Sample records for x-ray projection lithography

  1. Design survey of X-ray/XUV projection lithography systems

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Viswanathan, V. K.

    1991-02-01

    Several configurations of two- to four-multilayer mirror systems that have been proposed for use in soft-X-ray projection lithography are examined. The performance capabilities of spherical and aspherical two-mirror projection systems are compared, and a two-spherical-mirror four-reflection system that can resolve 0.1-micron features over a 10 x 10 mm field is described. It is emphasized that three-mirror systems show promise of high resolution in telescope applications, but have not been fully analyzed for projection lithography applications. It has been shown that a four-mirror aspheric system can be designed to meet the resolution requirements, but a trade-off must be made between reducing distortion below 10 microns over the field of view and increasing the modulation transfer function greater than 50 percent at spatial frequency of 5000 cycles/mm.

  2. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  3. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  4. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    NASA Astrophysics Data System (ADS)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  5. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  6. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  7. Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography.

    PubMed

    Sommargren, G E; Seppala, L G

    1993-12-01

    A condenser system couples the radiation source to an imaging system, controlling the uniformity and partial coherence at the object, which ultimately affects the characteristics of the aerial image. A soft-x-ray projection lithography system based on a ring-field imaging system and a laser-produced plasma x-ray source places considerable constraints on the design of a condenser system. Two designs are proposed, critical illumination and Köhler illumination, each of which requires three mirrors and scanning for covering the entire ring field with the required uniformity and partial coherence. Images based on Hopkins' formulation of partially coherent imaging are simulated.

  8. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  9. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  10. Deep X-ray lithography for the fabrication of microstructures at ELSA

    NASA Astrophysics Data System (ADS)

    Pantenburg, F. J.; Mohr, J.

    2001-07-01

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.

  11. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  12. High resolution imaging and lithography with hard x rays using parabolic compound refractive lenses

    NASA Astrophysics Data System (ADS)

    Schroer, C. G.; Benner, B.; Günzler, T. F.; Kuhlmann, M.; Zimprich, C.; Lengeler, B.; Rau, C.; Weitkamp, T.; Snigirev, A.; Snigireva, I.; Appenzeller, J.

    2002-03-01

    Parabolic compound refractive lenses are high quality optical components for hard x rays. They are particularly suited for full field imaging, with applications in microscopy and x-ray lithography. Taking advantage of the large penetration depth of hard x rays, the interior of opaque samples can be imaged with submicrometer resolution. To obtain the three-dimensional structure of a sample, microscopy is combined with tomographic techniques. In a first hard x-ray lithography experiment, parabolic compound refractive lenses have been used to project the reduced image of a lithography mask onto a resist. Future developments are discussed.

  13. Recent developments of x-ray lithography in Canada

    NASA Astrophysics Data System (ADS)

    Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues

    1991-08-01

    An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.

  14. Fabricating Blazed Diffraction Gratings by X-Ray Lithography

    NASA Technical Reports Server (NTRS)

    Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel

    2004-01-01

    Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the

  15. System design considerations for a production-grade, ESR-based x-ray lithography beamline

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Melore, Dan; Cerrina, Franco; Cole, Richard K.

    1991-08-01

    As electron storage ring (ESR) based x-ray lithography technology moves closer to becoming an industrial reality, more and more attention has been devoted to studying problem areas related to its application in the production environment. A principle component is the x-ray lithography beamline (XLBL) and its associated design requirements. XLBL, an x-ray radiation transport system, is one of the three major subunits in the ESR-based x-ray lithography system (XLS) and has a pivotal role in defining performance characteristics of the entire XLS. Its major functions are to transport the synchrotron orbital radiation (SOR) to the lithography target area with defined efficiency and to modify SOR into the spectral distribution defined by the lithography process window. These functions must be performed reliably in order to satisfy the required high production rate and ensure 0.25 micron resolution lithography conditions. In this paper the authors attempt to answer some specific questions that arise during the formulation of an XLBL system design. Three principle issues that are essential to formulating a design are (1) Radiation transport efficiency, (2) X-ray optical configurations in the beamline, (3) Beamline system configurations. Some practical solutions to thee problem areas are presented, and the effects of these parameters on lithography production rate are examined.

  16. Report on the fifth workshop on synchrotron x ray lithography

    NASA Astrophysics Data System (ADS)

    Williams, G. P.; Godel, J. B.; Brown, G. S.; Liebmann, W.

    Semiconductors comprise a greater part of the United States economy than the aircraft, steel, and automobile industries combined. In future the semiconductor manufacturing industry will be forced to switch away from present optical manufacturing methods in the early to mid 1990s. X ray lithography has emerged as the leading contender for continuing production below the 0.4 micron level. Brookhaven National Laboratory began a series of workshops on x ray lithography in 1986 to examine key issues and in particular to enable United States industry to take advantage of the technical base established in this field. Since accelerators provide the brightest sources for x ray lithography, most of the research and development to date has taken place at large accelerator-based research centers such as Brookhaven, the University of Wisconsin, and Stanford. The goals of this Fifth Brookhaven Workshop were to review progress and goals since the last workshop and to establish a blueprint for the future. The meeting focused on the exposure tool, that is, a term defined as the source plus beamline and stepper. In order to assess the appropriateness of schedules for the development of this tool, other aspects of the required technology such as masks, resists and inspection and repair were also reviewed. To accomplish this, two working groups were set up, one to review the overall aspects of x ray lithography and set a time frame, the other to focus on sources.

  17. X-ray/EUV optics for astronomy, microscopy, polarimetry, and projection lithography; Proceedings of the Meeting, San Diego, CA, July 9-13, 1990

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor); Walker, Arthur B. C., Jr. (Editor)

    1991-01-01

    Topics discussed in this issue include the fabrication of multilayer X-ray/EUV coatings; the design, characterization, and test of multilayer X-ray/EUV coatings; multilayer X-ray/EUV monochromators and imaging microscopes; X-ray/EUV telescopes; the test and calibration performance of X-ray/EUV instruments; XUV/soft X-ray projection lithography; X-ray/EUV space observatories and missions; X-ray/EUV telescopes for solar research; X-ray/EUV polarimetry; X-ray/EUV spectrographs; and X-ray/EUV filters and gratings. Papers are presented on the deposition-controlled uniformity of multilayer mirrors, interfaces in Mo/Si multilayers, the design and analysis of an aspherical multilayer imaging X-ray microscope, recent developments in the production of thin X-ray reflecting foils, and the ultraprecise scanning technology. Consideration is also given to an active sun telescope array, the fabrication and performance at 1.33 nm of a 0.24-micron-period multilayer grating, a cylindrical proportional counter for X-ray polarimetry, and the design and analysis of the reflection grating arrays for the X-Ray Multi-Mirror Mission.

  18. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  19. Optimizing a synchrotron based x-ray lithography system for IC manufacturing

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.

    1990-05-01

    The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.

  20. Vitreous carbon mask substrate for X-ray lithography

    DOEpatents

    Aigeldinger, Georg [Livermore, CA; Skala, Dawn M [Fremont, CA; Griffiths, Stewart K [Livermore, CA; Talin, Albert Alec [Livermore, CA; Losey, Matthew W [Livermore, CA; Yang, Chu-Yeu Peter [Dublin, CA

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  1. Cost-effective masks for deep x-ray lithography

    NASA Astrophysics Data System (ADS)

    Scheunemann, Heinz-Ulrich; Loechel, Bernd; Jian, Linke; Schondelmaier, Daniel; Desta, Yohannes M.; Goettert, Jost

    2003-04-01

    The production of X-ray masks is one of the key techniques for X-ray lithography and the LIGA process. Different ways for the fabrication of X-ray masks has been established. Very sophisticated, difficult and expensive procedures are required to produce high precision and high quality X-ray masks. In order to minimize the cost of an X-ray mask, the mask blank must be inexpensive and readily available. The steps involved in the fabrication process must also be minimal. In the past, thin membranes made of titanium, silicon carbide, silicon nitride (2-5μm) or thick beryllium substrates (500μm) have been used as mask blanks. Thin titanium and silicon compounds have very high transparency for X-rays; therefore, these materials are predestined for use as mask membrane material. However, the handling and fabrication of thin membranes is very difficult, thus expensive. Beryllium is highly transparent to X-rays, but the processing and use of beryllium is risky due to potential toxicity. During the past few years graphite based X-ray masks have been in use at various research centers, but the sidewall quality of the generated resist patterns is in the range of 200-300 nm Ra. We used polished graphite to improve the sidewall roughness, but polished graphite causes other problems in the fabrication of X-ray masks. This paper describes the advantages associated with the use of polished graphite as mask blank as well as the fabrication process for this low cost X-ray mask. Alternative membrane materials will also be discussed.

  2. Radiation hardness of molybdenum silicon multilayers designed for use in a soft-x-ray projection lithography system.

    PubMed

    Gaines, D P; Spitzer, R C; Ceglio, N M; Krumrey, M; Ulm, G

    1993-12-01

    A molybdenum silicon multilayer is irradiated with 13.4-nm radiation to investigate changes in multilayer performance under simulated soft-x-ray projection lithography (SXPL) conditions. The wiggler-undulator at the Berlin electron storage ring BESSY is used as a quasi-monochromatic source of calculable spectral radiant intensity and is configured to simulate an incident SXPL x-ray spectrum. The test multilayer receives a radiant exposure of 240 J/mm(2) in an exposure lasting 8.9 h. The corresponding average incident power density is 7.5 mW/mm(2). The absorbed dose of 7.8 × 10(10) J/kg (7.8 × 10(12) rad) is equivalent to 1.2 times the dose that would be absorbed by a multilayer coating on the first imaging optic in a hypothetical SXPL system during 1 year of operation. Surface temperature increases do not exceed 2 °C during the exposure. Normal-incidence reflectance measurements at λ(0) = 13.4 nm performed before radiation exposure are in agreement with measurements performed after the exposure, indicating that no sign icant damage had occurred.

  3. Objective for EUV microscopy, EUV lithography, and x-ray imaging

    DOEpatents

    Bitter, Manfred; Hill, Kenneth W.; Efthimion, Philip

    2016-05-03

    Disclosed is an imaging apparatus for EUV spectroscopy, EUV microscopy, EUV lithography, and x-ray imaging. This new imaging apparatus could, in particular, make significant contributions to EUV lithography at wavelengths in the range from 10 to 15 nm, which is presently being developed for the manufacturing of the next-generation integrated circuits. The disclosure provides a novel adjustable imaging apparatus that allows for the production of stigmatic images in x-ray imaging, EUV imaging, and EUVL. The imaging apparatus of the present invention incorporates additional properties compared to previously described objectives. The use of a pair of spherical reflectors containing a concave and convex arrangement has been applied to a EUV imaging system to allow for the image and optics to all be placed on the same side of a vacuum chamber. Additionally, the two spherical reflector segments previously described have been replaced by two full spheres or, more precisely, two spherical annuli, so that the total photon throughput is largely increased. Finally, the range of permissible Bragg angles and possible magnifications of the objective has been largely increased.

  4. Fabrication of 0.25-um electrode width SAW filters using x-ray lithography with a laser plasma source

    NASA Astrophysics Data System (ADS)

    Bobkowski, Romuald; Li, Yunlei; Fedosejevs, Robert; Broughton, James N.

    1996-05-01

    A process for the fabrication of surface acoustic wave (SAW) devices with line widths of 250 nm and less, based on x-ray lithography using a laser-plasma source has been developed. The x-ray lithography process is based on keV x-ray emission from Cu plasma produced by 15 Hz, 50 ps, 248 nm KrF excimer laser pulses. The full structure of a 2 GHz surface acoustic wave filter with interdigital transducers in a split-electrode geometry has been manufactured. The devices require patterning a 150 nm thick aluminum layer on a LiNbO3 substrate with electrodes 250 nm wide. The manufacturing process has two main steps: x-ray mask fabrication employing e-beam lithography and x-ray lithography to obtain the final device. The x-ray masks are fabricated on 1 micrometers thick membranes of Si2N4. The line patterns on the masks are written into PMMA resist using a scanning electron microscope which has been interfaced to a personal computer equipped to control the x and y scan voltages. The opaque regions of the x-ray mask are then formed by electroplating fine grain gold into the open spaces in the etched PMMA. The mask and sample are mounted in an exposure cassette with a fixed spacer of 10 micrometers separating them. The sample consists of a LiNbO3 substrate coated with Shipley XP90104C x-ray resist which has been previously characterized. The x-ray patterning is carried out in an exposure chamber with flowing helium background gas in order to minimize debris deposition on the filters. After etching the x-ray resist, the final patterns are produced using metallization and a standard lift-off technique. The SAW filters are then bonded and packaged onto impedance matching striplines. The resultant devices are tested using Scalar Network Analyzers. The final devices produced had a center frequency of 1.93 GHz with a bandwidth of 98 MHz, close to the expected performance of our simple design.

  5. Vacuum system for room temperature X-ray lithography source (XLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuchman, J.C.

    1988-09-30

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  6. Vacuum system for room temperature X-ray lithography source (XLS)

    NASA Astrophysics Data System (ADS)

    Schuchman, J. C.

    1988-09-01

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  7. Report of the workshop on transferring X-ray Lithography Synchrotron (XLS) technology to industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcuse, W.

    1987-01-01

    This paper reports on plans to develop an x-ray synchrotron for use in lithography. The primary concern of the present paper is technology transfer from national laboratories to private industry. (JDH)

  8. X-ray lithography using holographic images

    DOEpatents

    Howells, M.S.; Jacobsen, C.

    1997-03-18

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  9. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm S.; Jacobsen, Chris

    1997-01-01

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  10. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  11. OSA Proceedings of the Topical Meeting on Soft-X-Ray Projection Lithography Held in Monterey, California on 10-12 April 1991. Volume 12

    DTIC Science & Technology

    1992-05-22

    Carbide because of its high thermal the mirror on its backside or edge. Shott Zerodur conductivity. Edge cooling causes a larger exceeded the limit by about...Characterization Angstrom-level noncontact profiling of mirrors for soft x-ray lithography............ 134 Paul Glenn Nonspecular Scattering from X-Ray...structed by patterning a Mo/Si Tropel Division of GCA Corporation. multilayer coated silicon wafer. The mirrors were coated at AT&T Bell The multilayer

  12. The DARPA compact superconducting x-ray lithography source features. [Defense Advanced Research Projects Agency (DARPA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heese, R.; Kalsi, S.; Leung, E.

    1991-01-01

    Under DARPA sponsorship, a compact Superconducting X-ray Lithography Source (SXLS) is being designed and built by the Brookhaven National Laboratory (BNL) with industry participation from Grumman Corporation and General Dynamics. This source is optimized for lithography work for sub-micron high density computer chips, and is about the size of a billiard table (1.5 m {times} 4.0 m). The machine has a racetrack configuration with two 180{degree} bending magnets being designed and built by General Dynamics under a subcontract with Grumman Corporation. The machine will have 18 photon ports which would deliver light peaked at a wave length of 10 Angstroms.more » Grumman is commercializing the SXLS device and plans to book orders for delivery of industrialized SXLS (ISXLS) versions in 1995. This paper will describe the major features of this device. The commercial machine will be equipped with a fully automated user-friendly control systems, major features of which are already working on a compact warm dipole ring at BNL. This ring has normal dipole magnets with dimensions identical to the SXLS device, and has been successfully commissioned. 4 figs., 1 tab.« less

  13. Parametric studies and characterization measurements of x-ray lithography mask membranes

    NASA Astrophysics Data System (ADS)

    Wells, Gregory M.; Chen, Hector T. H.; Engelstad, Roxann L.; Palmer, Shane R.

    1991-08-01

    The techniques used in the experimental characterization of thin membranes are considered for their potential use as mask blanks for x-ray lithography. Among the parameters of interest for this evaluation are the film's stress, fracture strength, uniformity of thickness, absorption in the x-ray and visible spectral regions and the modulus and grain structure of the material. The experimental techniques used for measuring these properties are described. The accuracy and applicability of the assumptions used to derive the formulas that relate the experimental measurements to the parameters of interest are considered. Experimental results for silicon carbide and diamond films are provided. Another characteristic needed for an x-ray mask carrier is radiation stability. The number of x-ray exposures expected to be performed in the lifetime of an x-ray mask on a production line is on the order of 107. The dimensional stability requirements placed on the membranes during this period are discussed. Interferometric techniques that provide sufficient sensitivity for these stability measurements are described. A comparison is made between the different techniques that have been developed in term of the information that each technique provides, the accuracy of the various techniques, and the implementation issues that are involved with each technique.

  14. Rapid prototyping of Fresnel zone plates via direct Ga(+) ion beam lithography for high-resolution X-ray imaging.

    PubMed

    Keskinbora, Kahraman; Grévent, Corinne; Eigenthaler, Ulrike; Weigand, Markus; Schütz, Gisela

    2013-11-26

    A significant challenge to the wide utilization of X-ray microscopy lies in the difficulty in fabricating adequate high-resolution optics. To date, electron beam lithography has been the dominant technique for the fabrication of diffractive focusing optics called Fresnel zone plates (FZP), even though this preparation method is usually very complicated and is composed of many fabrication steps. In this work, we demonstrate an alternative method that allows the direct, simple, and fast fabrication of FZPs using focused Ga(+) beam lithography practically, in a single step. This method enabled us to prepare a high-resolution FZP in less than 13 min. The performance of the FZP was evaluated in a scanning transmission soft X-ray microscope where nanostructures as small as sub-29 nm in width were clearly resolved, with an ultimate cutoff resolution of 24.25 nm, demonstrating the highest first-order resolution for any FZP fabricated by the ion beam lithography technique. This rapid and simple fabrication scheme illustrates the capabilities and the potential of direct ion beam lithography (IBL) and is expected to increase the accessibility of high-resolution optics to a wider community of researchers working on soft X-ray and extreme ultraviolet microscopy using synchrotron radiation and advanced laboratory sources.

  15. X ray reflection masks: Manufacturing, characterization and first tests

    NASA Astrophysics Data System (ADS)

    Rahn, Stephen

    1992-09-01

    SXPL (Soft X-ray Projection Lithography) multilayer mirrors are characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors with a 2d in the region of 14 nm were characterized by Cu-k(alpha) grazing incidence as well as soft X-ray normal incidence reflectivity measurements. The multilayer mirrors were patterned by reactive ion etching with CF4 using a photoresist as etch mask, thus producing X-ray reflection masks. The masks were tested at the synchrotron radiation laboratory of the electron accelerator ELSA. A double crystal X-ray monochromator was modified so as to allow about 0.5 sq cm of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto a resist and structure sizes down to 8 micrometers were nicely reproduced. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  16. Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography

    NASA Astrophysics Data System (ADS)

    Dany, Raimund

    1992-06-01

    The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.

  17. Method for the fabrication of three-dimensional microstructures by deep X-ray lithography

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-04-05

    A method for the fabrication of three-dimensional microstructures by deep X-ray lithography (DXRL) comprises a masking process that uses a patterned mask with inclined mask holes and off-normal exposures with a DXRL beam aligned with the inclined mask holes. Microstructural features that are oriented in different directions can be obtained by using multiple off-normal exposures through additional mask holes having different orientations. Various methods can be used to block the non-aligned mask holes from the beam when using multiple exposures. A method for fabricating a precision 3D X-ray mask comprises forming an intermediate mask and a master mask on a common support membrane.

  18. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  19. Development of a 0.1 μm linewidth fabrication process for x-ray lithography with a laser plasma source

    NASA Astrophysics Data System (ADS)

    Bobkowski, Romuald; Fedosejevs, Robert; Broughton, James N.

    1999-06-01

    A process has been developed for the purpose of fabricating 0.1 micron linewidth interdigital electrode patterns based on proximity x-ray lithography using a laser-plasma source. Such patterns are required in the manufacture of surface acoustic wave devices. The x-ray lithography was carried out using emission form a Cu plasma produced by a 15Hz, 248nm KrF excimer laser. A temporally multiplexed 50ps duration seed pulse was used to extract the KrF laser energy producing a train of several 50ps pulses spaced approximately 2ns apart within each output pulse. Each short pulse within the train gave the high focal spot intensity required to achieve high efficiency emission of keV x-rays. The first stage of the overall process involves the fabrication of x-ray mask patterns on 1 micron thick Si3N4 membranes using 3-beam lithography followed by gold electroplating. The second stage involves x-ray exposure of a chemically amplified resist through the mask patterns to produce interdigital electrode patterns with 0.1 micron linewidth. Helium background gas and thin polycarbonate/aluminum filters are employed to prevent debris particles from the laser-plasma source form reaching the exposed sample. A computer control system fires the laser and monitors the x-ray flux from the laser-plasma source to insure the desired x-ray exposure is achieved at the resist. In order to reduce diffusion effects in the chemically amplified resist during the post exposure bake the temperature had to be reduced from that normally used. Good reproduction of 0.1 micron linewidth patterns into the x-ray resist was obtained once the exposure parameters and post exposure bake were optimized. A compact exposure station using flowing helium at atmospheric pressure has also been developed for the process, alleviating the need for a vacuum chamber. The details of the overall process and the compact exposure station will be presented.

  20. Chromaticity calculations and code comparisons for x-ray lithography source XLS and SXLS rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsa, Z.

    1988-06-16

    This note presents the chromaticity calculations and code comparison results for the (x-ray lithography source) XLS (Chasman Green, XUV Cosy lattice) and (2 magnet 4T) SXLS lattices, with the standard beam optic codes, including programs SYNCH88.5, MAD6, PATRICIA88.4, PATPET88.2, DIMAD, BETA, and MARYLIE. This analysis is a part of our ongoing accelerator physics code studies. 4 figs., 10 tabs.

  1. VETA-I x ray test analysis

    NASA Technical Reports Server (NTRS)

    Brissenden, R. J. V.; Chartas, G.; Freeman, M. D.; Hughes, J. P.; Kellogg, E. M.; Podgorski, W. A.; Schwartz, D. A.; Zhao, P.

    1992-01-01

    This interim report presents some definitive results from our analysis of the VETA-I x-ray testing data. It also provides a description of the hardware and software used in the conduct of the VETA-I x-ray test program performed at the MSFC x-ray Calibration Facility (XRCF). These test results also serve to supply data and information to include in the TRW final report required by DPD 692, DR XC04. To provide an authoritative compendium of results, we have taken nine papers as published in the SPIE Symposium, 'Grazing Incidence X-ray/EUV Optics for Astronomy and Projection Lithography' and have reproduced them as the content of this report.

  2. Supercritical CO2 drying of poly(methyl methacrylate) photoresist for deep x-ray lithography: a brief note

    NASA Astrophysics Data System (ADS)

    Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt

    2017-07-01

    Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.

  3. Broadband interference lithography at extreme ultraviolet and soft x-ray wavelengths.

    PubMed

    Mojarad, Nassir; Fan, Daniel; Gobrecht, Jens; Ekinci, Yasin

    2014-04-15

    Manufacturing efficient and broadband optics is of high technological importance for various applications in all wavelength regimes. Particularly in the extreme ultraviolet and soft x-ray spectra, this becomes challenging due to the involved atomic absorption edges that rapidly change the optical constants in these ranges. Here we demonstrate a new interference lithography grating mask that can be used for nanopatterning in this spectral range. We demonstrate photolithography with cutting-edge resolution at 6.5 and 13.5 nm wavelengths, relevant to the semiconductor industry, as well as using 2.5 and 4.5 nm wavelength for patterning thick photoresists and fabricating high-aspect-ratio metal nanostructures for plasmonics and sensing applications.

  4. Development of broadband X-ray interference lithography large area exposure system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Chaofan; Wu, Yanqing, E-mail: wuyanqing@sinap.ac.cn, E-mail: zhaojun@sinap.ac.cn, E-mail: tairenzhong@sinap.ac.cn; Zhu, Fangyuan

    2016-04-15

    The single-exposure patterned area is about several 10{sup 2} × 10{sup 2} μm{sup 2} which is mainly decided by the mask area in multi-beam X-ray interference lithography (XIL). The exposure area is difficult to stitch to a larger one because the patterned area is surrounded by 0th diffraction exposure areas. To block the 0th diffraction beams precisely and effectively, a new large area exposure technology is developed in the Shanghai Synchrotron Radiation Facility by applying an order-sorting aperture with a new in situ monitoring scheme in the XIL system. The patterned area could be stitched readily up to several squaremore » centimeters and even bigger by this technology.« less

  5. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  6. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  7. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  8. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  9. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  10. SOR Lithography in West Germany

    NASA Astrophysics Data System (ADS)

    Heuberger, Anton

    1989-08-01

    The 64 Mbit DRAM will represent the first generation of integrated circuits which cannot be produced reasonably by means of optical lithography techniques. X-ray lithography using synchrotron radiation seems to be the most promising method in overcoming the problems in the sub-0.5 micron range. The first year of production of the 64 Mbit DRAM will be 1995 or 1996. This means that X-ray lithography has to show its applicability in an industrial environment by 1992 and has to prove that the specifications of a 64 Mbit DRAM technology can actually be achieved. Part of this task is a demonstration of production suitable equipment such as the X-ray stepper, including an appropriate X-ray source and measurement and inspection tools. The most important bottlenecks on the way toward reaching these goals are linked to the 1 x scale mask technology, especially the pattern definition accuracy and zero level of printing defects down to the order of magnitude of 50 nm. Specifically, fast defect detection methods on the basis of high resolution e-beam techniques and repair methods have to be developed. The other problems of X-ray lithography, such as high quality single layer X-ray resists, X-ray sources and stepper including alignment are either well on the way or are already solved.

  11. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  12. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  13. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  14. Fabrication process for a gradient index x-ray lens

    DOEpatents

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  15. Ultra-short wavelength x-ray system

    DOEpatents

    Umstadter, Donald [Ann Arbor, MI; He, Fei [Ann Arbor, MI; Lau, Yue-Ying [Potomac, MD

    2008-01-22

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  16. ALF: a facility for x-ray lithography II--a progress report

    NASA Astrophysics Data System (ADS)

    Lesoine, L. G.; Kukkonen, Kenneth W.; Leavey, Jeffrey A.

    1992-07-01

    In our previous paper which we presented here two years ago, we described the ALF (Advanced Lithography Facility), IBM's new facility for X-ray lithography which was built as an addition to the Advanced Semiconductor Technology Center at IBM's semiconductor plant in Hopewell Jct., NY. At that time, we described the structure, its utilities, facilities and special features such as the radiation shielding, control room, clean room and vibration resistant design. The building has been completed and occupied. By the time this paper is presented the storage ring will be commissioned, the clean room occupied, and two beamlines with one stepper operational. In this paper we will review the successful completion of the facility with its associated hardware. The installation of the synchrotron will be described elsewhere. We will also discuss the first measurements of vibration, clean room cleanliness and the effectiveness of the radiation shielding. The ALF was completed on schedule and cost objectives were met. This is attributed to careful planning, close cooperation among all the parties involved from the technical team in IBM Research, the system vendor (Oxford Instruments of Oxford England) to the many contractors and subcontractors and to strong support from IBM senior management. All the planned building specifications were met and the facility has come on-line with a minimum of problems. Most important, the initial measurements show that the radiation shielding plan is sound and that with a few modifications the dose limit of 10% of background will be met. Any concerns about an electron accelerator and synchrotron in an industrial setting have been eliminated.

  17. X-ray/VUV transmission gratings for astrophysical and laboratory applications

    NASA Technical Reports Server (NTRS)

    Schattenburg, M. L.; Anderson, E. H.; Smith, Henry I.

    1990-01-01

    This paper describes the techniques used to fabricate deep-submicron-period transmission gratings for astrophysical and laboratory applications, with special attention given to the major steps involved in the transmission grating fabrication. These include the holographic lithography procedure used to pattern the master transmission grating, the fabrication of X-ray mask, the X-ray lithography step used to transfer the X-ray mask pattern into a substrate, and the electroplating of the substrate to form the final grating pattern. The various ways in which transmission gratings can be used in X-ray and VUV spectroscopy are discussed together with some examples of experiments reported in the literature.

  18. Debris-free soft x-ray source with gas-puff target

    NASA Astrophysics Data System (ADS)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  19. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourabh K.; Oakdale, James S.; Cuadra, Jefferson A.

    Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2–3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for themore » evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. We present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer then resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the “feedstock” for radiopaque AM parts, our resist formulation

  20. Radiopaque Resists for Two-Photon Lithography To Enable Submicron 3D Imaging of Polymer Parts via X-ray Computed Tomography

    DOE PAGES

    Saha, Sourabh K.; Oakdale, James S.; Cuadra, Jefferson A.; ...

    2017-11-24

    Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2–3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for themore » evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. We present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer then resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the “feedstock” for radiopaque AM parts, our resist formulation

  1. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  2. Study of a chemically amplified resist for X-ray lithography by Fourier transform infrared spectroscopy.

    PubMed

    Tan, T L; Wong, D; Lee, P; Rawat, R S; Patran, A

    2004-11-01

    Future applications of microelectromechanical systems (MEMS) require lithographic performance of very high aspect ratio. Chemically amplified resists (CARs) such as the negative tone commercial SU-8 provide critical advantages in sensitivity, resolution, and process efficiency in deep ultraviolet, electron-beam, and X-ray lithographies (XRLs), which result in a very high aspect ratio. In this investigation, an SU-8 resist was characterized and optimized for X-ray lithographic applications by studying the cross-linking process of the resist under different conditions of resist thickness and X-ray exposure dose. The exposure dose of soft X-ray (SXR) irradiation at the average weighted wavelength of 1.20 nm from a plasma focus device ranges from 100 to 1600 mJ/cm(2) on the resist surface. Resist thickness varies from 3.5 to 15 mum. The cross-linking process of the resist during post-exposure bake (PEB) was accurately monitored using Fourier transform infrared (FT-IR) spectroscopy. The infrared absorption peaks at 862, 914, 972, and 1128 cm(-1) in the spectrum of the SU-8 resist were found to be useful indicators for the completion of cross-linking in the resist. Results of the experiments showed that the cross-linking of SU-8 was optimized at the exposure dose of 800 mJ/cm(2) for resist thicknesses of 3.5, 9.5, and 15 microm. PEB temperature was set at 95 degrees C and time at 3 min. The resist thickness was measured using interference patterns in the FT-IR spectra of the resist. Test structures with an aspect ratio 3:1 on 10 microm thick SU-8 resist film were obtained using scanning electron microscopy (SEM).

  3. Modeling of projection electron lithography

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2000-07-01

    Projection Electron Lithography (PEL) has recently become a leading candidate for the next generation of lithography systems after the successful demonstration of SCAPEL by Lucent Technologies and PREVAIL by IBM. These systems use a scattering membrane mask followed by a lens with limited angular acceptance range to form an image of the mask when illuminated by high energy electrons. This paper presents an initial modeling system for such types of projection electron lithography systems. Monte Carlo modeling of electron scattering within the mask structure creates an effective mask 'diffraction' pattern, to borrow the standard optical terminology. A cutoff of this scattered pattern by the imaging 'lens' provides an electron energy distribution striking the wafer. This distribution is then convolved with a 'point spread function,' the results of a Monte Carlo scattering calculation of a point beam of electrons striking the resist coated substrate and including the effects of beam blur. Resist exposure and development models from standard electron beam lithography simulation are used to simulate the final three-dimensional resist profile.

  4. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, S.J.; Seppala, L.G.

    1998-04-07

    A critical illumination condenser system is disclosed, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 {micro}m source and requires a magnification of 26. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth. 6 figs.

  5. Critical illumination condenser for x-ray lithography

    DOEpatents

    Cohen, Simon J.; Seppala, Lynn G.

    1998-01-01

    A critical illumination condenser system, particularly adapted for use in extreme ultraviolet (EUV) projection lithography based on a ring field imaging system and a laser produced plasma source. The system uses three spherical mirrors and is capable of illuminating the extent of the mask plane by scanning either the primary mirror or the laser plasma source. The angles of radiation incident upon each mirror of the critical illumination condenser vary by less than eight (8) degrees. For example, the imaging system in which the critical illumination condenser is utilized has a 200 .mu.m source and requires a magnification of 26.times.. The three spherical mirror system constitutes a two mirror inverse Cassegrain, or Schwarzschild configuration, with a 25% area obstruction (50% linear obstruction). The third mirror provides the final pupil and image relay. The mirrors include a multilayer reflective coating which is reflective over a narrow bandwidth.

  6. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  7. Planar techniques for fabricating X-ray diffraction gratings and zone plates

    NASA Technical Reports Server (NTRS)

    Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.

    1984-01-01

    The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.

  8. Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil

    2016-07-27

    Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less

  9. JEUMICO: Czech-Bavarian astronomical X-ray optics project

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Döhring, T.

    2017-07-01

    Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  10. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in

  11. Design and analysis of aspherical multilayer imaging X-ray microscope

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Jiang, WU; Hoover, Richard B.

    1991-01-01

    Spherical Schwarzschild microscopes for soft X-ray applications in microscopy and projection lithography employ two concentric spherical mirrors that are configured such that the third-order spherical aberration and coma are zero. Based on incoherent, sine-wave MTF calculations, the object-plane resolution of a magnification-factor-20 microscope is presently analyzed as a function of object height and numerical aperture of the primary for several spherical Schwarzschild, conic, and aspherical two-mirror microscope configurations.

  12. Observation and theory of X-ray mirages

    PubMed Central

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell–Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography. PMID:23733009

  13. Observation and theory of X-ray mirages.

    PubMed

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell-Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography.

  14. Compact synchrotron radiation depth lithography facility

    NASA Astrophysics Data System (ADS)

    Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.

    1992-01-01

    X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.

  15. Demonstration of Laser Plasma X-Ray Source with X-Ray Collimator Final Report CRADA No. TC-1564-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, S. M.; Forber, R. A.

    2017-09-28

    This collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and JMAR Research, Inc. (JRI), was to demonstrate that LLNL x-ray collimators can effectively increase the wafer throughput of JRI's laser based x-ray lithography systems. The technical objectives were expected to be achieved by completion of the following tasks, which are separated into two task lists by funding source. The organization (LLNL or JMAR) having primary responsibility is given parenthetically for each task.

  16. High throughput fabrication of large-area plasmonic color filters by soft-X-ray interference lithography.

    PubMed

    Sun, Libin; Hu, Xiaolin; Wu, Qingjun; Wang, Liansheng; Zhao, Jun; Yang, Shumin; Tai, Renzhong; Fecht, Hans-Jorg; Zhang, Dong-Xian; Wang, Li-Qiang; Jiang, Jian-Zhong

    2016-08-22

    Plasmonic color filters in mass production have been restricted from current fabrication technology, which impede their applications. Soft-X-ray interference lithography (XIL) has recently generated considerable interest as a newly developed technique for the production of periodic nano-structures with resolution theoretically below 4 nm. Here we ameliorate XIL by adding an order sorting aperture and designing the light path properly to achieve perfect-stitching nano-patterns and fast fabrication of large-area color filters. The fill factor of nanostructures prepared on ultrathin Ag films can largely affect the transmission minimum of plasmonic color filters. By changing the fill factor, the color can be controlled flexibly, improving the utilization efficiency of the mask in XIL simultaneously. The calculated data agree well with the experimental results. Finally, an underlying mechanism has been uncovered after systematically analyzing the localized surface plasmon polaritons (LSPPs) coupling in electric field distribution.

  17. Time Projection Chamber Polarimeters for X-ray Astrophysics

    NASA Astrophysics Data System (ADS)

    Hill, Joanne; Black, Kevin; Jahoda, Keith

    2015-04-01

    Time Projection Chamber (TPC) based X-ray polarimeters achieve the sensitivity required for practical and scientifically significant astronomical observations, both galactic and extragalactic, with a combination of high analyzing power and good quantum efficiency. TPC polarimeters at the focus of an X-ray telescope have low background and large collecting areas providing the ability to measure the polarization properties of faint persistent sources. TPCs based on drifting negative ions rather than electrons permit large detector collecting areas with minimal readout electronics enabling wide field of view polarimeters for observing unpredictable, bright transient sources such as gamma-ray bursts. We described here the design and expected performance of two different TPC polarimeters proposed for small explorer missions: The PRAXyS (Polarimetry of Relativistic X-ray Sources) X-ray Polarimeter Instrument, optimized for observations of faint persistent sources and the POET (Polarimetry of Energetic Transients) Low Energy Polarimeter, designed to detect and measure bright transients. also NASA/GSFC.

  18. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  19. The Swift Supergiant Fast X-ray Transient Project

    NASA Astrophysics Data System (ADS)

    Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.

    2017-10-01

    We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.

  20. Enhanced light extraction of scintillator using large-area photonic crystal structures fabricated by soft-X-ray interference lithography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Zhichao; Wu, Shuang; Liu, Bo, E-mail: lbo@tongji.edu.cn

    2015-06-15

    Soft-X-ray interference lithography is utilized in combination with atomic layer deposition to prepare photonic crystal structures on the surface of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillator in order to extract the light otherwise trapped in the internal of scintillator due to total internal reflection. An enhancement with wavelength- and emergence angle-integration by 95.1% has been achieved. This method is advantageous to fabricate photonic crystal structures with large-area and high-index-contrast which enable a high-efficient coupling of evanescent field and the photonic crystal structures. Generally, the method demonstrated in this work is also suitable for many other light emitting devices where amore » large-area is required in the practical applications.« less

  1. Parabolic crossed planar polymeric x-ray lenses

    NASA Astrophysics Data System (ADS)

    Nazmov, V.; Reznikova, E.; Mohr, J.; Saile, V.; Vincze, L.; Vekemans, B.; Bohic, S.; Somogyi, A.

    2011-01-01

    The principles of design and manufacturing of the polymer planar x-ray lenses focusing in one and two directions, as well as the peculiarities of optical behaviors and the results of the lens test are reported in this paper. The methods of electron and deep x-ray lithography used in lens manufacturing allow the manufacture of ten or more x-ray lenses on one substrate; the lenses show focal lengths down to several centimeters for photon energies between 5 and 40 keV. The measured focus size was 105 nm for a linear lens with an intensity gain of about 407, and 300 × 770 nm for a crossed lens with an intensity gain of 6470.

  2. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, andmore » without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.« less

  3. Polymer X-ray refractive nano-lenses fabricated by additive technology.

    PubMed

    Petrov, A K; Bessonov, V O; Abrashitova, K A; Kokareva, N G; Safronov, K R; Barannikov, A A; Ershov, P A; Klimova, N B; Lyatun, I I; Yunkin, V A; Polikarpov, M; Snigireva, I; Fedyanin, A A; Snigirev, A

    2017-06-26

    The present work demonstrates the potential applicability of additive manufacturing to X-Ray refractive nano-lenses. A compound refractive lens with a radius of 5 µm was produced by the two-photon polymerization induced lithography. It was successfully tested at the X-ray microfocus laboratory source and a focal spot of 5 μm was measured. An amorphous nature of polymer material combined with the potential of additive technologies may result in a significantly enhanced focusing performance compared to the best examples of modern X-ray compound refractive lenses.

  4. Soft X-Ray Projection Lithography. Organization of the Photonics Science Topical Meetings Held in Monterey, California on May 10-12, 1993

    DTIC Science & Technology

    1993-05-10

    00 pm MA3 Two aspheric mirror system design development MB2 Condenser optics for SXPL, Steve Vernon. Vernon Ap- for SXPL, T. E Jewell. Optical Design...Consultant A generalized plied Physics, Gary Sommargren. Lynn Seppala. David Gaines, procedure for an optical design of a two aspheric mirror system...necessary to develop high-rollectance, tionat Laboratories: J. E, B3jorkhotm. R. R. Freeman, M. 0. Himet, normaltýincidence x-ray mirrors tar projection

  5. Inverse Tomo-Lithography for Making Microscopic 3D Parts

    NASA Technical Reports Server (NTRS)

    White, Victor; Wiberg, Dean

    2003-01-01

    According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.

  6. A large format membrane-based x-ray mask for microfluidic chip fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Zhang, Min; Desta, Yohannes; Melzak, J.; Wu, C. H.; Peng, Zhengchun

    2006-02-01

    X-ray lithography is a very good option for the fabrication of micro-devices especially when high aspect ratio patterns are required. Membrane-based x-ray masks are commonly used for high-resolution x-ray lithography. A thin layer of silicon nitride (Si3N4) or silicon carbide (SiC) film (1-2 µm) is normally used as the membrane material for x-ray mask fabrication (Wells G M, Reilly M, Nachman R, Cerrina F, El-Khakani M A and Chaker M 1993 Mater. Res. Soc. Conf. Proc. 306 81-9 Shoki T, Nagasawa H, Kosuga H, Yamaguchi Y, Annaka N, Amemiya I and Nagarekawa O 1993 SPIE Proc. 1924 450-6). The freestanding membrane window of an x-ray mask, which defines the exposing area of the x-ray mask, can be obtained by etching a pre-defined area on a silicon wafer from the backside (Wang L, Desta Y, Fettig R K, Goettert J, Hein H, Jakobs P and Chulz J 2004 J. Micromech. Microeng. 14 722-6). Usually, the window size of an x-ray mask is around 20 × 20 mm because of the low tensile stress of the membrane (10-100 MPa), and the larger window dimension of an x-ray mask may cause the deformation of membranes and lower the mask quality. However, x-ray masks with larger windows are preferred for micro-device fabrication in order to increase the productivity. We analyzed the factors which influence the flatness of large format x-ray masks and fabricated x-ray masks with a window size of 55 × 55 mm and 46 × 65 mm on 1 µm thick membranes by increasing the tensile stress of the membranes (>300 MPa) and optimizing the stress of the absorber layer. The large format x-ray mask was successfully applied for the fabrication of microfluidic chips.

  7. Lattice properties of the Phase I BNL x-ray lithography source obtained from fits to magnetic measurement data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumberg, L.N.; Murphy, J.B.; Reusch, M.F.

    1991-01-01

    The orbit, tune, chromaticity and {beta} values for the Phase 1 XLS ring were computed by numerical integration of equations of motion using fields obtained from the coefficients of the 3-dimensional solution of Laplace's Equation evaluated by fits to magnetic measurements. The results are in good agreement with available data. The method has been extended to higher order fits of TOSCA generated fields in planes normal to the reference axis using the coil configuration proposed for the Superconducting X-Ray Lithography Source. Agreement with results from numerical integration through fields given directly by TOSCA is excellent. The formulation of the normalmore » multipole expansion presented by Brown and Servranckx has been extended to include skew multipole terms. The method appears appropriate for analysis of magnetic measurements of the SXLS. 8 refs. , 2 figs., 2 tabs.« less

  8. Fabrication of Nonperiodic Metasurfaces by Microlens Projection Lithography.

    PubMed

    Gonidec, Mathieu; Hamedi, Mahiar M; Nemiroski, Alex; Rubio, Luis M; Torres, Cesar; Whitesides, George M

    2016-07-13

    This paper describes a strategy that uses template-directed self-assembly of micrometer-scale microspheres to fabricate arrays of microlenses for projection photolithography of periodic, quasiperiodic, and aperiodic infrared metasurfaces. This method of "template-encoded microlens projection lithography" (TEMPL) enables rapid prototyping of planar, multiscale patterns of similarly shaped structures with critical dimensions down to ∼400 nm. Each of these structures is defined by local projection lithography with a single microsphere acting as a lens. This paper explores the use of TEMPL for the fabrication of a broad range of two-dimensional lattices with varying types of nonperiodic spatial distribution. The matching optical spectra of the fabricated and simulated metasurfaces confirm that TEMPL can produce structures that conform to expected optical behavior.

  9. Focusing properties of x-ray polymer refractive lenses from SU-8 resist layer

    NASA Astrophysics Data System (ADS)

    Snigirev, Anatoly A.; Snigireva, Irina; Drakopoulos, Michael; Nazmov, Vladimir; Reznikova, Elena; Kuznetsov, Sergey; Grigoriev, Maxim; Mohr, Jurgen; Saile, Volker

    2003-12-01

    Compound refractive lenses printed in Al and Be are becoming the key X-ray focusing and imaging components of beamline optical layouts at the 3rd generation synchrotron radiation sources. Recently proposed planar optical elements based on Si, diamond etc. may substantially broaden the spectrum of the refractive optics applicability. Planar optics has focal distances ranging from millimeters to tens of meters offering nano- and micro-focusing lenses, as well as beam condensers and collimators. Here we promote deep X-ray lithography and LIGA-type techniques to create high aspect-ratio lens structures for different optical geometries. Planar X-ray refractive lenses were manufactured in 1 mm thick SU-8 negative resist layer by means of deep synchrotron radiation lithography. The focusing properties of lenses were studied at ID18F and BM5 beamlines at the ESRF using monochromatic radiation in the energy range of 10 - 25 keV. By optimizing lens layout, mask making and resist processing, lenses of good quality were fabricated. The resolution of about 270 nm (FWHM) with gain in the order of 300 was measured at 14 keV. In-line holography of B-fiber was realized in imaging and projection mode with a magnification of 3 and 20, respectively. Submicron features of the fiber were clearly resolved. A radiation stability test proved that the fabricated lenses don't change focusing characteristics after dose of absorbed X-ray radiation of about 2 MJ/cm3. The unique radiation stability along with the high effficiency of SU8 lenses opens wide range of their synchrotron radiation applications such as microfocusing elements, condensers and collimators.

  10. X-ray Full Field Microscopy at 30 keV

    NASA Astrophysics Data System (ADS)

    Marschall, F.; Last, A.; Simon, M.; Kluge, M.; Nazmov, V.; Vogt, H.; Ogurreck, M.; Greving, I.; Mohr, J.

    2014-04-01

    In our X-ray full field microscopy experiments, we demonstrated a resolution better than 260 nm over the entire field of view of 80 μm × 80 μm at 30 keV. Our experimental setup at PETRA III, P05, had a length of about 5 m consisting of an illumination optics, an imaging lens and a detector. For imaging, we used a compound refractive lens (CLR) consisting of mr-L negative photo resist, which was fabricated by deep X-ray lithography. As illumination optics, we choose a refractive rolled X-ray prism lens, which was adapted to the numerical aperture of the imaging lens.

  11. Development of reflective optical systems for XUV projection lithography

    NASA Astrophysics Data System (ADS)

    Viswanathan, V. K.; Newnam, B. E.

    We describe two full-field reflective reduction systems (1 and 6.25 sq cm image area) and one scanning system (25 mm x scan length image size) that meet the performance requirements for 0.1-micron resolution projection lithography using extreme-ultraviolet (XUV) wavelengths from 10 to 15 nm. These systems consist of two centered, symmetric, annular aspheric mirrors with 35 to 40 percent central obscuration, providing a reduction ratio of 3.3 x. Outstanding features include the remarkably low distortion (less than or = 10 nm) over the entire image field and the comparatively liberal tolerances on the mirror radii and alignment. While optimized annular illumination can improve the performance, the required performance can be met with full illumination, thereby allowing a simpler system design.

  12. Ion projection lithography: November 2000 status and sub-70-nm prospects

    NASA Astrophysics Data System (ADS)

    Kaesmaier, Rainer; Wolter, Andreas; Loeschner, Hans; Schunck, Stefan

    2000-10-01

    Among all next generation lithography (NGL) options Ion Projection Lithography (IPL) offers the smallest (particle) wavelength of 5x10- 5nm (l00keV Helium ions). Thus, 4x reduction ion-optics has diffraction limits <3nm even when using a numerical aperture as low as NAequals10-5. As part of the European MEDEA IPL project headed by Infineon Technologies wide field ion-optics have been designed by IMS- Vienna with predicted resolution of 50nm within a 12.5mm exposure field. The ion-optics part of the PDT tool (PDT-IOS) has been realized and assembled. In parallel to the PDT-IOS effort, at Leica Jena a test bench for a vertical vacuum 300mm-wafer stage has been realized. Operation of magnetic bearing supported stage movement has already been demonstrated. As ASML vacuum compatible optical wafer alignment system, with 3nm(3(sigma) ) precision demonstrated in air, has been integrated to this wafer test bench system recently. Parallel to the IPL tool development, Infineon Technologies Mask House and the Institute for Microelectronics Stuttgart are intensively working on the development of IPL stencil masks with success in producing 150mm and 200mm stencil masks as reported elsewhere. This paper is focused on information about the status of the PDT-IOS tool.

  13. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  14. Innovative space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.

    2017-11-01

    We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.

  15. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  16. The Role of Project Science in the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Weisskopf, Martin C.

    2006-01-01

    The Chandra X-Ray Observatory, one of NASA's Great Observatories, has an outstanding record of scientific and technical success. This success results from the efforts of a team comprising NASA, its contractors, the Smithsonian Astrophysical Observatory, the instrument groups, and other elements of the scientific community, including thousands of scientists who utilize this powerful facility for astrophysical research. We discuss the role of NASA Project Science in the formulation, development, calibration, and operation of the Chandra X-ray Observatory. In addition to representing the scientific community within the Project, Project Science performed what we term "science systems engineering". This activity encompasses translation of science requirements into technical requirements and assessment of the scientific impact of programmatic and technical trades. We briefly describe several examples of science systems engineering conducted by Chandra Project Science.

  17. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  18. Seven years with the Swift Supergiant Fast X-ray Transients project

    NASA Astrophysics Data System (ADS)

    Romano, P.

    2015-09-01

    Supergiant Fast X-ray Transients (SFXTs) are HMXBs with OB supergiant companions. I review the results of the Swift SFXT project, which since 2007 has been exploiting Swift's capabilities in a systematic study of SFXTs and supergiant X-ray binaries (SGXBs) by combining follow-ups of outbursts, when detailed broad-band spectroscopy is possible, with long-term monitoring campaigns, when the out-of-outburst fainter states can be observed. This strategy has led us to measure their duty cycles as a function of luminosity, to extract their differential luminosity distributions in the soft X-ray domain, and to compare, with unprecedented detail, the X-ray variability in these different classes of sources. I also discuss the ;seventh year crisis;, the challenges that the recent Swift observations are making to the prevailing models attempting to explain the SFXT behavior.

  19. Refractive Optics for Hard X-ray Transmission Microscopy

    NASA Astrophysics Data System (ADS)

    Simon, M.; Ahrens, G.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Voigt, A.

    2011-09-01

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation—resulting in apertures greater than 1 mm—and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  20. Sub-Optical Lithography With Nanometer Definition Masks

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T.; Malek, Chantal Khan; Neogi, Jayant

    2000-01-01

    Nanometer feature size lithography represents a major paradigm shift for the electronics and micro-electro-mechanical industries. In this paper, we discuss the capacity of dynamic focused reactive ion beam (FIB) etching systems to undertake direct and highly anisotropic erosion of thick evaporated gold coatings on boron-doped silicon X-ray mask membranes. FIB offers a new level of flexibility in micro fabrication, allowing for fast fabrication of X-ray masks, where pattern definition and surface alteration are combined in the same step which eliminates the whole lithographic process, in particular resist, resist development, electro-deposition and resist removal. Focused ion beam diameters as small as 7 nm can be obtained enabling fabrication well into the sub-20 nm regime. In preliminary demonstrations of this X-ray mask fabrication technique 22 nm width lines were milled directly through 0.9 microns of gold and a miniature mass spectrometer pattern was milled through over 0.5 microns of gold. Also presented are the results of the shadow printing, using the large depth of field of synchrotron high energy parallel X-ray beam, of these and other sub-optical defined patterns in photoresist conformally coated over surfaces of extreme topographical variation. Assuming that electronic circuits and/or micro devices scale proportionally, the surface area of devices processed with X-ray lithography and 20 nm critical dimension X-ray masks would be 0.5% that of contemporary devices (350 nm CD). The 20 CD mask fabrication represents an initial effort - a further factor of three reduction is anticipated which represents a further order-of-magnitude reduction in die area.

  1. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied.more » The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to

  2. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  3. Microfabrication: LIGA-X and applications

    NASA Astrophysics Data System (ADS)

    Kupka, R. K.; Bouamrane, F.; Cremers, C.; Megtert, S.

    2000-09-01

    X-ray LIGA (Lithography, Electrogrowth, Moulding) is one of today's key technologies in microfabrication and upcoming modern (meso)-(nano) fabrication, already used and anticipated for micromechanics (micromotors, microsensors, spinnerets, etc.), micro-optics, micro-hydrodynamics (fluidic devices), microbiology, in medicine, in biology, and in chemistry for microchemical reactors. It compares to micro-electromechanical systems (MEMS) technology, offering a larger, non-silicon choice of materials and better inherent precision. X-ray LIGA relies on synchrotron radiation to obtain necessary X-ray fluxes and uses X-ray proximity printing. Inherent advantages are its extreme precision, depth of field and very low intrinsic surface roughness. However, the quality of fabricated structures often depends on secondary effects during exposure and effects like resist adhesion. UV-LIGA, relying on thick UV resists is an alternative for projects requiring less precision. Modulating the spectral properties of synchrotron radiation, different regimes of X-ray lithography lead to (a) the mass-fabrication of classical nanostructures, (b) the fabrication of high aspect ratio nanostructures (HARNST), (c) the fabrication of high aspect ratio microstructures (HARMST), and (d) the fabrication of high aspect ratio centimeter structures (HARCST). Reviewing very recent activities around X-ray LIGA, we show the versatility of the method, obviously finding its region of application there, where it is best and other competing microtechnologies are less advantageous. An example of surface-based X-ray and particle lenses (orthogonal reflection optics (ORO)) made by X-ray LIGA is given.

  4. The measurement capabilities of cross-sectional profile of Nanoimprint template pattern using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamanaka, Eiji; Taniguchi, Rikiya; Itoh, Masamitsu; Omote, Kazuhiko; Ito, Yoshiyasu; Ogata, Kiyoshi; Hayashi, Naoya

    2016-05-01

    Nanoimprint lithography (NIL) is one of the most potential candidates for the next generation lithography for semiconductor. It will achieve the lithography with high resolution and low cost. High resolution of NIL will be determined by a high definition template. Nanoimprint lithography will faithfully transfer the pattern of NIL template to the wafer. Cross-sectional profile of the template pattern will greatly affect the resist profile on the wafer. Therefore, the management of the cross-sectional profile is essential. Grazing incidence small angle x-ray scattering (GI-SAXS) technique has been proposed as one of the method for measuring cross-sectional profile of periodic nanostructure pattern. Incident x-rays are irradiated to the sample surface with very low glancing angle. It is close to the critical angle of the total reflection of the x-ray. The scattered x-rays from the surface structure are detected on a two-dimensional detector. The observed intensity is discrete in the horizontal (2θ) direction. It is due to the periodicity of the structure, and diffraction is observed only when the diffraction condition is satisfied. In the vertical (β) direction, the diffraction intensity pattern shows interference fringes reflected to height and shape of the structure. Features of the measurement using x-ray are that the optical constant for the materials are well known, and it is possible to calculate a specific diffraction intensity pattern based on a certain model of the cross-sectional profile. The surface structure is estimated by to collate the calculated diffraction intensity pattern that sequentially while changing the model parameters with the measured diffraction intensity pattern. Furthermore, GI-SAXS technique can be measured an object in a non-destructive. It suggests the potential to be an effective tool for product quality assurance. We have developed a cross-sectional profile measurement of quartz template pattern using GI-SAXS technique. In this

  5. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  6. Fabrication of cobalt magnetic nanostructures using atomic force microscope lithography.

    PubMed

    Chu, Haena; Yun, Seonghun; Lee, Haiwon

    2013-12-01

    Cobalt nanopatterns are promising assemblies for patterned magnetic storage applications. The fabrication of cobalt magnetic nanostructures on n-tridecylamine x hydrochloride (TDA x HCl) self-assembled monolayer (SAM) modified silicon surfaces using direct writing atomic force microscope (AFM) lithography for localized electrochemical reduction of cobalt ions was demonstrated. The ions were reduced to form metal nanowires along the direction of the electricfield between the AFM tip and the substrate. In this lithography process, TDA x HCI SAMs play an important role in the lithography process for improving the resolution of cobalt nanopatterns by preventing nonspecific reduction of cobalt ions on the unwritten background. Cobalt nanowires and nanodots with width of 225 +/- 26 nm and diameter of 208 +/- 28 nm were successfully fabricated. Platinium-coated polydimethylsiloxane (PDMS) stamp was used fabricating bulk cobalt structures which can be detected by energy dispersive X-ray spectroscopy for element analysis and the physical and magnetic properties of these cobalt nanopatterns were characterized using AFM and magnetic force microscope.

  7. Picosecond excimer laser-plasma x-ray source for microscopy, biochemistry, and lithography

    NASA Astrophysics Data System (ADS)

    Turcu, I. C. Edmond; Ross, Ian N.; Trenda, P.; Wharton, C. W.; Meldrum, R. A.; Daido, Hiroyuki; Schulz, M. S.; Fluck, P.; Michette, Alan G.; Juna, A. P.; Maldonado, Juan R.; Shields, Harry; Tallents, Gregory J.; Dwivedi, L.; Krishnan, J.; Stevens, D. L.; Jenner, T.; Batani, Dimitri; Goodson, H.

    1994-02-01

    At Rutherford Appleton Laboratory we developed a high repetition rate, picosecond, excimer laser system which generates a high temperature and density plasma source emitting approximately 200 mW (78 mW/sr) x ray average power at h(nu) approximately 1.2 KeV or 0.28 KeV < h(nu) < 0.53 KeV (the `water window'). At 3.37 nm wavelength the spectral brightness of the source is approximately 9 X 1011 photons/s/mm2/mrad2/0.1% bandwidth. The x-ray source serves a large user community for applications such as: scanning and holographic microscopy, the study of the biochemistry of DNA damage and repair, microlithography and spectroscopy.

  8. Diagnosing and Mapping Pulmonary Emphysema on X-Ray Projection Images: Incremental Value of Grating-Based X-Ray Dark-Field Imaging

    PubMed Central

    Meinel, Felix G.; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö.; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F.; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    Purpose To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Materials and Methods Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Results Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. Conclusion In a murine model, the complementary information provided by X-ray

  9. Diagnosing and mapping pulmonary emphysema on X-ray projection images: incremental value of grating-based X-ray dark-field imaging.

    PubMed

    Meinel, Felix G; Schwab, Felix; Schleede, Simone; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Auweter, Sigrid; Bamberg, Fabian; Yildirim, Ali Ö; Bohla, Alexander; Eickelberg, Oliver; Loewen, Rod; Gifford, Martin; Ruth, Ronald; Reiser, Maximilian F; Pfeiffer, Franz; Nikolaou, Konstantin

    2013-01-01

    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental

  10. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  11. Point Source X-Ray Lithography System for Sub-0.15 Micron Design Rules

    DTIC Science & Technology

    1998-05-22

    consist of a SAL developed stepper, an SRL developed Dense Plasma Focus , (DPF), X-Ray source, and a CXrL developed beam line. The system will be...existing machine that used spark gap switching, SRL has developed an all solid state driver and improved head electrode assembly for their dense plasma ... focus X-Ray source. Likewise, SAL has used their existing Model 4 stepper installed at CXrL as a design starting point, and has developed an advanced

  12. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  13. High-sensitivity x-ray mask damage studies employing holographic gratings and phase-shifting interferometry

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew E.; Cerrina, Franco

    1994-05-01

    A high-sensitivity holographic and interferometric metrology developed at the Center for X- ray Lithography (CXrL) has been employed to investigate in-plane distortions (IPD) produced in x-ray mask materials. This metrology has been applied to characterize damage to x-ray mask materials exposed to synchrotron radiation. X-ray mask damage and accelerated mask damage studies on silicon nitride and silicon carbide were conducted on the Aladdin ES-1 and ES-2 beamline exposure stations, respectively. Accumulated in-plane distortions due to x-ray irradiation were extracted from the incremental interferometric phase maps to yield IPD vs. dose curves for silicon nitride mask blanks. Silicon carbide mask blanks were subjected to accelerated mask damage in the high flux 2 mm X 2 mm beam of the ES-2 exposure station. An accelerated damage study of silicon carbide has shown no in-plane distortion for an accumulated dose of 800 kJ/cm2 with a measurement sensitivity of less than 5 nm.

  14. Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)

    2004-01-01

    Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.

  15. High Throughput Optical Lithography by Scanning a Massive Array of Bowtie Aperture Antennas at Near-Field

    DTIC Science & Technology

    2015-11-03

    scale optical projection system powered by spatial light modulators, such as digital micro-mirror device ( DMD ). Figure 4 shows the parallel lithography ...1Scientific RepoRts | 5:16192 | DOi: 10.1038/srep16192 www.nature.com/scientificreports High throughput optical lithography by scanning a massive...array of bowtie aperture antennas at near-field X. Wen1,2,3,*, A. Datta1,*, L. M. Traverso1, L. Pan1, X. Xu1 & E. E. Moon4 Optical lithography , the

  16. Pulse X-ray device for stereo imaging and few-projection tomography of explosive and fast processes

    NASA Astrophysics Data System (ADS)

    Palchikov, E. I.; Dolgikh, A. V.; Klypin, V. V.; Krasnikov, I. Y.; Ryabchun, A. M.

    2017-10-01

    This paper describes the operation principles and design features of the device for single pulse X-raying of explosive and high-speed processes, developed on the basis of a Tesla transformer with lumped secondary capacitor bank. The circuit with the lumped capacitor bank allows transferring a greater amount of energy to the discharge circuit as compared with the Marks-surge generator for more effective operation with remote X-ray tubes connected by coaxial cables. The device equipped with multiple X-ray tubes provides simultaneous X-raying of extended or spaced objects, stereo imaging, or few-projection tomography.

  17. X-ray nanoprobe project at Taiwan Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Gung-Chian, E-mail: gcyin@nsrrc.org.tw; Chang, Shih-Hung; Chen, Bo-Yi

    2016-07-27

    The hard X-ray nanoprobe facility at Taiwan Photon Source (TPS) provides versatile X-ray analysis techniques, with tens of nanometer resolution, including XRF, XAS, XEOL, projection microscope, CDI, etc. Resulting from the large numerical aperture obtained by utilizing Montel KB mirrors, the beamline with a moderate length 75 meters can conduct similar performance with those beamlines longer than 100 meters. The two silica-made Montel mirrors are 45 degree cut and placed in a V-shape to eliminate the gap loss and the deformation caused by gravity. The slope error of the KB mirror pair is less than 0.04 µrad accomplished by elasticmore » emission machining (EEM) method. For the beamline, a horizontal DCM and two-stage focusing in horizontal direction is applied. For the endstation, a combination of SEM for quickly positioning the sample, a fly scanning system with laser interferometers, a precise temperature control system, and a load lock transfer system will be implemented. In this presentation, the design and construction progress of the beamline and endstation is reported. The endstation is scheduled to be in commissioning phase in 2016.« less

  18. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kirk, E.; Wäckerlin, C.; Schneider, C. W.; Hojeij, M.; Gobrecht, J.; Ekinci, Y.

    2014-06-01

    We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.

  19. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography.

    PubMed

    Wang, L; Kirk, E; Wäckerlin, C; Schneider, C W; Hojeij, M; Gobrecht, J; Ekinci, Y

    2014-06-13

    We present fabrication and characterization of high-resolution and nearly amorphous Mo1 - xNx transmission gratings and their use as masks for extreme ultraviolet (EUV) interference lithography. During sputter deposition of Mo, nitrogen is incorporated into the film by addition of N2 to the Ar sputter gas, leading to suppression of Mo grain growth and resulting in smooth and homogeneous thin films with a negligible grain size. The obtained Mo0.8N0.2 thin films, as determined by x-ray photoelectron spectroscopy, are characterized to be nearly amorphous using x-ray diffraction. We demonstrate a greatly reduced Mo0.8N0.2 grating line edge roughness compared with pure Mo grating structures after e-beam lithography and plasma dry etching. The amorphous Mo0.8N0.2 thin films retain, to a large extent, the benefits of Mo as a phase grating material for EUV wavelengths, providing great advantages for fabrication of highly efficient diffraction gratings with extremely low roughness. Using these grating masks, well-resolved dense lines down to 8 nm half-pitch are fabricated with EUV interference lithography.

  20. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information frommore » a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.« less

  1. Development of XUV projection lithography at 60 to 80 nm

    NASA Astrophysics Data System (ADS)

    Newnam, B. E.; Viswanathan, V. K.

    The rationale, design, component properties, properties, and potential capabilities of extreme-ultraviolet (XUV) projection lithography systems using 60-80 nm illumination and single-surface reflectors are described. These systems are evaluated for potential application to high-volume production of future generations of gigabit chips.

  2. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    REPORT OF PROJECT: Novel chalcogenide materials for x - ray and - ray detection HDTRA1-09-1-0044 Mercouri Kanatzidis , PI Northwestern University...investigated semiconductor for hard radiation detection. The μτ products for electrons however are lower than those of CZT, the leading material for X - ray ...Formation of native defects in the gamma- ray detector material, Cs2Hg6S7 Semiconductor devices detecting hard radiation such as x - rays and

  3. Development of x-ray mask in Taiwan

    NASA Astrophysics Data System (ADS)

    Sheu, Jeng Tzong; Su, Shyang

    1996-05-01

    This paper presents results of using silicon carbide (SiC) and silicon-rich silicon nitride (SiNx) as membrane for X-ray masks in technology of X-ray lithography. Microcrystalline silicon carbide film was deposited on silicon substrate by electron synchrotron resonance plasma-enhanced chemical vapor deposition at 300 degrees C utilizing a SiH4/CH4/H2/Ar gas mixture. Low tensile stress film which is suitable as X-ray membrane can be achieved by annealing after silicon carbide film deposition. The microwave power over 800 watts and the gas ratio (Methane:Silane) larger than 1.5 are needed for the stoichiometry of SiC film. On the other hand, we deposited silicon-rich silicon nitride film on silicon substrate by low pressure chemical vapor deposition at 850 degrees C to 900 degrees C. In order to get low tensile stress film, different gas flow ratios (Dichlorosilane:Ammonia) were tested. The increased gas flow ratio (Dichlorosilane:Ammonia) and the increased deposition temperature are related to the decrease of tensile stress of film. Roughness, uniformity, optical transmittance and soft X-ray transmission of both films are reported. The absorption bands of both films were measured by FTIR spectroscopy. The surface morphology was monitored by AFM. The photon transmission of both films was measured in the range of 400 to 800 nm for visible light and 800 to 1600 ev photon energy for SR soft X-ray transmission was conducted at the Synchrotron Radiation Research Center, Hsinchu, Taiwan. The deposition rate of both films are 13 nm/min and 40 nm/min for silicon nitride and silicon carbide, respectively.

  4. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical

  5. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    NASA Astrophysics Data System (ADS)

    Minami, K.; Saito, Y.; Kai, H.; Shirota, K.; Yada, K.

    2009-09-01

    We have newly developed an open type fine-focus X-ray tube "TX-510" to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The "TX-510" employs a ZrO/W(100) Schottky emitter and an "In-Lens Field Emission Gun". The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  6. Fabrication of high-resolution x-ray diffractive optics at King's College London

    NASA Astrophysics Data System (ADS)

    Charalambous, Pambos S.; Anastasi, Peter A. F.; Burge, Ronald E.; Popova, Katia

    1995-09-01

    The fabrication of high resolution x-ray diffractive optics, and Fresnel zone plates (ZPs) in particular, is a very demanding multifaceted technological task. The commissioning of more (and brighter) synchrotron radiation sources, has increased the number of x-ray imaging beam lines world wide. The availability of cheaper and more effective laboratory x-ray sources, has further increased the number of laboratories involved in x-ray imaging. The result is an ever increasing demand for x-ray optics with a very wide range of specifications, reflecting the particular type of x-ray imaging performed at different laboratories. We have been involved in all aspects of high resolution nanofabrication for a number of years, and we have explored many different methods of lithography, which, although unorthodox, open up possibilities, and increase our flexibility for the fabrication of different diffractive optical elements, as well as other types of nanostructures. The availability of brighter x-ray sources, means that the diffraction efficiency of the ZPs is becoming of secondary importance, a trend which will continue in the future. Resolution, however, is important and will always remain so. Resolution is directly related to the accuracy af pattern generation, as well as the ability to draw fine lines. This is the area towards which we have directed most of our efforts so far.

  7. Scanning digital lithography providing high speed large area patterning with diffraction limited sub-micron resolution

    NASA Astrophysics Data System (ADS)

    Wen, Sy-Bor; Bhaskar, Arun; Zhang, Hongjie

    2018-07-01

    A scanning digital lithography system using computer controlled digital spatial light modulator, spatial filter, infinity correct optical microscope and high precision translation stage is proposed and examined. Through utilizing the spatial filter to limit orders of diffraction modes for light delivered from the spatial light modulator, we are able to achieve diffraction limited deep submicron spatial resolution with the scanning digital lithography system by using standard one inch level optical components with reasonable prices. Raster scanning of this scanning digital lithography system using a high speed high precision x-y translation stage and piezo mount to real time adjust the focal position of objective lens allows us to achieve large area sub-micron resolved patterning with high speed (compared with e-beam lithography). It is determined in this study that to achieve high quality stitching of lithography patterns with raster scanning, a high-resolution rotation stage will be required to ensure the x and y directions of the projected pattern are in the same x and y translation directions of the nanometer precision x-y translation stage.

  8. Nondestructive Imaging of Internal Structures of Frog (Xenopus laevis) Embryos by Shadow-Projection X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Aoki, Sadao; Yoneda, Ikuo; Nagai, Takeharu; Ueno, Naoto; Murakami, Kazuo

    1994-04-01

    Nondestructive high-resolution imaging of frog ( Xenopus laevis) embryos has been developed by X-ray microtomography. Shadow-projection X-ray microtomography with a brilliant fine focus laboratory X-ray source could image fine structures of Xenopus embryos which were embedded in paraffin wax. The imaging system enabled us to not only distinguish endoderm from ectoderm at the gastrula stage, but also to obtain a cross-section view of the tail bud embryo showing muscle, notochord and neural tube without staining. Furthermore, the distribution of myosin was also imaged in combination with whole-mount immunohistochemistry.

  9. Plasma formed ion beam projection lithography system

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  10. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  11. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  12. Direct index of refraction measurements at extreme-ultraviolet and soft-x-ray wavelengths.

    PubMed

    Rosfjord, Kristine; Chang, Chang; Miyakawa, Ryan; Barth, Holly; Attwood, David

    2006-03-10

    Coherent radiation from undulator beamlines has been used to directly measure the real and imaginary parts of the index of refraction of several materials at both extreme-ultraviolet and soft-x-ray wavelengths. Using the XOR interferometer, we measure the refractive indices of silicon and ruthenium, essential materials for extreme-ultraviolet lithography. Both materials are tested at wavelength (13.4 nm) and across silicon's L2 (99.8 eV) and L3 (99.2 eV) absorption edges. We further extend this direct phase measurement method into the soft-x-ray region, where measurements of chromium and vanadium are performed around their L3 absorption edges at 574.1 and 512.1 eV, respectively. These are the first direct measurements, to our knowledge, of the real part of the index of refraction made in the soft-x-ray region.

  13. Development of XUV projection lithography at 60-80 nm (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Newnam, Brian E.; Viswanathan, Vriddhachalam K.

    1992-07-01

    The rationale, design, component properties, and potential capabilities of extreme-ultraviolet (XUV) projection lithography systems using 60 - 80 nm illumination and single-surface reflectors are described. These systems are evaluated for potential application to high-volume production of future generations of gigabit chips.

  14. A final report to the Laboratory Directed Research and Development committee on Project 93-ERP-075: ``X-ray laser propagation and coherence: Diagnosing fast-evolving, high-density laser plasmas using X-ray lasers``

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, A.S.; Cauble, R.; Da Silva, L.B.

    1996-02-01

    This report summarizes the major accomplishments of this three-year Laboratory Directed Research and Development (LDRD) Exploratory Research Project (ERP) entitled ``X-ray Laser Propagation and Coherence: Diagnosing Fast-evolving, High-density Laser Plasmas Using X-ray Lasers,`` tracking code 93-ERP-075. The most significant accomplishment of this project is the demonstration of a new laser plasma diagnostic: a soft x-ray Mach-Zehnder interferometer using a neonlike yttrium x-ray laser at 155 {angstrom} as the probe source. Detailed comparisons of absolute two-dimensional electron density profiles obtained from soft x-ray laser interferograms and profiles obtained from radiation hydrodynamics codes, such as LASNEX, will allow us to validate andmore » benchmark complex numerical models used to study the physics of laser-plasma interactions. Thus the development of soft x-ray interferometry technique provides a mechanism to probe the deficiencies of the numerical models and is an important tool for, the high-energy density physics and science-based stockpile stewardship programs. The authors have used the soft x-ray interferometer to study a number of high-density, fast evolving, laser-produced plasmas, such as the dynamics of exploding foils and colliding plasmas. They are pursuing the application of the soft x-ray interferometer to study ICF-relevant plasmas, such as capsules and hohlraums, on the Nova 10-beam facility. They have also studied the development of enhanced-coherence, shorter-pulse-duration, and high-brightness x-ray lasers. The utilization of improved x-ray laser sources can ultimately enable them to obtain three-dimensional holographic images of laser-produced plasmas.« less

  15. The Marshall Grazing Incidence X-ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Kobayashi, Ken; Winebarger, Amy R.; Savage, Sabrina; Champey, Patrick; Cheimets, Peter N.; Hertz, Edward; Bruccoleri, Alexander R.; Golub, Leon; Ramsey, Brian; Ranganathan, Jaganathan; Marquez, Vanessa; Allured, Ryan; Parker, Theodore; Heilmann, Ralf K.; Schattenburg, Mark L.

    2017-08-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to obtain spatially resolved soft X-ray spectra of the solar atmosphere in the 6-24 Å (0.5-2.0 keV) range. The instrument consists of a single shell Wolter Type-I telescope, a slit, and a spectrometer comprising a matched pair of grazing incidence parabolic mirrors and a planar varied-line space diffraction grating. The instrument is designed to achieve a 50 mÅ spectral resolution and 5 arcsecond spatial resolution along a +/-4-arcminute long slit, and launch is planned for 2019. We report on the status and our approaches for fabrication and alignment for this novel optical system. The telescope and spectrometer mirrors are replicated nickel shells, and are currently being fabricated at the NASA Marshall Space Flight Center. The diffraction grating is currently under development by the Massachusetts Institute of Technology (MIT); because of the strong line spacing variation across the grating, it will be fabricated through e-beam lithography.

  16. Adjustable Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  17. Soft X-ray holographic grating beam splitter including a double frequency grating for interferometer pre-alignment.

    PubMed

    Liu, Ying; Tan, Xin; Liu, Zhengkun; Xu, Xiangdong; Hong, Yilin; Fu, Shaojun

    2008-09-15

    Grating beam splitters have been fabricated for soft X-ray Mach- Zehnder interferometer using holographic interference lithography. The grating beam splitter consists of two gratings, one works at X-ray laser wavelength of 13.9 nm with the spatial frequency of 1000 lines/mm as the operation grating, the other works at visible wavelength of 632.8 nm for pre-aligning the X-ray interferometer with the spatial frequency of 22 lines/mm as the pre-alignment grating. The two gratings lie vertically on the same substrate. The main feature of the beam splitter is the use of low-spatial- frequency beat grating of a holographic double frequency grating as the pre-alignment grating of the X-ray interferometer. The grating line parallelism between the two gratings can be judged by observing the diffraction patterns of the pre-alignment grating directly.

  18. High Resolution X-ray-Induced Acoustic Tomography

    PubMed Central

    Xiang, Liangzhong; Tang, Shanshan; Ahmad, Moiz; Xing, Lei

    2016-01-01

    Absorption based CT imaging has been an invaluable tool in medical diagnosis, biology, and materials science. However, CT requires a large set of projection data and high radiation dose to achieve superior image quality. In this letter, we report a new imaging modality, X-ray Induced Acoustic Tomography (XACT), which takes advantages of high sensitivity to X-ray absorption and high ultrasonic resolution in a single modality. A single projection X-ray exposure is sufficient to generate acoustic signals in 3D space because the X-ray generated acoustic waves are of a spherical nature and propagate in all directions from their point of generation. We demonstrate the successful reconstruction of gold fiducial markers with a spatial resolution of about 350 μm. XACT reveals a new imaging mechanism and provides uncharted opportunities for structural determination with X-ray. PMID:27189746

  19. Compact multi-bounce projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2002-01-01

    An optical system compatible with short wavelength (extreme ultraviolet) radiation comprising four optical elements providing five reflective surfaces for projecting a mask image onto a substrate. The five optical surfaces are characterized in order from object to image as concave, convex, concave, convex and concave mirrors. The second and fourth reflective surfaces are part of the same optical element. The optical system is particularly suited for ring field step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width, which effectively minimizes dynamic distortion.

  20. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  1. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  2. Comparison of different numerical treatments for x-ray phase tomography of soft tissue from differential phase projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelliccia, Daniele; Vaz, Raquel; Svalbe, Imants

    X-ray imaging of soft tissue is made difficult by their low absorbance. The use of x-ray phase imaging and tomography can significantly enhance the detection of these tissues and several approaches have been proposed to this end. Methods such as analyzer-based imaging or grating interferometry produce differential phase projections that can be used to reconstruct the 3D distribution of the sample refractive index. We report on the quantitative comparison of three different methods to obtain x-ray phase tomography with filtered back-projection from differential phase projections in the presence of noise. The three procedures represent different numerical approaches to solve themore » same mathematical problem, namely phase retrieval and filtered back-projection. It is found that obtaining individual phase projections and subsequently applying a conventional filtered back-projection algorithm produces the best results for noisy experimental data, when compared with other procedures based on the Hilbert transform. The algorithms are tested on simulated phantom data with added noise and the predictions are confirmed by experimental data acquired using a grating interferometer. The experiment is performed on unstained adult zebrafish, an important model organism for biomedical studies. The method optimization described here allows resolution of weak soft tissue features, such as muscle fibers.« less

  3. Alternative designs for space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Pína, L.; Maršíková, Veronika; Černá, Daniela; Inneman, A.; Tichý, V.

    2017-11-01

    The X-ray optics is a key element of space X-ray telescopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All related space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non-Wolter X-ray optics designs for the future. The alternative designs require novel reflective substrates which are also discussed in the paper.

  4. Ultraviolet Channeling Dynamics in Gaseous Media for X -- Ray Production

    NASA Astrophysics Data System (ADS)

    McCorkindale, John Charters

    The development of a coherent high brightness / short duration X -- ray source has been of considerable interest to the scientific community as well as various industries since the invention of the technology. Possible applications include X -- ray lithography, biological micro-imaging and the probing of molecular and atomic dynamics. One such source under investigation involves the interaction of a high pulsed power KrF UV laser with a noble gas target (krypton or xenon), producing a photon energy from 1 -- 5 keV. Amplification in this regime requires materials with very special properties found in spatially organized hollow atom clusters. One of the driving forces behind X -- ray production is the UV laser. Theoretical analysis shows that above a critical laser power, the formation of a stable plasma channel in the gaseous medium will occur which can act as a guide for the X-ray pulse and co-propagating UV beam. These plasma channels are visualized with a triple pinhole camera, axial and transverse von Hamos spectrometers and a Thomson scattering setup. In order to understand observed channel morphologies, full characterization of the drive laser was achieved using a Transient Grating -- Frequency Resolved Optical Gating (TG-FROG) technique which gives a full temporal representation of the electric field and associated phase of the ultrashort pulse. Insights gleaned from the TG -- FROG data as well as analysis of photodiode diagnostics placed along the UV laser amplification chain provide explanations for the plasma channel morphology and X -- ray output.

  5. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  6. Biplanar x-ray fluoroscopy for sacroiliac joint fusion.

    PubMed

    Vanaclocha-Vanaclocha, Vicente; Verdú-López, Francisco; Sáiz-Sapena, Nieves; Herrera, Juan Manuel; Rivera-Paz, Marlon

    2016-07-01

    Chronic pain originating from the sacroiliac joint (SI) can cause severe dysfunction. Although many patients respond to conservative management with NSAIDs, some do need further treatment in the form of SI joint fusion (SIJF). To achieve safe and successful SIJF, intraoperative x-ray fluoroscopy is mandatory to avoid serious damages to nearby vascular and neural structures. Each step of the procedure has to be confirmed by anteroposterior (AP) and lateral projections. With a single-arm x-ray, the arch has to be moved back and forth for the AP and lateral projections, and this lengthens the procedure. To achieve the same results in less time, the authors introduced simultaneous biplanar fluoroscopy with 2 x-ray arches. After the patient is positioned prone with the legs spread apart in the so-called Da Vinci position, one x-ray arch for the lateral projection is placed at a right angle to the patient, and a second x-ray machine is placed with its arch between the legs of the patient. This allows simultaneous AP and lateral x-ray projections and, in the authors' hands, markedly speeds up the procedure. Biplanar fluoroscopy allows excellent AP and lateral projections to be made quickly at any time during the surgical procedure. This is particularly useful in cases of bilateral SI joint fusion if both sides are done at the same time. The video can be found here: https://youtu.be/TX5gz8c765M .

  7. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  8. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    PubMed

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  9. High numerical aperture projection system for extreme ultraviolet projection lithography

    DOEpatents

    Hudyma, Russell M.

    2000-01-01

    An optical system is described that is compatible with extreme ultraviolet radiation and comprises five reflective elements for projecting a mask image onto a substrate. The five optical elements are characterized in order from object to image as concave, convex, concave, convex, and concave mirrors. The optical system is particularly suited for ring field, step and scan lithography methods. The invention uses aspheric mirrors to minimize static distortion and balance the static distortion across the ring field width which effectively minimizes dynamic distortion. The present invention allows for higher device density because the optical system has improved resolution that results from the high numerical aperture, which is at least 0.14.

  10. High brightness--multiple beamlets source for patterned X-ray production

    DOEpatents

    Leung, Ka-Ngo [Hercules, CA; Ji, Qing [Albany, CA; Barletta, William A [Oakland, CA; Jiang, Ximan [El Cerrito, CA; Ji, Lili [Albany, CA

    2009-10-27

    Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 .mu.m, with inter-aperture spacings of 12 .mu.m. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.

  11. LENS (lithography enhancement toward nano scale): a European project to support double exposure and double patterning technology development

    NASA Astrophysics Data System (ADS)

    Cantu, Pietro; Baldi, Livio; Piacentini, Paolo; Sytsma, Joost; Le Gratiet, Bertrand; Gaugiran, Stéphanie; Wong, Patrick; Miyashita, Hiroyuki; Atzei, Luisa R.; Buch, Xavier; Verkleij, Dick; Toublan, Olivier; Perez-Murano, Francesco; Mecerreyes, David

    2010-04-01

    In 2009 a new European initiative on Double Patterning and Double Exposure lithography process development was started in the framework of the ENIAC Joint Undertaking. The project, named LENS (Lithography Enhancement Towards Nano Scale), involves twelve companies from five different European Countries (Italy, Netherlands, France, Belgium Spain; includes: IC makers (Numonyx and STMicroelectronics), a group of equipment and materials companies (ASML, Lam Research srl, JSR, FEI), a mask maker (Dai Nippon Photomask Europe), an EDA company (Mentor Graphics) and four research and development institutes (CEA-Leti, IMEC, Centro Nacional de Microelectrónica, CIDETEC). The LENS project aims to develop and integrate the overall infrastructure required to reach patterning resolutions required by 32nm and 22nm technology nodes through the double patterning and pitch doubling technologies on existing conventional immersion exposure tools, with the purpose to allow the timely development of 32nm and 22nm technology nodes for memories and logic devices, providing a safe alternative to EUV, Higher Refraction Index Fluids Immersion Lithography and maskless lithography, which appear to be still far from maturity. The project will cover the whole lithography supply chain including design, masks, materials, exposure tools, process integration, metrology and its final objective is the demonstration of 22nm node patterning on available 1.35 NA immersion tools on high complexity mask set.

  12. Thin-film-based scintillators for hard x-ray microimaging detectors: the ScinTAX Project

    NASA Astrophysics Data System (ADS)

    Rack, A.; Cecilia, A.; Douissard, P.-A.; Dupré, K.; Wesemann, V.; Baumbach, T.; Couchaud, M.; Rochet, X.; Riesemeier, H.; Radtke, M.; Martin, T.

    2014-09-01

    The project ScinTAX developed novel thin scintillating films for the application in high performance X-ray imaging and subsequent introduced new X-ray detectors to the market. To achieve this aim lutetium orthosilicate (LSO) scintillators doped with different activators were grown successfully by liquid phase epitaxy. The high density of LSO (7.4 g/cm3), the effective atomic number (65.2) and the high light yield make this scintillator highly applicable for indirect X-ray detection in which the ionizing radiation is converted into visible light and then registered by a digital detector. A modular indirect detection system has been developed to fully exploit the potential of this thin film scintillator for radiographic and tomographic imaging. The system is compatible for high-resolution imaging with moderate dose as well as adaptable to intense high-dose applications where radiation hard microimaging detectors are required. This proceedings article shall review the achieved performances and technical details on this high-resolution detector system which is now available. A selected example application demonstrates the great potential of the optimized detector system for hard X-ray microimaging, i.e. either to improve image contrast due to the availability of efficient thin crystal films or to reduce the dose to the sample.

  13. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  14. Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning

    NASA Technical Reports Server (NTRS)

    Feldmesser, Howard S. (Inventor); Magee, Thomas C. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor)

    2007-01-01

    Methods and apparatuses for advanced, multiple-projection, dual-energy X-ray absorptiometry scanning systems include combinations of a conical collimator; a high-resolution two-dimensional detector; a portable, power-capped, variable-exposure-time power supply; an exposure-time control element; calibration monitoring; a three-dimensional anti-scatter-grid; and a gantry-gantry base assembly that permits up to seven projection angles for overlapping beams. Such systems are capable of high precision bone structure measurements that can support three dimensional bone modeling and derivations of bone strength, risk of injury, and efficacy of countermeasures among other properties.

  15. X-Ray Polarimetry with GEMS

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    The polarization properties of cosmic X-ray sources are still largely unexplored. The Gravity and Extreme Magnetism SMEX (GEMS) will carry out the first sensitive X-ray polarization survey of a wide range of sources including; accreting compact objects (black holes and neutron stars), AGN, supernova remnants, magnetars and rotation-powered pulsars. GEMS employs grazing-incidence foil mirrors and novel time-projection chamber (TPC) polarimeters leveraging the photoelectric effect to achieve high polarization sensitivity in the 2 - 10 keV band. I will provide an update of the project status, illustrate the expected performance with several science examples, and provide a brief overview of the data analysis challenges

  16. Novel wide-field x-ray optics for space

    NASA Astrophysics Data System (ADS)

    Hudec, René; Pína, Ladislav; Inneman, Adolf

    2017-11-01

    We report on the program of design and development of innovative very wide field X-ray optics for space applications. We describe the idea of wide field X-ray optics of the lobster-eye type of both Angel and Schmidt arrangements. This optics was suggested in 70ies but not yet used in space experiment due to severe manufacturing problems. The lobster-eye X-ray optics may achieve up to 180 degrees (diameter) field of view at angular resolution of order of 1 arcmin. We report on various prototypes of lobster-eye X-ray lenses based on alternative technologies (replicated double sided X-ray reflecting flats, float glass, replicated square channels etc.) as well as on their optical and X-ray tests. We also discuss the importance and performance of lobster-eye X-ray telescopes in future X-ray astronomy projects.

  17. Evaluating structure in thin block copolymer films with soft x-rays (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sunday, Daniel; Liman, Christopher; Hannon, Adam F.; Ren, Jiaxing; Chen, Xuanxuan; Suh, Hyo Seon; de Pablo, Juan J.; Nealey, Paul F.; Kline, R. Joseph

    2017-03-01

    The semiconductor industry is evaluating a variety of approaches for the cost efficient production of future processing and memory generations. Amongst the technologies being explored are multiple patterning steps, extreme ultraviolet (EUV) lithography, multiple-beam electron beam lithography and the directed self-assembly (DSA) of block copolymers (BCPs). BCP DSA utilizes a chemical or topographical template to induce long range order in a thin film of BCP which enhances the resolution of the original pattern. The characterization of buried structure within a DSA BCP film is challenging due to the lack of contrast between the organic materials. Critical-dimension small angle x-ray scattering (CDSAXS) measurements were performed on DSA BCP films, using soft X-rays to tune the contrast, in order to understand the relationship between template structure and film morphology.1 The results of these measurements show that as the width of the guiding stripe widens the arrangement of the BCP on the guiding stripe inverts, shifting from the A block being centered on the guiding stripe to the B block being centered on the guiding stripe. The initial results of integration of mean field simulations into the analysis of scattering data will also be discussed. In addition to examining the BCP structure with CDSAXS, soft X-ray reflectivity2 measurements were performed on BCP to better understand the relationship between interface width for systems with alternative architectures (triblocks) and additives (polymers/ionic liquids). The addition of a selectively associating additive increases the interaction parameter between the two blocks, resulting in the reduction of the interface width and access to smaller pitches. The use of soft X-ray reflectivity allows the evaluation of the distribution of the additive. (1) Sunday, D. F.; Hammond, M. R.; Wang, C.; Wu, W.; Delongchamp, D. M.; Tjio, M.; Cheng, J. Y.; Kline, R. J.; Pitera, J. W. Determination of the Internal Morphology of

  18. X-Ray Detector Simulations - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-04-15

    This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  1. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  2. Technological Challenges to X-Ray FELs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuhn, Heinz-Dieter

    1999-09-16

    There is strong interest in the development of x-ray free electron lasers (x-ray FELs). The interest is driven by the scientific opportunities provided by intense, coherent x-rays. An x-ray FEL has all the characteristics of a fourth-generation source: brightness several orders of magnitude greater than presently achieved in third-generation sources, full transverse coherence, and sub-picosecond long pulses. The SLAC and DESY laboratories have presented detailed design studies for X-Ray FEL user facilities around the 0.1 nm wavelength-regime (LCLS at SLAC, TESLA X-Ray FEL at DESY). Both laboratories are engaged in proof-of-principle experiments are longer wavelengths (TTF FEL Phase I atmore » 71 nm, VISA at 600-800 nm) with results expected in 1999. The technologies needed to achieve the proposed performances are those of bright electron sources, of acceleration systems capable of preserving the brightness of the source, and of undulators capable of meeting the magnetic and mechanical tolerances that are required for operation in the SASE mode. This paper discusses the technological challenges presented by the X-Ray FEL projects.« less

  3. Proximity Effect Correction by Pattern Modified Stencil Mask in Large-Field Projection Electron-Beam Lithography

    NASA Astrophysics Data System (ADS)

    Kobinata, Hideo; Yamashita, Hiroshi; Nomura, Eiichi; Nakajima, Ken; Kuroki, Yukinori

    1998-12-01

    A new method for proximity effect correction, suitable for large-field electron-beam (EB) projection lithography with high accelerating voltage, such as SCALPEL and PREVAIL in the case where a stencil mask is used, is discussed. In this lithography, a large-field is exposed by the same dose, and thus, the dose modification method, which is used in the variable-shaped beam and the cell projection methods, cannot be used in this case. In this study, we report on development of a new proximity effect correction method which uses a pattern modified stencil mask suitable for high accelerating voltage and large-field EB projection lithography. In order to obtain the mask bias value, we have investigated linewidth reduction, due to the proximity effect, in the peripheral memory cell area, and found that it could be expressed by a simple function and all the correction parameters were easily determined from only the mask pattern data. The proximity effect for the peripheral array pattern could also be corrected by considering the pattern density. Calculated linewidth deviation was 3% or less for a 0.07-µm-L/S memory cell pattern and 5% or less for a 0.14-µm-line and 0.42-µm-space peripheral array pattern, simultaneously.

  4. Imaging X-Ray Polarimetry Explorer (IXPE) Risk Management

    NASA Technical Reports Server (NTRS)

    Alexander, Cheryl; Deininger, William D.; Baggett, Randy; Primo, Attina; Bowen, Mike; Cowart, Chris; Del Monte, Ettore; Ingram, Lindsey; Kalinowski, William; Kelley, Anthony; hide

    2018-01-01

    The Imaging X-ray Polarimetry Explorer (IXPE) project is an international collaboration to build and fly a polarization sensitive X-ray observatory. The IXPE Observatory consists of the spacecraft and payload. The payload is composed of three X-ray telescopes, each consisting of a mirror module optical assembly and a polarization-sensitive X-ray detector assembly; a deployable boom maintains the focal length between the optical assemblies and the detectors. The goal of the IXPE Mission is to provide new information about the origins of cosmic X-rays and their interactions with matter and gravity as they travel through space. IXPE will do this by exploiting its unique capability to measure the polarization of X-rays emitted by cosmic sources. The collaboration for IXPE involves national and international partners during design, fabrication, assembly, integration, test, and operations. The full collaboration includes NASA Marshall Space Flight Center (MSFC), Ball Aerospace, the Italian Space Agency (ASI), the Italian Institute of Astrophysics and Space Planetology (IAPS)/Italian National Institute of Astrophysics (INAF), the Italian National Institute for Nuclear Physics (INFN), the University of Colorado (CU) Laboratory for Atmospheric and Space Physics (LASP), Stanford University, McGill University, and the Massachusetts Institute of Technology. The goal of this paper is to discuss risk management as it applies to the IXPE project. The full IXPE Team participates in risk management providing both unique challenges and advantages for project risk management. Risk management is being employed in all phases of the IXPE Project, but is particularly important during planning and initial execution-the current phase of the IXPE Project. The discussion will address IXPE risk strategies and responsibilities, along with the IXPE management process which includes risk identification, risk assessment, risk response, and risk monitoring, control, and reporting.

  5. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.

    PubMed

    Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  6. New trends in space x-ray optics

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface

  7. Unwrapping an Ancient Egyptian Mummy Using X-Rays

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2010-01-01

    This article describes a project of unwrapping an ancient Egyptian mummy using x-ray computed tomography (CT). About 600 x-ray CT images were obtained through the mummified body of a female named Tjetmutjengebtiu (or Jeni for short), who was a singer in the great temple of Karnak in Egypt during the 22nd dynasty (c 945-715 BC). The x-ray CT images…

  8. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  11. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1996-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  14. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    PubMed Central

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909

  15. Accelerated x-ray scatter projection imaging using multiple continuously moving pencil beams

    NASA Astrophysics Data System (ADS)

    Dydula, Christopher; Belev, George; Johns, Paul C.

    2017-03-01

    Coherent x-ray scatter varies with angle and photon energy in a manner dependent on the chemical composition of the scattering material, even for amorphous materials. Therefore, images generated from scattered photons can have much higher contrast than conventional projection radiographs. We are developing a scatter projection imaging prototype at the BioMedical Imaging and Therapy (BMIT) facility of the Canadian Light Source (CLS) synchrotron in Saskatoon, Canada. The best images are obtained using step-and-shoot scanning with a single pencil beam and area detector to capture sequentially the scatter pattern for each primary beam location on the sample. Primary x-ray transmission is recorded simultaneously using photodiodes. The technological challenge is to acquire the scatter data in a reasonable time. Using multiple pencil beams producing partially-overlapping scatter patterns reduces acquisition time but increases complexity due to the need for a disentangling algorithm to extract the data. Continuous sample motion, rather than step-and-shoot, also reduces acquisition time at the expense of introducing motion blur. With a five-beam (33.2 keV, 3.5 mm2 beam area) continuous sample motion configuration, a rectangular array of 12 x 100 pixels with 1 mm sampling width has been acquired in 0.4 minutes (3000 pixels per minute). The acquisition speed is 38 times the speed for single beam step-and-shoot. A system model has been developed to calculate detected scatter patterns given the material composition of the object to be imaged. Our prototype development, image acquisition of a plastic phantom and modelling are described.

  16. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  17. Development of a low-cost x-ray mask for high-aspect-ratio MEM smart structures

    NASA Astrophysics Data System (ADS)

    Ajmera, Pratul K.; Stadler, Stefan; Abdollahi, Neda

    1998-07-01

    A cost-effective process with short fabrication time for making x-ray masks for research and development purposes is described here for fabricating high-aspect ratio microelectromechanical structures using synchrotron based x- ray lithography. Microscope cover glass slides as membrane material is described. Slides with an initial thickness of 175 micrometers are etched to a thickness in the range of 10 - 25 micrometers using a diluted HF and buffered hydrofluoric acid solutions. The thinned slides are glued on supportive mask frames and sputtered with a chromium/silver sandwich layer which acts as a plating base layer for the deposition of the gold absorber. The judicial choice of glue and mask frame material are significant parameters in a successful fabrication process. Gold absorber structures are electroplated on the membrane. Calculations are done for contrast and dose ratio obtained in the photoresist after synchrotron radiation as a function of the mask design parameters. Exposure experiments are performed to prove the applicability of the fabricated x-ray mask.

  18. The X-Ray Variability of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.

    2015-01-01

    Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.

  19. Model-based sphere localization (MBSL) in x-ray projections

    NASA Astrophysics Data System (ADS)

    Sawall, Stefan; Maier, Joscha; Leinweber, Carsten; Funck, Carsten; Kuntz, Jan; Kachelrieß, Marc

    2017-08-01

    The detection of spherical markers in x-ray projections is an important task in a variety of applications, e.g. geometric calibration and detector distortion correction. Therein, the projection of the sphere center on the detector is of particular interest as the used spherical beads are no ideal point-like objects. Only few methods have been proposed to estimate this respective position on the detector with sufficient accuracy and surrogate positions, e.g. the center of gravity, are used, impairing the results of subsequent algorithms. We propose to estimate the projection of the sphere center on the detector using a simulation-based method matching an artificial projection to the actual measurement. The proposed algorithm intrinsically corrects for all polychromatic effects included in the measurement and absent in the simulation by a polynomial which is estimated simultaneously. Furthermore, neither the acquisition geometry nor any object properties besides the fact that the object is of spherical shape need to be known to find the center of the bead. It is shown by simulations that the algorithm estimates the center projection with an error of less than 1% of the detector pixel size in case of realistic noise levels and that the method is robust to the sphere material, sphere size, and acquisition parameters. A comparison to three reference methods using simulations and measurements indicates that the proposed method is an order of magnitude more accurate compared to these algorithms. The proposed method is an accurate algorithm to estimate the center of spherical markers in CT projections in the presence of polychromatic effects and noise.

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  1. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    reconstruction showed that for a scatter magnitude decrease by a factor of 2.4, the molecular sensitivity could almost be doubled. Scatter reduction lowers the amount of noise in the projection datasets and reconstructed images which enhance molecular sensitivity at equal dose. The results support the use of linear polarized x rays to reduce scatter in XFCT imaging. © 2018 American Association of Physicists in Medicine.

  2. ESH assessment of advanced lithography materials and processes

    NASA Astrophysics Data System (ADS)

    Worth, Walter F.; Mallela, Ram

    2004-05-01

    The ESH Technology group at International SEMATECH is conducting environment, safety, and health (ESH) assessments in collaboration with the lithography technologists evaluating the performance of an increasing number of new materials and technologies being considered for advanced lithography such as 157nm photresist and extreme ultraviolet (EUV). By performing data searches for 75 critical data types, emissions characterizations, and industrial hygiene (IH) monitoring during the use of the resist candidates, it has been shown that the best performing resist formulations, so far, appear to be free of potential ESH concerns. The ESH assessment of the EUV lithography tool that is being developed for SEMATECH has identified several features of the tool that are of ESH concern: high energy consumption, poor energy conversion efficiency, tool complexity, potential ergonomic and safety interlock issues, use of high powered laser(s), generation of ionizing radiation (soft X-rays), need for adequate shielding, and characterization of the debris formed by the extreme temperature of the plasma. By bringing these ESH challenges to the attention of the technologists and tool designers, it is hoped that the processes and tools can be made more ESH friendly.

  3. Projection Reduction Exposure with Variable Axis Immersion Lenses (PREVAIL)-A High Throughput E-Beam Projection Approach for Next Generation Lithography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans

    1999-12-01

    Projection reduction exposure with variable axis immersion lenses (PREVAIL) represents the high throughput e-beam projection approach to next generation lithography (NGL), which IBM is pursuing in cooperation with Nikon Corporation as an alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam, so that the beam effectively remains on axis. The resist images obtained with the proof-of-concept (POC) system demonstrate that PREVAIL effectively eliminates off-axis aberrations affecting both the resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield, and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulombinteraction.

  4. Tomographic image reconstruction using x-ray phase information

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  5. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  6. Luminous Binary Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, Rosanne; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    This grant was for the study of Luminous Supersoft X-Ray Sources (SSSs). During the first year a number of projects were completed and new projects were started. The projects include: 1) Time variability of SSSs 2) SSSs in M31; 3) Binary evolution scenarios; and 4) Acquiring new data.

  7. Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars

    NASA Astrophysics Data System (ADS)

    Shemmer, Ohad

    2017-09-01

    We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.

  8. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source.

    PubMed

    Horne, S F; Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported.

  9. A Compact Soft X-Ray Microscope using an Electrode-less Z-Pinch Source

    PubMed Central

    Silterra, J; Holber, W

    2009-01-01

    Soft X-rays (< 1Kev) are of medical interest both for imaging and microdosimetry applications. X-ray sources at this low energy present a technological challenge. Synchrotrons, while very powerful and flexible, are enormously expensive national research facilities. Conventional X-ray sources based on electron bombardment can be compact and inexpensive, but low x-ray production efficiencies at low electron energies restrict this approach to very low power applications. Laser-based sources tend to be expensive and unreliable. Energetiq Technology, Inc. (Woburn, MA, USA) markets a 92 eV, 10W(2pi sr) electrode-less Z-pinch source developed for advanced semiconductor lithography. A modified version of this commercial product has produced 400 mW at 430 eV (2pi sr), appropriate for water window soft X-ray microscopy. The US NIH has funded Energetiq to design and construct a demonstration microscope using this source, coupled to a condenser optic, as the illumination system. The design of the condenser optic matches the unique characteristics of the source to the illumination requirements of the microscope, which is otherwise a conventional design. A separate program is underway to develop a microbeam system, in conjunction with the RARAF facility at Columbia University, NY, USA. The objective is to develop a focused, sub-micron beam capable of delivering > 1 Gy/second to the nucleus of a living cell. While most facilities of this type are coupled to a large and expensive particle accelerator, the Z-pinch X-ray source enables a compact, stand-alone design suitable to a small laboratory. The major technical issues in this system involve development of suitable focusing X-ray optics. Current status of these programs will be reported. PMID:20198115

  10. Practical tolerancing and performance implications for XUV projection lithography reduction systems (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vriddhachalam K.

    1992-07-01

    Practical considerations that will strongly affect the imaging capabilities of reflecting systems for extreme-ultraviolet (XUV) projection lithography include manufacturing tolerances and thermal distortion of the mirror surfaces due to absorption of a fraction of the incident radiation beam. We have analyzed the potential magnitudes of these effects for two types of reflective projection optical designs. We find that concentric, symmetric two-mirror systems are less sensitive to manufacturing errors and thermal distortion than off-axis, four-mirror systems.

  11. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  12. Regularization of nonlinear decomposition of spectral x-ray projection images.

    PubMed

    Ducros, Nicolas; Abascal, Juan Felipe Perez-Juste; Sixou, Bruno; Rit, Simon; Peyrin, Françoise

    2017-09-01

    Exploiting the x-ray measurements obtained in different energy bins, spectral computed tomography (CT) has the ability to recover the 3-D description of a patient in a material basis. This may be achieved solving two subproblems, namely the material decomposition and the tomographic reconstruction problems. In this work, we address the material decomposition of spectral x-ray projection images, which is a nonlinear ill-posed problem. Our main contribution is to introduce a material-dependent spatial regularization in the projection domain. The decomposition problem is solved iteratively using a Gauss-Newton algorithm that can benefit from fast linear solvers. A Matlab implementation is available online. The proposed regularized weighted least squares Gauss-Newton algorithm (RWLS-GN) is validated on numerical simulations of a thorax phantom made of up to five materials (soft tissue, bone, lung, adipose tissue, and gadolinium), which is scanned with a 120 kV source and imaged by a 4-bin photon counting detector. To evaluate the method performance of our algorithm, different scenarios are created by varying the number of incident photons, the concentration of the marker and the configuration of the phantom. The RWLS-GN method is compared to the reference maximum likelihood Nelder-Mead algorithm (ML-NM). The convergence of the proposed method and its dependence on the regularization parameter are also studied. We show that material decomposition is feasible with the proposed method and that it converges in few iterations. Material decomposition with ML-NM was very sensitive to noise, leading to decomposed images highly affected by noise, and artifacts even for the best case scenario. The proposed method was less sensitive to noise and improved contrast-to-noise ratio of the gadolinium image. Results were superior to those provided by ML-NM in terms of image quality and decomposition was 70 times faster. For the assessed experiments, material decomposition was possible

  13. X-ray counterpart candidates for six new γ-ray pulsars

    NASA Astrophysics Data System (ADS)

    Zyuzin, Dmitry A.; Karpova, Anna V.; Shibanov, Yuriy A.

    2018-05-01

    Using archival X-ray data, we have found point-like X-ray counterpart candidates positionally coincident with six γ-ray pulsars discovered recently in the Fermi Gamma-ray Space Telescope data by the Einstein@Home project. The candidates for PSRs J0002+6216, J0554+3107, J1844-0346, and J1105-6037 are detected with Swift, and those for PSRs J0359+5414 and J2017+3625 are detected with Chandra. Despite a low count statistics for some candidates, assuming plausible constraints on the absorbing column density towards the pulsars, we show that X-ray spectral properties for all of them are consistent with those observed for other pulsars. J0359+5414 is the most reliably identified object. We detect a nebula around it, whose spectrum and extent suggest that this is a pulsar wind nebula powered by the pulsar. Associations of J0002+6216 and J1844-0346 with supernova remnants CTB 1 and G28.6-0.1 are proposed.

  14. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-10-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).

  15. Sub-10-ms X-ray tomography using a grating interferometer

    NASA Astrophysics Data System (ADS)

    Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro

    2017-05-01

    An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.

  16. Automatic SMT Inspection With -X-Ray Vision

    NASA Astrophysics Data System (ADS)

    Kuntz, Robert A.; Steinmetz, Peter D.

    1988-02-01

    X-ray is used in many different ways and in a broad variety of applications with today's world. One of the most obvious uses is in the medically related applications. Although less obvious, x-ray is used within industry as well. Inspection of metal castings, pipe-line welds, equipment structures and personal security are just a few. Historically, both medical and industrial x-ray have been dependent on film exposure, development and reading to capture and present the projected image. This process however is labor intensive, time consuming and costly. Correct exposure time and proper view orientation are in question until the film is developed and examined. In many cases, this trial and error causes retakes with the accompanying expense and delays. Recently, due to advances in x-ray tube technology, tubes with microfocus construction have become available. These tubes operate at high enough flux density such that when combined with x-ray to visible light converters, real-time imaging is possible.

  17. Testing the Pairs-Reflection Model with X-Ray Spectral Variability and X-Ray Properties of Complete Samples of Radio-Selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Urry, C. Megan

    1997-01-01

    This grant was awarded to Dr. C. Megan Urry of the Space Telescope Science Institute in response to two successful ADP proposals to use archival Ginga and Rosat X-ray data for 'Testing the Pairs-Reflection model with X-Ray Spectral Variability' (in collaboration with Paola Grandi, now at the University of Rome) and 'X-Ray Properties of Complete Samples of Radio-Selected BL Lacertae Objects' (in collaboration with then-graduate student Rita Sambruna, now a post-doc at Goddard Space Flight Center). In addition, post-docs Joseph Pesce and Elena Pian, and graduate student Matthew O'Dowd, have worked on several aspects of these projects. The grant was originally awarded on 3/01/94; this report covers the full period, through May 1997. We have completed our project on the X-ray properties of radio-selected BL Lacs.

  18. High spatial resolution soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T.

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy tomore » use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.« less

  19. X-Ray Emission from the MUSCLES Exoplanet Host Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander; Schneider, P. Christian; France, Kevin; Loyd, Parke; MUSCLES Team

    2016-07-01

    The MUSCLES (Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems) project is a multi-spectral-region investigation of the high-energy (UV/X-ray) radiation fields of K dwarf / M dwarf exoplanet host stars and how this radiation will influence the evolution of the exoplanet atmospheres. As part of this project we have used Chandra and XMM-Newton to study the X-ray emission from ten (7 M dwarf and 3 K dwarf), nearby (within 15 pc), low mass exoplanet hosts. Typically, we have coordinated the X-ray observations with HST-COS FUV and ground-based optical spectroscopy of the same targets. Even though these stars are generally considered to be inactive we find evidence for significant X-ray variability for many of the M dwarfs observed. In this poster we illustrate the coronal properties of the stars using example light-curves and spectral analyses. The UV and X-ray data are crucial input to the modeling the complete spectral energy distributions for exoplanet studies.This work was supported by Chandra grants GO4-15041X and GO5-16155X and NASA XMM grant NNX16AC09G to the University of Colorado at Boulder. The overall MUSCLES project was undertaken by HST GO programs 12464 and 13650 and supported by STScI grants HST-GO-12464.01 and HST-GO-13650.01 . P.C.S. is supported by an ESA Research Fellowship.

  20. The cosmic X-ray background-IRAS galaxy correlation and the local X-ray volume emissivity

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Lahav, Ofer; Jahoda, Keith; Boldt, Elihu

    1994-01-01

    We have cross-correlated the galaxies from the IRAS 2 Jy redshift survey sample and the 0.7 Jy projected sample with the all-sky cosmic X-ray background (CXB) map obtained from the High Energy Astronomy Observatory (HEAO) 1 A-2 experiment. We have detected a significant correlation signal between surface density of IRAS galaxies and the X-ray background intensity, with W(sub xg) = (mean value of ((delta I)(delta N)))/(mean value of I)(mean value of N)) of several times 10(exp -3). While this correlation signal has a significant implication for the contribution of the local universe to the hard (E greater than 2 keV) X-ray background, its interpretation is model-dependent. We have developed a formulation to model the cross-correlation between CXB surface brightness and galaxy counts. This includes the effects of source clustering and the X-ray-far-infrared luminosity correlation. Using an X-ray flux-limited sample of active galactic nuclei (AGNs), which has IRAS 60 micrometer measurements, we have estimated the contribution of the AGN component to the observed CXB-IRAS galaxy count correlations in order to see whether there is an excess component, i.e., contribution from low X-ray luminosity sources. We have applied both the analytical approach and Monte Carlo simulations for the estimations. Our estimate of the local X-ray volume emissivity in the 2-10 keV band is rho(sub x) approximately = (4.3 +/- 1.2) x 10(exp 38) h(sub 50) ergs/s/cu Mpc, consistent with the value expected from the luminosity function of AGNs alone. This sets a limit to the local volume emissivity from lower luminosity sources (e.g., star-forming galaxies, low-ionization nuclear emission-line regions (LINERs)) to rho(sub x) less than or approximately = 2 x 10(exp 38) h(sub 50) ergs/s/cu Mpc.

  1. Ultrafast X-Ray Coherent Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray freemore » electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.« less

  2. X-ray Radiative Transfer in Protoplanetary Disks with ProDiMo

    NASA Astrophysics Data System (ADS)

    Rab, Christian; Woitke, Peter; Güdel, Manuel; Min, Michiel; Diana Team

    2013-07-01

    X-ray emission is a common property of YSOs. T Tauri stars show X-ray luminosities up to 10^32 erg/s but also Herbig Ae/Be stars can have moderate X-ray emission in the range of 10^28 to 10^31 erg/s. We want to investigate the impact of X-ray radiation on the thermal and chemical structure of protoplanetary discs around these YSOs. Therefore we have added a new X-ray Radiative Transfer module to the radiation thermo-chemical code ProDiMo (Protoplanetary Disc Modeling) extending the existing implementation of X-ray chemistry implemented by Aresu et al. This new module considers gas and dust opacities (including scattering) and a possible X-ray background field. Further we added a new set of FUV - photoreactions to the X-ray chemistry module of ProDiMo as fast electrons created in X-ray ionisation can produce a significant secondary FUV radiation field by exciting atomic or molecular hydrogen. We discuss the importance of these processes on the thermal and chemical structure of the protoplanetary disc, and present them on the basis of a typical T Tauri disc model. This work is performed in the context of the EU FP7-project DIANA (www.diana-project.com).

  3. Einstein X-ray observations of Herbig Ae/Be stars

    NASA Technical Reports Server (NTRS)

    Damiani, F.; Micela, G.; Sciortino, S.; Harnden, F. R., Jr.

    1994-01-01

    We have investigated the X-ray emission from Herbig Ae/Be stars, using the full set of Einstein Imaging Proportional Counter (IPC) observations. Of a total of 31 observed Herbig stars, 11 are confidently identified with X-ray sources, with four additonal dubious identifications. We have used maximum likelihood luminosity functions to study the distribution of X-ray luminosity, and we find that Be stars are significantly brighter in X-rays than Ae stars and that their X-ray luminosity is independent of projected rotational velocity v sin i. The X-ray emission is instead correlated with stellar bolometric luminosity and with effective temperature, and also with the kinetic luminosity of the stellar wind. These results seem to exclude a solar-like origin for the X-ray emission, a possibility suggested by the most recent models of Herbig stars' structure, and suggest an analogy with the X-ray emission of O (and early B) stars. We also observe correlations between X-ray luminosity and the emission at 2.2 microns (K band) and 25 microns, which strengthen the case for X-ray emission of Herbig stars originating in their circumstellar envelopes.

  4. Fabrication and testing of an electrochemical microcell for in situ soft X-ray microspectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Gianoncelli, A.; Kaulich, B.; Kiskinova, M.; Mele, C.; Prasciolu, M.; Sgura, I.; Bozzini, B.

    2013-03-01

    In this paper we report on the fabrication and testing of a novel concept of electrochemical microcell for in-situ soft X-ray microspectroscopy in transmission. The microcell, fabricated by electron-beam lithography, implements an improved electrode design, with optimal current density distribution and minimised ohmic drop, allowing the same three-electrode electrochemical control achievable with traditional cells. Moreover standard electroanalytical measurements, such as cyclic voltammetry, can be routinely performed. As far as the electrolyte is concerned, we selected a room-temperature ionic-liquid. Some of the materials belonging to this class, in addition to a broad range of outstanding electrochemical properties, feature two highlights that are crucial for in situ, soft X-ray transmission work: spinnability, enabling accurate thickness control, and stability to UHV, allowing operation of an open cell in the analysis chamber vacuum (10-6 mbar). The cell can, of course, be used also with non-vacuum stable electrolytes in the sealed version developed in previous work in our group. In this study, the microcell designed, fabricated and tested in situ by applying an anodic polarisation to a Au electrode and following the formation of a distribution of corrosion features. This specific material combination presented in this work does not limit the cell concept, that can implement any electrodic material grown by lithography, any liquid electrolyte and any spinnable solid electrolyte.

  5. The WISSH quasars project. III. X-ray properties of hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Martocchia, S.; Piconcelli, E.; Zappacosta, L.; Duras, F.; Vietri, G.; Vignali, C.; Bianchi, S.; Bischetti, M.; Bongiorno, A.; Brusa, M.; Lanzuisi, G.; Marconi, A.; Mathur, S.; Miniutti, G.; Nicastro, F.; Bruni, G.; Fiore, F.

    2017-12-01

    We performed a survey of the X-ray properties of 41 objects from the WISE/SDSS selected hyper-luminous (WISSH) quasars sample, which includes 86 broad-line quasars with bolometric luminosity LBol ≳ 2 × 1047 erg s-1 shining at z 2-4. We used both proprietary and archival Chandra and XMM-Newton observations. Twenty-one quasars have sufficient quality data to perform a spectroscopic analysis, while for the remaining sources, X-ray properties are derived through hardness-ratio analysis (apart for six sources that result to be undetected). The bulk ( 70%) of the detected WISSH quasars exhibit NH <5 × 1022 cm-2, in agreement with their optical Type 1 AGN classification. All but three quasars show unabsorbed 2-10 keV luminosities L2-10≥ 1045 erg s-1. Thanks to their extreme radiative output across the mid-IR-to-X-ray range, WISSH quasars therefore offer the opportunity to significantly extend and validate the existing relations involving L2-10. Specifically, we studied the X-ray luminosity as a function of (i) X-ray-to-optical (X/O) flux ratio; (ii) mid-IR luminosity (LMIR); (iii) LBol, and (iv) αOX versus 2500 Å luminosity. We find that the WISSH quasars show (i) unreported very low X/O ( <0.1) compared to typical AGN values; (ii) L2-10/LMIR ratios that are significantly smaller than those derived for AGN with lower luminosity; (iii) a large X-ray bolometric correction, kBol,X ≈ 100-1000; and (iv) steep -2≳αOX≳-1.7. These results lead to a scenario in which the X-ray emission of hyper-luminous quasars is relatively weaker compared to lower luminosity AGN. Models predict that such an X-ray weakness can be relevant for the acceleration of powerful high-ionization, emission-line-driven winds, which are commonly detected in the UV spectra of WISSH quasars and can, in turn, perturb the X-ray corona and weaken its emission. Accordingly, hyper-luminous quasars represent the ideal laboratory to study the link between the AGN energy output and wind acceleration

  6. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  7. The TESIS Project: Are Type 2 QSO Hidden in X-Ray Emitting EROs?

    NASA Astrophysics Data System (ADS)

    Severgnini, P.; Della Ceca, R.; Braito, V.; Saracco, P.; Longhetti, M.; Bender, R.; Drory, N.; Feulner, G.; Hopp, U.; Mannucci, F.; Maraston, C.

    X-ray selected EROs are, on average, the hardest X-ray sources in medium and deep X-ray fields. This coupled with their extremely red colors (R-K > 5) suggest that they represent one of the most promising population where looking for high-luminosity (LX > 1044 erg s-1) and X-ray obscured (NH > 1022 cm-2) type2 AGNs, the so called QSO2 (e.g., [5]; [4]; Mignoli et al. submitted to A&A). These latter are predicted in large density by the synthesis model of the Cosmic X-ray background [9] even if only few observational evidences have been found so far (e.g., [1] and references therein; Caccianiga et al. A&A accepted).

  8. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-03-16

    This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most poweful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components relatedto x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-03-16

    This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  10. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  11. X-ray cargo container inspection system with few-view projection imaging

    NASA Astrophysics Data System (ADS)

    Duan, Xinhui; Cheng, Jianping; Zhang, Li; Xing, Yuxiang; Chen, Zhiqiang; Zhao, Ziran

    2009-01-01

    An X-ray cargo inspection system with few-view projection imaging is developed for detecting contraband in air containers. This paper describes this developing inspection system, including its configuration and the process of inspection using three imaging modalities: digital radiography (DR), few view imaging and computed tomography (CT). The few-view imaging can provide 3D images with much faster scanning speed than CT and do great help to quickly locate suspicious cargo in a container. An algorithm to reconstruct tomographic images from severely sparse projection data of few-view imaging is discussed. A cooperative work manner of the three modalities is presented to make the inspection more convenient and effective. Numerous experiments of performance tests and modality comparison are performed on our system for inspecting air containers. Results demonstrate the effectiveness of our methods and implementation of few-view imaging in practical inspection systems.

  12. Table-top laser-driven ultrashort electron and X-ray source: the CIBER-X source project

    NASA Astrophysics Data System (ADS)

    Girardeau-Montaut, Jean-Pierre; Kiraly, Bélà; Girardeau-Montaut, Claire; Leboutet, Hubert

    2000-09-01

    We report on the development of a new laser-driven table-top ultrashort electron and X-ray source, also called the CIBER-X source . X-ray pulses are produced by a three-step process which consists of the photoelectron emission from a thin metallic photocathode illuminated by 16 ps duration laser pulses at 213 nm. The e-gun is a standard Pierce diode electrode type, in which electrons are accelerated by a cw electric field of ˜11 MV/m up to a hole made in the anode. The photoinjector produces a train of 70-80 keV electron pulses of ˜0.5 nC and 20 A peak current at a repetition rate of 10 Hz. The electrons are then transported outside the diode along a path of 20 cm length, and are focused onto a target of thullium by magnetic fields produced by two electromagnetic coils. X-rays are then produced by the impact of electrons on the target. Simulations of geometrical, electromagnetic fields and energetic characteristics of the complete source were performed previously with the assistance of the code PIXEL1 also developed at the laboratory. Finally, experimental electron and X-ray performances of the CIBER-X source as well as its application to very low dose imagery are presented and discussed. source Compacte d' Impulsions Brèves d' Electrons et de Rayons X

  13. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  14. Prototyping iridium coated mirrors for x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Emmerich, Florian; Stehlíková, Veronika; Inneman, Adolf

    2017-05-01

    X-ray astronomy uses space-based telescopes to overcome the disturbing absorption of the Earth's atmosphere. The telescope mirrors are operating at grazing incidence angles and are coated with thin metal films of high-Z materials to get sufficient reflectivity for the high-energy radiation to be observed. In addition the optical payload needs to be light-weighted for launcher mass constrains. Within the project JEUMICO, an acronym for "Joint European Mirror Competence", the Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague started a collaboration to develop mirrors for X-ray telescopes. The X-ray telescopes currently developed within this Bavarian- Czech project are of Lobster eye type optical design. Corresponding mirror segments use substrates of flat silicon wafers which are coated with thin iridium films, as this material is promising high reflectivity in the X-ray range of interest. The deposition of the iridium films is based on a magnetron sputtering process. Sputtering with different parameters, especially by variation of the argon gas pressure, leads to iridium films with different properties. In addition to investigations of the uncoated mirror substrates the achieved surface roughness has been studied. Occasional delamination of the iridium films due to high stress levels is prevented by chromium sublayers. Thereby the sputtering parameters are optimized in the context of the expected reflectivity of the coated X-ray mirrors. In near future measurements of the assembled mirror modules optical performances are planned at an X-ray test facility.

  15. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  16. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  17. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  18. The Mapping X-Ray Fluorescence Spectrometer (MAPX)

    NASA Technical Reports Server (NTRS)

    Blake, David; Sarrazin, Philippe; Bristow, Thomas; Downs, Robert; Gailhanou, Marc; Marchis, Franck; Ming, Douglas; Morris, Richard; Sole, Vincente Armando; Thompson, Kathleen; hide

    2016-01-01

    MapX will provide elemental imaging at =100 micron spatial resolution over 2.5 X 2.5 centimeter areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or alpha-particles / gamma rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of =100 micron and quantitative XRF spectra from Regions of Interest (ROI) 2 centimers = x = 100 micron. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa.

  19. Soft x-ray microscopy and extreme ultraviolet lithography: Imaging in the 20-50 nm regime (abstract) (invited)

    NASA Astrophysics Data System (ADS)

    Attwood, David

    2002-03-01

    Advances in short wavelength optics, covering the range from 1 to 14 nm, are providing new results and new opportunities. Zone plate lenses [E. Anderson et al., J. Vac. Sci. Techno. B 18, 2970 (2000)] for soft x-ray microscopy [G. Denbeaux, Rev. Sci. Instrum. (these proceedings); W. Chao, Proc. SPIE 4146, 171 (2000)] are now made to high accuracy with outer zone widths of 25 nm, and demonstrated resolution of 23 nm with proper illumination and stability. These permit important advances in the study of protein specific transport and structure in the life sciences [C. Larabell (private communication); W. Meyer-Ilse et al., J. Microsc. 201, 395 (2001)] and the study of magnetic materials [P. Fischer et al., J. Synchrotron. Radiat. 8, 325 (2001)] with elemental sensitivity at the resolution of individual domains. Major corporations (members of the EUV Limited Liability Company are Intel, Motorola, AMD, Micron, Infineon, and IBM) are now preparing the path for the fabrication of future computer chips, in the years 2007 and beyond, using multilayer coated reflective optics, which achieve reflectivities of 70% in the 11-14 nm region [T. Barbee et al., Appl. Opt. 24, 883 (1985); C. Montcalm et al., Proc. SPIE 3676, 710 (1999)]. These coated optics are to be incorporated in extreme ultraviolet (EUV) print cameras, known as "steppers." Electronic patterns with features in the range of 50-70 nm have been printed. The first alpha tool stepper recently demonstrated all critical technologies [D. Tichenor et al., Proc. SPIE 4343, 19 (2001)] needed for EUV lithography. Preproduction beta tools are targeted for delivery by leading suppliers [ASML, the Netherlands, at the SPIE Microlithography Conference, Santa Clara, CA, March 2001] in 2004, with high volume production tools available in late 2006 for manufacturing in 2007. New results in these two areas will be discussed in the context of the synergy of science and technology.

  20. Characterizing Complexity of Containerized Cargo X-ray Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guangxing; Martz, Harry; Glenn, Steven

    X-ray imaging can be used to inspect cargos imported into the United States. In order to better understand the performance of X-ray inspection systems, the X-ray characteristics (density, complexity) of cargo need to be quantified. In this project, an image complexity measure called integrated power spectral density (IPSD) was studied using both DNDO engineered cargos and stream-of-commerce (SOC) cargos. A joint distribution of cargo density and complexity was obtained. A support vector machine was used to classify the SOC cargos into four categories to estimate the relative fractions.

  1. An Inquiry-Based Project Focused on the X-Ray Powder Diffraction Analysis of Common Household Solids

    ERIC Educational Resources Information Center

    Hulien, Molly L.; Lekse, Jonathan W.; Rosmus, Kimberly A.; Devlin, Kasey P.; Glenn, Jennifer R.; Wisneski, Stephen D.; Wildfong, Peter; Lake, Charles H.; MacNeil, Joseph H.; Aitken, Jennifer A.

    2015-01-01

    While X-ray powder diffraction (XRPD) is a fundamental analytical technique used by solid-state laboratories across a breadth of disciplines, it is still underrepresented in most undergraduate curricula. In this work, we incorporate XRPD analysis into an inquiry-based project that requires students to identify the crystalline component(s) of…

  2. The Columbia University proton-induced soft x-ray microbeam.

    PubMed

    Harken, Andrew D; Randers-Pehrson, Gerhard; Johnson, Gary W; Brenner, David J

    2011-09-15

    A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 μm × 50 μm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 μm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 μm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 μm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

  3. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat

  4. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  5. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  6. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  7. Strain Imaging of Nanoscale Semiconductor Heterostructures with X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Holt, Martin V.; Hruszkewycz, Stephan O.; Murray, Conal E.; Holt, Judson R.; Paskiewicz, Deborah M.; Fuoss, Paul H.

    2014-04-01

    We report the imaging of nanoscale distributions of lattice strain and rotation in complementary components of lithographically engineered epitaxial thin film semiconductor heterostructures using synchrotron x-ray Bragg projection ptychography (BPP). We introduce a new analysis method that enables lattice rotation and out-of-plane strain to be determined independently from a single BPP phase reconstruction, and we apply it to two laterally adjacent, multiaxially stressed materials in a prototype channel device. These results quantitatively agree with mechanical modeling and demonstrate the ability of BPP to map out-of-plane lattice dilatation, a parameter critical to the performance of electronic materials.

  8. X-Ray Structure determination of the Glycine Cleavage System Protein H of Mycobacterium tuberculosis Using An Inverse Compton Synchrotron X-Ray Source

    PubMed Central

    Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.

    2010-01-01

    Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333

  9. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  10. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  11. Image reconstruction of x-ray tomography by using image J platform

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.

    2017-01-01

    A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.

  12. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  13. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  14. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  15. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  16. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm.

    PubMed

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2011-02-01

    To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, here specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations (alpha, beta, gamma) were estimated with accuracies of 0.6 mm and 2 degrees, respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. This work describes a novel, accurate, fast, and completely automatic method to

  17. Localizing intracavitary brachytherapy applicators from cone-beam CT x-ray projections via a novel iterative forward projection matching algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2011-02-15

    Purpose: To present a novel method for reconstructing the 3D pose (position and orientation) of radio-opaque applicators of known but arbitrary shape from a small set of 2D x-ray projections in support of intraoperative brachytherapy planning. Methods: The generalized iterative forward projection matching (gIFPM) algorithm finds the six degree-of-freedom pose of an arbitrary rigid object by minimizing the sum-of-squared-intensity differences (SSQD) between the computed and experimentally acquired autosegmented projection of the objects. Starting with an initial estimate of the object's pose, gIFPM iteratively refines the pose parameters (3D position and three Euler angles) until the SSQD converges. The object, heremore » specialized to a Fletcher-Weeks intracavitary brachytherapy (ICB) applicator, is represented by a fine mesh of discrete points derived from complex combinatorial geometric models of the actual applicators. Three pairs of computed and measured projection images with known imaging geometry are used. Projection images of an intrauterine tandem and colpostats were acquired from an ACUITY cone-beam CT digital simulator. An image postprocessing step was performed to create blurred binary applicators only images. To quantify gIFPM accuracy, the reconstructed 3D pose of the applicator model was forward projected and overlaid with the measured images and empirically calculated the nearest-neighbor applicator positional difference for each image pair. Results: In the numerical simulations, the tandem and colpostats positions (x,y,z) and orientations ({alpha},{beta},{gamma}) were estimated with accuracies of 0.6 mm and 2 deg., respectively. For experimentally acquired images of actual applicators, the residual 2D registration error was less than 1.8 mm for each image pair, corresponding to about 1 mm positioning accuracy at isocenter, with a total computation time of less than 1.5 min on a 1 GHz processor. Conclusions: This work describes a novel, accurate

  18. Infrared studies of galactic center x-ray sources

    NASA Astrophysics Data System (ADS)

    DeWitt, Curtis

    In this dissertation I use a variety of approaches to discover the nature of a subset of the nearly 10,000 X-ray point sources in the 2° x 0.8° region around the Galactic Center. I produced a JHK s source catalog of the 170 x170 region around Sgr A* an area containing 4339 of these X-ray sources, with the ISPI camera on the CTIO 4-m telescope. I cross-correlated the Chandra and ISPI catalogs to find potential near-infrared (NIR) counterparts to the X-ray sources. The extreme NIR source crowding in the field means that it is not possible to establish the authenticity of the matches with astrometry and photometry alone. I found 2137 IR/X-ray astrometrically matched sources; statistically I calculated that my catalog contains 289+/-13 true matches to soft X-ray sources and 154 +/- 39 matches to hard X-ray sources. However, the fraction of matches to hard sources that are spurious is 90%, compared to 40% for soft source matches, making the hard source NIR matches particularly challenging for spectroscopic follow-up. I statistically investigated the parameter space of matched sources and identified a set of 98 NIR matches to hard X-ray sources with reddenings consistent with the GC distance which have a 45% probability of being true counterparts. I created two additional photometric catalogs of the GC region to investigate the variability of X-ray counterparts over a time baseline of several years. I found 48 variable NIR sources matched to X-ray sources, with 2 spectroscopically confirmed to be true counterparts (1 in previous literature and one in this study). I took spectra of 46 of my best candidates for counterparts to X-ray sources toward the GC, and spectroscopically confirmed 4 sources as the authentic physical counterpart on the basis of emission lines in the H and K band spectra. These sources include a Be high mass X-ray binary located 16 pc in projection away from Sgr A*; a hard X-ray symbiotic binary located 22 pc in projection from Sgr A*; an O

  19. Performance of the PRAXyS X-Ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, Keith M.; Kaaret, P.; Kitaguchi, T.; Kubota, M.

    2016-01-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  20. Performance of the PRAXyS X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Iwakiri, W. B.; Black, J. K.; Cole, R.; Enoto, T.; Hayato, A.; Hill, J. E.; Jahoda, K.; Kaaret, P.; Kitaguchi, T.; Kubota, M.; Marlowe, H.; McCurdy, R.; Takeuchi, Y.; Tamagawa, T.

    2016-12-01

    The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.

  1. Characterizing X-ray Attenuation of Containerized Cargo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birrer, N.; Divin, C.; Glenn, S.

    X-ray inspection systems can be used to detect radiological and nuclear threats in imported cargo. In order to better understand performance of these systems, the attenuation characteristics of imported cargo need to be determined. This project focused on developing image processing algorithms for segmenting cargo and using x-ray attenuation to quantify equivalent steel thickness to determine cargo density. These algorithms were applied to over 450 cargo radiographs. The results are summarized in this report.

  2. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  3. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  4. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  5. Emission Mechanisms in X-Ray Faint Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Brown, B. A.; Bregman, J. N.

    1999-12-01

    To understand the X-ray emission in normal elliptical galaxies, it is important to determine the relative contributions of hot interstellar gas and discrete sources to the observed emission. In X-ray luminous ellipticals, a hot gaseous component dominates the emission from X-ray binaries and other discrete sources. It is expected that, as one looks toward lower X-ray luminous galaxies, that the hot gas will contribute less to the overall X-ray emission and that discrete sources will supply most, if not all of, the observed X-ray emission. Here we examine ROSAT HRI and PSPC data for seventeen optically bright (BT < 11.15) elliptical galaxies with log(LX/L_B) < 29.7 ergs s-1/L⊙ . Radial surface brightness profiles are modeled with a modified King beta model and a de Vaucouleurs r1/4 law (similar to a beta = 0.5 beta model). For galaxy profiles where the two models are easily distinguishable, the models are combined, and fit to the data to determine or set upper limits to the discrete source contribution. The modeled data suggest that X-ray faint elliptical galaxies may still retain a sizable fraction of hot gas, but that emission from discrete sources are a significant component of the total observed X-ray emission. Support for this project has been provided by NASA and the National Academy of Sciences.

  6. The Mapping X-Ray Fluorescence Spectrometer (mapx)

    NASA Astrophysics Data System (ADS)

    Blake, D. F.; Sarrazin, P.; Bristow, T.; Downs, R. T.; Gailhanou, M.; Marchis, F.; Ming, D. W.; Morris, R. V.; Sole, V. A.; Thompson, K.; Walter, P.; Wilson, M.; Yen, A. S.; Webb, S.

    2016-12-01

    MapX will provide elemental imaging at ≤100 µm spatial resolution over 2.5 X 2.5 cm areas, yielding elemental chemistry at or below the scale length where many relict physical, chemical, and biological features can be imaged and interpreted in ancient rocks. MapX is a full-frame spectroscopic imager positioned on soil or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample surface with X-rays or α-particles / γ-rays, resulting in sample X-ray Fluorescence (XRF). Fluoresced X-rays pass through an X-ray lens (X-ray µ-Pore Optic, "MPO") that projects a spatially resolved image of the X-rays onto a CCD. The CCD is operated in single photon counting mode so that the positions and energies of individual photons are retained. In a single analysis, several thousand frames are stored and processed. A MapX experiment provides elemental maps having a spatial resolution of ≤100 µm and quantitative XRF spectra from Regions of Interest (ROI) 2 cm ≤ x ≤ 100 µm. ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. The MapX geometry is being refined with ray-tracing simulations and with synchrotron experiments at SLAC. Source requirements are being determined through Monte Carlo modeling and experiment using XMIMSIM [1], GEANT4 [2] and PyMca [3] and a dedicated XRF test fixture. A flow-down of requirements for both tube and radioisotope sources is being developed from these experiments. In addition to Mars lander and rover missions, MapX could be used for landed science on other airless bodies (Phobos/Deimos, Comet nucleus, asteroids, the Earth's moon, and the icy satellites of the outer planets, including Europa. [1] Schoonjans, T. et al.(2012). Spectrachim. Acta Part B, 70, 10-23. [2] Agostinelli, S. et al. (2003). Nucl. Instr. and Methods in Phys. Research A, 506, 250-303. [3] V.A. Solé et al. (2007). Spectrochim. Acta Part B, 62, 63-68.

  7. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  8. PATIENT RADIATION DOSE FROM CHEST X-RAY EXAMINATIONS IN THE WEST BANK-PALESTINE.

    PubMed

    Lahham, Adnan; Issa, Ahlam; ALMasri, Hussein

    2018-02-01

    Radiation doses to patients resulting from chest X-ray examinations were evaluated in four medical centers in the West Bank and East Jerusalem-Palestine. Absorbed organ and effective doses were calculated for a total of 428 adult male and female patients by using commercially available Monte Carlo based softwares; CALDOSE-X5 and PCXMC-2.0, and hermaphrodite mathematical adult phantoms. Patients were selected randomly from medical records in the time period from November 2014 to February 2015. A database of surveyed patients and exposure factors has been established and includes: patient's height, weight, age, gender, X-ray tube voltage, electric current (mAs), examination projection (anterior posterior (AP), posterior anterior (PA), lateral), X-ray tube filtration thickness in each X-ray equipment, anode angle, focus to skin distance and X-ray beam size. The average absorbed doses in the whole body from different projections were: 0.06, 0.07 and 0.11 mGy from AP, PA and lateral projections, respectively. The average effective dose for all surveyed patients was 0.14 mSv for all chest X-ray examinations and projections in the four investigated medical centers. The effect of projection geometry was also investigated. The average effective doses for AP, PA and lateral projections were 0.14, 0.07 and 0.22 mSv, respectively. The collective effective dose estimated for the exposed population was ~60 man-mSv. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Use of the posteroanterior projection: a method of reducing x-ray exposure to specific radiosensitive organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, E.D.; Stears, J.G.; Gray, J.E.

    The posteroanterior projection was studied to determine if it could be a substitute for the commonly used anteroposterior projection as a method of reducing x-ray exposure to specific radiosensitive organs during intracranial tomography and scoliosis radiography. The use of the posteroanterior projection resulted in a reduction of 95% in exposure to the lens of the eye during intracranial tomography and of more than 90% to the thyroid, sternum, and breasts during scoliosis radiography. In addition to the major reduction in radiation exposure, the diagnostic capability of the examination was not reduced and comfort in most patients was not affected.

  10. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  11. An update on X-ray reflection gratings developed for future missions

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2018-01-01

    X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.

  12. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  13. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  14. Chandra X-Ray Observatory (CXO) on Orbit Animation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an on-orbit animation of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the remnants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  15. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  16. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  17. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  18. Chandra X-Ray Observatory High Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.

  19. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  20. X-ray phase imaging-From static observation to dynamic observation-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, A.; Yashiro, W.; Olbinado, M. P.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase imagesmore » and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.« less

  1. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  2. Classification of X-ray sources in the direction of M31

    NASA Astrophysics Data System (ADS)

    Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.

    2012-01-01

    M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.

  3. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  4. Picosecond x-ray diagnostics for third and fourth generation synchrotron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCamp, Matthew

    2016-03-30

    In the DOE-EPSCoR State/National Laboratory partnership grant ``Picosecond x-ray diagnostics for third and fourth generation synchrotron sources'' Dr. DeCamp set forth a partnership between the University of Delaware and Argonne National Laboratory. This proposal aimed to design and implement a series of experiments utilizing, or improving upon, existing time-domain hard x-ray spectroscopies at a third generation synchrotron source. Specifically, the PI put forth three experimental projects to be explored in the grant cycle: 1) implementing a picosecond ``x-ray Bragg switch'' using a laser excited nano-structured metallic film, 2) designing a robust x-ray optical delay stage for x-ray pump-probe studies atmore » a hard x-ray synchrotron source, and 3) building/installing a laser based x-ray source at the Advanced Photon Source for two-color x-ray pump-probe studies.« less

  5. Full-field x-ray nano-imaging at SSRF

    NASA Astrophysics Data System (ADS)

    Deng, Biao; Ren, Yuqi; Wang, Yudan; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2013-09-01

    Full field X-ray nano-imaging focusing on material science is under developing at SSRF. A dedicated full field X-ray nano-imaging beamline based on bending magnet will be built in the SSRF phase-II project. The beamline aims at the 3D imaging of the nano-scale inner structures. The photon energy range is of 5-14keV. The design goals with the field of view (FOV) of 20μm and a spatial resolution of 20nm are proposed at 8 keV, taking a Fresnel zone plate (FZP) with outermost zone width of 25 nm. Futhermore, an X-ray nano-imaging microscope is under developing at the SSRF BL13W beamline, in which a larger FOV will be emphasized. This microscope is based on a beam shaper and a zone plate using both absorption contrast and Zernike phase contrast, with the optimized energy set to 10keV. The detailed design and the progress of the project will be introduced.

  6. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  7. Synchrotron-based coherent scatter x-ray projection imaging using an array of monoenergetic pencil beams.

    PubMed

    Landheer, Karl; Johns, Paul C

    2012-09-01

    Traditional projection x-ray imaging utilizes only the information from the primary photons. Low-angle coherent scatter images can be acquired simultaneous to the primary images and provide additional information. In medical applications scatter imaging can improve x-ray contrast or reduce dose using information that is currently discarded in radiological images to augment the transmitted radiation information. Other applications include non-destructive testing and security. A system at the Canadian Light Source synchrotron was configured which utilizes multiple pencil beams (up to five) to create both primary and coherent scatter projection images, simultaneously. The sample was scanned through the beams using an automated step-and-shoot setup. Pixels were acquired in a hexagonal lattice to maximize packing efficiency. The typical pitch was between 1.0 and 1.6 mm. A Maximum Likelihood-Expectation Maximization-based iterative method was used to disentangle the overlapping information from the flat panel digital x-ray detector. The pixel value of the coherent scatter image was generated by integrating the radial profile (scatter intensity versus scattering angle) over an angular range. Different angular ranges maximize the contrast between different materials of interest. A five-beam primary and scatter image set (which had a pixel beam time of 990 ms and total scan time of 56 min) of a porcine phantom is included. For comparison a single-beam coherent scatter image of the same phantom is included. The muscle-fat contrast was 0.10 ± 0.01 and 1.16 ± 0.03 for the five-beam primary and scatter images, respectively. The air kerma was measured free in air using aluminum oxide optically stimulated luminescent dosimeters. The total area-averaged air kerma for the scan was measured to be 7.2 ± 0.4 cGy although due to difficulties in small-beam dosimetry this number could be inaccurate.

  8. REBL: design progress toward 16 nm half-pitch maskless projection electron beam lithography

    NASA Astrophysics Data System (ADS)

    McCord, Mark A.; Petric, Paul; Ummethala, Upendra; Carroll, Allen; Kojima, Shinichi; Grella, Luca; Shriyan, Sameet; Rettner, Charles T.; Bevis, Chris F.

    2012-03-01

    REBL (Reflective Electron Beam Lithography) is a novel concept for high speed maskless projection electron beam lithography. Originally targeting 45 nm HP (half pitch) under a DARPA funded contract, we are now working on optimizing the optics and architecture for the commercial silicon integrated circuit fabrication market at the equivalent of 16 nm HP. The shift to smaller features requires innovation in most major subsystems of the tool, including optics, stage, and metrology. We also require better simulation and understanding of the exposure process. In order to meet blur requirements for 16 nm lithography, we are both shrinking the pixel size and reducing the beam current. Throughput will be maintained by increasing the number of columns as well as other design optimizations. In consequence, the maximum stage speed required to meet wafer throughput targets at 16 nm will be much less than originally planned for at 45 nm. As a result, we are changing the stage architecture from a rotary design to a linear design that can still meet the throughput requirements but with more conventional technology that entails less technical risk. The linear concept also allows for simplifications in the datapath, primarily from being able to reuse pattern data across dies and columns. Finally, we are now able to demonstrate working dynamic pattern generator (DPG) chips, CMOS chips with microfabricated lenslets on top to prevent crosstalk between pixels.

  9. Bulk vertical micromachining of single-crystal sapphire using inductively coupled plasma etching for x-ray resonant cavities

    NASA Astrophysics Data System (ADS)

    Chen, P.-C.; Lin, P.-T.; Mikolas, D. G.; Tsai, Y.-W.; Wang, Y.-L.; Fu, C.-C.; Chang, S.-L.

    2015-01-01

    To provide coherent x-ray sources for probing the dynamic structures of solid or liquid biological substances on the picosecond timescale, a high-aspect-ratio x-ray resonator cavity etched from a single crystal substrate with a nearly vertical sidewall structure is required. Although high-aspect-ratio resonator cavities have been produced in silicon, they suffer from unwanted multiple beam effects. However, this problem can be avoided by using the reduced symmetry of single-crystal sapphire in which x-ray cavities may produce a highly monochromatic transmitted x-ray beam. In this study, we performed nominal 100 µm deep etching and vertical sidewall profiles in single crystal sapphire using inductively coupled plasma (ICP) etching. The large depth is required to intercept a useful fraction of a stopped-down x-ray beam, as well as for beam clearance. An electroplated Ni hard mask was patterned using KMPR 1050 photoresist and contact lithography. The quality and performance of the x-ray cavity depended upon the uniformity of the cavity gap and therefore verticality of the fabricated vertical sidewall. To our knowledge, this is the first report of such deep, vertical etching of single-crystal sapphire. A gas mixture of Cl2/BCl3/Ar was used to etch the sapphire with process variables including BCl3 flow ratio and bias power. By etching for 540 min under optimal conditions, we obtained an x-ray resonant cavity with a depth of 95 µm, width of ~30 µm, gap of ~115 µm and sidewall profile internal angle of 89.5°. The results show that the etching parameters affected the quality of the vertical sidewall, which is essential for good x-ray resonant cavities.

  10. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  11. X-ray simulation algorithms used in ISP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, John P.

    ISP is a simulation code which is sometimes used in the USNDS program. ISP is maintained by Sandia National Lab. However, the X-ray simulation algorithm used by ISP was written by scientists at LANL – mainly by Ed Fenimore with some contributions from John Sullivan and George Neuschaefer and probably others. In email to John Sullivan on July 25, 2016, Jill Rivera, ISP project lead, said “ISP uses the function xdosemeters_sim from the xgen library.” The is a fortran subroutine which is also used to simulate the X-ray response in consim (a descendant of xgen). Therefore, no separate documentation ofmore » the X-ray simulation algorithms in ISP have been written – the documentation for the consim simulation can be used.« less

  12. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  13. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  14. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary

  15. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  16. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Hill, Joe; Barthelmy, S.; Black, K.; Deines-Jones, P.; Jahoda, K.; Sakamoto, T.; Kaaret, P.; McConnell, M.; Bloser, P.; hide

    2007-01-01

    Tihs is a viewgraph presentation of a discussion of the X-ray Polarimeter. Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  17. Improving education and supervision of Queensland X-ray Operators through video conference technology: A teleradiography pilot project.

    PubMed

    Rawle, Marnie; Oliver, Tanya; Pighills, Alison; Lindsay, Daniel

    2017-12-01

    X-ray Operator (XO) supervision in Queensland is performed by radiographers in a site removed from the XO site. This has historically been performed by telephone when the XO requires immediate help, as well as post-examination through radiographer review and the provision of written feedback on images produced. This project aimed to improve image quality through the provision of real-time support of XOs by the introduction of video conference (VC) supervision. A 6-month pilot project compared image quality with and without VC supervision. VC equipment was installed in the X-ray room at two rural sites, as well as at the radiographer site, to enable visual and oral supervision. The VC unit enabled visualisation of the X-ray examination technique as it was being undertaken, as well as the images produced prior to transmission to the Picture Archiving and Communication System (PACS). Statistically significant improvement in image quality criteria measures were seen for patient positioning (P = 0.008), image quality (P < 0.001) and diagnostic value (P < 0.001) of images taken during this project. No statistically significant differences were seen during case level assessment in the inclusion of only appropriate imaging (P = 0.06), and the inclusion of unacceptable imaging (P = 0.06), however improvements were seen in both of these criteria. The survey revealed 24.6% of examinations performed would normally have involved the XO contacting the radiographer for assistance, although, assistance was actually provided in 88.3% of examinations. This project has demonstrated that significant improvement in image quality is achievable with VC supervision. A larger study with a control arm that did not receive direct supervision should be used to validate the findings of this study. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand

  18. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  19. Active x-ray optics for high resolution space telescopes

    NASA Astrophysics Data System (ADS)

    Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy

    2017-11-01

    The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin

  20. Soft x-ray holographic tomography for biological specimens

    NASA Astrophysics Data System (ADS)

    Gao, Hongyi; Chen, Jianwen; Xie, Honglan; Li, Ruxin; Xu, Zhizhan; Jiang, Shiping; Zhang, Yuxuan

    2003-10-01

    In this paper, we present some experimental results on X -ray holography, holographic tomography, and a new holographic tomography method called pre-amplified holographic tomography is proposed. Due to the shorter wavelength and the larger penetration depths, X-rays provide the potential of higher resolution in imaging techniques, and have the ability to image intact, living, hydrated cells w ithout slicing, dehydration, chemical fixation or stain. Recently, using X-ray source in National Synchrotron Radiation Laboratory in Hefei, we have successfully performed some soft X-ray holography experiments on biological specimen. The specimens used in the experiments was the garlic clove epidermis, we got their X-ray hologram, and then reconstructed them by computer programs, the feature of the cell walls, the nuclei and some cytoplasm were clearly resolved. However, there still exist some problems in realization of practical 3D microscopic imaging due to the near-unity refractive index of the matter. There is no X-ray optics having a sufficient high numerical aperture to achieve a depth resolution that is comparable to the transverse resolution. On the other hand, computer tomography needs a record of hundreds of views of the test object at different angles for high resolution. This is because the number of views required for a densely packed object is equal to the object radius divided by the desired depth resolution. Clearly, it is impractical for a radiation-sensitive biological specimen. Moreover, the X-ray diffraction effect makes projection data blur, this badly degrades the resolution of the reconstructed image. In order to observe 3D structure of the biological specimens, McNulty proposed a new method for 3D imaging called "holographic tomography (HT)" in which several holograms of the specimen are recorded from various illumination directions and combined in the reconstruction step. This permits the specimens to be sampled over a wide range of spatial

  1. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  2. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  3. Porosity characteristics of ultra-low dielectric insulator films directly patterned by nano-imprint lithography

    NASA Astrophysics Data System (ADS)

    Ro, Hyun Wook; Jones, Ronald L.; Peng, Huagen; Lee, Hae-Jeong; Lin, Eric K.; Karim, Alamgir; Yoon, Do Y.; Gidley, David W.; Soles, Christopher L.

    2008-03-01

    Direct patterning of low-dielectric constant (low-k) materials via nanoimprint lithography (NIL) has the potential to simplify fabrication processes and significantly reduce the manufacturing costs for semiconductor devices. We report direct imprinting of sub-100 nm features into a high modulus methylsilsesquioxane-based organosilicate glass (OSG) material. An excellent fidelity of the pattern transfer process is quantified with nm precision using critical dimension small angle X-ray scattering (CD-SAXS) and specular X-ray reflectivity (SXR). X-ray porosimetry (XRP) and positron annihilation lifetime spectroscopy (PALS) measurements indicate that imprinting increases the inherent microporosity of the methylsilsequioxane-based OSG material. When a porogen (pore generating material) is added, imprinting decreases the population of mesopores associated with the porogen while retaining the enhanced microporosity. The net effect is a decrease the pore interconnectivity. There is also evidence for a sealing effect that is interpreted as an imprint induced dense skin at the surface of the porous pattern.

  4. Physics of Accretion in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Vrtilek, Saeqa D.

    2004-01-01

    This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of {\\it simultaneous} X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these Observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.

  5. Slumped glass foils as substrate for adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Salmaso, Bianca; Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Pelliciari, Carlo; Spiga, Daniele; Vecchi, Gabriele; Pareschi, Giovanni

    2016-09-01

    Thin glass modular mirrors are a viable solution to build future X-ray telescopes with high angular resolution and large collecting area. In our laboratories, we shape thin glass foils by hot slumping and we apply pressure to assist the replication of a cylindrical mould figure; this technology is coupled with an integration process able to damp low frequency errors and produces optics in the Wolter I configuration, typical for the X-ray telescopes. From the point of view of the hot slumping process, the efforts were focused in reducing low-, mid- and high- frequency errors of the formed Eagle glass foils. Some of our slumped glass foils were used for the development of active X-ray optics, where piezoelectric actuators are used to correct the slumped glass foil deviations from the ideal shape. In particular, they were used for the Adjustable X-raY optics for astrOnoMy project (AXYOM) developed in Italy, and the X-ray Surveyor mission, as developed at the Smithsonian Astrophysical Observatory / Center for Astrophysics (SAO/CfA) in USA. In this paper we describe the optimisation of the hot slumping process, comparing the results with the requirements of the considered active optics projects. Finally, since the present configuration of the Pennsylvania State University (PSU) coating equipment is limited to 100 x 100 mm2, the slumped glass foils used for the SAO project were cut from 200 x 200 mm2 to 100 x 100 mm2, and a low-frequency change was observed. A characterisation of the profile change upon cutting is presented.

  6. Three-dimensional monochromatic x-ray CT

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Ktsuyuki; Uyama, Chikao

    1995-08-01

    In this paper, we describe a 3D computed tomography (3D CT) using monochromatic x-rays generated by synchrotron radiation, which performs a direct reconstruction of 3D volume image of an object from its cone-beam projections. For the develpment of 3D CT, scanning orbit of x-ray source to obtain complete 3D information about an object and corresponding 3D image reconstruction algorithm are considered. Computer simulation studies demonstrate the validities of proposed scanning method and reconstruction algorithm. A prototype experimental system of 3D CT was constructed. Basic phantom examinations and specific material CT image by energy subtraction obtained in this experimental system are shown.

  7. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  8. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. Visualization of x-ray computer tomography using computer-generated holography

    NASA Astrophysics Data System (ADS)

    Daibo, Masahiro; Tayama, Norio

    1998-09-01

    The theory converted from x-ray projection data to the hologram directly by combining the computer tomography (CT) with the computer generated hologram (CGH), is proposed. The purpose of this study is to offer the theory for realizing the all- electronic and high-speed seeing through 3D visualization system, which is for the application to medical diagnosis and non- destructive testing. First, the CT is expressed using the pseudo- inverse matrix which is obtained by the singular value decomposition. CGH is expressed in the matrix style. Next, `projection to hologram conversion' (PTHC) matrix is calculated by the multiplication of phase matrix of CGH with pseudo-inverse matrix of the CT. Finally, the projection vector is converted to the hologram vector directly, by multiplication of the PTHC matrix with the projection vector. Incorporating holographic analog computation into CT reconstruction, it becomes possible that the calculation amount is drastically reduced. We demonstrate the CT cross section which is reconstituted by He-Ne laser in the 3D space from the real x-ray projection data acquired by x-ray television equipment, using our direct conversion technique.

  10. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  11. [Development of X-ray Reflection Grating Technology for the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    This Grant supports MIT technology development of x-ray reflection gratings for the Constellation-X Reflection Grating Spectrometer (RGS). Since the start of the Grant MIT has extended its previously-developed patterning and super-smooth, blazed grating fabrication technology to ten-times smaller grating periods and ten-times larger blaze angles to demonstrate feasibility and performance in the off-plane grating geometry. In the past year we have focused our efforts on extending our Nanoruler grating fabrication tool to enable it to perform variable-period scanning-beam interference lithography (VP-SBIL). This new capability required extensive optical and mechanical improvements to the system. The design phase of this work is largely completed and key components are now on order and assembly has begun. Over the next several months the new VP-SBIL Nanoruler system will be completed and testing begun. We have also demonstrated a new technique for patterning gratings using the Nanoruler called Doppler mode, which will be important for patterning the radial groove gratings for the RGS using the new VP-SBIL system. Flat and thin grating substrates will be critical for the RGS. In the last year we demonstrated a new technique for flattening thin substrates using magneto-rheologic fluid polishing (MRF) and achieved 2 arcsecond flatness with a 0.5 mm-thick substrate-a world's record. This meets the Con X requirement for grating substrate flatness.

  12. Imaging X-Ray Polarimeter for Solar Flares (IXPS)

    NASA Technical Reports Server (NTRS)

    Hosack, Michael; Black, J. Kevin; Deines-Jones, Philip; Dennis, Brian R.; Hill, Joanne E.; Jahoda, Keith; Shih, Albert Y.; Urba, Christian E.; Emslie, A. Gordon

    2011-01-01

    We describe the design of a balloon-borne Imaging X-ray Polarimeter for Solar flares (IX PS). This novel instrument, a Time Projection Chamber (TPC) for photoelectric polarimetry, will be capable of measuring polarization at the few percent level in the 20-50 keV energy range during an M- or X class flare, and will provide imaging information at the approx.10 arcsec level. The primary objective of such observations is to determine the directivity of nonthermal high-energy electrons producing solar hard X-rays, and hence to learn about the particle acceleration and energy release processes in solar flares. Secondary objectives include the separation of the thermal and nonthermal components of the flare X-ray emissions and the separation of photospheric albedo fluxes from direct emissions.

  13. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  14. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    PubMed

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  15. Indirect-detection single-photon-counting x-ray detector for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Kaercher, Joerg; Durst, Roger

    2016-03-01

    X-ray mammography is a crucial screening tool for early identification of breast cancer. However, the overlap of anatomical features present in projection images often complicates the task of correctly identifying suspicious masses. As a result, there has been increasing interest in acquisition of volumetric information through digital breast tomosynthesis (DBT) which, compared to mammography, offers the advantage of depth information. Since DBT requires acquisition of many projection images, it is desirable that the noise in each projection image be dominated by the statistical noise of the incident x-ray quanta and not by the additive noise of the imaging system (referred to as quantum-limited imaging) and that the cumulative dose be as low as possible (e.g., no more than for a mammogram). Unfortunately, the electronic noise (~2000 electrons) present in current DBT systems based on active matrix, flat-panel imagers (AMFPIs) is still relatively high compared with modest x-ray gain of the a-Se and CsI:Tl x-ray converters often used. To overcome the modest signal-to-noise ratio (SNR) limitations of current DBT systems, we have developed a large-area x-ray imaging detector with the combination of an extremely low noise (~20 electrons) active-pixel CMOS and a specially designed high resolution scintillator. The high sensitivity and low noise of such system provides better SNR by at least an order of magnitude than current state-of-art AMFPI systems and enables x-ray indirect-detection single photon counting (SPC) at mammographic energies with the potential of dose reduction.

  16. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  17. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  18. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  19. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  20. Lifetime Estimation of a Time Projection Chamber X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; deGarcia, Kristina Montt; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila

    2013-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.

  1. Soft X-ray Foucault test: A path to diffraction-limited imaging

    NASA Astrophysics Data System (ADS)

    Ray-Chaudhuri, A. K.; Ng, W.; Liang, S.; Cerrina, F.

    1994-08-01

    We present the development of a soft X-ray Foucault test capable of characterizing the imaging properties of a soft X-ray optical system at its operational wavelength and its operational configuration. This optical test enables direct visual inspection of imaging aberrations and provides real-time feedback for the alignment of high resolution soft X-ray optical systems. A first application of this optical test was carried out on a Mo-Si multilayer-coated Schwarzschild objective as part of the MAXIMUM project. Results from the alignment procedure are presented as well as the possibility for testing in the hard X-ray regime.

  2. Control of the Low-energy X-rays by Using MCNP5 and Numerical Analysis for a New Concept Intra-oral X-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Huh, Jangyong; Ji, Yunseo; Lee, Rena

    2018-05-01

    An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.

  3. The Physics of Accretion in X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Vrtilek, S.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    This project consists of several related investigations directed to the study of mass transfer processes in X-ray binaries. Models developed over several years incorporating highly detailed physics will be tested on a balanced mix of existing data and planned observations with both ground and space-based observatories. The extended time coverage of the observations and the existence of simultaneous X-ray, ultraviolet, and optical observations will be particularly beneficial for studying the accretion flows. These investigations, which take as detailed a look at the accretion process in X-ray binaries as is now possible, test current models to their limits, and force us to extend them. We now have the ability to do simultaneous ultraviolet/X-ray/optical spectroscopy with HST, Chandra, XMM, and ground-based observatories. The rich spectroscopy that these observations give us must be interpreted principally by reference to detailed models, the development of which is already well underway; tests of these essential interpretive tools are an important product of the proposed investigations.

  4. Current status of x-ray mask manufacturing at the Microlithographic Mask Development Center

    NASA Astrophysics Data System (ADS)

    Kimmel, Kurt R.; Hughes, Patrick J.

    1996-07-01

    The Microlithographic Mask Development Center (MMD) has been the focal point of X-ray mask development efforts in the United States since its inception in 1993. Funded by the Advanced Research Projects Agency (ARPA), and with technical support from the Proximity X-ray Lithography Association (AT&T, IBM, Loral Federal Systems, and Motorola) the MMD has recently made dramatic advances in mask fabrication. Numerous defect-free 64Mb and 256Mb DRAM masks have been made on both boron-doped silicon and silicon carbide substrates. Image-placement error of less than 35nm 3 sigma is achieved with high yield. Image-size (critical dimension) control of 25nm 3 sigma on 250nm nominal images is representative performance. This progress is being made in a manufacturing environment with significant volumes, multiple customers, multiple substrate configurations, and fast turnaround-time (TAT) requirements. The MMD state-of-the-art equipment infrastructure has made much of this progress possible. This year the MMD qualified the EL-4, an IBM-designed-and-built variable-shaped-spot e-beam system. The fundamental performance parameters of this system will be described. Operational techniques of multiple partial exposure writing and product specific emulation (PSE) have been implemented to improve image-placement accuracy with remarkable success. Image-size control was studied in detail with contributory components separated. Defect density was systematically reduced to yield defect-free masks while simultaneously tightening inspection criteria. Information about these and other recent engineering highlights will be reported. An outline of the primary engineering challenges and goals for 1996 and status of progress toward 100 nm design rule capability will also be given.

  5. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  6. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  7. The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications

    NASA Technical Reports Server (NTRS)

    Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul

    1995-01-01

    We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.

  8. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  9. IAEA Co-ordinated Research Project: update of X-ray and gamma-ray decay data standards for detector calibration and other applications.

    PubMed

    Nichols, Alan L

    2004-01-01

    A Co-ordinated Research Project (CRP) was established in 1998 by the IAEA Nuclear Data Section (Update of X-ray and gamma-ray Decay Data Standards for Detector Calibration and Other Applications), in order to improve further the recommended decay data used to undertake efficiency calibrations of gamma-ray detectors. Participants in this CRP reviewed and modified the list of radionuclides most suited for detector efficiency calibration, and also considered the decay-data needs for safeguards, waste management, dosimetry, nuclear medicine, material analysis and environmental monitoring. Overall, 62 radionuclides were selected for decay-data evaluation, along with four parent-daughter combinations and two natural decay chains. gamma-ray emissions from specific nuclear reactions were also included to extend the calibrant energy well beyond 10 MeV. A significant number of these decay-data evaluations have been completed, and an IAEA-TECDOC report and database are in the process of being assembled for planned completion by the end of 2003.

  10. Image alignment for tomography reconstruction from synchrotron X-ray microscopic images.

    PubMed

    Cheng, Chang-Chieh; Chien, Chia-Chi; Chen, Hsiang-Hsin; Hwu, Yeukuang; Ching, Yu-Tai

    2014-01-01

    A synchrotron X-ray microscope is a powerful imaging apparatus for taking high-resolution and high-contrast X-ray images of nanoscale objects. A sufficient number of X-ray projection images from different angles is required for constructing 3D volume images of an object. Because a synchrotron light source is immobile, a rotational object holder is required for tomography. At a resolution of 10 nm per pixel, the vibration of the holder caused by rotating the object cannot be disregarded if tomographic images are to be reconstructed accurately. This paper presents a computer method to compensate for the vibration of the rotational holder by aligning neighboring X-ray images. This alignment process involves two steps. The first step is to match the "projected feature points" in the sequence of images. The matched projected feature points in the x-θ plane should form a set of sine-shaped loci. The second step is to fit the loci to a set of sine waves to compute the parameters required for alignment. The experimental results show that the proposed method outperforms two previously proposed methods, Xradia and SPIDER. The developed software system can be downloaded from the URL, http://www.cs.nctu.edu.tw/~chengchc/SCTA or http://goo.gl/s4AMx.

  11. Low-dose x-ray tomography through a deep convolutional neural network

    DOE PAGES

    Yang, Xiaogang; De Andrade, Vincent; Scullin, William; ...

    2018-02-07

    Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less

  12. Low-dose x-ray tomography through a deep convolutional neural network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaogang; De Andrade, Vincent; Scullin, William

    Synchrotron-based X-ray tomography offers the potential of rapid large-scale reconstructions of the interiors of materials and biological tissue at fine resolution. However, for radiation sensitive samples, there remain fundamental trade-offs between damaging samples during longer acquisition times and reducing signals with shorter acquisition times. We present a deep convolutional neural network (CNN) method that increases the acquired X-ray tomographic signal by at least a factor of 10 during low-dose fast acquisition by improving the quality of recorded projections. Short exposure time projections enhanced with CNN show similar signal to noise ratios as compared with long exposure time projections and muchmore » lower noise and more structural information than low-dose fats acquisition without CNN. We optimized this approach using simulated samples and further validated on experimental nano-computed tomography data of radiation sensitive mouse brains acquired with a transmission X-ray microscopy. We demonstrate that automated algorithms can reliably trace brain structures in datasets collected with low dose-CNN. As a result, this method can be applied to other tomographic or scanning based X-ray imaging techniques and has great potential for studying faster dynamics in specimens.« less

  13. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  14. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  15. An X-ray investigation of the unusual supernova remnant CTB 80

    NASA Technical Reports Server (NTRS)

    Wang, Z. R.; Seward, F. D.

    1984-01-01

    The X-ray properties of SNR CTB 80 (G68.8 + 2.8) are discussed based on both low- and high-resolution images from the Einstein satellite. The X-ray maps show a point source coinciding with the region of maximum radio emission. Diffuse X-ray emission is evident mainly along the radio lobe extending about 8 arcmin east of the point source and aligned with the projected magnetic field lines. The observed X-ray luminosity is 3.2 x 10 to the 34th ergs/s with 1.0 x 10 to the 3th ergs/s from the point source (assuming a distance of 3 kpc). There is also faint, diffuse, X-ray emission south of the point source, where radio emission is absent. The unusual radio and X-ray morphologies are interpreted as a result of relativistic jets energized by the central object, and the possible association of CTB 80 with SN 1408 as recorded by Chinese observers is discussed.

  16. Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Valencic, L. A.

    2018-06-01

    It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.

  17. Compton spectra of atoms at high x-ray intensity

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  18. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  19. A NAIVE BAYES SOURCE CLASSIFIER FOR X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broos, Patrick S.; Getman, Konstantin V.; Townsley, Leisa K.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) provides a sensitive X-ray survey of a nearby starburst region over >1 deg{sup 2} in extent. Thousands of faint X-ray sources are found, many concentrated into rich young stellar clusters. However, significant contamination from unrelated Galactic and extragalactic sources is present in the X-ray catalog. We describe the use of a naive Bayes classifier to assign membership probabilities to individual sources, based on source location, X-ray properties, and visual/infrared properties. For the particular membership decision rule adopted, 75% of CCCP sources are classified as members, 11% are classified as contaminants, and 14% remain unclassified.more » The resulting sample of stars likely to be Carina members is used in several other studies, which appear in this special issue devoted to the CCCP.« less

  20. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  1. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  2. Coherent X-Ray Diffraction Imaging of Chloroplasts from Cyanidioschyzon merolae by Using X-Ray Free Electron Laser.

    PubMed

    Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi

    2015-07-01

    Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Proton-induced x-ray fluorescence CT imaging

    PubMed Central

    Bazalova-Carter, Magdalena; Ahmad, Moiz; Matsuura, Taeko; Takao, Seishin; Matsuo, Yuto; Fahrig, Rebecca; Shirato, Hiroki; Umegaki, Kikuo; Xing, Lei

    2015-01-01

    Purpose: To demonstrate the feasibility of proton-induced x-ray fluorescence CT (pXFCT) imaging of gold in a small animal sized object by means of experiments and Monte Carlo (MC) simulations. Methods: First, proton-induced gold x-ray fluorescence (pXRF) was measured as a function of gold concentration. Vials of 2.2 cm in diameter filled with 0%–5% Au solutions were irradiated with a 220 MeV proton beam and x-ray fluorescence induced by the interaction of protons, and Au was detected with a 3 × 3 mm2 CdTe detector placed at 90° with respect to the incident proton beam at a distance of 45 cm from the vials. Second, a 7-cm diameter water phantom containing three 2.2-diameter vials with 3%–5% Au solutions was imaged with a 7-mm FWHM 220 MeV proton beam in a first generation CT scanning geometry. X-rays scattered perpendicular to the incident proton beam were acquired with the CdTe detector placed at 45 cm from the phantom positioned on a translation/rotation stage. Twenty one translational steps spaced by 3 mm at each of 36 projection angles spaced by 10° were acquired, and pXFCT images of the phantom were reconstructed with filtered back projection. A simplified geometry of the experimental data acquisition setup was modeled with the MC TOPAS code, and simulation results were compared to the experimental data. Results: A linear relationship between gold pXRF and gold concentration was observed in both experimental and MC simulation data (R2 > 0.99). All Au vials were apparent in the experimental and simulated pXFCT images. Specifically, the 3% Au vial was detectable in the experimental [contrast-to-noise ratio (CNR) = 5.8] and simulated (CNR = 11.5) pXFCT image. Due to fluorescence x-ray attenuation in the higher concentration vials, the 4% and 5% Au contrast were underestimated by 10% and 15%, respectively, in both the experimental and simulated pXFCT images. Conclusions: Proton-induced x-ray fluorescence CT imaging of 3%–5% gold solutions in a small animal

  4. High efficiency replicated x-ray optics and fabrication method

    DOEpatents

    Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.

    2001-01-01

    Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.

  5. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    PubMed

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  6. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  7. Status of the Short-Pulse X-ray Project at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassiri, A; Berenc, T G; Borland, M

    2012-07-01

    The Advanced Photon Source Upgrade (APS-U) Project at Argonne will include generation of short-pulse x-rays based on Zholents deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. In collaboration with Jefferson Laboratory, we are prototyping and testing a number of single-cell deflecting cavities and associated auxiliary systems with promising initial results. In collaboration with Lawrence Berkeley National Laboratory, we are working to develop state-of-the-art timing, synchronization, and differential rf phase stability systems that are required for SPX. Collaboration with Advanced Computations Department at Stanford Linearmore » Accelerator Center is looking into simulations of complex, multi-cavity geometries with lower- and higher-order modes waveguide dampers using ACE3P. This contribution provides the current R&D status of the SPX project.« less

  8. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  9. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  10. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  11. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  12. Effect of contrast enhancement prior to iteration procedure on image correction for soft x-ray projection microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamsranjav, Erdenetogtokh, E-mail: ja.erdenetogtokh@gmail.com; Shiina, Tatsuo, E-mail: shiina@faculity.chiba-u.jp; Kuge, Kenichi

    2016-01-28

    Soft X-ray microscopy is well recognized as a powerful tool of high-resolution imaging for hydrated biological specimens. Projection type of it has characteristics of easy zooming function, simple optical layout and so on. However the image is blurred by the diffraction of X-rays, leading the spatial resolution to be worse. In this study, the blurred images have been corrected by an iteration procedure, i.e., Fresnel and inverse Fresnel transformations repeated. This method was confirmed by earlier studies to be effective. Nevertheless it was not enough to some images showing too low contrast, especially at high magnification. In the present study,more » we tried a contrast enhancement method to make the diffraction fringes clearer prior to the iteration procedure. The method was effective to improve the images which were not successful by iteration procedure only.« less

  13. Illumination system design for a three-aspherical-mirror projection camera for extreme-ultraviolet lithography.

    PubMed

    Li, Y; Kinoshita, H; Watanabe, T; Irie, S; Shirayone, S; Okazaki, S

    2000-07-01

    A scanning critical illumination system is designed to couple a synchrotron radiation source to a three-aspherical-mirror imaging system for extreme ultraviolet lithography. A static illumination area of H x V = 8 mm x 3 mm (where H is horizontal and V is vertical) can be obtained. Uniform intensity distribution and a large ring field of H x V = 150 mm x 3 mm can be achieved by scanning of the mirror of the condenser. The coherence factor (sigma) of this illumination system is approximately 0.6, with the same beam divergence in both the horizontal and the vertical directions. We describe the performance of the imaging optics at sigma = 0.6 to confirm that the illumination optics can meet the requirements for three-aspherical-mirror imaging optics with a feature size of 0.06 microm.

  14. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    NASA Astrophysics Data System (ADS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  15. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  16. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  17. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  18. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  19. OPERATION DOMINIC. FISH BOWL SERIES. Project Officer’s Report. Project 8A.3. Close-In Thermal and X-Ray Vulnerability Measurements--Shots Blue Gill and King Fish

    DTIC Science & Technology

    1985-09-01

    QDC hLt umi ^ POR.2037 (WT-2037)(EX) VOLUME 1 EXTRACTED VERSION OPERATION DOMINIC, FISH BOWL SERIES Project Officer’s Report—Project 8A.3...Close-In Thermal and X-ray Vulnerability Measurements—Shots Blue Gill and King Fish F. D. Adams, Project Officer Flight Dynamics Laboratory Wright...version of POR-2037 (WT-2037), Volume 1, OPERATION DOMINIC; Fish Bowl Series, Project 8A. 3. Approved for public release; distribution is unlimited

  20. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  1. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  2. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  3. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...

  4. X-Ray Exam: Forearm

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: Forearm What's in this article? What ... Have Questions Print What It Is A forearm X-ray is a safe and painless test that ...

  5. X-Ray Exam: Ankle

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What ... Have Questions Print What It Is An ankle X-ray is a safe and painless test that ...

  6. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  7. X-Ray Exam: Wrist

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: Wrist What's in this article? What ... Have Questions Print What It Is A wrist X-ray is a safe and painless test that ...

  8. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  9. X-Ray Exam: Pelvis

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: Pelvis What's in this article? What ... Have Questions Print What It Is A pelvis X-ray is a safe and painless test that ...

  10. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  11. ROSAT implementation of a proposed multi-mission x ray data format

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Pence, W.; White, R.; Conroy, M.

    1992-01-01

    Until recently little effort has been made to ensure that data from X-ray telescopes are delivered in a format that reflects the common characteristics that most X-ray datasets share. Instrument-specific data-product design hampers the comparison of X-ray measurements made by different detectors and should be avoided whenever possible. The ROSAT project and the High Energy Astrophysics Science Archive Research Center (HEASARC) have defined a set of X-ray data products ('rationalized files') for ROSAT data that can be used for distribution and archiving of data from other X-ray missions. This set of 'rationalized files' has been defined to isolate instrument-independent and instrument-specific quantities using standards FITS constructs to ensure portability. We discuss the usage of the 'rationalized files' by ROSAT for data distribution and archiving, with particular emphasis on discrimination between instrument-independent and instrument-specific quantities, and discuss application of this format to data from other X-ray missions.

  12. Fabrication, patterning and luminescence properties of X 2-Y 2SiO 5:A (A=Eu 3+, Tb 3+, Ce 3+) phosphor films via sol-gel soft lithography

    NASA Astrophysics Data System (ADS)

    Han, X. M.; Lin, J.; Fu, J.; Xing, R. B.; Yu, M.; Zhou, Y. H.; Pang, M. L.

    2004-04-01

    X 2-Y 2SiO 5:A (A=Eu 3+, Tb 3+, Ce 3+) phosphor films and their patterning were fabricated by a sol-gel process combined with a soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), scanning electron microscopy (SEM) optical microscopy and photoluminescence (PL) were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 900 °C with X 1-Y 2SiO 5, which transformed completely to X 2-Y 2SiO 5 at 1250 °C. Patterned thin films with different band widths (5 μm spaced by 5 μm and 16 μm spaced by 24 μm) were obtained by a soft lithography technique (micromoulding in capillaries, MIMIC). The SEM and AFM study revealed that the nonpatterned phosphor films were uniform and crack free, and the films mainly consisted of closely packed grains with an average size of 350 nm. The doped rare earth ions (A) showed their characteristic emissions in X 2-Y 2SiO 5 phosphor films, i.e., 5D 0- 7F J ( J=0,1,2,3,4) for Eu 3+, 5D 3, 4- 7F J ( J=6,5,4,3) for Tb 3+ and 5d ( 2D)-4f ( 2F 2/5, 2/7) for Ce 3+, respectively. The optimum doping concentrations for Eu 3+, Tb 3+ were determined to be 13 and 8 mol% of Y 3+ in X 2-Y 2SiO 5 films, respectively.

  13. ROSAT: X ray survey of compact groups

    NASA Technical Reports Server (NTRS)

    Vangorkom, Jacqueline

    1993-01-01

    This is the final technical report on grant NAG5-1954, which was awarded under the NASA ROSAT Guest Investigator Program to Columbia University. This grant was awarded for a number of projects on two rather different topics: (1) an x-ray survey of compact groups of galaxies; and (2) the fate of gas in merging galaxies. Progress made in these projects is presented.

  14. Rapid simulation of X-ray transmission imaging for baggage inspection via GPU-based ray-tracing

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Stoian, Razvan-Ionut; Coccarelli, David S.; Greenberg, Joel A.; Vera, Esteban; Gehm, Michael E.

    2018-01-01

    We present a pipeline that rapidly simulates X-ray transmission imaging for arbitrary system architectures using GPU-based ray-tracing techniques. The purpose of the pipeline is to enable statistical analysis of threat detection in the context of airline baggage inspection. As a faster alternative to Monte Carlo methods, we adopt a deterministic approach for simulating photoelectric absorption-based imaging. The highly-optimized NVIDIA OptiX API is used to implement ray-tracing, greatly speeding code execution. In addition, we implement the first hierarchical representation structure to determine the interaction path length of rays traversing heterogeneous media described by layered polygons. The accuracy of the pipeline has been validated by comparing simulated data with experimental data collected using a heterogenous phantom and a laboratory X-ray imaging system. On a single computer, our approach allows us to generate over 400 2D transmission projections (125 × 125 pixels per frame) per hour for a bag packed with hundreds of everyday objects. By implementing our approach on cloud-based GPU computing platforms, we find that the same 2D projections of approximately 3.9 million bags can be obtained in a single day using 400 GPU instances, at a cost of only 0.001 per bag.

  15. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  16. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  17. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  18. Magnetic Untwisting in Most Solar X-Ray Jets

    NASA Technical Reports Server (NTRS)

    Moore, Ronald; Sterling, Alphonse; Falconer, David; Robe, Dominic

    2013-01-01

    From 54 X-ray jets observed in the polar coronal holes by Hinode's X-Ray Telescope (XRT) during coverage in movies from Solar Dynamic Observatory's Atmospheric Imaging Assembly (AIA) taken in its He II 304 Å band at a cadence of 12 s, we have established a basic characteristic of solar X-ray jets: untwisting motion in the spire. In this presentation, we show the progression of few of these X-ray jets in XRT images and track their untwisting in AIA He II images. From their structure displayed in their XRT movies, 19 jets were evidently standard jets made by interchange reconnection of the magnetic-arcade base with ambient open field, 32 were evidently blowout jets made by blowout eruption of the base arcade, and 3 were of ambiguous form. As was anticipated from the >10,000 km span of the base arcade in most polar X-ray jets and from the disparity of standard jets and blowout jets in their magnetic production, few of the standard X-ray jets (3 of 19) but nearly all of the blowout X-ray jets (29 of 32) carried enough cool (T is approximately 105 K) plasma to be seen in their He II movies. In the 32 X-ray jets that showed a cool component, the He II movies show 10-100 km/s untwisting motions about the axis of the spire in all 3 standard jets and in 26 of the 29 blowout jets. Evidently, the open magnetic field in nearly all blowout X-ray jets and probably in most standard X-ray jets carries transient twist. This twist apparently relaxes by propagating out along the open field as a torsional wave. High-resolution spectrograms and Dopplergrams have shown that most Type-II spicules have torsional motions of 10-30 km/s. Our observation of similar torsional motion in X-ray jets strengthens the case for Type-II spicules being made in the same way as X-ray jets, by blowout eruption of a twisted magnetic arcade in the spicule base and/or by interchange reconnection of the twisted base arcade with the ambient open field. This work was funded by NASA's Heliophysics Division

  19. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  20. Atomic layer deposition frequency-multiplied Fresnel zone plates for hard x-rays focusing

    DOE PAGES

    Moldovan, Nicolaie; Divan, Ralu; Zeng, Hongjun; ...

    2017-12-01

    The design and fabrication of Fresnel zone plates for hard x-ray focusing up to 25 keV photon energies with better than 50 nm imaging half-pitch resolution is reported as performed by forming an ultrananocrystalline diamond (UNCD) scaffold, subsequently coating it with atomic layer deposition (ALD) with an absorber/phase shifting material, followed by back side etching of Si to form a diamond membrane device. The scaffold is formed by chemical vapor-deposited UNCD, electron beam lithography, and deep-reactive ion etching of diamond to desired specifications. The benefits of using diamond are as follows: improved mechanical robustness to prevent collapse of high-aspect-ratio ringmore » structures, a known high-aspect-ratio etch method, excellent radiation hardness, extremely low x-ray absorption, and significantly improved thermal/dimensional stability as compared to alternative materials. Central to the technology is the high-resolution patterning of diamond membranes at wafer scale, which was pushed to 60 nm lines and spaces etched 2.2-mu m-deep, to an aspect ratio of 36:1. The absorber growth was achieved by ALD of Ir, Pt, or W, while wafer-level processing allowed to obtain up to 121 device chips per 4 in. wafer with yields better than 60%. X-ray tests with such zone plates allowed resolving 50 nm lines and spaces, at the limit of the available resolution test structures.« less

  1. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  2. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  3. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  4. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  5. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  6. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  7. Abdominal x-ray

    MedlinePlus

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...

  8. X-Ray Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  9. X-Ray and near-infrared imaging: similarities, differences and combinations

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.

    2010-02-01

    The integration of x-ray imaging with optical imaging is becoming routine at the pre-clinical level, as both projection and tomography systems are now commercially integrated as packaged systems. Yet, the differences between their capabilities are wide, and there is still perhaps a lack of appreciation about how difference pre-clinical x-ray systems are from clinical x-ray systems. In this survey, the key advantages of each approach, x-ray and optical, are described, and the potential synergies and deficiencies are discussed. In simple terms, the major benefit of optical imaging is in the spectroscopic capabilities, which allow the potential for imaging fluorescent agents in vivo, and the future potential for imaging multiple species at a time with spectral discrimination or spectral fitting of the data. In comparison, multienergy x-ray systems are being realized in clinical use, or automated discrimination of soft versus hard tissues, and the combination of optical imaging with this type of dual-energy x-ray imaging will significantly enhance the capabilities of the hybrid systems. Unfortunately, the power of dual energy imaging is not as possible at the pre-clinical stage, because of the limitations of contrast-resolution and x-ray dose. This is discussed and future human systems outlined.

  10. XAssist: A System for the Automation of X-ray Astrophysics Analysis

    NASA Astrophysics Data System (ADS)

    Ptak, A.

    2004-08-01

    XAssist is a NASA AISR-funded project for the automation of X-ray astrophysics. It is capable of data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts. The bulk of the system is written in Python, which in turn drives underlying software (CIAO for Chandra data, etc.). Future work will include a GUI (mainly for beginners and status monitoring) and the exposure of at least some functionality as web services. The latter will help XAssist to eventually become part of the VO, making advanced queries possible, such as determining the X-ray fluxes of counterparts to HST or SDSS sources (including the use of unpublished X-ray data), and add the ability of ``on-the-fly'' X-ray processing. Pipelines are running on Chandra and XMM-Newton observations of galaxies to demonstrate XAssist's capabilities, and the results are available online (in real time) at http://www.xassist.org. XAssist itself as well as various associated projects are available for download.

  11. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    PubMed

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  12. X-band RF gun and linac for medical Compton scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Dobashi, Katsuhito; Uesaka, Mitsuru; Fukasawa, Atsushi; Sakamoto, Fumito; Ebina, Futaro; Ogino, Haruyuki; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Hayano, Hitoshi; Nakagawa, Keiichi

    2004-12-01

    Compton scattering hard X-ray source for 10-80 keV are under construction using the X-band (11.424 GHz) electron linear accelerator and YAG laser at Nuclear Engineering Research laboratory, University of Tokyo. This work is a part of the national project on the development of advanced compact medical accelerators in Japan. National Institute for Radiological Science is the host institute and U.Tokyo and KEK are working for the X-ray source. Main advantage is to produce tunable monochromatic hard (10-80 keV) X-rays with the intensities of 108-1010 photons/s (at several stages) and the table-top size. Second important aspect is to reduce noise radiation at a beam dump by adopting the deceleration of electrons after the Compton scattering. This realizes one beamline of a 3rd generation SR source at small facilities without heavy shielding. The final goal is that the linac and laser are installed on the moving gantry. We have designed the X-band (11.424 GHz) traveling-wave-type linac for the purpose. Numerical consideration by CAIN code and luminosity calculation are performed to estimate the X-ray yield. X-band thermionic-cathode RF-gun and RDS(Round Detuned Structure)-type X-band accelerating structure are applied to generate 50 MeV electron beam with 20 pC microbunches (104) for 1 microsecond RF macro-pulse. The X-ray yield by the electron beam and Q-switch Nd:YAG laser of 2 J/10 ns is 107 photons/RF-pulse (108 photons/sec at 10 pps). We design to adopt a technique of laser circulation to increase the X-ray yield up to 109 photons/pulse (1010 photons/s). 50 MW X-band klystron and compact modulator have been constructed and now under tuning. The construction of the whole system has started. X-ray generation and medical application will be performed in the early next year.

  13. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  14. Aberration correction for charged particle lithography

    NASA Astrophysics Data System (ADS)

    Munro, Eric; Zhu, Xieqing; Rouse, John A.; Liu, Haoning

    2001-12-01

    At present, the throughput of projection-type charge particle lithography systems, such as PREVAIL and SCALPEL, is limited primarily by the combined effects of field curvature in the projection lenses and Coulomb interaction in the particle beam. These are fundamental physical limitations, inherent in charged particle optics, so there seems little scope for significantly improving the design of such systems, using conventional rotationally symmetric electron lenses. This paper explores the possibility of overcoming the field aberrations of round electron lense, by using a novel aberration corrector, proposed by Professor H. Rose of University of Darmstadt, called a hexapole planator. In this scheme, a set of round lenses is first used to simultaneously correct distortion and coma. The hexapole planator is then used to correct the field curvature and astigmatism, and to create a negative spherical aberration. The size of the transfer lenses around the planator can then be adjusted to zero the residual spherical aberration. In a way, an electron optical projection system is obtained that is free of all primary geometrical aberrations. In this paper, the feasibility of this concept has been studied with a computer simulation. The simulations verify that this scheme can indeed work, for both electrostatic and magnetic projection systems. Two design studies have been carried out. The first is for an electrostatic system that could be used for ion beam lithography, and the second is for a magnetic projection system for electron beam lithography. In both cases, designs have been achieved in which all primary third-order geometrical aberrations are totally eliminated.

  15. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  16. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  17. Multiple pinhole collimator based X-ray luminescence computed tomography

    PubMed Central

    Zhang, Wei; Zhu, Dianwen; Lun, Michael; Li, Changqing

    2016-01-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid imaging modality, which is able to improve the spatial resolution of optical imaging to hundreds of micrometers for deep targets by using superfine X-ray pencil beams. However, due to the low X-ray photon utilization efficiency in a single pinhole collimator based XLCT, it takes a long time to acquire measurement data. Herein, we propose a multiple pinhole collimator based XLCT, in which multiple X-ray beams are generated to scan a sample at multiple positions simultaneously. Compared with the single pinhole based XLCT, the multiple X-ray beam scanning method requires much less measurement time. Numerical simulations and phantom experiments have been performed to demonstrate the feasibility of the multiple X-ray beam scanning method. In one numerical simulation, we used four X-ray beams to scan a cylindrical object with 6 deeply embedded targets. With measurements from 6 angular projections, all 6 targets have been reconstructed successfully. In the phantom experiment, we generated two X-ray pencil beams with a collimator manufactured in-house. Two capillary targets with 0.6 mm edge-to-edge distance embedded in a cylindrical phantom have been reconstructed successfully. With the two beam scanning, we reduced the data acquisition time by 50%. From the reconstructed XLCT images, we found that the Dice similarity of targets is 85.11% and the distance error between two targets is less than 3%. We have measured the radiation dose during XLCT scan and found that the radiation dose, 1.475 mSv, is in the range of a typical CT scan. We have measured the changes of the collimated X-ray beam size and intensity at different distances from the collimator. We have also studied the effects of beam size and intensity in the reconstruction of XLCT. PMID:27446686

  18. Colloidal lithography nanostructured Pd/PdO x core-shell sensor for ppb level H2S detection.

    PubMed

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-22

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core-shell sensor for ppb level H 2 S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H 2 S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H 2 S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H 2 S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV-vis spectroscopy and x-ray photoemission spectroscopy.

  19. Colloidal lithography nanostructured Pd/PdO x core–shell sensor for ppb level H2S detection

    NASA Astrophysics Data System (ADS)

    Benedict, Samatha; Lumdee, Chatdanai; Dmitriev, Alexandre; Anand, Srinivasan; Bhat, Navakanta

    2018-06-01

    In this work we report on plasma oxidation of palladium (Pd) to form reliable palladium/palladium oxide (Pd/PdO x ) core–shell sensor for ppb level H2S detection and its performance improvement through nanostructuring using hole-mask colloidal lithography (HCL). The plasma oxidation parameters and the sensor operating conditions are optimized to arrive at a sensor device with high sensitivity and repeatable response for H2S. The plasma oxidized palladium/palladium oxide sensor shows a response of 43.1% at 3 ppm H2S at the optimum operating temperature of 200 °C with response and recovery times of 24 s and 155 s, respectively. The limit of detection (LoD) of the plasma oxidised beam is 10 ppb. We further integrate HCL, a bottom-up and cost-effective process, to create nanodiscs of fixed diameter of 100 nm and varying heights (10, 15 and 20 nm) on 10 nm thin Pd beam which is subsequently plasma oxidized to improve the H2S sensing characteristics. The nanostructured Pd/PdO x sensor with nanodiscs of 100 nm diameter and 10 nm height shows an enhancement in sensing performance by 11.8% at same operating temperature and gas concentration. This nanostructured sensor also shows faster response and recovery times (15 s and 100 s, respectively) compared to the unstructured Pd/PdO x counterpart together with an experimental LoD of 10 ppb and the estimated limit going all the way down to 2 ppb. Material characterization of the fabricated Pd/PdO x sensors is done using UV–vis spectroscopy and x-ray photoemission spectroscopy.

  20. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  1. Miniature X-Ray Solar Spectrometer: A Science-Oriented, University 3U CubeSat

    NASA Technical Reports Server (NTRS)

    Mason, James P.; Woods, Thomas N.; Caspi, Amir; Chamberlin, Phillip C.; Moore, Christopher; Jones, Andrew; Kohnert, Rick; Li, Xinlin; Palo, Scott; Solomon, Stanley C.

    2016-01-01

    The miniature x-ray solar spectrometer is a three-unit CubeSat developed at the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder. Over 40 students contributed to the project with professional mentorship and technical contributions from professors in the Aerospace Engineering Sciences Department at University of Colorado, Boulder and from Laboratory for Atmospheric and Space Physics scientists and engineers. The scientific objective of the miniature x-ray solar spectrometer is to study processes in the dynamic sun, from quiet sun to solar flares, and to further understand how these changes in the sun influence the Earth's atmosphere by providing unique spectral measurements of solar soft x-rays. The enabling technology providing the advanced solar soft x-ray spectral measurements is the Amptek X123, a commercial off-the-shelf silicon drift detector. The Amptek X123 has a low mass (approx. 324 g after modification), modest power consumption (approx. 2.50 W), and small volume (6.86 x 9.91 x 2.54 cm), making it ideal for a CubeSat. This paper provides an overview of the miniature x-ray solar spectrometer mission: the science objectives, project history, subsystems, and lessons learned, which can be useful for the small-satellite community.

  2. Performance summary on a high power dense plasma focus x-ray lithography point source producing 70 nm line features in AlGaAs microcircuits

    NASA Astrophysics Data System (ADS)

    Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John

    2004-08-01

    A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.

  3. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  4. An X-ray and optical study of the cluster of galaxies Abell 754

    NASA Technical Reports Server (NTRS)

    Fabricant, D.; Beers, T. C.; Geller, M. J.; Gorenstein, P.; Huchra, J. P.

    1986-01-01

    X-ray and optical data for A754 are used to study the relative distribution of the luminous and dark matter in this dense, rich cluster of galaxies with X-ray luminosity comparable to that of the Coma Cluster. A quantitative statistical comparison is made of the galaxy positions with the total mass responsible for maintaining the X-ray emitting gas in hydrostatic equilibrium. A simple bimodal model which fits both the X-ray and optical data suggests that the galaxies are distributed consistently with the projected matter distribution within the region covered by the X-ray map (0.5-1 Mpc). The X-ray and optical estimates of the mass in the central region of the cluster are 2.9 x 10 to the 14th and 3.6 + or - 0.5 x 10 to the 14th solar masses, respectively.

  5. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  6. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  7. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  8. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  9. Mechanical Overview of the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Robinson, David W.; McClelland, Ryan S.

    2009-01-01

    The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.

  10. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  11. Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography

    DTIC Science & Technology

    2004-05-07

    The basic idea is to use fiducial grids, fabricated using interference lithography (or a derivative thereof) to determine the placement of features...sensed, and corrections are fed back to the beam-control electronics to cancel errors in the beam’s position. The virtue of interference lithography ...Sub-100nm, Maskless Deep-UV Zone-Plate Array Lithography Project Period: March 1, 2001 – February 28, 2004 F i n a l R e p o r t Army Research

  12. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  13. Miniature X-Ray Bone Densitometer

    NASA Technical Reports Server (NTRS)

    Charles, Harry K., Jr.

    1999-01-01

    The purpose of the Dual Energy X-ray Absorptiometry (DEXA) project is to design, build, and test an advanced X-ray absorptiometry scanner capable of being used to monitor the deleterious effects of weightlessness on the human musculoskeletal system during prolonged spaceflight. The instrument is based on the principles of dual energy x-ray absorptiometry and is designed not only to measure bone, muscle, and fat masses but also to generate structural information about these tissues so that the effects on mechanical integrity may be assessed using biomechanical principles. A skeletal strength assessment could be particularly important for an astronaut embarking on a remote planet where the consequences of a fragility fracture may be catastrophic. The scanner will employ multiple projection images about the long axis of the scanned subject to provide geometric properties in three dimensions, suitable for a three-dimensional structural analysis of the scanned region. The instrument will employ advanced fabrication techniques to minimize volume and mass (100 kg current target with a long-term goal of 60 kg) of the scanner as appropriate for the space environment, while maintaining the required mechanical stability for high precision measurement. The unit will have the precision required to detect changes in bone mass and geometry as small as 1% and changes in muscle mass as small as 5%. As the system evolves, advanced electronic fabrication technologies such as chip-on-board and multichip modules will be combined with commercial (off-the-shelf) parts to produce a reliable, integrated system which not only minimizes size and weight, but, because of its simplicity, is also cost effective to build and maintain. Additionally, the system is being designed to minimize power consumption. Methods of heat dissipation and mechanical stowage (for the unit when not in use) are being optimized for the space environment.

  14. Automatic pelvis segmentation from x-ray images of a mouse model

    NASA Astrophysics Data System (ADS)

    Al Okashi, Omar M.; Du, Hongbo; Al-Assam, Hisham

    2017-05-01

    The automatic detection and quantification of skeletal structures has a variety of different applications for biological research. Accurate segmentation of the pelvis from X-ray images of mice in a high-throughput project such as the Mouse Genomes Project not only saves time and cost but also helps achieving an unbiased quantitative analysis within the phenotyping pipeline. This paper proposes an automatic solution for pelvis segmentation based on structural and orientation properties of the pelvis in X-ray images. The solution consists of three stages including pre-processing image to extract pelvis area, initial pelvis mask preparation and final pelvis segmentation. Experimental results on a set of 100 X-ray images showed consistent performance of the algorithm. The automated solution overcomes the weaknesses of a manual annotation procedure where intra- and inter-observer variations cannot be avoided.

  15. Shift focal spot X-ray tube to the imposition anode under long exposure

    NASA Astrophysics Data System (ADS)

    Obodovskiy, A. V.; Bessonov, V. B.; Larionov, I. A.

    2018-02-01

    X-ray non-destructive testing is an integral part of any modern industrial production. Microfocus X-ray sources make it possible to obtain projected images with an increased spatial resolution by using a direct geometric magnification during the survey. On the basis of the St. Petersburg State Electrotechnical University staff of the department of electronic devices and equipment has been designed model of microfocus X-ray computed tomography.

  16. Department of Defense statement on the X-ray Lithography Program to the Research and Development Subcommittee of the House Armed Services Committee of 100th Congress, second session

    NASA Astrophysics Data System (ADS)

    Maynard, E. D., Jr.

    1988-03-01

    The Department has a broad and necessarily diverse program in semiconductor science and technology. The three principal goals of that effort are: Reduce the gap between commercial integrated circuit usage and its deployment in military systems, assure a healthy on-shore industrial base to support our defense needs, enhance the producibility of specialized military semiconductor products. The major effort to achieve the first of these objectives is the Very High Speed Integrated Circuits (VHSIC) Program which is nearing completion. The Microwave/millimeter wave Monolithic Integrated Circuit (MIMIC) program has just completed a study program to define the product mix needed to meet military system requirements for radar, electronic warfare, smart weapons and telecommunications. We are bringing together the system requirements of all DoD with the device fabrication and product delivery capabilities of industry in an Infrared Focal Plane Array (IRFPA) program. The goal of the Software Initiative is to enhance our warfighting capability through development of efficient software generation technology and products plus the creation of a technology infusion infrastructure to couple the technology and products to system applications. The X-Ray Lithography Program will begin to establish the industrial base which will be required to sustain U.S. leadership in the semiconductor industry for the late 1990s.

  17. Changes in the near edge X-ray absorption fine structure of hybrid organic-inorganic resists upon exposure.

    PubMed

    Fallica, Roberto; Watts, Benjamin; Roesner, Benedikt; Della Giustina, Gioia; Brigo, Laura; Brusatin, Giovanna; Ekinci, Yasin

    2018-06-14

    We report on the near edge X-ray absorption fine structure (NEXAFS) spectroscopy of hybrid organic-inorganic resists. These materials are nonchemically amplified systems based on Si, Zr, and Ti oxides, synthesized from organically modified precursors and transition metal alkoxides by a sol-gel route and designed for ultraviolet, extreme ultraviolet and electron beam lithography. The experiments were conducted using a scanning transmission X-ray microscope (STXM) which combines high spatial-resolution microscopy and NEXAFS spectroscopy. The absorption spectra were collected in the proximity of the carbon edge (~ 290 eV) before and after in situ exposure, enabling the measurement of a significant photo-induced degradation of the organic group (phenyl or methyl methacrylate, respectively), the degree of which depends on the configuration of the ligand. Photo-induced degradation was more efficient in the resist synthesized with pendant phenyl substituents than it was in the case of systems based on bridging phenyl groups. The degradation of the methyl methacrylate group was relatively efficient, with about half of the initial ligands dissociated upon exposure. Our data reveal that the such dissociation can produce different outcomes, depending on the structural configuration. While all the organic groups were expected to detach and desorb from the resist in their entirety, a sizeable amount of them remain and form undesired byproducts such as alkene chains. In the framework of the materials synthesis and engineering through specific building blocks, these results provide a deeper insight into the photochemistry of resists, in particular for extreme ultraviolet lithography. © 2018 IOP Publishing Ltd.

  18. Exploring Cosmic X-ray Source Polarization

    NASA Technical Reports Server (NTRS)

    Swank, Jean Hebb; Jahodal, K.; Kallman, T. R.; Kaaret, P.

    2008-01-01

    Cosmic X-ray sources are expected to be polarized, either because of their asymmetry and the role of scattering in their emission or the role of magnetic fields. Polarization at other wavelengths has been useful. X-ray polarization will provide a new handle on black hole parameters, in particular the spin, on accretion flows and outflows, on neutron star spin orientations and emission mechanisms, on the quantum mechanical effects of super-strong magnetic fields of magnetars, and on the structure of supernovae shocks. The proposed Gravity and Extreme Magnetism SMEX (GEMS) will use high efficiency polarimeters behind thin foil mirrors. The statistical sensitivity and control of systematics will allow measurement of polarization fractions as small as 1% from many galactic and extragalactic sources. Targets which should be polarized at the level that GEMS can easily measure include stellar black holes, Seyfert galaxies and quasars, blazars, rotation-powered and accretion-powered pulsars, magnetars, shell supernova remnants and pulsar wind nebulae. The polarimeters are Time Projection Chambers that allow reconstruction of images of photoelectron tracks for 2-10 keV Xrays. They can be deep without sacrificing modulation. These polarimeters do not image the sky, but the telescope point spread function and detector collimation allow structure to be resolved at the 10 arcmin level. Rotation of the spacecraft is not needed for the signal measurement in the Time Projection Chambers, but provides for measurement and correction of systematic errors. It also allows a small Bragg reflection soft X-ray experiment to be included that can be used for isolated neutron stars and blazars.

  19. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  20. Design of a diamond-crystal monochromator for the LCLS hard x-ray self-seeding project

    NASA Astrophysics Data System (ADS)

    Shu, D.; Shvyd'ko, Y.; Amann, J.; Emma, P.; Stoupin, S.; Quintana, J.

    2013-03-01

    As the result of collaborations between the Advanced Photon Source (APS), Argonne National Laboratory, and the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory, we have designed and constructed a diamond crystal monochromator for the LCLS hard x-ray self-seeding project. The novel monochromator is ultrahigh-vacuum compatible to meet the LCLS linear accelerator vacuum environmental requirement. A special graphite holder was designed for strain-free mount of the 110-μm thin synthetic diamond crystal plate provided by Technological Institute for Super-hard and Novel Carbon Materials of Russia (TISNCM). An in-vacuum multi-axis precision positioning mechanism is designed to manipulate the thin-film diamond holder with resolutions and stabilities required by the hard x-ray self-seeding physics. Optical encoders, limit switches, and hardware stops are established in the mechanism to ensure system reliability and to meet the accelerator personal and equipment safety interlock requirements. Molybdenum shields are installed in the monochromator to protect the encoders and associated electronics from radiation damage. Mechanical specifications, designs, and preliminary test results of the diamond monochromator are presented in this paper.

  1. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  2. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  3. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  4. Development of polycapillary x-ray optics for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Attenkofer, Klaus; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; O'Mahony, Aileen; Minot, Michael J.; Popecki, Mark A.

    2016-09-01

    Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.

  5. Design Improvements and X-Ray Performance of a Time Projection Chamber Polarimeter for Persistent Astronomical Sources

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Kaaret, Philip; Nolan, David S.; Tamagawa, Toru

    2014-01-01

    The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)3 and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime4, opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays.

  6. Accuracy and performance of 3D mask models in optical projection lithography

    NASA Astrophysics Data System (ADS)

    Agudelo, Viviana; Evanschitzky, Peter; Erdmann, Andreas; Fühner, Tim; Shao, Feng; Limmer, Steffen; Fey, Dietmar

    2011-04-01

    Different mask models have been compared: rigorous electromagnetic field (EMF) modeling, rigorous EMF modeling with decomposition techniques and the thin mask approach (Kirchhoff approach) to simulate optical diffraction from different mask patterns in projection systems for lithography. In addition, each rigorous model was tested for two different formulations for partially coherent imaging: The Hopkins assumption and rigorous simulation of mask diffraction orders for multiple illumination angles. The aim of this work is to closely approximate results of the rigorous EMF method by the thin mask model enhanced with pupil filtering techniques. The validity of this approach for different feature sizes, shapes and illumination conditions is investigated.

  7. Displaying chest X-ray by beamer or monitor: comparison of diagnostic accuracy for subtle abnormalities.

    PubMed

    Kuiper, L M; Thijs, A; Smulders, Y M

    2012-01-01

    The advent of beamer projection of radiological images raises the issue of whether such projection compromises diagnostic accuracy. The purpose of this study was to evaluate whether beamer projection of chest X-rays is inferior to monitor display. We selected 53 chest X-rays with subtle abnormalities and 15 normal X-rays. The images were independently judged by a senior radiologist and a senior pulmonologist with a state-of-art computer monitor. We used their unanimous or consensus judgment as the reference test. Subsequently, four observers (one senior pulmonologist, one senior radiologist and one resident from each speciality) judged these X-rays on a standard clinical computer monitor and with beamer projection. We compared the number of correct results for each method. Overall, the sensitivity and specificity did not differ between monitor and beamer projection. Separate analyses in senior and junior examiners suggested that senior examiners had a moderate loss of diagnostic accuracy (8% lower sensitivity, pp<0.05, and 6% lower specificity, p=ns) associated with the use of beamer projection, whereas juniors showed similar performance on both imaging modalities. These initial data suggest that beamer projection may be associated with a small loss of diagnostic accuracy in specific subgroups of physicians. This finding illustrates the need for more extensive studies.

  8. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  9. Exploring the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

    This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  10. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  11. X-ray examinations of newborns

    NASA Astrophysics Data System (ADS)

    Potrakhov, N. N.; Potrakhov, Y. N.

    2018-02-01

    At the present time, the basis of instrumental diagnostics of atelectasis is lung radiography. In the case of preterm infants, it should be performed immediately after birth, and then regularly throughout the entire nursing period. The purpose of the project, within the framework of which this development is carried out, is the creation of an original domestic digital low-dose technology for X-ray examinations in neonatology, including in non-stationary conditions.

  12. High-spatial-resolution nanoparticle x-ray fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Larsson, Jakob C.; Vâgberg, William; Vogt, Carmen; Lundström, Ulf; Larsson, Daniel H.; Hertz, Hans M.

    2016-03-01

    X-ray fluorescence tomography (XFCT) has potential for high-resolution 3D molecular x-ray bio-imaging. In this technique the fluorescence signal from targeted nanoparticles (NPs) is measured, providing information about the spatial distribution and concentration of the NPs inside the object. However, present laboratory XFCT systems typically have limited spatial resolution (>1 mm) and suffer from long scan times and high radiation dose even at high NP concentrations, mainly due to low efficiency and poor signal-to-noise ratio. We have developed a laboratory XFCT system with high spatial resolution (sub-100 μm), low NP concentration and vastly decreased scan times and dose, opening up the possibilities for in-vivo small-animal imaging research. The system consists of a high-brightness liquid-metal-jet microfocus x-ray source, x-ray focusing optics and an energy-resolving photon-counting detector. By using the source's characteristic 24 keV line-emission together with carefully matched molybdenum nanoparticles the Compton background is greatly reduced, increasing the SNR. Each measurement provides information about the spatial distribution and concentration of the Mo nanoparticles. A filtered back-projection method is used to produce the final XFCT image.

  13. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  14. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  15. Course Manual for X-Ray Measurements.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This is the second of a series of three instructor manuals in x-ray science and engineering and is produced as part of a project of Oregon State University's Bureau of Radiological Health. This manual, and the two campanion manuals, have been tested in courses at Oregon State. These materials have been designed to serve as models for teaching and…

  16. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  17. The X-Ray Polarimeter Instrument on Board the Polarimeter for Relativistic Astrophysical X-Ray Sources (PRAXyS) Mission

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Black, J. K.; Jahoda, K.; Tamagawa, T.; Iwakiri, W.; Kitaguchi, T.; Kubota, M.; Kaaret, P.; Mccurdy, R.; Miles, D. M.; hide

    2016-01-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study. The PRAXyS observatory carries an X-ray Polarimeter Instrument (XPI) capable of measuring the linear polarization from a variety of high energy sources, including black holes, neutron stars, and supernova remnants. The XPI is comprised of two identical mirror-Time Projection Chamber (TPC) polarimeter telescopes with a system effective area of 124 sq cm at 3 keV, capable of photon limited observations for sources as faint as 1 mCrab. The XPI is built with well-established technologies. This paper will describe the performance of the XPI flight mirror with the engineering test unit polarimeter

  18. X-Rays from Pluto

    NASA Image and Video Library

    2016-09-14

    The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first

  19. Comparative study of x ray and microwave emissions during solar flares

    NASA Technical Reports Server (NTRS)

    Winglee, Robert M.

    1993-01-01

    The work supported by the grant consisted of two projects. The first project involved making detailed case studies of two flares using SMM data in conjunction with ground based observations. The first flare occurred at 1454 UT on June 20, 1989 and involved the eruption of a prominence near the limb. In the study we used data from many wavelength regimes including the radio, H-alpha, hard X-rays, and soft X-rays. We used a full gyrosynchrotron code to model the apparent presence of a 1.4 GHz source early in the flare that was in the form of a large coronal loop. The model results lead us to conclude that the initial acceleration occurs in small, dense loops which also produced the flare's hard X-ray emission. We also found evidence that a source at 1.4 GHz later in the event was due to second harmonic plasma emission. This source was adjacent to a leg of the prominence and comes from a dense column of material in the magnetic structure supporting the prominence. Finally, we investigated a source of microwaves and soft X-rays, occurring approximately 10 min after the hard X-ray peak, and calculate a lower limit for the density of the source. The second flare that was studied occurred at 2156 UT on June 20, 1989 and was observed with the VLA and the Owens Valley Radio Observatory (OVRO) Frequency Agile Array. We have developed a gyrosynchrotron model of the sources at flare peak using a new gyrosynchrotron approximation which is valid at very low harmonics of the gyrofrequency. We found that the accelerated particle densities of the sources decreased much more with radius from the source center than had been supposed in previous work, while the magnetic field varied less. We also used the available data to analyze a highly polarized source which appeared late in the flare. The second project involved compiling a statistical base for the relative timing of the hard X-ray peak, the turbulent and blue-shift velocities inferred from soft X-ray line emissions observed by

  20. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... through them and appear black. An X-ray technician takes the X-rays. Usually, three different pictures ... to tell her doctor and the X-ray technician. Procedure Although the procedure may take up to ...

  1. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most ...

  2. Connecting optical and X-ray tracers of galaxy cluster relaxation

    NASA Astrophysics Data System (ADS)

    Roberts, Ian D.; Parker, Laura C.; Hlavacek-Larrondo, Julie

    2018-04-01

    Substantial effort has been devoted in determining the ideal proxy for quantifying the morphology of the hot intracluster medium in clusters of galaxies. These proxies, based on X-ray emission, typically require expensive, high-quality X-ray observations making them difficult to apply to large surveys of groups and clusters. Here, we compare optical relaxation proxies with X-ray asymmetries and centroid shifts for a sample of Sloan Digital Sky Survey clusters with high-quality, archival X-ray data from Chandra and XMM-Newton. The three optical relaxation measures considered are the shape of the member-galaxy projected velocity distribution - measured by the Anderson-Darling (AD) statistic, the stellar mass gap between the most-massive and second-most-massive cluster galaxy, and the offset between the most-massive galaxy (MMG) position and the luminosity-weighted cluster centre. The AD statistic and stellar mass gap correlate significantly with X-ray relaxation proxies, with the AD statistic being the stronger correlator. Conversely, we find no evidence for a correlation between X-ray asymmetry or centroid shift and the MMG offset. High-mass clusters (Mhalo > 1014.5 M⊙) in this sample have X-ray asymmetries, centroid shifts, and Anderson-Darling statistics which are systematically larger than for low-mass systems. Finally, considering the dichotomy of Gaussian and non-Gaussian clusters (measured by the AD test), we show that the probability of being a non-Gaussian cluster correlates significantly with X-ray asymmetry but only shows a marginal correlation with centroid shift. These results confirm the shape of the radial velocity distribution as a useful proxy for cluster relaxation, which can then be applied to large redshift surveys lacking extensive X-ray coverage.

  3. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  4. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method.

    PubMed

    Pokhrel, Damodar; Murphy, Martin J; Todor, Dorin A; Weiss, Elisabeth; Williamson, Jeffrey F

    2011-01-01

    To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations were performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 degrees, respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78 +/- 0.57) mm or less. The theta and phi angle errors were found to be (5.7 +/- 4.9) degrees and (6.0 +/- 4.1) degrees, respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 degrees compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. This work describes a novel, accurate, and completely automatic method for reconstructing seed orientations, as well as

  5. Reconstruction of brachytherapy seed positions and orientations from cone-beam CT x-ray projections via a novel iterative forward projection matching method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar; Murphy, Martin J.; Todor, Dorin A.

    2011-01-15

    Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations weremore » performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for

  6. Current developments and tests of small x-ray optical systems for space applications

    NASA Astrophysics Data System (ADS)

    Pina, L.; Hudec, R.; Inneman, A.; Doubravová, D.; Marsikova, V.

    2017-05-01

    The paper addresses the X-ray monitoring for astrophysical applications. A novel approach based on the use of 1D and 2D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV was further studied. Wide-field optical system of this type has not been used in space yet. Designed wide-field optical system combined with Timepix X-ray detector is described together with latest experimental results obtained during laboratory tests. Proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is the only solution in cases where intensity of impinging X-ray radiation is below the sensitivity of the detector, e.g. while monitoring astrophysical objects in space, or phenomena in the Earth's atmosphere. The optical system is considered to be used in a student rocket experiment.

  7. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  8. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  9. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  11. Constellation X-Ray Mission and Support

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Grady, Jean (Technical Monitor)

    2002-01-01

    This report is a supplement to the Third Annual Report summarizing work performed by the Smithsonian Astrophysical Observatory (SAO) for NASA Goddard Space Flight Center (GSFC) under Cooperative Agreement NCC5-3681. The Agreement is entitled 'Constellation X-ray Mission Study and Support.' This supplementary report covers the period from October 1, 2001 through January 10, 2002. The report has been prepared and submitted to ensure that the Constellation-X Project Office at GSFC has current performance information needed to evaluate a proposed modified budget for FY02. That proposed budget is being submitted separately. SAO continues to perform work under the overall direction of Dr. Harvey Tananbaum, the SAO Principal Investigator for the program. Mr. Robert Rasche is the SAO Program Manager and is responsible for day-to-day program management at SAO and coordination with GSFC. The report summarizes the main areas of SAO activity. Most of the work has been done jointly with personnel from GSFC and Marshall Space Flight Center (MSFC). We describe SAO participation in these efforts. Under the Agreement, SAO performed work in seven major areas of activity. These areas related to: (1) Constellation X-ray Mission Facility Definition Team and Study Management; (2) Science Support; (3) Spectroscopy X-ray Telescope (SXT); (4) Systems Engineering; (5) Travel in Support of the Work Effort; and (6) In-house Management and Coordination.

  12. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  13. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  14. On the alignment and focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    NASA Astrophysics Data System (ADS)

    Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff; Marquez, Vanessa; Allured, Ryan; Heilmann, Ralf K.; Schattenburg, Mark; Bruccoleri, Alexander

    2016-07-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 Å (0.5 - 2.0 keV energies) in the solar atmosphere. For the first time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mÅ spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a finite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being finalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) - a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.

  15. On the Alignment and Focusing of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)

    NASA Technical Reports Server (NTRS)

    Champey, Patrick; Winebarger, Amy; Kobayashi, Ken; Savage, Sabrina; Cirtain, Jonathan; Cheimets, Peter; Hertz, Edward; Golub, Leon; Ramsey, Brian; McCracken, Jeff

    2016-01-01

    The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument that is designed to observe soft X-ray emissions from 24 - 6.0 A (0.5 - 2.0 keV energies) in the solar atmosphere. For the rst time, high-temperature, low-emission plasma will be observed directly with 5 arcsecond spatial resolution and 22 mA spectral resolution. The unique optical design consists of a Wolter - I telescope and a 3-optic grazing- incidence spectrometer. The spectrometer utilizes a nite conjugate mirror pair and a blazed planar, varied line spaced grating, which is directly printed on a silicon substrate using e-beam lithography. The grating design is being nalized and the grating will be fabricated by the Massachusetts Institute of Technology (MIT) and Izentis LLC. Marshall Space Flight Center (MSFC) is producing the nickel replicated telescope and spectrometer mirrors using the same facilities and techniques as those developed for the ART-XC and FOXSI mirrors. The Smithsonian Astrophysical Observatory (SAO) will mount and align the optical sub-assemblies based on previous experience with similar instruments, such as the Hinode X-Ray Telescope (XRT). The telescope and spectrometer assembly will be aligned in visible light through the implementation of a theodolite and reference mirrors, in addition to the centroid detector assembly (CDA) { a device designed to align the AXAF-I nested mirrors. Focusing of the telescope and spectrometer will be achieved using the X-ray source in the Stray Light Facility (SLF) at MSFC. We present results from an alignment sensitivity analysis performed on the on the system and we also discuss the method for aligning and focusing MaGIXS.

  16. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    , the team in Leicester have determined accurately the distance to the dust sheets by measuring the size of the expanding rings. The nearest dust sheet is located 2900 light years away and is probably part of the Gum nebula, a bubble of hot gas resulting from many supernova explosions. The other dust layer is about 4500 light years away. Understanding how dust is distributed in our Galaxy is important because dust favours the collapse of cool gas clouds, which can then form stars and planets. Knowing where dust is located helps astronomers to determine where star and planet formation is likely to occur. Expanding X-ray dust scattering rings, such as those around GRB 031203, have never been seen before. Slower-moving rings, caused by a similar effect, have been seen in visible light around a very few exploding stars, mostly supernovae. The expanding rings also provide much needed information on the gamma-ray burst itself. Gamma-ray bursts are the most powerful explosive events in the Universe, but astronomers are still trying to understand the mystery that surrounds their origin. Some occur with the supernova explosion of a massive star when it has used up all of its fuel, although only stars which have lost their outer layers and which collapse to make a black hole seem able to make a gamma-ray burst. The delayed X-rays from the echo of GRB 031203 are very useful because they tell astronomers how bright the burst was in the X-ray spectrum when it went off on 3 December. The only direct data available from that moment are those obtained by ESA's Integral observatory in the gamma-ray range. "XMM-Newton's measurements are thus crucial to better understand the nature of the burst," said Dr. Fred Jansen, XMM-Newton's project scientist. "The more details we gather of the burst, the more we can learn on how black holes are made." Today, ESA's Integral and XMM-Newton observatories provide astronomers with their most powerful facilities for studying gamma-ray bursts. In 2004 a

  17. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  18. Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom

    NASA Astrophysics Data System (ADS)

    Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.

    2017-02-01

    The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.

  19. X-rays of inner worlds: the mid-twentieth-century American projective test movement.

    PubMed

    Lemov, Rebecca

    2011-01-01

    This essay begins to tell the neglected history of the projective test movement in the U.S. behavioral sciences from approximately 1941 to 1968. This cross-disciplinary enterprise attempted to use projective techniques as "X-ray" machines to see into the psyches of subjects tested around the world. The aim was to gather subjective materials en masse, pursuing data on a scope, scale, and manner rarely hazarded before in any science. In particular, the targeted data included the traces of the inner life and elusive aspects of subjective experience including dreams, life stories, and myriad test results from a battery of tests. This essay explores how the movement and the experimental data bank that resulted were unlikely yet telling sites for the practice and pursuit of the Cold War human sciences. To look closely at the encounters that resulted is to show how the most out-of-the-way places and seemingly insignificant moments played a role in heady scientific ambitions and global geopolitical projects. At times, the projective test movement became a mirror of Cold War rationality itself, as tests were employed at the very limits of their possible extension. The essay argues for an off-kilter centrality in the movement itself, shedding light on the would-be unified social sciences after World War II and the "subjective turn" they took. © 2011 Wiley Periodicals, Inc.

  20. A 3D Kinematic Measurement of Knee Prosthesis Using X-ray Projection Images

    NASA Astrophysics Data System (ADS)

    Hirokawa, Shunji; Ariyoshi, Shogo; Hossain, Mohammad Abrar

    We have developed a technique for estimating 3D motion of knee prosthesis from its 2D perspective projections. As Fourier descriptors were used for compact representation of library templates and contours extracted from the prosthetic X-ray images, the entire silhouette contour of each prosthetic component was required. This caused such a problem as our algorithm did not function when the silhouettes of tibio and femoral components overlapped with each other. Here we planned a novel method to overcome it; which was processed in two steps. First, the missing part of silhouette contour due to overlap was interpolated using a free-formed curvature such as Bezier. Then the first step position/orientation estimation was performed. In the next step, a clipping window was set in the projective coordinate so as to separate the overlapped silhouette drawn using the first step estimates. After that the localized library whose templates were clipped in shape was prepared and the second step estimation was performed. Computer model simulation demonstrated sufficient accuracies of position/orientation estimation even for overlapped silhouettes; equivalent to those without overlap.

  1. Chandra Detection of Intracluster X-Ray sources in Virgo

    NASA Astrophysics Data System (ADS)

    Hou, Meicun; Li, Zhiyuan; Peng, Eric W.; Liu, Chengze

    2017-09-01

    We present a survey of X-ray point sources in the nearest and dynamically young galaxy cluster, Virgo, using archival Chandra observations that sample the vicinity of 80 early-type member galaxies. The X-ray source populations at the outskirts of these galaxies are of particular interest. We detect a total of 1046 point sources (excluding galactic nuclei) out to a projected galactocentric radius of ˜40 kpc and down to a limiting 0.5-8 keV luminosity of ˜ 2× {10}38 {erg} {{{s}}}-1. Based on the cumulative spatial and flux distributions of these sources, we statistically identify ˜120 excess sources that are not associated with the main stellar content of the individual galaxies, nor with the cosmic X-ray background. This excess is significant at a 3.5σ level, when Poisson error and cosmic variance are taken into account. On the other hand, no significant excess sources are found at the outskirts of a control sample of field galaxies, suggesting that at least some fraction of the excess sources around the Virgo galaxies are truly intracluster X-ray sources. Assisted with ground-based and HST optical imaging of Virgo, we discuss the origins of these intracluster X-ray sources, in terms of supernova-kicked low-mass X-ray binaries (LMXBs), globular clusters, LMXBs associated with the diffuse intracluster light, stripped nucleated dwarf galaxies and free-floating massive black holes.

  2. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  3. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  4. The X-ray Astronomy Recovery Mission

    NASA Astrophysics Data System (ADS)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  5. Atomic Data Needs for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; White, Nicholas E. (Technical Monitor)

    1999-01-01

    seems to be shared by theoretical and experimental physicists. Talks were presented about several exciting new projects and experimental and theoretical techniques devoted to X-ray spectroscopy. Simultaneously, several new tools for spectral analysis and modeling have recently been developed, together with improved atomic databases. These proceeding are expected to be of interests to producers and users of atomic data. Moreover. the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  6. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tanaka, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-09-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazingincidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  7. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; hide

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  8. Automatic segmentation of mandible in panoramic x-ray.

    PubMed

    Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh

    2015-10-01

    As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.

  9. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  10. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y. M., E-mail: yxiao@carnegiescience.edu; Chow, P.; Boman, G.

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  11. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  12. X-RAY IMAGING Achieving the third dimension using coherence

    DOE PAGES

    Robinson, Ian; Huang, Xiaojing

    2017-01-25

    X-ray imaging is extensively used in medical and materials science. Traditionally, the depth dimension is obtained by turning the sample to gain different views. The famous penetrating properties of X-rays mean that projection views of the subject sample can be readily obtained in the linear absorption regime. 180 degrees of projections can then be combined using computed tomography (CT) methods to obtain a full 3D image, a technique extensively used in medical imaging. In the work now presented in Nature Materials, Stephan Hruszkewycz and colleagues have demonstrated genuine 3D imaging by a new method called 3D Bragg projection ptychography1. Ourmore » approach combines the 'side view' capability of using Bragg diffraction from a crystalline sample with the coherence capabilities of ptychography. Thus, it results in a 3D image from a 2D raster scan of a coherent beam across a sample that does not have to be rotated.« less

  13. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  14. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  15. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  16. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. The Outer X-ray and Radio Jets in R Aquarii

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Anderson, C.; DePasquale, J.; Korreck, K.; Nichols, J.; Sokoloski, J.; Krauss, M.; Pedelty, J.

    2007-01-01

    The symbiotic star R Aquarii has been known to emit collimated outflow in the form of jets for many years. We report on five years of observations in x-rays and radio using Chandra, VLA and XMM-Newton. We discuss the evolution of the outer thermal jets, including new observations performed in June and October 2005. We see motion of the NE x-ray jet at a projected velocity of about 600 km (sup -1). The SW x-ray jet has almost disappeared between 2000.7 and 2004.0. An XMM grating spectrum of the NE jet confirms the existence of O VII He-like lines, and offers the possibility of doing plasma density diagnostics. We comment on on the physics of cooling in the SW jet and implications for the density of the x-ray emitting gas, the heating mechanism, and mass and kinetic energy in the jets and its implications for the system as a whole. This work was supported by NASA and NSF.

  18. X ray sensitive area detection device

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  19. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  20. Continuous Shape Estimation of Continuum Robots Using X-ray Images.

    PubMed

    Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron

    2013-05-06

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.

  1. AXSIS: Exploring the frontiers in attosecond X-ray science, imaging and spectroscopy.

    PubMed

    Kärtner, F X; Ahr, F; Calendron, A-L; Çankaya, H; Carbajo, S; Chang, G; Cirmi, G; Dörner, K; Dorda, U; Fallahi, A; Hartin, A; Hemmer, M; Hobbs, R; Hua, Y; Huang, W R; Letrun, R; Matlis, N; Mazalova, V; Mücke, O D; Nanni, E; Putnam, W; Ravi, K; Reichert, F; Sarrou, I; Wu, X; Yahaghi, A; Ye, H; Zapata, L; Zhang, D; Zhou, C; Miller, R J D; Berggren, K K; Graafsma, H; Meents, A; Assmann, R W; Chapman, H N; Fromme, P

    2016-09-01

    X-ray crystallography is one of the main methods to determine atomic-resolution 3D images of the whole spectrum of molecules ranging from small inorganic clusters to large protein complexes consisting of hundred-thousands of atoms that constitute the macromolecular machinery of life. Life is not static, and unravelling the structure and dynamics of the most important reactions in chemistry and biology is essential to uncover their mechanism. Many of these reactions, including photosynthesis which drives our biosphere, are light induced and occur on ultrafast timescales. These have been studied with high time resolution primarily by optical spectroscopy, enabled by ultrafast laser technology, but they reduce the vast complexity of the process to a few reaction coordinates. In the AXSIS project at CFEL in Hamburg, funded by the European Research Council, we develop the new method of attosecond serial X-ray crystallography and spectroscopy, to give a full description of ultrafast processes atomically resolved in real space and on the electronic energy landscape, from co-measurement of X-ray and optical spectra, and X-ray diffraction. This technique will revolutionize our understanding of structure and function at the atomic and molecular level and thereby unravel fundamental processes in chemistry and biology like energy conversion processes. For that purpose, we develop a compact, fully coherent, THz-driven atto-second X-ray source based on coherent inverse Compton scattering off a free-electron crystal, to outrun radiation damage effects due to the necessary high X-ray irradiance required to acquire diffraction signals. This highly synergistic project starts from a completely clean slate rather than conforming to the specifications of a large free-electron laser (FEL) user facility, to optimize the entire instrumentation towards fundamental measurements of the mechanism of light absorption and excitation energy transfer. A multidisciplinary team formed by laser

  2. Optics Requirements For The Generation-X X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; hide

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  3. Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipment.

    PubMed

    Uehara, Kazuaki; Tagami, Tatsuaki; Miyazaki, Itaru; Murata, Norikazu; Takahashi, Yoshifumi; Ohkubo, Hiroshi; Ozeki, Tetsuya

    2015-06-01

    X-ray inspection equipment is widely used to detect missing materials and defective goods in opaque containers. Its application has been expanded to the pharmaceutical industry to detect the presence of drug tablets in aluminum foil press-through packaging. However, the effect of X-rays on the pharmaceutical quality of drug tablets is not well known. In this study, the effect of X-rays on the pharmaceutical quality of drug tablets was investigated. Exposure of acetaminophen, loxoprofen and mefenamic acid tablets to X-ray doses of 0.34 mGy (thrice the dose by X-ray scanning) to 300 Gy (maximum dose from our X-ray equipment) was demonstrated, and the samples were evaluated by formulation tests. Exposure to X-rays did not affect the pharmaceutical quality of the drug content. The samples exposed to X-rays exhibited almost the same profile in formulation tests (dissolution test, disintegrating test and hardness test) as control samples (0 Gy). The combination of X-ray exposure with accelerated temperature and humidity tests (six months) also did not affect the pharmaceutical quality. The color change of light-sensitive drugs (nifedipine and furosemide tablets) after X-ray exposure was negligible (< 1.0). In contrast, tablet color was remarkably changed by light from a D65 lamp. The X-ray scanning and X-ray exposure under our experimental conditions did not affect the pharmaceutical quality of drug tablets.

  4. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  5. X-ray tube thermal management

    NASA Astrophysics Data System (ADS)

    Nadella, Naresh; Khounsary, Ali M.

    2015-09-01

    This paper presents a brief overview of the various stationary anode X-ray tube designs and the thermal management challenges of the anode target that limit the intensity of the generated X-ray beams. Several options to further increase X-ray beam intensity are discussed.

  6. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-04-01

    This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)

  7. Miniature, mobile X-ray computed radiography system

    DOEpatents

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  8. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  9. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  10. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  11. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  12. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  13. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  14. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  15. XAssist: A System for the Automation of X-ray Astrophysics Analysis

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Griffiths, R.

    XAssist is a NASA AISR-funded project for the automation of X-ray astrophysics, with emphasis on galaxies. It is nearing completion of its initially funded effort, and is working well for Chandra and ROSAT data. Initial support for XMM-Newton data is present as well. It is capable of data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts. The bulk of the system is written in Python, which in turn drives underlying software (CIAO for Chandra data, etc.). Future work will include a GUI (mainly for beginners and status monitoring) and the exposure of at least some functionality as web services. The latter will help XAssist to eventually become part of the VO, making advanced queries possible, such as determining the X-ray fluxes of counterparts to HST or SDSS sources (including the use of unpublished X-ray data), and add the ability of ``on-the-fly'' X-ray processing. Pipelines are running on ROSAT, Chandra and now XMM-Newton observations of galaxies to demonstrate XAssist's capabilities, and the results are available online (in real time) at http://www.xassist.org. XAssist itself as well as various associated projects are available for download.

  16. TH-AB-209-07: High Resolution X-Ray-Induced Acoustic Computed Tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, L; Tang, S; Ahmad, M

    Purpose: X-ray radiographic absorption imaging is an invaluable tool in medical diagnostics, biology and materials science. However, the use of conventional CT is limited by two factors: the detection sensitivity to weak absorption material and the radiation dose from CT scanning. The purpose of this study is to explore X-ray induced acoustic computed tomography (XACT), a new imaging modality, which combines X-ray absorption contrast and high ultrasonic resolution to address these challenges. Methods: First, theoretical models was built to analyze the XACT sensitivity to X-ray absorption and calculate the minimal radiation dose in XACT imaging. Then, an XACT system comprisedmore » of an ultrashort X-ray pulse, a low noise ultrasound detector and a signal acquisition system was built to evaluate the X-ray induced acoustic signal generation. A piece of chicken bone and a phantom with two golden fiducial markers were exposed to 270 kVp X-ray source with 60 ns exposure time, and the X-ray induced acoustic signal was received by a 2.25MHz ultrasound transducer in 200 positions. XACT images were reconstructed by a filtered back-projection algorithm. Results: The theoretical analysis shows that X-ray induced acoustic signals have 100% relative sensitivity to X-ray absorption, but not to X-ray scattering. Applying this innovative technology to breast imaging, we can reduce radiation dose by a factor of 50 compared with newly FDA approved breast CT. The reconstructed images of chicken bone and golden fiducial marker phantom reveal that the spatial resolution of the built XACT system is 350µm. Conclusion: In XACT, the imaging sensitivity to X-ray absorption is improved and the imaging dose is dramatically reduced by using ultrashort pulsed X-ray. Taking advantage of the high ultrasonic resolution, we can also perform 3D imaging with a single X-ray pulse. This new modality has the potential to revolutionize x-ray imaging applications in medicine and biology.« less

  17. Improving image quality in laboratory x-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    De Marco, F.; Marschner, M.; Birnbacher, L.; Viermetz, M.; Noël, P.; Herzen, J.; Pfeiffer, F.

    2017-03-01

    Grating-based X-ray phase-contrast (gbPC) is known to provide significant benefits for biomedical imaging. To investigate these benefits, a high-sensitivity gbPC micro-CT setup for small (≍ 5 cm) biological samples has been constructed. Unfortunately, high differential-phase sensitivity leads to an increased magnitude of data processing artifacts, limiting the quality of tomographic reconstructions. Most importantly, processing of phase-stepping data with incorrect stepping positions can introduce artifacts resembling Moiré fringes to the projections. Additionally, the focal spot size of the X-ray source limits resolution of tomograms. Here we present a set of algorithms to minimize artifacts, increase resolution and improve visual impression of projections and tomograms from the examined setup. We assessed two algorithms for artifact reduction: Firstly, a correction algorithm exploiting correlations of the artifacts and differential-phase data was developed and tested. Artifacts were reliably removed without compromising image data. Secondly, we implemented a new algorithm for flatfield selection, which was shown to exclude flat-fields with strong artifacts. Both procedures successfully improved image quality of projections and tomograms. Deconvolution of all projections of a CT scan can minimize blurring introduced by the finite size of the X-ray source focal spot. Application of the Richardson-Lucy deconvolution algorithm to gbPC-CT projections resulted in an improved resolution of phase-contrast tomograms. Additionally, we found that nearest-neighbor interpolation of projections can improve the visual impression of very small features in phase-contrast tomograms. In conclusion, we achieved an increase in image resolution and quality for the investigated setup, which may lead to an improved detection of very small sample features, thereby maximizing the setup's utility.

  18. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    ERIC Educational Resources Information Center

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  19. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  20. Projection optics box

    DOEpatents

    Hale, Layton C.; Malsbury, Terry; Hudyma, Russell M.; Parker, John M.

    2000-01-01

    A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

  1. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  2. X-ray Measurements of Laser Irradiated Foam Filled Liners

    NASA Astrophysics Data System (ADS)

    Patankar, Siddharth; Mariscal, Derek; Goyon, Clement; Baker, Kevin; MacLaren, Stephan; Hammer, Jim; Baumann, Ted; Amendt, Peter; Menapace, Joseph; Berger, Bob; Afeyan, Bedros; Tabak, Max; Dixit, Sham; Kim, Sung Ho; Moody, John; Jones, Ogden

    2016-10-01

    Low-density foam liners are being investigated as sources of efficient x-rays. Understanding the laser-foam interaction is key to modeling and optimizing foam composition and density for x-ray production with reduced backscatter. We report on the experimental results of laser-irradiated foam liners filled with SiO2 and Ta2O5 foams at densities between 2 to 30mg/cc. The foam liners consist of polyimide tubes filled with low-density foams and sealed with a gold foil at one end. The open end of the tube is driven with 250J of 527nm laser light in a 2ns 2-step pulse using the Jupiter Laser Facility at LLNL. A full aperture backscatter system is used to diagnose the coupled energy and losses. A streaked x-ray camera and filtered x-ray pinhole cameras are used to measure laser penetration into the low-density foam for different mass densities. A HOPG crystal spectrometer is used to estimate a thermal electron temperature. Comparisons with beam propagation and x-ray emission simulations are presented. This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, with funding support from the Laboratory Directed Research and Development Program under project 15.

  3. Line edge roughness (LER) mitigation studies specific to interference-like lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Estroff, Andrew; Xie, Peng; Smith, Bruce W.

    2013-04-01

    Line edge roughness (LER) is a common problem to most lithography approaches and is seen as the main resolution limiter for advanced technology nodes1. There are several contributors to LER such as chemical/optical shot noise, random nature of acid diffusion, development process, and concentration of acid generator/base quencher. Since interference-like lithography (IL) is used to define one directional gridded patterns, some LER mitigation approaches specific to IL-like imaging can be explored. Two methods investigated in this work for this goal are (i) translational image averaging along the line direction and (ii) pupil plane filtering. Experiments regarding the former were performed on both interferometric and projection lithography systems. Projection lithography experiments showed a small amount of reduction in low/mid frequency LER value for image averaged cases at pitch of 150 nm (193 nm illumination, 0.93 NA) with less change for smaller pitches. Aerial image smearing did not significantly increase LER since it was directional. Simulation showed less than 1% reduction in NILS (compared to a static, smooth mask equivalent) with ideal alignment. In addition, description of pupil plane filtering on the transfer of mask roughness is given. When astigmatism-like aberrations were introduced in the pupil, transfer of mask roughness is decreased at best focus. It is important to exclude main diffraction orders from the filtering to prevent contrast and NILS loss. These ideas can be valuable as projection lithography approaches to conditions similar to IL (e.g. strong RET methods).

  4. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    NASA Astrophysics Data System (ADS)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  5. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  6. VizieR Online Data Catalog: ChaMP X-ray point source catalog (Kim+, 2007)

    NASA Astrophysics Data System (ADS)

    Kim, M.; Kim, D.-W.; Wilkes, B. J.; Green, P. J.; Kim, E.; Anderson, C. S.; Barkhouse, W. A.; Evans, N. R.; Ivezic, Z.; Karovska, M.; Kashyap, V. L.; Lee, M. G.; Maksym, P.; Mossman, A. E.; Silverman, J. D.; Tananbaum, H. D.

    2009-01-01

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6800 X-ray sources detected in 149 Chandra observations covering ~10deg2. The full ChaMP catalog sample is 7 times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124ks, corresponding to a deepest X-ray flux limit of f0.5-8.0=9x10-16ergs/cm2/s. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in eight different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability, and positional uncertainty. (10 data files).

  7. X-ray angiography systems.

    PubMed

    1993-11-01

    Despite the emergence of several alternative angiographic imaging techniques (i.e., magnetic resonance imaging, computed tomography, and ultrasound angiography), x-ray angiography remains the predominant vascular imaging modality, generating over $4 billion in revenue a year in U.S. hospitals. In this issue, we provide a brief overview of the various angiographic imaging techniques, comparing them with x-ray angiography, and discuss the clinical aspects of x-ray vascular imaging, including catheterization and clinical applications. Clinical, cost, usage, and legal issues related to contrast media are discussed in "Contrast Media: Ionic versus Nonionic and Low-osmolality Agents." We also provide a technical overview and selection guidance for a basic x-ray angiography imaging system, including the gantry and table system, x-ray generator, x-ray tube, image intensifier, video camera and display monitors, image-recording devices, and digital acquisition and processing systems. This issue also contains our Evaluation of the GE Advantx L/C cardiac angiography system and the GE Advantx AFM general-purpose angiography system; the AFM can be used for peripheral, pulmonary, and cerebral vascular studied, among others, and can also be configured for cardiac angiography. Many features of the Advantx L/C system, including generator characteristics and ease of use, also apply to the Advantx AFM as configured for cardiac angiography. Our ratings are based on the systems' ability to provide the best possible image quality for diagnosis and therapy while minimizing patient and personnel exposure to radiation, as well as its ability to minimize operator effort and inconvenience. Both units are rated Acceptable. In the Guidance Section, "Radiation Safety and Protection," we discuss the importance of keeping patient and personnel exposures to radiation as low as reasonably possible, especially in procedures such as cardiac catheterization, angiographic imaging for special procedures

  8. Performance of NICER flight x-ray concentrator

    NASA Astrophysics Data System (ADS)

    Okajima, Takashi; Soong, Yang; Balsamo, Erin R.; Enoto, Teruaki; Olsen, Larry; Koenecke, Richard; Lozipone, Larry; Kearney, John; Fitzsimmons, Sean; Numata, Ai; Kenyon, Steven J.; Arzoumanian, Zaven; Gendreau, Keith

    2016-07-01

    Neutron star Interior Composition ExploreR (NICER) is a NASA instrument to be onboard International Space Station, which is equipped with 56 pairs of an X-ray concentrator (XRC) and a silicon drift detector for high timing observations. The XRC is based on an epoxy replicated thin aluminum foil X-ray mirror, similar to those of Suzaku and ASTRO-H (Hitomi), but only a single stage parabolic grazing incidence optic. Each has a focal length of 1.085m and a diameter of 105 mm, with 24 confocally aligned parabolic shells. Grazing incident angles to individual shells range from 0.4 to 1.4 deg. The flight 56 XRCs have been completed and successfully delivered to the payload integration. All the XRC was characterized at the NASA/GSFC 100-m X-ray beamline using 1.5 keV X-rays (some of them are also at 4.5 keV). The XRC performance, effective area and point spread function, was measured by a CCD camera and a proportional counter. The average effective area is about 44 cm2 at 1.5 keV and about 18 cm2 at 4.5 keV, which is consistent with a micro-roughness of 0.5nm from individual shell reflectivity measurements. The XRC focuses about 91% of X-rays into a 2mm aperture at the focal plane, which is the NICER detector window size. Each XRC weighs only 325 g. These performance met the project requirement. In this paper, we will present summary of the flight XRC performance as well as co-alignment results of the 56 XRCs on the flight payload as it is important to estimate the total effective for astronomical observations.

  9. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  10. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  11. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Mancini, Derrick C; Ilavsky, Jan

    2015-05-01

    The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world.

  12. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  13. X-ray Cryogenic Facility (XRCF) Handbook

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey R.

    2016-01-01

    The X-ray & Cryogenic Facility (XRCF) Handbook is a guide for planning operations at the facility. A summary of the capabilities, policies, and procedures is provided to enhance project coordination between the facility user and XRCF personnel. This handbook includes basic information that will enable the XRCF to effectively plan and support test activities. In addition, this handbook describes the facilities and systems available at the XRCF for supporting test operations. 1.2 General Facility Description The XRCF was built in 1989 to meet the stringent requirements associated with calibration of X-ray optics, instruments, and telescopes and was subsequently modified in 1999 & 2005 to perform the challenging cryogenic verification of Ultraviolet, Optical, and Infrared mirrors. These unique and premier specialty capabilities, coupled with its ability to meet multiple generic thermal vacuum test requirements for large payloads, make the XRCF the most versatile and adaptable space environmental test facility in the Agency. XRCF is also recognized as the newest, most cost effective, most highly utilized facility in the portfolio and as one of only five NASA facilities having unique capabilities. The XRCF is capable of supporting and has supported missions during all phases from technology development to flight verification. Programs/projects that have benefited from XRCF include Chandra, Solar X-ray Imager, Hinode, and James Webb Space Telescope. All test programs have been completed on-schedule and within budget and have experienced no delays due to facility readiness or failures. XRCF is currently supporting Strategic Astrophysics Technology Development for Cosmic Origins. Throughout the years, XRCF has partnered with and continues to maintain positive working relationships with organizations such as ATK, Ball Aerospace, Northrop Grumman Aerospace, Excelis (formerly Kodak/ITT), Smithsonian Astrophysical Observatory, Goddard Space Flight Center, University of Alabama

  14. A Coordinated X-Ray and Optical Campaign of the Nearby Massive Binary Sigma Orionis Aa. II; X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution gratings spectral dataset of the Sigma Ori Aa binary system. The four observations, obtained with Chandra ACIS HETGS, have a total exposure time of approximately 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range 5-25 angstroms is confirmed, with maximum amplitude of about plus or minus 15 percent within a single approximately 125 kiloseconds observation. Periods of 4.76 days and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in flux level throughout the 9-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S XV, Si XIII, and Ne IX. For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi equals 0.0 when the secondary Aa2 is at inferior conjunction. We use the results of an SPH radiative transfer code model, customized for this project, to relate the presence of a low density cavity in the primary stellar wind embedded shock that is associated with the secondary star to the emission line width variability.

  15. Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.

    2015-11-01

    Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.

  16. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  17. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  18. A burst chasing x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Hill, Joanne E.; Barthelmy, Scott; Black, J. Kevin; Deines-Jones, Philip; Jahoda, Keith; Sakamoto, Takanori; Kaaret, Philip; McConnell, Mark L.; Bloser, Peter F.; Macri, John R.; Legere, Jason S.; Ryan, James M.; Smith, Billy R., Jr.; Zhang, Bing

    2007-09-01

    Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect is the dominant interaction process. We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts; the Gamma-Ray Burst Polarimeter (GRBP) for the U.S. Naval Academy satellite MidSTAR-2, and the Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  19. A Burst Chasing X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Barthelmy, Scott; Black, J. kevin; Deines-Jones, Philip; Jahoda, Keith; Sakamoto, Takanori; Kaaret, Philip; McConnell, Mark L.; Bloser, Peter F.; Macri, John R.; hide

    2007-01-01

    Gamma-ray bursts are one of the most powerful explosions in the universe and have been detected out to distances of almost 13 billion light years. The exact origin of these energetic explosions is still unknown but the resulting huge release of energy is thought to create a highly relativistic jet of material and a power-law distribution of electrons. There are several theories describing the origin of the prompt GRB emission that currently cannot be distinguished. Measurements of the linear polarization would provide unique and important constraints on the mechanisms thought to drive these powerful explosions. We present the design of a sensitive, and extremely versatile gamma-ray burst polarimeter. The instrument is a photoelectric polarimeter based on a time-projection chamber. The photoelectric time-projection technique combines high sensitivity with broad band-pass and is potentially the most powerful method between 2 and 100 keV where the photoelectric effect 1s the dominant interaction process We present measurements of polarized and unpolarized X-rays obtained with a prototype detector and describe the two mission concepts, the Gamma-Ray Burst Polarimeter (GRBP) for thc U S Naval Academy satellite MidSTAR-2, and thc Low Energy Polarimeter (LEP) onboard POET, a broadband polarimetry concept for a small explorer mission.

  20. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.