixel prototype detector is being investigated and compared to the current suite of high-resolution fluoroscopic (HRF) detectors. This detector featuring a 300-micron thick CsI(Tl) scintillator, and low electronic noise CMOS readout is designated the HRF- CMOS50. To compare the abilities of this detector with other existing high resolution detectors, a standard performance metric analysis was applied, including the determination of the modulation transfer function (MTF), noise power spectra (NPS), noise equivalent quanta (NEQ), and detective quantum efficiency (DQE) for a range of energies and exposure levels. The advantage of the smaller pixel size and reduced blurring due to the thin phosphor was exemplified when the MTF of the HRF-CMOS50 was compared to the other high resolution detectors, which utilize larger pixels, other optical designs or thicker scintillators. However, the thinner scintillator has the disadvantage of a lower quantum detective efficiency (QDE) for higher diagnostic x-ray energies. The performance of the detector as part of an imaging chain was examined by employing the generalized metrics GMTF, GNEQ, and GDQE, taking standard focal spot size and clinical imaging parameters into consideration. As expected, the disparaging effects of focal spot unsharpness, exacerbated by increasing magnification, degraded the higher-frequency performance of the HRF-CMOS50, while increasing scatter fraction diminished low-frequency performance. Nevertheless, the HRF-CMOS50 brings improved resolution capabilities for EIGIs, but would require increased sensitivity and dynamic range for future clinical application.

  4. Portable X-Ray, K-Edge Heavy Metal Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, V.

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precisemore » assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.« less

  5. Fundamental x-ray interaction limits in diagnostic imaging detectors: frequency-dependent Swank noise.

    PubMed

    Hajdok, G; Battista, J J; Cunningham, I A

    2008-07-01

    A frequency-dependent x-ray Swank factor based on the "x-ray interaction" modulation transfer function and normalized noise power spectrum is determined from a Monte Carlo analysis. This factor was calculated in four converter materials: amorphous silicon (a-Si), amorphous selenium (a-Se), cesium iodide (CsI), and lead iodide (PbI2) for incident photon energies between 10 and 150 keV and various converter thicknesses. When scaled by the quantum efficiency, the x-ray Swank factor describes the best possible detective quantum efficiency (DQE) a detector can have. As such, this x-ray interaction DQE provides a target performance benchmark. It is expressed as a function of (Fourier-based) spatial frequency and takes into consideration signal and noise correlations introduced by reabsorption of Compton scatter and photoelectric characteristic emissions. It is shown that the x-ray Swank factor is largely insensitive to converter thickness for quantum efficiency values greater than 0.5. Thus, while most of the tabulated values correspond to thick converters with a quantum efficiency of 0.99, they are appropriate to use for many detectors in current use. A simple expression for the x-ray interaction DQE of digital detectors (including noise aliasing) is derived in terms of the quantum efficiency, x-ray Swank factor, detector element size, and fill factor. Good agreement is shown with DQE curves published by other investigators for each converter material, and the conditions required to achieve this ideal performance are discussed. For high-resolution imaging applications, the x-ray Swank factor indicates: (i) a-Si should only be used at low-energy (e.g., mammography); (ii) a-Se has the most promise for any application below 100 keV; and (iii) while quantum efficiency may be increased at energies just above the K edge in CsI and PbI2, this benefit is offset by a substantial drop in the x-ray Swank factor, particularly at high spatial frequencies.

  6. Charge amplitude distribution of the Gossip gaseous pixel detector

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Chefdeville, M.; Colas, P.; Giomataris, Y.; van der Graaf, H.; Gromov, V.; Hartjes, F.; Kluit, R.; Koffeman, E.; Salm, C.; Schmitz, J.; Smits, S. M.; Timmermans, J.; Visschers, J. L.

    2007-12-01

    The Gossip gaseous pixel detector is being developed for the detection of charged particles in extreme high radiation environments as foreseen close to the interaction point of the proposed super LHC. The detecting medium is a thin layer of gas. Because of the low density of this medium, only a few primary electron/ion pairs are created by the traversing particle. To get a detectable signal, the electrons drift towards a perforated metal foil (Micromegas) whereafter they are multiplied in a gas avalanche to provide a detectable signal. The gas avalanche occurs in the high field between the Micromegas and the pixel readout chip (ROC). Compared to a silicon pixel detector, Gossip features a low material budget and a low cooling power. An experiment using X-rays has indicated a possible high radiation tolerance exceeding 10 16 hadrons/cm 2. The amplified charge signal has a broad amplitude distribution due to the limited statistics of the primary ionization and the statistical variation of the gas amplification. Therefore, some degree of inefficiency is inevitable. This study presents experimental results on the charge amplitude distribution for CO 2/DME (dimethyl-ether) and Ar/iC 4H 10 mixtures. The measured curves were fitted with the outcome of a theoretical model. In the model, the physical Landau distribution is approximated by a Poisson distribution that is convoluted with the variation of the gas gain and the electronic noise. The value for the fraction of pedestal events is used for a direct calculation of the cluster density. For some gases, the measured cluster density is considerably lower than given in literature.

  7. The Belle II DEPFET pixel detector

    NASA Astrophysics Data System (ADS)

    Lütticke, F.

    2013-02-01

    The existing Japanese Flavour Factory (KEKB) is currently being upgraded and is foreseen to be comissioned by 2014. The new e+e- collider (SuperKEKB) will have an instantaneous luminosity of 8 × 1035cm-2s-1, 40 times higher than the current world record set by KEKB. In order to handle the increased event rate and the higher background and provide high data quality, the Belle detector is upgraded to Belle II. The increased particle rate requires a new vertex pixel detector with high granularity. This silicon detector will be based on DEPFET technology and will consist of two layers of active pixel sensors. By integrating a field effect transistor into every pixel on top of a fully depleted bulk, the DEPFET technology combines detection and in-pixel amplification. This technology allows good signal to noise performance with a very low material budget.

  8. Readout and DAQ for Pixel Detectors

    NASA Astrophysics Data System (ADS)

    Platkevic, Michal

    2010-01-01

    Data readout and acquisition control of pixel detectors demand the transfer of significantly a large amounts of bits between the detector and the computer. For this purpose dedicated interfaces are used which are designed with focus on features like speed, small dimensions or flexibility of use such as digital signal processors, field-programmable gate arrays (FPGA) and USB communication ports. This work summarizes the readout and DAQ system built for state-of-the-art pixel detectors of the Medipix family.

  9. A low-noise wide-dynamic-range event-driven detector using SOI pixel technology for high-energy particle imaging

    NASA Astrophysics Data System (ADS)

    Shrestha, Sumeet; Kamehama, Hiroki; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Takeda, Ayaki; Tsuru, Takeshi Go; Arai, Yasuo

    2015-08-01

    This paper presents a low-noise wide-dynamic-range pixel design for a high-energy particle detector in astronomical applications. A silicon on insulator (SOI) based detector is used for the detection of wide energy range of high energy particles (mainly for X-ray). The sensor has a thin layer of SOI CMOS readout circuitry and a thick layer of high-resistivity detector vertically stacked in a single chip. Pixel circuits are divided into two parts; signal sensing circuit and event detection circuit. The event detection circuit consisting of a comparator and logic circuits which detect the incidence of high energy particle categorizes the incident photon it into two energy groups using an appropriate energy threshold and generate a two-bit code for an event and energy level. The code for energy level is then used for selection of the gain of the in-pixel amplifier for the detected signal, providing a function of high-dynamic-range signal measurement. The two-bit code for the event and energy level is scanned in the event scanning block and the signals from the hit pixels only are read out. The variable-gain in-pixel amplifier uses a continuous integrator and integration-time control for the variable gain. The proposed design allows the small signal detection and wide dynamic range due to the adaptive gain technique and capability of correlated double sampling (CDS) technique of kTC noise canceling of the charge detector.

  10. High Spectral Resolution, High Cadence, Imaging X-Ray Microcalorimeters for Solar Physics

    NASA Technical Reports Server (NTRS)

    Bandler, Simon R.; Bailey, Catherine N.; Bookbinder, Jay A.; DeLuca, Edward E.; Chervenak, Jay A.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Daniel P.; Kelley, Richard L.; Kilbourne, Caroline A.; hide

    2010-01-01

    High spectral resolution, high cadence, imaging x-ray spectroscopy has the potential to revolutionize the study of the solar corona. To that end we have been developing transition-edge-sensor (TES) based x-ray micro calorimeter arrays for future solar physics missions where imaging and high energy resolution spectroscopy will enable previously impossible studies of the dynamics and energetics of the solar corona. The characteristics of these x-ray microcalorimeters are significantly different from conventional micro calorimeters developed for astrophysics because they need to accommodate much higher count rates (300-1000 cps) while maintaining high energy resolution of less than 4 eV FWHM in the X-ray energy band of 0.2-10 keV. The other main difference is a smaller pixel size (less than 75 x 75 square microns) than is typical for x-ray micro calorimeters in order to provide angular resolution less than 1 arcsecond. We have achieved at energy resolution of 2.15 eV at 6 keV in a pixel with a 12 x 12 square micron TES sensor and 34 x 34 x 9.1 micron gold absorber, and a resolution of 2.30 eV at 6 keV in a pixel with a 35 x 35 micron TES and a 57 x 57 x 9.1 micron gold absorber. This performance has been achieved in pixels that are fabricated directly onto solid substrates, ie. they are not supported by silicon nitride membranes. We present the results from these detectors, the expected performance at high count-rates, and prospects for the use of this technology for future Solar missions.

  11. The Simbol-X Low Energy Detector

    NASA Astrophysics Data System (ADS)

    Lechner, Peter

    2009-05-01

    For the Low Energy Detector of Simbol-X a new type of active pixel sensor based on the integrated amplifier DEPFET has been developed. This concept combines large area, scalable pixel size, low noise, and ultra-fast readout. Flight representative prototypes have been processed with a performance matching the Simbol-X specifications and demonstrating the technology readiness.

  12. TlBr and TlBr xI 1-x crystals for γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Churilov, Alexei V.; Ciampi, Guido; Kim, Hadong; Higgins, William M.; Cirignano, Leonard J.; Olschner, Fred; Biteman, Viktor; Minchello, Mark; Shah, Kanai S.

    2010-04-01

    TlBr and TlBr xI 1-x are wide bandgap semiconductor materials being investigated for applications in γ-ray spectroscopy. They have a good combination of density and atomic numbers, promising to make them very efficient detectors. Their low melting points and simple cubic and orthorhombic crystal structures are favorable for bulk crystal growth. However, these semiconductors need to be extremely pure to become useful as radiation detectors. Impurities can lead to charge trapping and scattering, reducing the charge transit lengths and limiting the detector thickness to <1 mm. Additional purification steps were implemented to improve the purity and mobility-lifetime product ( μτ) of electrons. Detector-grade TlBr with the electron μτ product of up to 6×10 -3 cm 2/V has been produced, which allowed operation of detectors up to 15 mm thickness. The ternary TlBr xI 1-x was investigated at different compositions to vary the bandgap and explore the effect of added TlI on the long term stability of detectors. The material analysis and detector characterization results are included.

  13. Observational Aspects of Hard X-ray Polarimetry

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanmoy

    2016-04-01

    retrieving polarization information from few of such spectroscopic instruments like RHESSI, INTEGRAL-IBIS, INTEGRAL-SPI. Cadmium Zinc Telluride Imager (CZTI) onboard Astrosat, India's first astronomical mission, is one of such instruments which is expected to provide sensitive polarization measurements for bright X-ray sources. CZTI consists of 64 CZT detector modules, each of which is 5 mm thick and 4 cm × 4 cm in size. Each CZT module is subdivided into 256 pixels with pixel pitch of 2.5 mm. Due to its pixelation nature and significant Compton scattering efficiency at energies beyond 100 keV, CZTI can work as a sensitive Compton polarimeter in hard X-rays. Detailed Geant-4 simulations and polarization experiments with the flight configuration of CZTI show that CZTI will have significant polarization measurement capability for bright sources in hard X-rays. CZTI is primarily a spectroscopic instrument with coded mask imaging. To properly utilize the spectroscopic capabilities of CZT detectors, it is important to generate accurate response matrix for CZTI, which in turn requires precise modelling of the CZT lines shapes for monoenergetic X-ray interaction. CZT detectors show an extended lower energy tail of an otherwise Gaussian line shape due to low mobility and lifetime of the charge carriers. On the other hand, interpixel charge sharing may also contribute to the lower energy tail making the line shape more complicated. We have developed a model to predict the line shapes from CZTI modules taking into account the mobility and lifetime of the charge carriers and charge sharing fractions. The model predicts the line shape quite well and can be used to generate pixel-wise response matrix for CZTI.

  14. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  15. Detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Tanguay, Jesse; Yun, Seungman; Kim, Ho Kyung; Cunningham, Ian A

    2015-01-01

    Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfer through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20-45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.

  16. Microcalorimeter X-ray Detectors for Solar Physics

    NASA Astrophysics Data System (ADS)

    Deiker, S.; Boerner, P.; Martinez-Galarce, D.; Metcalf, T.; Rausch, A.; Shing, L.; Stern, R.; Irwin, K.; William, D.; Reintsema, C.; Ullom, J.; Cabrera, B.; Lehman, S.; Brink, P.

    2005-05-01

    Cryogenic X-ray microcalorimeters provide high spectral resolution over a large bandwidth. They have achieved < 3 eV resolution at 5.9 keV, and can produce this performance simultaneously from 0.25 to 10 keV. Although they operate at low (< 0.1 K) temperatures, such temperature are now easily produced. Microcalorimeters cooled by adiabatic demagnetization refrigerators have already flown on sounding rocket flights to study the soft X-ray background of the interstellar medium, and will soon be launched on the ASTRO-E II satellite. Microcalorimeters based on superconducting transition edge sensors are multiplexable and may be fabricated using standard photolithographic techniques. This makes large arrays of microcalorimeters feasible. Each pixel of such an array detects the arrival time of each photon to within < 0.01 ms. Such an instrument would offer simultaneous spatial, temporal and energy resolution, bringing a wealth of new information about solar processes. Current design and performance of microcalorimeters will be presented. Future improvements required to optimize microcalorimeters for solar physics applications will also be discussed.

  17. X-ray position detector and implementation in a mirror pointing servo system

    DOEpatents

    Rabedeau, Thomas A.; Van Campen, Douglas G.; Stefan, Peter M.

    2016-04-05

    An X-ray beam position and stability detector is provided having a first metal blade collinear with a second metal blade, where an edge of the first metal blade is opposite an edge of the second metal blade, where the first metal blade edge and the second metal blade edge are disposed along a centerline with respect to each other, where the metal blades are capable of photoelectron emission when exposed to an x-ray beam, a metal coating on the metal blades that is capable of enhancing the photoelectron emission, or suppressing energy-resonant contaminants, or enhancing the photoelectron emission and suppressing energy-resonant contaminants, a background shielding element having an electrode capable of suppressing photoelectron emission from spurious x-rays not contained in an x-ray beam of interest, and a photoelectron emission detector having an amplifier capable of detecting the photoelectron emission as a current signal.

  18. Element Specific Imaging Using Muonic X-rays

    NASA Astrophysics Data System (ADS)

    Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.

    The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.

  19. An ultrafast X-ray scintillating detector made of ZnO(Ga)

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Yan, Jun; Deng, Bangjie; Zhang, Jingwen; Lv, Jinge; Wen, Xin; Gao, Keqing

    2017-12-01

    Owing to its ultrafast scintillation, quite high light yield, strong radiation resistance, and non-deliquescence, ZnO(Ga) is a highly promising choice for an ultrafast X-ray detector. Because of its high deposition rate, good production repeatability and strong adhesive force, reactive magnetron sputtering was used to produce a ZnO(Ga) crystal on a quartz glass substrate, after the production conditions were optimized. The fluorescence lifetime of the sample was 173 ps. An ultrafast X-ray scintillating detector, equipped with a fast microchannel plate (MCP) photomultiplier tube (PMT), was developed and the X-ray tests show a signal full width at half maximum (FWHM) of only 385.5 ps. Moreover, derivation from the previous measurement shows the ZnO(Ga) has an ultrafast time response (FWHM = 355.1 ps) and a high light yield (14740 photons/MeV).

  20. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  1. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

    NASA Astrophysics Data System (ADS)

    Wei, Haotong; Fang, Yanjun; Mulligan, Padhraic; Chuirazzi, William; Fang, Hong-Hua; Wang, Congcong; Ecker, Benjamin R.; Gao, Yongli; Loi, Maria Antonietta; Cao, Lei; Huang, Jinsong

    2016-05-01

    The large mobilities and carrier lifetimes of hybrid perovskite single crystals and the high atomic numbers of Pb, I and Br make them ideal for X-ray and gamma-ray detection. Here, we report a sensitive X-ray detector made of methylammonium lead bromide perovskite single crystals. A record-high mobility-lifetime product of 1.2 × 10-2 cm2 V-1 and an extremely small surface charge recombination velocity of 64 cm s-1 are realized by reducing the bulk defects and passivating surface traps. Single-crystal devices with a thickness of 2-3 mm show 16.4% detection efficiency at near zero bias under irradiation with continuum X-ray energy up to 50 keV. The lowest detectable X-ray dose rate is 0.5 μGyair s-1 with a sensitivity of 80 μC Gy-1air cm-2, which is four times higher than the sensitivity achieved with α-Se X-ray detectors. This allows the radiation dose applied to a human body to be reduced for many medical and security check applications.

  2. Junction-side illuminated silicon detector arrays

    DOEpatents

    Iwanczyk, Jan S.; Patt, Bradley E.; Tull, Carolyn

    2004-03-30

    A junction-side illuminated detector array of pixelated detectors is constructed on a silicon wafer. A junction contact on the front-side may cover the whole detector array, and may be used as an entrance window for light, x-ray, gamma ray and/or other particles. The back-side has an array of individual ohmic contact pixels. Each of the ohmic contact pixels on the back-side may be surrounded by a grid or a ring of junction separation implants. Effective pixel size may be changed by separately biasing different sections of the grid. A scintillator may be coupled directly to the entrance window while readout electronics may be coupled directly to the ohmic contact pixels. The detector array may be used as a radiation hardened detector for high-energy physics research or as avalanche imaging arrays.

  3. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  4. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  5. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    PubMed Central

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-01-01

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024

  6. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    PubMed Central

    Glick, Stephen J.; Didier, Clay

    2013-01-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing

  7. Detective quantum efficiency of photon-counting x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanguay, Jesse, E-mail: jessetan@mail.ubc.ca; Yun, Seungman; Kim, Ho Kyung

    Purpose: Single-photon-counting (SPC) x-ray imaging has the potential to improve image quality and enable novel energy-dependent imaging methods. Similar to conventional detectors, optimizing image SPC quality will require systems that produce the highest possible detective quantum efficiency (DQE). This paper builds on the cascaded-systems analysis (CSA) framework to develop a comprehensive description of the DQE of SPC detectors that implement adaptive binning. Methods: The DQE of SPC systems can be described using the CSA approach by propagating the probability density function (PDF) of the number of image-forming quanta through simple quantum processes. New relationships are developed to describe PDF transfermore » through serial and parallel cascades to accommodate scatter reabsorption. Results are applied to hypothetical silicon and selenium-based flat-panel SPC detectors including the effects of reabsorption of characteristic/scatter photons from photoelectric and Compton interactions, stochastic conversion of x-ray energy to secondary quanta, depth-dependent charge collection, and electronic noise. Results are compared with a Monte Carlo study. Results: Depth-dependent collection efficiency can result in substantial broadening of photopeaks that in turn may result in reduced DQE at lower x-ray energies (20–45 keV). Double-counting interaction events caused by reabsorption of characteristic/scatter photons may result in falsely inflated image signal-to-noise ratio and potential overestimation of the DQE. Conclusions: The CSA approach is extended to describe signal and noise propagation through photoelectric and Compton interactions in SPC detectors, including the effects of escape and reabsorption of emission/scatter photons. High-performance SPC systems can be achieved but only for certain combinations of secondary conversion gain, depth-dependent collection efficiency, electronic noise, and reabsorption characteristics.« less

  8. Anisotropic imaging performance in indirect x-ray imaging detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badano, Aldo; Kyprianou, Iacovos S.; Sempau, Josep

    We report on the variability in imaging system performance due to oblique x-ray incidence, and the associated transport of quanta (both x rays and optical photons) through the phosphor, in columnar indirect digital detectors. The analysis uses MANTIS, a combined x-ray, electron, and optical Monte Carlo transport code freely available. We describe the main features of the simulation method and provide some validation of the phosphor screen models considered in this work. We report x-ray and electron three-dimensional energy deposition distributions and point-response functions (PRFs), including optical spread in columnar phosphor screens of thickness 100 and 500 {mu}m, for 19,more » 39, 59, and 79 keV monoenergetic x-ray beams incident at 0 deg., 10 deg., and 15 deg. . In addition, we present pulse-height spectra for the same phosphor thickness, x-ray energies, and angles of incidence. Our results suggest that the PRF due to the phosphor blur is highly nonsymmetrical, and that the resolution properties of a columnar screen in a tomographic, or tomosynthetic imaging system varies significantly with the angle of x-ray incidence. Moreover, we find that the noise due to the variability in the number of light photons detected per primary x-ray interaction, summarized in the information or Swank factor, is somewhat independent of thickness and incidence angle of the x-ray beam. Our results also suggest that the anisotropy in the PRF is not less in screens with absorptive backings, while the noise introduced by variations in the gain and optical transport is larger. Predictions from MANTIS, after additional validation, can provide the needed understanding of the extent of such variations, and eventually, lead to the incorporation of the changes in imaging performance with incidence angle into the reconstruction algorithms for volumetric x-ray imaging systems.« less

  9. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  10. Examining nanoparticle assemblies using high spatial resolution x-ray microtomography

    NASA Astrophysics Data System (ADS)

    Jenneson, P. M.; Luggar, R. D.; Morton, E. J.; Gundogdu, O.; Tüzün, U.

    2004-09-01

    An experimental system has been designed to examine the assembly of nanoparticles in a variety of process engineering applications. These applications include the harvesting from solutions of nanoparticles into green parts, and the subsequent sintering into finished components. The system is based on an x-ray microtomography with a spatial resolution down to 5μm. The theoretical limitations in x-ray imaging are considered to allow experimental optimization. A standard nondestructive evaluation type apparatus with a small focal-spot x-ray tube, high-resolution complementary metal oxide semiconductor flat-panel pixellated detector, and a mechanical rotational stage is used to image the static systems. Dynamic sintering processes are imaged using the same x-ray source and detector but a custom rotational stage which is contained in an environmental chamber where the temperature, atmospheric pressure, and compaction force can be controlled. Three-dimensional tomographic data sets are presented here for samples from the pharmaceutical, nutraceutical, biotechnology, and nanoparticle handling industries and show the microscopic features and defects which can be resolved with the system.

  11. Hit efficiency study of CMS prototype forward pixel detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dongwook; /Johns Hopkins U.

    2006-01-01

    In this paper the author describes the measurement of the hit efficiency of a prototype pixel device for the CMS forward pixel detector. These pixel detectors were FM type sensors with PSI46V1 chip readout. The data were taken with the 120 GeV proton beam at Fermilab during the period of December 2004 to February 2005. The detectors proved to be highly efficient (99.27 {+-} 0.02%). The inefficiency was primarily located near the corners of the individual pixels.

  12. Development of Si-APD Timing Detectors for Nuclear Resonant Scattering using High-energy Synchrotron X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Zhang Xiaowei; Yoda, Yoshitaka

    2007-01-19

    A timing detector with silicon avalanche photodiodes (Si-APDs) has been developed for nuclear resonant scattering using synchrotron x-rays. The detector had four pairs of a germanium plate 0.1mm thick and a Si-APD (3 mm in dia., a depletion layer of 30-{mu}m thickness). Using synchrotron x-rays of 67.4 keV, the efficiency increased to 1.5% for the incident beam, while the efficiency was 0.76 % without the germanium converters. A measurement of SR-PAC on Ni-61 was executed by using the detector. Some other types of timing detectors are planned for x-rays of E>20 keV.

  13. Low Energy X-Ray and γ-Ray Detectors Fabricated on n-Type 4H-SiC Epitaxial Layer

    NASA Astrophysics Data System (ADS)

    Mandal, Krishna C.; Muzykov, Peter G.; Chaudhuri, Sandeep K.; Terry, J. Russell

    2013-08-01

    Schottky barrier diode (SBD) radiation detectors have been fabricated on n-type 4H-SiC epitaxial layers and evaluated for low energy x- and γ-rays detection. The detectors were found to be highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % energy resolution for 59.6 keV gamma rays. The response to soft x-rays for these detectors was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiodes. The devices have been characterized by current-voltage (I-V) measurements in the 94-700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current ( nA at 200 V) revealing a possibility of high temperature operation. The XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting a full width at half maximum (FWHM) of the rocking curve 3.6 arc sec. TSC studies in a wide range of temperature (94-550 K) revealed presence of relatively shallow levels ( 0.25 eV) in the epi bulk with a density 7×1013 cm-3 related to Al and B impurities and deeper levels located near the metal-semiconductor interface.

  14. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enoughmore » to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.« less

  15. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    NASA Astrophysics Data System (ADS)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  16. Design of High Resolution Soft X-Ray Microcalorimeters Using Magnetic Penetration Thermometers

    NASA Technical Reports Server (NTRS)

    Busch. Sarah; Balvin, Manuel; Bandler, Simon; Denis, Kevin; Finkbeiner, Fred; Porst, Jan-Patrick; Sadlier, Jack; Smith, Stephen; Stevenson, Thomas

    2012-01-01

    We have designed high-resolution soft x-ray microcalorimeters using magnetic penetration thermometers (MPTs) in an array of pixels covering a total of 2 square centimeters to have a resolving power of 300 at energies around 300 eV. This performance is desirable for studying the soft x-ray background from the warm hot intergalactic medium. MPT devices have small sensor heat capacity and high responsivities, which makes them excellent detector technology for attempting to attain sub-eV resolution. We are investigating the feasibility of pixels with absorbers that are 625 x 625 square micrometers, up to 1 x 1 square millimeters in area and 0.35 micrometer thick and thinner. Our tests have shown that suspended gold absorbers 0.35 micrometers thick (RRR = 6.7) are feasible to fabricate. We modeled the thermal diffusion from such thin gold over the size of a 625 x 625 square micrometer absorber, and conclude that the effect of the thermalization on the resolution of a 300 eV photon is an additional approximately 0.2 eV FWHM of broadening. We discuss the thermal effects of small absorber attachment sterns on solid substrate, as well as considerations for multiplexed readout. We will present the progress we have made towards building and testing this soft x-ray detector.

  17. CdTe X-ray detectors under strong optical irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cola, Adriano; Farella, Isabella

    2014-11-17

    The perturbation behaviour of Ohmic and Schottky CdTe detectors under strong optical pulses is investigated. To this scope, the electric field profiles and the induced charge transients are measured, thus simultaneously addressing fixed and free charges properties, interrelated by one-carrier trapping. The results elucidate the different roles of the contacts and deep levels, both under dark and strong irradiation conditions, and pave the way for the improvement of detector performance control under high X-ray fluxes.

  18. Design of the detector to observe the energetic charged particles: a part of the solar X-ray spectrophotometer ChemiX onboard Interhelio-Probe mission

    NASA Astrophysics Data System (ADS)

    Dudnik, Oleksiy; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Siarkowski, Marek; Evgen Kurbatov, mgr..

    2016-07-01

    -layer detector stack: first two layers consist of silicon detectors; the third one is based on the p-terphenyl scintillation detector coupled with pixelated silicon photomultiplier. Coincidence logic allows collecting systematic data on particle variety and their energy with 1 and/or 10 s time resolutions. Digital processing unit is constructed based on FPGA Actel ProAsic M1A3PE1500, and contains each event processing logic, forms telemetry data and housekeeping frames, communicates with ChemiX digital processing unit and executes received telecommands. In order to increase the reliability and time resource of the BPM its digital processing unit and secondary power supply unit has backup sets. Switching between backup sets is commanded by externally orders. The BPM is capable to sort out in situ abundances of individual particle constituents from electrons up to oxygen nuclei. 1. O.V.Dudnik, E.V.Kurbatov, V.O.Tarasov, L.A.Andryushenko, I.L.Zajtsevsky, J.Sylwester, J.Bąkala, M.Kowaliński. Background particle detector for the solar X-ray photometer ChemiX of space mission "Interhelioprobe": an adjustment of breadboard model modules (in Russian) / ISSN 1561-8889: Kosmichna Nauka I Tekhnologiya, 2015, Vol.21, No.2, P.3-14. 2. O.V.Dudnik, E.V.Kurbatov, J.Sylwester, M.Siarkowski, P.Podgórski, M.Kowaliński. Background Particle Monitor - a part of the solar X-ray spectrophotometer ChemiX: principles of the operation and construction / in: Abstracts of 15th Ukrainian conference on space research, Odesa, Ukraine, August 24-28, 2015, P.80, doi:10.13140/RG.2.1.2284.2649. 3. O.V.Dudnik, E.V.Kurbatov, M.Kowaliński, M.Siarkowski, P.Podgórski, J.Sylwester. Operational features of Background Particle Monitor, a vital part of the solar X-ray spectrophotometer ChemiX / in: Abstract book of the Conference "Progress on EUV&X-ray spectroscopy and imaging II", Wroclaw, Poland, November 17 19, 2015, P.9, doi:10.13140/RG.2.1.1184.3604.

  19. Development of GEM gas detectors for X-ray crystal spectrometry

    NASA Astrophysics Data System (ADS)

    Chernyshova, M.; Czarski, T.; Dominik, W.; Jakubowska, K.; Rzadkiewicz, J.; Scholz, M.; Pozniak, K.; Kasprowicz, G.; Zabolotny, W.

    2014-03-01

    Two Triple Gas Electron Multiplier (Triple-GEM) detectors were developed for high-resolution X-ray spectroscopy measurements for tokamak plasma to serve as plasma evolution monitoring in soft X-ray region (SXR). They provide energy resolved fast dynamic plasma radiation imaging in the SXR with 0.1 kHz frequency. Detectors were designed and constructed for continuous data-flow precise energy and position measurement of plasma radiation emitted by metal impurities, W46+ and Ni26+ ions, at 2.4 keV and 7.8 keV photon energies, respectively. High counting rate capability of the detecting units has been achieved with good position resolution. This article presents results of the laboratory and tokamak experiments together with the system performance under irradiation by photon flux from the plasma core.

  20. A compressed sensing X-ray camera with a multilayer architecture

    DOE PAGES

    Wang, Zhehui; Laroshenko, O.; Li, S.; ...

    2018-01-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  1. A compressed sensing X-ray camera with a multilayer architecture

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  2. A compressed sensing X-ray camera with a multilayer architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Laroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  3. Soft x-ray submicron imaging detector based on point defects in LiF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldacchini, G.; Bollanti, S.; Bonfigli, F.

    2005-11-15

    The use of lithium fluoride (LiF) crystals and films as imaging detectors for EUV and soft-x-ray radiation is discussed. The EUV or soft-x-ray radiation can generate stable color centers, emitting in the visible spectral range an intense fluorescence from the exposed areas. The high dynamic response of the material to the received dose and the atomic scale of the color centers make this detector extremely interesting for imaging at a spatial resolution which can be much smaller than the light wavelength. Experimental results of contact microscopy imaging of test meshes demonstrate a resolution of the order of 400 nm. Thismore » high spatial resolution has been obtained in a wide field of view, up to several mm{sup 2}. Images obtained on different biological samples, as well as an investigation of a soft x-ray laser beam are presented. The behavior of the generated color centers density as a function of the deposited x-ray dose and the advantages of this new diagnostic technique for both coherent and noncoherent EUV sources, compared with CCDs detectors, photographic films, and photoresists are discussed.« less

  4. X-ray phase contrast imaging at MAMI

    NASA Astrophysics Data System (ADS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical

  5. Energy-correction photon counting pixel for photon energy extraction under pulse pile-up

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyungjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-06-01

    A photon counting detector (PCD) has been proposed as an alternative solution to an energy-integrating detector (EID) in medical imaging field due to its high resolution, high efficiency, and low noise. The PCD has expanded to variety of fields such as spectral CT, k-edge imaging, and material decomposition owing to its capability to count and measure the number and the energy of an incident photon, respectively. Nonetheless, pulse pile-up, which is a superimposition of pulses at the output of a charge sensitive amplifier (CSA) in each PC pixel, occurs frequently as the X-ray flux increases due to the finite pulse processing time (PPT) in CSAs. Pulse pile-up induces not only a count loss but also distortion in the measured X-ray spectrum from each PC pixel and thus it is a main constraint on the use of PCDs in high flux X-ray applications. To minimize these effects, an energy-correction PC (ECPC) pixel is proposed to resolve pulse pile-up without cutting off the PPT by adding an energy correction logic (ECL) via a cross detection method (CDM). The ECPC pixel with a size of 200×200 μm2 was fabricated by using a 6-metal 1-poly 0.18 μm CMOS process with a static power consumption of 7.2 μW/pixel. The maximum count rate of the ECPC pixel was extended by approximately three times higher than that of a conventional PC pixel with a PPT of 500 nsec. The X-ray spectrum of 90 kVp, filtered by 3 mm Al filter, was measured as the X-ray current was increased using the CdTe and the ECPC pixel. As a result, the ECPC pixel dramatically reduced the energy spectrum distortion at 2 Mphotons/pixel/s when compared to that of the ERCP pixel with the same 500 nsec PPT.

  6. Elemental mapping and microimaging by x-ray capillary optics.

    PubMed

    Hampai, D; Dabagov, S B; Cappuccio, G; Longoni, A; Frizzi, T; Cibin, G; Guglielmotti, V; Sala, M

    2008-12-01

    Recently, many experiments have highlighted the advantage of using polycapillary optics for x-ray fluorescence studies. We have developed a special confocal scheme for micro x-ray fluorescence measurements that enables us to obtain not only elemental mapping of the sample but also simultaneously its own x-ray imaging. We have designed the prototype of a compact x-ray spectrometer characterized by a spatial resolution of less than 100 microm for fluorescence and less than 10 microm for imaging. A couple of polycapillary lenses in a confocal configuration together with a silicon drift detector allow elemental studies of extended samples (approximately 3 mm) to be performed, while a CCD camera makes it possible to record an image of the same samples with 6 microm spatial resolution, which is limited only by the pixel size of the camera. By inserting a compound refractive lens between the sample and the CCD camera, we hope to develop an x-ray microscope for more enlarged images of the samples under test.

  7. SuperHERO: The Next Generation Hard X-Ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.; hide

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  8. SuperHERO: The Next Generation Hard X-ray HEROES Telescope

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica A.; Christe, Steven D.; Wilson-Hodge, Colleen; Shih, Albert Y. M.; Ramsey, Brian D.; Tennant, Allyn F.; Swartz, Douglas A.

    2014-01-01

    SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.

  9. CVD diamond pixel detectors for LHC experiments

    NASA Astrophysics Data System (ADS)

    Wedenig, R.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Friedl, M.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Procario, M.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Runolfsson, O.; Russ, J.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R. J.; Tesarek, R.; Trawick, M.; Trischuk, W.; Vittone, E.; Wagner, A.; Walsh, A. M.; Weilhammer, P.; White, C.; Zeuner, W.; Ziock, H.; Zoeller, M.; Blanquart, L.; Breugnion, P.; Charles, E.; Ciocio, A.; Clemens, J. C.; Dao, K.; Einsweiler, K.; Fasching, D.; Fischer, P.; Joshi, A.; Keil, M.; Klasen, V.; Kleinfelder, S.; Laugier, D.; Meuser, S.; Milgrome, O.; Mouthuy, T.; Richardson, J.; Sinervo, P.; Treis, J.; Wermes, N.; RD42 Collaboration

    1999-08-01

    This paper reviews the development of CVD diamond pixel detectors. The preparation of the diamond pixel sensors for bump-bonding to the pixel readout electronics for the LHC and the results from beam tests carried out at CERN are described.

  10. Characterization of a hybrid energy-resolving photon-counting detector

    NASA Astrophysics Data System (ADS)

    Zang, A.; Pelzer, G.; Anton, G.; Ballabriga Sune, R.; Bisello, F.; Campbell, M.; Fauler, A.; Fiederle, M.; Llopart Cudie, X.; Ritter, I.; Tennert, F.; Wölfel, S.; Wong, W. S.; Michel, T.

    2014-03-01

    Photon-counting detectors in medical x-ray imaging provide a higher dose efficiency than integrating detectors. Even further possibilities for imaging applications arise, if the energy of each photon counted is measured, as for example K-edge-imaging or optimizing image quality by applying energy weighting factors. In this contribution, we show results of the characterization of the Dosepix detector. This hybrid photon- counting pixel detector allows energy resolved measurements with a novel concept of energy binning included in the pixel electronics. Based on ideas of the Medipix detector family, it provides three different modes of operation: An integration mode, a photon-counting mode, and an energy-binning mode. In energy-binning mode, it is possible to set 16 energy thresholds in each pixel individually to derive a binned energy spectrum in every pixel in one acquisition. The hybrid setup allows using different sensor materials. For the measurements 300 μm Si and 1 mm CdTe were used. The detector matrix consists of 16 x 16 square pixels for CdTe (16 x 12 for Si) with a pixel pitch of 220 μm. The Dosepix was originally intended for applications in the field of radiation measurement. Therefore it is not optimized towards medical imaging. The detector concept itself still promises potential as an imaging detector. We present spectra measured in one single pixel as well as in the whole pixel matrix in energy-binning mode with a conventional x-ray tube. In addition, results concerning the count rate linearity for the different sensor materials are shown as well as measurements regarding energy resolution.

  11. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  12. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful

  13. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    NASA Astrophysics Data System (ADS)

    Dragone, A.; Kenney, C.; Lozinskaya, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.; Wang, Zhehui

    2016-11-01

    A multilayer stacked X-ray camera concept is described. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detection [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.

  14. Charge Loss and Charge Sharing Measurements for Two Different Pixelated Cadmium-Zinc-Telluride Detectors

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Sharma, Dharma; Ramsey, Brian; Seller, Paul

    2003-01-01

    As part of ongoing research at Marshall Space Flight Center, Cadmium-Zinc- Telluride (CdZnTe) pixilated detectors are being developed for use at the focal plane of the High Energy Replicated Optics (HERO) telescope. HERO requires a 64x64 pixel array with a spatial resolution of around 200 microns (with a 6m focal length) and high energy resolution (< 2% at 60keV). We are currently testing smaller arrays as a necessary first step towards this goal. In this presentation, we compare charge sharing and charge loss measurements between two devices that differ both electronically and geometrically. The first device consists of a 1-mm-thick piece of CdZnTe that is sputtered with a 4x4 array of pixels with pixel pitch of 750 microns (inter-pixel gap is 100 microns). The signal is read out using discrete ultra-low-noise preamplifiers, one for each of the 16 pixels. The second detector consists of a 2-mm-thick piece of CdZnTe that is sputtered with a 16x16 array of pixels with a pixel pitch of 300 microns (inter-pixel gap is 50 microns). Instead of using discrete preamplifiers, the crystal is bonded to an ASIC that provides all of the front-end electronics to each of the 256 pixels. what degree the bias voltage (i.e. the electric field) and hence the drift and diffusion coefficients affect our measurements. Further, we compare the measured results with simulated results and discuss to

  15. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  16. Charge Gain, Voltage Gain, and Node Capacitance of the SAPHIRA Detector Pixel by Pixel

    NASA Astrophysics Data System (ADS)

    Pastrana, Izabella M.; Hall, Donald N. B.; Baker, Ian M.; Jacobson, Shane M.; Goebel, Sean B.

    2018-01-01

    The University of Hawai`i Institute for Astronomy has partnered with Leonardo (formerly Selex) in the development of HgCdTe linear mode avalanche photodiode (L-APD) SAPHIRA detectors. The SAPHIRA (Selex Avalanche Photodiode High-speed Infra-Red Array) is ideally suited for photon-starved astronomical observations, particularly near infrared (NIR) adaptive optics (AO) wave-front sensing. I have measured the stability, and linearity with current, of a 1.7-um (10% spectral bandpass) infrared light emitting diode (IR LED) used to illuminate the SAPHIRA and have then utilized this source to determine the charge gain (in e-/ADU), voltage gain (in uV/ADU), and node capacitance (in fF) for each pixel of the 320x256@24um SAPHIRA. These have previously only been averages over some sub-array. Determined from the ratio of the temporal averaged signal level to variance under constant 1.7-um LED illumination, I present the charge gain pixel-by-pixel in a 64x64 sub-array at the center of the active area of the SAPHIRA (analyzed separately as four 32x32 sub-arrays) to be about 1.6 e-/ADU (σ=0.5 e-/ADU). Additionally, the standard technique of varying the pixel reset voltage (PRV) in 10 mV increments and recording output frames for the same 64x64 subarray found the voltage gain per pixel to be about 11.7 uV/ADU (σ=0.2 uV/ADU). Finally, node capacitance was found to be approximately 23 fF (σ=6 fF) utilizing the aforementioned charge and voltage gain measurements. I further discuss the linearity measurements of the 1.7-um LED used in the charge gain characterization procedure.

  17. Characterization of spectrometric photon-counting X-ray detectors at different pitches

    NASA Astrophysics Data System (ADS)

    Jurdit, M.; Brambilla, A.; Moulin, V.; Ouvrier-Buffet, P.; Radisson, P.; Verger, L.

    2017-09-01

    There is growing interest in energy-sensitive photon-counting detectors based on high flux X-ray imaging. Their potential applications include medical imaging, non-destructive testing and security. Innovative detectors of this type will need to count individual photons and sort them into selected energy bins, at several million counts per second and per mm2. Cd(Zn)Te detector grade materials with a thickness of 1.5 to 3 mm and pitches from 800 μm down to 200 μm were assembled onto interposer boards. These devices were tested using in-house-developed full-digital fast readout electronics. The 16-channel demonstrators, with 256 energy bins, were experimentally characterized by determining spectral resolution, count rate, and charge sharing, which becomes challenging at low pitch. Charge sharing correction was found to efficiently correct X-ray spectra up to 40 × 106 incident photons.s-1.mm-2.

  18. The X-ray Integral Field Unit (X-IFU) for Athena

    NASA Technical Reports Server (NTRS)

    Ravera, Laurent; Barret, Didier; Willem den Herder, Jan; Piro, Luigi; Cledassou, Rodolphe; Pointecouteau, Etienne; Peille, Philippe; Pajot, Francois; Arnaud, Monique; Pigot, Claude; hide

    2014-01-01

    Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.

  19. Development of Position-Sensitive Magnetic Calorimeters for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bandler, SImon; Stevenson, Thomas; Hsieh, Wen-Ting

    2011-01-01

    Metallic magnetic calorimeters (MMC) are one of the most promising devices to provide very high energy resolution needed for future astronomical x-ray spectroscopy. MMC detectors can be built to large detector arrays having thousands of pixels. Position-sensitive magnetic (PoSM) microcalorimeters consist of multiple absorbers thermally coupled to one magnetic micro calorimeter. Each absorber element has a different thermal coupling to the MMC, resulting in a distribution of different pulse shapes and enabling position discrimination between the absorber elements. PoSMs therefore achieve the large focal plane area with fewer number of readout channels without compromising spatial sampling. Excellent performance of PoSMs was achieved by optimizing the designs of key parameters such as the thermal conductance among the absorbers, magnetic sensor, and heat sink, as well as the absorber heat capacities. Micro fab ri - cation techniques were developed to construct four-absorber PoSMs, in which each absorber consists of a two-layer composite of bismuth and gold. The energy resolution (FWHM full width at half maximum) was measured to be better than 5 eV at 6 keV x-rays for all four absorbers. Position determination was demonstrated with pulse-shape discrimination, as well as with pulse rise time. X-ray microcalorimeters are usually designed to thermalize as quickly as possible to avoid degradation in energy resolution from position dependence to the pulse shapes. Each pixel consists of an absorber and a temperature sensor, both decoupled from the cold bath through a weak thermal link. Each pixel requires a separate readout channel; for instance, with a SQUID (superconducting quantum interference device). For future astronomy missions where thousands to millions of resolution elements are required, having an individual SQUID readout channel for each pixel becomes difficult. One route to attaining these goals is a position-sensitive detector in which a large continuous or

  20. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  1. Large Area Cd0.9Zn0.1Te Pixelated Detector: Fabrication and Characterization

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sandeep K.; Nguyen, Khai; Pak, Rahmi O.; Matei, Liviu; Buliga, Vladimir; Groza, Michael; Burger, Arnold; Mandal, Krishna C.

    2014-04-01

    Cd0.9Zn0.1Te (CZT) based pixelated radiation detectors have been fabricated and characterized for gamma ray detection. Large area CZT single crystals has been grown using a tellurium solvent method. A 10 ×10 guarded pixelated detector has been fabricated on a 19.5 ×19.5 ×5 mm3 crystal cut out from the grown ingot. The pixel dimensions were 1.3 ×1.3 mm2 and were pitched at 1.8 mm. A guard grid was used to reduce interpixel/inter-electrode leakage. The crystal was characterized in planar configuration using electrical, optical and optoelectronic methods prior to the fabrication of pixelated geometry. Current-voltage (I-V) measurements revealed a leakage current of 27 nA at an operating bias voltage of 1000 V and a resistivity of 3.1 ×1010 Ω-cm. Infrared transmission imaging revealed an average tellurium inclusion/precipitate size less than 8 μm. Pockels measurement has revealed a near-uniform depth-wise distribution of the internal electric field. The mobility-lifetime product in this crystal was calculated to be 6.2 ×10 - 3 cm2/V using alpha ray spectroscopic method. Gamma spectroscopy using a 137Cs source on the pixelated structure showed fully resolved 662 keV gamma peaks for all the pixels, with percentage resolution (FWHM) as high as 1.8%.

  2. Event-Driven X-Ray CCD Detectors for High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ricker, George R.

    2004-01-01

    A viewgraph presentation describing the Event-Driven X- Ray CCD (EDCCD) detector system for high energy astrophysics is presented. The topics include: 1) EDCCD: Description and Advantages; 2) Summary of Grant Activity Carried Out; and 3) EDCCD Test System.

  3. Report on recent results of the PERCIVAL soft X-ray imager

    NASA Astrophysics Data System (ADS)

    Khromova, A.; Cautero, G.; Giuressi, D.; Menk, R.; Pinaroli, G.; Stebel, L.; Correa, J.; Marras, A.; Wunderer, C. B.; Lange, S.; Tennert, M.; Niemann, M.; Hirsemann, H.; Smoljanin, S.; Reza, S.; Graafsma, H.; Göttlicher, P.; Shevyakov, I.; Supra, J.; Xia, Q.; Zimmer, M.; Guerrini, N.; Marsh, B.; Sedgwick, I.; Nicholls, T.; Turchetta, R.; Pedersen, U.; Tartoni, N.; Hyun, H. J.; Kim, K. S.; Rah, S. Y.; Hoenk, M. E.; Jewell, A. D.; Jones, T. J.; Nikzad, S.

    2016-11-01

    The PERCIVAL (Pixelated Energy Resolving CMOS Imager, Versatile And Large) soft X-ray 2D imaging detector is based on stitched, wafer-scale sensors possessing a thick epi-layer, which together with back-thinning and back-side illumination yields elevated quantum efficiency in the photon energy range of 125-1000 eV. Main application fields of PERCIVAL are foreseen in photon science with FELs and synchrotron radiation. This requires high dynamic range up to 105 ph @ 250 eV paired with single photon sensitivity with high confidence at moderate frame rates in the range of 10-120 Hz. These figures imply the availability of dynamic gain switching on a pixel-by-pixel basis and a highly parallel, low noise analog and digital readout, which has been realized in the PERCIVAL sensor layout. Different aspects of the detector performance have been assessed using prototype sensors with different pixel and ADC types. This work will report on the recent test results performed on the newest chip prototypes with the improved pixel and ADC architecture. For the target frame rates in the 10-120 Hz range an average noise floor of 14e- has been determined, indicating the ability of detecting single photons with energies above 250 eV. Owing to the successfully implemented adaptive 3-stage multiple-gain switching, the integrated charge level exceeds 4 · 106 e- or 57000 X-ray photons at 250 eV per frame at 120 Hz. For all gains the noise level remains below the Poisson limit also in high-flux conditions. Additionally, a short overview over the updates on an oncoming 2 Mpixel (P2M) detector system (expected at the end of 2016) will be reported.

  4. Gossip: Gaseous pixels

    NASA Astrophysics Data System (ADS)

    Koffeman, E. N.

    2007-12-01

    Several years ago a revolutionary miniature TPC was developed using a pixel chip with a Micromegas foil spanned over it. To overcome the mechanical stability problems and improve the positioning accuracy while spanning a foil on top of a small readout chip a process has been developed in which a Micromegas-like grid is applied on a CMOS wafer in a post-processing step. This aluminum grid is supported on insulating pillars that are created by etching after the grid has been made. The energy resolution (measured on the absorption of the X-rays from a 55Fe source) was remarkably good. Several geometries have since been tested and we now believe that a Gas On Slimmed Silicon Pixel chip' (Gossip) may be realized. The drift region of such a gaseous pixel detector would be reduced to a millimeter. Such a detector is potentially very radiation hard (SLHC vertexing) but aging and sparking must be eliminated.

  5. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  6. High-spatial resolution and high-spectral resolution detector for use in the measurement of solar flare hard X-rays

    NASA Technical Reports Server (NTRS)

    Desai, U. D.; Orwig, Larry E.

    1988-01-01

    In the areas of high spatial resolution, the evaluation of a hard X-ray detector with 65 micron spatial resolution for operation in the energy range from 30 to 400 keV is proposed. The basic detector is a thick large-area scintillator faceplate, composed of a matrix of high-density scintillating glass fibers, attached to a proximity type image intensifier tube with a resistive-anode digital readout system. Such a detector, combined with a coded-aperture mask, would be ideal for use as a modest-sized hard X-ray imaging instrument up to X-ray energies as high as several hundred keV. As an integral part of this study it was also proposed that several techniques be critically evaluated for X-ray image coding which could be used with this detector. In the area of high spectral resolution, it is proposed to evaluate two different types of detectors for use as X-ray spectrometers for solar flares: planar silicon detectors and high-purity germanium detectors (HPGe). Instruments utilizing these high-spatial-resolution detectors for hard X-ray imaging measurements from 30 to 400 keV and high-spectral-resolution detectors for measurements over a similar energy range would be ideally suited for making crucial solar flare observations during the upcoming maximum in the solar cycle.

  7. Ground Calibration of the Astro-H (Hitomi) Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Boyce, K. R.; Brown, G. V.; Chiao, Meng P.; Fujimoto, R. J.; Haas, D.; Den Herder, J. W.; Ishisaki, Y.; Kelley, R. L.; hide

    2016-01-01

    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0.3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.

  8. Modulation transfer function of a triangular pixel array detector.

    PubMed

    Karimzadeh, Ayatollah

    2014-07-01

    The modulation transfer function (MTF) is the main parameter that is used to evaluate image quality in electro-optical systems. Detector sampling MTF in most electro-optical systems determines the cutoff frequency of the system. The MTF of the detector depends on its pixel shape. In this work, we calculated the MTF of a detector with an equilateral triangular pixel shape. Some new results were found in deriving the MTF for the equilateral triangular pixel shape.

  9. Dual-detector X-ray fluorescence imaging of ancient artifacts with surface relief

    PubMed Central

    Smilgies, Detlef-M.; Powers, Judson A.; Bilderback, Donald H.; Thorne, Robert E.

    2012-01-01

    Interpretation of X-ray fluorescence images of archeological artifacts is complicated by the presence of surface relief and roughness. Using two symmetrically arranged fluorescence detectors in a back-reflection geometry, the proper X-ray fluorescence yield can be distinguished from intensity variations caused by surface topography. This technique has been applied to the study of Roman inscriptions on marble. PMID:22713888

  10. Measured and calculated K-fluorescence effects on the MTF of an amorphous-selenium based CCD x-ray detector.

    PubMed

    Hunter, David M; Belev, George; Kasap, Safa; Yaffe, Martin J

    2012-02-01

    Theoretical reasoning suggests that direct conversion digital x-ray detectors based upon photoconductive amorphous-selenium (a-Se) could attain very high values of the MTF (modulation transfer function) at spatial frequencies well beyond 20 cycles mm(-1). One of the fundamental factors affecting resolution loss, particularly at x-ray energies just above the K-edge of selenium (12.66 keV), is the K-fluorescence reabsorption mechanism, wherein energy can be deposited in the detector at locations laterally displaced from the initial x-ray interaction site. This paper compares measured MTF changes above and below the Se K-edge of a CCD based a-Se x-ray detector with theoretical expectations. A prototype 25 μm sampling pitch (Nyquist frequency = 20 cycles mm(-1), 200 μm thick a-Se layer based x-ray detector, utilizing a specialized CCD readout device (200 × 400 area array), was used to make edge images with monochromatic x-rays above and below the K-edge of Se. A vacuum double crystal monochromator, exposed to polychromatic x-rays from a synchrotron, formed the monochromatic x-ray source. The monochromaticity of the x-rays was 99% or better. The presampling MTF was determined using the slanted edge method. The theory modeling the MTF performance of the detector includes the basic x-ray interaction physics in the a-Se layer as well as effects related to the operation of the CCD and charge trapping at a blocking layer present at the CCD/a-Se interface. The MTF performance of the prototype a-Se CCD was reduced from the theoretical value prescribed by the basic Se x-ray interaction physics, principally by the presence of a blocking layer. Nevertheless, the K-fluorescence reduction in the MTF was observed, approximately as predicted by theory. For the CCD prototype detector, at five cycles mm(-1), there was a 14% reduction of the MTF, from a value of 0.7 below the K-edge of Se, to 0.6 just above the K-edge. The MTF of an a-Se x-ray detector has been measured using

  11. X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings

    NASA Astrophysics Data System (ADS)

    Zielińska, A.; Dąbrowski, W.; Fiutowski, T.; Mindur, B.; Wiącek, P.; Wróbel, P.

    2013-10-01

    Conventional X-ray fluorescence imaging technique uses a focused X-ray beam to scan through the sample and an X-ray detector with high energy resolution but no spatial resolution. The spatial resolution of the image is then determined by the size of the exciting beam, which can be obtained either from a synchrotron source or from an X-ray tube with a micro-capillary lens. Such a technique based on a pixel-by-pixel measurement is very slow and not suitable for imaging large area samples. The goal of this work is to develop a system capable of simultaneous imaging of large area samples by using a wide field uniform excitation X-ray beam and a position sensitive and energy dispersive detector. The development is driven by possible application of such a system to imaging of distributions of hidden pigments containing specific elements in cultural heritage paintings, which is of great interest for the cultural heritage research. The fluorescence radiation from the area of 10 × 10 cm2 is projected through a pinhole camera on the Gas Electron Multiplier detector of the same area. The detector is equipped with two sets of orthogonal readout strips. The strips are read out by the GEMROC Application Specific Integrated Circuits (ASIC)s, which deliver time and amplitude information for each hit. This ASIC architecture combined with a Field Programmable Gate Array (FPGA) based readout system allows us to reconstruct the position and the total energy of each detected photon for high count rates up to 5 × 106 cps. Energy resolution better than 20% FWHM for the 5.9 keV line and spatial resolution of 1 mm FWHM have been achieved for the prototype system. Although the energy resolution of the Gas Electron Multiplier (GEM) detector is, by principle, not competitive with that of specialised high energy resolution semiconductor detectors, it is sufficient for a number of applications. Compared to conventional micro-XRF techniques the developed system allows shortening of the

  12. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  13. Full-field fan-beam x-ray fluorescence computed tomography system design with linear-array detectors and pinhole collimation: a rapid Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Zhang, Siyuan; Li, Liang; Li, Ruizhe; Chen, Zhiqiang

    2017-11-01

    We present the design concept and initial simulations for a polychromatic full-field fan-beam x-ray fluorescence computed tomography (XFCT) device with pinhole collimators and linear-array photon counting detectors. The phantom is irradiated by a fan-beam polychromatic x-ray source filtered by copper. Fluorescent photons are stimulated and then collected by two linear-array photon counting detectors with pinhole collimators. The Compton scatter correction and the attenuation correction are applied in the data processing, and the maximum-likelihood expectation maximization algorithm is applied for the image reconstruction of XFCT. The physical modeling of the XFCT imaging system was described, and a set of rapid Monte Carlo simulations was carried out to examine the feasibility and sensitivity of the XFCT system. Different concentrations of gadolinium (Gd) and gold (Au) solutions were used as contrast agents in simulations. Results show that 0.04% of Gd and 0.065% of Au can be well reconstructed with the full scan time set at 6 min. Compared with using the XFCT system with a pencil-beam source or a single-pixel detector, using a full-field fan-beam XFCT device with linear-array detectors results in significant scanning time reduction and may satisfy requirements of rapid imaging, such as in vivo imaging experiments.

  14. An active pixel sensor to detect diffused X-ray during Interventional Radiology procedure

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Battisti, D.; Biasini, M.; Checcucci, B.; Conti, E.; Di Lorenzo, R.; Esposito, A.; Fanò, L.; Paolucci, M.; Passeri, D.; Pentiricci, A.; Placidi, P.

    2012-04-01

    Interventional radiologists and staff members are frequently exposed to protracted and fractionated low doses of ionizing radiation due to diffused X-ray radiation. The authors propose a novel approach to monitor on line staff during their interventions by using a device based on an Active Pixel Sensor developed for tracking applications. Two different photodiode configurations have been tested in standard Interventional Radiology working conditions. Both options have demonstrated the capability to measure the photon flux and the energy flux to a sufficient degree of uncertainty.

  15. A novel pixellated solid-state photon detector for enhancing the Everhart-Thornley detector.

    PubMed

    Chuah, Joon Huang; Holburn, David

    2013-06-01

    This article presents a pixellated solid-state photon detector designed specifically to improve certain aspects of the existing Everhart-Thornley detector. The photon detector was constructed and fabricated in an Austriamicrosystems 0.35 µm complementary metal-oxide-semiconductor process technology. This integrated circuit consists of an array of high-responsivity photodiodes coupled to corresponding low-noise transimpedance amplifiers, a selector-combiner circuit and a variable-gain postamplifier. Simulated and experimental results show that the photon detector can achieve a maximum transimpedance gain of 170 dBΩ and minimum bandwidth of 3.6 MHz. It is able to detect signals with optical power as low as 10 nW and produces a minimum signal-to-noise ratio (SNR) of 24 dB regardless of gain configuration. The detector has been proven to be able to effectively select and combine signals from different pixels. The key advantages of this detector are smaller dimensions, higher cost effectiveness, lower voltage and power requirements and better integration. The photon detector supports pixel-selection configurability which may improve overall SNR and also potentially generate images for different analyses. This work has contributed to the future research of system-level integration of a pixellated solid-state detector for secondary electron detection in the scanning electron microscope. Copyright © 2013 Wiley Periodicals, Inc.

  16. Simulation of energy spectrum of GEM detector from an x-ray quantum

    NASA Astrophysics Data System (ADS)

    Malinowski, K.; Chernyshova, M.; Czarski, T.; Kowalska-Strzęciwilk, E.; Linczuk, P.; Wojeński, A.; Krawczyk, R.; Gąska, M.

    2018-01-01

    This paper presents the results of the energy resolution simulation for the triple GEM-based detector for x-ray quantum of 5.9 keV . Photons of this energy are emitted by 55Fe source, which is a standard calibration marker for this type of detectors. The calculations were made in Garfield++ in two stages. In the first stage, the distribution of the amount of primary electrons generated in the drift volume by the x-ray quantum was simulated using the Heed program. Secondly, the primary electrons of the resulting quantitative distribution were treated as a source of electron avalanches propagated through the whole volume of the triple GEM-based detector. The distribution of the obtained signals created a spectrum corresponding to the peak at 5.9 keV, which allowed us to determine the theoretical energy resolution of the detector. Its knowledge allows observing and improving the eventual experimental deterioration of the energy resolution, inevitably accompanying processes of registration and processing of the signals.

  17. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    PubMed

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  18. Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiquee, Sinchita; Kabir, M. Z., E-mail: kabir@encs.concordia.ca

    2015-07-15

    A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chestmore » radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.« less

  19. The Extended Range X-Ray Telescope center director's discretionary fund report

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.; Cumings, N. P.; Hildner, E.; Moore, R. L.; Tandberg-Hanssen, E. A.

    1985-01-01

    An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.

  20. Discriminating cosmic muons and X-rays based on rise time using a GEM detector

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Yin; Zhao, Sheng-Ying; Wang, Xiao-Dong; Zhang, Xian-Ming; Qi, Hui-Rong; Zhang, Wei; Wu, Ke-Yan; Hu, Bi-Tao; Zhang, Yi

    2016-08-01

    Gas electron multiplier (GEM) detectors have been used in cosmic muon scattering tomography and neutron imaging over the last decade. In this work, a triple GEM device with an effective readout area of 10 cm × 10 cm is developed, and a method of discriminating between cosmic muons and X-rays based on rise time is tested. The energy resolution of the GEM detector is tested by 55Fe ray source to prove the GEM detector has a good performance. Analysis of the complete signal-cycles allows us to get the rise time and pulse heights. The experiment result indicates that cosmic muons and X-rays can be discriminated with an appropriate rise time threshold. Supported by National Natural Science Foundation of China (11135002, 11275235, 11405077, 11575073)

  1. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya

    Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less

  2. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    DOE PAGES

    Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya; ...

    2016-11-29

    Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less

  3. Simulation study of pixel detector charge digitization

    NASA Astrophysics Data System (ADS)

    Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team

    2017-01-01

    Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.

  4. Comparison of two portable solid state detectors with an improved collimation and alignment device for mammographic x-ray spectroscopy.

    PubMed

    Bottigli, U; Golosio, B; Masala, G L; Oliva, P; Stumbo, S; Delogu, P; Fantacci, M E; Abbene, L; Fauci, F; Raso, G

    2006-09-01

    We describe a portable system for mammographic x-ray spectroscopy, based on a 2 X 2 X 1 mm3 cadmium telluride (CdTe) solid state detector, that is greatly improved over a similar system based on a 3 X 3 X 2 mm3 cadmium zinc telluride (CZT) solid state detector evaluated in an earlier work. The CdTe system utilized new pinhole collimators and an alignment device that facilitated measurement of mammographic x-ray spectra. Mammographic x-ray spectra acquired by each system were comparable. Half value layer measurements obtained using an ion chamber agreed closely with those derived from the x-ray spectra measured by either detector. The faster electronics and other features of the CdTe detector allowed its use with a larger pinhole collimator than could be used with the CZT detector. Additionally, the improved pinhole collimator and alignment features of the apparatus permitted much more rapid setup for acquisition of x-ray spectra than was possible on the system described in the earlier work. These improvements in detector technology, collimation and ease of alignment, as well as low cost, make this apparatus attractive as a tool for both laboratory research and advanced mammography quality control.

  5. Feasibility of estimating volumetric breast density from mammographic x-ray spectra using a cadmium telluride photon-counting detector.

    PubMed

    Ghammraoui, Bahaa; Badal, Andreu; Glick, Stephen J

    2018-06-03

    Mammographic density of glandular breast tissue has a masking effect that can reduce lesion detection accuracy and is also a strong risk factor for breast cancer. Therefore, accurate quantitative estimation of breast density is clinically important. In this study, we investigate experimentally the feasibility of quantifying volumetric breast density with spectral mammography using a CdTe-based photon-counting detector. To demonstrate proof-of-principle, this study was carried out using the single pixel Amptek XR-100T-CdTe detector. The total number of x rays recorded by the detector from a single pencil-beam projection through 50%/50% of adipose/glandular mass fraction-equivalent phantoms was measured. Material decomposition assuming two, four, and eight energy bins was then applied to characterize the inspected phantom into adipose and glandular using log-likelihood estimation, taking into account the polychromatic source, the detector response function, and the energy-dependent attenuation. Measurement tests were carried out for different doses, kVp settings, and different breast sizes. For dose of 1 mGy and above, the percent relative root mean square (RMS) errors of the estimated breast density was measured below 7% for all three phantom studies. It was also observed that some decrease in RMS errors was achieved using eight energy bins. For 3 and 4 cm thick phantoms, performance at 40 and 45 kVp showed similar performance. However, it was observed that 45 kVp showed better performance for a phantom thickness of 6 cm at low dose levels due to increased statistical variation at lower photon count levels with 40 kVp. The results of the current study suggest that photon-counting spectral mammography systems using CdTe detectors have the potential to be used for accurate quantification of volumetric breast density on a pixel-to-pixel basis, with an RMS error of less than 7%. Published 2018. This article is a U.S. Government work and is in the public domain in the

  6. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of themore » data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.« less

  7. Design, optimization and evaluation of a "smart" pixel sensor array for low-dose digital radiography

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Liu, Xinghui; Ou, Hai; Chen, Jun

    2016-04-01

    Amorphous silicon (a-Si:H) thin-film transistors (TFTs) have been widely used to build flat-panel X-ray detectors for digital radiography (DR). As the demand for low-dose X-ray imaging grows, a detector with high signal-to-noise-ratio (SNR) pixel architecture emerges. "Smart" pixel is intended to use a dual-gate photosensitive TFT for sensing, storage, and switch. It differs from a conventional passive pixel sensor (PPS) and active pixel sensor (APS) in that all these three functions are combined into one device instead of three separate units in a pixel. Thus, it is expected to have high fill factor and high spatial resolution. In addition, it utilizes the amplification effect of the dual-gate photosensitive TFT to form a one-transistor APS that leads to a potentially high SNR. This paper addresses the design, optimization and evaluation of the smart pixel sensor and array for low-dose DR. We will design and optimize the smart pixel from the scintillator to TFT levels and validate it through optical and electrical simulation and experiments of a 4x4 sensor array.

  8. Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit

    DOE PAGES

    Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...

    2016-01-06

    We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.

  9. The development and test of multi-anode microchannel array detector systems. Part 2: Soft X-ray detectors

    NASA Technical Reports Server (NTRS)

    Timothy, J. G.

    1986-01-01

    Detector systems based on the high gain microchannel plate (MCP) electron multiplier were used extensively for imaging at soft X-ray wavelengths both on the ground and in space. The latest pulse counting electronic readout systems provide zero readout noise, spatial resolutions (FWHM) of 25 microns or better and can determine the arrival times of detected photons to an accuracy of the order of 100 ns. These systems can be developed to produce detectors with active areas of 100 nm in diameter or greater. The use of CsI photocathodes produces very high detective quantum efficiencies at wavelengths between about 100 and 1A (approximately 0.1 to 10 keV) with moderate energy resolution. The operating characteristics of the different types of soft X-ray MCP detector systems are described and the prospects for future developments are discussed.

  10. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  11. The detection of soft X-rays with charged coupled detectors

    NASA Technical Reports Server (NTRS)

    Burstein, P.; Davis, John M.

    1989-01-01

    The characteristics of an ideal soft X-ray imaging detector are enumerated. Of recent technical developments the CCD or charge coupled device goes furthest to meeting these requirements. Several properties of CCDs are described with reference to experimental work and their application to practical instruments is reviewed.

  12. WE-G-204-03: Photon-Counting Hexagonal Pixel Array CdTe Detector: Optimal Resampling to Square Pixels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, S; Vedantham, S; Karellas, A

    Purpose: Detectors with hexagonal pixels require resampling to square pixels for distortion-free display of acquired images. In this work, the presampling modulation transfer function (MTF) of a hexagonal pixel array photon-counting CdTe detector for region-of-interest fluoroscopy was measured and the optimal square pixel size for resampling was determined. Methods: A 0.65mm thick CdTe Schottky sensor capable of concurrently acquiring up to 3 energy-windowed images was operated in a single energy-window mode to include ≥10 KeV photons. The detector had hexagonal pixels with apothem of 30 microns resulting in pixel spacing of 60 and 51.96 microns along the two orthogonal directions.more » Images of a tungsten edge test device acquired under IEC RQA5 conditions were double Hough transformed to identify the edge and numerically differentiated. The presampling MTF was determined from the finely sampled line spread function that accounted for the hexagonal sampling. The optimal square pixel size was determined in two ways; the square pixel size for which the aperture function evaluated at the Nyquist frequencies along the two orthogonal directions matched that from the hexagonal pixel aperture functions, and the square pixel size for which the mean absolute difference between the square and hexagonal aperture functions was minimized over all frequencies up to the Nyquist limit. Results: Evaluation of the aperture functions over the entire frequency range resulted in square pixel size of 53 microns with less than 2% difference from the hexagonal pixel. Evaluation of the aperture functions at Nyquist frequencies alone resulted in 54 microns square pixels. For the photon-counting CdTe detector and after resampling to 53 microns square pixels using quadratic interpolation, the presampling MTF at Nyquist frequency of 9.434 cycles/mm along the two directions were 0.501 and 0.507. Conclusion: Hexagonal pixel array photon-counting CdTe detector after resampling to square

  13. DEPFET pixel detector for future e-e+ experiments

    NASA Astrophysics Data System (ADS)

    Boronat, M.; DEPFET Collaboration

    2016-04-01

    The DEPFET Collaboration develops highly granular, ultra-thin pixel detectors for outstanding vertex reconstruction at future e+e- collider experiments. A DEPFET sensor provides, simultaneously, position sensitive detector capabilities and in-pixel amplification by the integration of a field effect transistor on a fully depleted silicon bulk. The characterization of the latest DEPFET prototypes has proven that a comfortable signal to noise ratio and excellent single point resolution can be achieved for a sensor thickness of 50 μm. A complete detector concept is being developed for the Belle II experiment at the new Japanese super flavor factory. The close to Belle related final auxiliary ASICs have been produced and found to operate a DEPFET pixel detector of the latest generation with the Belle II required read-out speed. DEPFET is not only the technology of choice for the Belle II vertex detector, but also a solid candidate for the International Linear Collider (ILC). Therefore, in this paper, the status of DEPFET R&D project is reviewed in the light of the requirements of the vertex detector at a future e+e- collider.

  14. CdZnTe detector for hard x-ray and low energy gamma-ray focusing telescope

    NASA Astrophysics Data System (ADS)

    Natalucci, L.; Alvarez, J. M.; Barriere, N.; Caroli, E.; Curado da Silva, R. M.; Del Sordo, S.; Di Cosimo, S.; Frutti, M.; Hernanz, M.; Lozano, M.; Quadrini, E.; Pellegrini, G.; Stephen, J. B.; Ubertini, P.; Uslenghi, M. C.; Zoglauer, A.

    2008-07-01

    The science drivers for a new generation soft gamma-ray mission are naturally focused on the detailed study of the acceleration mechanisms in a variety of cosmic sources. Through the development of high energy optics in the energy energy range 0.05-1 MeV it will be possible to achieve a sensitivity about two orders of magnitude better than the currently operating gamma-ray telescopes. This will open a window for deep studies of many classes of sources: from Galactic X-ray binaries to magnetars, from supernova remnants to Galaxy clusters, from AGNs (Seyfert, blazars, QSO) to the determination of the origin of the hard X-/gamma-ray cosmic background, from the study of antimatter to that of the dark matter. In order to achieve the needed performance, a detector with mm spatial resolution and very high peak efficiency is needed. The instrumental characteristics of this device could eventually allow to detect polarization in a number of objects including pulsars, GRBs and bright AGNs. In this work we focus on the characteristics of the focal plane detector, based on CZT or CdTe semiconductor sensors arranged in multiple planes and viewed by a side detector to enhance gamma-ray absorption in the Compton regime. We report the preliminary results of an optimization study based on simulations and laboratory tests, as prosecution of the former design studies of the GRI mission which constitute the heritage of this activity.

  15. Detector motion method to increase spatial resolution in photon-counting detectors

    NASA Astrophysics Data System (ADS)

    Lee, Daehee; Park, Kyeongjin; Lim, Kyung Taek; Cho, Gyuseong

    2017-03-01

    Medical imaging requires high spatial resolution of an image to identify fine lesions. Photon-counting detectors in medical imaging have recently been rapidly replacing energy-integrating detectors due to the former`s high spatial resolution, high efficiency and low noise. Spatial resolution in a photon counting image is determined by the pixel size. Therefore, the smaller the pixel size, the higher the spatial resolution that can be obtained in an image. However, detector redesigning is required to reduce pixel size, and an expensive fine process is required to integrate a signal processing unit with reduced pixel size. Furthermore, as the pixel size decreases, charge sharing severely deteriorates spatial resolution. To increase spatial resolution, we propose a detector motion method using a large pixel detector that is less affected by charge sharing. To verify the proposed method, we utilized a UNO-XRI photon-counting detector (1-mm CdTe, Timepix chip) at the maximum X-ray tube voltage of 80 kVp. A similar spatial resolution of a 55- μm-pixel image was achieved by application of the proposed method to a 110- μm-pixel detector with a higher signal-to-noise ratio. The proposed method could be a way to increase spatial resolution without a pixel redesign when pixels severely suffer from charge sharing as pixel size is reduced.

  16. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    NASA Astrophysics Data System (ADS)

    Ocampo Giraldo, L.; Bolotnikov, A. E.; Camarda, G. S.; De Geronimo, G.; Fried, J.; Gul, R.; Hodges, D.; Hossain, A.; Ünlü, K.; Vernon, E.; Yang, G.; James, R. B.

    2018-03-01

    We evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enabling use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 μm (650 nm) to scan over a selected 3 × 3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.

  17. Elemental mapping in a contemporary miniature by full-field X-ray fluorescence imaging with gaseous detector vs. scanning X-ray fluorescence imaging with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Cirino, S.; Carvalho, M. L.; Manso, M.; Pessanha, S.; Azevedo, C. D. R.; Carramate, L. F. N. D.; Santos, J. P.; Guerra, M.; Veloso, J. F. C. A.

    2017-03-01

    Energy dispersive X-ray imaging can be used in several research fields and industrial applications. Elemental mapping through energy dispersive X-ray imaging technique has become a promising method to obtain positional distribution of specific elements in a non-destructive way. To obtain the elemental distribution of a sample it is necessary to use instruments capable of providing a precise positioning together with a good energy resolution. Polycapillary beams together with silicon drift chamber detectors are used in several commercial systems and are considered state-of-the-art spectrometers, however they are usually very costly. A new concept of large energy dispersive X-ray imaging systems based on gaseous radiation detectors emerged in the last years enabling a promising 2D elemental detection at a very reduced price. The main goal of this work is to analyze a contemporary Indian miniature with both X-ray fluorescence imaging systems, the one based on a gaseous detector 2D-THCOBRA and the state-of-the-art spectrometer M4 Tornado, from Bruker. The performance of both systems is compared and evaluated in the context of the sample's analysis.

  18. The Full-Scale Prototype for the Fluorescence Detector Array of Single-Pixel Telescopes

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Malacari, M.; Bellido, J. A.; Farmer, J.; Galimova, A.; Horvath, P.; Hrabovsky, M.; Mandat, D.; Matalon, A.; Matthews, J. N.; Merolle, M.; Ni, X.; Nozka, L.; Palatka, M.; Pech, M.; Privitera, P.; Schovanek, P.; Thomas, S. B.; Travnicek, P.

    The Fluorescence detector Array of Single-pixel Telescopes (FAST) is a design concept for the next generation of ultrahigh-energy cosmic ray (UHECR) observatories, addressing the requirements for a large-area, low-cost detector suitable for measuring the properties of the highest energy cosmic rays. In the FAST design, a large field of view is covered by a few pixels at the focal plane of a mirror or Fresnel lens. Motivated by the successful detection of UHECRs using a prototype comprised of a single 200 mm photomultiplier-tube and a 1 m2 Fresnel lens system, we have developed a new "full-scale" prototype consisting of four 200 mm photomultiplier-tubes at the focus of a segmented mirror of 1.6 m in diameter. We report on the status of the full-scale prototype, including test measurements made during first light operation at the Telescope Array site in central Utah, U.S.A.

  19. Segmented-spectrum detection mechanism for medical x-ray in CdTe

    NASA Astrophysics Data System (ADS)

    Shi, Zaifeng; Meng, Qingzhen; Cao, Qingjie; Yao, Suying

    2016-01-01

    This paper presents a segmented X-ray spectrum detection method based on a layered X-ray detector in Cadmium Telluride (CdTe) substrate. We describe the three-dimensional structure of proposed detector pixel and investigate the matched spectrum-resolving method. Polychromatic X-ray beam enter the CdTe substrate edge on and will be absorbed completely in different thickness varying with photon energy. Discrete potential wells are formed under external controlling voltage to collect the photo-electrons generated in different layers, and segmented X-ray spectrum can be deduced from the quantity of photo-electrons. In this work, we verify the feasibility of the segmented-spectrum detection mechanism by simulating the absorption of monochromatic X-ray in a CdTe substrate. Experiments in simulation show that the number of photo-electrons grow exponentially with the increase of incident thickness, and photons with different energy will be absorbed in various thickness. The charges generated in different layers are collected into adjacent potential wells, and collection efficiency is estimated to be about 87% for different incident intensity under the 40000V/cm electric field. Errors caused by charge sharing between neighboring layers are also analyzed, and it can be considered negligible by setting appropriate size of electrodes.

  20. Vision 20/20: Single photon counting x-ray detectors in medical imaging

    PubMed Central

    Taguchi, Katsuyuki; Iwanczyk, Jan S.

    2013-01-01

    Photon counting detectors (PCDs) with energy discrimination capabilities have been developed for medical x-ray computed tomography (CT) and x-ray (XR) imaging. Using detection mechanisms that are completely different from the current energy integrating detectors and measuring the material information of the object to be imaged, these PCDs have the potential not only to improve the current CT and XR images, such as dose reduction, but also to open revolutionary novel applications such as molecular CT and XR imaging. The performance of PCDs is not flawless, however, and it seems extremely challenging to develop PCDs with close to ideal characteristics. In this paper, the authors offer our vision for the future of PCD-CT and PCD-XR with the review of the current status and the prediction of (1) detector technologies, (2) imaging technologies, (3) system technologies, and (4) potential clinical benefits with PCDs. PMID:24089889

  1. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    PubMed

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    The goal of this study is to evaluate a new method based on a coded aperture mask combined with a digital x-ray imaging detector for measurements of the focal spot sizes of diagnostic x-ray tubes. Common techniques for focal spot size measurements employ a pinhole camera, a slit camera, or a star resolution pattern. The coded aperture mask is a radiation collimator consisting of a large number of apertures disposed on a predetermined grid in an array, through which the radiation source is imaged onto a digital x-ray detector. The method of the coded mask camera allows one to obtain a one-shot accurate and direct measurement of the two dimensions of the focal spot (like that for a pinhole camera) but at a low tube loading (like that for a slit camera). A large number of small apertures in the coded mask operate as a "multipinhole" with greater efficiency than a single pinhole, but keeping the resolution of a single pinhole. X-ray images result from the multiplexed output on the detector image plane of such a multiple aperture array, and the image of the source is digitally reconstructed with a deconvolution algorithm. Images of the focal spot of a laboratory x-ray tube (W anode: 35-80 kVp; focal spot size of 0.04 mm) were acquired at different geometrical magnifications with two different types of digital detector (a photon counting hybrid silicon pixel detector with 0.055 mm pitch and a flat panel CMOS digital detector with 0.05 mm pitch) using a high resolution coded mask (type no-two-holes-touching modified uniformly redundant array) with 480 0.07 mm apertures, designed for imaging at energies below 35 keV. Measurements with a slit camera were performed for comparison. A test with a pinhole camera and with the coded mask on a computed radiography mammography unit with 0.3 mm focal spot was also carried out. The full width at half maximum focal spot sizes were obtained from the line profiles of the decoded images, showing a focal spot of 0.120 mm x 0.105 mm at 35

  2. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  3. Multi-parameter Nonlinear Gain Correction of X-ray Transition Edge Sensors for the X-ray Integral Field Unit

    NASA Astrophysics Data System (ADS)

    Cucchetti, E.; Eckart, M. E.; Peille, P.; Porter, F. S.; Pajot, F.; Pointecouteau, E.

    2018-04-01

    With its array of 3840 Transition Edge Sensors (TESs), the Athena X-ray Integral Field Unit (X-IFU) will provide spatially resolved high-resolution spectroscopy (2.5 eV up to 7 keV) from 0.2 to 12 keV, with an absolute energy scale accuracy of 0.4 eV. Slight changes in the TES operating environment can cause significant variations in its energy response function, which may result in systematic errors in the absolute energy scale. We plan to monitor such changes at pixel level via onboard X-ray calibration sources and correct the energy scale accordingly using a linear or quadratic interpolation of gain curves obtained during ground calibration. However, this may not be sufficient to meet the 0.4 eV accuracy required for the X-IFU. In this contribution, we introduce a new two-parameter gain correction technique, based on both the pulse-height estimate of a fiducial line and the baseline value of the pixels. Using gain functions that simulate ground calibration data, we show that this technique can accurately correct deviations in detector gain due to changes in TES operating conditions such as heat sink temperature, bias voltage, thermal radiation loading and linear amplifier gain. We also address potential optimisations of the onboard calibration source and compare the performance of this new technique with those previously used.

  4. High-contrast X-ray micro-tomography of low attenuation samples using large area hybrid semiconductor pixel detector array of 10 × 5 Timepix chips

    NASA Astrophysics Data System (ADS)

    Karch, J.; Krejci, F.; Bartl, B.; Dudak, J.; Kuba, J.; Kvacek, J.; Zemlicka, J.

    2016-01-01

    State-of-the-art hybrid pixel semiconductor detectors provide excellent imaging properties such as unlimited dynamic range, high spatial resolution, high frame rate and energy sensitivity. Nevertheless, a limitation in the use of these devices for imaging has been the small sensitive area of a few square centimetres. In the field of microtomography we make use of a large area pixel detector assembled from 50 Timepix edgeless chips providing fully sensitive area of 14.3 × 7.15 cm2. We have successfully demonstrated that the enlargement of the sensitive area enables high-quality tomographic measurements of whole objects with high geometrical magnification without any significant degradation in resulting reconstructions related to the chip tilling and edgeless sensor technology properties. The technique of micro-tomography with the newly developed large area detector is applied for samples formed by low attenuation, low contrast materials such a seed from Phacelia tanacetifolia, a charcoalified wood sample and a beeswax seal sample.

  5. DynAMITe: a prototype large area CMOS APS for breast cancer diagnosis using x-ray diffraction measurements

    NASA Astrophysics Data System (ADS)

    Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.

    2012-03-01

    X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.

  6. Theoretical consideration of the energy resolution in planar HPGe detectors for low energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samedov, Victor V.

    In this work, theoretical consideration of the processes in planar High Purity Ge (HPGe) detectors for low energy X-rays using the random stochastic processes formalism was carried out. Using the random stochastic processes formalism, the generating function of the processes of X-rays registration in a planar HPGe detector was derived. The power serial expansions of the detector amplitude and the variance in terms of the inverse bias voltage were derived. The coefficients of these expansions allow determining the Fano factor, electron mobility lifetime product, nonuniformity of the trap density, and other characteristics of the semiconductor material. (authors)

  7. Characterization of a 2-mm thick, 16x16 Cadmium-Zinc-Telluride Pixel Array

    NASA Technical Reports Server (NTRS)

    Gaskin, Jessica; Richardson, Georgia; Mitchell, Shannon; Ramsey, Brian; Seller, Paul; Sharma, Dharma

    2003-01-01

    The detector under study is a 2-mm-thick, 16x16 Cadmium-Zinc-Telluride pixel array with a pixel pitch of 300 microns and inter-pixel gap of 50 microns. This detector is a precursor to that which will be used at the focal plane of the High Energy Replicated Optics (HERO) telescope currently being developed at Marshall Space Flight Center. With a telescope focal length of 6 meters, the detector needs to have a spatial resolution of around 200 microns in order to take full advantage of the HERO angular resolution. We discuss to what degree charge sharing will degrade energy resolution but will improve our spatial resolution through position interpolation. In addition, we discuss electric field modeling for this specific detector geometry and the role this mapping will play in terms of charge sharing and charge loss in the detector.

  8. High resolution energy-sensitive digital X-ray

    DOEpatents

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  9. Multi-energy x-ray detectors to improve air-cargo security

    NASA Astrophysics Data System (ADS)

    Paulus, Caroline; Moulin, Vincent; Perion, Didier; Radisson, Patrick; Verger, Loïck

    2017-05-01

    X-ray based systems have been used for decades to screen luggage or cargo to detect illicit material. The advent of energy-sensitive photon-counting x-ray detectors mainly based on Cd(Zn)Te semi-conductor technology enables to improve discrimination between materials compared to single or dual energy technology. The presented work is part of the EUROSKY European project to develop a Single European Secure Air-Cargo Space. "Cargo" context implies the presence of relatively heavy objects and with potentially high atomic number. All the study is conducted on simulations with three different detectors: a typical dual energy sandwich detector, a realistic model of the commercial ME100 multi-energy detector marketed by MULTIX, and a ME100 "Cargo": a not yet existing modified multi-energy version of the ME100 more suited to air freight cargo inspection. Firstly, a comparison on simulated measurements shows the performances improvement of the new multi-energy detectors compared to the current dual-energy one. The relative performances are evaluated according to different criteria of separability or contrast-to-noise ratio and the impact of different parameters is studied (influence of channel number, type of materials and tube voltage). Secondly, performances of multi-energy detectors for overlaps processing in a dual-view system is accessed: the case of orthogonal projections has been studied, one giving dimensional values, the other one providing spectral data to assess effective atomic number. A method of overlap correction has been proposed and extended to multi-layer objects case. Therefore, Calibration and processing based on bi-material decomposition have been adapted for this purpose.

  10. Monte-Carlo background simulations of present and future detectors in x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Tenzer, C.; Kendziorra, E.; Santangelo, A.

    2008-07-01

    Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.

  11. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE PAGES

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-12-18

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  12. Study of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors with varying pixel sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.

    Here, we evaluated the sub-pixel position resolution achievable in large-volume CdZnTe pixelated detectors with conventional pixel patterns and for several different pixel sizes: 2.8 mm, 1.72 mm, 1.4 mm and 0.8 mm. Achieving position resolution below the physical dimensions of pixels (sub-pixel resolution) is a practical path for making high-granularity position-sensitive detectors, <100 μμm, using a limited number of pixels dictated by the mechanical constraints and multi-channel readout electronics. High position sensitivity is important for improving the imaging capability of CZT gamma cameras. It also allows for making more accurate corrections of response non-uniformities caused by crystal defects, thus enablingmore » use of standard-grade (unselected) and less expensive CZT crystals for producing large-volume position-sensitive CZT detectors feasible for many practical applications. We analyzed the digitized charge signals from a representative 9 pixels and the cathode, generated using a pulsed-laser light beam focused down to 10 m (650 nm) to scan over a selected 3×3 pixel area. We applied our digital pulse processing technique to the time-correlated signals captured from adjacent pixels to achieve and evaluate the capability for sub-pixel position resolution. As an example, we also demonstrated an application of 3D corrections to improve the energy resolution and positional information of the events for the tested detectors.« less

  13. Quantitative X-ray mapping, scatter diagrams and the generation of correction maps to obtain more information about your material

    NASA Astrophysics Data System (ADS)

    Wuhrer, R.; Moran, K.

    2014-03-01

    Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.

  14. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  15. Curved position-sensitive detector for X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Izumi, T.

    1980-11-01

    A new curved position-sensitive proportional detector has been constructed for X-ray crystallography. A very hard steel wire 0.2 mm in diameter was used as a single anode wire. It was bent to a radius of 6.5 cm and was suspended elastically in a wide 160° 2θ angular aperture. An amplifier and ADC-per-cathode strip system was made in order to encode the position. The spatial resolution is better than 0.37 mm (fwhm) along the curved anode wire, and this value corresponds to an angular resolution of 0.28° in 2θ. It is shown that a thick hard anode wire is quite suitable for use as a curved position-sensitive detector.

  16. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications.

    PubMed

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2013-02-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μ m resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μ m pitch pixels (250 μ m anode pixels with 100 μ m gap) and coplanar cathode. Charge sharing among the pixels of a 350 μ m pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μ m pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μ m pitch detector biased at -1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications.

  17. 3-D Spatial Resolution of 350 μm Pitch Pixelated CdZnTe Detectors for Imaging Applications

    PubMed Central

    Yin, Yongzhi; Chen, Ximeng; Wu, Heyu; Komarov, Sergey; Garson, Alfred; Li, Qiang; Guo, Qingzhen; Krawczynski, Henric; Meng, Ling-Jian; Tai, Yuan-Chuan

    2016-01-01

    We are currently investigating the feasibility of using highly pixelated Cadmium Zinc Telluride (CdZnTe) detectors for sub-500 μm resolution PET imaging applications. A 20 mm × 20 mm × 5 mm CdZnTe substrate was fabricated with 350 μm pitch pixels (250 μm anode pixels with 100 μm gap) and coplanar cathode. Charge sharing among the pixels of a 350 μm pitch detector was studied using collimated 122 keV and 511 keV gamma ray sources. For a 350 μm pitch CdZnTe detector, scatter plots of the charge signal of two neighboring pixels clearly show more charge sharing when the collimated beam hits the gap between adjacent pixels. Using collimated Co-57 and Ge-68 sources, we measured the count profiles and estimated the intrinsic spatial resolution of 350 μm pitch detector biased at −1000 V. Depth of interaction was analyzed based on two methods, i.e., cathode/anode ratio and electron drift time, in both 122 keV and 511 keV measurements. For single-pixel photopeak events, a linear correlation between cathode/anode ratio and electron drift time was shown, which would be useful for estimating the DOI information and preserving image resolution in CdZnTe PET imaging applications. PMID:28250476

  18. X-ray imaging performance of scintillator-filled silicon pore arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depthsmore » of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore

  19. Development of a TES-Based Anti-Coincidence Detector for Future X-Ray Observations

    NASA Technical Reports Server (NTRS)

    Bailey, Catherine N.; Adams, J. S.; Bandler, S. R.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Sadleir, J. E.; hide

    2012-01-01

    Microcalorimeters onboard future x-ray observatories require an anticoincidence detector to remove environmental backgrounds. In order to most effectively integrate this anti-coincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.

  20. Development of a TES-Based Anti-Coincidence Detector for Future X-ray Observatories

    NASA Technical Reports Server (NTRS)

    Bailey, Catherine

    2011-01-01

    Microcalorimeters onboard future x-ray observatories require an anti-coincidence detector to remove environmental backgrounds. In order to most effectively integrate this anticoincidence detector with the main microcalorimeter array, both instruments should use similar read-out technology. The detectors used in the Cryogenic Dark Matter Search (CDMS) use a phonon measurement technique that is well suited for an anti-coincidence detector with a microcalorimeter array using SQUID readout. This technique works by using a transition-edge sensor (TES) connected to superconducting collection fins to measure the athermal phonon signal produced when an event occurs in the substrate crystal. Energy from the event propagates through the crystal to the superconducting collection fins, creating quasiparticles, which are then trapped as they enter the TES where they produce a signal. We are currently developing a prototype anti-coincidence detector for future x-ray missions and have recently fabricated test devices with Mo/Au TESs and Al collection fins. We will present results from the first tests of these devices which indicate a proof of concept that quasiparticle trapping is occurring in these materials.

  1. Wafer-scale pixelated detector system

    DOEpatents

    Fahim, Farah; Deptuch, Grzegorz; Zimmerman, Tom

    2017-10-17

    A large area, gapless, detection system comprises at least one sensor; an interposer operably connected to the at least one sensor; and at least one application specific integrated circuit operably connected to the sensor via the interposer wherein the detection system provides high dynamic range while maintaining small pixel area and low power dissipation. Thereby the invention provides methods and systems for a wafer-scale gapless and seamless detector systems with small pixels, which have both high dynamic range and low power dissipation.

  2. Calorimetric low temperature detectors for high resolution x-ray spectroscopy on stored highly stripped heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kluge, H.-J.; Liebisch, U.; Mc Cammon, D.; Meier, H. J.; Sebastián, O.; Stahle, C. K.; Stöhlker, T.; Weber, M.

    2000-06-01

    The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of QED in very strong Coulomb fields, not accessible otherwise, and has also the potential to deduce nuclear charge radii. A brief overview on the present status of such experiments, performed at the storage ring ESR at GSI Darmstadt, is given. For the investigation of the Lyman-α transitions in Au78+- or U91+- ions with improved accuracy a high resolving calorimetric low temperature detector for hard x-rays (E⩽100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator which fits to the geometry of the ESR target. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector an energy resolution of ΔEFWHM=75 eV is obtained for 60 keV x-rays.

  3. Toward Directly-Deposited Optical Blocking Filters for High-performance, Back-illuminated Imaging X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Bautz, Mark W.; Kissel, S. E.; Ryu, K.; Suntharalingam, V.

    2014-01-01

    Silicon X-ray detectors require optical blocking filters to prevent out-of-band (UV, visible and near-IR) radiation from corrupting the X-ray signal. Traditionally, blocking filters have been deposited on thin, free-standing membranes suspended over the detector. Free-standing filters are fragile, however, and in past instruments have required heavy and complex vacuum housings to protect them from acoustic loads during ground operations and launch. A directly-deposited blocking filter greatly simplifies the instrument and in principle permits better soft X-ray detection efficiency than a traditional free-standing filter. Directly-deposited filters have flown in previous generation instruments (e.g. the XMM/Newton Reflection Grating Spectrometer) but none has yet been demonstrated on a modern, high-performance back-illuminated X-ray CCD. We report here on the status of our NASA-funded Strategic Astrophysics Technology program to demonstrate such filters.

  4. SU-E-I-25: Performance Evaluation of a Proposed CMOS-Based X-Ray Detector Using Linear Cascade Model Analysis.

    PubMed

    Jain, A; Bednarek, D; Rudin, S

    2012-06-01

    The need for high-resolution, dynamic x-ray imaging capability for neurovascular applications has put an ever increasing demand on x-ray detector technology. Present state-of-the-art detectors such as flat panels have limited resolution and noise performance. A linear cascade model analysis was used to estimate the theoretical performance for a proposed CMOS-based detector. The proposed CMOS-based detector was assumed to have a 300-micron thick HL type CsI phosphor, 35-micron pixels, a variable gain light image intensifier (LU), and 400 electron readout noise. The proposed detector has a CMOS sensor coupled to an LII which views the output of the CsI phosphor. For the analysis the whole imaging chain was divided into individual stages characterized by one of the basic processes (stochastic/deterministic blurring, binomial selection, quantum gain, additive noise). Standard linear cascade modeling was used for the propagation of signal and noise through the stages and an RQA5 spectrum was assumed. The gain, blurring or transmission of different stages was either measured or taken from manufacturer's specifications. The theoretically calculated MTF and DQE for the proposed detector were compared with a high-resolution, high-sensitive Micro-Angio Fluoroscope (MAF), predecessor of the proposed detector. Signal and noise for each of the 19 stages in the complete imaging chain were calculated and showed improved performance. For example, at 5 cycles/mm the MTF and DQE were 0.08 and 0.28, respectively, for the CMOS detector compared to 0.05 and 0.07 for the MAF detector. The proposed detector will have improved MTF and DQE and slimmer physical dimension due to the elimination of the large fiber-optic taper used in the MAF. Once operational, the proposed CMOS detector will serve as a further improvement over standard flat panel detectors compared to the MAF which is already receiving a very positive reception by neuro-vascular interventionalists. (Support:NIH-Grant R01EB

  5. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  6. Design of dual energy x-ray detector for conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Dai, Yue; Miao, Changyun; Rong, Feng

    2009-07-01

    A dual energy X-ray detector for conveyor belt with steel wire ropes is researched in the paper. Conveyor belt with steel wire ropes is one of primary transfer equipments in modern production. The traditional test methods like electromagnetic induction principle could not display inner image of steel wire ropes directly. So X-ray detection technology has used to detect the conveyor belt. However the image was not so clear by the interference of the rubber belt. Therefore, the dualenergy X-ray detection technology with subtraction method is developed to numerically remove the rubber belt from radiograph, thus improving the definition of the ropes image. The purpose of this research is to design a dual energy Xray detector that could make the operator easier to found the faulty of the belt. This detection system is composed of Xray source, detector controlled by FPGA chip, PC for running image processing system and so on. With the result of the simulating, this design really improved the capability of the staff to test the conveyor belt.

  7. Resolving hot spot microstructure using x-ray penumbral imaging (invited)

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Hilsabeck, T.; Field, J.; Masters, N.; Reed, C.; Pardini, T.; Rygg, J. R.; Alexander, N.; Benedetti, L. R.; Döppner, T.; Forsman, A.; Izumi, N.; LePape, S.; Ma, T.; MacPhee, A. G.; Nagel, S.; Patel, P.; Spears, B.; Landen, O. L.

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  8. Resolving hot spot microstructure using x-ray penumbral imaging (invited).

    PubMed

    Bachmann, B; Hilsabeck, T; Field, J; Masters, N; Reed, C; Pardini, T; Rygg, J R; Alexander, N; Benedetti, L R; Döppner, T; Forsman, A; Izumi, N; LePape, S; Ma, T; MacPhee, A G; Nagel, S; Patel, P; Spears, B; Landen, O L

    2016-11-01

    We have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstrate the most relevant influences on the reconstruction of x-ray penumbral images, as well as mitigation strategies of image degrading effects like over-exposed pixels, artifacts, and photon limited source emission. We describe experimental results showing the advantages of x-ray penumbral imaging over conventional Fraunhofer and photon limited pinhole imaging and showcase how internal hot spot microstructures can be resolved.

  9. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOEpatents

    Smith, Peter D [Santa Fe, NM; Claytor, Thomas N [White Rock, NM; Berry, Phillip C [Albuquerque, NM; Hills, Charles R [Los Alamos, NM

    2010-10-12

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  10. IXPE - The Imaging X-Ray Polarimetry Explorer

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) is a Small Explorer Mission that will be proposed in response to NASA's upcoming Announcement of Opportunity. IXPE will transform our understanding of the most energetic and exotic astrophysical objects, especially neutron stars and black holes, by measuring the linear polarization of astronomical objects as a function of energy, time and, where relevant, position. As the first dedicated polarimetry observatory IXPE will add a new dimension to the study of cosmic sources, enlarging the observational phase space and providing answers to fundamental questions. IXPE will feature x-ray optics fabricated at NASA/MSFC and gas pixel focal plane detectors provided by team members in Italy (INAF and INFN). This presentation will give an overview of the proposed IXPE mission, detailing the payload configuration, the expected sensitivity, and a typical observing program.

  11. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  12. Temporal Gain Correction for X-Ray Calorimeter Spectrometers

    NASA Technical Reports Server (NTRS)

    Porter, F. S.; Chiao, M. P.; Eckart, M. E.; Fujimoto, R.; Ishisaki, Y.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M. A.; McCammon, D.; Mitsuda, K.

    2016-01-01

    Calorimetric X-ray detectors are very sensitive to their environment. The boundary conditions can have a profound effect on the gain including heat sink temperature, the local radiation temperature, bias, and the temperature of the readout electronics. Any variation in the boundary conditions can cause temporal variations in the gain of the detector and compromise both the energy scale and the resolving power of the spectrometer. Most production X-ray calorimeter spectrometers, both on the ground and in space, have some means of tracking the gain as a function of time, often using a calibration spectral line. For small gain changes, a linear stretch correction is often sufficient. However, the detectors are intrinsically non-linear and often the event analysis, i.e., shaping, optimal filters etc., add additional non-linearity. Thus for large gain variations or when the best possible precision is required, a linear stretch correction is not sufficient. Here, we discuss a new correction technique based on non-linear interpolation of the energy-scale functions. Using Astro-HSXS calibration data, we demonstrate that the correction can recover the X-ray energy to better than 1 part in 104 over the entire spectral band to above 12 keV even for large-scale gain variations. This method will be used to correct any temporal drift of the on-orbit per-pixel gain using on-board calibration sources for the SXS instrument on the Astro-H observatory.

  13. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Gubarev, M.; Schwartz, R. A.; Steslicki, M.; Ryan, D.; Turin, P.; Warmuth, A.; White, S. M.; Veronig, A.; Vilmer, N.; Dennis, B. R.

    2016-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a recently proposed Small Explorer (SMEX) mission that will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of two individual x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This SMEX mission is made possible by past experience with similar instruments on two sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI will image the Sun with a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 to 100 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  14. 14C autoradiography with an energy-sensitive silicon pixel detector.

    PubMed

    Esposito, M; Mettivier, G; Russo, P

    2011-04-07

    The first performance tests are presented of a carbon-14 ((14)C) beta-particle digital autoradiography system with an energy-sensitive hybrid silicon pixel detector based on the Timepix readout circuit. Timepix was developed by the Medipix2 Collaboration and it is similar to the photon-counting Medipix2 circuit, except for an added time-based synchronization logic which allows derivation of energy information from the time-over-threshold signal. This feature permits direct energy measurements in each pixel of the detector array. Timepix is bump-bonded to a 300 µm thick silicon detector with 256 × 256 pixels of 55 µm pitch. Since an energetic beta-particle could release its kinetic energy in more than one detector pixel as it slows down in the semiconductor detector, an off-line image analysis procedure was adopted in which the single-particle cluster of hit pixels is recognized; its total energy is calculated and the position of interaction on the detector surface is attributed to the centre of the charge cluster. Measurements reported are detector sensitivity, (4.11 ± 0.03) × 10(-3) cps mm(-2) kBq(-1) g, background level, (3.59 ± 0.01) × 10(-5) cps mm(-2), and minimum detectable activity, 0.0077 Bq. The spatial resolution is 76.9 µm full-width at half-maximum. These figures are compared with several digital imaging detectors for (14)C beta-particle digital autoradiography.

  15. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; O'Dell, S. L.; Ramsey, B. D.; Weisskopf, M. C.

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wave vectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  16. Mathematical Design Optimization of Wide-Field X-ray Telescopes: Mirror Nodal Positions and Detector Tilts

    NASA Technical Reports Server (NTRS)

    Elsner, Ronald; O'Dell, Stephen; Ramsey, Brian; Weisskopf, Martin

    2011-01-01

    We describe a mathematical formalism for determining the mirror shell nodal positions and detector tilts that optimize the spatial resolution averaged over a field-of-view for a nested x-ray telescope, assuming known mirror segment surface prescriptions and known detector focal surface. The results are expressed in terms of ensemble averages over variable combinations of the ray positions and wavevectors in the flat focal plane intersecting the optical axis at the nominal on-axis focus, which can be determined by Monte-Carlo ray traces of the individual mirror shells. This work is part of our continuing efforts to provide analytical tools to aid in the design process for wide-field survey x-ray astronomy missions.

  17. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  18. The Focusing Optics X-ray Solar Imager (FOXSI) SMEX Mission

    NASA Astrophysics Data System (ADS)

    Christe, S.; Shih, A. Y.; Krucker, S.; Glesener, L.; Saint-Hilaire, P.; Caspi, A.; Allred, J. C.; Battaglia, M.; Chen, B.; Drake, J. F.; Gary, D. E.; Goetz, K.; Gburek, S.; Grefenstette, B.; Hannah, I. G.; Holman, G.; Hudson, H. S.; Inglis, A. R.; Ireland, J.; Ishikawa, S. N.; Klimchuk, J. A.; Kontar, E.; Kowalski, A. F.; Massone, A. M.; Piana, M.; Ramsey, B.; Schwartz, R.; Steslicki, M.; Turin, P.; Ryan, D.; Warmuth, A.; Veronig, A.; Vilmer, N.; White, S. M.; Woods, T. N.

    2017-12-01

    We present FOXSI (Focusing Optics X-ray Solar Imager), a Small Explorer (SMEX) Heliophysics mission that is currently undergoing a Phase A concept study. FOXSI will provide a revolutionary new perspective on energy release and particle acceleration on the Sun. FOXSI is a direct imaging X-ray spectrometer with higher dynamic range and better than 10x the sensitivity of previous instruments. Flown on a 3-axis-stabilized spacecraft in low-Earth orbit, FOXSI uses high-angular-resolution grazing-incidence focusing optics combined with state-of-the-art pixelated solid-state detectors to provide direct imaging of solar hard X-rays for the first time. FOXSI is composed of a pair of x-ray telescopes with a 14-meter focal length enabled by a deployable boom. Making use of a filter-wheel and high-rate-capable solid-state detectors, FOXSI will be able to observe the largest flares without saturation while still maintaining the sensitivity to detect x-ray emission from weak flares, escaping electrons, and hot active regions. This mission concept is made possible by past experience with similar instruments on two FOXSI sounding rocket flights, in 2012 and 2014, and on the HEROES balloon flight in 2013. FOXSI's hard X-ray imager has a field of view of 9 arcminutes and an angular resolution of better than 8 arcsec; it will cover the energy range from 3 up to 50-70 keV with a spectral resolution of better than 1 keV; and it will have sub-second temporal resolution.

  19. Status and Plan for The Upgrade of The CMS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Lu, Rong-Shyang; CMS Collaboration

    2016-04-01

    The silicon pixel detector is the innermost component of the CMS tracking system and plays a crucial role in the all-silicon CMS tracker. While the current pixel tracker is designed for and performing well at an instantaneous luminosity of up to 1 ×1034cm-2s-1, it can no longer be operated efficiently at significantly higher values. Based on the strong performance of the LHC accelerator, it is anticipated that peak luminosities of two times the design luminosity are likely to be reached before 2018 and perhaps significantly exceeded in the running period until 2022, referred to as LHC Run 3. Therefore, an upgraded pixel detector, referred to as the phase 1 upgrade, is planned for the year-end technical stop in 2016. With a new pixel readout chip (ROC), an additional fourth layer, two additional endcap disks, and a significantly reduced material budget the upgraded pixel detector will be able to sustain the efficiency of the pixel tracker at the increased requirements imposed by high luminosities and pile-up. The main new features of the upgraded pixel detector will be an ultra-light mechanical design, a digital readout chip with higher rate capability and a new cooling system. These and other design improvements, along with results of Monte Carlo simulation studies for the expected performance of the new pixel detector, will be discussed and compared to those of the current CMS detector.

  20. High density pixel array

    NASA Technical Reports Server (NTRS)

    McFall, James Earl (Inventor); Wiener-Avnear, Eliezer (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  1. Performance of room temperature mercuric iodide /HgI2/ detectors in the ultralow-energy X-ray region

    NASA Technical Reports Server (NTRS)

    Dabrowski, A. J.; Barton, J. B.; Huth, G. C.; Whited, R.; Ortale, C.; Economou, T. E.; Turkevich, A. L.; Iwanczyk, J. S.

    1981-01-01

    Experiments have been done to study the performance of mercuric iodide (HgI2) detectors in the ultralow-energy X-ray region. Energy resolution values of 245 eV (FWHM) for the Mg K-alpha X-ray line at 1.25 keV and 225 eV (FWHM) for the electronic noise linewidth have been obtained for an HgI2 detector with painted carbon contacts using a pulsed-light feedback preamplifier; the whole system was operated at room temperature. The resolution values in the ultralow-energy region are still limited by electronic noise of the system. In an attempt to minimize X-ray attenuation in the front contact, detectors were prepared with thin evaporated Pd contacts. These detectors show a pronounced low-energy tailing of the photopeak below a few keV, in contrast to the spectra obtained by detectors with carbon contact. An attempt has been made to explain the tailing effect starting with models wich have been proposed to describe similar effects in Ge detectors.

  2. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energymore » resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.« less

  3. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zhang, Yang; Xu, Qiang; Wei, Haotong; Fang, Yanjun; Wang, Qi; Deng, Yehao; Li, Tao; Gruverman, Alexei; Cao, Lei; Huang, Jinsong

    2017-04-01

    The monolithic integration of new optoelectronic materials with well-established inexpensive silicon circuitry is leading to new applications, functionality and simple readouts. Here, we show that single crystals of hybrid perovskites can be integrated onto virtually any substrates, including silicon wafers, through facile, low-temperature, solution-processed molecular bonding. The brominated (3-aminopropyl)triethoxysilane molecule binds the native oxide of silicon and participates in the perovskite crystal with its ammonium bromide group, yielding a solid mechanical and electrical connection. The dipole of the bonding molecule reduces device noise while retaining signal intensity. The reduction of dark current enables the detectors to be operated at increased bias, resulting in a sensitivity of 2.1 × 104 µC Gyair-1 cm-2 under 8 keV X-ray radiation, which is over a thousand times higher than the sensitivity of amorphous selenium detectors. X-ray imaging with both perovskite pixel detectors and linear array detectors reduces the total dose by 15-120-fold compared with state-of-the-art X-ray imaging systems.

  4. Evaluation of a hybrid pixel detector for electron microscopy.

    PubMed

    Faruqi, A R; Cattermole, D M; Henderson, R; Mikulec, B; Raeburn, C

    2003-04-01

    We describe the application of a silicon hybrid pixel detector, containing 64 by 64 pixels, each 170 microm(2), in electron microscopy. The device offers improved resolution compared to CCDs along with faster and noiseless readout. Evaluation of the detector, carried out on a 120 kV electron microscope, demonstrates the potential of the device.

  5. Investigating the Inverse Square Law with the Timepix Hybrid Silicon Pixel Detector: A CERN [at] School Demonstration Experiment

    ERIC Educational Resources Information Center

    Whyntie, T.; Parker, B.

    2013-01-01

    The Timepix hybrid silicon pixel detector has been used to investigate the inverse square law of radiation from a point source as a demonstration of the CERN [at] school detector kit capabilities. The experiment described uses a Timepix detector to detect the gamma rays emitted by an [superscript 241]Am radioactive source at a number of different…

  6. Four-arm variable-resolution x-ray detector for CT target imaging

    NASA Astrophysics Data System (ADS)

    DiBianca, Frank A.; Gulabani, Daya; Jordan, Lawrence M.; Vangala, Sravanthi; Rendon, David; Laughter, Joseph S.; Melnyk, Roman; Gaber, M. W.; Keyes, Gary S.

    2005-04-01

    The basic VRX technique boosts spatial resolution of a CT scanner in the scan plane by two or more orders of magnitude by reducing the angle of incidence of the x-ray beam with respect to the detector surface. A four-arm Variable-Resolution X-ray (VRX) detector has been developed for CT scanning. The detector allows for "target imaging" in which an area of interest is scanned at higher resolution than the remainder of the subject, yielding even higher resolution for the focal area than that obtained from the basic VRX technique. The new VRX-CT detector comprises four quasi-identical arms each containing six 24-cell modules (576 cells total). The modules are made of individual custom CdWO4 scintillators optically-coupled to custom photodiode arrays. The maximum scan field is 40 cm for a magnification of 1.4. A significant advantage of the four-arm geometry is that it can transform quickly to the two-arm, or even the single-arm geometry, for comparison studies. These simpler geometries have already been shown experimentally to yield in-plane CT detector resolution exceeding 60 cy/mm (<8μ) for small fields of view. Geometrical size and resolution limits of the target VRX field are calculated. Two-arm VRX-CT data are used to simulate and establish the feasibility of VRX CT target imaging. A prototype target VRX-CT scanner has been built and is undergoing initial testing.

  7. Using a pulsed laser beam to investigate the feasibility of sub-pixel position resolution with time-correlated transient signals in 3D pixelated CdZnTe detectors

    DOE PAGES

    Giraldo, L. Ocampo; Bolotnikov, A. E.; Camarda, G. S.; ...

    2017-04-20

    For this study, we evaluated the X-Y position resolution achievable in 3D pixelated detectors by processing the signal waveforms readout from neighboring pixels. In these measurements we used a focused light beam, down to 10 μm, generated by a ~1 mW pulsed laser (650 nm) to carry out raster scans over selected 3×3 pixel areas, while recording the charge signals from the 9 pixels and the cathode using two synchronized digital oscilloscopes.

  8. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector.

    PubMed

    Meng, L-J; Tan, J W; Spartiotis, K; Schulman, T

    2009-06-11

    In this paper, we present the design and preliminary performance evaluation of a novel energy-resolved photon-counting (ERPC) detector for gamma ray imaging applications. The prototype ERPC detector has an active area of 4.4 cm × 4.4 cm, which is pixelated into 128 × 128 square pixels with a pitch size of 350 µm × 350µm. The current detector consists of multiple detector hybrids, each with a CdTe crystal of 1.1 cm × 2.2 cm × 1 mm, bump-bonded onto a custom-designed application-specific integrated circuit (ASIC). The ERPC ASIC has 2048 readout channels arranged in a 32 × 64 array. Each channel is equipped with pre- and shaping-amplifiers, a discriminator, peak/hold circuitry and an analog-to-digital converter (ADC) for digitizing the signal amplitude. In order to compensate for the pixel-to-pixel variation, two 8-bit digital-to-analog converters (DACs) are implemented into each channel for tuning the gain and offset. The ERPC detector is designed to offer a high spatial resolution, a wide dynamic range of 12-200 keV and a good energy resolution of 3-4 keV. The hybrid detector configuration provides a flexible detection area that can be easily tailored for different imaging applications. The intrinsic performance of a prototype ERPC detector was evaluated with various gamma ray sources, and the results are presented.

  9. Energy Reconstruction for Events Detected in TES X-ray Detectors

    NASA Astrophysics Data System (ADS)

    Ceballos, M. T.; Cardiel, N.; Cobo, B.

    2015-09-01

    The processing of the X-ray events detected by a TES (Transition Edge Sensor) device (such as the one that will be proposed in the ESA AO call for instruments for the Athena mission (Nandra et al. 2013) as a high spectral resolution instrument, X-IFU (Barret et al. 2013)), is a several step procedure that starts with the detection of the current pulses in a noisy signal and ends up with their energy reconstruction. For this last stage, an energy calibration process is required to convert the pseudo energies measured in the detector to the real energies of the incoming photons, accounting for possible nonlinearity effects in the detector. We present the details of the energy calibration algorithm we implemented as the last part of the Event Processing software that we are developing for the X-IFU instrument, that permits the calculation of the calibration constants in an analytical way.

  10. A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering.

    PubMed

    Andresen, N C; Denes, P; Goldschmidt, A; Joseph, J; Karcher, A; Tindall, C S

    2017-08-01

    We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ∼280 eV (C K ) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.

  11. A 5- μ m pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering

    DOE PAGES

    Andresen, N. C.; Denes, P.; Goldschmidt, A.; ...

    2017-08-08

    Here, we have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through > 8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performancemore » during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ~280 eV (C K) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. Finally, the measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.« less

  12. A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering

    NASA Astrophysics Data System (ADS)

    Andresen, N. C.; Denes, P.; Goldschmidt, A.; Joseph, J.; Karcher, A.; Tindall, C. S.

    2017-08-01

    We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ˜280 eV (CK) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft CK X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.

  13. The High Resolution Microcalorimeter Soft X-Ray Spectrometer for the Astro-H Mission

    NASA Technical Reports Server (NTRS)

    Kelley, Richard L.; Mitsuda, Kazuhisa; den Herder, Jan-Willem A.; Aarts, Henri J. M.; Azzarello, Philipp; Boyce, Kevin R.; Brown, Gregory V.; Chiao, Meng P.; de Vries, Cor P.; DiPirro, Michael J.; hide

    2012-01-01

    We are developing the Soft X-Ray Spectrometer for the JAXA Astro-H mission. The instrument features a 5 eV, 36-pixel array of micro calorimeters designed for high spectral resolution from 0.3-12 keV at the focus of an x-ray mirror, providing a field of view of3 x 3 arcmin. The principal components of the spectrometer are the microcalorimeter detector system, a 3-stage ADR and dewar. The dewar is a long-life, hybrid design with a superfluid He cryostat, Joule-Thomson cooler, and Stirling coolers. We describe the present design of the SXS instrument and initial engineering model test results.

  14. Double Photon Emission Coincidence Imaging using GAGG-SiPM pixel detectors

    NASA Astrophysics Data System (ADS)

    Shimazoe, K.; Uenomachi, M.; Mizumachi, Y.; Takahashi, H.; Masao, Y.; Shoji, Y.; Kamada, K.; Yoshikawa, A.

    2017-12-01

    Single photon emission computed tomography(SPECT) is a useful medical imaging modality using single photon detection from radioactive tracers, such as 99Tc and 111In, however further development of increasing the contrast in the image is still under investigation. A novel method (Double Photon Emission CT / DPECT) using a coincidence detection of two cascade gamma-rays from 111In is proposed and characterized in this study. 111In, which is well-known and commonly used as a SPECT tracer, emits two cascade photons of 171 keV and 245 keV with a short delay of approximately 85 ns. The coincidence detection of two gamma-rays theoretically determines the position in a single point compared with a line in single photon detection and increases the signal to noise ratio drastically. A fabricated pixel detector for this purpose consists of 8 × 8 array of high-resolution type 1.5 mm thickness Ce:GAGG (3.9% @ 662 keV, 6.63g/cm3, C&A Co. Ce:Gd3Ga2.7Al2.3O12 2.5 × 2.5 × 1.5 mm3) crystals coupled a 3 mm pixel SiPM array (Hamamatsu MPPC S13361-2050NS-08). The signal from each pixel is processed and readout using time over threshold (TOT) based parallel processing circuit to extract the energy and timing information. The coincidence was detected by FPGA with the frequency of 400 MHz. Two pixel detectors coupled to parallel-hole collimators are located at the degree of 90 to determine the position and coincidence events (time window =1 μs) are detected and used for making back-projection image. The basic principle of DPECT is characterized including the detection efficiency and timing resolution.

  15. Characterization of Scintillating X-ray Optical Fiber Sensors

    PubMed Central

    Sporea, Dan; Mihai, Laura; Vâţă, Ion; McCarthy, Denis; O'Keeffe, Sinead; Lewis, Elfed

    2014-01-01

    The paper presents a set of tests carried out in order to evaluate the design characteristics and the operating performance of a set of six X-ray extrinsic optical fiber sensors. The extrinsic sensor we developed is intended to be used as a low energy X-ray detector for monitoring radiation levels in radiotherapy, industrial applications and for personnel dosimetry. The reproducibility of the manufacturing process and the characteristics of the sensors were assessed. The sensors dynamic range, linearity, sensitivity, and reproducibility are evaluated through radioluminescence measurements, X-ray fluorescence and X-ray imaging investigations. Their response to the operating conditions of the excitation source was estimated. The effect of the sensors design and implementation, on the collecting efficiency of the radioluminescence signal was measured. The study indicated that the sensors are efficient only in the first 5 mm of the tip, and that a reflective coating can improve their response. Additional tests were done to investigate the concentricity of the sensors tip against the core of the optical fiber guiding the optical signal. The influence of the active material concentration on the sensor response to X-ray was studied. The tests were carried out by measuring the radioluminescence signal with an optical fiber spectrometer and with a Multi-Pixel Photon Counter. PMID:24556676

  16. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    PubMed

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  17. Next generation of pnCCDs for X-ray spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Meidinger, Norbert; Andritschke, Robert; Hälker, Olaf; Hartmann, Robert; Herrmann, Sven; Holl, Peter; Lutz, Gerhard; Kimmel, Nils; Schaller, Gerhard; Schnecke, Martina; Schopper, Florian; Soltau, Heike; Strüder, Lothar

    2006-11-01

    A special type of charge-coupled device, the pnCCD, has been developed in the nineties as focal-plane detector for the X-ray astronomy mission XMM-Newton of the European Space Agency. The pnCCD detector has been in operation since the satellite launch in 1999. It is performing up to date spectroscopy of X-rays in combination with imaging and high time resolution. The excellent performance of the flight camera is still maintained; in particular, the energy resolution has been nearly constant since launch. In order to satisfy the requirements of future X-ray astronomy missions as well as those of ground-based experiments, a new type of pnCCD has been developed. The ‘frame store pnCCD’ shows various optimizations in device design and fabrication process. Devices with up to 256×512 pixels have been fabricated in 2004 and recently tested. Simultaneously, a programmable analog signal processor for the readout of the CCD signals, the DUO CAMEX, has been developed. The readout noise of the new detector has a value of 2 electrons ENC which is less than half of the figure of the XMM-Newton pnCCD. We measured an energy resolution that is close to the theoretical limit given by the Fano noise. In particular the low-energy response of the new devices was substantially improved. The quantum efficiency for X-rays is at least 90% in the entire energy band from 0.3 keV up to 11 keV. This is due to the ultra-thin photon entrance window as well as the full depletion of the 450 μm thick back-illuminated pnCCD. The position resolution is better than the pixel sizes of 75 μm×75 μm or 51 μm×51 μm because the signal charge is spread over up to four pixels which allows a more accurate event position determination. ‘Out of time’ events are substantially reduced to the order of 0.1% by operating the pnCCD in frame store mode. Higher operating temperatures, e.g. -20 °C, are possible due to the smaller thermally generated dark-current level of the new devices and the operation

  18. The soft x ray telescope for Solar-A

    NASA Technical Reports Server (NTRS)

    Brown, W. A.; Acton, L. W.; Bruner, M. E.; Lemen, J. R.; Strong, K. T.

    1989-01-01

    The Solar-A satellite being prepared by the Institute for Sapce and Astronautical Sciences (ISAS) in Japan is dedicated to high energy observations of solar flares. The Soft X Ray Telescope (SXT) is being prepared to provide filtered images in the 2 to 60 A interval. The flight model is now undergoing tests in the 1000 foot tunnel at MSFC. Launch will be in September 1991. Earlier resolution and efficiency tests on the grazing incidence mirror have established its performance in soft x rays. The one-piece, two mirror grazing incidence telescope is supported in a strain free mount separated from the focal plane assembly by a carbon-epoxy metering tube whose windings and filler are chosen to minimize thermal and hygroscopic effects. The CCD detector images both the x ray and the concentric visible light aspect telescope. Optical filters provide images at 4308 and 4700 A. The SXT will be capable of producing over 8000 of the smallest partial frame images per day, or fewer but larger images, up to 1024 x 1024 pixel images. Image sequence with two or more of the five x ray analysis filters, with automatic exposure compensation to optimize the charge collection by the CCD detector, will be used to provide plasma diagnostics. Calculations using a differential emission measure code were used to optimize filter selection over the range of emission measure variations and to avoid redundancy, but the filters were chosen primarily to give ratios that are monotonic in plasma temperature.

  19. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  20. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    PubMed

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  1. Material separation in x-ray CT with energy resolved photon-counting detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Xiaolan; Meier, Dirk; Taguchi, Katsuyuki

    Purpose: The objective of the study was to demonstrate that, in x-ray computed tomography (CT), more than two types of materials can be effectively separated with the use of an energy resolved photon-counting detector and classification methodology. Specifically, this applies to the case when contrast agents that contain K-absorption edges in the energy range of interest are present in the object. This separation is enabled via the use of recently developed energy resolved photon-counting detectors with multiple thresholds, which allow simultaneous measurements of the x-ray attenuation at multiple energies. Methods: To demonstrate this capability, we performed simulations and physical experimentsmore » using a six-threshold energy resolved photon-counting detector. We imaged mouse-sized cylindrical phantoms filled with several soft-tissue-like and bone-like materials and with iodine-based and gadolinium-based contrast agents. The linear attenuation coefficients were reconstructed for each material in each energy window and were visualized as scatter plots between pairs of energy windows. For comparison, a dual-kVp CT was also simulated using the same phantom materials. In this case, the linear attenuation coefficients at the lower kVp were plotted against those at the higher kVp. Results: In both the simulations and the physical experiments, the contrast agents were easily separable from other soft-tissue-like and bone-like materials, thanks to the availability of the attenuation coefficient measurements at more than two energies provided by the energy resolved photon-counting detector. In the simulations, the amount of separation was observed to be proportional to the concentration of the contrast agents; however, this was not observed in the physical experiments due to limitations of the real detector system. We used the angle between pairs of attenuation coefficient vectors in either the 5-D space (for non-contrast-agent materials using energy resolved photon

  2. A variable resolution x-ray detector for computed tomography: I. Theoretical basis and experimental verification.

    PubMed

    DiBianca, F A; Gupta, V; Zeman, H D

    2000-08-01

    A computed tomography imaging technique called variable resolution x-ray (VRX) detection provides detector resolution ranging from that of clinical body scanning to that of microscopy (1 cy/mm to 100 cy/mm). The VRX detection technique is based on a new principle denoted as "projective compression" that allows the detector resolution element to scale proportionally to the image field size. Two classes of VRX detector geometry are considered. Theoretical aspects related to x-ray physics and data sampling are presented. Measured resolution parameters (line-spread function and modulation-transfer function) are presented and discussed. A VRX image that resolves a pair of 50 micron tungsten hairs spaced 30 microns apart is shown.

  3. Microfabrication of High Resolution X-ray Magnetic Calorimeters

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.

    2009-12-01

    Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.

  4. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  5. Temperature dependence of a superconducting tunnel junction x-ray detector

    NASA Astrophysics Data System (ADS)

    Hiller, Lawrence J.; Labov, Simon E.; Mears, Carl A.; Barfknecht, Andrew T.; Frank, Matthias A.; Netel, Harrie; Lindeman, Mark A.

    1995-09-01

    Superconducting tunnel junctions can be used as part of a high-resolution, energy-dispersive x- ray detector. The energy of the absorbed x ray is used to break superconducting electron pairs, producing on the order of 10(superscript 6) excitations, called quasiparticles. The number of quasiparticles produced is proportional to the energy of the absorbed x ray. When a bias voltage is maintained across the barrier, these quasiparticles produce a net tunneling current. Either the peak tunneling current or the total tunneled charge may be measured to determine the energy of the absorbed x ray. The tunneling rate, and therefore the signal, is enhanced by the use of a quasiparticle trap near the tunnel barrier. The trapping efficiency is improved by decreasing the energy gap, though this reduces the maximum temperature at which the device may operate. In our niobium/aluminum configuration, we can very the energy gap in the trapping layer by varying its thickness. This paper examines the performance of two devices with 50 nm aluminum traps at temperatures ranging from 100 mK to 700 mK. We found that this device has a very good energy resolution of about 12 eV FWHM at 1 keV. This energy resolution is independent of temperature for much of this temperature range.

  6. 1024x1024 Pixel MWIR and LWIR QWIP Focal Plane Arrays and 320x256 MWIR:LWIR Pixel Colocated Simultaneous Dualband QWIP Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Liu, John K.; Hill, Cory J.; Rafol, S. B.; Mumolo, Jason M.; Trinh, Joseph T.; Tidrow, M. Z.; Le Van, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024x1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NE(Delta)T) of 17 mK at a 95K operating temperature with f/2.5 optics at 300K background and the LWIR detector array has demonstrated a NE(Delta)T of 13 mK at a 70K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90K and 70K operating-temperatures respectively, with similar optical and background conditions. In addition, we are in the process of developing MWIR and LWIR pixel collocated simultaneously readable dualband QWIP focal plane arrays.

  7. Research of x-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Miao, Changyun; Wang, Wei; Lu, Xiaocui

    2008-03-01

    An X-ray nondestructive detector for high-speed running conveyor belt with steel wire ropes is researched in the paper. The principle of X-ray nondestructive testing (NDT) is analyzed, the general scheme of the X-ray nondestructive testing system is proposed, and the nondestructive detector for high-speed running conveyor belt with steel wire ropes is developed. The hardware of system is designed with Xilinx's VIRTEX-4 FPGA that embeds PowerPC and MAC IP core, and its network communication software based on TCP/IP protocol is programmed by loading LwIP to PowerPC. The nondestructive testing of high-speed conveyor belt with steel wire ropes and network transfer function are implemented. It is a strong real-time system with rapid scanning speed, high reliability and remotely nondestructive testing function. The nondestructive detector can be applied to the detection of product line in industry.

  8. An energy- and depth-dependent model for x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallas, Brandon D.; Boswell, Jonathan S.; Badano, Aldo

    In this paper, we model an x-ray imaging system, paying special attention to the energy- and depth-dependent characteristics of the inputs and interactions: x rays are polychromatic, interaction depth and conversion to optical photons is energy-dependent, optical scattering and the collection efficiency depend on the depth of interaction. The model we construct is a random function of the point process that begins with the distribution of x rays incident on the phosphor and ends with optical photons being detected by the active area of detector pixels to form an image. We show how the point-process representation can be used tomore » calculate the characteristic statistics of the model. We then simulate a Gd{sub 2}O{sub 2}S:Tb phosphor, estimate its characteristic statistics, and proceed with a signal-detection experiment to investigate the impact of the pixel fill factor on detecting spherical calcifications (the signal). The two extremes possible from this experiment are that SNR{sup 2} does not change with fill factor or changes in proportion to fill factor. In our results, the impact of fill factor is between these extremes, and depends on the diameter of the signal.« less

  9. System Design and Implementation of the Detector Assembly of the Astro-H Soft X-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Chiao, M. P.; Adams, J.; Goodwin, P.; Hobson, C.W.; Kelley, R. L.; Kilbourne, C. A.; McCammom, D.; McGuinness, D. S.; Moseley, S. J.; Porter, F. S.; hide

    2016-01-01

    The soft x-ray spectrometer (SXS) onboard Astro-H presents to the science community unprecedented capability (less than 7 eV at 6 keV) for high-resolution spectral measurements in the range of 0.5-12 keV to study extended celestial sources. At the heart of this SXS is the x-ray calorimeter spectrometer (XCS) where detectors (calorimeter array and anticoincidence detector) operate at 50 mK, the bias circuit operates at nominal 1.3 K, and the first stage amplifiers operateat 130 K, all within a nominal 20 cm envelope. The design of the detector assembly in this XCS originates from the Astro-E x-ray spectrometer (XRS) and lessons learned from Astro-E and Suzaku. After the production of our engineering model, additional changes were made in order to improve our flight assembly process for better reliability and overall performance. In this poster, we present the final design and implementation of the flight detector assembly, show comparison of parameters and performance to Suzakus XRS, and list susceptibilities to other subsystems as well as our lessons learned.

  10. Integration of the ATLAS FE-I4 Pixel Chip in the Mini Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Lopez-Thibodeaux, Mayra; Garcia-Sciveres, Maurice; Kadyk, John; Oliver-Mallory, Kelsey

    2013-04-01

    This project deals with development of readout for a Time Projection Chamber (TPC) prototype. This is a type of detector proposed for direct detection of dark matter (WIMPS) with direction information. The TPC is a gaseous charged particle tracking detector composed of a field cage and a gas avalanche detector. The latter is made of two Gas Electron Multipliers in series, illuminating a pixel readout integrated circuit, which measures the distribution in position and time of the output charge. We are testing the TPC prototype, filled with ArCO2 gas, using a Fe-55 x-ray source and cosmic rays. The present prototype uses an FE-I3 chip for readout. This chip was developed about 10 years ago and is presently in use within the ATLAS pixel detector at the LHC. The aim of this work is to upgrade the TPC prototype to use an FE-I4 chip. The FE-I4 has an active area of 336 mm^2 and 26880 pixels, over nine times the number of pixels in the FE-I3 chip, and an active area about six times as much. The FE-I4 chip represents the state of the art of pixel detector readout, and is presently being used to build an upgrade of the ATLAS pixel detector.

  11. The Focusing Optics X-ray Solar Imager: Second Flight and Recent Results

    NASA Astrophysics Data System (ADS)

    Christe, S.; Krucker, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Buitrago Casas, J. C.; Foster, N.

    2014-12-01

    Solar flares accelerate particles up to high energies through various acceleration mechanisms which are not currently understood. Hard X-rays are the most direct diagnostic of flare-accelerated electrons. However past and current hard x-ray observation lack the sensitivity and dynamic range necessary to observe the faint signature of accelerated electrons in the acceleration region, the solar corona. These limitations can be easily overcome through the use of HXR focusing optics coupled with solid state pixelated detectors. We present on recent updates on the FOXSI sounding rocket program. During its first flight FOXSI observed imaged a microflare with simultaneous observations by RHESSI. We present recent imaging analysis of the FOXSI observations and detailed comparison with RHESSI. New detector calibration results are also presented and, time-permitting, preliminary results from the second launch of FOXSI scheduled for December 2014.

  12. A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry.

    PubMed

    Damodar, Joshita; Odgers, David; Pope, Dane; Hill, Robin

    2018-05-01

    Kilovoltage x-ray beams are widely used in treating skin cancers and in biological irradiators. In this work, we have evaluated four dosimeters (ionization chambers and solid state detectors) in their suitability for relative dosimetry of kilovoltage x-ray beams in the energy range of 50 - 280kVp. The solid state detectors, which have not been investigated with low energy x-rays, were the PTW 60019 microDiamond synthetic diamond detector and the PTW 60012 diode. The two ionization chambers used were the PTW Advanced Markus parallel plate chamber and the PTW PinPoint small volume chamber. For each of the dosimeters, percentage depth doses were measured in water over the full range of x-ray beams and for field sizes ranging from 2cm diameter to 12 × 12cm. In addition, depth doses were measured for a narrow aperture (7mm diameter) using the PTW microDiamond detector. For comparison, the measured data was compared with Monte Carlo calculated doses using the EGSnrc Monte Carlo package. The depth dose results indicate that the Advanced Markus parallel plate and PinPoint ionization chambers were suitable for depth dose measurements in the beam quality range with an uncertainty of less than 3%, including in the regions closer to the surface of the water as compared with Monte Carlo depth dose data for all six energy beams. The response of the PTW Diode E detector was accurate to within 4% for all field sizes in the energy range of 50-125kVp but showed larger variations for higher energies of up to 12% with the 12 × 12cm field size. In comparison, the microDiamond detector had good agreement over all energies for both smaller and larger field sizes generally within 1% as compared to the Advanced Markus chamber field and Monte Carlo calculations. The only exceptions were in measuring the dose at the surface of the water phantom where larger differences were found. For the 7mm diameter field, the agreement between the microDiamond detector and Monte Carlo calculations was

  13. Study of solid-conversion gaseous detector based on GEM for high energy X-ray industrial CT.

    PubMed

    Zhou, Rifeng; Zhou, Yaling

    2014-01-01

    The general gaseous ionization detectors are not suitable for high energy X-ray industrial computed tomography (HEICT) because of their inherent limitations, especially low detective efficiency and large volume. The goal of this study was to investigate a new type of gaseous detector to solve these problems. The novel detector was made by a metal foil as X-ray convertor to improve the conversion efficiency, and the Gas Electron Multiplier (hereinafter "GEM") was used as electron amplifier to lessen its volume. The detective mechanism and signal formation of the detector was discussed in detail. The conversion efficiency was calculated by using EGSnrc Monte Carlo code, and the transport course of photon and secondary electron avalanche in the detector was simulated with the Maxwell and Garfield codes. The result indicated that this detector has higher conversion efficiency as well as less volume. Theoretically this kind of detector could be a perfect candidate for replacing the conventional detector in HEICT.

  14. X-ray GEM Detectors for Burning Plasma Experiments

    NASA Astrophysics Data System (ADS)

    Puddu, S.; Bombarda, F.; Pizzicaroli, G.; Murtas, F.

    2009-11-01

    The harsh environment and higher values of plasma parameters to be expected in future burning plasma experiments (and even more so in future power producing fusion reactors) is prompting the development of new, advanced diagnostic systems. The detection of radiation emitted by the plasma in the X-ray spectral region is likely to play the role that visible or UV radiation have in present day experiments. GEM gas detectors, developed at CERN, are the natural evolution of Multiwire Proportional Chambers, with a number of advantages: higher counting rates, lower noise, good energy resolution, low sensitivity to background radiation. GEM's can be used in several different ways, but two specific applications are being explored in the framework of the Ignitor program, one for plasma position control and the other for high resolution spectroscopy. The diagnostic layout on the Ignitor machine is such that the detectors will not be in direct view of the plasma, at locations where they can be efficiently screened by the background radiation. Prototype detectors 10 x 10 cm^2 in area have been assembled and will be tested to assess the optimal geometrical parameters and operating conditions, regarding in particular the choice between Single and Triple GEM configurations, the gas mixture, and the problem of fan-out associated with the high number of output channels required for high resolution crystal spectrometers.

  15. First images of a digital autoradiography system based on a Medipix2 hybrid silicon pixel detector.

    PubMed

    Mettivier, Giovanni; Montesi, Maria Cristina; Russo, Paolo

    2003-06-21

    We present the first images of beta autoradiography obtained with the high-resolution hybrid pixel detector consisting of the Medipix2 single photon counting read-out chip bump-bonded to a 300 microm thick silicon pixel detector. This room temperature system has 256 x 256 square pixels of 55 microm pitch (total sensitive area of 14 x 14 mm2), with a double threshold discriminator and a 13-bit counter in each pixel. It is read out via a dedicated electronic interface and control software, also developed in the framework of the European Medipix2 Collaboration. Digital beta autoradiograms of 14C microscale standard strips (containing separate bands of increasing specific activity in the range 0.0038-32.9 kBq g(-1)) indicate system linearity down to a total background noise of 1.8 x 10(-3) counts mm(-2) s(-1). The minimum detectable activity is estimated to be 0.012 Bq for 36,000 s exposure and 0.023 Bq for 10,800 s exposure. The measured minimum detection threshold is less than 1600 electrons (equivalent to about 6 keV Si). This real-time system for beta autoradiography offers lower pixel pitch and higher sensitive area than the previous Medipix1-based system. It has a 14C sensitivity better than that of micro channel plate based systems, which, however, shows higher spatial resolution and sensitive area.

  16. Modelling and testing the x-ray performance of CCD and CMOS APS detectors using numerical finite element simulations

    NASA Astrophysics Data System (ADS)

    Weatherill, Daniel P.; Stefanov, Konstantin D.; Greig, Thomas A.; Holland, Andrew D.

    2014-07-01

    Pixellated monolithic silicon detectors operated in a photon-counting regime are useful in spectroscopic imaging applications. Since a high energy incident photon may produce many excess free carriers upon absorption, both energy and spatial information can be recovered by resolving each interaction event. The performance of these devices in terms of both the energy and spatial resolution is in large part determined by the amount of diffusion which occurs during the collection of the charge cloud by the pixels. Past efforts to predict the X-ray performance of imaging sensors have used either analytical solutions to the diffusion equation or simplified monte carlo electron transport models. These methods are computationally attractive and highly useful but may be complemented using more physically detailed models based on TCAD simulations of the devices. Here we present initial results from a model which employs a full transient numerical solution of the classical semiconductor equations to model charge collection in device pixels under stimulation from initially Gaussian photogenerated charge clouds, using commercial TCAD software. Realistic device geometries and doping are included. By mapping the pixel response to different initial interaction positions and charge cloud sizes, the charge splitting behaviour of the model sensor under various illuminations and operating conditions is investigated. Experimental validation of the model is presented from an e2v CCD30-11 device under varying substrate bias, illuminated using an Fe-55 source.

  17. Study of a GaAs:Cr-based Timepix detector using synchrotron facility

    NASA Astrophysics Data System (ADS)

    Smolyanskiy, P.; Kozhevnikov, D.; Bakina, O.; Chelkov, G.; Dedovich, D.; Kuper, K.; Leyva Fabelo, A.; Zhemchugov, A.

    2017-11-01

    High resistivity gallium arsenide compensated by chromium fabricated by Tomsk State University has demonstrated a good suitability as a sensor material for hybrid pixel detectors used in X-ray imaging systems with photon energies up to 60 keV. The material is available with a thickness up to 1 mm and due to its Z number a high absorption efficiency in this energy region is provided. However, the performance of thick GaAs:Cr-based detectors in spectroscopic applications is limited by readout electronics with relatively small pixels due to the charge sharing effect. In this paper, we present the experimental investigation of the charge sharing effect contribution in the GaAs:Cr-based Timepix detector. By means of scanning the detector with a pencil photon beam generated by the synchrotron facility, the geometrical mapping of pixel sensitivity is obtained, as well as the energy resolution of a single pixel. The experimental results are supported by numerical simulations. The observed limitation of the GaAs:Cr-based Timepix detector for the high flux X-ray imaging is discussed.

  18. Imaging properties and its improvements of scanning/imaging x-ray microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Akihisa, E-mail: take@spring8.or.jp; Uesugi, Kentaro; Suzuki, Yoshio

    A scanning / imaging X-ray microscope (SIXM) system has been developed at SPring-8. The SIXM consists of a scanning X-ray microscope with a one-dimensional (1D) X-ray focusing device and an imaging (full-field) X-ray microscope with a 1D X-ray objective. The motivation of the SIXM system is to realize a quantitative and highly-sensitive multimodal 3D X-ray tomography by taking advantages of both the scanning X-ray microscope using multi-pixel detector and the imaging X-ray microscope. Data acquisition process of a 2D image is completely different between in the horizontal direction and in the vertical direction; a 1D signal is obtained with themore » linear-scanning while the other dimensional signal is obtained with the imaging optics. Such condition have caused a serious problem on the imaging properties that the imaging quality in the vertical direction has been much worse than that in the horizontal direction. In this paper, two approaches to solve this problem will be presented. One is introducing a Fourier transform method for phase retrieval from one phase derivative image, and the other to develop and employ a 1D diffuser to produce an asymmetrical coherent illumination.« less

  19. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  20. Toward Large FOV High-Resolution X-Ray Imaging Spectrometer: Microwave Multiplexed Readout of 32 TES Microcalorimeters

    NASA Technical Reports Server (NTRS)

    Yoon, Wonsik; Adams, Joseph S.; Bandler, Simon R.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Finkbeiner, Fred M.; Kelley, Richard L.; Kilbourne, Caroline A.; Miniussi, Antoine R.; hide

    2017-01-01

    We performed a small-scale demonstration at GSFC of high-resolution x-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space based x-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 50 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we simultaneously read out 32 pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to RF SQUIDs. The resonators are spaced 6 MHz apart (at approx. 5.9 GHz) and have quality factors of approximately 15,000. Using flux-ramp modulation frequencies of 160 kHz we have achieved spectral resolutions of 3 eV FWHM on each pixel at 6 keV. We will present the measured system-level noise and maximum slew rates, and briefly describe the implications for future detector and readout design.

  1. Study of current-mode active pixel sensor circuits using amorphous InSnZnO thin-film transistor for 50-μm pixel-pitch indirect X-ray imagers

    NASA Astrophysics Data System (ADS)

    Cheng, Mao-Hsun; Zhao, Chumin; Kanicki, Jerzy

    2017-05-01

    Current-mode active pixel sensor (C-APS) circuits based on amorphous indium-tin-zinc-oxide thin-film transistors (a-ITZO TFTs) are proposed for indirect X-ray imagers. The proposed C-APS circuits include a combination of a hydrogenated amorphous silicon (a-Si:H) p+-i-n+ photodiode (PD) and a-ITZO TFTs. Source-output (SO) and drain-output (DO) C-APS are investigated and compared. Acceptable signal linearity and high gains are realized for SO C-APS. APS circuit characteristics including voltage gain, charge gain, signal linearity, charge-to-current conversion gain, electron-to-voltage conversion gain are evaluated. The impact of the a-ITZO TFT threshold voltage shifts on C-APS is also considered. A layout for a pixel pitch of 50 μm and an associated fabrication process are suggested. Data line loadings for 4k-resolution X-ray imagers are computed and their impact on circuit performances is taken into consideration. Noise analysis is performed, showing a total input-referred noise of 239 e-.

  2. A single-pixel X-ray imager concept and its application to secure radiographic inspections

    NASA Astrophysics Data System (ADS)

    Gilbert, Andrew J.; Miller, Brian W.; Robinson, Sean M.; White, Timothy A.; Pitts, William Karl; Jarman, Kenneth D.; Seifert, Allen

    2017-07-01

    Imaging technology is generally considered too invasive for arms control inspections due to the concern that it cannot properly secure sensitive features of the inspected item. However, this same sensitive information, which could include direct information on the form and function of the items under inspection, could be used for robust arms control inspections. The single-pixel X-ray imager (SPXI) is introduced as a method to make such inspections, capturing the salient spatial information of an object in a secure manner while never forming an actual image. The method is built on the theory of compressive sensing and the single pixel optical camera. The performance of the system is quantified using simulated inspections of simple objects. Measures of the robustness and security of the method are introduced and used to determine how robust and secure such an inspection would be. In particular, it is found that an inspection with low noise ( < 1 %) and high undersampling ( > 256 ×) exhibits high robustness and security.

  3. Studies on a 300 k pixel detector telescope

    NASA Astrophysics Data System (ADS)

    Middelkamp, Peter; Antinori, F.; Barberis, D.; Becks, K. H.; Beker, H.; Beusch, W.; Burger, P.; Campbell, M.; Cantatore, E.; Catanesi, M. G.; Chesi, E.; Darbo, G.; D'Auria, S.; Davia, C.; di Bari, D.; di Liberto, S.; Elia, D.; Gys, T.; Heijne, E. H. M.; Helstrup, H.; Jacholkowski, A.; Jæger, J. J.; Jakubek, J.; Jarron, P.; Klempt, W.; Krummenacher, F.; Knudson, K.; Kralik, I.; Kubasta, J.; Lasalle, J. C.; Leitner, R.; Lemeilleur, F.; Lenti, V.; Letheren, M.; Lopez, L.; Loukas, D.; Luptak, M.; Martinengo, P.; Meddeler, G.; Meddi, F.; Morando, M.; Munns, A.; Pellegrini, F.; Pengg, F.; Pospisil, S.; Quercigh, E.; Ridky, J.; Rossi, L.; Safarik, K.; Scharfetter, L.; Segato, G.; Simone, S.; Smith, K.; Snoeys, W.; Vrba, V.

    1996-02-01

    Four silicon pixel detector planes are combined to form a tracking telescope in the lead ion experiment WA97 at CERN with 290 304 sensitive elements each of 75 μm by 500 μm area. An electronic pulse processing circuit is associated with each individual sensing element and the response for ionizing particles is binary with an adjustable threshold. The noise rate for a threshold of 6000 e- has been measured to be less than 10-10. The inefficient area due to malfunctioning pixels is 2.8% of the 120 cm2. Detector overlaps within one plane have been used to determine the alignment of the components of the plane itself, without need for track reconstruction using external detectors. It is the first time that such a big surface covered with active pixels has been used in a physics experiment. Some aspects concerning inclined particle tracks and time walk have been measured separately in a beam test at the CERN SPS H6 beam.

  4. Kilopixel X-Ray Microcalorimeter Arrays for Astrophysics: Device Performance and Uniformity

    NASA Technical Reports Server (NTRS)

    Eckart, M. E.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, F. M.

    2011-01-01

    We are developing kilo-pixel arrays of TES microcalorimeters to enable high-resolution X-ray imaging spectrometers for future X-ray observatories and laboratory astrophysics experiments. Our current array design was targeted as a prototype for the X-ray Microcalorimeter Spectrometer proposed for the International X-ray Observatory, which calls for a 40x40-pixel core array of 300 micron devices with 2.5 e V energy resolution (at 6 keV). Here we present device characterization of our 32x32 arrays, including X-ray spectral performance of individual pixels within the array. We present our results in light of the understanding that our Mo/Au TESs act as weak superconducting links, causing the TES critical current (Ic) and transition shape to oscillate with applied magnetic field (B). We show Ic(B) measurements and discuss the uniformity of these measurements across the array, as well as implications regarding the uniformity of device noise and response. In addition, we are working to reduce pixel-to-pixel electrical and thermal crosstalk; we present recent test results from an array that has microstrip wiring and an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel.

  5. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    NASA Technical Reports Server (NTRS)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  6. Development of double-sided silicon strip detectors for solar hard x-ray observation

    NASA Astrophysics Data System (ADS)

    Saito, Shinya; Ishikawa, Shin-Nosuke; Watanabe, Shin; Odaka, Hirokazu; Sugimoto, Soichiro; Fukuyama, Taro; Kokubun, Motohide; Takahashi, Tadayuki; Terada, Yukikatsu; Tajima, Hiroyasu; Tanaka, Takaaki; Krucker, Säm; Christe, Steven; McBride, Steve; Glesener, Lindsay

    2010-07-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a rocket experiment scheduled for January 2011 launch. FOXSI observes 5 - 15 keV hard X-ray emission from quiet-region solar flares in order to study the acceleration process of electrons and the mechanism of coronal heating. For observing faint hard X-ray emission, FOXSI uses focusing optics for the first time in solar hard X-ray observation, and attains 100 times higher sensitivity than RHESSI, which is the present solar hard X-ray observing satellite. Now our group is working on developments of both Double-sided Silicon Strip Detector (DSSD) and read-out analog ASIC "VATA451" used for FOXSI. Our DSSD has a very fine strip pitch of 75 μm, which has sufficient position resolution for FOXSI mirrors with angular resolution (FWHM) of 12 arcseconds. DSSD also has high spectral resolution and efficiency in the FOXSI's energy range of 5 - 15 keV, when it is read out by our 64-channel analog ASIC. In advance of the FOXSI launch, we have established and tested a setup of 75 μm pitch DSSD bonded with "VATA451" ASICs. We successfully read out from almost all the channels of the detector, and proved ability to make a shadow image of tungsten plate. We also confirmed that our DSSD has energy resolution (FWHM) of 0.5 keV, lower threshold of 5 keV, and position resolution less than 63 μm. These performance satisfy FOXSI's requirements.

  7. Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.

    PubMed

    Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D

    2011-06-01

    Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.

  8. Tracking performance of a single-crystal and a polycrystalline diamond pixel-detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menasce, D.; et al.

    2013-06-01

    We present a comparative characterization of the performance of a single-crystal and a polycrystalline diamond pixel-detector employing the standard CMS pixel readout chips. Measurements were carried out at the Fermilab Test Beam Facility, FTBF, using protons of momentum 120 GeV/c tracked by a high-resolution pixel telescope. Particular attention was directed to the study of the charge-collection, the charge-sharing among adjacent pixels and the achievable position resolution. The performance of the single-crystal detector was excellent and comparable to the best available silicon pixel-detectors. The measured average detection-efficiency was near unity, ε = 0.99860±0.00006, and the position-resolution for shared hits was aboutmore » 6 μm. On the other hand, the performance of the polycrystalline detector was hampered by its lower charge collection distance and the readout chip threshold. A new readout chip, capable of operating at much lower threshold (around 1 ke $-$), would be required to fully exploit the potential performance of the polycrystalline diamond pixel-detector.« less

  9. Angular resolution of the gaseous micro-pixel detector Gossip

    NASA Astrophysics Data System (ADS)

    Bilevych, Y.; Blanco Carballo, V.; van Dijk, M.; Fransen, M.; van der Graaf, H.; Hartjes, F.; Hessey, N.; Koppert, W.; Nauta, S.; Rogers, M.; Romaniouk, A.; Veenhof, R.

    2011-06-01

    Gossip is a gaseous micro-pixel detector with a very thin drift gap intended for a high rate environment like at the pixel layers of ATLAS at the sLHC. The detector outputs not only the crossing point of a traversing MIP, but also the angle of the track, thus greatly simplifying track reconstruction. In this paper we describe a testbeam experiment to examine the angular resolution of the reconstructed track segments in Gossip. We used here the low diffusion gas mixture DME/CO 2 50/50. An angular resolution of 20 mrad for perpendicular tracks could be obtained from a 1.5 mm thin drift volume. However, for the prototype detector used at the testbeam experiment, the resolution of slanting tracks was worsened by poor time resolution of the pixel chip used.

  10. Hard X-ray imaging spectroscopy of FOXSI microflares

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Krucker, Sam; Christe, Steven; Buitrago-Casas, Juan Camilo; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The ability to investigate particle acceleration and hot thermal plasma in solar flares relies on hard X-ray imaging spectroscopy using bremsstrahlung emission from high-energy electrons. Direct focusing of hard X-rays (HXRs) offers the ability to perform cleaner imaging spectroscopy of this emission than has previously been possible. Using direct focusing, spectra for different sources within the same field of view can be obtained easily since each detector segment (pixel or strip) measures the energy of each photon interacting within that segment. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload has successfully completed two flights, observing microflares each time. Flare images demonstrate an instrument imaging dynamic range far superior to the indirect methods of previous instruments like the RHESSI spacecraft.In this work, we present imaging spectroscopy of microflares observed by FOXSI in its two flights. Imaging spectroscopy performed on raw FOXSI images reveals the temperature structure of flaring loops, while more advanced techniques such as deconvolution of the point spread function produce even more detailed images.

  11. Measurement of x-ray spectra using a recent YAP(Ce)-MPPC detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Oda, Yasuyuki; Yoshida, Sohei; Yamaguchi, Satoshi; Sato, Yuichi; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2017-09-01

    To measure X-ray spectra with high count rates, we developed a detector consisting of a cerium-doped yttrium aluminum perovskite [YAP(Ce)] crystal and a recent multipixel photon counter (MPPC). Scintillation photons are detected using the MPPC, and the photocurrents flowing through the MPPC are converted into voltages and amplified using a high-speed current-voltage (I-V) amplifier. The MPPC bias voltage was set to a value at the pre-Geiger mode to perform zero-dark counting. The event-pulse widths were approximately 200 ns, and the widths were extend to approximately 1 μs. X-ray spectra were measured using a multichannel analyzer (MCA) for pulse-height analysis. The photon energy was roughly determined by the two-point calibration using tungsten K photons and iodine K fluorescence. Using the YAP(Ce)-MPPC detector, first-generation dual-energy computed tomography was accomplished using iodine and gadolinium contrast media.

  12. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  13. WE-EF-207-06: Dedicated Cone-Beam Breast CT with Laterally-Shifted Detector: Monte Carlo Evaluation of X-Ray Scatter Distribution and Scatter-To-Primary Ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, L; Vedantham, S; Karellas, A

    2015-06-15

    Purpose: To determine the spatial distribution of x-ray scatter and scatter-to-primary ratio (SPR) in projections during cone-beam breast CT (CBBCT) with laterally-shifted detector that results in coronal (fan-angle) truncation. Methods: We hypothesized that CBBCT with coronal truncation would lower SPR due to reduction in irradiated breast volume, and that the location of maximum x-ray scatter fluence (scatter-peak) in the detector plane can be determined from the ratio of irradiated-to-total breast volume, breast dimensions and system geometry. Monte Carlo simulations (GEANT4) reflecting a prototype CBBCT system were used to record the position-dependent primary and scatter x-ray photon fluence incident on themore » detector without coronal truncation (full fan-angle, 2f=24-degrees) and with coronal truncation (fan-angle, f+ f=12+2.7-degrees). Semi-ellipsoidal breasts (10/14/18-cm diameter, chest-wall to nipple length: 0.75xdiameter, 2%/14%/100% fibroglandular content) aligned with the axis-of-rotation (AOR) were modeled. Mono-energy photons were simulated and weighted for 2 spectra (49kVp, 1.4-mm Al HVL; 60kVp, 3.76-mm Al HVL). In addition to SPR, the scatter maps were analyzed to identify the location of the scatter-peak. Results: For CBBCT without fan-angle truncation, the scatter-peaks were aligned with the projection of the AOR onto the detector for all breasts. With truncated fan-beam, the scatter-peaks were laterally-shifted from the projection of the AOR along the fan-angle direction by 14/38/70-pixels for 10/14/18-cm diameter breasts. The corresponding theoretical shifts were 14.8/39.7/68-pixels (p=0.47, 2-tailed paired-ratio t-test). Along the cone-angle, the shift in scatter-peaks between truncated and full-fan angle CBBCT were 2/2/4 -pixels for 10/14/18-cm diameter breasts. CBBCT with fan-angle truncation reduced SPR by 14/22/28% for 10/14/18-cm diameter breasts. 60kVp reduced SPR by 21–25% compared to 49kVp. Peak SPR for CBBCT with fan

  14. Broadband X-ray edge-enhancement imaging of a boron fibre on lithium fluoride thin film detector

    NASA Astrophysics Data System (ADS)

    Nichelatti, E.; Bonfigli, F.; Vincenti, M. A.; Cecilia, A.; Vagovič, P.; Baumbach, T.; Montereali, R. M.

    2016-10-01

    The white beam (∼6-80 keV) available at the TopoTomo X-ray beamline of the ANKA synchrotron facility (KIT, Karlsruhe, Germany) was used to perform edge-enhancement imaging tests on lithium fluoride radiation detectors. The diffracted X-ray image of a microscopic boron fibre, consisting of tungsten wire wrapped by boron cladding, was projected onto lithium fluoride thin films placed at several distances, from contact to 1 m . X-ray photons cause the local formation of primary and aggregate colour centres in lithium fluoride; these latter, once illuminated under blue light, luminesce forming visible-light patterns-acquired by a confocal laser scanning microscope-that reproduce the intensity of the X-ray diffracted images. The tests demonstrated the excellent performances of lithium fluoride films as radiation detectors at the investigated photon energies. The experimental results are here discussed and compared with those calculated with a model that takes into account all the processes that concern image formation, storing and readout.

  15. A compact and modular x- and gamma-ray detector with a CsI scintillator and double-readout Silicon Drift Detectors

    NASA Astrophysics Data System (ADS)

    Campana, R.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Bellutti, P.; Evangelista, Y.; Elmi, I.; Feroci, M.; Ficorella, F.; Frontera, F.; Picciotto, A.; Piemonte, C.; Rachevski, A.; Rashevskaya, I.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Zorzi, N.

    2016-07-01

    A future compact and modular X and gamma-ray spectrometer (XGS) has been designed and a series of proto- types have been developed and tested. The experiment envisages the use of CsI scintillator bars read out at both ends by single-cell 25 mm2 Silicon Drift Detectors. Digital algorithms are used to discriminate between events absorbed in the Silicon layer (lower energy X rays) and events absorbed in the scintillator crystal (higher energy X rays and -rays). The prototype characterization is shown and the modular design for future experiments with possible astrophysical applications (e.g. for the THESEUS mission proposed for the ESA M5 call) are discussed.

  16. 4.3 μm quantum cascade detector in pixel configuration.

    PubMed

    Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G

    2016-07-25

    We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured.

  17. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    NASA Astrophysics Data System (ADS)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (<0.7 mW/pixel) ASIC. The prototype also provides digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  18. A Broadband X-Ray Imaging Spectroscopy with High-Angular Resolution: the FORCE Mission

    NASA Technical Reports Server (NTRS)

    Mori, Koji; Tsuru, Takeshi Go; Nakazawac, Kazuhiro; Ueda, Yoshihiro; Okajima, Takashi; Murakami, Hiroshi; Awaki, Hisamitsu; Matsumoto, Hironori; Fukazawai, Yasushi; Tsunemi, Hiroshi; hide

    2016-01-01

    We are proposing FORCE (Focusing On Relativistic universe and Cosmic Evolution) as a future Japan-lead X-ray observatory to be launched in the mid 2020s. Hitomi (ASTRO-H) possesses a suite of sensitive instruments enabling the highest energy-resolution spectroscopy in soft X-ray band, a broadband X-ray imaging spectroscopy in soft and hard X-ray bands, and further high energy coverage up to soft gamma-ray band. FORCE is the direct successor to the broadband X-ray imaging spectroscopy aspect of Hitomi (ASTRO-H) with significantly higher angular resolution. The current design of FORCE defines energy band pass of 1-80 keV with angular resolution of <15" in half-power diameter, achieving a 10 times higher sensitivity above 10 keV compared to any previous missions with simultaneous soft X-ray coverage. Our primary scientific objective is to trace the cosmic formation history by searching for "missing black holes" in various mass-scales: "buried supermassive black holes (SMBHs)" (> 10(exp 4) Stellar Mass) residing in the center of galaxies in a cosmological distance, "intermediate-mass black holes" (10(exp 2)-(10(exp 4) Stellar Mass) acting as the possible seeds from which SMBHs grow, and "orphan stellar-mass black holes" (< 10(exp 2) Stellar Mass) without companion in our Galaxy. In addition to these missing BHs, hunting for the nature of relativistic particles at various astrophysical shocks is also in our scope, utilizing the broadband X-ray coverage with high angular-resolution. FORCE are going to open a new era in these fields. The satellite is proposed to be launched with the Epsilon vehicle that is a Japanese current solid-fuel rocket. FORCE carries three identical pairs of Super-mirror and wide-band X-ray detector. The focal length is currently planned to be 10 m. The silicon mirror with multi-layer coating is our primary choice to achieve lightweight, good angular optics. The detector is a descendant of hard X-ray imager onboard Hitomi (ASTRO-H) replacing its

  19. Monte Carlo analysis of megavoltage x-ray interaction-induced signal and noise in cadmium tungstate detectors for cargo container inspection

    NASA Astrophysics Data System (ADS)

    Kim, J.; Park, J.; Kim, J.; Kim, D. W.; Yun, S.; Lim, C. H.; Kim, H. K.

    2016-11-01

    For the purpose of designing an x-ray detector system for cargo container inspection, we have investigated the energy-absorption signal and noise in CdWO4 detectors for megavoltage x-ray photons. We describe the signal and noise measures, such as quantum efficiency, average energy absorption, Swank noise factor, and detective quantum efficiency (DQE), in terms of energy moments of absorbed energy distributions (AEDs) in a detector. The AED is determined by using a Monte Carlo simulation. The results show that the signal-related measures increase with detector thickness. However, the improvement of Swank noise factor with increasing thickness is weak, and this energy-absorption noise characteristic dominates the DQE performance. The energy-absorption noise mainly limits the signal-to-noise performance of CdWO4 detectors operated at megavoltage x-ray beam.

  20. New Observations of Soft X-ray (0.5-5 keV) Solar Spectra

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Mason, J. P.; Jones, A. R.; Warren, H. P.

    2013-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable on many time scales. However, the actual solar soft X-ray (SXR) (0.5-5 keV) spectrum is not well known, particularly during solar quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include high-resolution but very narrow-band spectra from crystal spectrometers (e.g., Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g., GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with moderate energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and SAX on MESSENGER, although they did not extend to energies below ~1 keV. We present observations of solar SXR emission obtained using new instrumentation flown on recent SDO/EVE calibration rocket underflights. The photon-counting spectrometer, a commercial Amptek X123 with a silicon drift detector and an 8 μm Be window, measures the solar disk-integrated SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution and 1 s cadence. A novel imager, a pinhole X-ray camera using a cooled frame-transfer CCD (15 μm pixel pitch), Ti/Al/C filter, and 5000 line/mm Au transmission grating, images the full Sun in multiple spectral orders from ~0.1 to ~5 nm with ~10 arcsec/pixel and ~0.01 nm/pixel spatial and spectral detector scales, respectively, and 10 s cadence. These instruments are prototypes for future CubeSat missions currently being developed. We present new results of solar observations on 04 October 2013 (NASA sounding rocket 36.290). We compare with previous results from 23 June 2012 (NASA sounding rocket 36.286), during which solar activity was low and no signal was observed above ~4 keV. We compare our spectral and imaging measurements with spectra and broadband irradiances from other instruments, including SDO/EVE, GOES/XRS, TIMED