Sample records for x-ray pulsar swift

  1. CHANDRA AND SWIFT X-RAY OBSERVATIONS OF THE X-RAY PULSAR SMC X-2 DURING THE OUTBURST OF 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. L.; Hu, C.-P; Lin, L. C. C.

    2016-09-10

    We report the Chandra /HRC-S and Swift /XRT observations for the 2015 outburst of the high-mass X-ray binary pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra /HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift /XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipsesmore » or an ionized high-density shadow wind near the companion’s surface. Finally, we propose that an outflow driven by the radiation pressure from day ∼10 played an important role in the X-ray/optical evolution of the outburst.« less

  2. X-ray counterpart candidates for six new γ-ray pulsars

    NASA Astrophysics Data System (ADS)

    Zyuzin, Dmitry A.; Karpova, Anna V.; Shibanov, Yuriy A.

    2018-05-01

    Using archival X-ray data, we have found point-like X-ray counterpart candidates positionally coincident with six γ-ray pulsars discovered recently in the Fermi Gamma-ray Space Telescope data by the Einstein@Home project. The candidates for PSRs J0002+6216, J0554+3107, J1844-0346, and J1105-6037 are detected with Swift, and those for PSRs J0359+5414 and J2017+3625 are detected with Chandra. Despite a low count statistics for some candidates, assuming plausible constraints on the absorbing column density towards the pulsars, we show that X-ray spectral properties for all of them are consistent with those observed for other pulsars. J0359+5414 is the most reliably identified object. We detect a nebula around it, whose spectrum and extent suggest that this is a pulsar wind nebula powered by the pulsar. Associations of J0002+6216 and J1844-0346 with supernova remnants CTB 1 and G28.6-0.1 are proposed.

  3. Understanding the spectral and timing behaviour of a newly discovered transient X-ray pulsar Swift J0243.6+6124

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra; Chenevez, Jérôme

    2018-03-01

    We present the results obtained from timing and spectral studies of the newly discovered accreting X-ray binary pulsar Swift J0243.6+6124 using Nuclear Spectroscopy Telescope Array observation in 2017 October at a flux level of ˜280 mCrab. Pulsations at 9.854 23(5) s were detected in the X-ray light curves of the pulsar. Pulse profiles of the pulsar were found to be strongly energy dependent. A broad profile at lower energies was found to evolve into a double-peaked profile in ≥ 30 keV. The 3-79 keV continuum spectrum of the pulsar was well described with a negative and positive exponential cutoff or high-energy cutoff power-law models modified with a hot blackbody at ˜3 keV. An iron emission line was also detected at 6.4 keV in the source spectrum. We did not find any signature of cyclotron absorption line in our study. Results obtained from phase-resolved and time-resolved spectroscopy are discussed in the paper.

  4. Detection of potential periodicities in the unique hard X-ray source Swift J0042.6+4112, dominating the hard X-ray emission in M31

    NASA Astrophysics Data System (ADS)

    Yukita, Mihoko; Tzanavaris, Panayiotis; Corbet, Robin; Ptak, Andrew; Hornschemeier, Ann; Pottschmidt, Katja; Ballhausen, Ralf; Enoto, Teruaki; Antoniou, Vallia; Lehmer, Bret; Maccarone, Thomas J.; Wik, Daniel; Williams, Ben; Zezas, Andreas

    2018-01-01

    Recent NuSTAR-Swift observations revealed that a single resolved X-ray source, Swift J0042.6+4112, with Lx of a few times 1038 erg/s dominates the hard X-ray emission from the Andromeda galaxy. HST-based stellar population synthesis modeling combined with the 0.5-50 keV spectral shape suggests that this might be an X-ray pulsar with an intermediate- (or low-) mass donor. Here we further explore the alternative scenario of a symbiotic or ultracompact X-ray binary, based on long-term variability from Swift observations between 2005 and 2016. We find that the soft (0.3-8.0 keV) X-ray flux varies within a factor of 4 but does not exhibit transient behavior. Its power spectrum suggests a 6.1-day period. Additionally, we find a strong 3s-period candidate from both NuSTAR and XMM observations taken in 2017. If interpreted as an orbital and spin period respectively, the source's temporal behavior would not support either the symbiotic or the ultracompact X-ray binary scenario. Rather, it is more consistent with an accreting pulsar with a higher mass donor.

  5. Discovery of Eclipses from the Accreting Millisecond X-Ray Pulsar Swift J1749.4-2807

    NASA Technical Reports Server (NTRS)

    Markwardt, C. B.; Stromhmayer, T. E.

    2010-01-01

    We report the discovery of X-ray eclipses in the recently discovered accreting millisecond X-ray pulsar SWIFT J1749.4-2807. This is the first detection of X-ray eclipses in a system of this type and should enable a precise neutron star mass measurement once the companion star is identified and studied. We present a combined pulse and eclipse timing solution that enables tight constraints on the orbital parameters and inclination and shows that the companion mass is in the range 0.6-0.8 solar mass for a likely range of neutron star masses, and that it is larger than a main-sequence star of the same mass. We observed two individual eclipse egresses and a single ingress. Our timing model shows that the eclipse features are symmetric about the time of 90 longitude from the ascending node, as expected. Our eclipse timing solution gives an eclipse duration (from the mid-points of ingress to egress) of 2172+/-13 s. This represents 6.85% of the 8.82 hr orbital period. This system also presents a potential measurement of "Shapiro" delay due to general relativity; through this technique alone, we set an upper limit to the companion mass of 2.2 Solar mass .

  6. Discovery of the Accretion-Powered Millisecond Pulsar SWIFT 51756.9-2508 with a Low-Mass Companion

    NASA Technical Reports Server (NTRS)

    Krimm, H.A.; Markwardt, C.B.; Deloye, C.J.; Romano, P.; Chakrabarty, S.; Campana. S.; Cummings, J.C.; Galloway, D.K.; Gehrels, N.; Hartman, J.M.; hide

    2007-01-01

    We report on the discovery by the Swift Gamma-Ray Burst Explorer of the eighth known transient accretion-powered millisecond pulsar: SWIFT J1756.9-2508, as part of routine observations with the Swift Burst Alert Telescope hard X-ray transient monitor. The pulsar was subsequently observed by both the X-Ray Telescope on Swift and the Rossi X-Ray Timing Explorer Proportional Counter Array. It has a spin frequency of 182 Hz (5.5 ms) and an orbital period of 54.7 minutes. The minimum companion mass is between 0.0067 and 0.0086 Solar Mass, depending on the mass of the neutron star, and the upper limit on the mass is 0.030 Solar Mass (95% confidence level). Such a low mass is inconsistent with brown dwarf models. and comparison with white dwarf models suggests that the companion is a He-dominated donor whose thermal cooling has been at least modestly slowed by irradiation from the accretion flux. No X-ray bursts. dips, eclipses or quasi-periodic oscillations were detected. The current outburst lasted approx. 13 days and no earlier outbursts were found in archival data.

  7. X-Ray Enhancement and Long-term Evolution of Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Benli, Onur; Çalışkan, Ş.; Ertan, Ü.; Alpar, M. A.; Trümper, J. E.; Kylafis, N. D.

    2013-12-01

    We investigate the X-ray enhancement and the long-term evolution of the recently discovered second "low-B magnetar" Swift J1822.3-1606 in the frame of the fallback disk model. During a soft gamma burst episode, the inner disk matter is pushed back to larger radii, forming a density gradient at the inner disk. Subsequent relaxation of the inner disk could account for the observed X-ray enhancement light curve of Swift J1822.3-1606. We obtain model fits to the X-ray data with basic disk parameters similar to those employed to explain the X-ray outburst light curves of other anomalous X-ray pulsars and soft gamma repeaters. The long period (8.4 s) of the neutron star can be reached by the effect of the disk torques in the long-term accretion phase ((1-3) × 105 yr). The currently ongoing X-ray enhancement could be due to a transient accretion epoch, or the source could still be in the accretion phase in quiescence. Considering these different possibilities, we determine the model curves that could represent the long-term rotational and the X-ray luminosity evolution of Swift J1822.3-1606, which constrain the strength of the magnetic dipole field to the range of (1-2) × 1012 G on the surface of the neutron star.

  8. Further NICER observations of the accreting millisecond pulsar Swift J1756.9-2508

    NASA Astrophysics Data System (ADS)

    Bult, P. M.; Gendreau, K. C.; Ray, P. S.; Altamirano, D.; Arzoumanian, Z.; Strohmayer, T. E.; Homan, J.; Chakrabarty, D.

    2018-04-01

    The accreting millisecond X-ray pulsar Swift J1756.9-2508 has been in outburst since 2018 April 1 (ATel #11497, #11502, #11505, #11523, #11566) and has been subject to regular monitoring with NICER (ATel #11502).

  9. X-rays from the eclipsing pulsar 1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  10. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    We propose to expand the scope of our successful project providing a multi-satellite library of X-ray Pulsar observations to the community. The library provides high-level products, activity monitoring, pulse-profiles, phased event files, spectra, and a unique pulse-profile modeling interface. The library's scientific footprint will expand in 4 key directions: (1) Update, by processing all new XMM-Newton and Chandra observations (2015-2017) of X-ray Binary Pulsars in the Magellanic Clouds. (2) Expand, by including all archival Suzaku, Swift and NuStar observations, and including Galactic pulsars. (3) Improve, by offering innovative data products that provide deeper insight. (4) Advance, by implementing a new generation of physically motivated emission and pulse-profile models. The library currently includes some 2000 individual RXTE-PCA, 200 Chandra ACIS-I, and 120 XMM-PN observations of the SMC spanning 15 years, creating an unrivaled record of pulsar temporal behavior. In Phase-2, additional observations of SMC pulsars will be added: 221 Chandra (ACIS-S and ACIS-I), 22 XMM-PN, 142 XMM-MOS, 92 Suzaku, 25 NuSTAR, and >10,000 Swift; leveraging our pipeline and analysis techniques already developed. With the addition of 7 Galactic pulsars each having many hundred multisatellite observations, these datasets cover the entire range of variability timescales and accretion regimes. We will model the pulse-profiles using state of the art techniques to parameterize their morphology and obtain the distribution of offsets between magnetic and spin axes, and create samples of profiles under specific accretion modes (whether pencil-beam or fan-beam dominated). These products are needed for the next generation of advances in neutron star theory and modeling. The long-duration of the dataset and “whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray

  11. X-ray pulsars in nearby irregular galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    2018-01-01

    The Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Irregular Galaxy IC 10 are valuable laboratories to study the physical, temporal and statistical properties of the X-ray pulsar population with multi-satellite observations, in order to probe fundamental physics. The known distance of these galaxies can help us easily categorize the luminosity of the pulsars and their age difference can be helpful for for studying the origin and evolution of compact objects. Therefore, a complete archive of 116 XMM-Newton PN, 151 Chandra (Advanced CCD Imaging Spectrometer) ACIS, and 952 RXTE PCA observations for the pulsars in the Small Magellanic Cloud (SMC) were collected and analyzed, along with 42 XMM-Newton and 30 Chandra observations for the Large Magellanic Cloud, spanning 1997-2014. From a sample of 67 SMC pulsars we generate a suite of products for each pulsar detection: spin period, flux, event list, high time-resolution light-curve, pulse-profile, periodogram, and X-ray spectrum. Combining all three satellites, I generated complete histories of the spin periods, pulse amplitudes, pulsed fractions and X-ray luminosities. Many of the pulsars show variations in pulse period due to the combination of orbital motion and accretion torques. Long-term spin-up/down trends are seen in 28/25 pulsars respectively, pointing to sustained transfer of mass and angular momentum to the neutron star on decadal timescales. The distributions of pulse detection and flux as functions of spin period provide interesting findings: mapping boundaries of accretion-driven X-ray luminosity, and showing that fast pulsars (P<10 s) are rarely detected, which yet are more prone to giant outbursts. In parallel we compare the observed pulse profiles to our general relativity (GR) model of X-ray emission in order to constrain the physical parameters of the pulsars.In addition, we conduct a search for optical counterparts to X-ray sources in the local dwarf galaxy IC 10 to form a comparison

  12. Status Of The Swift Burst Alert Telescope Hard X-ray Transient Monitor

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J.; Fenimore, E.; Gehrels, N.; Markwardt, C. B.; Palmer, D.; Sakamoto, T.; Skinner, G. K.; Stamatikos, M.; Tueller, J.

    2010-01-01

    The Swift Burst Alert Telescope hard X-ray transient monitor has been operating since October 1, 2006. More than 700 sources are tracked on a daily basis and light curves are produced and made available to the public on two time scales: a single Swift pointing (approximately 20 minutes) and the weighted average for each day. Of the monitored sources, approximately 33 are detected daily and another 100 have had one or more outburst during the Swift mission. The monitor is also sensitive to the detection of previously undiscovered sources and we have reported the discovery of four galactic sources and one source in the Large Magellanic Cloud. Follow-up target of opportunity observations with Swift and the Rossi X-Ray Timing Explorer have revealed that three of these new sources are pulsars and two are black hole candidates. In addition, the monitor has led to the announcement of significant outbursts from 24 different galactic and extra-galactic sources, many of which have had follow-up Swift XRT, UVOT and ground based multi-wavelength observations. The transient monitor web pages currently receive an average of 21 visits per day. We will report on the most important results from the transient monitor and also on detection and exposure statistics and outline recent and planned improvements to the monitor. The transient monitor web page is http://swift.gsfc.nasa.gov/docs/swift/results/transients/.

  13. Simultaneous broadband observations and high-resolution X-ray spectroscopy of the transitional millisecond pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Coti Zelati, F.; Campana, S.; Braito, V.; Baglio, M. C.; D'Avanzo, P.; Rea, N.; Torres, D. F.

    2018-03-01

    We report on the first simultaneous XMM-Newton, NuSTAR, and Swift observations of the transitional millisecond pulsar PSR J1023+0038 in the X-ray active state. Our multi-wavelength campaign allowed us to investigate with unprecedented detail possible spectral variability over a broad energy range in the X-rays, as well as correlations and lags among emissions in different bands. The soft and hard X-ray emissions are significantly correlated, with no lags between the two bands. On the other hand, the X-ray emission does not correlate with the UV emission. We refine our model for the observed mode switching in terms of rapid transitions between a weak propeller regime and a rotation-powered radio pulsar state, and report on a detailed high-resolution X-ray spectroscopy using all XMM-Newton Reflection Grating Spectrometer data acquired since 2013. We discuss our results in the context of the recent discoveries on the system and of the state of the art simulations on transitional millisecond pulsars, and show how the properties of the narrow emission lines in the soft X-ray spectrum are consistent with an origin within the accretion disc.

  14. Pulsars as Calibration Tools and X-Ray Observations of Spider Pulsars

    NASA Astrophysics Data System (ADS)

    Gentile, Peter Anthony

    We present the polarization pulse profiles for 29 pulsars observed with the Arecibo Observatory by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) timing project at 2.1 GHz, 1.4 GHz, and 430 MHz. These profiles represent the most sensitive polarimetric millisecond pulsar profiles to date, revealing the existence of microcomponents (that is, pulse components with peak intensities much lower than the total pulse peak intensity). Although microcomponents have been detected in some pulsars previously, we are able to detect new microcomponents for PSRs B1937+21, J1713+0747, and J2234+0944. We also present rotation measures for 28 of these pulsars, determined independently at different observation frequencies and epochs, and find the Galactic magnetic fields derived from these rotation measures to be consistent with current models. These polarization profiles were made using measurement equation template matching, which allows us to generate the polarimetric response of the Arecibo Observatory on an epoch-by-epoch basis. We use this method to describe its time variability, and find that the polarimetric responses of the Arecibo Observatory's 1.4 and 2.1 GHz receivers varies significantly with time. We then describe the first X-ray observations of five short orbital period (PB < 1 day), gamma-ray emitting, binary millisecond pulsars. Four of these--PSRs J0023+0923, J1124-3653, J1810+1744, and J2256-1024--are "black-widow" pulsars, with degenerate companions of mass 0.1 solar mass, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing "redback" with a near Roche-lobe filling 0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256-1024, show significant orbital variability while PSR J1124-3653 shows marginal orbital variability. The lightcurves for these three pulsars have X-ray flux

  15. Spacecraft Navigation Using X-ray Pulsars

    DTIC Science & Technology

    2006-01-01

    95FEATURED RESEARCH 2006 NRL REVIEW Spacecraft Navigation Using X-ray Pulsars P.S. Ray, K.S. Wood, and B.F. Phlips E.O. Hulburt Center for Space...satellites and computes the range (technically pseudorange) to each satellite Pulsars are the collapsed remnants of massive stars that have become...relatively simple structure, pulsars are exceptionally stable rotators whose timing stability rivals that of conventional atomic clocks. A navigation

  16. X-ray observations of black widow pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, P. A.; McLaughlin, M. A.; Roberts, M. S. E.

    2014-03-10

    We describe the first X-ray observations of five short orbital period (P{sub B} < 1 day), γ-ray emitting, binary millisecond pulsars (MSPs). Four of these—PSRs J0023+0923, J1124–3653, J1810+1744, and J2256–1024—are 'black-widow' pulsars, with degenerate companions of mass <<0.1 M {sub ☉}, three of which exhibit radio eclipses. The fifth source, PSR J2215+5135, is an eclipsing 'redback' with a near Roche-lobe filling ∼0.2 solar mass non-degenerate companion. Data were taken using the Chandra X-Ray Observatory and covered a full binary orbit for each pulsar. Two pulsars, PSRs J2215+5135 and J2256–1024, show significant orbital variability while PSR J1124–3653 shows marginal orbital variability.more » The lightcurves for these three pulsars have X-ray flux minima coinciding with the phases of the radio eclipses. This phenomenon is consistent with an intrabinary shock emission interpretation for the X-rays. The other two pulsars, PSRs J0023+0923 and J1810+1744, are fainter and do not demonstrate variability at a level we can detect in these data. All five spectra are fit with three separate models: a power-law model, a blackbody model, and a combined model with both power-law and blackbody components. The preferred spectral fits yield power-law indices that range from 1.3 to 3.2 and blackbody temperatures in the hundreds of eV. The spectrum for PSR J2215+5135 shows a significant hard X-ray component, with a large number of counts above 2 keV, which is additional evidence for the presence of intrabinary shock emission. This is similar to what has been detected in the low-mass X-ray binary to MSP transition object PSR J1023+0038.« less

  17. The rotation-powered nature of some soft gamma-ray repeaters and anomalous X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Coelho, Jaziel G.; Cáceres, D. L.; de Lima, R. C. R.; Malheiro, M.; Rueda, J. A.; Ruffini, R.

    2017-03-01

    Context. Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are slow rotating isolated pulsars whose energy reservoir is still matter of debate. Adopting neutron star (NS) fiducial parameters; mass M = 1.4 M⊙, radius R = 10 km, and moment of inertia, I = 1045 g cm2, the rotational energy loss, Ėrot, is lower than the observed luminosity (dominated by the X-rays) LX for many of the sources. Aims: We investigate the possibility that some members of this family could be canonical rotation-powered pulsars using realistic NS structure parameters instead of fiducial values. Methods: We compute the NS mass, radius, moment of inertia and angular momentum from numerical integration of the axisymmetric general relativistic equations of equilibrium. We then compute the entire range of allowed values of the rotational energy loss, Ėrot, for the observed values of rotation period P and spin-down rate Ṗ. We also estimate the surface magnetic field using a general relativistic model of a rotating magnetic dipole. Results: We show that realistic NS parameters lowers the estimated value of the magnetic field and radiation efficiency, LX/Ėrot, with respect to estimates based on fiducial NS parameters. We show that nine SGRs/AXPs can be described as canonical pulsars driven by the NS rotational energy, for LX computed in the soft (2-10 keV) X-ray band. We compute the range of NS masses for which LX/Ėrot< 1. We discuss the observed hard X-ray emission in three sources of the group of nine potentially rotation-powered NSs. This additional hard X-ray component dominates over the soft one leading to LX/Ėrot > 1 in two of them. Conclusions: We show that 9 SGRs/AXPs can be rotation-powered NSs if we analyze their X-ray luminosity in the soft 2-10 keV band. Interestingly, four of them show radio emission and six have been associated with supernova remnants (including Swift J1834.9-0846 the first SGR observed with a surrounding wind nebula). These observations give

  18. Disentangling X-Ray Emission Processes in Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2003-01-01

    We present a deep observation with the X-Ray Multimirror Mission of PSR B1823-13, a young pulsar with similar properties to the Vela pulsar. We detect two components to the X-ray emission associated with PSR B1823-13: an elongated core of extent 30 min immediately surrounding the pulsar embedded in a fainter, diffuse component of emission 5 sec in extent, seen only on the southern side of the pulsar. The pulsar itself is not detected, either as a point source or through its pulsations. Both components of the X-ray emission are well fitted by a power-law spectrum, with photon index Gamma approx. 1.6 and X-ray luminosity (0.5-10 keV) L(sub X) approx. 9 x 10(exp 32) ergs/s for the core and Gamma approx. 2.3 and L(sub X) approx. 3 x 10(exp 33) ergs/s for the diffuse emission, for a distance of 4 kpc. We interpret both components of emission as corresponding to a pulsar wind nebula, which we designate G18.0-0.7. We argue that the core region represents the wind termination shock of this nebula, while the diffuse component indicates the shocked downstream wind. We propose that the asymmetric morphology of the diffuse emission with respect to the pulsar is the result of a reverse shock from an associated supernova remnant, which has compressed and distorted the pulsar-powered nebula. Such an interaction might be typical for pulsars at this stage in their evolution. The associated supernova remnant is not detected directly, most likely being too faint to be seen in existing X-ray and radio observations.

  19. Precise γ-ray timing and radio observations of 17 FERMI γ-ray pulsars

    DOE PAGES

    Ray, Paul S.; Kerr, M.; Parent, D.; ...

    2011-04-29

    Here, we present precise phase-connected pulse timing solutions for 16 γ-ray-selected pulsars recently discovered using the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope plus one very faint radio pulsar (PSR J1124–5916) that is more effectively timed with the LAT. We describe the analysis techniques including a maximum likelihood method for determining pulse times of arrival from unbinned photon data. A major result of this work is improved position determinations, which are crucial for multiwavelength follow-up. For most of the pulsars, we overlay the timing localizations on X-ray images from Swift and describe the status of X-ray counterpartmore » associations. We report glitches measured in PSRs J0007+7303, J1124–5916, and J1813–1246. We analyze a new 20 ks Chandra ACIS observation of PSR J0633+0632 that reveals an arcminute-scale X-ray nebula extending to the south of the pulsar. We were also able to precisely localize the X-ray point source counterpart to the pulsar and find a spectrum that can be described by an absorbed blackbody or neutron star atmosphere with a hard power-law component. Another Chandra ACIS image of PSR J1732–3131 reveals a faint X-ray point source at a location consistent with the timing position of the pulsar. Finally, we present a compilation of new and archival searches for radio pulsations from each of the γ-ray-selected pulsars as well as a new Parkes radio observation of PSR J1124–5916 to establish the γ-ray to radio phase offset.« less

  20. Analyzing the Spectra of Accreting X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wolff, Michael

    This proposal seeks funding for the analysis of accretion-powered X-ray pulsar spectra from NASA/ HEASARC archived X-ray data. Spectral modeling of accreting X-ray pulsars can tell us a great deal about the physical conditions in and near high mass X-ray binary systems. Such systems have accretion flows where plasma is initially channeled from an accretion disk by the strong neutron star magnetic field, eventually falling onto the magnetic polar cap of the neutron star compact object. Many of these accreting X-ray pulsars have X-ray spectra that consist of broad power-law continua with superposed cyclotron resonant scattering features indicating magnetic field strengths above 10^12 G. The energies of these cyclotron line features have recently been shown to vary with X-ray luminosity in a number of sources such as Her X-1 and V 0332+53, a phenomenon not well understood. Another recent development is the relatively new analytic model for the spectral continuum formation in accretion-powered pulsar systems developed by Becker & Wolff. In their formalism the accretion flows are assumed to go through radiation- dominated radiative shocks and settle onto the neutron star surface. The radiation field consists of strongly Comptonized bremsstrahlung emission from the entire plasma, Comptonized cyclotron emission from the de-excitations of Landau-excited electrons in the neutron star magnetic field, and Comptonized black-body emission from a thermal mound near the neutron star surface. We seek to develop the data analysis tools to apply this model framework to the X-ray data from a wide set of sources to make progress characterizing the basic accretion properties (e.g., magnetic field strength, plasma temperatures, polar cap size, accretion rate per unit area, dominance of bulk vs. thermal Comptonization) as well as understanding the variations of the cyclotron line energies with X-ray luminosity. The three major goals of our proposed work are as follows: In the first year

  1. Accretion torques in X-ray pulsars

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Joss, P. C.

    1977-01-01

    An analysis of the accretion process in an X-ray pulsar, whereby angular momentum is transferred to the star and its rotation period is changed, is presented, and an expression for the fractional rate of change of the pulse period in terms of X-ray luminosity and other star parameters is derived. It is shown that observed characteristic spin-up time scales for seven X-ray pulsars strongly support the view that in every source (1) the pulse period reflects the rotation period of a compact object, (2) the accretion is mediated by a disk surrounding the compact object and rotating in the same sense, and (3) the compact object is a neutron star rather than a white dwarf.

  2. The X-ray properties of Be/X-ray pulsars in quiescence

    NASA Astrophysics Data System (ADS)

    Tsygankov, Sergey S.; Wijnands, Rudy; Lutovinov, Alexander A.; Degenaar, Nathalie; Poutanen, Juri

    2017-09-01

    Observations of accreting neutron stars (NSs) with strong magnetic fields can be used not only for studying the accretion flow interaction with the NS magnetospheres, but also for understanding the physical processes inside NSs and for estimating their fundamental parameters. Of particular interest are (I) the interaction of a rotating NS (magnetosphere) with the infalling matter at different accretion rates, and (II) the theory of deep crustal heating and the influence of a strong magnetic field on this process. Here, we present results of the first systematic investigation of 16 X-ray pulsars with Be optical companions during their quiescent states, based on data from the Chandra, XMM-Newton and Swift observatories. The whole sample of sources can be roughly divided into two distinct groups: (I) relatively bright objects with a luminosity around ˜1034 erg s-1 and (hard) power-law spectra, and (II) fainter ones showing thermal spectra. X-ray pulsations were detected from five objects in group (I) with quite a large pulse fraction of 50-70 per cent. The obtained results are discussed within the framework of the models describing the interaction of the infalling matter with the NS magnetic field and those describing heating and cooling in accreting NSs.

  3. RADIO-QUIET AND RADIO-LOUD PULSARS: SIMILAR IN GAMMA-RAYS BUT DIFFERENT IN X-RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marelli, M.; Mignani, R. P.; Luca, A. De

    2015-04-01

    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet (RQ) γ-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from γ-ray pulsar timing. For PSR J2030+4415 we found evidence for a ∼10″-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. and confirm that, on average, the γ-ray-to-X-ray flux ratios (F{sub γ}/F{sub X}) of RQ pulsars are higher than for the radio-loud (RL) ones. Furthermore, while the F{sub γ}/F{sub X} distribution featuresmore » a single peak for the RQ pulsars, the distribution is more dispersed for the RL ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.« less

  4. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  5. The Emerging Population of Pulsar Wind Nebulae in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Mattana, F.; Götz, D.; Terrier, R.; Renaud, M.; Falanga, M.

    2009-05-01

    The hard X-ray synchrotron emission from Pulsar Wind Nebulae probes energetic particles, closely related to the pulsar injection power at the present time. INTEGRAL has disclosed the yet poorly known population of hard X-ray pulsar/PWN systems. We summarize the properties of the class, with emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32), and highlight some prospects for the study of Pulsar Wind Nebulae with the Simbol-X mission.

  6. A multiwavelength study of SXP 1062, the long-period X-ray pulsar associated with a supernova remnant

    NASA Astrophysics Data System (ADS)

    González-Galán, A.; Oskinova, L. M.; Popov, S. B.; Haberl, F.; Kühnel, M.; Gallagher, J.; Schurch, M. P. E.; Guerrero, M. A.

    2018-04-01

    SXP 1062 is a Be X-ray binary (BeXB) located in the Small Magellanic Cloud. It hosts a long-period X-ray pulsar and is likely associated with the supernova remnant MCSNR J0127-7332. In this work we present a multiwavelength view on SXP 1062 in different luminosity regimes. We consider monitoring campaigns in optical (OGLE survey) and X-ray (Swift telescope). During these campaigns a tight coincidence of X-ray and optical outbursts is observed. We interpret this as typical Type I outbursts as often detected in BeXBs at periastron passage of the neutron star (NS). To study different X-ray luminosity regimes in depth, during the source quiescence we observed it with XMM-Newton while Chandra observations followed an X-ray outburst. Nearly simultaneously with Chandra observations in X-rays, in optical the RSS/SALT telescope obtained spectra of SXP 1062. On the basis of our multiwavelength campaign we propose a simple scenario where the disc of the Be star is observed face-on, while the orbit of the NS is inclined with respect to the disc. According to the model of quasi-spherical settling accretion our estimation of the magnetic field of the pulsar in SXP 1062 does not require an extremely strong magnetic field at the present time.

  7. Spectral and timing properties of the accreting X-ray millisecond pulsar IGR J17498-2921

    NASA Astrophysics Data System (ADS)

    Falanga, M.; Kuiper, L.; Poutanen, J.; Galloway, D. K.; Bozzo, E.; Goldwurm, A.; Hermsen, W.; Stella, L.

    2012-09-01

    Context. IGR J17498-2921 is the third X-ray transient accreting millisecond pulsar discovered by INTEGRAL. It was in outburst for about 40 days beginning on August 08, 2011. Aims: We analyze the spectral and timing properties of the object and the characteristics of X-ray bursts to constrain the physical processes responsible for the X-ray production in this class of sources. Methods: We studied the broad-band spectrum of the persistent emission in the 0.6-300 keV energy band using simultaneous INTEGRAL, RXTE, and Swift data obtained in August-September 2011. We also describe the timing properties in the 2-100 keV energy range such as the outburst lightcurve, pulse profile, pulsed fraction, pulsed emission, time lags, and study the properties of X-ray bursts discovered by RXTE, Swift, and INTEGRAL and the recurrence time. Results: The broad-band average spectrum is well-described by thermal Comptonization with an electron temperature of kTe ~ 50 keV, soft seed photons of kTbb ~ 1 keV, and Thomson optical depth τT ~ 1 in a slab geometry. The slab area corresponds to a black body radius of Rbb ~ 9 km. During the outburst, the spectrum stays remarkably stable with plasma and soft seed photon temperatures and scattering optical depth that are constant within the errors. This behavior has been interpreted as indicating that the X-ray emission originates above the neutron star (NS) surface in a hot slab (either the heated NS surface or the accretion shock). The INTEGRAL, RXTE, and Swift data reveal the X-ray pulsation at a period of 2.5 ms up to ~65 keV. The pulsed fraction is consistent with being constant, i.e. energy independent and has a typical value of 6-7%. The nearly sinusoidal pulses show soft lags that seem to saturate near 10 keV at a rather small value of ~-60 μs with those observed in other accreting pulsars. The short burst profiles indicate that there is a hydrogen-poor material at ignition, which suggests either that the accreted material is hydrogen

  8. Magnetar-like X-Ray Bursts Suppress Pulsar Radio Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, R. F.; Lyutikov, M.; Kaspi, V. M.

    Rotation-powered pulsars and magnetars are two different observational manifestations of neutron stars: rotation-powered pulsars are rapidly spinning objects that are mostly observed as pulsating radio sources, while magnetars, neutron stars with the highest known magnetic fields, often emit short-duration X-ray bursts. Here, we report simultaneous observations of the high-magnetic-field radio pulsar PSR J1119−6127 at X-ray, with XMM-Newton and NuSTAR , and at radio energies with the Parkes radio telescope, during a period of magnetar-like bursts. The rotationally powered radio emission shuts off coincident with the occurrence of multiple X-ray bursts and recovers on a timescale of ∼70 s. These observationsmore » of related radio and X-ray phenomena further solidify the connection between radio pulsars and magnetars and suggest that the pair plasma produced in bursts can disrupt the acceleration mechanism of radio-emitting particles.« less

  9. Models for X-Ray Emission from Isolated Pulsars

    NASA Technical Reports Server (NTRS)

    Wang, F. Y.-H.; Ruderman, M.; Halpern, Jules P.; Zhu, T.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    A model is proposed for the observed combination of power-law and thermal X-rays from rotationally powered pulsars. For gamma-ray pulsars with accelerators very many stellar radii above the neutron star surface, 100 MeV curvature gamma-rays from e(-) or e(+) flowing starward out of such accelerators are converted to e1 pairs on closed field lines all around the star. These pairs strongly affect X-ray emission from near the star in two ways. (1) The pairs are a source of synchrotron emission immediately following their creation in regions where B approx. 10(exp 10) G. This emission, in the photon energy range 0.1 keV less than E(sub X) less than 5 MeV, has a power-law spectrum with energy index 0.5 and X-ray luminosity that depends on the back-flow current, and is typically approx. 10(exp 33) ergs/ s. (2) The pairs ultimately a cyclotron resonance "blanket" surrounding the star except for two holes along the open field line bundles which pass through it. In such a blanket the gravitational pull on e(+,-) pairs toward the star is balanced by the hugely amplified push of outflowing surface emitted X-rays wherever cyclotron resonance occurs. Because of it the neutron star is surrounded by a leaky "hohlraum" of hot blackbody radiation with two small holes, which prevents direct X-ray observation of a heated polar cap of a gamma-ray pulsar. Weakly spin modulated radiation from the blanket together with more strongly spin-modulated radiation from the holes through it would then dominate observed low energy (0.1-10 keV) emission. For non-y-ray pulsars, in which no such accelerators with their accompanying extreme relativistic back-flow toward the star are expected, optically thick e1 resonance blankets should not form (except in special cases very close to the open field line bundle). From such pulsars blackbody radiation from both the warm stellar surface and the heated polar caps should be directly observable. In these pulsars, details of the surface magnetic field

  10. Spectral Properties, Generation Order Parameters, and Luminosities for Spin-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zhao, Yongheng

    2004-02-01

    We show the spectral properties of 15 spin-powered X-ray pulsars, and the correlation between the average power-law photon index and spin-down rate. Generation order parameters (GOPs) based on polar cap models are introduced to characterize the X-ray pulsars. We calculate three definitions of generation order parameters arising from the different effects of magnetic and electric fields on photon absorption during cascade processes, and study the relations between the GOPs and spectral properties of X-ray pulsars. There exists a possible correlation between the photon index and GOP in our pulsar sample. Furthermore, we present a method stemming from the concept of GOPs to estimate the nonthermal X-ray luminosity for spin-powered pulsars. Then X-ray luminosity is calculated in the context of our polar cap accelerator model, which is consistent with most observed X-ray pulsar data. The ratio between the X-ray luminosity estimated by our method and the pulsar's spin-down power is consistent with the LX~10-3Lsd feature.

  11. Synchrotron X-ray emission from old pulsars

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Tanaka, Shuta J.

    2014-09-01

    We study the synchrotron radiation as the observed non-thermal emission by the X-ray satellites from old pulsars (≳1-10 Myr) to investigate the particle acceleration in their magnetospheres. We assume that the power-law component of the observed X-ray spectra is caused by the synchrotron radiation from electrons and positrons in the magnetosphere. We consider two pair-production mechanisms of X-ray emitting particles, the magnetic and the photon-photon pair productions. High-energy photons, which ignite the pair production, are emitted via the curvature radiation of the accelerated particles. We use the analytical description for the radiative transfer and estimate the luminosity of the synchrotron radiation. We find that for pulsars with the spin-down luminosity Lsd ≲ 1033 erg s-1, the locations of the particle acceleration and the non-thermal X-ray emission are within ≲107 cm from the centre of the neutron star, where the magnetic pair production occurs. For pulsars with the spin-down luminosity Lsd ≲ 1031 erg s-1 such as J0108-1431, the synchrotron radiation is difficult to explain the observed non-thermal component even if we consider the existence of the strong and small-scale surface magnetic field structures.

  12. A Study of the X-Ray Emission from Three Radio Pulsars

    NASA Technical Reports Server (NTRS)

    Slane, Patrick O. (Principal Investigator)

    1996-01-01

    The subject grant is for work on a study of x-ray emission from isolated pulsars. The purpose of the study was to: determine whether the pulsars were x-ray sources; and, if so, search for evidence of pulsations at the known radio period; and study the nature of the x-ray emission. Observation of the pulsar PSR 0355+54 were obtained, and the analysis of these data is complete. These results were reported at the 183rd AAS Meeting, and in a paper entitled 'X-Ray Emission from PSR 0355+54' which as published in the The Astrophysical Journal. Also obtained an approx. 3 ks PSPC observations of PSR 1642-03. A summary of the results from these data were reported in a Conference Proceedings for the 'New Horizon of X-ray Astronomy' symposium. In addition, as part of a study with a student from the SAO Summer Intern Program, I incorporated ROSAT archival data in an extended study of pulsar emission. These results were reported at the 185th AAS Meeting, and in a paper entitled 'Soft X-ray Emission from Selected Isolated Pulsars' which was published in The Astrophysical Journal (Letters).

  13. SEXTANT X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Winternitz, Luke B.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolf, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    Millisecond pulsars (MSPs) are rapidly rotating neutron stars that appear to pulsate across the electromagnetic spectrum. Some MSPs have long-term timing stability that rivals that of atomic clocks. Pulse arrival phase can be predicted with great accuracy at any reference point in the Solar System through use of a pulsar timing model on a spacecraft. Comparing observed phase to predictions gives information that may be used in a navigation process. Why X-rays? Some stable MSPs have conveniently detectable X-ray emissions. X-rays are immune to interstellar dispersion effects thought to limit radio pulsar timing models. Highly directional compact detectors possible.

  14. The 105-Month Swift-BAT All-Sky Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; hide

    2018-01-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40 x 10(exp -12) erg s(exp -1) cm(exp -2) over 90% of the sky and 7.24 x 10(exp -12) erg s(exp -1) cm(exp -2) over 50% of the sky in the 14-195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14-195 keV band above the 4.8 sigma significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  15. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  16. X-rays from radio pulsars - The detection of PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Cheng, A. F.; Helfand, D. J.

    1983-01-01

    The short-period pulsar PSR 1055-52 has been detected as a soft X-ray source in the course of an Einstein Observatory survey of radio pulsars. Its X-ray to radio luminosity ratio is about 10,000, although the X-rays are not modulated at the neutron star's rotation frequency. High spatial resolution observations suggest that a significant fraction of the emission comes from an extended region surrounding the pulsar. Several possible scenarios for the origin of both point and extended X-ray emission from isolated neutron stars are investigated: radiation from the hot stellar surface, from hot polar caps, and from an optically thick atmosphere, as well as from a circumstellar nebula emitting thermal bremsstrahlung or synchrotron radiation. It is concluded that the spatial, spectral, and temporal characteristics of this source are most consistent with a model in which relativistic particles generated by the pulsar are radiating synchrotron X-rays in the surrounding magnetic field; i.e., that PSR 1055 is embedded in a mini-Crab nebula. Observational tests of this hypothesis are suggested, and the implications of this result for pulsar evolution are briefly discussed.

  17. X-rays from radio pulsars: the detection of PSR 1055-52

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, A.F.; Helfand, D.J.

    The short-period pulsar PSR 1055-52 has been detected as a soft X-ray source in the course of an Einstein Observatory survey of radio pulsars. Its X-ray to radio luminosity ratio is approx.10/sup 4/, although the X-rays are not modulated at the neutron star's rotation frequency. We present high spatial resolution observations which suggest that a significant fraction of the emission comes from an extended region surrounding the pulsar. We investigate several possible scenarios for the origin of both point and extended X-ray emission from isolated neutron stars: radiation from the hot stellar surface, from hot polar caps, and from anmore » optically thick atmosphere, as well as from a circumstellar nebula emitting thermal bremsstrahlung or synchrotron radiation. We conclude that the spatial, spectral, and temporal characteristic of this source are most consistent with a model in which relativistic particles generated by the pulsar are radiating synchrotron X-rays in the surrounding magnetic field; i.e., that PSR 1055 is embedded in a mini-Crab nebula. Observational tests of this hypothesis are suggested, and the implications of this result for pulsar evolution are briefly discussed.« less

  18. The 105-Month Swift-BAT All-sky Hard X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, S. Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny

    2018-03-01

    We present a catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) coded-mask imager on board the Swift observatory. The 105-month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 90% of the sky and 7.24× {10}-12 {erg} {{{s}}}-1 {cm}}-2 over 50% of the sky in the 14–195 keV band. The Swift-BAT 105-month catalog provides 1632 (422 new detections) hard X-ray sources in the 14–195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert active galactic nuclei (AGNs) in nearby galaxies (z< 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105-month website.

  19. X-ray mapping of the stellar wind in the binary PSR J2032+4127/MT91 213

    NASA Astrophysics Data System (ADS)

    Petropoulou, M.; Vasilopoulos, G.; Christie, I. M.; Giannios, D.; Coe, M. J.

    2018-02-01

    PSR J2032+4127 is a young and rapidly rotating pulsar on a highly eccentric orbit around the high-mass Be star MT91 213. X-ray monitoring of the binary system over an ˜4000 d period with Swift has revealed an increase of the X-ray luminosity which we attribute to the synchrotron emission of the shocked pulsar wind. We use Swift X-ray observations to infer a clumpy stellar wind with r-2 density profile and constrain the Lorentz factor of the pulsar wind to 105 < γw < 106. We investigate the effects of an axisymmetric stellar wind with polar gradient on the X-ray emission. Comparison of the X-ray light curve hundreds of days before and after the periastron can be used to explore the polar structure of the wind.

  20. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  1. The Nature of the X-Ray Binary IGR J19294+1816 from INTEGRAL, RXTE, and Swift Observations

    NASA Technical Reports Server (NTRS)

    Rodriquez, J.; Tomsick, J. A.; Bodaghee, A.; ZuritaHeras, J.-A.; Chaty, S.; Paizis, A.; Corbel, S.

    2009-01-01

    We report the results of a high-energy multi-instrumental campaign with INTEGRAL, RXTE, and Swift of the recently discovered INTEGRAL source IGR J19294+ 1816. The Swift/XRT data allow us to refine the position of the source to R.A. (J2000) = 19h 29m 55.9s, Decl. (J2000) = +18 deg 18 feet 38 inches . 4 (+/- 3 inches .5), which in turn permits us to identify a candidate infrared counterpart. The Swift and RXTE spectra are well fitted with absorbed power laws with hard (Gamma approx 1) photon indices. During the longest Swift observation, we obtained evidence of absorption in true excess to the Galactic value, which may indicate some intrinsic absorption in this source. We detected a strong (P = 40%) pulsations at 12.43781 (+/- 0.00003) s that we interpret as the spin period of a pulsar. All these results, coupled with the possible 117 day orbital period, point to IGR J19294+ 1816 being an high-mass X-ray binary (HMXB) with a Be companion star. However, while the long-term INTEGRAL/IBIS/ISGRI 18-40 keV light curve shows that the source spends most of its time in an undetectable state, we detect occurrences of short (2000-3000 s) and intense flares that are more typical of supergiant fast X-ray transients. We therefore cannot make firm conclusions on the type of system, and we discuss the possible implication of IGR J19294+1816 being an Supergiant Fast X-ray Transient (SFXT).

  2. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  3. Quasispherical subsonic accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.

    2013-04-01

    A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short

  4. Diverse Long-Term Variability of Five Candidate High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-01-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope (SWIFT-BAT). IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 seconds. For AX J1700.2-4220, 54 second-pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090,which was previously proposed to be a Be star system with an orbital period of approximately 30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although theymight be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be starmass donors.

  5. The 2014 X-Ray Minimum of Eta Carinae as Seen by Swift

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Liburd, J.; Morris, D.; Russell, C. M. P.; Hamaguchi, K.; Gull, T. R.; Madura, T. I.; Teodoro, M.; Moffat, A. F. J.; Richardson, N. D.

    2017-01-01

    We report on Swift X-ray Telescope observations of Eta Carinae ( Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimumperiastron passage. These observations show that Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer (RXTE), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the central constant emission component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P X equals 2023.7 +/- 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii lambda 4686 emission. The middle of the Deep Minimum interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii 4686 line variations.

  6. The 2014 X-Ray Minimum of η Carinae as Seen by Swift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corcoran, M. F.; Hamaguchi, K.; Liburd, J.

    We report on Swift X-ray Telescope observations of Eta Carinae ( η Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimum/periastron passage. These observations show that η Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer ( RXTE ), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days aftermore » the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the “central constant emission” component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P {sub X} = 2023.7 ± 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii 4686 emission. The middle of the “Deep Minimum” interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii λ 4686 line variations.« less

  7. Outburst of the 2 s Anomalous X-ray Pulsar 1E 1547.0-5408

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Gotthelf, E. V.; Camilo, F.; Reynolds, J.; Ransom, S. M.

    2008-01-01

    Following our discovery of radio pulsations from the newly recognized anomalous X-ray pulsar (AXP) 1E 1547.0-5408, we initiated X-ray monitoring with the Swift X-ray telescope and obtained a single target-of-opportunity observation with the Newton X-ray Multi-Mirror Mission (XMM-Newton). In comparison with its historic minimum flux of 3 x 10(exp -l3)ergs/sq cm/s, the source was found to be in a record high state, f(sub x)(1-8 keV) = 5 x 10(exp -12)ergs/sq cm/s, or L(sub x) = 1.7 x 10(exp 35)(d/9 kpc )(sup 2)ergs/s, and declining by 25% in 1 month. Extrapolating the decay, we bound the total energy in this outburst to 1042 ergs < E < ergs. The spectra (fitted with a Comptonized blackbody) show that an increase in the temperature and area of a hot region, to 0.5 keV and -16% of the surface area of the neutron star, respectively, are primarily responsible for its increase in luminosity. The energy, spectrum, and timescale of decay are consistent with a deep crustal heating event, similar to an interpretation of the X-ray turn-on of the transient AXP XTE J18 10- 197. Simultaneous with the 4.6 hr ATdA4-Newton observation, we observed at 6.4 GHz with the Parkes telescope, measuring the phase relationship of the radio and X-ray pulse. The X-ray pulsed fraction of 1E 1547.0-5408 is only approx. 7 %, while its radio pulse is relatively broad for such a slow pulsar, which may indicate a nearly aligned rotator. As also inferred from the transient behavior of XTE J18 10-197, the only other AXP known to emit in the radio, the magnetic field rearrangement responsible for this X-ray outburst of 1E 1547.0-5408 is probably the cause of its radio turn-on.

  8. In-depth study of long-term variability in the X-ray emission of the Be/X-ray binary system AX J0049.4-7323

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Romano, P.; Malacaria, C.; Ji, L.; Bozzo, E.; Santangelo, A.

    2018-06-01

    AX J0049.4-7323 is a Be/X-ray binary in the Small Magellanic Cloud hosting a 750 s pulsar which has been observed over the last 17 years by several X-ray telescopes. Despite numerous observations, little is known about its X-ray behaviour. Therefore, we coherently analysed archival Swift, Chandra, XMM-Newton, RXTE, and INTEGRAL data, and we compared them with already published ASCA data, to study its X-ray long-term spectral and flux variability. AX J0049.4-7323 shows a high X-ray variability, spanning more than three orders of magnitudes, from L ≈ 1.6 × 1037 erg s-1 (0.3-8 keV, d = 62 kpc) down to L ≈ 8 × 1033 erg s-1. RXTE, Chandra, Swift, and ASCA observed, in addition to the expected enhancement of X-ray luminosity at periastron, flux variations by a factor of 270 with peak luminosities of ≈2.1 × 1036 erg s-1 far from periastron. These properties are difficult to reconcile with the typical long-term variability of Be/XRBs, traditionally interpreted in terms of type I and type II outbursts. The study of AX J0049.4-7323 is complemented with a spectral analysis of Swift, Chandra, and XMM-Newton data which showed a softening trend when the emission becomes fainter, and an analysis of optical/UV data collected by the UVOT telescope on board Swift. In addition, we measured a secular spin-up rate of Ṗ = (-3.00 ± 0.12) × 10-3 s day-1, which suggests that the pulsar has not yet achieved its equilibrium period. Assuming spherical accretion, we estimated an upper limit for the magnetic field strength of the pulsar of ≈3 × 1012 G.

  9. Seven years with the Swift Supergiant Fast X-ray Transients project

    NASA Astrophysics Data System (ADS)

    Romano, P.

    2015-09-01

    Supergiant Fast X-ray Transients (SFXTs) are HMXBs with OB supergiant companions. I review the results of the Swift SFXT project, which since 2007 has been exploiting Swift's capabilities in a systematic study of SFXTs and supergiant X-ray binaries (SGXBs) by combining follow-ups of outbursts, when detailed broad-band spectroscopy is possible, with long-term monitoring campaigns, when the out-of-outburst fainter states can be observed. This strategy has led us to measure their duty cycles as a function of luminosity, to extract their differential luminosity distributions in the soft X-ray domain, and to compare, with unprecedented detail, the X-ray variability in these different classes of sources. I also discuss the ;seventh year crisis;, the challenges that the recent Swift observations are making to the prevailing models attempting to explain the SFXT behavior.

  10. High energy X-ray observations of the 38-second pulsar

    NASA Technical Reports Server (NTRS)

    Byrne, P. F.; Levine, A. M.; Bautz, M.; Howe, S. K.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.; Gruber, D. E.; Knight, F. K.; Nolan, P. L.

    1981-01-01

    The results of observations of the 38-second pulsar obtained at high X-ray energies (13-180 keV) with the UCSD/MIT instrument aboard HEAO 1 are reported. The results include a measurement of the source location, measurement of the pulse profile, and determination of the average intensity and spectrum during each of three time intervals spanning a baseline of 1 year. The total intensity of the pulsar is seen to vary on a 6-month time scale. The spectrum is hard but, like other X-ray pulsars, steepens at energies above 20 keV.

  11. An x-ray nebula associated with the millisecond pulsar B1957+20.

    PubMed

    Stappers, B W; Gaensler, B M; Kaspi, V M; van der Klis, M; Lewin, W H G

    2003-02-28

    We have detected an x-ray nebula around the binary millisecond pulsar B1957+20. A narrow tail, corresponding to the shocked pulsar wind, is seen interior to the known Halpha bow shock and proves the long-held assumption that the rotational energy of millisecond pulsars is dissipated through relativistic winds. Unresolved x-ray emission likely represents the shock where the winds of the pulsar and its companion collide. This emission indicates that the efficiency with which relativistic particles are accelerated in the postshock flow is similar to that for young pulsars, despite the shock proximity and much weaker surface magnetic field of this millisecond pulsar.

  12. X-Ray Emission from the Millisecond Pulsar J1012+5307

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Wang, F. Y.-H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(exp 19)/sq cm, which facilitates soft X-ray observations. Halpern reported a possible ROSAT PSPC detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+5307 in a 23 ksec observation with the ROSAT HRI. A point source is detected within 3 sec. of the radio position. Its count rate of 1.6 +/- 0.3 x 10(exp -3)/s corresponds to an unabsorbed 0.1 - 2.4 keV flux of 6.4 x 10(exp -14) ergs/sq cm s, similar to that reported previously. This counts-to-flux conversion is valid for N(sub H) = 5 x 10(exp 19)/sq cm, and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(exp 30) ergs/ s is 5 x 10(exp -4) of the pulsar's spin-down power E, and similar to that of the nearest millisecond pulsar J0437-4715, which is nearly a twin of J1012+5307 in P and E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as favored for PSR J0437-4715, rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821-24. A further test of of the interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface reheating by the impact of particles accelerated along open field lines operates in these approx

  13. Spectroscopic and Temporal Properties of Supergiant Fast X-ray Transients with Swift

    NASA Astrophysics Data System (ADS)

    Romano, Patrizia; Kennea, J. A.; Vercellone, S.; Burrows, D. N.; Cusumano, G.; Esposito, P.; Farinelli, R.; Krimm, H. A.; La Parola, V.; Mangano, V.; Pagani, C.; Gehrels, N.

    2011-09-01

    We present a review of the Swift Supergiant Fast X-ray Transients (SFXT) project. Swift has recently opened a brand new way of investigating this class of High-Mass X-ray Binaries whose optical counterparts are O or B supergiant stars, and whose X-ray outbursts are about 4 orders of magnitude brighter than the quiescent state. Thanks to its scheduling flexibility, Swift has allowed us to regularly monitor a small sample of SFXTs with 2-3 observations per week (1-2 ks) with the X-Ray Telescope (XRT) over their entire visibility period (9 months/year) for over 2 years. This intense monitoring has allowed us to study them throughout all phases of their lives (outbursts, intermediate level, and quiescence) and to determine the long-term properties and their duty cycles, through very sensitive and non-serendipitous observations. We also monitored one source along its whole orbital period. Furthermore, thanks to its autonomous and rapid repointing, Swift has allowed us for the first time to catch and study, from optical to hard X-ray, the bright outbursts, and to follow them in the X-ray for days, thus determining the actual duration of the outburst episodes and the shape of their X-ray spectra through simultaneous broadband spectroscopy. We acknowledge financial contribution from the agreement ASI-INAF I/009/10/0.

  14. Detection of Highly-Absorbed X-rays from Nova Mus 2018 with Swift

    NASA Astrophysics Data System (ADS)

    Nelson, Thomas; Kuin, Paul; Mukai, Koji; Page, Kim; Chomiuk, Laura; Kawash, Adam; Sokoloski, J. L.; Linford, Justin; Rupen, Michael P.; Mioduszewski, Amy

    2018-03-01

    We report the detection of X-rays from Nova Mus 2018 with the Swift XRT instrument. We have been carrying out weekly monitoring of the nova with Swift since its discovery on 2018 Jan 15 (see ATel #11220), and observations up to 2018 Feb 24 yielded X-ray non-detections.

  15. Target of Opportunity Positioning of Transient X-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto

    2003-01-01

    Our program successfully localized three newly-identified transient X-ray pulsars. XTE J1858+034 is a 221 s pulsar (Takeshima et al. 1998, IAUC 6826), XTE J1946+274 is a 15.8 s pulsar (Takeshima and Chakrabarty 1998, IAUC 7016), and XTE J0111.2-7317 is a 31 s pulsar in the Small Magellanic Cloud (Chakrabarty et al. 1998, IAUC 7048). This last pulsar was a particularly interesting source, and our XTE observations enabled prompt follow-up observations with the ASCA mission (Yokogawa et al. 2000, ApJ. 539, 191).

  16. THE 70 MONTH SWIFT-BAT ALL-SKY HARD X-RAY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgartner, W. H.; Tueller, J.; Markwardt, C. B.

    2013-08-15

    We present the catalog of sources detected in 70 months of observations with the Burst Alert Telescope (BAT) hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as the previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8{sigma}, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 50% of themore » sky and 1.34 Multiplication-Sign 10{sup -11} erg s{sup -1} cm{sup -2} over 90% of the sky. The majority of new sources in the 70 month survey continue to be active galactic nuclei, with over 700 in the catalog. As part of this new edition of the Swift-BAT catalog, we also make available eight-channel spectra and monthly sampled light curves for each object detected in the survey in the online journal and at the Swift-BAT 70 month Web site.« less

  17. Swift J045106.8-694803: A Highly Magnetised Neutron Star in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Klus, H.; Bartlett, E. S.; Bird, A. J.; Coe, M.; Corbet, R. H. D.; Udalski, A.

    2013-01-01

    We report the analysis of a highly magnetised neutron star in the Large Magellanic Cloud (LMC). The high mass X-ray binary pulsar Swift J045106.8-694803 has been observed with Swift X-ray telescope (XRT) in 2008, The Rossi X-ray Timing Explorer (RXTE) in 2011 and the X-ray Multi-Mirror Mission - Newton (XMM-Newton) in 2012. The change in spin period over these four years indicates a spin-up rate of 5.010.06 s/yr, amongst the highest observed for an accreting pulsar. This spin-up rate can be accounted for using Ghosh and Lambs (1979) accretion theory assuming it has a magnetic field of (1.2 +/= 0.20/0.7) x 10(exp 14) Gauss. This is over the quantum critical field value. There are very few accreting pulsars with such high surface magnetic fields and this is the first of which to be discovered in the LMC. The large spin-up rate is consistent with Swift Burst Alert Telescope (BAT) observations which show that Swift J045106.8-694803 has had a consistently high X-ray luminosity for at least five years. Optical spectra have been used to classify the optical counterpart of Swift J045106.8-694803 as a B0-1 III-V star and a possible orbital period of 21.631 +/- 0.005 days has been found from MACHO optical photometry.

  18. A Comparison of the Variability of the Symbiotic X-ray Binaries GX 1+4, 4U 1954+31, and 4U 1700+24 from Swift/BAT and RXTE/ASM Observations

    NASA Technical Reports Server (NTRS)

    Corbet, R. H. D.; Sokoloski, J. L.; Mukai, K.; Markwardt, C. B.; Tueller, J.

    2007-01-01

    We present an analysis of the X-ray variability of three symbiotic X-ray binaries, GX 1+4, 4U 1700+24, and 4U 1954+31, using observations made with the Swift Burst Alert Telescope (BAT) and the Rossi X-ray Timing Explorer (RXTE) All-Sky Monitor (ASM). Observations of 4U 1954+31 with the Swift BAT show modulation at a period near 5 hours. Models to explain this modulation are discussed including the presence of an exceptionally slow X-ray pulsar in the system and accretion instabilities. We conclude that the most likely interpretation is that 4U 1954+31 contains one of the slowest known X-ray pulsars. Unlike 4U 1954+31, neither GX 1+4 nor 4U 1700+24 show any evidence for modulation on a timescale of hours. An analysis of the RXTE ASM light curves of GX l+4, 4U 1700+24, and 4U 1954+31 does not show the presence of periodic modulation in any source, although there is considerable variability on long timescales for all three sources. There is no modulation in GX 1+4 on either the optical 1161 day orbital period or a previously reported 304 day X-ray period. For 4U 1700+24 we do not confirm the 404 day period previously proposed for this source from a shorter duration ASM light curve.

  19. Diverse Long-term Variability of Five Candidate High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Astrophysics Data System (ADS)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-09-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ˜30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  20. Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations

    NASA Astrophysics Data System (ADS)

    Corbet, Robin; Coley, Joel Barry; Krimm, Hans A.

    2017-08-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ˜30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  1. X-ray rebrightening of the Be/X-ray transient Swift J0243.6+6124

    NASA Astrophysics Data System (ADS)

    Rouco Escorial, A.; Degenaar, N.; van den Eijnden, J.; Wijnands, R.

    2018-04-01

    Swift J0243.6+6124 is a Be/X-ray transient that was discovered in October 2017 when it started a giant, type-II outburst (Atel #10809, Atel #10822). After reaching the peak around November 5th 2017, the source luminosity started to decay slowly over & sim;135 days, although the decay rate increased significantly around two weeks ago. To investigate how exactly the source would decay and potentially transit back into quiescence, we triggered a monitoring program (PI: Degenaar) on the system using the Neil Gehrels Swift observatory (Swift).

  2. X-ray Emission from the Millisecond Pulsar J1012+5307

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Wang, F. Y.-H.

    1997-12-01

    The recently discovered 5.3 ms pulsar J1012+5307 at a distance of 520 pc is in an area of the sky which is particularly deficient in absorbing gas. The column density along the line of sight is less than 7.5 x 10(19) cm(-2) , which facilitates soft X-ray observations. Halpern (1996, ApJ, 459, L9) reported a possible ROSAT PSPC detection of the pulsar in a serendipitous, off-axis observation. We have now confirmed the X-ray emission of PSR J1012+5307 in a 23 ksec observation with the ROSAT HRI. A point source is detected within 3('') of the radio position. Its count rate of 1.6 +/- 0.3 x 10(-3) s(-1) corresponds to an unbsorbed 0.1--2.4 keV flux of 6.4 x 10(-14) ergs cm(-2) s(-1) , similar to that reported previously. This counts-to-flux conversion is valid for N_H = 5 x 10(19) cm(-2) , and either a power-law spectrum of photon index 2.5 or a blackbody of kT = 0.1 keV. The implied X-ray luminosity of 2.0 x 10(30) ergs s(-1) is 5 x 10(-4) of the pulsar's spin-down power dot E, and similar to that of the nearest millisecond pulsar J0437--4715, which is nearly a twin of J1012+5307 in P and dot E. We subjected the 37 photons (and 13 background counts) within the source region to a pulsar search, but no evidence for pulsation was found. The pulsar apparently emits over a large fraction of its rotation cycle, and the absence of sharp modulation can be taken as evidence for surface thermal emission, as is favored for PSR J0437--4715 (Zavlin & Pavlov 1997, A&A, in press), rather than magnetospheric X-ray emission which is apparent in the sharp pulses of the much more energetic millisecond pulsar B1821--24 (Saito et al. 1997, ApJ, 477, L37). A further test of this interpretation will be made with a longer ROSAT observation, which will increase the number of photons collected by a factor of 5, and permit a more sensitive examination of the light curve for modulation due to emission from heated polar caps. If found, such modulation will be further evidence that surface

  3. First X-ray Observations of the Young Pulsar J1357-6429

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav E.

    2007-01-01

    The first short Chandra and XMM-Newton observations of the young and energetic pulsar J1357-6429 provided strong indications of a tail-like pulsar-wind nebula associated with this object, as well as strong pulsations of its X-ray flux with a pulsed fraction above 40% and a thermal component dominating at lower photon energies (below 2 keV). The elongated nebular is very compact in size. about 1" x 1.5" and might be interpreted as a pulsar jet. The thermal radiation is most plausibly emitted from the entire neutron star surface of an effective temperature about 1 MK covered with a magnetized hydrogen atmosphere At higher energies the pulsar's emission is of a nonthermal (magnetospheric) origin, with a power-law spectrum of a photon index Gamma approx. equals 1.1. This makes the X-ray properties of PSR J1357-6429 very similar to those of the youngest pulsars J1119-6127 and Vela with a detected thermal radiation.

  4. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  5. A NuSTAR Observation of the Gamma-Ray Emitting Millisecond Pulsar PSR J1723–2837

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, A. K. H.; Hui, C. Y.; Takata, J.

    We report on the first NuSTAR observation of the gamma-ray emitting millisecond pulsar binary PSR J1723–2837. X-ray radiation up to 79 keV is clearly detected, and the simultaneous NuSTAR and Swift spectrum is well described by an absorbed power law with a photon index of ∼1.3. We also find X-ray modulations in the 3–10, 10–20, 20–79, and 3–79 keV bands at the 14.8 hr binary orbital period. All of these are entirely consistent with previous X-ray observations below 10 keV. This new hard X-ray observation of PSR J1723–2837 provides strong evidence that the X-rays are from the intrabinary shock viamore » an interaction between the pulsar wind and the outflow from the companion star. We discuss how the NuSTAR observation constrains the physical parameters of the intrabinary shock model.« less

  6. Phase Evolution of the Crab Pulsar between Radio and X-Ray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, L. L.; Ge, M. Y.; Zheng, S. J.

    We study the X-ray phases of the Crab pulsar utilizing the 11-year observations from the Rossi X-ray Timing Explorer , 6-year radio observations from Nanshan Telescope, and the ephemeris from Jodrell Bank Observatory. It is found that the X-ray phases in different energy bands and the radio phases from the Nanshan Telescope show similar behaviors, including long-time evolution and short-time variations. Such strong correlations between the X-ray and radio phases imply that the radio and X-ray timing noises are both generated from the pulsar spin that cannot be well described by the the monthly ephemeris from the Jodrell Bank observatory.more » When using the Nanshan phases as references to study the X-ray timing noise, it has a significantly smaller variation amplitude and shows no long-time evolution, with a change rate of (−1.1 ± 1.1) × 10{sup −7} periods per day. These results show that the distance of the X-ray and radio emission regions on the Crab pulsar has no detectable secular change, and it is unlikely that the timing noises resulted from any unique physical processes in the radio or X-ray emitting regions. The similar behaviors of the X-ray and radio timing noises also imply that the variation of the interstellar medium is not the origin of the Crab pulsar’s timing noises, which is consistent with the results obtained from the multi-frequency radio observations of PSR B1540−06.« less

  7. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  8. Deep Chandra Survey of the Small Magellanic Cloud. II. Timing Analysis of X-Ray Pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, JaeSub; Antoniou, Vallia; Zezas, Andreas

    We report the timing analysis results of X-ray pulsars from a recent deep Chandra survey of the Small Magellanic Cloud (SMC). We analyzed a total exposure of 1.4 Ms from 31 observations over a 1.2 deg{sup 2} region in the SMC under a Chandra X-ray Visionary Program. Using the Lomb–Scargle and epoch-folding techniques, we detected periodic modulations from 20 pulsars and a new candidate pulsar. The survey also covered 11 other pulsars with no clear sign of periodic modulation. The 0.5–8 keV X-ray luminosity ( L {sub X} ) of the pulsars ranges from 10{sup 34} to 10{sup 37} ergmore » s{sup −1} at 60 kpc. All of the Chandra sources with L {sub X} ≳ 4 × 10{sup 35} erg s{sup −1} exhibit X-ray pulsations. The X-ray spectra of the SMC pulsars (and high-mass X-ray binaries) are in general harder than those of the SMC field population. All but SXP 8.02 can be fitted by an absorbed power-law model with a photon index of Γ ≲ 1.5. The X-ray spectrum of the known magnetar SXP 8.02 is better fitted with a two-temperature blackbody model. Newly measured pulsation periods of SXP 51.0, SXP 214, and SXP 701, are significantly different from the previous XMM-Newton and RXTE measurements. This survey provides a rich data set for energy-dependent pulse profile modeling. Six pulsars show an almost eclipse-like dip in the pulse profile. Phase-resolved spectral analysis reveals diverse spectral variations during pulsation cycles: e.g., for an absorbed power-law model, some exhibit an (anti)-correlation between absorption and X-ray flux, while others show more intrinsic spectral variation (i.e., changes in photon indices).« less

  9. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  10. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke M. B.; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the highfidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars.

  11. Nonlinear QED effects in X-ray emission of pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakeri, Soroush; Haghighat, Mansour; Xue, She-Sheng, E-mail: Soroush.Shakeri@ph.iut.ac.ir, E-mail: m.haghighat@shirazu.ac.ir, E-mail: xue@icra.it

    2017-10-01

    In the presence of strong magnetic fields near pulsars, the QED vacuum becomes a birefringent medium due to nonlinear QED interactions. Here, we explore the impact of the effective photon-photon interaction on the polarization evolution of photons propagating through the magnetized QED vacuum of a pulsar. We solve the quantum Boltzmann equation within the framework of the Euler-Heisenberg Lagrangian to find the evolution of the Stokes parameters. We find that linearly polarized X-ray photons propagating outward in the magnetosphere of a rotating neutron star can acquire high values for the circular polarization parameter. Meanwhile, it is shown that the polarizationmore » characteristics of photons besides photon energy depend strongly on parameters of the pulsars such as magnetic field strength, inclination angle and rotational period. Our results are clear predictions of QED vacuum polarization effects in the near vicinity of magnetic stars which can be tested with the upcoming X-ray polarimetric observations.« less

  12. A Radio Frequency Study of the Accreting Millisecond X-ray Pulsar, IGR J16597–3704, in the Globular Cluster NGC 6256

    NASA Astrophysics Data System (ADS)

    Tetarenko, A. J.; Bahramian, A.; Wijnands, R.; Heinke, C. O.; Maccarone, T. J.; Miller-Jones, J. C. A.; Strader, J.; Chomiuk, L.; Degenaar, N.; Sivakoff, G. R.; Altamirano, D.; Deller, A. T.; Kennea, J. A.; Li, K. L.; Plotkin, R. M.; Russell, T. D.; Shaw, A. W.

    2018-02-01

    We present Karl G. Jansky Very Large Array radio frequency observations of the new accreting millisecond X-ray pulsar (AMXP), IGR J16597‑3704, located in the globular cluster NGC 6256. With these data, we detect a radio counterpart to IGR J16597‑3704, and determine an improved source position. Pairing our radio observations with quasi-simultaneous Swift/XRT X-ray observations, we place IGR J16597‑3704 on the radio–X-ray luminosity plane, where we find that IGR J16597‑3704 is one of the more radio-quiet neutron star low-mass X-ray binaries known to date. We discuss the mechanisms that may govern radio luminosity (and in turn jet production and evolution) in AMXPs. Furthermore, we use our derived radio position to search for a counterpart in archival Hubble Space Telescope and Chandra X-ray Observatory data, and estimate an upper limit on the X-ray luminosity of IGR J16597‑3704 during quiescence.

  13. Discovery of the Orbit of the X-ray pulsar OAO 1657-415

    NASA Technical Reports Server (NTRS)

    Chakrabarty, Deepto; Grunsfeld, John M.; Prince, Thomas A.; Bildsten, Lars; Finger, Mark H.; Wilson, Robert B.; Fishman, Gerald J.; Meegan, Charles A.; Paciesas, William S.

    1993-01-01

    Timing observations of the 38 s accreting X-ray pulsar OAO 1657-415 made with the BATSE large-area detectors on the Compton Gamma Ray Observatory have revealed a binary orbit with an X-ray eclipse by the stellar companion. From the pulsar mass function fx(M) = 11.7 +/- 0.2 solar masses and the measured eclipse half-angle theta(e) = 29.7 +/- 1.3 deg, we infer that the stellar companion is a supergiant of spectral class B0-B6. If the companion can be identified and its orbital velocity measured, the neutron star mass can be constrained. Both intrinsic spin-up and spin-down of the pulsar were measured during our observation.

  14. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  15. Theory of quasi-spherical accretion in X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.

    2012-02-01

    A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.

  16. Swift Observations of SMC X-3 during Its 2016-2017 Super-Eddington Outburst

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Ge, Ming-Yu; Zhao, Hai-Hui; Wang, Wei; Zhang, Shuang-Nan; Bian, Wei-Hao; Yuan, Qi-Rong

    2017-07-01

    The Be X-ray pulsar SMC X-3 underwent a giant outburst from 2016 August to 2017 March, which was monitored with the Swift satellite. During the outburst, its broadband flux increased dramatically, and the unabsorbed X-ray luminosity reached an extreme value of ˜ {10}39 erg s-1 around August 24. Using the Swift/XRT data, we measured the observed pulse frequency of the neutron star to compute the orbital parameters of the binary system. After applying the orbital corrections to Swift observations, we found that the spin frequency increased steadily from 128.02 mHz on August 10 and approached the spin equilibrium of ˜128.74 mHz in 2017 January with an unabsorbed luminosity of {L}{{X}}˜ 2× {10}37 erg s-1, indicating a strong dipolar magnetic field of B˜ 6.8× {10}12 G at the neutron star surface. The spin-up rate is tightly correlated with its X-ray luminosity during the super-Eddington outburst. The pulse profile in the Swift/XRT data is variable, showing double peaks at the early stage of outburst and then merging into a single peak at low luminosity. Additionally, we report that a low-temperature ({kT}˜ 0.2 keV) thermal component emerges in the phase-averaged spectra as the flux decays, and it may be produced from the outer truncated disk or the boundary layer between the exterior flow and the magnetosphere.

  17. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan; Hagen, Cedric; Gallo, Elena; Wright, Jason T.

    2018-01-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares. Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  18. Swift X-ray monitoring of stellar coronal variability

    NASA Astrophysics Data System (ADS)

    Miller, Brendan P.; Gallo, Elena; Wright, Jason; Hagen, Cedric

    2017-08-01

    We used California Planet Search Ca II H and K core emission measurements to identify and characterize chromospheric activity cycles in a sample of main-sequence FGK stars. About a dozen of these with existing ROSAT archival data were targeted with Swift to obtain a current epoch X-ray flux. We find that coronal variability by a factor of several is common on decade-long timescales (we attempt to link to the chromospheric cycle phase) but can also occur on short timescales between Swift visits to a given target, presumably related to stellar rotation and coronal inhomogeneity or to small flares.Additionally, we present new Swift monitoring observations of two M dwarfs with known exoplanets: GJ 15A and GJ 674. GJ 15A b is around 5.3 Earth masses with an 11.4 day orbital period, while GJ 674 is around 11.1 Earth masses with a 4.7 day orbital period. GJ 15A was observed several times in late 2014 and then monitored at approximately weekly intervals for several months in early 2016, for a total exposure of 18 ks. GJ 674 was monitored at approximately weekly intervals for most of 2016, for a total exposure of 40 ks. We provide light curves and hardness ratios for both sources, and also compare to earlier archival X-ray data. Both sources show significant X-ray variability, including between consecutive observations. We quantify the energy distribution for coronal flaring, and compare to optical results for M dwarfs from Kepler. Finally, we discuss the implications of M dwarf coronal activity for exoplanets orbiting within the nominal habitable zone.

  19. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    PubMed

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  20. On the Geometry of the X-Ray Emission from Pulsars. I. Model Formulation and Tests

    NASA Astrophysics Data System (ADS)

    Cappallo, Rigel; Laycock, Silas G. T.; Christodoulou, Dimitris M.

    2017-12-01

    X-ray pulsars are complex magnetized astronomical objects in which many different attributes shape the pulse profiles of the emitted radiation. For each pulsar, the orientation of the spin axis relative to our viewing angle, the inclination of the magnetic dipole axis relative to the spin axis, and the geometries of the emission regions all play key roles in producing its unique pulse profile. In this paper, we describe in detail a new geometric computer model for X-ray emitting pulsars and the tests that we carried out in order to ensure its proper operation. This model allows for simultaneous tuning of multiple parameters for each pulsar and, by fitting observed profiles, it has the potential to determine the underlying geometries of many pulsars whose pulse profiles have been cataloged and made public in modern X-ray databases.

  1. State Switching of the X-Ray/Radio Transitional Millisecond Pulsar

    NASA Astrophysics Data System (ADS)

    Shang, Lun-Hua; Zhang, Cheng-Min; Li, Di; Wang, De-Hua; Wang, Shuang-Qiang; Wang, Pei; Pan, Yuan-Yue; Yang, Yi-Yan; Zhi, Qi-Jun

    2017-11-01

    PSR J1023+0038 is a known transitional pulsar, which switches between the accretion-powered X-ray pulsar state and the rotation-powered radio millisecond pulsar (MSP) state. Here, we study the conditions for its state transition by ascribing ˜GHz radio pulse emission to the plasma cutoff oscillation frequency at the magnetosphere, which depends on the plasma density or accretion rate. With the accretion X-ray luminosity declining fromhigh to low state (e.g., ˜ {10}35 erg s-1 to ˜ {10}32 erg s-1), the magnetosphere boundary expands to the light cylinder, where the plasma density is low enough to permit the emission of radio waves at the several-GHz frequency band. Thus, for a sufficiently low accretion-rate state (˜ {10}32 erg s-1), the radio emission at the several-GHz band is not blocked by the plasma, and the radio pulsar can be detected in the favored “observational windows,” I.e., the L band (1-2 GHz), S band (2-4 GHz), and C band (4-8 GHz). Furthermore, to evaluate the penetration characteristics of the outgoing radio wave of low frequency, we calculate its skin depth, which is found to be a couple of centimeters for the low X-ray luminosity of {10}34{--}{10}32 erg s-1, a scale that is much shorter than the light cylinder radius of about 100 km for MSPs.

  2. Pulsar Polar Cap Heating and Surface Thermal X-ray Emission. 1; Curvature Radiation Pair Fronts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.; Muslimov, Alexander G.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We investigate the effect of pulsar polar cap (PC) heating produced by positrons returning from the upper pair formation front. Our calculations are based on a self-consistent treatment of the pair dynamics and the effect of electric field screening by the returning positrons. We calculate the resultant X-ray luminosities and discuss the dependence of the PC heating efficiencies on pulsar parameters, such as characteristic spin-down age, spin period, and surface magnetic field strength. In this study we concentrate on the regime where the pairs are produced in a magnetic field by curvature photons emitted by accelerating electrons. Our theoretical results are not in conflict with the available observational x-ray data and suggest that the effect of PC heating should significantly contribute to the thermal x-ray fluxes from middle-aged and old pulsars. The implications for current and future x-ray observations of pulsars are briefly outlined.

  3. The X-Ray Modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017

    NASA Astrophysics Data System (ADS)

    Li, K. L.; Takata, J.; Ng, C. W.; Kong, A. K. H.; Tam, P. H. T.; Hui, C. Y.; Cheng, K. S.

    2018-04-01

    We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations of the γ-ray binary PSR J2032+4127/MT91 213, of which the periastron passage recently occurred in 2017 November. In the Swift X-ray light curve, the flux was steadily increasing before 2017 mid-October, however, a sharp X-ray dip on a weekly timescale is seen during the periastron passage, followed by a post-periastron X-ray flare lasting for ∼20 days. We suggest that the X-ray dip is caused by (i) an increase of the magnetization parameter at the shock, and (ii) the suppression due to the Doppler boosting effect. The 20-day post-periastron flare could be a consequence of the Be stellar disk passage by the pulsar. An orbital GeV modulation is also expected in our model; however, no significant variability is seen in the Fermi-LAT light curve. We suspect that the GeV emission from the interaction between the binary’s members is hidden behind the bright magnetospheric emission of the pulsar. The pulsar gating technique would be useful to remove the magnetospheric emission and recover the predicted GeV modulation, if an accurate radio timing solution over the periastron passage is provided in the future.

  4. Be/X-Ray Pulsar Binary Science with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.

  5. Featured Image: A Slow-Spinning X-Ray Pulsar

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    This image (click for a closer look!) reveals the sky location of a new discovery: the slowest spinning X-ray pulsar a spinning, highly magnetized neutron star ever found in an extragalactic globular cluster. The pulsar, XB091D (circled in the bottom left inset), lies in the globular cluster B091D in the Andromeda galaxy. In a recent study led by Ivan Zolotukhin (University of Toulouse, Moscow State University, and Special Astrophysical Observatory of the Russian Academy of Sciences), a team of scientists details the importance of this discovery. This pulsar is gradually spinning faster and faster a process thats known as recycling, thought to occur as a pulsar accretes material from a donor star in a binary system. Zolotukhin and collaborators think that this particular pairing formed relatively recently, when the pulsar captured a passing star into a binary system. Were now seeing it in a unique stage of evolution where the pulsar is just starting to get recycled. For more information, check out the paper below!CitationIvan Yu. Zolotukhin et al 2017 ApJ 839 125. doi:10.3847/1538-4357/aa689d

  6. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  7. Sextant X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Winternitz, Luke M.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolff, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. SEXTANT will be a first demonstration of in-space, autonomous, X-ray pulsar navigation (XNAV). Navigating using millisecond X-ray pulsars which could provide a GPS-like navigation capability available throughout our Solar System and beyond. NICER is a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station that was launched and installed in June of 2017. During NICER's nominal 18-month base mission, SEXTANT will perform a number of experiments to demonstrate XNAV and advance the technology on a number of fronts. In this work, we review the SEXTANT, its goals, and present early results from SEXTANT experiments conducted in the first six months of operation. With these results, SEXTANT has made significant progress toward meeting its primary and secondary mission goals. We also describe the SEXTANT flight operations, calibration activities, and initial results.

  8. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from milli-second pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar lightcurve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  9. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a

  10. SWIFT Discovery of Gamma-ray Bursts without Jet Break Feature in their X-ray Afterglows

    NASA Technical Reports Server (NTRS)

    Sato, G.; Yamazaki, R.; Sakamoto, T.; Takahashi, T; Nakazawa, K.; Nakamura, T.; Toma, K.; Hullinger, D.; Tashiro, M.; Parsons, A. M.; hide

    2007-01-01

    We analyze Swift gamma-ray bursts (GRBs) and X-ray afterglows for three GRBs with spectroscopic redshift determinations - GRB 050401, XRF 050416a, and GRB 050525a. We find that the relation between spectral peak energy and isotropic energy of prompt emissions (the Amati relation) is consistent with that for the bursts observed in pre-Swift era. However, we find that the X-ray afterglow lightcurves, which extend up to 10 - 70 days, show no sign of the jet break that is expected in the standard framework of collimated outflows. We do so by showing that none of the X-ray afterglow lightcurves in our sample satisfies the relation between the spectral and temporal indices that is predicted for the phase after jet break. The jet break time can be predicted by inverting the tight empirical relation between the peak energy of the spectrum and the collimation-corrected energy of the prompt emission (the Ghirlanda relation). We find that there are no temporal breaks within the predicted time intervals in X-ray band. This requires either that the Ghirlanda relation has a larger scatter than previously thought, that the temporal break in X-rays is masked by some additional source of X-ray emission, or that it does not happen because of some unknown reason.

  11. The Swift-BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, Hans; Markwardt, C. B.; Sanwal, D.; Tueller, J.

    2006-01-01

    The Burst Alert Telescope (BAT) on the Swift satellite is a large field of view instrument that continually monitors the sky to provide the gamma-ray burst trigger for Swift. An average of more than 70% of the sky is observed on a daily basis. The survey mode data is processed on two sets on time scales: from one minute to one day as part of the transient monitor program, and from one spacecraft pointing (approx.20 minutes) to the full mission duration for the hard X-ray survey program. The transient monitor has recently become public through the web site http:// swift.gsfc.nasa.gov/docs/swift/results/transients/. Sky images are processed to detect astrophysical sources in the 15-50 keV energy band and the detected flux or upper limit is calculated for >100 sources on time scales up to one day. Light curves are updated each time that new BAT data becomes available (approx.10 times daily). In addition, the monitor is sensitive to an outburst from a new or unknown source. Sensitivity as a function of time scale for catalog and unknown sources will be presented. The daily exposure for a typical source is approx.1500-3000 seconds, with a 1-sigma sensitivity of approx.4 mCrab. 90% of the sources are sampled at least every 16 days, but many sources are sampled daily. It is expected that the Swift-BAT transient monitor will become an important resource for the high energy astrophysics community.

  12. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael X.; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.; Shibazaki, Noriaki; hide

    1999-01-01

    The Chandra X-ray Observatory observed the Crab Nebula and Pulsar using the Low-Energy Transmission Grating (LETG) with the High-Resolution Camera (HRC). Time-resolved zeroth-order images reveal that the pulsar emits x rays at all pulse phases. Analysis of the flux at minimum -- most likely nonthermal in origin -- places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile appears to confirm the absolute timing of the Observatory to within about 0.2 ms.

  13. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  14. X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Immler, S.; Brown, P. J.; Milne, P.; Dessart, L.; Mazzali, P. A.; Landsman, W.; Gehrels, N.; Petre, R.; Burrows, D. N.; Nousek, J. A.; hide

    2007-01-01

    We present results on the X-ray and optical/UV emission from the Type IIP supernova (SN) 2006bp and the interaction of the SW shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigmalevel of significance in the merged XRT data from days 1 to 12 after the explosion. If the (0.2-10 keV band) X-ray luminosity of L(sub 0.2-10) = (1.8 plus or minus 0.4) x l0(exp 39 ergs s(exp -1) is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitor's companion star, a mass-loss rate of M is approximately 2x10(exp -6) solar mass yr(exp -1) (v(sub w)/10 km s(exp -l) is inferred. The mass-loss rate is one of the lowest ever recorded for a core-collapse SN and consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion. The Swift data further show a fading of the X-ray emission starting around day 12 after the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline Lx, varies as t(exp -n) with index n = 1.2 plus or minus 0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since Type IIP SNe have an extended 'plateau' phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (approximately 10-100), inconsistent with the ejecta velocity inferred from optical line widths, we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet (1900-5500A) spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and

  15. X-ray detection of Nova Del 2013 with Swift

    NASA Astrophysics Data System (ADS)

    Castro-Tirado, Alberto J.; Martin-Carrillo, Antonio; Hanlon, Lorraine

    2013-08-01

    Continuous X-ray monitoring by Swift of Nova Del 2013 (see CBET #3628) shows an increase of X-ray emission at the source location compared to previous observations (ATEL #5283, ATEL #5305) during a 3.9 ksec observation at UT 2013-08-22 12:05. With the XRT instrument operating in window timing mode, 744 counts were extracted from a 50 pixel long source region and 324 counts from a similar box for a background region, resulting in a 13-sigma detection with a net count rate of 0.11±0.008 counts/sec.

  16. X-Ray Investigation of the Diffuse Emission around Plausible γ-Ray Emitting Pulsar Wind Nebulae in Kookaburra Region

    NASA Astrophysics Data System (ADS)

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-05-01

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV γ-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of σX = 1farcm66 and σX = 1farcm49, respectively. The peaks of the diffuse X-ray emission are located within the γ-ray excess maps obtained by H.E.S.S. and the offsets from the γ-ray peaks are 2farcm8 for PSR J1420-6048 and 4farcm5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with Γ = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 μG and 2.5 μG, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  17. The X-ray-emitting trail of the nearby pulsar PSR1929 + 10

    NASA Technical Reports Server (NTRS)

    Wang, Q. D.; Li, Zhi-Yun; Begelman, Mitchell C.

    1993-01-01

    The paper reports the detection by the Rosat satellite of a nebula associated with the nearby pulsar PSR1929 + 10, which is of a type different from the pulsar-wind nebulae produced by direct interaction of the relativistic wind from older pulsars with the interstellar medium (ISM) (Blandorf et al., 1973). The PSR1929 + 10 nebula appears as a linear diffuse X-ray feature in the direction opposite to the pulsar's proper motion, with the pulsar wind confined by the ram-pressure arising from the high velocity of the pulsar through the ISM. This results in a trail of relativistic electrons with enhanced emissions of synchrotron radiation.

  18. X-Ray Measurement of the Spin-down of Calvera: A Radio- and Gamma-Ray-Quiet Pulsar

    NASA Astrophysics Data System (ADS)

    Halpern, J. P.; Bogdanov, S.; Gotthelf, E. V.

    2013-12-01

    We measure spin-down of the 59 ms X-ray pulsar Calvera by comparing the XMM-Newton discovery data from 2009 with new Chandra timing observations taken in 2013. Its period derivative is \\dot{P}=(3.19+/- \\,0.08)\\times 10^{-15}, which corresponds to spin-down luminosity \\dot{E}=6.1\\times 10^{35} erg s-1, characteristic age \\tau _c\\equiv P/2\\dot{P}=2.9\\times 10^5 yr, and surface dipole magnetic field strength Bs = 4.4 × 1011 G. These values rule out a mildly recycled pulsar, but Calvera could be an orphaned central compact object (anti-magnetar), with a magnetic field that was initially buried by supernova debris and is now reemerging and approaching normal strength. We also performed unsuccessful searches for high-energy γ-rays from Calvera in both imaging and timing of >100 MeV Fermi photons. Even though the distance to Calvera is uncertain by an order of magnitude, an upper limit of d < 2 kpc inferred from X-ray spectra implies a γ-ray luminosity limit of <3.3 × 1032 erg s-1, which is less than that of any pulsar of comparable \\dot{E}. Calvera shares some properties with PSR J1740+1000, a young radio pulsar that we show by virtue of its lack of proper motion was born outside of the Galactic disk. As an energetic, high-Galactic-latitude pulsar, Calvera is unique in being undetected in both radio and γ-rays to faint limits, which should place interesting constraints on models for particle acceleration and beam patterns in pulsar magnetospheres.

  19. The Swift Supergiant Fast X-ray Transient Project

    NASA Astrophysics Data System (ADS)

    Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.

    2017-10-01

    We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.

  20. Swift AND Fermi observations of x-ray flares: The case of late internal shock

    DOE PAGES

    Troja, Eleonora; Piro, Luigi; Vasileiou, Vlasios; ...

    2015-04-07

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find thatmore » in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ~ 10 13-10 14 cm. As a result, this conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.« less

  1. Swift and Fermi Observations of X-Ray Flares: The Case of Late Internal Shock

    NASA Technical Reports Server (NTRS)

    Troja, E.; Piro, L.; Vasileiou, V.; Omodei, N.; Burgess, J. M.; Cutini, S.; Connaughton, V.; McEnery, J. E.

    2015-01-01

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find that in this scenario, X-ray flares can be produced by a late-time relativistic (gamma greater than 50) outflow at radii R approximately 10(exp 13) - 10(exp 14) cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.

  2. SWIFT AND FERMI OBSERVATIONS OF X-RAY FLARES: THE CASE OF LATE INTERNAL SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troja, E.; Piro, L.; Vasileiou, V.

    2015-04-10

    Simultaneous Swift and Fermi observations of gamma-ray bursts (GRBs) offer a unique broadband view of their afterglow emission, spanning more than 10 decades in energy. We present the sample of X-ray flares observed by both Swift and Fermi during the first three years of Fermi operations. While bright in the X-ray band, X-ray flares are often undetected at lower (optical), and higher (MeV to GeV) energies. We show that this disfavors synchrotron self-Compton processes as the origin of the observed X-ray emission. We compare the broadband properties of X-ray flares with the standard late internal shock model, and find thatmore » in this scenario, X-ray flares can be produced by a late-time relativistic (Γ > 50) outflow at radii R ∼ 10{sup 13}-10{sup 14} cm. This conclusion holds only if the variability timescale is significantly shorter than the observed flare duration, and implies that X-ray flares can directly probe the activity of the GRB central engine.« less

  3. Soft x-ray properties of the binary millisecond pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1995-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0. 27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2-1.5, intervening column density NH = (5-8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1-2. 4 keV band. We also use a bright EUVE/ROSAT source only 4.3 deg from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = lES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, NH less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50-600 m and temperature (1.0-3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4-12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray pulsars may have.

  4. Soft X-Ray Properties of the Binary Millisecond Pulsar J0437-4715

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman, L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We obtained a light curve for the 5.75 ms pulsar J0437-4715 in the 65-120 A range with 0.5 ms time resolution using the Deep Survey instrument on the EUVE satellite. The single-peaked profile has a pulsed fraction of 0.27 +/- 0.05, similar to the ROSAT data in the overlapping energy band. A combined analysis of the EUVE and ROSAT data is consistent with a power-law spectrum of energy index alpha = 1.2 - 1.5, intervening column density N(sub H) = (5 - 8) x 10(exp 19)/sq cm, and luminosity 5.0 x 10(exp 30) ergs/s in the 0.1 - 2.4 keV band. We also use a bright EUVE/ROSAT source only 4.2 min. from the pulsar, the Seyfert galaxy RX J0437.4-4711 (= EUVE J0437-471 = IES 0435-472), to obtain an independent upper limit on the intervening absorption to the pulsar, N(sub H) less than 1.2 x 10(exp 20)/sq cm. Although a blackbody spectrum fails to fit the ROSAT data, two-component spectral fits to the combined EUVE/ROSAT data are used to limit the temperatures and surface areas of thermal emission that might make partial contributions to the flux. A hot polar cap of radius 50 - 600 m and temperature (1.0 - 3.3) x 10(exp 6) K could be present. Alternatively, a larger region with T = (4 - 12) x 10(exp 5) K and area less than 200 sq km, might contribute most of the EUVE and soft X-ray flux, but only if a hotter component were present as well. Any of these temperatures would require some mechanism(s) of surface reheating to be operating in this old pulsar, the most plausible being the impact of accelerated electrons and positrons onto the polar caps. The kinematically corrected spin-down power of PSR J0437-4715 is only 4 x 10(exp 33) ergs/s, which is an order of magnitude less than that of the lowest-luminosity gamma-ray pulsars Geminga and PSR B1055-52. The absence of high-energy gamma-rays from PSR J0437-4715 might signify an inefficient or dead outer gap accelerator, which in turn accounts for the lack of a more luminous reheated surface such as those intermediate-age gamma-ray

  5. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  6. The Operation and Evolution of the Swift X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Kennea, Jamie; Burrows, D. N.; Pagani, C.; Hill, Joanne; Racusin, J. L.; Morris, D. C.; Abbey, A. F.; Beardmore, A. P.; Campana, G.; Chincarini, G.; hide

    2007-01-01

    The Swift X-ray Telescope (XRT) is a CCD based X-ray telescope designed for localization, spectroscopy and long term light curve monitoring of Gamma-Ray Bursts and their X-ray afterglows. Since the launch of Swift in November 2004, the XRT has undergone significant evolution in the way it is operated. Shortly after launch there was a failure of the thermo-electric cooler on the XRT CCD, which led to the XRT team being required to devise a method of keeping the XRT CCD temperature below 50C utilizing only passive cooling by minimizing the exposure of the XRT radiator to the Earth. We present in this paper an update on how the modeling of this passive cooling method has improved in first -1000 days since the method was devised, and the success rate of this method in day-to-day planning. We also discuss the changes to the operational modes and onboard software of the XRT. These changes include improved rapid data product generation in order to improve speed of rapid Gamma-Ray Burst response and localization to the community; changes to the way XRT observation modes are chosen in order to better fine tune data aquisition to a particular science goal; reduction of "mode switching" caused by the contamination of the CCD by Earth light or high temperature effects.

  7. An X-ray Pulsar with a Superstrong Magnetic Field in the Soft Gamma-Ray Repeater SGR1806-20

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; Dieters, S.; Strohmayer, T.; vanParadijs, J.; Fishman, G. J.; Meegan, C. A.; Hurley, K.; Kommers, J.; Smith, I.; Frail, D.; hide

    1998-01-01

    Soft gamma-ray repeaters (SGRs) emit multiple, brief (approximately O.1 s) intense outbursts of low-energy gamma-rays. They are extremely rare; three are known in our galaxy and one in the Large Magellanic Cloud. Two SGRs are associated with young supernova remnants (SNRs), and therefore most probably with neutron stars, but it remains a puzzle why SGRs are so different from 'normal' radio pulsars. Here we report the discovery of pulsations in the persistent X-ray flux of SGR1806-20, with a period of 7.47 s and a spindown rate of 2.6 x 10(exp -3) s/yr. We argue that the spindown is due to magnetic dipole emission and find that the pulsar age and (dipolar) magnetic field strength are approximately 1500 years and 8 x 10(exp 14) gauss, respectively. Our observations demonstrate the existence of 'magnetars', neutron stars with magnetic fields about 100 times stronger than those of radio pulsars, and support earlier suggestions that SGR bursts are caused by neutron-star 'crust-quakes' produced by magnetic stresses. The 'magnetar' birth rate is about one per millenium, a substantial fraction of that of radio pulsars. Thus our results may explain why some SNRs have no radio pulsars.

  8. Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    NASA Technical Reports Server (NTRS)

    Anderson, Kevin

    2012-01-01

    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in

  9. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  10. Contrasting Behaviour from Two Be/X-ray Binary Pulsars: Insights into Differing Neutron Star Accretion Modes

    NASA Technical Reports Server (NTRS)

    Townsend, L. J.; Drave, S. P.; Hill, A. B.; Coe, M. J.; Corbet, R. H. D.; Bird, A. J.

    2013-01-01

    In this paper we present the identification of two periodic X-ray signals coming from the direction of the Small Magellanic Cloud (SMC). On detection with the Rossi X-ray Timing Explorer (RXTE), the 175.4 s and 85.4 s pulsations were considered to originate from new Be/X-ray binary (BeXRB) pulsars with unknown locations. Using rapid follow-up INTEGRAL and XMM-Newton observations, we show the first pulsar (designated SXP175) to be coincident with a candidate high-mass X-ray binary (HMXB) in the northern bar region of the SMC undergoing a small Type II outburst. The orbital period (87d) and spectral class (B0-B0.5IIIe) of this system are determined and presented here for the first time. The second pulsar is shown not to be new at all, but is consistent with being SXP91.1 - a pulsar discovered at the very beginning of the 13 year long RXTE key monitoring programme of the SMC. Whilst it is theoretically possible for accreting neutron stars to change spin period so dramatically over such a short time, the X-ray and optical data available for this source suggest this spin-up is continuous during long phases of X-ray quiescence, where accretion driven spin-up of the neutron star should be minimal.

  11. Characterization and Evolution of the Swift X-ray Telescope Instrumental Background

    NASA Technical Reports Server (NTRS)

    Hill, Joanne; Pagani, C.; Morris, D. C.; Racusin, J.; Grupe, D.; Vetere, L.; Stroh, M.; Falcone, A.; Kennea, J.; Burrows, D. N.; hide

    2007-01-01

    The X-ray telescope (XRT) on board the Swift Gamma Ray Burst Explorer has successfully operated since the spacecraft launch on 20 November 2004, automatically locating GRB afterglows, measuring their spectra and lightcurves and performing observations of high-energy sources. In this work we investigate the properties of the instrumental background, focusing on its dynamic behavior on both long and short timescales. The operational temperature of the CCD is the main factor that influences the XRT background level. After the failure of the Swift active on-board temperature control system, the XRT detector now operates at a temperature range between -75C and -45C thanks to a passive cooling Heat Rejection System. We report on the long-term effects on the background caused by radiation, consisting mainly of proton irradiation in Swift's low Earth orbit and on the short-term effects of transits through the South Atlantic Anomaly (SAA), which expose the detector to periods of intense proton flux. We have determined the fraction of the detector background that is due to the internal, instrumental background and the part that is due to unresolved astrophysical sources (the cosmic X-ray background) by investigating the degree of vignetting of the measured background and comparing it to the expected value from calibration data.

  12. Swift/BAT Detects Increase in Hard X-ray Emission from the Ultra-compact X-ray Binary 4U 1543-624

    NASA Astrophysics Data System (ADS)

    Ludlam, Renee; Miller, Jon M.; Miller-Jones, James; Reynolds, Mark

    2017-08-01

    The Swift/BAT detected an increase in hard X-ray emission (15-50 keV) coming from the ultra-compact X-ray binary 4U 1543-624 around 2017 August 9. The MAXI daily monitoring also shows a gradual increase in 2.0-20.0 keV X-ray intensity as of 2017 August 19. Swift/XRT ToO monitoring of the source was triggered and shows an increase in unabsorbed flux to 1.06E-9 ergs/cm2/s in the 0.3-10.0 keV energy band as of 2017 August 26. ATCA performed ToO observations for approximately 4 hours in the 5.5 GHz and 9.0 GHz bands while the antennas were in the 1.5A array configuration from 11:25-16:09 UTC on 2017 August 23. The source was not detected in either band.

  13. Supergiant fast X-ray transients with Swift: Spectroscopic and temporal properties

    NASA Astrophysics Data System (ADS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Farinelli, R.; Ceccobello, C.; Vercellone, S.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.

    2012-12-01

    Supergiant fast X-ray transients (SFXTs) are a class of high-mass X-ray binaries with possible counterparts in the high energy gamma rays. The Swift SFXT Project1 has conducted a systematic investigation of the properties of SFTXs on timescales ranging from minutes to years and in several intensity states (from bright flares, to intermediate intensity states, and down to almost quiescence). We also performed broad-band spectroscopy of outbursts, and intensity-selected spectroscopy outside of outbursts. We demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we assessed the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present the most recent results from our investigation. The spectroscopic and, most importantly, timing properties of SFXTs we have uncovered with Swift will serve as a guide in search for the high energy emission from these enigmatic objects.

  14. BAT AGN Spectroscopic Survey. V. X-Ray Properties of the Swift/BAT 70-month AGN Catalog

    NASA Astrophysics Data System (ADS)

    Ricci, C.; Trakhtenbrot, B.; Koss, M. J.; Ueda, Y.; Del Vecchio, I.; Treister, E.; Schawinski, K.; Paltani, S.; Oh, K.; Lamperti, I.; Berney, S.; Gandhi, P.; Ichikawa, K.; Bauer, F. E.; Ho, L. C.; Asmus, D.; Beckmann, V.; Soldi, S.; Baloković, M.; Gehrels, N.; Markwardt, C. B.

    2017-12-01

    Hard X-ray (≥10 keV) observations of active galactic nuclei (AGNs) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, has currently detected 838 AGNs. We report here on the broadband X-ray (0.3-150 keV) characteristics of these AGNs, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band (≤slant 10 keV) with 70-month averaged Swift/BAT data. The nonblazar AGNs of our sample are almost equally divided into unobscured ({N}{{H}}< {10}22 {{cm}}-2) and obscured ({N}{{H}}≥slant {10}22 {{cm}}-2) AGNs, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGNs.

  15. CubeX: The CubeSAT X-ray Telescope for Elemental Abundance Mapping of Airless Bodies and X-ray Pulsar Navigation

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Hong, J.; Kenter, A.; Romaine, S.; Allen, B.; Kraft, R.; Masterson, R.; Elvis, M.; Gendreau, K.; Crawford, I.; Binzel, R.; Boynton, W. V.; Grindlay, J.; Ramsey, B.

    2017-12-01

    The surface elemental composition of a planetary body provides crucial information about its origin, geological evolution, and surface processing, all of which can in turn provide information about solar system evolution as a whole. Remote sensing X-ray fluorescence (XRF) spectroscopy has been used successfully to probe the major-element compositions of airless bodies in the inner solar system, including the Moon, near-Earth asteroids, and Mercury. The CubeSAT X-ray Telescope (CubeX) is a concept for a 6U planetary X-ray telescope (36U with S/C), which utilizes Miniature Wolter-I X-ray optics (MiXO), monolithic CMOS and SDD X-ray sensors for the focal plane, and a Solar X-ray Monitor (heritage from the REXIS XRF instrument on NASA's OSIRIS-REx mission). CubeX will map the surface elemental composition of diverse airless bodies by spectral measurement of XRF excited by solar X-rays. The lightweight ( 1 kg) MiXO optics provide sub-arcminute resolution with low background, while the inherently rad-hard CMOS detectors provide improved spectral resolution ( 150 eV) at 0 °C. CubeX will also demonstrate X-ray pulsar timing based deep space navigation (XNAV). Successful XNAV will enable autonomous deep navigation with little to no support from the Deep Space Network, hence lowering the operation cost for many more planetary missions. Recently selected by NASA Planetary Science Deep Space SmallSat Studies, the first CubeX concept, designed to rideshare to the Moon as a secondary spacecraft on a primary mission, is under study in collaboration with the Mission Design Center at NASA Ames Research Center. From high altitude ( 6,000 km) frozen polar circular orbits, CubeX will study > 8 regions ( 110 km) of geological interest on the Moon over one year to produce a high resolution ( 2-3 km) elemental abundance map of each region. The novel focal plane design of CubeX also allows us to evaluate the performance of absolute navigation by sequential observations of several

  16. Swift, XMM-Newton, and NuSTAR Observations of PSR J2032+4127/MT91 213

    NASA Astrophysics Data System (ADS)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Hou, X.; Takata, J.; Hui, C. Y.

    2017-07-01

    We report our recent Swift, NuSTAR, and XMM-Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the γ-ray binary candidate with a period of 45-50 years. The coming periastron of the system was predicted to be in 2017 November, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/2016 showed that its X-ray emission has been brighter by a factors of ˜10 than that before 2013, probably revealing some ongoing activities between the pulsar wind and the stellar wind. Our new Swift/XRT lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM-Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with the stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme γ-ray binary during the periastron passage in late 2017.

  17. Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

    NASA Technical Reports Server (NTRS)

    Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T.J.; Pottschmidt, Katja; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B.D.; hide

    2017-01-01

    We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 kiloelectronvolts from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 kiloelectronvolts as the counterpart for the first time. In the 0.5-10 kiloelectronvolt band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10 kiloelectronvolts observations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 kiloelectronvolts) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 kiloelectronvolts, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.

  18. Identification of the Hard X-Ray Source Dominating the E > 25 keV Emission of the Nearby Galaxy M31

    NASA Technical Reports Server (NTRS)

    Yukita, M.; Ptak, A.; Hornschemeier, A. E.; Wik, D.; Maccarone, T. J.; Pottschmidt, K.; Zezas, A.; Antoniou, V.; Ballhausen, R.; Lehmer, B. D.; hide

    2017-01-01

    We report the identification of a bright hard X-ray source dominating the M31 bulge above 25 keV from a simultaneous NuSTAR-Swift observation. We find that this source is the counterpart to Swift J0042.6+4112, which was previously detected in the Swift BAT All-Sky Hard X-Ray Survey. This Swift BAT source had been suggested to be the combined emission from a number of point sources; our new observations have identified a single X-ray source from 0.5 to 50 keV as the counterpart for the first time. In the 0.5-10 keV band, the source had been classified as an X-ray Binary candidate in various Chandra and XMM-Newton studies; however, since it was not clearly associated with Swift J0042.6+4112, the previous E is less than 10keVobservations did not generate much attention. This source has a spectrum with a soft X-ray excess (kT approximately equal to 0.2 keV) plus a hard spectrum with a power law of gamma approximately equal to 1 and a cutoff around 15-20 keV, typical of the spectral characteristics of accreting pulsars. Unfortunately, any potential pulsation was undetected in the NuSTAR data, possibly due to insufficient photon statistics. The existing deep HST (Hubble Space Telescope) images exclude high-mass (greater than 3 times the radius of the moon) donors at the location of this source. The best interpretation for the nature of this source is an X-ray pulsar with an intermediate-mass (less than 3 times the radius of the moon M) companion or a symbiotic X-ray binary. We discuss other possibilities in more detail.

  19. Discovery of an Unidentified Fermi Object as a Black Widow-Like Millisecond Pulsar

    NASA Technical Reports Server (NTRS)

    Kong, A. K. H.; Huang, R. H. H.; Cheng, K. S.; Takata, J.; Yatsu, Y.; Cheung, C. C.; Donato, D.; Lin, L. C. C.; Kataoka, J.; Takahashi, Y.; hide

    2012-01-01

    The Fermi Gamma-ray Space Telescope has revolutionized our knowledge of the gamma-ray pulsar population, leading to the discovery of almost 100 gamma-ray pulsars and dozens of gamma-ray millisecond pulsars (MSPs). Although the outer-gap model predicts different sites of emission for the radio and gamma-ray pulsars, until now all of the known gamma-ray MSPs have been visible in the radio. Here we report the discovery of a radio-quiet" gamma-ray emitting MSP candidate by using Fermi, Chandra, Swift, and optical observations. The X-ray and gamma-ray properties of the source are consistent with known gamma-ray pulsars. We also found a 4.63-hr orbital period in optical and X-ray data. We suggest that the source is a black widow-like MSP with a approx. 0.1 Stellar Mass late-type companion star. Based on the profile of the optical and X-ray light-curves, the companion star is believed to be heated by the pulsar while the X-ray emissions originate from pulsar magnetosphere and/or from intra-binary shock. No radio detection of the source has been reported yet and although no gamma-ray/radio pulsation has been found, we estimated that the spin period of the MSP is approx. 3-5 ms based on the inferred gamma-ray luminosity.

  20. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2011-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO13, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  1. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2010-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in AO12, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  2. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2008-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A10, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  3. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2009-09-01

    The past decade has seen major progress in neutron star astrophysics, with the discovery of magnetars in general, and the recognition that the Anomalous X-ray Pulsars (AXPs) fall in this class. AXPs have recently revealed surprising and dramatic variability behavior, which theorists have begun to show are highly constraining of physical models of magnetars, including their crusts, atmospheres, coronae and magnetospheres. In this proposal, we request Chandra/ACIS-S Target-of-Opportunity observations of one major Anomalous X-ray Pulsar (AXP) outburst in A11, in order to study in detail the evolution of the spectrum, pulsed fraction and pulse profile, for quantitative confrontation with recently developed models for the structure and electrodynamics of magnetars.

  4. CAN THE SUBSONIC ACCRETION MODEL EXPLAIN THE SPIN PERIOD DISTRIBUTION OF WIND-FED X-RAY PULSARS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 10{sup 36} erg s{sup −1}), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 kmmore » s{sup −1}). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 10{sup 36} erg s{sup −1} is about 1:10.« less

  5. Eclipsing Pulsar Promises Clues to Crushed Matter

    NASA Image and Video Library

    2017-12-08

    NASA image release August 17, 2010 Astronomers using NASA's Rossi X-ray Timing Explorer (RXTE) have found the first fast X-ray pulsar to be eclipsed by its companion star. Further studies of this unique stellar system will shed light on some of the most compressed matter in the universe and test a key prediction of Einstein's relativity theory. Known as Swift J1749.4-2807 -- J1749 for short -- the system erupted with an X-ray outburst on April 10. During the event, RXTE observed three eclipses, detected X-ray pulses that identified the neutron star as a pulsar, and even recorded pulse variations that indicated the neutron star's orbital motion. To view a video of this pulsar go here: www.flickr.com/photos/gsfc/4901238111 To read more click here Credit: NASA/GSFC NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  6. Identification of HESS J1303-631 as a pulsar wind nebula through γ-ray, X-ray, and radio observations

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-12-01

    Aims: The previously unidentified very high-energy (VHE; E > 100 GeV) γ-ray source HESS J1303-631, discovered in 2004, is re-examined including new data from the H.E.S.S. Cherenkov telescope array in order to identify this object. Archival data from the XMM-Newton X-ray satellite and from the PMN radio survey are also examined. Methods: Detailed morphological and spectral studies of VHE γ-ray emission as well as of the XMM-Newton X-ray data are performed. Radio data from the PMN survey are used as well to construct a leptonic model of the source. The γ-ray and X-ray spectra and radio upper limit are used to construct a one zone leptonic model of the spectral energy distribution (SED). Results: Significant energy-dependent morphology of the γ-ray source is detected with high-energy emission (E > 10 TeV) positionally coincident with the pulsar PSR J1301-6305 and lower energy emission (E < 2 TeV) extending 0.4° to the southeast of the pulsar. The spectrum of the VHE source can be described with a power-law with an exponential cut-off N0 = (5.6 ± 0.5) × 10-12 TeV-1 cm-2 s-1, Γ = 1.5 ± 0.2) and Ecut = (7.7 ± 2.2) TeV. The pulsar wind nebula (PWN) is also detected in X-rays, extending 2-3' from the pulsar position towards the center of the γ-ray emission region. A potential radio counterpart from the PMN survey is also discussed, showing a hint for a counterpart at the edge of the X-ray PWN trail and is taken as an upper limit in the SED. The extended X-ray PWN has an unabsorbed flux of F_2{-10 keV ˜ 1.6+0.2-0.4× 10-13 erg cm-2 s-1} and is detected at a significance of 6.5σ. The SED is well described by a one zone leptonic scenario which, with its associated caveats, predicts a very low average magnetic field for this source. Conclusions: Significant energy-dependent morphology of this source, as well as the identification of an associated X-ray PWN from XMM-Newton observations enable identification of the VHE source as an evolved PWN associated to the

  7. Host Galaxy Properties of SWIFT Hard X-ray Selected AGN

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, R.; Veilleux, S.; Winter, L.

    2010-01-01

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of 258 AGN unaffected by galactic or circumnuclear absorption. Optical imaging of this unbiased sample provides a new opportunity to understand how the environments of the host galaxies are linked to AGN. In 2008, we observed 110 of these targets at Kitt Peak with the 2.1m in the SDSS ugriz bands over 17 nights. Using these observations and SDSS data we review the relationships between color, morphology, merger activity, star formation, and AGN luminosity.

  8. Swift-X-Ray Telescope Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2012-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418-4532, for which both orbital and spin periods are known (approx. 3.7 d and approx.1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations, we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from approx. 5 × 10(exp 16) to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT.

  9. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  10. An Accretion Model for Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Chatterjee, Pinaki; Hernquist, Lars; Narayan, Ramesh

    2000-05-01

    We present a model for the anomalous X-ray pulsars (AXPs) in which the emission is powered by accretion from a fossil disk, established from matter falling back onto the neutron star following its birth. The time-dependent accretion drives the neutron star toward a ``tracking'' solution in which the rotation period of the star increases slowly, in tandem with the declining accretion rate. For appropriate choices of disk mass, neutron star magnetic field strength, and initial spin period, we demonstrate that a rapidly rotating neutron star can be spun down to periods characteristic of AXPs on timescales comparable to the estimated ages of these sources. In other cases, accretion onto the neutron star switches off after a short time and the star becomes an ordinary radio pulsar. Thus, in our picture, radio pulsars and AXPs are drawn from the same underlying population, in contrast to the situation in models involving neutron stars with ultrastrong magnetic fields, which require a new population of stars with very different properties.

  11. The Orbital Parameters and Nature of the X-ray Pulsar IGR J16393-4643 Using Pulse Timing Analysis

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Corbet, R. H. D.; Pottschmidt, K.; Skinner, G. K.

    2011-09-01

    A 3.7 day orbital period was previously suggested for the 910 s X-ray pulsar IGR J16393-4643 from a pulse timing study of widely separated X-ray observations (Thompson et al., 2006), placing the system in the supergiant wind-fed region of the Ppulse-Porb diagram. However, orbital periods of 50.2 and 8.1 days could not be excluded. Nespoli et al. (2010) refute this wind-accreting high-mass X-ray binary classification and suggest a symbiotic X-ray binary (SyXB) designation based on infrared spectroscopy of the proposed counterpart and the potential 50.2 day orbital solution. SyXBs are low-mass X-ray binaries in which a neutron star accretes from the inhomogeneous medium around an M-type giant companion. We find that two statistically independent light curves of IGR J16393-4643, from the Swift Burst Alert Telescope (15-50 keV) and the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) Galactic bulge scans (2-10 keV), show highly significant orbital modulation near 4.24 days. Making use of this precise orbital period, we present the results from pulse arrival time analysis on IGR J16393-4643 using RXTE PCA observations. We provide significantly improved phase-connected pulse timing results using archival observations presented in Thompson et al. (2006) and additional pulse timing data not included in their study to determine the orbital parameters of the system. The derived 7.5 M⊙ mass function is inconsistent with a SyXB identification.

  12. The Prompt-afterglow Connection in Gamma-ray Bursts: a Comprehensive Statistical Analysis of Swift X-ray Light-curves

    NASA Technical Reports Server (NTRS)

    Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, Lorella; Burrows, D. N.; Capalbi, M.; Evans, P. A.; hide

    2012-01-01

    We present a comprehensive statistical analysis of Swift X-ray light-curves of Gamma- Ray Bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: i) Does the X-ray emission retain any kind of "memory" of the prompt ?-ray phase? ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt ?-ray parameters in long GRBs; short GRBs are outliers of the majority of these 2-parameter relations. However and more importantly, we report on the existence of a universal 3-parameter scaling that links the X-ray and the ?-ray energy to the prompt spectral peak energy of both long and short GRBs: E(sub X,iso)? E(sup 1.00+/-0.06)(sub ?,iso) /E(sup 0.60+/-0.10)(sub pk).

  13. A 4.2 Day Period in the X-ray Pulsar IGR J16393-4643 from Swift/BAT and RXTE/PCA Observations

    NASA Astrophysics Data System (ADS)

    Corbet, R. H. D.; Krimm, H. A.; Barthelmy, S. D.; Baumgartner, W. H.; Markwardt, C. B.; Skinner, G. K.; Tueller, J.

    2010-04-01

    The 910s X-ray pulsar IGR J16393-4643 was reported by Thompson et al. (2006, ApJ 649, 373) to have a 3.6875 ±0.0006 day orbital period from a pulse timing analysis, although other solutions with orbital periods of 50.2 and 8.1 days could not be excluded. Thompson et al. proposed, on the basis of their orbital parameters, that IGR J16393-4643 is a supergiant wind-accretion powered HMXB. Nespoli et al.

  14. VizieR Online Data Catalog: GRB Swift X-ray light curves analysis (Margutti+, 2013)

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, L.; Burrows, D. N.; Capalbi, M.; Evans, P. A.; Gehrels, N.; Kennea, J.; Mangano, V.; Moretti, A.; Nousek, J.; Osborne, J. P.; Page, K. L.; Perri, M.; Racusin, J.; Romano, P.; Sbarufatti, B.; Stafford, S.; Stamatikos, M.

    2013-11-01

    We present a comprehensive statistical analysis of Swift X-ray light curves of gamma-ray bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time-scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: (i) Does the X-ray emission retain any kind of 'memory' of the prompt γ-ray phase? (ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt γ-ray parameters in long GRBs; short GRBs are outliers of the majority of these two-parameter relations. However and more importantly, we report on the existence of a universal three-parameter scaling that links the X-ray and the γ-ray energy to the prompt spectral peak energy of both long and short GRBs: EX,iso{prop.to}E1.00+/-0.06γ,iso/E0.60+/-0.10pk. (3 data files).

  15. The prompt-afterglow connection in gamma-ray bursts: a comprehensive statistical analysis of Swift X-ray light curves

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Zaninoni, E.; Bernardini, M. G.; Chincarini, G.; Pasotti, F.; Guidorzi, C.; Angelini, L.; Burrows, D. N.; Capalbi, M.; Evans, P. A.; Gehrels, N.; Kennea, J.; Mangano, V.; Moretti, A.; Nousek, J.; Osborne, J. P.; Page, K. L.; Perri, M.; Racusin, J.; Romano, P.; Sbarufatti, B.; Stafford, S.; Stamatikos, M.

    2013-01-01

    We present a comprehensive statistical analysis of Swift X-ray light curves of gamma-ray bursts (GRBs) collecting data from more than 650 GRBs discovered by Swift and other facilities. The unprecedented sample size allows us to constrain the rest-frame X-ray properties of GRBs from a statistical perspective, with particular reference to intrinsic time-scales and the energetics of the different light-curve phases in a common rest-frame 0.3-30 keV energy band. Temporal variability episodes are also studied and their properties constrained. Two fundamental questions drive this effort: (i) Does the X-ray emission retain any kind of `memory' of the prompt γ-ray phase? (ii) Where is the dividing line between long and short GRB X-ray properties? We show that short GRBs decay faster, are less luminous and less energetic than long GRBs in the X-rays, but are interestingly characterized by similar intrinsic absorption. We furthermore reveal the existence of a number of statistically significant relations that link the X-ray to prompt γ-ray parameters in long GRBs; short GRBs are outliers of the majority of these two-parameter relations. However and more importantly, we report on the existence of a universal three-parameter scaling that links the X-ray and the γ-ray energy to the prompt spectral peak energy of both long and short GRBs: EX, iso∝E1.00 ± 0.06γ, iso/E0.60 ± 0.10pk.

  16. Ain't no Crab, PWN Got a Brand New Bag: Correlated Radio and X-ray Structures in Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Roberts, M. S. E.; Lyutikov, M.; Gaensler, B. M.; Brogan, C. L.; Tam, C. R.; Romani, R. W.

    2005-04-01

    The traditional view of radio pulsar wind nebulae (PWN), encouraged by the Crab nebula's X-ray and radio morphologies, is that they are a result of the integrated history of their pulsars' wind. The radio emission should therefore be largely unaffected by recent pulsar activity, and hence minimally correlated with structures in the X-ray nebulae. Observations of several PWN, both stationary and rapidly moving, now show clear morphological relationships between structures in the radio and X-ray with radio intensity variations on the order of unity. We present high-resolution X-ray and radio images of several PWN of both types and discuss the morphological relationships between the two wavebands.

  17. Phase-resolved X-ray polarimetry of the Crab pulsar with the AstroSat CZT Imager

    NASA Astrophysics Data System (ADS)

    Vadawale, S. V.; Chattopadhyay, T.; Mithun, N. P. S.; Rao, A. R.; Bhattacharya, D.; Vibhute, A.; Bhalerao, V. B.; Dewangan, G. C.; Misra, R.; Paul, B.; Basu, A.; Joshi, B. C.; Sreekumar, S.; Samuel, E.; Priya, P.; Vinod, P.; Seetha, S.

    2018-01-01

    The Crab pulsar is a typical example of a young, rapidly spinning, strongly magnetized neutron star that generates broadband electromagnetic radiation by accelerating charged particles to near light speeds in its magnetosphere1. Details of this emission process so far remain poorly understood. Measurement of polarization in X-rays, particularly as a function of pulse phase, is thought to be a key element necessary to unravel the mystery of pulsar radiation2-4. Such measurements are extremely difficult, however: to date, Crab is the only pulsar to have been detected in polarized X-rays5-8 and the measurements have not been sensitive enough to adequately reveal the variation of polarization characteristics across the pulse7. Here, we present the most sensitive measurement to date of polarized hard X-ray emission from the Crab pulsar and nebula in the 100-380 keV band, using the Cadmium-Zinc-Telluride Imager9 instrument on-board the Indian astronomy satellite AstroSat10. We confirm with high significance the earlier indication6,7 of a strongly polarized off-pulse emission. However, we also find a variation in polarization properties within the off-pulse region. In addition, our data hint at a swing of the polarization angle across the pulse peaks. This behaviour cannot be fully explained by the existing theoretical models of high-energy emission from pulsars.

  18. Rapid X-ray variability properties during the unusual very hard state in neutron-star low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.

    2017-11-01

    Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.

  19. Flares from Galactic Centre pulsars: a new class of X-ray transients?

    NASA Astrophysics Data System (ADS)

    Giannios, Dimitrios; Lorimer, Duncan R.

    2016-06-01

    Despite intensive searches, the only pulsar within 0.1 pc of the central black hole in our Galaxy, Sgr A*, is a radio-loud magnetar. Since magnetars are rare among the Galactic neutron star population, and a large number of massive stars are already known in this region, the Galactic Centre (GC) should harbour a large number of neutron stars. Population syntheses suggest several thousand neutron stars may be present in the GC. Many of these could be highly energetic millisecond pulsars which are also proposed to be responsible for the GC gamma-ray excess. We propose that the presence of a neutron star within 0.03 pc from Sgr A* can be revealed by the shock interactions with the disc around the central black hole. As we demonstrate, these interactions result in observable transient non-thermal X-ray and gamma-ray emission over time-scales of months, provided that the spin-down luminosity of the neutron star is Lsd ˜ 1035 erg s-1. Current limits on the population of normal and millisecond pulsars in the GC region suggest that a number of such pulsars are present with such luminosities.

  20. Swift , XMM - Newton , and NuSTAR Observations of PSR J2032+4127/MT91 213

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.

    2017-07-10

    We report our recent Swift , NuSTAR , and XMM - Newton X-ray and Lijiang optical observations on PSR J2032+4127/MT91 213, the γ -ray binary candidate with a period of 45–50 years. The coming periastron of the system was predicted to be in 2017 November, around which high-energy flares from keV to TeV are expected. Recent studies with Chandra and Swift X-ray observations taken in 2015/2016 showed that its X-ray emission has been brighter by a factors of ∼10 than that before 2013, probably revealing some ongoing activities between the pulsar wind and the stellar wind. Our new Swift /XRTmore » lightcurve shows no strong evidence of a single vigorous brightening trend, but rather several strong X-ray flares on weekly to monthly timescales with a slowly brightening baseline, namely the low state. The NuSTAR and XMM - Newton observations taken during the flaring and the low states, respectively, show a denser environment and a softer power-law index during the flaring state, implying that the pulsar wind interacted with the stronger stellar winds of the companion to produce the flares. These precursors would be crucial in studying the predicted giant outburst from this extreme γ -ray binary during the periastron passage in late 2017.« less

  1. Nature versus Nurture: The Origin of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Marsden, D.; Lingenfelter, R. E.; Rothschild, R. E.; Higdon, J. C.

    2001-03-01

    Soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are young and radio-quiet X-ray pulsars that have been rapidly spun-down to slow spin periods clustered in the range 5-12 s. Most of these unusual pulsars also appear to be associated with supernova shell remnants (SNRs) with typical ages less than 30 kyr. By examining the sizes of these remnants versus their ages, we demonstrate that the interstellar media that surrounded the SGR and AXP progenitors and their SNRs were unusually dense compared to the environments around most young radio pulsars and SNRs. We explore the implications of this evidence on magnetar and propeller-based models for the rapid spin-down of SGRs and AXPs. We find that evidence of dense environments is not consistent with the magnetar model unless a causal link can be shown between the development of magnetars and the external interstellar medium. Propeller-driven spin-down by fossil accretion disks for SGRs and AXPs appears to be consistent with dense environments since the environment can facilitate the formation of such a disk. This may occur in two ways: (1) formation of a ``pushback'' disk from the innermost ejecta pushed back by prompt reverse shocks from supernova remnant interactions with massive progenitor wind material stalled in dense surrounding gas or (2) acquisition of disks by a high-velocity neutron stars, which may be able to capture sufficient amounts of comoving outflowing ejecta slowed by the prompt reverse shocks in dense environments.

  2. The effect of vacuum birefringence on the polarization of X-ray binaries and pulsars

    NASA Technical Reports Server (NTRS)

    Novick, R.; Weisskopf, M. C.; Angel, J. R. P.; Sutherland, P. G.

    1977-01-01

    In a strong magnetic field the vacuum becomes birefringent. This effect is especially important for pulsars at X-ray wavelengths. Any polarized X-ray emission from the surface of a magnetic neutron star becomes depolarized as it propagates through the magnetic field. The soft X-ray emission from AM Her, believed to be a magnetic white dwarf, may show about one radian of phase retardation. In this case, circular polarization of the X-ray flux would be a characteristic signature of vacuum birefringence.

  3. A curious case of the accretion-powered X-ray pulsar GX 1+4

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra; Gupta, Shivangi; Chenevez, Jérôme; Epili, Prahlad

    2018-04-01

    We present detailed spectral and timing studies using a NuSTAR observation of GX 1+4 in October 2015 during an intermediate intensity state. The measured spin period of 176.778 s is found to be one of the highest values since its discovery. In contrast to a broad sinusoidal-like pulse profile, a peculiar sharp peak is observed in profiles below ˜25 keV. The profiles at higher energies are found to be significantly phase-shifted compared to the soft X-ray profiles. Broadband energy spectra of GX 1+4, obtained from NuSTAR and Swift observations, are described with various continuum models. Among these, a two component model consisting of a bremsstrahlung and a blackbody component is found to best-fit the phase-averaged and phase-resolved spectra. Physical models are also used to investigate the emission mechanism in the pulsar, which allows us to estimate the magnetic field strength to be in ˜(5-10)× 1012 G range. Phase-resolved spectroscopy of NuSTAR observation shows a strong blackbody emission component in a narrow pulse phase range. This component is interpreted as the origin of the peculiar peak in the pulse profiles below ≤25 keV. The size of emitting region is calculated to be ˜400 m. The bremsstrahlung component is found to dominate in hard X-rays and explains the nature of simple profiles at high energies.

  4. A curious case of the accretion-powered X-ray pulsar GX 1+4

    NASA Astrophysics Data System (ADS)

    Jaisawal, Gaurava K.; Naik, Sachindra; Gupta, Shivangi; Chenevez, Jérôme; Epili, Prahlad

    2018-07-01

    We present detailed spectral and timing studies using a NuSTAR observation of GX 1+4 in 2015 October during an intermediate-intensity state. The measured spin period of 176.778 s is found to be one of the highest values since its discovery. In contrast to a broad sinusoidal-like pulse profile, a peculiar sharp peak is observed in profiles below ˜25 keV. The profiles at higher energies are found to be significantly phase shifted compared to the soft X-ray profiles. Broad-band energy spectra of GX 1+4, obtained from NuSTAR and Swift observations, are described with various continuum models. Among these, a two-component model consisting of a bremsstrahlung and a blackbody component is found to best fit the phase-averaged and phase-resolved spectra. Physical models are also used to investigate the emission mechanism in the pulsar, which allows us to estimate the magnetic field strength to be in ˜(5-10) × 1012 G range. Phase-resolved spectroscopy of NuSTAR observation shows a strong blackbody emission component in a narrow pulse phase range. This component is interpreted as the origin of the peculiar peak in the pulse profiles below ≤25 keV. The size of emitting region is calculated to be ˜400 m. The bremsstrahlung component is found to dominate in hard X-rays and explains the nature of simple profiles at high energies.

  5. The Swift-BAT Hard X-Ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  6. The Swift/BAT Hard X-ray Transient Monitor

    NASA Technical Reports Server (NTRS)

    Krimm, H. A.; Holland, S. T.; Corbet, R.H.D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as ne as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the ux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public web page. Since 2005 February, 242 sources have been detected in the monitor, 149 of them persistent and 93 detected only in outburst. Among these sources, 16 were previously unknown and discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and ltering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries and present basic data analysis and interpretations for those sources with previously unpublished results.

  7. The Swift/BAT Hard X-Ray Survey

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Markwardt, C. B.; Mushotzky, R. F.; Barthelmy, S. D.; Gehrels, N.; Krimm, H. A.; Skinner, G. K.; Falcone, A.; Kennea, J. A.

    2006-01-01

    The BAT instrument on Swift is a wide field (70 deg. '100 deg.) coded aperture instrument with a CdZnTe detector array sensitive to energies of 14-200 keV. Each day, the BAT survey typically covers 60% of the sky to a detection limit of 30 millicrab. BAT makes hard X-ray light curves of similar sensitivity and coverage to the X-ray light curves from XTE/ASM, but in an energy range where sources show remarkably different behavior. Integrating the BAT data produces an all sky map with a source detection limit at 15 months of a few 10(exp -11) ergs per square centimeter per second, depending on the exposure. This is the first uniform all-sky survey at energies high enough to be unaffected by absorption since HEAO 1 in 1977-8. BAT has detected greater than 200 AGN and greater than 180 galactic sources. At high galactic latitudes, the BAT sources are usually easy to identify, but many are heavily absorbed and there are a few quite surprising identifications. The BAT selected galaxies can be used to calculate LogN/LogS and the luminosity function for AGN which are complete and free from common systematics. Several crucial parameters for understanding the cosmic hard x-ray background are now determined.

  8. The Swift X-Ray Te1escope: Status and Performance

    NASA Technical Reports Server (NTRS)

    Burrows, David N.; Kennea, J.A.; Abbey, A.F.; Beardmore, A.; Campana, S.; Capalbi, M.; Chincarini, G.; Cusumano, G.; Evans, P.A.; Hill, J.E.; hide

    2007-01-01

    We present science highlights and performance from the Swift X-ray Telescope (XRT), which was launched on November 20,2004. The XRT covers the 0.2-10 keV band, and spends most of its time observing gamma-ray burst (GRB) afterglows, though it has also performed observations of many other objects. By mid-August 2007, the XRT had observed over 220 GRB afterglows, detecting about 96% of them. The XRT positions enable followup ground-based optical observations, with roughly 60% of the afterglows detected at optical or near IR wavelengths. Redshifts are measured for 33% of X-ray afterglows. Science highlights include the discovery of flaring behavior at quite late times, with implications for GRB central engines; localization of short GRBs, leading to observational support for compact merger progenitors for this class of bursts; a mysterious plateau phase to GRB afterglows; as well as many other interesting observations such as X-ray emission from comets, novae, galactic transients, and other objects.

  9. Continued X-ray Monitoring of Magnetar Candidate SWIFT J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Livingstone, M. A.; Kaspi, V. M.

    2011-08-01

    We report on Swift/XRT and RXTE/PCA observations of the new 8.4-s Galactic magnetar candidate SWIFT J1822.3-1606, also referred to as SGR J1822.3-1606 (ATELs #3488, #3489, #3490, #3493, #3495, #3496, #3501, #3503, #3543). The persistent X-ray flux from the source continues to fade in ongoing XRT monitoring observations. For data in the MJD range 55757 to 55781, the best-fit power-law index, alpha, for the decay of the absorbed 1-10 keV flux is -0.47 ± 0.02, assuming a decay of functional form F(t) = F0 + F0*(t-T)^alpha, where T is the epoch of the Swift/BAT trigger (ATEL #3488).

  10. X-Ray Pulsar Studies With RXTE

    NASA Technical Reports Server (NTRS)

    Rappaport, Saul

    2004-01-01

    Our activities here at MIT have largely concentrated on four different binary X-ray pulsars: LMC X-4; 4UO352+3O/XPer; 4U0115+63; and X1908+075. We have also recently initiated a search for millisecond X-ray pulsations in RXTE archival data for several bright LMXBs using a new technique. Since this study is just getting under way, we will not report any results here. Using RXTE timing observations of LMC X-4 we have definitively measured, for the first time, the orbital decay of this high-mass X-ray binary. The e-folding decay time scale is very close to lo6 years, comparable to, but somewhat longer than, the corresponding orbital decay times for SMC X-1 and Cen X-3. We find that the orbital decay in LMC X-4 is likely driven by tidal interactions, where the asynchronism between the orbital motion and the rotation of the companion star is maintained by the evolutionary expansion of the companion. Under NASA grant NAGS7479 we carried out RXTE observations of X Per/4U0352+30 in order to track the pulse phase over a one year interval. This effort was successful in tentatively identifying a N 250-day orbital period. However, due to the fact that the observing interval was only somewhat longer than the orbital period, we asked for the observations of X Per to continue as public, or non-proprietary observations. Dr. Jean Swank kindly agreed to the continuation of the observations and they were carried out on a less frequent basis over the next year and a half. After 72 separate observations of X Per, we have the orbital period and semimajor axis firmly determined. In addition, we were able to measure the orbital eccentricity-which turns out to be remarkably small (e = 0.10) for such a wide binary orbit. This has led us establish the birth of a neutron star with a very small (or zero) natal kick.

  11. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    NASA Astrophysics Data System (ADS)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  12. Swift detection of increased X-ray activity from gamma-ray flaring blazar PKS 1424-41

    NASA Astrophysics Data System (ADS)

    Ciprini, Stefano; Cutini, Sara

    2013-01-01

    Following enduring gamma-ray flaring activity of the flat spectrum radio quasar PKS 1424-41 (also known as 2FGL J1428.0-4206, Nolan et al. 2012, ApJS, 199, 31) detected by Fermi LAT during January 2013, two Swift target of opportunity observations were performed on January 24 and 27, 2013. Recent gamma-ray and X-ray flaring activity from the source was observed on January 6 and January 7 (ATel#4714 and ATel #4717).

  13. The X-ray Spectra of Accreting Pulsars: Studies of Three Sources Using Empirical and Phenomenological Models

    NASA Astrophysics Data System (ADS)

    Hemphill, Paul Britton

    Accreting X-ray pulsars are a class of astrophysical objects consisting of a neutron star in a binary system with a stellar companion. Matter expelled by the companion star is captured by the neutron star's gravity; as this matter falls towards the neutron star's surface, is compressed and heated, giving off X-rays. As the matter falls the last few miles above the neutron star surface, a number of physical processes compete for dominance, resulting in a highly complex environment governed by the interplay of magnetic, hydrodynamical, and radiative processes. The resulting spectrum often shows broad absorption-like features called cyclotron lines, which provide the only direct measurement of the magnetic field of a neutron star and act as probes of the properties of the accretion column, and their behavior with respect to changes in the accretion rate onto the neutron star has been of interest in recent years. My work in this dissertation brings together nearly 20 years of data from three X-ray satellites to study the X-ray emission from accreting pulsars, with a focus on the hard X-ray continuum and cyclotron lines. I present results for the accreting pulsars 4U 1538-522 and 4U 1907+09, examining the behavior of their cyclotron lines with respect to their luminosity, finding evidence for a positive correlation between the line energy and luminosity in 4U 1907+09. A combined analysis of most of the available X-ray data for the accreting pulsar 4U 1538-522 shows no such correlation in this source, either positive or negative. However, I do present evidence that the cyclotron line energy in 4U 1538-522 has shifted upwards by ˜ 5% in recent years compared to measurements from 10-20 years ago. I additionally carry out an extensive analysis of the environment around 4U 1538-522 using the soft X-ray detectors aboard the satellite Suzaku. I finally present a set of new results from the transient X-ray pulsar V 0332+53, which I fit with a new physics-based model for the

  14. The unique observing capabilities of the Swift x-ray telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Angelini, L.; Morris, D. C.; Burrows, D. N.; Abbey, A. F.; Campana, S.; Capalbi, M.; Cusumano, G.; Kennea, J. A.; Klar, R.; Mangels, C.; Moretti, A.; Osborne, J. P.; Perri, M.; Racusin, J.; Tagliaferri, G.; Tamburelli, F.; Wood, P.; Nousek, J. A.; Wells, A.

    2005-08-01

    The XRT is a sensitive, autonomous X-ray imaging spectrometer onboard the Swift Gamma-Ray Burst Observatory. The unique observing capabilities of the XRT allow it to autonomously refine the Swift BAT positions (~1-4' uncertainty) to better than 2.5 arcsec in XRT detector coordinates, within 5 seconds of target acquisition by the Swift Observatory for typical bursts, and to measure the flux, spectrum, and light curve of GRBs and afterglows over a wide dynamic range covering more than seven orders of magnitude in flux (62 Crab to < 1 mCrab). The results of the rapid positioning capability of the XRT are presented here for both known sources and newly discovered GRBs, demonstrating the ability to automatically utilise one of two integration times according to the burst brightness, and to correct the position for alignment offsets caused by the fast pointing performance and variable thermal environment of the satellite as measured by the Telescope Alignment Monitor. The onboard results are compared to the positions obtained by groundbased follow-up. After obtaining the position, the XRT switches between four CCD readout modes, automatically optimising the scientific return from the source depending on the flux of the GRB. Typical data products are presented here.

  15. The unique observing capabilities of the Swift x-ray telescope

    NASA Astrophysics Data System (ADS)

    Hill, J. E.; Angelini, L.; Morris, D. C.; Burrows, D. N.; Abbey, A. F.; Campana, S.; Cusumano, G.; Kennea, J. A.; Klar, R.; Mangels, C.; Moretti, A.; Perri, M.; Racusin, J.; Tagliaferri, G.; Tamburelli, F.; Wood, P.; Nousek, J. A.; Wells, A.

    2005-01-01

    The XRT is a sensitive, autonomous X-ray imaging spectrometer onboard the Swift Gamma-Ray Burst Observatory. The unique observing capabilities of the XRT allow it to autonomously refine the Swift BAT positions (~1-4' uncertainty) to better than 2.5 arcsec in XRT detector coordinates, within 5 seconds of target acquisition by the Swift Observatory for typical bursts, and to measure the flux, spectrum, and light curve of GRBs and afterglows over a wide dynamic range covering more than seven orders of magnitude in flux (62 Crab to < 1 mCrab). The results of the rapid positioning capability of the XRT are presented here for both known sources and newly discovered GRBs, demonstrating the ability to automatically utilise one of two integration times according to the burst brightness, and to correct the position for alignment offsets caused by the fast pointing performance and variable thermal environment of the satellite as measured by the Telescope Alignment Monitor. The onboard results are compared to the positions obtained by groundbased follow-up. After obtaining the position, the XRT switches between four CCD readout modes, automatically optimising the scientific return from the source depending on the flux of the GRB. Typical data products are presented here.

  16. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    NASA Technical Reports Server (NTRS)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  17. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  18. The X-ray Pulsar 2A 1822-371 as a super-Eddington source

    NASA Astrophysics Data System (ADS)

    Bak Nielsen, A.; Patruno, A.

    2017-10-01

    The LMXB pulsar 2A 1822-371 is a slow accreting x-ray pulsar which shows several peculiar properties. The pulsar is observed to spin-up continuously on a timescale of 7000 years , shorter than expected for these type of systems. The orbital period is expanding on an extremely short timescale that challenges current theories of binary evolution. Furthermore, the presence of a thick accretion disc corona poses a problem, since we observe X-ray pulsations which would otherwise be smeared out by the Compton scattering. I propose a solution to all of the above problems by suggesting that the system may be a super-Eddington source with a donor out of thermal equilibrium. I propose that 2A 1822-371 has a thin accretion outflow being launched from the inner accretion disk region. The solution reconciles both the need for an accretion disk corona, the fast spin-up and the changes in the orbital separation. I will also present preliminary results obtained with new XMM-Newton data that show the possible presence of a low frequency modulation similar to those observed in two accreting millisecond pulsars. Given the relatively strong magnetic field of 2A 1822-371, the modulation requires a super-Eddington mass transfer rate, further strengthening the proposed scenario.

  19. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  20. The All-Sky Swift - INTEGRAL X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Michelson, Peter

    All-sky surveys at hard X-ray energies (above 15 keV) have proven to be a powerful technique in detecting Galactic and extragalactic source populations. Most of the radiation at hard X-ray energies originates in non-thermal processes. These processes take place in extreme conditions of gravitational fields, of electromagnetic field, and also in explosive events. Such extreme conditions can be found in the Milk Way in the vicinity of neutron stars, black holes, and supernovae. Also extragalactic sources are known to be hard X-ray emitters like Active Galactic Nuclei (AGNs), blazars, and Clusters of Galaxies. Currently the most sensitive flying hard X-ray detectors are the Burst Alert Telescope (BAT) on board the NASA mission Swift and the INTEGRAL Soft-Gamma Ray Imager (IBIS/ISGRI) on board the ESA mission INTEGRAL. BAT and IBIS/ISGRI are coded- mask telescopes that shed continuously light on the Galactic and the extragalactic source populations. However, coded-mask telescopes suffer from heavy systematic effects (errors) preventing them from reaching their theoretical limiting sensitivity. Furthermore, by design, they block ~50% of the incident photons causing and increase of statistical noise. As a consequence BAT and IBIS/ISGRI are not sensitive enough to detect faint objects. In addition it has been proven that the Galactic survey of these instruments is limited by systematic uncertainties. Therefore, further observations on the Galactic plane will not improve the sensitivity of the survey of BAT and IBIS/ISGRI. In this project we show that it is possible to overcome the limits of BAT and of IBIS/ISGRI by combining their observations in the 18 55 keV energy range. We call it the SIX survey that stands for Swift - INTEGRAL X-ray survey. Two major advantages are obtained by merging the observations of BAT and IBIS/ISGRI: 1) the exposure is greatly enhanced (sum of BAT and IBIS/ISGRI) and therefore the sensitivity is improved; 2) the systematic errors of both

  1. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. Themore » primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.« less

  2. Perspectives on Ultraluminous X-ray sources after the discovery of Ultraluminous Pulsars

    NASA Astrophysics Data System (ADS)

    Zampieri, L.; Ambrosi, E.; Fiore, A.; Pintore, F.; Turolla, R.; Israel, GL.; Stella, L.; Casella, P.; Papitto, A.; Rodriguez Castillo, G. A.; De Luca, A.; Tiengo, A.; Belfiore, A.; Esposito, P.; Marelli, M.; Novara, G.; Salvaterra, R.; Salvetti, D.; Mereghetti, S.; Wolter, A.

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are observationally defined as non-nuclear extragalactic X-ray point sources with inferred (isotropic) luminosity exceeding the Eddington limit for a ˜ 10 M_{⊙} compact object. While in the past few years a certain evidence (and a general consensus) has been gathered in favour of the existence of black hole (BH) remnants in ULXs, the recent discovery of three Ultraluminous X-ray Pulsars has unexpectedly revealed what is likely to be a significant population of neutron star (NS) ULXs. These findings challenge more than ever our present understanding of these sources, their accretion mechanism/history, and their formation pathways. After reviewing some of these intriguing observational facts, we will summarize some perspective studies that we are carrying out to model the multiwavelength variability and broadband spectra of ULXs, including the contribution of an accretion column for NS systems. We derive the luminosity emitted by the latter assuming that a multipolar component dominates the magnetic field close to the NS. The focus is on comparing the simulated multiwavelength emission properties of stellar-mass/massive BHs to those of NS systems, and on confronting the model predictions with the available observations of Pulsar ULXs.

  3. PSR J2022 plus 3842: An Energetic Radio and X-Ray Pulsar Associated with SNR G76.9 plus 1.0

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Gotthelf, E. V.; Ransom, S. M.; Kothes, R.; Landecker, T. L.

    2010-01-01

    We present Chandra X-ray Observatory, Robert C. Byrd Green Bank Radio Telescope (GBT), and Rossi X-ray Timing Explorer (RXTE) observations directed toward the radio supernova remnant (SNR) G76.9+1.0. The Chandra investigation reveals a hard, unresolved X-ray source coincident with the midpoint of the double-lobed radio morphology and surrounded by faint, compact X-ray nebulosity. These features suggest that an energetic neutron star is powering a pulsar wind nebula (PWN) seen in synchrotron emission. Indeed, the spatial relationship of the X-ray and radio emissions is remarkably similar to the extended emission around the Vela pulsar. A follow-up pulsation search with the GBT uncovered a highly-dispersed (DM = 427 +/- 1 pc/cu cm) and highly-scattered pulsar with a period of 24 ms. Its subsequently measured spin-down rate implies a characteristic age T(sub c) = 8.9 kyr, making PSR J2022+3842 the most rapidly rotating young radio pulsar known. With a spin-down luminosity E = 1.2 x 10(exp 38) erg/s, it is the second-most energetic Galactic pulsar known, after the Crab pulsar. The 24-ms pulsations have also been detected in the RXTE observation; the combined Chandra and RXTE spectral fit suggests that the Chandra point-source emission is virtually 100% pulsed. The 2-16 keV spectrum of the narrow (0.06 cycles FWHM) pulse is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.5) x 10(exp 22)/sq cm and photon index Gamma = 1.0 +/- 0.2, strongly suggestive of magnetospheric emission. For an assumed distance of 10 kpc, the 2-10 keV luminosity of L(sub X) = 6.9 x 10(exp 33) erg/s suggests one of the lowest known X-ray conversion efficiencies L(sub X)/ E = 5.8 x 10(exp -5), similar to that of the Vela pulsar. Finally, the PWN around PSR J2022+3842 revealed by Chandra is also underluminous, with F(sub PWN)/ F(sub PSR) < or approx.1 in the 2-10 keV band, a further surprise given the pulsar's high spin-down luminosity.

  4. Modeling X-ray and gamma-ray emission in the intrabinary shock of pulsar binaries

    NASA Astrophysics Data System (ADS)

    An, H.

    2017-10-01

    We present broadband SED and light curve, and a wind interaction model for the gamma-ray binary 1FGL J1018.6-5856 (J1018) which exhibits double peaks in the X-ray light curve. Assuming that the X-ray to low-energy gamma-ray emission is produced by synchrotron radiation and high-energy gamma rays by inverse Compton scattering in the intrabinary shock (IBS), we model the broadband SED and light curve of J1018 using a two-component model having slow electrons in the shock and fast bulk-accelerated electrons at the skin of the shock. The model explains the broadband SED and light curve of J1018 qualitatively well. In particular, modeling the synchrotron emission constrains the orbital geometry. We discuss potential use of the model for other pulsar binaries.

  5. Spectral formation in a radiative shock: application to anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Trümper, J. E.; Ertan, Ü.

    2014-02-01

    Context. In the fallback disk model for the persistent emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), the hard X-ray emission arises from bulk- and thermal Comptonization of bremsstrahlung photons, which are generated in the accretion column. The relatively low X-ray luminosity of these sources implies a moderate transverse optical depth to electron scattering, with photons executing a small number of shock crossings before escaping sideways. Aims: We explore the range of spectral shapes that can be obtained with this model and characterize the most important parameter dependencies. Methods: We use a Monte Carlo code to study the crisscrossing of photons in a radiative shock in an accretion column and compute the resulting spectrum. Results: As expected, high-energy power-law X-ray spectra are produced in radiative shocks with photon-number spectral index Γ ≳ 0.5. We find that the required transverse optical depth is 1 ≲ τ⊥ ≲ 7. Such spectra are observed in low-luminosity X-ray pulsars. Conclusions: We demonstrate here with a simple model that Compton upscattering in the radiative shock in the accretion column can produce hard X-ray spectra similar to those seen in the persistent and transient emission of AXPs and SGRs. In particular, one can obtain a high-energy power-law spectrum, with photon-number spectral-index Γ ~ 1 and a cutoff at 100 - 200 keV, with a transverse Thomson optical depth of ~5, which is shown to be typical in AXPs/SGRs.

  6. X-Ray Spectra of Young Pulsars and Their Wind Nebulae: Dependence on Spin-Down Energy Loss Rate

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.

    2003-01-01

    An observational model is presented for the spectra of young rotation-powered pulsars and their nebulae based on a study of nine bright Crab-like pulsar systems observed with the Chandra X-ray observatory. A significant correlation is discovered between the X-ray spectra of these pulsars and that of their associated pulsar wind nebulae, both of which are observed to be a function of the spin-down energy loss rate, E. The 2-10 keV spectra of these objects are well characterized by an absorbed power-law model with photon indices, Gamma, in the range of 0.6 < Gamma (sub PSR) < 2.1 and 1.3 < Gamma(sub PWN) < 2.3, for the pulsars and their nebulae, respectively. A linear regression fit relating these two sets of indexes yields Gamma(sub PWN) = 0.91 +/- 0.18 + (0.66 +/- 0.11) Gamma (sub PSR), with a correlation coefficient of r = 0.97. The spectra of these pulsars are found to steepen as Gamma = Gamma(sub max) + alpha E (exp -1/2), with Gamma(sub max) providing an observational limit on the spectral slopes of young rotation-powered pulsars. These results reveal basic properties of young pulsar systems, allow new observational constraints on models of pulsar wind emission, and provide a means of predicting the energetics of pulsars lacking detected pulsations.

  7. Gamma rays from pulsar wind shock acceleration

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    A shock forming in the wind of relativistic electron-positron pairs from a pulsar, as a result of confinement by surrounding material, could convert part of the pulsar spin-down luminosity to high energy particles through first order Fermi acceleration. High energy protons could be produced by this mechanism both in supernova remnants and in binary systems containing pulsars. The pion-decay gamma-rays resulting from interaction of accelerated protons with surrounding target material in such sources might be observable above 70 MeV with EGRET (Energetic Gamma-Ray Experimental Telescope) and above 100 GeV with ground-based detectors. Acceleration of protons and expected gamma-ray fluxes from SN1987A, Cyg X-3 type sources and binary pulsars are discussed.

  8. Rotational and X-ray luminosity evolution of high-B radio pulsars

    NASA Astrophysics Data System (ADS)

    Benli, Onur; Ertan, Ünal

    2018-05-01

    In continuation of our earlier work on the long-term evolution of the so-called high-B radio pulsars (HBRPs) with measured braking indices, we have investigated the long-term evolution of the remaining five HBRPs for which braking indices have not been measured yet. This completes our source-by-source analyses of HBRPs in the fallback disc model that was also applied earlier to anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and dim isolated neutron stars (XDINs). Our results show that the X-ray luminosities and the rotational properties of these rather different neutron star populations can be acquired by neutron stars with fallback discs as a result of differences in their initial conditions, namely the initial disc mass, initial period and the dipole field strength. For the five HBRPs, unlike for AXPs, SGRs and XDINs, our results do not constrain the dipole field strengths of the sources. We obtain evolutionary paths leading to the properties of HBRPs in the propeller phase with dipole fields sufficiently strong to produce pulsed radio emission.

  9. Properties of Supergiant Fast X-Ray Transients as Observed by Swift

    NASA Technical Reports Server (NTRS)

    Romano, P.; Vercellone, S.; Krimm, H. A.; Esposito, P.; Cusumano, C.; LaParola, V.; Mangano, V.; Kennea, J. A.; Burrows, D. N.; Pagani, C.; hide

    2011-01-01

    We present the most recent results from our investigation on Supergiant Fast X-ray Transients, a class of High-Mass X-ray Binaries, with a possible counterpart in the gamma-ray energy band. Since 2007 Swift has contributed to this new field by detecting outbursts from these fast transients with the BAT and by following them for days with the XRT. Thus, we demonstrated that while the brightest phase of the outburst only lasts a few hours, further activity is observed at lower fluxes for a remarkably longer time, up to weeks. Furthermore, we have performed several campaigns of intense monitoring with the XRT, assessing the fraction of the time these sources spend in each phase, and their duty cycle of inactivity.

  10. SWIFT OBSERVATIONS OF TWO OUTBURSTS FROM THE MAGNETAR 4U 0142+61

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archibald, R. F.; Kaspi, V. M.; Scholz, P.

    2017-01-10

    4U 0142+61 is one of a small class of persistently bright magnetars. Here, we report on a monitoring campaign of 4U 0142+61 from 2011 July 26 to 2016 June 12 using the Swift X-ray Telescope, continuing a 16-year timing campaign with the Rossi X-ray Timing Explorer . We show that 4U 0142+61 had two radiatively loud timing events, on 2011 July 29 and 2015 February 28, both with short soft γ -ray bursts, and a long-lived flux decay associated with each case. We show that the 2015 timing event resulted in a net spin-down of the pulsar that is duemore » to overrecovery of a glitch. We compare this timing event to previous such events in other pulsars with high magnetic fields and discuss net spin-down glitches now seen in several young, high-B pulsars.« less

  11. The first search for X-ray polarization in the Centaurus X-3 and Hercules X-1 pulsars

    NASA Technical Reports Server (NTRS)

    Silver, E. H.; Weisskopf, M. C.; Kestenbaum, H. L.; Long, K. S.; Novick, R.; Wolff, R. S.

    1979-01-01

    The first search for X-ray polarization in the Cen X-3 and Her X-1 pulsars was performed by the OSO 8 polarimeters in 1975 July and 1975 August, respectively. Three-sigma upper limits to the polarization in Cen X-3 of 13.5% and 19% at 2.6 keV and 5.2 keV, respectively, were obtained when the data were averaged over the pulse and binary periods. The upper limit for Her X-1 at 2.6 keV is 60%. A search for pulse-phase dependent X-ray polarization from both objects was also performed. At the 91% confidence level, emission from Cen X-3 exhibits evidence for X-ray polarization at 2.6 keV that varies with pulse phase. Upper limits to polarization are presented for the leading and trailing edges and peak of the Her X-1 pulse at 2.6 keV.

  12. X-Ray Study of Variable Gamma-Ray Pulsar PSR J2021+4026

    NASA Astrophysics Data System (ADS)

    Wang, H. H.; Takata, J.; Hu, C.-P.; Lin, L. C. C.; Zhao, J.

    2018-04-01

    PSR J2021+4026 showed a sudden decrease in the gamma-ray emission at the glitch that occurred around 2011 October 16, and a relaxation of the flux to the pre-glitch state at around 2014 December. We report X-ray analysis results of the data observed by XMM-Newton on 2015 December 20 in the post-relaxation state. To examine any change in the X-ray emission, we compare the properties of the pulse profiles and spectra at the low gamma-ray flux state and at the post-relaxation state. The phase-averaged spectra for both states can be well described by a power-law component plus a blackbody component. The former is dominated by unpulsed emission and probably originated from the pulsar wind nebula as reported by Hui et al. The emission property of the blackbody component is consistent with the emission from the polar cap heated by the back-flow bombardment of the high-energy electrons or positrons that were accelerated in the magnetosphere. We found no significant change in the X-ray emission properties between two states. We suggest that the change of the X-ray luminosity is at an order of ∼4%, which is difficult to measure with the current observations. We model the observed X-ray light curve with the heated polar cap emission, and we speculate that the observed large pulsed fraction is owing to asymmetric magnetospheric structure.

  13. Low-mass X-ray binary evolution and the origin of millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Frank, Juhan; King, Andrew R.; Lasota, Jean-Pierre

    1992-01-01

    The evolution of low-mass X-ray binaries (LMXBs) is considered. It is shown that X-ray irradiation of the companion stars causes these systems to undergo episodes of rapid mass transfer followed by detached phases. The systems are visible as bright X-ray binaries only for a short part of each cycle, so that their space density must be considerably larger than previously estimated. This removes the difficulty in regarding LMXBs as the progenitors of low-mass binary pulsars. The low-accretion-rate phase of the cycle with the soft X-ray transients is identified. It is shown that 3 hr is likely to be the minimum orbital period for LMXBs with main-sequence companions and it is suggested that the evolutionary endpoint for many LMXBs may be systems which are the sites of gamma-ray bursts.

  14. Pulse periods and the long-term variations of the X-ray pulsars VELA X-1 and Centaurus X-3

    NASA Astrophysics Data System (ADS)

    Tsunemi, Hiroshi

    The paper reports recent determinations of the pulse period for two X-ray pulsars, Vela X-1 and Cen X-3, made in 1987 with the All Sky Monitor (ASM) on board the Ginga satellite. The heliocentric pulse periods are 283.09 + or - 0.01 s and 4.8229 + or - 0.0001 s, respectively. These are the longest and shortest values in their respective observational histories. The random walk model for the Vela X-1 pulsar can explain this result as well as those obtained previously. It is also noted that the pulse-period change for the Cen X-3 system shows a 9-yr periodicity. This is probably due to the activity of the companion star rather than to Doppler-shift variations due to a third body or the precession of the neutron star.

  15. Pulsar-Wind Nebulae and Magnetar Outflows: Observations at Radio, X-Ray, and Gamma-Ray Wavelengths

    NASA Astrophysics Data System (ADS)

    Reynolds, Stephen P.; Pavlov, George G.; Kargaltsev, Oleg; Klingler, Noel; Renaud, Matthieu; Mereghetti, Sandro

    2017-07-01

    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few "magnetar-wind nebula" have been recently identified.

  16. A Survey of PWNe around Narrow-Pulse Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Romani, Roger

    2010-09-01

    We propose here, on behalf of the Fermi LAT team, ACIS observations of the X-ray counterparts of six unusual gamma-ray pulsars discovered by the LAT. The targets, four seen only in the gamma-rays, two also radio-detected, have unusual single or narrow double pulse profiles, which require particular emission geometries for different pulsar models. By measuring the arcsecond-scale structure of the wind nebula termination shocks of these young (<100kyr) objects, CXO can pin down the viewing angle and test the pulsar physics. All have known X-ray fluxes and we can also extract spectral and distance estimates needed to interpret the GeV gamma-rays. The survey sample covers a range of ages, spindown powers and expected inclinations, making it a powerful test of pulsar emission models.

  17. Swift/BAT confirms the giant outburst of H 1417-624

    NASA Astrophysics Data System (ADS)

    Krimm, H. A.; Barthelmy, S. D.; Cummings, J. R.; Lien, A. Y.; Markwardt, C. B.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.; Ukwatta, T. N.

    2018-04-01

    The Swift/BAT transient monitor confirms the current outburst from the Be/X-ray binary pulsar, H 1417-624 ( = 2S 1417-624) (Nakajima et al., ATel #11479). In the BAT 15-50 keV energy band, the outburst began approximately on 20 March 2018 (MJD 57467) and the count rate has been steadily rising since that time.

  18. Exploring anti-correlated radio/X-ray modes in transitional millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Jaodand, Amruta

    2017-09-01

    Recently, using coordinated VLA+Chandra observations, Bogdanov et al.(2017) have uncovered a stunning anti-correlation in the LMXB state of the tMSP PSR J1023+0038. They see that radio luminosity consistently peaks during the X-ray `low' luminosity modes. Also, we have found a promising candidate tMSP, 3FGL J1544-1125(J1544) (Bogdanov and Halpern 2015; currently only tMSP candidate apart from J1023 in a persistent LMXB state). Using VLA and simultaneous Swift observations we see that it lies on the proposed tMSP track in radio vs. X-ray luminosity (L_ R/L_X) diagram. This finding strengthens its classification as a tMSP and provides an excellent opportunity to a)determine universality of radio/X-ray brightness anti-correlatio and b)understand jet/outflow formation in tMSPs.

  19. Pulse-to-pulse variations in accreting X-ray pulsars

    NASA Astrophysics Data System (ADS)

    Kretschmar, Peter; Marcu, Diana; Kühnel, Matthias; Klochkov, Dmitry; Pottschmidt, Katja; Staubert, Rüdiger; Wilson-Hodge, Colleen A.; Jenke, Peter A.; Caballero, Isabel; Fürst, Felix

    2014-01-01

    In most accreting X-ray pulsars, the periodic signal is very clear and easily shows up as soon as data covering sufficient pulse periods (a few ten) are available. The mean pulse profile is often quite typical for a given source and with minor variations repeated and recognisable across observations done years or even decades apart. At the time scale of individual pulses, significant pulse-to-pulse variations are commonly observed. While at low energies some of these variations might be explained by absorption, in the hard X-rays they will reflect changes in the accretion and subsequent emission. The amount of these variations appears to be quite different between sources and contains information about the surrounding material as well ass possibly interactions at the magnetosphere. We investigate such variations for a sample of well-known sources.

  20. The nature of fifty Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-07-01

    We present the nature of 50 unidentified hard X-ray emitting objects detected with Swift-BAT and listed as of unidentified nature in the 54-month Palermo BAT catalogue. We found 45 extragalactic sources: 26 type 1 AGN, 15 type 2 AGN, one type 1 QSO, one starburst galaxy, one X-ray bright optically normal galaxy, and one LINER. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary, and one is an active star.

  1. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  2. Signs of magnetic accretion in the young Be/X-ray pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Ikhsanov, N. R.

    2012-07-01

    The spin behaviour of the neutron star in the newly discovered young Be/X-ray long-period pulsar SXP 1062 is discussed. The star is observed to rotate with the period of 1062 s, and spin down at the rate ˜-2.6 × 10-12 Hz s-1. I show that all of the conventional accretion scenarios encounter major difficulties in explaining the rapid spin-down of the pulsar. These difficulties can be, however, avoided within the magnetic accretion scenario in which the neutron star is assumed to accrete from a magnetized wind. The spin-down rate of the pulsar can be explained within this scenario provided the surface magnetic field of the neutron star is B*˜ 4 × 1013 G. I show that the age of the pulsar in this case lies in the range (2-4) × 104 yr, which is consistent with observations. The spin evolution of the pulsar is briefly discussed.

  3. X-Ray Observations of High-Energy Pulsars: PSR B1951+32 and Geminga

    NASA Astrophysics Data System (ADS)

    Ho, Cheng

    Observations at frequencies across a wide range of electromagnetic spectra are key to the understanding of the origin and mechanisms of high-energy emissions from pulsars. We propose to observe the high-energy pulsars PSR B1951+32 and Geminga with XTE. These two sources emit X-rays at low enough count rate that we can acquire high resolution timing and spectral data, allowing us to perform detailed analysis on the ground. Staring integration of 10 ksec for each source is requested. Data obtained in these observations, together with those from ROSAT, GRO and a planned project for optical counterpart study at Los Alamos, will provide crucial information to advance high-energy pulsar research.

  4. GREEN BANK TELESCOPE AND SWIFT X-RAY TELESCOPE OBSERVATIONS OF THE GALACTIC CENTER RADIO MAGNETAR SGR J1745–2900

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Ryan S.; Archibald, Robert F.; Kaspi, Victoria M.

    We present results from eight months of Green Bank Telescope 8.7 GHz observations and nearly 18 months of Swift X-ray telescope observations of the radio magnetar SGR J1745–2900. We tracked the radio and X-ray flux density, polarization properties, profile evolution, rotation, and single-pulse behavior. We identified two main periods of activity. The first is characterized by approximately 5.5 months of relatively stable evolution in radio flux density, rotation, and profile shape, while in the second these properties varied substantially. Specifically, a third profile component emerged and the radio flux also became more variable. The single pulse properties also changed, mostmore » notably with a larger fraction of pulses with pulse widths ∼5–20 ms in the erratic state. Bright single pulses are well described by a log-normal energy distribution at low energies, but with an excess at high energies. The 2–10 keV flux decayed steadily since the initial X-ray outburst, while the radio flux remained stable to within ∼20% during the stable state. A joint pulsar timing analysis of the radio and X-ray data shows a level of timing noise unprecedented in a radio magnetar, though during the time covered by the radio data alone the timing noise was at a level similar to that observed in other radio magnetars. While SGR J1745–2900 is similar to other radio magnetars in many regards, it differs by having experienced a period of relative stability in the radio that now appears to have ended, while the X-ray properties evolved independently.« less

  5. X-RAY SPECTROSCOPY OF THE HIGH-MASS X-RAY BINARY PULSAR CENTAURUS X-3 OVER ITS BINARY ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naik, Sachindra; Ali, Zulfikar; Paul, Biswajit, E-mail: snaik@prl.res.in

    2011-08-20

    We present a comprehensive spectral analysis of the high-mass X-ray binary (HMXB) pulsar Centaurus X-3 with the Suzaku observatory covering nearly one orbital period. The light curve shows the presence of extended dips which are rarely seen in HMXBs. These dips are seen up to as high as {approx}40 keV. The pulsar spectra during the eclipse, out-of-eclipse, and dips are found to be well described by a partial covering power-law model with high-energy cutoff and three Gaussian functions for 6.4 keV, 6.7 keV, and 6.97 keV iron emission lines. The dips in the light curve can be explained by themore » presence of an additional absorption component with high column density and covering fraction, the values of which are not significant during the rest of the orbital phases. The iron line parameters during the dips and eclipse are significantly different compared to those during the rest of the observation. During the dips, the iron line intensities are found to be lesser by a factor of 2-3 with a significant increase in the line equivalent widths. However, the continuum flux at the corresponding orbital phase is estimated to be lesser by more than an order of magnitude. Similarities in the changes in the iron line flux and equivalent widths during the dips and eclipse segments suggest that the dipping activity in Cen X-3 is caused by an obscuration of the neutron star by dense matter, probably structures in the outer region of the accretion disk, as in the case of dipping low-mass X-ray binaries.« less

  6. Gamma-ray burst theory after Swift.

    PubMed

    Piran, Tsvi; Fan, Yi-Zhong

    2007-05-15

    Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.

  7. The period history of the X-ray pulsar in MSH 15-52

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Elsner, R. F.; Darbo, W.; Leahy, D.; Naranan, S.; Harnden, F. R.; Seward, F. D.; Sutherland, P. G.; Grindlay, J. E.

    1983-01-01

    New and refined mesurements of the pulse period of the X-ray pulsar in the supernova remnant MSH 15-52 are presented. The data were obtained with the Monitor proportional Counter on board the HEAO 2 observatory. The period measurements were obtained by analyzing pulse arrival times determined by cross-correlating sample pulse profiles with a master template. The period history for the source and a representative 0.15 s X-ray light curve are shown. The X-ray measurements alone lead to a refined value of the period derivative of (1.5382 + or -0.0024) x 10 to the -12th s/s, while including the results of more recent radio observations leads to a value of (1.54029 + or -0.00095) x 10 to the -12th s/s. These results indicate a hard-point source surrounded by diffuse nebular emission.

  8. The second fermi large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  9. The second FERMI large area telescope catalog of gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ajello, M.; Allafort, A.

    2013-09-19

    This catalog summarizes 117 high-confidence ≥0.1 GeV gamma-ray pulsar detections using three years of data acquired by the Large Area Telescope (LAT) on the Fermi satellite. Half are neutron stars discovered using LAT data through periodicity searches in gamma-ray and radio data around LAT unassociated source positions. The 117 pulsars are evenly divided into three groups: millisecond pulsars, young radio-loud pulsars, and young radio-quiet pulsars. We characterize the pulse profiles and energy spectra and derive luminosities when distance information exists. Spectral analysis of the off-peak phase intervals indicates probable pulsar wind nebula emission for four pulsars, and off-peak magnetospheric emissionmore » for several young and millisecond pulsars. We compare the gamma-ray properties with those in the radio, optical, and X-ray bands. We provide flux limits for pulsars with no observed gamma-ray emission, highlighting a small number of gamma-faint, radio-loud pulsars. The large, varied gamma-ray pulsar sample constrains emission models. Fermi's selection biases complement those of radio surveys, enhancing comparisons with predicted population distributions.« less

  10. KSWAGS: A Swift X-Ray and UV Survey of the Kepler Field 1

    NASA Technical Reports Server (NTRS)

    Smith, Krista Lynne; Boyd, Patricia T.; Mushotzky, Richard F.; Gehrels, Neil; Edelson, Rick; Howell, Steve B.; Gelino, Dawn M.; Brown, Alexander; Young, Steve

    2015-01-01

    We introduce the first phase of the Kepler-Swift Active Galaxies and Stars survey (KSwAGS), a simultaneous X-ray and UV survey of approximately 6 square degrees of the Kepler field using the Swift XRT and UVOT. We detect 93 unique X-ray sources with S/N greater or equal to 3 with the XRT, of which 60 have UV counterparts. We use the Kepler Input Catalog (KIC) to obtain the optical counterparts of these sources, and construct the fX / fV ratio as a first approximation of the classification of the source. The survey produces a mixture of stellar sources, extragalactic sources, and sources which we are not able to classify with certainty. We have obtained optical spectra for thirty of these targets, and are conducting an ongoing observing campaign to fully identify the sample. For sources classified as stellar or AGN with certainty, we construct SEDs using the 2MASS, UBV and GALEX data supplied for their optical counterparts by the KIC, and show that the SEDs differ qualitatively between the source types, and so can offer a method of classification in absence of a spectrum. Future papers in this series will analyze the timing properties of the stars and AGN in our sample separately. Our survey provides the first X-ray and UV data for a number of known variable stellar sources, as well as a large number of new X-ray detections in this well-studied portion of the sky. The KSwAGS survey is currently ongoing in the K2 ecliptic plane fields.

  11. Swift detections of the flaring blazar GAIA 18ayp (PKS 2333-415) in X-rays and the UV

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk; Komossa, S.; Angioni, R.; Schartel, N.

    2018-04-01

    We report Swift observations of the z=1.41 QSO GAIA 18ayp (PKS 2333-415) which was detected by GAIA in an optically flaring state on 2018-April-14. Swift observed GAIA 18ayp on 2018 April 23 for a total of 1.4 ks. The QSO is clearly detected in X-rays and the UV. The X-ray position found using the enhanced XRT position (Goad et al. 2007, Evans et al. 2009) is RA-2000 = 23 36 34.1, Dec-2000 = -41 15 21.4 with an uncertainty of 3.0".

  12. The Intensity Modulation of the Fluorescent Line by a Finite Light Speed Effect in Accretion-powered X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio

    2017-11-01

    The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.

  13. Host Galaxy Properties Of The Swift Bat Hard X-ray Survey Of Agn

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, R.; Veilleux, S.; Winter, L.

    2010-03-01

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of AGN unaffected by galactic or circumnuclear absorption. Optical imaging of this unbiased sample provides a new opportunity to understand how the environments of the host galaxies are linked to AGN. In 2008, we observed 90 of these targets at Kitt Peak with the 2.1m in the SDSS ugriz bands over 17 nights. Using these observations and SDSS data we review the relationships between color, morphology, merger activity, stellar mass, star formation, and AGN luminosity for a sample of 145 AGN Hard X-ray Selected AGN.

  14. THE PROPER MOTION AND X-RAY ANALYSIS OF THE PULSAR WIND NEBULA, PSR J1741-2054 USING CHANDRA.

    NASA Astrophysics Data System (ADS)

    Auchettl, Katie; Slane, Patrick O.; Romani, Roger W.; Kargaltsev, Oleg; Pavlov, George G.

    2014-08-01

    A pulsar dissipates its rotational energy by generating relativistic winds, which in turn produces a population of high energy electrons and positions that we observe as a synchrotron emitting nebula. If the pulsar has a high space velocity, the corresponding nebula will have a bow-shock morphology due to the pulsar wind being confined by ram pressure. Pulsar wind nebulae (PWNe) provide a good test bed to study the dynamics and interaction of relativistic outflows with their environment and the corresponding shocks that result from these interactions. They can also aid in understanding the evolution of the neutron star and the properties of the local medium with which they are interacting. Here we report on the X-ray analysis of PSR J1741-2054 carried out as a part of the Chandra XVP program (6 ACIS-S observations, totalling ~300 ks over 5 months). By registering this new epoch of observations using X-ray point sources in the field of view to an archival observation taken 3.2 years earlier, we are able to measure the proper motion of the pulsar with >3σ significance. We also investigate the spatial and spectral properties of the pulsar, its compact nebula and extended tail. We find that the compact nebula can be well described with an absorbed power-law with photon index of Γ=1.6+/-0.2, while the tail shows no evidence of variation in the spectral index with the distance from the pulsar. We have also investigated the X-ray spectrum of the neutron star. We find nonthermal emission accompanied by a significant thermal component and will provide constraints on the overall nature of the emission.

  15. Swift reports a recent brightening of XTE J1543-568

    NASA Astrophysics Data System (ADS)

    Krimm, H. A.; Barthelmy, S. D.; Baumgartner, W.; Cummings, J.; Fenimore, E.; Gehrels, N.; Markwardt, C. B.; Palmer, D.; Sakamoto, T.; Skinner, G.; Stamatikos, M.; Tueller, J.; Ukwatta, T.

    2012-03-01

    The Swift/BAT hard X-ray transient monitor has recorded a recent flux increase from the transient X-ray pulsar and likely Be binary system XTE J1543-568. In the 15-50 keV band, the source was first detected in an 8-day integration covering 2012 March 9-16 (MJD 55995-56002) with a rate of 0.0016 ± 0.0003 ct/s/cm2. The peak day in the light curve was 2012 March 22 when the rate was 0.0043 ± 0.001 ct/s/cm2 (~20 mCrab).

  16. XTE J1946+274: An Enigmatic X-Ray Pulsar

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Coe, M. J.; Negueruela, Ignacio; Six, N. Frank (Technical Monitor)

    2002-01-01

    XTE J1946+274 = GRO J1944+26 is a 15.8-s X-ray pulsar discovered simultaneously by the Rossi X-ray Timing Explorer (RXTE) and the Burst and Transient Source Experiment (BATSE) in September 1998. Follow-up optical/IR observations resulted in the discovery of a Be star companion. Our pulse timing analysis of BATSE and RXTE data indicates that the orbital period is approximately 169 days. Since its discovery in 1998, XTE J1946+274 has undergone 13 outbursts. These outbursts axe not regularly spaced. They occur approximately twice per orbit and are not locked in orbital phase, unlike most Be/X-ray transient systems. A possible explanation for this is a global-one armed oscillation or density perturbation propagating rapidly in the Be star's disk. We will investigate radial velocity variations in the central peak of the H-alpha line to look for evidence of such a perturbation. From 2001 March-September, we regularly monitored XTE J1946+274 with the RXTE PCA. We will demonstrate that the spectrum appears to be varying with orbital phase, based on the 2001 and 1998 RXTE PCA observations. We will also present histories of pulsed frequency and flux.

  17. Pulsar timing for the Fermi gamma-ray space telescope

    DOE PAGES

    Smith, D. A.; Guillemot, L.; Camilo, F.; ...

    2008-10-27

    Here, we describe a comprehensive pulsar monitoring campaign for the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The detection and study of pulsars in gamma rays give insights into the populations of neutron stars and supernova rates in the Galaxy, into particle acceleration mechanisms in neutron star magnetospheres, and into the “engines” driving pulsar wind nebulae. LAT's unprecedented sensitivity between 20 MeV and 300 GeV together with its 2.4 sr field-of-view makes detection of many gamma-ray pulsars likely, justifying the monitoring of over two hundred pulsars with large spin-down powers. To search for gamma-ray pulsationsmore » from most of these pulsars requires a set of phase-connected timing solutions spanning a year or more to properly align the sparse photon arrival times. We describe the choice of pulsars and the instruments involved in the campaign. Attention is paid to verifications of the LAT pulsar software, using for example giant radio pulses from the Crab and from PSR B1937+21 recorded at Nançay, and using X-ray data on PSR J0218+4232 from XMM-Newton. We demonstrate accuracy of the pulsar phase calculations at the microsecond level.« less

  18. Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127

    NASA Astrophysics Data System (ADS)

    Plotkin, R. M.; Bright, J.; Miller-Jones, J. C. A.; Shaw, A. W.; Tomsick, J. A.; Russell, T. D.; Zhang, G.-B.; Russell, D. M.; Fender, R. P.; Homan, J.; Atri, P.; Bernardini, F.; Gelfand, J. D.; Lewis, F.; Cantwell, T. M.; Carey, S. H.; Grainge, K. J. B.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.

    2017-10-01

    The candidate black hole X-ray binary Swift J1753.5-0127 faded to quiescence in 2016 November after a prolonged outburst that was discovered in 2005. Nearly three months later, the system displayed renewed activity that lasted through 2017 July. Here, we present radio and X-ray monitoring over ≈ 3 months of the renewed activity to study the coupling between the jet and the inner regions of the disk/jet system. Our observations cover low X-ray luminosities that have not historically been well-sampled ({L}{{X}}≈ 2× {10}33{--}{10}36 {erg} {{{s}}}-1; 1-10 keV), including time periods when the system was both brightening and fading. At these low luminosities, Swift J1753.5-0127 occupies a parameter space in the radio/X-ray luminosity plane that is comparable to “canonical” systems (e.g., GX 339-4), regardless of whether the system was brightening or fading, even though during its ≳11 year outburst, Swift J1753.5-0127 emitted less radio emission from its jet than expected. We discuss implications for the existence of a single radio/X-ray luminosity correlation for black hole X-ray binaries at the lowest luminosities ({L}{{X}}≲ {10}35 {erg} {{{s}}}-1), and we compare to supermassive black holes. Our campaign includes the lowest luminosity quasi-simultaneous radio/X-ray detection to date for a black hole X-ray binary during its rise out of quiescence, thanks to early notification from optical monitoring combined with fast responses from sensitive multiwavelength facilities.

  19. Novel X-ray Communication Based XNAV Augmentation Method Using X-ray Detectors

    PubMed Central

    Song, Shibin; Xu, Luping; Zhang, Hua; Bai, Yuanjie

    2015-01-01

    The further development of X-ray pulsar-based NAVigation (XNAV) is hindered by its lack of accuracy, so accuracy improvement has become a critical issue for XNAV. In this paper, an XNAV augmentation method which utilizes both pulsar observation and X-ray ranging observation for navigation filtering is proposed to deal with this issue. As a newly emerged concept, X-ray communication (XCOM) shows great potential in space exploration. X-ray ranging, derived from XCOM, could achieve high accuracy in range measurement, which could provide accurate information for XNAV. For the proposed method, the measurement models of pulsar observation and range measurement observation are established, and a Kalman filtering algorithm based on the observations and orbit dynamics is proposed to estimate the position and velocity of a spacecraft. A performance comparison of the proposed method with the traditional pulsar observation method is conducted by numerical experiments. Besides, the parameters that influence the performance of the proposed method, such as the pulsar observation time, the SNR of the ranging signal, etc., are analyzed and evaluated by numerical experiments. PMID:26404295

  20. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  1. AGN classification for X-ray sources in the 105 month Swift/BAT survey

    NASA Astrophysics Data System (ADS)

    Masetti, N.; Bassani, L.; Palazzi, E.; Malizia, A.; Stephen, J. B.; Ubertini, P.

    2018-03-01

    We here provide classifications for 8 hard X-ray sources listed as 'unknown AGN' in the 105 month Swift/BAT all-sky survey catalogue (Oh et al. 2018, ApJS, 235, 4). The corresponding optical spectra were extracted from the 6dF Galaxy Survey (Jones et al. 2009, MNRAS, 399, 683).

  2. Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni G.

    2000-01-01

    This is the final performance report for our grant 'Long-Term Time Variability in the X-Ray Pulse Shape of the Crab Nebula Pulsar.' In the first year of this grant, we received the 50,000-second ROSAT (German acronym for X-ray satellite) High Resolution Images (HRI) observation of the Crab Nebula pulsar. We used the data to create a 65-ms-resolution pulse profile and compared it to a similar pulse profile obtained in 1991. No statistically significant differences were found. These results were presented at the January 1998 meeting of the American Astronomical Society. Since then, we have performed more sensitive analyses to search for potential changes in the pulse profile shape between the two data sets. Again, no significant variability was found. In order to augment this long (six-year) baseline data set, we have analyzed archival observations of the Crab Nebula pulsar with the Rossi X-Ray Timing Explorer (RXTE). While these observations have shorter time baselines than the ROSAT data set, their higher signal-to-noise offers similar sensitivity to long-term variability. Again, no significant variations have been found, confirming our ROSAT results. This work was done in collaboration with Prof. Stephen Eikenberry, Cornell University. These analyses will be included in Cornell University graduate student Dae-Sik Moon's doctoral thesis.

  3. On the morphology of outbursts of accreting millisecond X-ray pulsar Aquila X-1

    NASA Astrophysics Data System (ADS)

    Güngör, C.; Ekşi, K. Y.; Göğüş, E.

    2017-10-01

    We present the X-ray light curves of the last two outbursts - 2014 & 2016 - of the well known accreting millisecond X-ray pulsar (AMXP) Aquila X-1 using the monitor of all sky X-ray image (MAXI) observations in the 2-20 keV band. After calibrating the MAXI count rates to the all-sky monitor (ASM) level, we report that the 2016 outburst is the most energetic event of Aql X-1, ever observed from this source. We show that 2016 outburst is a member of the long-high class according to the classification presented by Güngör et al. with ˜ 68 cnt/s maximum flux and ˜ 60 days duration time and the previous outburst, 2014, belongs to the short-low class with ˜ 25 cnt/s maximum flux and ˜ 30 days duration time. In order to understand differences between outbursts, we investigate the possible dependence of the peak intensity to the quiescent duration leading to the outburst and find that the outbursts following longer quiescent episodes tend to reach higher peak energetic.

  4. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09

    NASA Astrophysics Data System (ADS)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; Mitra, D.; Rankin, J. M.; Stappers, B. W.; Wright, G. A. E.; Basu, R.; Szary, A.; van Leeuwen, J.

    2017-04-01

    We report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822-09 with ESA's XMM-Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822-09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2-1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ˜0.15 at 0.3 keV to ˜0.6 at 1 keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ˜0.96 × 106 K, hotspot radius R ˜2.0 km) and a hot component (T ˜2.2 × 106 K, R ˜100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822-09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055-52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822-09, which might be a pulsar wind nebula.

  5. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822$-$09

    DOE PAGES

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.; ...

    2016-12-05

    Here, we report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822–09 with ESA's XMM–Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822–09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2–1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1more » keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~0.96 × 10 6 K, hotspot radius R ~2.0 km) and a hot component (T ~2.2 × 10 6 K, R ~100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822–09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055–52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822–09, which might be a pulsar wind nebula.« less

  6. Simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822$-$09

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermsen, W.; Kuiper, L.; Hessels, J. W. T.

    Here, we report on simultaneous X-ray and radio observations of the radio-mode-switching pulsar PSR B1822–09 with ESA's XMM–Newton and the Westerbork Synthesis Radio Telescope, Giant Metrewave Radio Telescope and Lovell radio telescopes. PSR B1822–09 switches between a radio-bright and radio-quiet mode, and we discovered a relationship between the durations of its modes and a known underlying radio-modulation time-scale within the modes. We discovered X-ray (energies 0.2–1.4 keV) pulsations with a broad sinusoidal pulse, slightly lagging the radio main pulse in phase by 0.094 ± 0.017, with an energy-dependent pulsed fraction varying from ~0.15 at 0.3 keV to ~0.6 at 1more » keV. No evidence is found for simultaneous X-ray and radio mode switching. The total X-ray spectrum consists of a cool component (T ~0.96 × 10 6 K, hotspot radius R ~2.0 km) and a hot component (T ~2.2 × 10 6 K, R ~100 m). The hot component can be ascribed to the pulsed emission and the cool component to the unpulsed emission. The high-energy characteristics of PSR B1822–09 resemble those of middle-aged pulsars such as PSR B0656+14, PSR B1055–52 and Geminga, including an indication for pulsed high-energy gamma-ray emission in Fermi Large Area Telescope data. Explanations for the high pulsed fraction seem to require different temperatures at the two poles of this orthogonal rotator, or magnetic anisotropic beaming effects in its strong magnetic field. In our X-ray skymap, we found a harder source at only 5.1 ± 0.5 arcsec from PSR B1822–09, which might be a pulsar wind nebula.« less

  7. Deep optical observations of the γ-ray pulsar J0357+3205

    NASA Astrophysics Data System (ADS)

    Kirichenko, A.; Danilenko, A.; Shibanov, Yu.; Shternin, P.; Zharikov, S.; Zyuzin, D.

    2014-04-01

    Context. A middle-aged radio-quiet pulsar J0357+3205 was discovered in gamma rays with Fermi and later in X-rays with Chandra and XMM-Newton observatories. It produces an unusual thermally emitting pulsar wind nebula that is observed in X-rays. Aims: Deep optical observations were obtained to search for the pulsar optical counterpart and its nebula using the Gran Telescopio Canarias (GTC). Methods: The direct imaging mode in the Sloan g' band was used. Archival X-ray data were reanalysed and compared with the optical data. Results: No pulsar optical counterpart was detected down to g'≥slant 28.1m. No pulsar nebula was identified in the optical either. We confirm early results that the X-ray spectrum of the pulsar consists of a nonthermal power-law component of the pulsar magnetospheric origin dominating at high energies and a soft thermal component from the neutron star surface. Using magnetised, partially ionised hydrogen atmosphere models in X-ray spectral fits, we found that the thermal component can come from the entire surface of the cooling neutron star with a temperature of 36+8-6 eV, making it one of the coldest among cooling neutron stars known. The surface temperature agrees with the standard neutron star cooling scenario. The optical upper limit does not put any additional constraints on the thermal component, however it does imply a strong spectral break for the nonthermal component between the optical and X-rays as is observed in other middle-aged pulsars. Conclusions: The thermal emission from the entire surface of the neutron star very likely dominates the nonthermal emission in the UV range. Observations of PSR J0357+3205 in this range are promising to put more stringent constraints on its thermal properties. Based on observations made with the Gran Telescopio Canarias (GTC), instaled in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma under Programme GTC3-12BMEX

  8. Determination of the distance to SWIFT J0243.6+6124

    NASA Astrophysics Data System (ADS)

    Bikmaev, I.; Shimansky, V.; Irtuganov, E.; Glushkov, M.; Sakhibullin, N.; Khamitov, I.; Burenin, R.; Lutovinov, A.; Zaznobin, I.; Pavlinsky, M.; Sunyaev, R.; Dodonov, S.; Afanasiev, V.; Kotov, S.; Doroshenko, V.; Tsygankov, S.

    2017-11-01

    We have performed an optical photometry and spectroscopy of the Be counterpart of a newly discovered transient X-Ray pulsar SWIFT J0243.6+6124 (Kennea et al, 2017, ATel #10809) using facilities of the 1.5-meter Russian-Turkish telescope (RTT-150, TUBITAK National Observatory, Antalya, Turkey) and the 6-meter Russian telescope (BTA, Special Astrophysical Observatory of the Russian Academy of Sciences).

  9. Can a Double Component Outflow Explain the X-Ray and Optical Lightcurves of Swift Gamma-Ray Bursts?

    NASA Technical Reports Server (NTRS)

    De Pasquale, Massimiliano; Evans, P.; Oates, S.; Page, M.; Zane, S.; Schady, P.; Breeveld, A.; Holland, S.; Still, M.

    2011-01-01

    An increasing sample of Gamma-Ray Bursts (GRBs) observed by Swift show evidence of 'chromatic breaks', i.e. breaks that are present in the X-ray but not in the optical. We find that in a significant fraction of these GRB afterglows the X-ray and the optical emission cannot be produced by the same component. We propose that these afterglow lightcurves are the result of a two-component jet, in which both components undergo energy injection for the whole observation and the X-ray break is due to a jet break in the narrow outflow. Bursts with chromatic breaks also explain another surprising finding, the paucity of late achromatic breaks. We propose a model that may explain the behaviour of GRB emission in both X-ray and optical bands. This model can be a radical and noteworthy alternative to the current interpretation for the 'canonical' XRT and UVOT lightcurves, and it bears fundamental implications for GRB physics.

  10. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners and calibrated in Germany, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. Early results from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. Observations of magnetars, galactic transients, supernovae, AGN and many other types of sources are also being performed

  11. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Swift Team

    2005-12-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  12. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil

    2006-04-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled ``swift'' spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the long-standing mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  13. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit since November 20, 2004 and all hardware is performing well. A new-technology wide-field gamma-ray camera is detecting a hundred bursts per year. sensitive narrow-field X-ray and uv/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 50-100 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. There has been a break-through in the longstanding mystery of short GRBs; they appear to be caused by merging neutron stars. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow.

  14. Gamma Ray Burst Discoveries by the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. They are thought to be the birth cries of black holes throughout the universe. The NASA Swift mission is an innovative new multiwavelength observatory designed to determine the origin of bursts and use them to probe the early Universe. Swift is now in orbit after a beautiful launch on November 20, 2004. A new-technology wide-field gamma-ray camera detects more than a hundred bursts per year. Sensitive narrow-field X-ray and UV/optical telescopes, built in collaboration with UK and Italian partners, are pointed at the burst location in 20 to 70 sec by an autonomously controlled "swift" spacecraft. For each burst, arcsec positions are determined and optical/UV/X-ray/gamma-ray spectrophotometry performed. Information is also rapidly sent to the ground to a team of more than 50 observers at telescopes around the world. The first year of findings from the mission will be presented. The long-standing mystery of short GRBs has been solved, and the answer is the most interesting possible scenario. High redshift bursts have been detected leading to a better understanding of star formation rates and distant galaxy environments. GRBs have been found with giant X-ray flares occurring in their afterglow. These, and other topics, will be discussed.

  15. Simultaneous Chandra and VLA Observations of the Transitional Millisecond Pulsar PSR J1023+0038: Anti-correlated X-Ray and Radio Variability

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline

    2018-03-01

    We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.

  16. AGN in the Swift/BAT and INTEGRAL Hard X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Beckmann, Volker; Tueller, Jack; Baumgartner, Wayne; Markwardt, Craig; Mushotzky, Richard; Skinner, Gerry

    2008-01-01

    Two hard X-ray surveys are in progress at this time. They provide a unique new window on compact objects and black holes. I will discuss how these two surveys complement each other and the potential for improved coordination that could yield significant near term results in both sensitivity and time coverage. I will pay particular attention to the discovery of faint sources including new results from the 36 month survey from Swift/Burst Alert Telescope (BAT).

  17. The soft γ-ray pulsar population: a high-energy overview

    NASA Astrophysics Data System (ADS)

    Kuiper, L.; Hermsen, W.

    2015-06-01

    At high-energy γ-rays (>100 MeV), the Large Area Telescope (LAT) on the Fermi satellite already detected more than 145 rotation-powered pulsars (RPPs), while the number of pulsars seen at soft γ-rays (20 keV-30 MeV) remained small. We present a catalogue of 18 non-recycled RPPs from which presently non-thermal pulsed emission has been securely detected at soft γ-rays above 20 keV, and characterize their pulse profiles and energy spectra. For 14 of them, we report new results, (re)analysing mainly data from RXTE, INTEGRAL, XMM-Newton and Chandra. The soft γ-pulsars are all fast rotators and on average ˜9.3 times younger and ˜43 times more energetic than the Fermi LAT sample. The majority (11 members) exhibits broad, structured single pulse profiles, and only six have double (or even multiple, Vela) pulses. 15 soft γ-ray pulsar show hard power-law spectra in the hard X-ray band and reach maximum luminosities typically in the MeV range. For only 7 of the 18 soft γ-ray pulsars, pulsed emission has also been detected by the LAT, but 12 have a pulsar wind nebula (PWN) detected at TeV energies. For six pulsars with PWNe, we present also the spectra of the total emissions at hard X-rays, and for IGR J18490-0000, associated with HESS J1849-000 and PSR J1849-0001, we used our Chandra data to resolve and characterize the contributions from the point source and PWN. Finally, we also discuss a sample of 15 pulsars which are candidates for future detection of pulsed soft γ-rays, given their characteristics at other wavelengths.

  18. Hitomi X-ray observation of the pulsar wind nebula G21.5-0.9

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Sato, Toshiki; Nakaniwa, Nozomu; Murakami, Hiroaki; Guest, Benson

    2018-04-01

    We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5-0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager, and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the PWN itself, we find that the Hitomi spectra can be fitted with a broken power law with photon indices of Γ1 = 1.74 ± 0.02 and Γ2 = 2.14 ± 0.01 below and above the break at 7.1 ± 0.3 keV, which is significantly lower than the NuSTAR result (˜9.0 keV). The spectral break cannot be reproduced by time-dependent particle injection one-zone spectral energy distribution models, which strongly indicates that a more complex emission model is needed, as suggested by recent theoretical models. We also search for narrow emission or absorption lines with the SXS, and perform a timing analysis of PSR J1833-1034 with the HXI and the Soft Gamma-ray Detector. No significant pulsation is found from the pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data at 4.2345 keV and 9.296 keV with a significance of 3.65 σ. While the origin of these features is not understood, their mere detection opens up a new field of research and was only possible with the high resolution, sensitivity, and ability to measure extended sources provided by an X-ray microcalorimeter.

  19. Hitomi X-ray observation of the pulsar wind nebula G21.5-0.9

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Sato, Toshiki; Nakaniwa, Nozomu; Murakami, Hiroaki; Guest, Benson

    2018-06-01

    We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5-0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager, and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the PWN itself, we find that the Hitomi spectra can be fitted with a broken power law with photon indices of Γ1 = 1.74 ± 0.02 and Γ2 = 2.14 ± 0.01 below and above the break at 7.1 ± 0.3 keV, which is significantly lower than the NuSTAR result (˜9.0 keV). The spectral break cannot be reproduced by time-dependent particle injection one-zone spectral energy distribution models, which strongly indicates that a more complex emission model is needed, as suggested by recent theoretical models. We also search for narrow emission or absorption lines with the SXS, and perform a timing analysis of PSR J1833-1034 with the HXI and the Soft Gamma-ray Detector. No significant pulsation is found from the pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data at 4.2345 keV and 9.296 keV with a significance of 3.65 σ. While the origin of these features is not understood, their mere detection opens up a new field of research and was only possible with the high resolution, sensitivity, and ability to measure extended sources provided by an X-ray microcalorimeter.

  20. Discovery of a 105 ms X-Ray Pulsar in Kesteven 79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-07-01

    We report the discovery of 105 ms X-ray pulsations from the compact central object (CCO) in the supernova remnant Kes 79 using data acquired with the Newton X-Ray Multi-Mirror Mission (XMM-Newton). Two observations of the pulsar taken 6 days apart yield an upper limit on its spin-down rate of P˙<7×10-14 s s-1 and no evidence for binary orbital motion. The implied energy loss rate is E˙<2×1036 ergs s-1, the surface magnetic field strength is Bp<3×1012 G, and the spin-down age is τ>24 kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of PSR J1852+0040 is best characterized by a blackbody model of temperature kTBB=0.44+/-0.03 keV, radius RBB~0.9 km, and Lbol=3.7×1033 ergs s-1 at d=7.1 kpc. The sinusoidal light curve is modulated with a pulsed fraction of >45%, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of PSR J1852+0040 as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, E˙c~4×1036 ergs s-1. The age discrepancy implies that its E˙ has always been below E˙c, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of PSR J1852+0040 suggests a low-luminosity anomalous X-ray pulsar (AXP), but the weak inferred Bp field is incompatible with a magnetar theory of its X-ray luminosity. We cannot exclude accretion from a fallback disk. The ordinary spin parameters discovered from PSR J1852+0040 highlight the difficulty that existing theories of isolated neutron stars have in explaining the high luminosities and temperatures of CCO thermal X-ray spectra.

  1. Experimental Constraints on γ-Ray Pulsar Gap Models and the Pulsar GeV to Pulsar Wind Nebula TeV Connection

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Linnemann, J. T.

    2015-05-01

    The pulsar emission mechanism in the gamma ray energy band is poorly understood. Currently, there are several models under discussion in the pulsar community. These models can be constrained by studying the collective properties of a sample of pulsars, which became possible with the large sample of gamma ray pulsars discovered by the Fermi Large Area Telescope. In this paper we develop a new experimental multi-wavelength technique to determine the beaming factor ≤ft( {{f}{Ω }} \\right) dependance on spin-down luminosity of a set of GeV pulsars. This technique requires three input parameters: pulsar spin-down luminosity, pulsar phase-averaged GeV flux, and TeV or X-ray flux from the associated pulsar wind nebula (PWN). The analysis presented in this paper uses the PWN TeV flux measurements to study the correlation between {{f}{Ω }} and \\dot{E}. The measured correlation has some features that favor the Outer Gap model over the Polar Cap, Slot Gap, and One Pole Caustic models for pulsar emission in the energy range of 0.1-100 GeV, but one must keep in mind that these simulated models failed to explain many of the most important pulsar population characteristics. A tight correlation between the pulsar GeV emission and PWN TeV emission was also observed, which suggests the possibility of a linear relationship between the two emission mechanisms. In this paper we also discuss a possible mechanism to explain this correlation.

  2. On the Nature of the Hard X-ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; De Martino, D.; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; Gonzalez Buitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2013-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival near-infrared/infrared data. Swift J1907.3-2050 is highly variable from hours to months-years at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 hours) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of greater than or approximately 7.6 hours. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 hours and approximately 1.69 hours and a X-ray spectrum characterized by a multi-temperature plasma with little absorption. We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar near-infrared/infrared spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  3. On the Nature of the Hard X-Ray Sources SWIFT J1907.3-2050, IGR J12123-5802 and IGR J19552+0044

    NASA Technical Reports Server (NTRS)

    Bernardini, F.; deMartino, D; Mukai, K.; Falanga, M.; Andruchow, I.; Bonnet-Bidaud, J.-M.; Masetti, N.; GonzalezBuitrago, D. H.; Mouchet, M.; Tovmassian, G.

    2014-01-01

    The INTEGRAL and Swift hard X-ray surveys have identified a large number of new sources, among which many are proposed as Cataclysmic Variables (CVs). Here we present the first detailed study of three X-ray selected CVs, Swift J1907.3-2050, IGRJ12123-5802, and IGRJ19552+0044 based on XMM-Newton, Suzaku, Swift observations and ground based optical and archival nIR/IR data. Swift J1907.3-2050 is highly variable from hours to monthsyears at all wavelengths. No coherent X-ray pulses are detected but rather transient features. The X-ray spectrum reveals a multi-temperature optically thin plasma absorbed by complex neutral material and a soft black body component arising from a small area. These characteristics are remarkably similar to those observed in magnetic CVs. A supra-solar abundance of nitrogen could arise from nuclear processed material from the donor star. Swift J1907.3-2050 could be a peculiar magnetic CV with the second longest (20.82 h) binary period. IGRJ12123-5802 is variable in the X-rays on a timescale of approximately or greater than 7.6 h. No coherent pulsations are detected, but its spectral characteristics suggest that it could be a magnetic CV of the Intermediate Polar (IP) type. IGRJ19552+0044 shows two X-ray periods, approximately 1.38 h and approximately 1.69 h and a X-ray spectrum characterized by a multi-temperature plasma with little absorption.We derive a low accretion rate, consistent with a CV below the orbital period gap. Its peculiar nIR/IR spectrum suggests a contribution from cyclotron emission. It could either be a pre-polar or an IP with the lowest degree of asynchronism.

  4. Jet quenching in the neutron star low-mass X-ray binary 1RXS J180408.9-342058

    NASA Astrophysics Data System (ADS)

    Gusinskaia, N. V.; Deller, A. T.; Hessels, J. W. T.; Degenaar, N.; Miller-Jones, J. C. A.; Wijnands, R.; Parikh, A. S.; Russell, T. D.; Altamirano, D.

    2017-09-01

    We present quasi-simultaneous radio (VLA) and X-ray (Swift) observations of the neutron star low-mass X-ray binary (NS-LMXB) 1RXS J180408.9-342058 (J1804) during its 2015 outburst. We found that the radio jet of J1804 was bright (232 ± 4 μJy at 10 GHz) during the initial hard X-ray state, before being quenched by more than an order of magnitude during the soft X-ray state (19 ± 4 μJy). The source then was undetected in radio (<13 μJy) as it faded to quiescence. In NS-LMXBs, possible jet quenching has been observed in only three sources and the J1804 jet quenching we show here is the deepest and clearest example to date. Radio observations when the source was fading towards quiescence (LX = 1034-35 erg s-1) show that J1804 must follow a steep track in the radio/X-ray luminosity plane with β > 0.7 (where L_R ∝ L_X^{β }). Few other sources have been studied in this faint regime, but a steep track is inconsistent with the suggested behaviour for the recently identified class of transitional millisecond pulsars. J1804 also shows fainter radio emission at LX < 1035 erg s-1 than what is typically observed for accreting millisecond pulsars. This suggests that J1804 is likely not an accreting X-ray or transitional millisecond pulsar.

  5. MULTIBAND DIAGNOSTICS OF UNIDENTIFIED 1FGL SOURCES WITH SUZAKU AND SWIFT X-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Y.; Kataoka, J.; Maeda, K.

    2013-10-01

    We have analyzed all the archival X-ray data of 134 unidentified (unID) gamma-ray sources listed in the first Fermi/LAT (1FGL) catalog and subsequently followed up by the Swift/XRT. We constructed the spectral energy distributions (SEDs) from radio to gamma-rays for each X-ray source detected, and tried to pick up unique objects that display anomalous spectral signatures. In these analyses, we target all the 1FGL unID sources, using updated data from the second Fermi/LAT (2FGL) catalog on the Large Area Telescope (LAT) position and spectra. We found several potentially interesting objects, particularly three sources, 1FGL J0022.2–1850, 1FGL J0038.0+1236, and 1FGL J0157.0–5259,more » which were then more deeply observed with Suzaku as a part of an AO-7 program in 2012. We successfully detected an X-ray counterpart for each source whose X-ray spectra were well fitted by a single power-law function. The positional coincidence with a bright radio counterpart (currently identified as an active galactic nucleus, AGN) in the 2FGL error circles suggests these sources are definitely the X-ray emission from the same AGN, but their SEDs show a wide variety of behavior. In particular, the SED of 1FGL J0038.0+1236 is not easily explained by conventional emission models of blazars. The source 1FGL J0022.2–1850 may be in a transition state between a low-frequency peaked and a high-frequency peaked BL Lac object, and 1FGL J0157.0–5259 could be a rare kind of extreme blazar. We discuss the possible nature of these three sources observed with Suzaku, together with the X-ray identification results and SEDs of all 134 sources observed with the Swift/XRT.« less

  6. Gamma-ray pulsars: Radiation processes in the outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.

    1996-01-01

    We describe an emission model for gamma ray pulsars based on curvature radiation-reaction limited charges in the outer magnetosphere. We show how pair production on thermal surface flux can limit the acceleration zones. Estimates for the efficiency of GeV photon production eta gamma and the gamma-ray beaming fraction are derived, including their dependence on pulsar parameters. In general eta gamma increases with pulsar age, but is decreased for low magnetic fields and for small magnetic inclinations. We argue that this produces GeV pulse profiles, curvature spectra and detection statistics consistent with the observations. We also describe the optical through X-ray pulsar synchrotron spectrum and the spectral variations with pulsar phase. A test computation for Vela-like parameters reproduces phase-resolved GeV spectra consistent with those observed by EGRET. Finally we comment on very high energy pulsed emission and particle production and note extensions needed to allow a more complete pulsar model.

  7. Orbital Parameters for the X-Ray Pulsar IGR J16393-4643

    NASA Astrophysics Data System (ADS)

    Thompson, Thomas W. J.; Tomsick, John A.; Rothschild, Richard E.; in't Zand, J. J. M.; Walter, Roland

    2006-09-01

    With recent and archival Rossi X-Ray Timing Explorer (RXTE) X-ray measurements of the heavily obscured X-ray pulsar IGR J16393-4643, we carried out a pulse timing analysis to determine the orbital parameters. Assuming a circular orbit, we phase-connected data spanning over 1.5 yr. The most likely orbital solution has a projected semimajor axis of 43+/-2 lt-s and an orbital period of 3.6875+/-0.0006 days. This implies a mass function of 6.5+/-1.1 Msolar and confirms that this INTEGRAL source is a high-mass X-ray binary (HMXB) system. By including eccentricity in the orbital model, we find e<0.25 at the 2 σ level. The 3.7 day orbital period and the previously known ~910 s pulse period place the system in the region of the Corbet diagram populated by supergiant wind accretors, and the low eccentricity is also consistent with this type of system. Finally, it should be noted that although the 3.7 day solution is the most likely one, we cannot completely rule out two other solutions with orbital periods of 50.2 and 8.1 days.

  8. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Bloom, J. S.; Markwardt, C.; Miler-Jones, J.; Gehrels, N.; Kennea, J. A.; Holland, S.; Sivakoff, G. R.; Swift/BAT Team

    2013-04-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Seven years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes ~75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 223 sources have been detected in the monitor, 142 of them persistent and 81 detected only in outburst. From 2006-2013, fourteen new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  9. The Swift/BAT Hard X-ray Transient Monitor: A Status Report

    NASA Astrophysics Data System (ADS)

    Krimm, Hans A.; Swift/BAT Team

    2011-09-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. This monitor was first announced at the 2006 HEAD meeting. Five years later, it continues to operate and provides near real-time light curves of more than 900 astrophysical sources. The BAT observes 75% of the sky each day with a 3-sigma detection sensitivity of 7 mCrab for a full-day observation and a time resolution as fine as 64 seconds. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of archival light curves spanning nearly seven years. The primary interface for the BAT transient monitor is a public web page. Since February 2005, 172 sources have been detected in the monitor, 89 of them persistent and 83 detected only in outburst. From 2006-2011, nine new sources have been discovered by the BAT transient monitor. We will describe the methodology of the transient monitor, present a summary of its statistics, and discuss the detection of known and newly discovered sources.

  10. A New Supernova Remnant Coincident with the Slow X-Ray Pulsar AX J1845-0258.

    PubMed

    Gaensler; Gotthelf; Vasisht

    1999-11-20

    We report on Very Large Array observations in the direction of the recently discovered slow X-ray pulsar AX J1845-0258. In the resulting images, we find a 5&arcmin; shell of radio emission; the shell is linearly polarized with a nonthermal spectral index. We classify this source as a previously unidentified, young (<8000 yr) supernova remnant (SNR), G29.6+0.1, which we propose is physically associated with AX J1845-0258. The young age of G29.6+0.1 is then consistent with the interpretation that anomalous X-ray pulsars (AXPs) are isolated, highly magnetized neutron stars ("magnetars"). Three of the six known AXPs can now be associated with SNRs; we conclude that AXPs are young ( less, similar10,000 yr) objects and that they are produced in at least 5% of core-collapse supernovae.

  11. New measurement of the period for the 4th ULX pulsar - the supernova impostor SN2010da in NGC 300

    NASA Astrophysics Data System (ADS)

    Grebenev, S. A.; Mereminskiy, I. A.

    2018-01-01

    Following the discovery (Atel #11158) of the new (fourth) ULX pulsar (in the peculiar supergiant X-ray binary known as the supernova impostor SN 2010da located in NGC 300, at a distance of 1.86 Mpc) we note that SWIFT/XRT observed this galaxy again on April 16, 2017, and detected the source still in a bright X-ray state.

  12. INTEGRAL observation of SWIFT J1756.9-2508 in outburst

    NASA Astrophysics Data System (ADS)

    Mazzola, S.; Bozzo, E.; Kuulkers, E.; Ferrigno, C.; Savchenko, V.; Ducci, L.

    2018-04-01

    Following the discovery of a new outburst from the accreting millisecond X-ray pulsar SWIFT J1756.9-2508 (ATel #11497, #11502, #11505), a dedicated target of opportunity observation with INTEGRAL was carried out from 2018 April 1 at 08:30 to 23:15 (UTC; total exposure time 85 ks). The source was detected in the 20-40 keV IBIS/ISGRI mosaic at a significance level of 20 sigma.

  13. A NuSTAR OBSERVATION OF THE GAMMA-RAY-EMITTING X-RAY BINARY AND TRANSITIONAL MILLISECOND PULSAR CANDIDATE 1RXS J154439.4–112820

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, Slavko

    I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4 112820, which is associated with the high-energy γ -ray source 3FGL J1544.6 1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4 112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270 4859 and therefore almost certainly hosts amore » millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4 112820 based on archival optical, ultraviolet, X-ray, and γ -ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.« less

  14. GAMMA-RAY AND HARD X-RAY EMISSION FROM PULSAR-AIDED SUPERNOVAE AS A PROBE OF PARTICLE ACCELERATION IN EMBRYONIC PULSAR WIND NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murase, Kohta; Kashiyama, Kazumi; Kiuchi, Kenta

    2015-05-20

    It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X-rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ∼1–10 months after themore » explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein–Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescopes such as NuSTAR can observe such early PWN emission by follow-up observations in months to years. GeV gamma-rays may also be detected by Fermi for nearby SNe, which serve as counterparts of these GW sources. Detecting the signals will give us an interesting probe of particle acceleration at early times of PWNe, as well as clues to driving mechanisms of luminous SNe and GRBs. Since the Bethe–Heitler cross section is lower than the Thomson cross section, gamma rays would allow us to study subphotospheric dissipation. We encourage searches for high-energy emission from nearby SNe, especially SNe Ibc including super-luminous objects.« less

  15. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  16. 1SXPS: A Deep Swift X-Ray Telescope Point Source Catalog with Light Curves and Spectra

    NASA Technical Reports Server (NTRS)

    Evans, P. A.; Osborne, J. P.; Beardmore, A. P.; Page, K. L.; Willingale, R.; Mountford, C. J.; Pagani, C.; Burrows, D. N.; Kennea, J. A.; Perri, M.; hide

    2013-01-01

    We present the 1SXPS (Swift-XRT point source) catalog of 151,524 X-ray point sources detected by the Swift-XRT in 8 yr of operation. The catalog covers 1905 sq deg distributed approximately uniformly on the sky. We analyze the data in two ways. First we consider all observations individually, for which we have a typical sensitivity of approximately 3 × 10(exp -13) erg cm(exp -2) s(exp -1) (0.3-10 keV). Then we co-add all data covering the same location on the sky: these images have a typical sensitivity of approximately 9 × 10(exp -14) erg cm(exp -2) s(exp -1) (0.3-10 keV). Our sky coverage is nearly 2.5 times that of 3XMM-DR4, although the catalog is a factor of approximately 1.5 less sensitive. The median position error is 5.5 (90% confidence), including systematics. Our source detection method improves on that used in previous X-ray Telescope (XRT) catalogs and we report greater than 68,000 new X-ray sources. The goals and observing strategy of the Swift satellite allow us to probe source variability on multiple timescales, and we find approximately 30,000 variable objects in our catalog. For every source we give positions, fluxes, time series (in four energy bands and two hardness ratios), estimates of the spectral properties, spectra and spectral fits for the brightest sources, and variability probabilities in multiple energy bands and timescales.

  17. Radio Detection of LAT PSRs J1741-2054 and J2032+4127: No Longer Just Gamma-Ray Pulsars

    DOE PAGES

    Camilo, F.; Ray, P. S.; Ransom, S. M.; ...

    2009-10-07

    We present that sixteen pulsars have been discovered so far in blind searches of photons collected with the Large Area Telescope on the Fermi Gamma-ray Space Telescope. We here report the discovery of radio pulsations from two of them. PSR J1741-2054, with period P = 413 ms, was detected in archival Parkes telescope data and subsequently has been detected at the Green Bank Telescope (GBT). Its received flux varies greatly due to interstellar scintillation and it has a very small dispersion measure of DM = 4.7 pc cm –3, implying a distance of ≈0.4 kpc and possibly the smallest luminosity of any known radio pulsar. At this distance, for isotropic emission, its gamma-ray luminosity above 0.1 GeV corresponds to 28% of the spin-down luminosity ofmore » $$\\dot{E} = 9.4\\times 10^{33}$$ erg s–1. The gamma-ray profile occupies 1/3 of pulse phase and has three closely spaced peaks with the first peak lagging the radio pulse by δ = 0.29 P. We have also identified a soft Swift source that is the likely X-ray counterpart. In many respects PSR J1741-2054 resembles the Geminga pulsar. The second source, PSR J2032+4127, was detected at the GBT. It has P = 143 ms, and its DM = 115 pc cm –3 suggests a distance of ≈3.6 kpc, but we consider it likely that it is located within the Cyg OB2 stellar association at half that distance. The radio emission is nearly 100% linearly polarized, and the main radio peak precedes by δ = 0.15 P the first of two narrow gamma-ray peaks that are separated by Δ = 0.50 P. The second peak has a harder spectrum than the first one, following a trend observed in young gamma-ray pulsars. Faint, diffuse X-ray emission in a Chandra image is possibly its pulsar wind nebula. Finally, the wind of PSR J2032+4127 is responsible for the formerly unidentified HEGRA source TeV J2032+4130. PSR J2032+4127 is coincident in projection with MT91 213, a Be star in Cyg OB2, although apparently not a binary companion of it.« less

  18. Disentangling X-Ray Emission Processes In Vela-Like Pulsars

    NASA Technical Reports Server (NTRS)

    Gaensler, Bryan; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    This grant is to support analysis of data from the X-ray Multi-mirror Mission (XMM). Specifically, we have been awarded time to observe two young neutron stars, B1823-13 and B1046-58, whose X-ray emission is expected to be a complicated combination of emission from an associated supernova remnant, from a wind-powered synchrotron nebula, from magnetospheric pulsations, and from the surface of the neutron star itself. It is only with XMM's unique combination of spectral, temporal and angular resolution that all these different processes can be separated and studied. Observations of B1823-13 have been conducted and analyzed. We interpret the data as follows: The unpulsed extended non-thermal nature of the central core argues that the extended source of emission corresponds to synchrotron emission from a nebula powered by the pulsar. The temperature of the diffuse component is too high to be interpreted as thermal emission; we rather argue that this extended component is non-thermal emission from a surrounding supernova remnant shell.

  19. Swift/XRT Monitoring of the Candidate Supergiant Fast X-ray Transient IGR J16418-4532

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Evans, P. A.; Vercellone, S.; Kennea, J. A.; Burrows, D. N.; Gehrels, N.

    2011-01-01

    We report on the Swift monitoring of the candidate supergiant fast X-ray transient (SFXT) IGR J16418.4532, for which both orbital and spin periods are known (approx. 3.7d and approx. 1250 s, respectively). Our observations, for a total of approx. 43 ks, span over three orbital periods and represent the most intense and complete sampling of the light curve of this source with a sensitive X-ray instrument. With this unique set of observations we can address the nature of this transient. By applying the clumpy wind model for blue supergiants to the observed X-ray light curve, and assuming a circular orbit, the X-ray emission from this source can be explained in terms of the accretion from a spherically symmetric clumpy wind, composed of clumps with different masses, ranging from 5 X 10(exp 16) g to 10(exp 21) g. Our data suggest, based on the X-ray behaviour, that this is an intermediate SFXT

  20. The Swift BAT Hard X-ray Survey - A New Window on the Local AGN Universe

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2009-01-01

    The Swift Burst and Transient telescope (BAT) has surveyed the entire sky for the last 3.5 years obtaining the first sensitive all sky survey of the 14-195 keV sky. At high galactic latitudes the vast majority of the detected sources are AGN. Since hard x-rays penetrate all but Compton thick obscuring material (Column densities of 1.6E24 atms/cm2) this survey is unbiased with respect to obscuration, host galaxy type, optical , radio or IR properties. We will present results on the broad band x-ray properties, the nature of the host galaxies, the luminosity function and will discuss a few of the optical, IR and x-ray results in detail.

  1. Distance Estimation for Eclipsing X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Wilson, Robert E.; Paul, B.; Raichur, H.

    2006-06-01

    Recent interest in eclipsing binaries as distance indicators leads naturally into direct distance estimation for X-ray pulsars by combination of pulse arrival times, radial velocities, X-ray eclipse duration, and spectra. Optical light curves may help in some cases by measuring tides and irradiation, although dynamical tides in eccentric systems limit light curve usefulness. Pulse arrivals give an absolute scale and also orbit shape and orientation, which may be poorly known from radial velocities. For example, orbital eccentricity of 0.09 is known from Vela X1 pulse arrivals, although optical velocities are too noisy to measure eccentricity accurately. Combined pulse and optical velocity data give mass information. A lower limit to sin i from eclipse duration sets a lower limit to R2, and for the general eccentric case. A mass ratio sets lobe size and thus an upper limit to R2, so boxing R2 within a narrow range may be possible. T2 can be assessed from spectra so EB distance estimation can work if magnitude is known in one or more standard bands such as B or V. Realistic distance uncertainties are explored. In regard to new observations, Vela X-1 was observed by RXTE over about nine days in January 2005, including an eclipse of about 3.5 days. We extracted the light curves with time resolution 0.125 s. Spin period measurements by the Chi square criterion show Doppler variation with orbital phase and mean spin period 283.5 s. Pulse profiles of that period were averaged in sets of 10 at 138 phases. Cross correlation for the first 40 pulses show the expected Doppler arrival time variation. As the Vela X-1 pulse period is large compared to light travel time across the orbit, the pulses are already phase connected. Support is by U.S. National Science Foundation grant 0307561.

  2. The HEASARC Swift Gamma-Ray Burst Archive: The Pipeline and the Catalog

    NASA Technical Reports Server (NTRS)

    Donato, Davide; Angelini, Lorella; Padgett, C.A.; Reichard, T.; Gehrels, Neil; Marshall, Francis E.; Sakamoto, Takanori

    2012-01-01

    Since its launch in late 2004, the Swift satellite triggered or observed an average of one gamma-ray burst (GRB) every 3 days, for a total of 771 GRBs by 2012 January. Here, we report the development of a pipeline that semi automatically performs the data-reduction and data-analysis processes for the three instruments on board Swift (BAT, XRT, UVOT). The pipeline is written in Perl, and it uses only HEAsoft tools and can be used to perform the analysis of a majority of the point-like objects (e.g., GRBs, active galactic nuclei, pulsars) observed by Swift. We run the pipeline on the GRBs, and we present a database containing the screened data, the output products, and the results of our ongoing analysis. Furthermore, we created a catalog summarizing some GRB information, collected either by running the pipeline or from the literature. The Perl script, the database, and the catalog are available for downloading and querying at the HEASARC Web site.

  3. The HEASARC Swift Gamma-Ray Burst Archive: The Pipeline and the Catalog

    NASA Astrophysics Data System (ADS)

    Donato, D.; Angelini, L.; Padgett, C. A.; Reichard, T.; Gehrels, N.; Marshall, F. E.; Sakamoto, T.

    2012-11-01

    Since its launch in late 2004, the Swift satellite triggered or observed an average of one gamma-ray burst (GRB) every 3 days, for a total of 771 GRBs by 2012 January. Here, we report the development of a pipeline that semi-automatically performs the data-reduction and data-analysis processes for the three instruments on board Swift (BAT, XRT, UVOT). The pipeline is written in Perl, and it uses only HEAsoft tools and can be used to perform the analysis of a majority of the point-like objects (e.g., GRBs, active galactic nuclei, pulsars) observed by Swift. We run the pipeline on the GRBs, and we present a database containing the screened data, the output products, and the results of our ongoing analysis. Furthermore, we created a catalog summarizing some GRB information, collected either by running the pipeline or from the literature. The Perl script, the database, and the catalog are available for downloading and querying at the HEASARC Web site.

  4. Discovery and Orbital Determination of the Transient X-Ray Pulsar GRO J1750-27

    NASA Technical Reports Server (NTRS)

    Scott, D. M.; Finger, M. H.; Wilson, R. B.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Chakrabarty, D.

    1997-01-01

    We report on the discovery and hard X-ray (20 - 70 keV) observations of the 4.45 s period transient X-ray pulsar GRO J1750-27 with the BATSE all-sky monitor on board CGRO. A relatively faint out- burst (less than 30 mcrab peak) lasting at least 60 days was observed during which the spin-up rate peaked at 38 pHz/s and was correlated with the pulsed intensity. An orbit with a period of 29.8 days was found. The large spin-up rate, spin period, and orbital period together suggest that accretion is occurring from a disk and that the outburst is a "giant" outburst typical of a Be/X-ray transient system. No optical counterpart has yet been reported.

  5. Discovery and Orbital Determination of the Transient X-Ray Pulsar GRO J1750-27

    NASA Technical Reports Server (NTRS)

    Scott, D. M.; Finger, M. H.; Wilson, R. B.; Koh, D. T.; Prince, T. A.; Vaughan, B. A.; Chakrabarty, D.

    1997-01-01

    We report on the discovery and hard X-ray (20-70 keV) observations of the 4.45 second period transient X-ray pulsar GRO J1750-27 with the BATSE all-sky monitor on board CCRO. A relatively faint outburst (< 30 mCrab peak) lasting at least 60 days was observed during which the spin-up rate peaked at 38 pHz/sec and was correlated with the pulsed intensity. An orbit with a period of 29.8 days was found. The large spin-up rate, spin period and orbital period together suggest that accretion is occurring from a disk and that the outburst is a 'giant' outburst typical of a Be/X-ray transient system. No optical counterpart has been reported yet.

  6. NICER Detects Pulsations from Swift J1756.9-2508

    NASA Astrophysics Data System (ADS)

    Bult, P. M.; Gendreau, K. C.; Ray, P. S.; Altamirano, D.; Arzoumanian, Z.; Chakrabarty, D.; Guillot, S.; Jaisawal, G. K.; Ludlam, R. M.; Markwardt, C. B.; Mereminskiy, I. A.; Ozel, F.; Sanna, A.; Strohmayer, T. E.; Wolff, M. T.

    2018-04-01

    Following the report of a new outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508 (ATel #11497), NICER performed pointed observations starting on 2018 April 3, collecting 9.4 ks of exposure over the 30 hours between April 3 15:18 UTC and April 4 21:01 UTC. A source is clearly detected at 30 ct/s (1-10 keV); the background level in this band is less than 1 ct/s.

  7. The Fermi-LAT detection of magnetar-like pulsar PSR J1846-0258 at high-energy gamma-rays

    NASA Astrophysics Data System (ADS)

    Kuiper, L.; Hermsen, W.; Dekker, A.

    2018-03-01

    We report the detection of the pulsed signal of the radio-quiet magnetar-like pulsar PSR J1846-0258 in the high-energy γ-ray data of the Fermi Large Area Telescope (Fermi LAT). We produced phase-coherent timing models exploiting RXTE PCA and Swift XRT monitoring data for the post- (magnetar-like) outburst period from 2007 August 28 to 2016 September 4, with independent verification using INTEGRAL ISGRI and Fermi GBM data. Phase-folding barycentric arrival times of selected Fermi LAT events from PSR J1846-0258 resulted in a 4.2σ detection (30-100 MeV) of a broad pulse consistent in shape and aligned in phase with the profiles that we measured with Swift XRT (2.5-10 keV), INTEGRAL ISGRI (20-150 keV), and Fermi GBM (20-300 keV). The pulsed flux (30-100 MeV) is (3.91 ± 0.97) × 10-9 photons cm-2 s-1 MeV-1. Declining significances of the INTEGRAL ISGRI 20-150 keV pulse profiles suggest fading of the pulsed hard X-ray emission during the post-outburst epochs. We revisited with greatly improved statistics the timing and spectral characteristics of PSR B1509-58 as measured with the Fermi LAT. The broad-band pulsed emission spectra (from 2 keV up to GeV energies) of PSR J1846-0258 and PSR B1509-58 can be accurately described with similarly curved shapes, with maximum luminosities at 3.5 ± 1.1 MeV (PSR J1846-0258) and 2.23 ± 0.11 MeV (PSR B1509-58). We discuss possible explanations for observational differences between Fermi LAT detected pulsars that reach maximum luminosities at GeV energies, like the second magnetar-like pulsar PSR J1119-6127, and pulsars with maximum luminosities at MeV energies, which might be due to geometric differences rather than exotic physics in high-B fields.

  8. The End of Accretion: The X-Ray Binary/Millisecond Pulsar Transition Object PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Archibald, Anne

    2015-04-01

    Millisecond radio pulsars (MSRPs), those spinning hundreds of times per second, have long been understood to be old pulsars that have been spun up by the accretion of matter from a companion in a low-mass X-ray binary (LMXB) phase. Yet the details of this transformation, particularly the end of the accretion process and the birth of a radio pulsar, remain mysterious. I will describe the discovery and detailed study of the first object known to transition between MSRP and LMXB states, PSR J1023+0038. By dint of a multiwavelength campaign of observations in the RMSP state, we are able to measure all the key system parameters and show the existence of an X-ray shock close to the pulsar-facing side of the companion. Since the discovery of PSR J1023+0038, two more objects (XSS J12270-4859 and M28I) have been found to make the same transition, and the study of these transitioning objects has become an active field of research. Most interestingly, PSR J1023+0038 has transitioned back into an LMXB state, with an active accretion disk and a puzzling increase in gamma-ray flux. Our detailed picture of the system allows us to test models of accretion against the phenomena we observe in PSR J1023+0038, and in fact these observations challenge current models: in spite of the low luminosity of the system (and low inferred accretion rate) some material is penetrating the centrifugal barrier and falling on the neutron-star surface. Key evidence for explaining this puzzling behaviour will come when PSR J1023+0038 returns to an MSRP state and we are able to compare pulsar timing models from after the LMXB state with those we obtained in this work.

  9. Analysis of the X-ray emission of nine Swift afterglows

    NASA Astrophysics Data System (ADS)

    Panaitescu, A.; Mészáros, P.; Gehrels, N.; Burrows, D.; Nousek, J.

    2006-03-01

    The X-ray light curves of nine Swift XRT afterglows (050126, 050128, 050219A, 050315, 050318, 050319, 050401, 050408 and 050505) display a complex behaviour: a steep t-3.0+/-0.3 decay until ~400 s, followed by a significantly slower t-0.65+/-0.20 fall-off, which at 0.2-2 day after the burst evolves into a t-1.7+/-0.5 decay. We consider three possible models for the geometry of relativistic blast-waves (spherical outflows, non-spreading jets and spreading jets), two possible dynamical regimes for the forward shock (adiabatic and fully radiative), and we take into account a possible angular structure of the outflow and delayed energy injection in the blast-wave to identify the models which reconcile the X-ray light-curve decay with the slope of the X-ray continuum for each of the above three afterglow phases. By piecing together the various models for each phase in a way that makes physical sense, we identify possible models for the entire X-ray afterglow. The major conclusion of this work is that a long-lived episode of energy injection in the blast-wave, during which the shock energy increases at t1.0+/-0.5, is required for five afterglows and could be at work in the other four as well. For some afterglows, there may be other mechanisms that can explain the t < 400 s fast falling-off X-ray light curve (e.g. the large-angle gamma-ray burst emission), the 400 s to 5 h slow decay (e.g. a structured outflow), or the steepening at 0.2-2 day (e.g. a jet-break, a collimated outflow transiting from a wind with a r-3 radial density profile to a homogeneous or outward-increasing density region). Optical observations in conjunction with the X-ray can distinguish among these various models. Our simple tests allow the determination of the location of the cooling frequency relative to the X-ray domain and, thus, of the index of the electron power-law distribution with energy in the blast-wave. The resulting indices are clearly inconsistent with a universal value.

  10. EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    2015-11-20

    Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that themore » abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.« less

  11. Understanding The Time Evolution Of Luminosity And Associated Accretion Structures In X-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    We propose to analyze the large archive of RXTE, XMM-Newton and Chandra observations of X-ray Binary Pulsars in the Magellanic Clouds and Milky Way. There are some 2000 individual RXTE PCA pointings on the SMC spanning 15 years, and a smaller number on the LMC. Each PCA observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the sometimes simultaneous signals to create an unrivaled record of pulsar temporal behavior. More than 200 XMM- Newton and Chandra observations of the SMC/LMC and individual Galactic pulsars provide information at lower luminosity levels. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We will produce a comprehensive library of energy- resolved pulse profiles covering the entire luminosity and spin-period parameter space, and make this available to the community. We will then model these pulse profiles using state of the art techniques to parameterize the morphology, and publish the resulting data-cube. This result will include for example the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. The unique dataset will also enable us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics. In addition the long-duration of the dataset and "whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations.

  12. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    NASA Technical Reports Server (NTRS)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  13. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    NASA Astrophysics Data System (ADS)

    Edelson, R.; Gelbord, J.; Cackett, E.; Connolly, S.; Done, C.; Fausnaugh, M.; Gardner, E.; Gehrels, N.; Goad, M.; Horne, K.; McHardy, I.; Peterson, B. M.; Vaughan, S.; Vestergaard, M.; Breeveld, A.; Barth, A. J.; Bentz, M.; Bottorff, M.; Brandt, W. N.; Crawford, S. M.; Dalla Bontà, E.; Emmanoulopoulos, D.; Evans, P.; Figuera Jaimes, R.; Filippenko, A. V.; Ferland, G.; Grupe, D.; Joner, M.; Kennea, J.; Korista, K. T.; Krimm, H. A.; Kriss, G.; Leonard, D. C.; Mathur, S.; Netzer, H.; Nousek, J.; Page, K.; Romero-Colmenero, E.; Siegel, M.; Starkey, D. A.; Treu, T.; Vogler, H. A.; Winkler, H.; Zheng, W.

    2017-05-01

    Swift monitoring of NGC 4151 with an ˜6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3-50 keV) and six in the ultraviolet (UV)/optical (1900-5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ˜3-4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to lead the optical by ˜0.5-1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner & Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.

  14. Hitomi X-ray studies of giant radio pulses from the Crab pulsar

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier O.; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Oshimizu, Kenya; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shiníchiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shiníchiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Terasawa, Toshio; Sekido, Mamoru; Takefuji, Kazuhiro; Kawai, Eiji; Misawa, Hiroaki; Tsuchiya, Fuminori; Yamazaki, Ryo; Kobayashi, Eiji; Kisaka, Shota; Aoki, Takahiro

    2018-03-01

    To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2-300 keV band and the Kashima NICT radio telescope in the 1.4-1.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 σ fluctuations of the X-ray fluxes at the pulse peaks, and the 3 σ upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2-300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and 70-300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) × 10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a >0.02% brightening of the pulse-peak flux under such conditions.

  15. Global Properties of X-Ray Flashes and X-Ray-Rich Gamma-Ray Bursts Observed by Swift

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takanori; Yamazaki, Ryo; Barthelmy, Scott; Gehrels, Neil; Osborne, Julian; Hullinger, Derek; Sato, Goro; Barbier, Louis; Cummings, Jay; Fenimore, Ed; Krimm, Hans; Lamb, Don; Markwardt, Craig; Palmer, David; Parsons, Ann; Stamatikos, Michael; Tueller, Jack

    Takanori Sakamoto, Taka.Sakamoto@nasa.gov NASA Goddard Space Flight Center, Greenbelt, Maryland, United States Ryo Yamazaki, ryo@theo.phys.sci.hiroshima-u.ac.jp Hiroshima University, Higashi-Hiroshima, Japan Scott Barthelmy, scott@milkyway.gsfc.nasa.gov NASA GSFC, Greenbelt, Maryland, United States Neil Gehrels, gehrels@milkyway.gsfc.nasa.gov NASA Goddard Space Flight Center, Greenbelt, Maryland, United States Julian Osborne, julo@star.le.ac.uk University of Leicester, Leicester, United Kingdom Derek Hullinger, derek.hullinger@gmail.com Moxtek, Inc, Orem, Utah, United States Goro Sato, Goro.Sato@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Louis Barbier, lmb@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Jay Cummings, jayc@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Ed Fenimore, efenimore@lanl.gov Los Alamos National Laboratory, Los Alamos, California, United States Hans Krimm, hans.krimm@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Don Lamb, d-lamb@uchicago.edu University of Chicago, Chicago, Illinois, United States Craig Markwardt, Craig.Markwardt@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States David Palmer, palmer@lanl.gov Los Alamos National Laboratory, Los Alamos, California, United States Ann Parsons, Ann.M.Parsons@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Michael Stamatikos, michael@milkyway.gsfc.nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States Jack Tueller, jack.tueller@nasa.gov Goddard Space Flight Center, Greenbelt, Maryland, United States We present the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) and X-ray-rich gamma-ray bursts (XRRs) detected and observed by Swift between December 2004 and September 2006. We compare these characteristics to a sample of conventional

  16. X-ray Pulsars Across the Parameter Space of Luminosity, Accretion Mode, and Spin

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Yang, Jun; Christodoulou, Dimitris; Coe, Malcolm; Cappallo, Rigel; Zezas, Andreas; Ho, Wynn C. G.; Hong, JaeSub; Fingerman, Samuel; Drake, Jeremy J.; Kretschmar, Peter; Antoniou, Vallia

    2017-08-01

    We present our multi-satellite library of X-ray Pulsar observations to the community, and highlight recent science results. Available at www.xraypulsars.space the library provides a range of high-level data products, including: activity histories, pulse-profiles, phased event files, and a unique pulse-profile modeling interface. The initial release (v1.0) contains some 15 years of RXTE-PCA, Chandra ACIS-I, and XMM-PN observations of the Small Magellanic Cloud, creating a valuable record of pulsar behavior. Our library is intended to enable new progress on fundamental NS parameters and accretion physics. The major motivations are (1) Assemble a large homogeneous sample to enable population statistics. This has so far been used to map the propeller transition, and explore the role of retrograde and pro-grade accretion disks. (2) Obtain pulse-profiles for the same pulsars on many different occasions, at different luminosities and states in order to break model degeneracies. This effort has led to preliminary measurements of the offsets between magnetic and spin axes. With the addition of other satellites, and Galactic pulsars, the library will cover the entire available range of luminosity, variability timescales and accretion regimes.

  17. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  18. Observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellizzoni, A.; Pilia, M.; Possenti, M.

    2008-12-24

    AGILE is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. It provides large sky exposure levels (> or approx. 10{sup 9} cm{sup 2} s per year on the Galactic Plane) with sensitivity peaking at E{approx}400 MeV(and simultaneous X-ray monitoring in the 18-60 keV band) where the bulk of pulsar energy output is typically released. Its {approx}1 {mu}s is absolute time tagging capability makes it perfectly suited for the study of gamma-ray pulsars following up on the CGRO/EGRET heritage. In this paper we summarize the timing results obtained during themore » first year of AGILE observations of the known gamma-ray pulsars Vela, Crab, Geminga and B 1706-4. AGILE collected a large number of gamma-ray photons from EGRET pulsars ({approx}10,000 pulsed counts for Vela) in only few months of observations unveiling new interesting features at sub-millisecond level in the pulsars' high-energy light-curves and paving the way to the discovery of new gamma-ray pulsars.« less

  19. A Search for Millisecond-pulsar Radio Emission from the Faint Quiescent Soft X-Ray Transient 1H 1905+000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, K.; Van Leeuwen, J.; Jonker, P. G., E-mail: K.Mikhailov@uva.nl

    Transitional millisecond pulsars (tMSPs) switch between an accretion-powered state without radio pulsations and a rotation-powered state with radio pulsations. In the former state, tMSPs are X-ray bright, while in the latter state, they are X-ray dim. Soft X-ray transients (SXTs) undergo similar switches in X-ray, between “high” states with bright X-ray outbursts and “low” states of quiescence. The upper limit on the quiescent X-ray luminosity of SXT 1H 1905+000 suggests that its luminosity might be similar to that of the known tMSPs. A detection of radio pulsations would link SXTs more strongly with tMSPs; and thus, e.g., put stricter constraintsmore » on tMSP transitional timescales through the connection with the well-known SXT periods of quiescence. A nondetection allows us, based on the telescope sensitivity, to estimate how likely these sources are to pulsate in radio. Over a 10-year span, 2006–2015, we carried out targeted radio observations at 400/800 MHz with Arecibo, and searched for radio pulsations from the quiescent SXT 1H 1905+000. None of the observations have revealed radio pulsations from the targeted SXT. For a 1 ms pulsar, our flux density upper limit is 10.3 μ Jy. At an assumed distance of 10 kpc this translates to a pseudo-luminosity upper limit of 1.0 mJy kpc{sup 2}, which makes our search complete to ∼85% of the known MSP population. Given the high sensitivity, and the generally large beaming fraction of millisecond pulsars, we conclude that SXT 1H 1905+000 is unlikely to emit in radio as a tMSP.« less

  20. Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Banibrata; Rao, A.R., E-mail: bm@physics.iisc.ernet.in, E-mail: arrao@tifr.res.in

    We explore the possibility that soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are powered by highly magnetized white dwarfs (B-WDs). We take a sample of SGRs and AXPs and provide the possible parameter space in mass, radius, and surface magnetic field based on their observed properties (period and its derivative) and the assumption that these sources obey the mass-radius relation derived for the B-WDs. The radius and magnetic field of B-WDs are adequate to explain energies in SGRs/AXPs as the rotationally powered energy. In addition, B-WDs also adequately explain the perplexing radio transient GCRT J1745-3009 as a whitemore » dwarf pulsar. Note that the radius and magnetic fields of B-WDs are neither extreme (unlike of highly magnetized neutron stars) nor ordinary (unlike of magnetized white dwarfs, yet following the Chandrasekhar's mass-radius relation (C-WDs)). In order to explain SGRs/AXPs, while the highly magnetized neutron stars require an extra, observationally not well established yet, source of energy, the C-WDs predict large ultra-violet luminosity which is observationally constrained from a strict upper limit. Finally, we provide a set of basic differences between the magnetar and B-WD hypotheses for SGRs/AXPs.« less

  1. A catalogue of optical to X-ray spectral energy distributions of z ≈ 2 quasars observed with Swift - I. First results

    NASA Astrophysics Data System (ADS)

    Lawther, D.; Vestergaard, M.; Raimundo, S.; Grupe, D.

    2017-06-01

    We present the Swift optical to X-ray spectral energy distributions (SEDs) of 44 quasars at redshifts z ≈ 2 observed by Swift, part of a larger program to establish and characterize the optical through X-ray SEDs of moderate-redshift quasars. Here, we outline our analysis approach and present preliminary analysis and results for the first third of the full quasar sample. Not all quasars in the sample are detected in X-rays; all of the X-ray-detected objects so far are radio loud. As expected for radio-loud objects, they are X-ray bright relative to radio-quiet quasars of comparable optical luminosities, with an average αox =1.39 ± 0.03 (where αox is the power-law slope connecting the monochromatic flux at 2500 Å and at 2 keV), and display hard X-ray spectra. We find integrated 3000 Å-25 keV accretion luminosities of between 0.7 × 1046 erg s-1 and 5.2 × 1047 erg s-1. Based on single-epoch spectroscopic virial black hole mass estimates, we find that these quasars are accreting at substantial Eddington fractions, 0.1 ≲ L/LEdd ≲ 1.

  2. Suzaku Detection of Diffuse Hard X-Ray Emission Outside Vela X

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Mori, Koji; Petre, Robert; Yamaguchi, Hiroya; Tsunemi, Hiroshi; Bocchino, Fabrizio; Bamba, Aya; Miceli, Marco; Hewitt, John W.; Temim, Tea; hide

    2011-01-01

    Vela X is a large, 3 deg x 2 deg, radio-emitting pulsar wind nebula (PWN) powered by the Vela pulsar in the Vela supernova remnant. Using four Suzaku/XIS observations pointed just outside Vela X, we find hard X-ray emission extending throughout the fields of view. The hard X-ray spectra are well represented by a power-law. The photon index is measured to be constant at Gamma approximates 2.4, similar to that of the southern outer part of Vela X. The power-law flux decreases with increasing distance from the pulsar. These properties lead us to propose that the hard X-ray emission is associated with the Vela PWN. The larger X-ray extension found in this work strongly suggests that distinct populations relativistic electrons form the X-ray PWN and Vela X, as was recently inferred from multiwavelength spectral modeling of Vela X.

  3. Six millisecond pulsars detected by the Fermi Large Area Telescope and the radio/gamma-ray connection of millisecond pulsars

    DOE PAGES

    Espinoza, C. M.; Guillemot, L.; Celik, O.; ...

    2013-01-25

    In this work, we report on the discovery of gamma-ray pulsations from five millisecond pulsars (MSPs) using the Fermi Large Area Telescope (LAT) and timing ephemerides provided by various radio observatories. We also present confirmation of the gamma-ray pulsations from a sixth source, PSR J2051-0827. Five of these six MSPs are in binary systems: PSRs J1713+0747, J1741+1351, J1600-3053 and the two black widow binary pulsars PSRs J0610-2100 and J2051-0827. The only isolated MSP is the nearby PSR J1024-0719, which is also known to emit X-rays. We present X-ray observations in the direction of PSRs J1600-3053 and J2051-0827. While PSR J2051-0827more » is firmly detected, we can only give upper limits for the X-ray flux of PSR J1600-3053. There are no dedicated X-ray observations available for the other three objects. The MSPs mentioned above, together with most of the MSPs detected by Fermi, are used to put together a sample of 30 gamma-ray MSPs. This sample is used to study the morphology and phase connection of radio and gamma-ray pulse profiles. We show that MSPs with pulsed gamma-ray emission which is phase-aligned with the radio emission present the steepest radio spectra and the largest magnetic fields at the light cylinder among all MSPs. Also, we observe a trend towards very low, or undetectable, radio linear polarization levels. These properties could be attributed to caustic radio emission produced at a range of different altitudes in the magnetosphere. In conclusion, we note that most of these characteristics are also observed in the Crab pulsar, the only other radio pulsar known to exhibit phase-aligned radio and gamma-ray emission.« less

  4. Constraining Gamma-Ray Pulsar Gap Models with a Simulated Pulsar Population

    NASA Technical Reports Server (NTRS)

    Pierbattista, Marco; Grenier, I. A.; Harding, A. K.; Gonthier, P. L.

    2012-01-01

    With the large sample of young gamma-ray pulsars discovered by the Fermi Large Area Telescope (LAT), population synthesis has become a powerful tool for comparing their collective properties with model predictions. We synthesised a pulsar population based on a radio emission model and four gamma-ray gap models (Polar Cap, Slot Gap, Outer Gap, and One Pole Caustic). Applying gamma-ray and radio visibility criteria, we normalise the simulation to the number of detected radio pulsars by a select group of ten radio surveys. The luminosity and the wide beams from the outer gaps can easily account for the number of Fermi detections in 2 years of observations. The wide slot-gap beam requires an increase by a factor of 10 of the predicted luminosity to produce a reasonable number of gamma-ray pulsars. Such large increases in the luminosity may be accommodated by implementing offset polar caps. The narrow polar-cap beams contribute at most only a handful of LAT pulsars. Using standard distributions in birth location and pulsar spin-down power (E), we skew the initial magnetic field and period distributions in a an attempt to account for the high E Fermi pulsars. While we compromise the agreement between simulated and detected distributions of radio pulsars, the simulations fail to reproduce the LAT findings: all models under-predict the number of LAT pulsars with high E , and they cannot explain the high probability of detecting both the radio and gamma-ray beams at high E. The beaming factor remains close to 1.0 over 4 decades in E evolution for the slot gap whereas it significantly decreases with increasing age for the outer gaps. The evolution of the enhanced slot-gap luminosity with E is compatible with the large dispersion of gamma-ray luminosity seen in the LAT data. The stronger evolution predicted for the outer gap, which is linked to the polar cap heating by the return current, is apparently not supported by the LAT data. The LAT sample of gamma-ray pulsars

  5. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  6. Host Galaxy Morphologies Of Hard X-ray Selected AGN From The Swift BAT Survey

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, R.; Veilleux, S.

    2009-01-01

    Surveys of AGN taken in the optical, UV, and soft X-rays miss an important population of obscured AGN only visible in the hard X-rays and mid-IR wavelengths. The SWIFT BAT survey in the hard X-ray range (14-195 keV) has provided a uniquely unbiased sample of 258 AGN unaffected by galactic or circumnuclear absorption. Optical imaging of this unbiased sample provides a new opportunity to understand how the environments of the host galaxies are linked to AGN. For these host galaxies, only a fraction, 29%, have high quality optical images, predominately from the SDSS. In addition, about 33% show peculiar morphologies and interaction. In 2008, we observed 110 of these targets at Kitt Peak with the 2.1m in the SDSS bands over 17 nights. Using these observations and SDSS data we review the relationships between color, morphology, merger activity, star formation, and AGN luminosity.

  7. Swift Monitoring of NGC 4151: Evidence for a Second X-Ray/UV Reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelson, R.; Gelbord, J.; Cackett, E.

    Swift monitoring of NGC 4151 with an ∼6 hr sampling over a total of 69 days in early 2016 is used to construct light curves covering five bands in the X-rays (0.3–50 keV) and six in the ultraviolet (UV)/optical (1900–5500 Å). The three hardest X-ray bands (>2.5 keV) are all strongly correlated with no measurable interband lag, while the two softer bands show lower variability and weaker correlations. The UV/optical bands are significantly correlated with the X-rays, lagging ∼3–4 days behind the hard X-rays. The variability within the UV/optical bands is also strongly correlated, with the UV appearing to leadmore » the optical by ∼0.5–1 days. This combination of ≳3 day lags between the X-rays and UV and ≲1 day lags within the UV/optical appears to rule out the “lamp-post” reprocessing model in which a hot, X-ray emitting corona directly illuminates the accretion disk, which then reprocesses the energy in the UV/optical. Instead, these results appear consistent with the Gardner and Done picture in which two separate reprocessings occur: first, emission from the corona illuminates an extreme-UV-emitting toroidal component that shields the disk from the corona; this then heats the extreme-UV component, which illuminates the disk and drives its variability.« less

  8. Pair Production and Gamma-Ray Emission in the Outer Magnetospheres of Rapidly Spinning Young Pulsars

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin; Chen, Kaiyou

    1997-01-01

    Electron-positron pair production and acceleration in the outer magnetosphere may be crucial for a young rapidly spinning canonical pulsar to be a strong Gamma-ray emitter. Collision between curvature radiated GeV photons and soft X-ray photons seems to be the only efficient pair production mechanism. For Crib-like pulsars, the magnetic field near the light cylinder is so strong, such that the synchrotron radiation of secondary pairs will be in the needed X-ray range. However, for majority of the known Gamma-ray pulsars, surface emitted X-rays seem to work as the matches and fuels for a gamma-ray generation fireball in the outer magnetosphere. The needed X-rays could come from thermal emission of a cooling neutron star or could be the heat generated by bombardment of the polar cap by energetic particles generated in the outer magnetosphere. With detection of more Gamma-ray pulsars, it is becoming evident that the neutron star's intrisic geometry (the inclination angle between the rotation and magnetic axes) and observational geometry (the viewing angle with respect to the rotation axis) are crucial to the understanding of varieties of observational properties exhibited by these pulsars. Inclination angles for many known high energy Gamma-ray pulsars appear to be large and the distribution seems to be consistent with random orientation. However, all of them except Geminga are pre-selected from known radio pulsars. The viewing angles are thus limited to be around the respective inclination angles for beamed radio emission, which may induce strong selection effect. The viewing angles as well as the inclination angles of PSR 1509-58 and PSB 0656+14 may be small such that most of the high energy Gamma-rays produced in the outer accelerators may not reach the observer's direction. The observed Gamma-rays below 5 MeV from this pulsar may be synchrotron radiation of secondary electron-positron pairs produced outside the accelerating regions.

  9. Fermi-LAT Search for Pulsar Wind Nebulae around gamma-ray Pulsars

    DOE PAGES

    Ackermann, M.; Ajello, M.; Baldini, L.; ...

    2010-12-13

    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates (more » $$\\dot{E}$$) from ~3 × 10 33 erg s –1 to 5 × 10 38 erg s –1 and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the γ-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023–5746, coincident with the TeV source HESS J1023–575. Here, we further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Lastly, flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.« less

  10. Discovery of Radio Pulsations from the X-ray Pulsar JO205+6449 in Supernova Remnant 3C58 with the Green Bank Telescope

    NASA Technical Reports Server (NTRS)

    Camilo, F.; Stairs, I. H.; Lorimer, D. R.; Backer, D. C.; Ransom, S. M.; Klein, B.; Wielebinski, R.; Kramer, M.; McLaughlin, M. A.; Arzoumanian, Z.; hide

    2002-01-01

    We report the discovery with the 100m Green Bank Telescope of 65 ms radio pulsations from the X-ray pulsar J0205+6449 at the center of supernova remnant 3C58, making this possibly the youngest radio pulsar known. From our observations at frequencies of 820 and 1375 MHz, the free electron column density to USSR J0205+6449 is found to be 140.7 +/- 0.3/cc pc. The barycentric pulsar period P and P(dot) determined from a phase-coherent timing solution are consistent with the values previously measured from X-ray observations. The averaged radio profile of USSR J0205+6449 consists of one sharp pulse of width = 3 ms = 0.05 P. The pulsar is an exceedingly weak radio source, with pulse-averaged flux density in the 1400 MHz band of approximately 45 micro-Jy and a spectral index of approximately -2.1. Its radio luminosity of approximately 0.5 may kpc(exp 2) at 1400 MHz is lower than that of approximately 99% of known pulsar and is the lowest among known young pulsars.

  11. High-Energy X-rays from J174545.5-285829, the Cannonball: a Candidate Pulsar Wind Nebula Associated with Sgr a East

    NASA Technical Reports Server (NTRS)

    Nynka, Melania; Hailey, Charles J.; Mori, Kaya; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; hide

    2013-01-01

    We report the unambiguous detection of non-thermal X-ray emission up to 30 keV from the Cannonball, a few arcsecond long diffuse X-ray feature near the Galactic Center, using the NuSTAR X-ray observatory. The Cannonball is a high-velocity (v(proj) approximately 500 km s(exp -1)) pulsar candidate with a cometary pulsar wind nebula (PWN) located approximately 2' north-east from Sgr A*, just outside the radio shell of the supernova remnant Sagittarius A (Sgr A) East. Its non-thermal X-ray spectrum, measured up to 30 keV, is well characterized by a Gamma is approximately 1.6 power law, typical of a PWN, and has an X-ray luminosity of L(3-30 keV) = 1.3 × 10(exp 34) erg s(exp -1). The spectral and spatial results derived from X-ray and radio data strongly suggest a runaway neutron star born in the Sgr A East supernova event. We do not find any pulsed signal from the Cannonball. The NuSTAR observations allow us to deduce the PWN magnetic field and show that it is consistent with the lower limit obtained from radio observations.

  12. NuSTAR Hard X-Ray Observations of the Energetic Millisecond Pulsars PSR B1821-24, PSR B1937+21, and PSR J0218+4232

    NASA Astrophysics Data System (ADS)

    Gotthelf, E. V.; Bogdanov, S.

    2017-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray timing and spectroscopy of the three exceptionally energetic rotation-powered millisecond pulsars PSRs B1821-24, B1937+21, and J0218+4232. By correcting for the frequency and phase drifts of the NuSTAR onboard clock, we are able to recover the intrinsic hard X-ray pulse profiles of all three pulsars with a resolution down to ≤slant 15 μ {{s}}. The substantial reduction of background emission relative to previous broadband X-ray observations allows us to detect for the first time pulsed emission up to ˜50 keV, ˜20 keV, and ˜25 keV for the three pulsars, respectively. We conduct phase-resolved spectroscopy in the 0.5-79 keV range for all three objects, obtaining the best measurements yet of the broadband spectral shape and high-energy pulsed emission to date. We find extensions of the same power-law continua seen at lower energies, with no conclusive evidence for a spectral turnover or break. Extrapolation of the X-ray power-law spectrum to higher energies reveals that a turnover in the 100 keV to 100 MeV range is required to accommodate the high-energy γ-ray emission observed with Fermi-LAT, similar to the spectral energy distribution observed for the Crab pulsar.

  13. NuSTAR Hard X-ray Observations of the Energetic Millisecond Pulsars PSR B1821-24, PSR B1937+21, and PSR J0218+4232

    NASA Astrophysics Data System (ADS)

    Gotthelf, Eric V.; Bogdanov, Slavko

    2017-08-01

    We present NuSTAR hard X-ray timing and spectroscopy of the three exceptionally energetic rotation-powered millisecond pulsars PSRs B1821-24, B1937+21, and J0218+4232. By correcting for frequency and phase drifts of the NuSTAR on-board clock we are able to recover the intrinsic hard X-ray pulse profiles of all three pulsars with a resolution down to <15 ms. The substantial reduction of background emission relative to previous broad-band X-ray observations allows us to detect for the first time pulsed emission up to ~50 keV, ~20 keV, and ~25 keV, for the three pulsars, respectively. We conduct phase-resolved spectroscopy in the 0.5 - 79 keV range for all three objects, obtaining the best yet measurements of the broad-band spectral shape and high-energy pulsed emission to date. We find extensions of the same power-law continua seen at lower energies, with no conclusive evidence for a spectral turnover or break. Extrapolation of the X-ray power-law spectrum to higher energies reveals that a turnover in the 100 keV to 100 MeV range is required to accommodate the high energy gamma-ray emission observed with Fermi LAT, similar to the broad-band spectral energy distribution observed for the Crab pulsar.

  14. Discovery of a 105-ms X-ray Pulsar in Kesteven-79: On the Nature of Compact Central Objects in Supernova Remnants

    NASA Technical Reports Server (NTRS)

    Gotthelf, E. V.; Halpern, J. P.; Seward, F. D.

    2005-01-01

    We report the discovery of 105-ms X-ray pulsations from the compact central object (CCO) in the supernova remnant \\snr\\ using data acquired with the {\\it Newton X-Ray Multi-Mirror Mission). Using two observations of the pulsar taken 6-days apart we derive an upper limit on its spin-down rate of $\\dot P < 9 \\times 10"{-14}$-s-${-l)$,a nd find no evidence for binary orbital motion. The implied energy loss rate is $\\dot E < 3 \\times 10A{36)$-ergs-s$A{-1)$, polar magnetic field strength is $B-{\\rm p) < 3 \\times 10A{12)$-G, and spin-down age is $\\tau > 18.5$-kyr. The latter exceeds the remnant's estimated age, suggesting that the pulsar was born spinning near its current period. The X-ray spectrum of \\psr\\ is best characterized as a blackbody of temperature $kT {BB) =, 0.43\\pm0.02$ keV, radius $R-{BB) \\approx 1.3$-km, and $I{\\rm bol) = 5.2 \\times 10A{33)$ ergs-sSA{-1)$ at $d = 7.1$-kpc. The sinusoidal light curve is modulated with a pulsed fraction of $>45\\%$, suggestive of a small hot spot on the surface of the rotating neutron star. The lack of a discernible pulsar wind nebula is consistent with an interpretation of \\psr\\ as a rotation-powered pulsar whose spin-down luminosity falls below the empirical threshold for generating bright wind nebulae, $\\dot E-{\\rm c) = 4 \\times 10A{36)$-ergs-sSA{-I)$. The age discrepancy suggests that its $\\dot E$ has always been below $\\dot E c$, perhaps a distinguishing property of the CCOs. Alternatively, the X-ray spectrum of \\psr\\ suggests a low-luminosity AXP, but the weak inferred $B-{\\rm p)$ field is incompatible with a magnetar theory of its X-ray luminosity. The ordinary spin parameters discovered from \\psr\\ highlight the inability of existing theories to explain the high luminosities and temperatures of CCO thermal X-ray spectra.

  15. Can a Bright and Energetic X-Ray Pulsar Be Hiding Amid the Debris of SN 1987A?

    NASA Astrophysics Data System (ADS)

    Esposito, Paolo; Rea, Nanda; Lazzati, Davide; Matsuura, Mikako; Perna, Rosalba; Pons, José A.

    2018-04-01

    The mass of the stellar precursor of supernova (SN) 1987A and the burst of neutrinos observed at the moment of the explosion are consistent with the core-collapse formation of a neutron star. However, no compelling evidence for the presence of a compact object of any kind in SN 1987A has been found yet in any band of the electromagnetic spectrum, prompting questions on whether the neutron star survived and, if it did, on its properties. Beginning with an analysis of recent Chandra observations, here we appraise the current observational situation. We derived limits on the X-ray luminosity of a compact object with a nonthermal, Crab-pulsar-like spectrum of the order of ≈(1–5) × 1035 erg s‑1, corresponding to limits on the rotational energy loss of a possible X-ray pulsar in SN 1987A of ≈(0.5–1.5) × 1038 erg s‑1. However, a much brighter X-ray source cannot be excluded if, as is likely, it is enshrouded in a cloud of absorbing matter with a metallicity similar to that expected in the outer layers of a massive star toward the end of its life. We found that other limits obtained from various arguments and observations in other energy ranges either are unbinding or allow a similar maximum luminosity of the order of ≈1035 erg s‑1. We conclude that while a pulsar alike the one in the Crab Nebula in both luminosity and spectrum is hardly compatible with the observations, there is ample space for an “ordinary” X-ray-emitting young neutron star, born with normal initial spin period, temperature, and magnetic field, to be hiding inside the evolving remnant of SN 1987A.

  16. Swift XRT observation of HETE J1900.1-2455

    NASA Astrophysics Data System (ADS)

    Campana, S.

    2005-06-01

    Sergio Campana (INAF-OAB), Antonino Cucchiara (PSU) and Dave Burrows (PSU) on behalf of the XRT team report that Swift observed the seventh millisecond X-ray pulsar HETE J1900.1-2455 on 2005-06-24 UT21:03:37 for 1329 s in a single orbit. The source is bright an is observed in Window Timing (WT) mode, therefore not providing an image. The source count rate in the 0.5-10 keV energy band is 14.9+/-0.1 c/s.

  17. EIGHT {gamma}-RAY PULSARS DISCOVERED IN BLIND FREQUENCY SEARCHES OF FERMI LAT DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saz Parkinson, P. M.; Dormody, M.; Ziegler, M.

    2010-12-10

    We report the discovery of eight {gamma}-ray pulsars in blind frequency searches of {approx}650 source positions using the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. PSRs J1023-5746, J1044-5737, J1413-5205, J1429-5911, and J1954+2836 are young ({tau}{sub c} < 100 kyr), energetic (E-dot {approx}>10{sup 36} erg s{sup -1}), and located within the Galactic plane (|b| < 3{sup 0}). The remaining three pulsars, PSRs J1846+0919, J1957+5033, and J2055+25, are less energetic, and located off the plane. Five pulsars are associated with sources included inmore » the Fermi-LAT bright {gamma}-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age ({tau}{sub c} = 4.6 kyr) and is the most energetic (E-dot = 1.1x10{sup 37} erg s{sup -1}) of all {gamma}-ray pulsars discovered so far in blind searches. By analyzing >100 ks of publicly available archival Chandra X-ray data, we have identified the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant {gamma}-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3{sigma} excess reported by Milagro at a median energy of 35 TeV. PSRs J1957+5033 and J2055+25 have the largest characteristic ages ({tau}{sub c} {approx} 1 Myr) and are the least energetic (E-dot {approx}5x10{sup 33} erg s{sup -1}) of the newly discovered pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the

  18. [Results from the X-ray and Optical Follow-up Observations of the Swift BAT AGN Survey

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    2008-01-01

    I will present results from the x-ray and optical follow-up observations of the Swift BAT ACN survey. I will discuss the nature of obscuration in these objects, the relationship to optical properties and the change of properties with luminosity and galaxy type and how they will influence the design of XO.

  19. The 2006-2007 Active Phase Of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts, and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavril, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2009-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in >11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 8-3x10(exp 3)s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx. 2 - 6 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus three emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4)x10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. We discuss these events in the context of the magnetar model.

  20. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  1. Applying a physical continuum model to describe the broadband X-ray spectra of accreting pulsars at high luminosity

    NASA Astrophysics Data System (ADS)

    Pottschmidt, Katja; Hemphill, Paul B.; Wolff, Michael T.; Cheatham, Diana M.; Iwakiri, Wataru; Gottlieb, Amy M.; Falkner, Sebastian; Ballhausen, Ralf; Fuerst, Felix; Kuehnel, Matthias; Ferrigno, Carlo; Becker, Peter A.; Wood, Kent S.; Wilms, Joern

    2018-01-01

    A new window for better understanding the accretion onto strongly magnetized neutron stars in X-ray binaries is opening. In these systems the accreted material follows the magnetic field lines as it approaches the neutron star, forming accretion columns above the magnetic poles. The plasma falls toward the neutron star surface at near-relativistic speeds, losing energy by emitting X-rays. The X-ray spectral continua are commonly described using phenomenological models, i.e., power laws with different types of curved cut-offs at higher energies. Here we consider high luminosity pulsars. In these systems the mass transfer rate is high enough that the accreting plasma is thought to be decelerated in a radiation-dominated radiative shock in the accretion columns. While the theory of the emission from such shocks had already been developed by 2007, a model for direct comparison with X-ray continuum spectra in xspec or isis has only recently become available. Characteristic parameters of this model are the accretion column radius and the plasma temperature, among others. Here we analyze the broadband X-ray spectra of the accreting pulsars Centaurus X-3 and 4U 1626-67 obtained with NuSTAR. We present results from traditional empirical modeling as well as successfully apply the radiation-dominated radiative shock model. We also take the opportunity to compare to similar recent analyses of both sources using these and other observations.

  2. Anti-correlation between X-ray luminosity and pulsed fraction in the Small Magellanic Cloud pulsar SXP 1323

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Zezas, Andreas; Coe, Malcolm J.; Drake, Jeremy J.; Hong, JaeSub; Laycock, Silas G. T.; Wik, Daniel R.

    2018-05-01

    We report the evidence for the anti-correlation between pulsed fraction (PF) and luminosity of the X-ray pulsar SXP 1323, found for the first time in a luminosity range 1035-1037 erg s-1 from observations spanning 15 years. The phenomenon of a decrease in X-ray PF when the source flux increases has been observed in our pipeline analysis of other X-ray pulsars in the Small Magellanic Cloud (SMC). It is expected that the luminosity under a certain value decreases as the PF decreases due to the propeller effect. Above the propeller region, an anti-correlation between the PF and flux might occur either as a result of an increase in the un-pulsed component of the total emission or a decrease of the pulsed component. Additional modes of accretion may also be possible, such as spherical accretion and a change in emission geometry. At higher mass accretion rates, the accretion disk could also extend closer to the neutron star (NS) surface, where a reduced inner radius leads to hotter inner disk emission. These modes of plasma accretion may affect the change in the beam configuration to fan-beam dominant emission.

  3. X-RAY PROPERTIES OF THE NORTHERN GALACTIC CAP SOURCES IN THE 58 MONTH SWIFT/BAT CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Ranjan V.; Mushotzky, Richard F.; Shimizu, Thomas T.

    2013-02-15

    We present a detailed X-ray spectral analysis of the non-beamed, hard X-ray selected active galactic nuclei (AGNs) in the northern Galactic cap of the 58 month Swift Burst Alert Telescope (Swift/BAT) catalog, consisting of 100 AGNs with b > 50 Degree-Sign . This sky area has excellent potential for further dedicated study due to a wide range of multi-wavelength data that are already available, and we propose it as a low-redshift analog to the 'deep field' observations of AGNs at higher redshifts (e.g., CDFN/S, COSMOS, Lockman Hole). We present distributions of luminosity, absorbing column density, and other key quantities formore » the catalog. We use a consistent approach to fit new and archival X-ray data gathered from XMM-Newton, Swift/XRT, ASCA, and Swift/BAT. We probe to deeper redshifts than the 9 month BAT catalog ((z) = 0.043 compared to (z) = 0.03 for the 9 month catalog), and uncover a broader absorbing column density distribution. The fraction of obscured (log N {sub H} {>=} 22) objects in the sample is {approx}60%, and 43%-56% of the sample exhibits 'complex' 0.4-10 keV spectra. We present the properties of iron lines, soft excesses, and ionized absorbers for the subset of objects with sufficient signal-to-noise ratio. We reinforce previous determinations of the X-ray Baldwin (Iwasawa-Taniguchi) effect for iron K{alpha} lines. We also identify two distinct populations of sources; one in which a soft excess is well-detected and another where the soft excess is undetected, suggesting that the process responsible for producing the soft excess is not at work in all AGNs. The fraction of Compton-thick sources (log N {sub H} > 24.15) in our sample is {approx}9%. We find that 'hidden/buried AGNs' (which may have a geometrically thick torus or emaciated scattering regions) constitute {approx}14% of our sample, including seven objects previously not identified as hidden. Compton reflection is found to be important in a large fraction of our sample using joint

  4. Swift/BAT X-ray monitoring indicates a new outburst of the black hole transient H 1743-322

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Yu, Wenfei; Yan, Zhen; Lin, Jie

    2017-07-01

    H 1743-322 is a black hole X-ray binary with frequent outbursts. Recent Swift/BAT monitoring observations (Krimm et al. 2013) show that this source has turned into a new outburst after been in quiescence for about nine months since the most recent outburst in 2016.

  5. X-ray Afterglows of Short Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Burrows, David N.

    2006-12-01

    The Swift Burst Alert Telescope (BAT) has discovered about 20 short GRBs in its first two years of operation. The Swift X-ray Telescope (XRT) has detected X-ray afterglows for roughly 75% of these, allowing host galaxies, redshifts and source characteristics to be studied for the first time. As a result, our knowledge of the properties of short GRBs and their afterglows has increased tremendously in the past year and a half. I will discuss the X-ray afterglows of short GRBs as observed by the Swift XRT and by Chandra. These afterglows are generally much fainter than those of long GRBs, and therefore fade rapidly below detection thresholds. However, some brighter, long-lived afterglows provide intriguing insights into the properties of the progenitors and their environments.

  6. The Swift Supergiant Fast X-Ray Transients Project:. [A Review, New Results and Future Perspectives

    NASA Technical Reports Server (NTRS)

    Romano, P.; Mangano, V.; Ducci, L.; Esposito, P.; Vercellone, S.; Bocchino, F.; Burrows, D. N.; Kennea, J. A.; Krimm, H. A.; Gehrels, N.; hide

    2013-01-01

    We present a review of the Supergiant Fast X-ray Transients (SFXT) Project, a systematic investigation of the properties of SFXTs with a strategy that combines Swift monitoring programs with outburst follow-up observations. This strategy has quickly tripled the available sets of broad-band data of SFXT outbursts, and gathered a wealth of out-of-outburst data, which have led us to a broad-band spectral characterization, an assessment of the fraction of the time these sources spend in each phase, and their duty cycle of inactivity. We present some new observational results obtained through our outburst follow-ups, as fitting examples of the exceptional capabilities of Swift in catching bright flares and monitor them panchromatically.

  7. Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline

    2018-01-01

    The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.

  8. The Swift Gamma Ray Burst Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K. O.; Nousek, J. A.; Wells, A. A.; White, N. E.; Barthelmy, S. D.; Burrows, D. N.; Cominsky, L. R.

    2004-01-01

    The Swift mission: scheduled for launch in early 2004: is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is the first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts per year and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to: 1) determine the origin of GFU3s; 2) classify GRBs and search for new types; 3) study the interaction of the ultra-relativistic outflows of GRBs with their surrounding medium; and 4) use GRBs to study the early universe out to z greater than 10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a new-generation wide-field gamma-ray (15-150 keV) detector that will detect bursts, calculate 1-4 arcmin positions: and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 arcsec positions and perform spectroscopy in the 0.2 to 10 keV band; and a narrow-field UV/optical telescope that will operate in the 170-600 nm band and provide 0.3 arcsec positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of approx. 1 mCrab (approx. 2 x l0(exp -11) erg/sq cm s in the 15-150 keV band), more than an order of magnitude better than HEAO A-4. A flexible data and operations system will allow rapid follow-up observations of all types of high-energy transients. with rapid data downlink and uplink available through the NASA TDRSS system. Swift transient data will be rapidly distributed to the astronomical community and all interested observers are encouraged to participate in follow-up measurements. A Guest Investigator program

  9. Tiny Tremors to Titanic Explosions: Tackling Transients in Anomalous X-Ray Pulsars (core Program)

    NASA Astrophysics Data System (ADS)

    We are requesting the target-of-oppurtunity (ToO) component of an ongoing, successful, long-term RXTE monitoring campaign of anomalous X- ray pulsars (AXPs). Their nature had been a mystery, but with our discoveries of X-ray bursts from AXPs, there is compelling evidence that they are young, isolated, ultra-magnetized neutron stars or "magnetars." We request ToO observations of any of the known and candidate AXPs as well as of any newly discovered AXPs should they exhibit anomalous behavior of one or more of the following types: bursts, significant sudden pulse profile changes, glitches or other rotational anomalies, or pulse fractions changes. These observations will allow us to answer basic physical questions about neutron star structure.

  10. OPTICAL STUDIES OF 13 HARD X-RAY SELECTED CATACLYSMIC BINARIES FROM THE SWIFT-BAT SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Jules P.; Thorstensen, John R.

    2015-12-15

    From a set of 13 cataclysmic binaries that were discovered in the Swift Burst Alert Telescope (BAT) survey, we conducted time-resolved optical spectroscopy and/or time-series photometry of 11, with the goal of measuring their orbital periods and searching for spin periods. Seven of the objects in this study are new optical identifications. Orbital periods are found for seven targets, ranging from 81 minutes to 20.4 hr. PBC J0706.7+0327 is an AM Herculis star (polar) based on its emission-line variations and large amplitude photometric modulation on the same period. Swift J2341.0+7645 may be a polar, although the evidence here is lessmore » secure. Coherent pulsations are detected from two objects, Swift J0503.7−2819 (975 s) and Swift J0614.0+1709 (1412 s and 1530 s, spin and beat periods, respectively), indicating that they are probable intermediate polars (DQ Herculis stars). For two other stars, longer spin periods are tentatively suggested. We also present the discovery of a 2.00 hr X-ray modulation from RX J2015.6+3711, possibly a contributor to Swift J2015.9+3715, and likely a polar.« less

  11. Astrosat broadband characterization of the 2018 outburst of Swift J1756.9-2508

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manoneeta; Bhattacharyya, Sudip

    2018-04-01

    Following the reports of a new outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508 (ATel #11497, #11502, #11505, #11523), we performed ToO observations of this source with Astrosat for 21.4 ks on April 10, 2018 between 14:27:48 UTC and 15:41:39 UTC. We here report the detection of this latest outburst of this source simultaneously with Astrosat LAXPC and SXT providing a broadband coverage.

  12. The Bursting Pulsar GRO J1744-28: the slowest transitional pulsar?

    NASA Astrophysics Data System (ADS)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-06-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star low-mass X-ray binary which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known transitional pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of opportunity to test our understanding of these systems in an entirely unexplored physical regime.

  13. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  14. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  15. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  16. Fermi-LAT Gamma-Ray Bursts and Insights from Swift

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.

    2010-01-01

    A new revolution in Gamma-ray Burst (GRB) observations and theory has begun over the last two years since the launch of the Fermi Gamma-ray Space Telescope. The new window into high energy gamma-rays opened by the Fermi-Large Area Telescope (LAT) is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts compared to the large sample detected by Swift over the last 6 years. In this talk, I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by the Swift X-ray Telescope (XRT) and UV/Optical Telescope (UVOT). Through comparisons between the GRBs detected by Swift-BAT, G8M, and LAT, we can learn about the unique characteristics, physical differences, and the relationships between each population. These population characteristics provide insight into the different physical parameters that contribute to the diversity of observational GRB properties.

  17. Rapid X-Ray Variations of the Geminga Pulsar Wind Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, C. Y.; Lee, Jongsu; Kong, A. K. H.

    A recent study by Posselt et al. reported the deepest X-ray investigation of the Geminga pulsar wind nebula (PWN) by using Chandra X-ray Observatory . In comparison with previous studies of this system, a number of new findings have been reported, and we found that these suggest the possible variabilities in various components of this PWN. This motivates us to carry out a dedicated search for the morphological and spectral variations of this complex nebula. We have discovered variabilities on timescales from a few days to a few months from different components of the nebula. The fastest change occurred inmore » the circumstellar environment at a rate of 80% of the speed of light. One of the most spectacular results is the wiggling of a half light-year long tail as an extension of the jet, which is significantly bent by the ram pressure. The jet wiggling occurred at a rate of about 20% of the speed of light. This twisted structure could possibly be a result of a propagating torsional Alfv́en wave. We have also found evidence of spectral hardening along this tail for a period of about nine months.« less

  18. Rapid X-Ray Variations of the Geminga Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Lee, Jongsu; Kong, A. K. H.; Tam, P. H. T.; Takata, J.; Cheng, K. S.; Ryu, Dongsu

    2017-09-01

    A recent study by Posselt et al. reported the deepest X-ray investigation of the Geminga pulsar wind nebula (PWN) by using Chandra X-ray Observatory. In comparison with previous studies of this system, a number of new findings have been reported, and we found that these suggest the possible variabilities in various components of this PWN. This motivates us to carry out a dedicated search for the morphological and spectral variations of this complex nebula. We have discovered variabilities on timescales from a few days to a few months from different components of the nebula. The fastest change occurred in the circumstellar environment at a rate of 80% of the speed of light. One of the most spectacular results is the wiggling of a half light-year long tail as an extension of the jet, which is significantly bent by the ram pressure. The jet wiggling occurred at a rate of about 20% of the speed of light. This twisted structure could possibly be a result of a propagating torsional Alfv´en wave. We have also found evidence of spectral hardening along this tail for a period of about nine months.

  19. Pulse-phase dependence of emission lines in the X-ray pulsar 4U 1626-67

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab C.

    2015-07-01

    We present results from a pulse-phase-resolved spectroscopy of the complex emission lines around 1 keV in the unique accretion-powered X-ray pulsar 4U 1626-67, using the observation made with XMM-Newton in 2003. In this source, the redshifted and blueshifted emission lines and the linewidths measured earlier with Chandra suggest their accretion-disc origin. Another possible signature of lines produced in the accretion disc can be a modulation of the line strength with the pulse phase. We have found that the line fluxes have pulse-phase dependence, making 4U 1626-67 only the second pulsar after Hercules X-1 to show such variability. The O VII line at 0.568 keV from 4U 1626-67 varied by a factor of ˜4, stronger than the continuum variability, which supports the accretion-disc origin. The line flux variability can appear due to variable illumination of the accretion disc by the pulsar or, more likely, a warp-like structure in the accretion disc. We also discuss some further possible diagnostics of the accretion disc in 4U 1626-67 with pulse-phase-resolved emission-line spectroscopy.

  20. Post-outburst X-Ray Flux and Timing Evolution of Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Ng, C.-Y.; Livingstone, M. A.; Kaspi, V. M.; Cumming, A.; Archibald, R. F.

    2012-12-01

    Swift J1822.3-1606 was discovered on 2011 July 14 by the Swift Burst Alert Telescope following the detection of several bursts. The source was found to have a period of 8.4377 s and was identified as a magnetar. Here we present a phase-connected timing analysis and the evolution of the flux and spectral properties using Rossi X-ray Timing Explorer, Swift, and Chandra observations. We measure a spin frequency of 0.1185154343(8) s-1 and a frequency derivative of -4.3 ± 0.3 × 10-15 at MJD 55761.0, in a timing analysis that includes significant non-zero second and third frequency derivatives that we attribute to timing noise. This corresponds to an estimated spin-down inferred dipole magnetic field of B ~ 5 × 1013 G, consistent with previous estimates though still possibly affected by unmodeled noise. We find that the post-outburst 1-10 keV flux evolution can be characterized by a double-exponential decay with decay timescales of 15.5 ± 0.5 and 177 ± 14 days. We also fit the light curve with a crustal cooling model, which suggests that the cooling results from heat injection into the outer crust. We find that the hardness-flux correlation observed in magnetar outbursts also characterizes the outburst of Swift J1822.3-1606. We compare the properties of Swift J1822.3-1606 with those of other magnetars and their outbursts.

  1. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4 - 6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e1 plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  2. The Geminga Pulsar: Soft X-Ray Variability and an EUVE Observation

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Martin, Christopher; Marshall, Herman L.

    1996-01-01

    We observed the Geminga pulsar with the EUVE satellite, detecting pulsed emission in the Deep Survey imager. Joint spectral fits of the EUVE flux with ROSAT PSPC data are consistent with thermal plus power-law models in which the thermal component makes the dominant contribution to the soft X-ray flux seen by EUVE and ROSAT. The data are consistent with blackbody emission of T = (4-6) x 10(exp 5) K over most of the surface of the star at the measured parallax distance of 160 pc. Although model atmospheres are more realistic, and can fit the data with effective temperatures a factor of 2 lower, current data would not discriminate between these and blackbody models. We also find evidence for variability of Geminga's soft X-ray pulse shape. Narrow dips in the light curve that were present in 1991 had largely disappeared in 1993/1994, causing the pulsed fraction to decline from 32% to 18%. If the dips are attributed to cyclotron resonance scattering by an e(+/-) plasma on closed magnetic field lines, then the process that resupplies that plasma must be variable.

  3. DIFFERENCES BETWEEN RADIO-LOUD AND RADIO-QUIET γ -RAY PULSARS AS REVEALED BY FERMI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, C. Y.; Lee, Jongsu; Takata, J.

    By comparing the properties of non-recycled radio-loud γ -ray pulsars and radio-quiet γ -ray pulsars, we have searched for the differences between these two populations. We found that the γ -ray spectral curvature of radio-quiet pulsars can be larger than that of radio-loud pulsars. Based on the full sample of non-recycled γ -ray pulsars, their distributions of the magnetic field strength at the light cylinder are also found to be different. We note that this might result from an observational bias. By reexamining the previously reported difference of γ -ray-to-X-ray flux ratios, we found that the significance can be hamperedmore » by their statistical uncertainties. In the context of the outer gap model, we discuss the expected properties of these two populations and compare with the possible differences that are identified in our analysis.« less

  4. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    NASA Technical Reports Server (NTRS)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  5. X-ray Properties of an Unbiased Hard X-ray Detected Sample of AGN

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Mushotzky, Richard F.; Tueller, Jack; Markwardt, Craig

    2007-01-01

    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195keV). In this paper, we present for the first time XMM-Newton X-ray spectra for 22 BAT AGXs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (n(sub H) < 3 x 10(exp 25)/sq cm), local (< z >= 0.03), AGN sample. We find 9/22 low absorption (n(sub H) < 10(exp 23)/sq cm), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of Reynolds (1997) and George et al. (1998), who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (13122) have more complex spectra, well-fit by an absorbed power law at E > 2.0 keV. Five of the complex sources (NGC 612, ESO 362-G018, MRK 417, ESO 506-G027, and NGC 6860) are classified as Compton-thick candidates. Further, we find four more sources (SWIFT J0641.3+3257, SWIFT J0911.2+4533, SWIFT J1200.8+0650, and NGC 4992) with properties consistent with the hidden/buried AGN reported by Ueda et al. (2007). Finally, we include a comparison of the XMM EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.

  6. Early NICER Observations of Magnetars and Young Pulsars

    NASA Astrophysics Data System (ADS)

    Nynka, Melania

    2018-01-01

    Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.

  7. Sub-luminous γ-ray pulsars

    DOE PAGES

    Romani, R. W.; Kerr, M.; Craig, H. A.; ...

    2011-08-17

    Here, most pulsars observed by the Fermi Large Area Telescope have γ-ray luminosities scaling with spin-down powermore » $${\\dot{E}}$$ as $$L_\\gamma \\approx ({\\dot{E}}\\, \\times \\, 10^{33}\\,{\\rm erg \\,s^{-1}})^{1/2}$$. However, there exist one detection and several upper limits an order of magnitude or more fainter than this trend. We describe these "sub-luminous" γ-ray pulsars and discuss the case for this being an orientation effect. Of the 12 known young radio pulsars with $${\\dot{E}}>10^{34}\\, {\\rm erg\\,s^{-1}}$$ and d ≤ 2 kpc several are substantially sub-luminous. The limited available geometrical constraints favor aligned geometries for these pulsars, although no one case for alignment is compelling. In this scenario GeV emission detected from such sub-luminous pulsars can be due to a lower altitude, lower-power accelerator gap.« less

  8. X-ray astronomy from Uhuru to HEAO-1

    NASA Technical Reports Server (NTRS)

    Clark, G. W.

    1981-01-01

    The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.

  9. New X-ray outburst of accreting millisecond pulsar SWIFT J1756.9-2508 detected by INTEGRAL

    NASA Astrophysics Data System (ADS)

    Mereminskiy, I. A.; Grebenev, S. A.; Krivonos, R. A.; Sunyaev, R. A.

    2018-04-01

    During recent observations (1-2 Apr 2018, PI: E.Bozzo) of the weak X-ray burster IGR J17379-3747 (#11447,#11487, Chelovekov et al. 2006, AstL, 32, 456) and regular observations of Galactic center region (2-3 Apr 2018, PI: R.A. Sunyaev) we detected a new X-ray transient in 20-60 keV sky maps obtained by IBIS/ISGRI.

  10. Observation of pulsed hard X-rays/gamma-rays from PSR 1509-58

    NASA Astrophysics Data System (ADS)

    Gunji, S.; Hirayama, M.; Kamae, T.; Miyazaki, S.; Sekimoto, Y.; Takahashi, T.; Tamura, T.; Tanaka, M.; Yamasaki, N.; Yamagami, T.; Nomachi, M.; Murakami, H.; Braga, J.; Neri, J. A.

    1994-06-01

    We observed a young rotation-powered pulsar, PSR 1509-58, in the hard X-ray/gamma-ray or the soft gamma-ray band with a balloon-borne detector in Brazil on 1991 November 19 (UT). With a timing analysis we detected pulsations in the energy band 94-240 keV at the 150.687 ms period determined from radio observations. The pulsating flux is (7.1 +/- 1.7) x 10-4 per sq cm per sec in this band, and the energy spectrum follows a power law with photon index alpha = 1.64 +/- 0.4. The averaged pulse profile shows a broad single peak with a sharp rise and has a duty cycle around 50% or higher: these features are similar to what have been observed in the X-ray band by the Ginga satellite. Based on the data available now, the fraction of energy transformed from rotational energy loss to pulsed/nonpulsed soft gamma-ray radiation is estimated. If the solid angle swept by the pulsed beam is about the same as for the Crab pulsar (PSR 0531+21) and the Vela pulsar (PSR 0833-45), PSR 1509-58 turn out to be an extremely efficient pulsar, converting a large fraction of its rotational energy loss to radiation, as the outer gap model predicts. The observed pulsed spectrum, however, is strong in the soft gamma-ray band, in a sharp contrast to what has been observed in the Vela pulsar, a pulsar expected to be similar PSR 1509-58 in the outer gap model. The fact that the pulse profile remains broad and single-peaked in the soft gamma-ray band is also new for Crab-like pulsars. In these regards, PSR 1509-58 may require some alteration to the standard outer gap model or even a new model for gamma-ray emission in pulsars.

  11. Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-01-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  12. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  13. The 4U 0115+63: Another energetic gamma ray binary pulsar

    NASA Technical Reports Server (NTRS)

    Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.

    1985-01-01

    Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-09-24

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  15. The reawakening of the sleeping X-ray pulsar XTE J1946+274

    NASA Astrophysics Data System (ADS)

    Müller, S.; Kühnel, M.; Caballero, I.; Pottschmidt, K.; Fürst, F.; Kreykenbohm, I.; Sagredo, M.; Obst, M.; Wilms, J.; Ferrigno, C.; Rothschild, R. E.; Staubert, R.

    2012-10-01

    We report on a series of outbursts of the high-mass X-ray binary XTE J1946+274 in 2010/2011 observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron Kα fluorescence line at 6.4 keV, which are variable in flux and pulse phase. We find possible evidence for a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst that was confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE J1946+274 is variable between individual outbursts.

  16. The Reawakening of the Sleeping X-ray Pulsar XTE J1946+274

    NASA Technical Reports Server (NTRS)

    Mueller, Sebastian; Mueller, Sebastian; Kuechnel, Matthias; Fuerst, Felix; Kreykenbohm, Ingo; Sagredo, Macarena; Obst, Maria; Wilms, Joern; Caballero, Isabel; Potttschmidt, Katja; hide

    2012-01-01

    We report on a series of outbursts of the high mass X-ray binary XTE 11946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the source's 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE 11946+274 is variable between individual outbursts.

  17. Broad-band characteristics of seven new hard X-ray selected cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Bernardini, F.; de Martino, D.; Mukai, K.; Russell, D. M.; Falanga, M.; Masetti, N.; Ferrigno, C.; Israel, G.

    2017-10-01

    We present timing and spectral analysis of a sample of seven hard X-ray selected cataclysmic variable candidates based on simultaneous X-ray and optical observations collected with XMM-Newton, complemented with Swift/BAT and INTEGRAL /IBIS hard X-ray data and ground-based optical photometry. For six sources, X-ray pulsations are detected for the first time in the range of ˜296-6098 s, identifying them as members of the magnetic class. Swift J0927.7-6945, Swift J0958.0-4208, Swift J1701.3-4304, Swift J2113.5+5422 and possibly PBC J0801.2-4625 are intermediate polars (IPs), while Swift J0706.8+0325 is a short (1.7 h) orbital period polar, the 11th hard X-ray-selected identified so far. X-ray orbital modulation is also observed in Swift J0927.7-6945 (5.2 h) and Swift J2113.5+5422 (4.1 h). Swift J1701.3-4304 is discovered as the longest orbital period (12.8 h) deep eclipsing IP. The spectra of the magnetic systems reveal optically thin multitemperature emission between 0.2 and 60 keV. Energy-dependent spin pulses and the orbital modulation in Swift J0927.7-6945 and Swift J2113.5+5422 are due to intervening local high-density absorbing material (NH ˜ 1022 - 23 cm-2). In Swift J0958.0-4208 and Swift J1701.3-4304, a soft X-ray blackbody (kT ˜ 50 and ˜80 eV) is detected, adding them to the growing group of `soft' IPs. White dwarf masses are determined in the range of ˜ 0.58-1.18 M⊙, indicating massive accreting primaries in five of them. Most sources accrete at rates lower than the expected secular value for their orbital period. Formerly proposed as a long-period (9.4 h) nova-like CV, Swift J0746.3-1608 shows peculiar spectrum and light curves suggesting either an atypical low-luminosity CV or a low-mass X-ray binary.

  18. Discovery of the 198 s X-Ray Pulsar GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1997-01-01

    GRO J2058+42, a transient 198 second x-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory (CGRO), during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mCrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 s to 196 s during the 46-day outburst. The pulse shape evolved over the course of the outburst and exhibited energy dependent variations. BATSE observed five additional weak outbursts from GRO J2058+427 each with two week duration and peak pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) localized the source to within a 4' radius error circle (90% confidence) centered on R.A. = 20 h 59 m.0, Decl. = 41 deg 43 min (J2000). Additional shorter outbursts with peak pulsed fluxes of about 8 mCrab were detected by BATSE halfway between the first four 15 mCrab outbursts. The RXTE All-Sky Monitor detected 8 weak outbursts with approximately equal durations and intensities. GRO J2058+42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron. No optical counterpart has been identified to date and no x-ray source was present in the error circle in archival ROSAT observations.

  19. Discovery of the 198 Second X-Ray Pulsar GRO J2058+42

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Harmon, B. Alan; Chakrabarty, Deepto; Strohmayer, Tod

    1998-01-01

    GRO J2058+42, a transient 198 s X-ray pulsar, was discovered by the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (CGRO) during a "giant" outburst in 1995 September-October. The total flux peaked at about 300 mcrab (20-50 keV) as measured by Earth occultation. The pulse period decreased from 198 to 196 s during the 46 day outburst. The pulse shape evolved over the course of the outburst and exhibited energy-dependent variations. BATSE observed five additional weak outbursts from GRO J2058 + 42, each with a 2 week duration and a peak-pulsed flux of about 15 mcrab (20-50 keV), that were spaced by about 110 days. An observation of the 1996 November outburst by the Rossi X-Ray Timing Explorer (RXTE) proportional counter array (PCA) localized the source to within a 4 s radius error circle (90% confidence) centered on R.A. = 20h 59m.0, decl. = 41 deg 43 s (J2000). Additional shorter outbursts with peak-pulsed fluxes of about 8 mcrab were detected by BATSE halfway between the first four 15 mcrab outbursts. The RXTE All-Sky Monitor detected all eight weak outbursts with approximately equal durations and intensities. GRO J2058 + 42 is most likely a Be/X-ray binary that appears to outburst at periastron and apastron, No optical counterpart has been identified to date, and no X-ray source was present in the error circle in archival ROSAT observations.

  20. Chandra studies of the globular cluster 47 Tucanae: A deeper X-ray source catalogue, five new X-ray counterparts to millisecond radio pulsars, and new constraints to r-mode instability window

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Souradeep; Heinke, Craig O.; Chugunov, Andrey I.; Freire, Paulo C. C.; Ridolfi, Alessandro; Bogdanov, Slavko

    2017-12-01

    We combined Chandra ACIS observations of the globular cluster 47 Tucanae (47 Tuc) from 2000, 2002 and 2014-2015 to create a deeper X-ray source list, and study some of the faint radio millisecond pulsars (MSPs) present in this cluster. We have detected 370 X-ray sources within the half-mass radius (2.79 arcsec) of the cluster, 81 of which are newly identified, by including new data and using improved source detection techniques. The majority of the newly identified sources are in the crowded core region, indicating cluster membership. We associate five of the new X-ray sources with chromospherically active BY Dra or W UMa variables identified by Albrow et al. We present alternative positions derived from two methods, centroiding and image reconstruction, for faint, crowded sources. We are able to extract X-ray spectra of the recently discovered MSPs 47 Tuc aa, 47 Tuc ab, the newly timed MSP 47 Tuc Z, and the newly resolved MSPs 47 Tuc S and 47 Tuc F. Generally, they are well fitted by blackbody or neutron star atmosphere models, with temperatures, luminosities and emitting radii similar to those of other known MSPs in 47 Tuc, though 47 Tuc aa and 47 Tuc ab reach lower X-ray luminosities. We limit X-ray emission from the full surface of the rapidly spinning (542 Hz) MSP 47 Tuc aa, and use this limit to put an upper bound for amplitude of r-mode oscillations in this pulsar as α < 2.5 × 10-9 and constrain the shape of the r-mode instability window.

  1. Timing Young Pulsars: Challenges to Standard Pulsar Spin-Down Models

    NASA Astrophysics Data System (ADS)

    Livingstone, Margaret Anne

    Pulsars are rapidly rotating neutron stars which are often noted for their very regular rotation rates. Young pulsars, however, frequently exhibit two types of deviations from steady spin down, "glitches" - sudden jumps in spin frequency, which provide insight into pulsar interiors, and "timing noise," a smooth stochastic wander of the pulse phase over long time periods. The youngest pulsars also offer a window into the physics that govern pulsar spin down via the measurement of the "braking index" - a parameter that relates the observable spin frequency of the pulsar with the slowing down torque acting on the neutron star. This thesis discusses long-term timing observations of two young pulsars. First, we present observations of PSR J0205+6449, acquired with the Green Bank Telescope, the Jodrell Bank Observatory and the Rossi X-ray Timing Explorer . We present phase-coherent timing analyses showing timing noise and two spin-up glitches. We also present an X-ray pulse profile analysis showing that the pulsar is detected up to ∼40 keV and does not vary appreciably over four years. We report the phase offset between the radio and X-ray pulse, showing that the radio pulse leads by φ = 0.10 ± 0.01 in phase. We compile measurements of phase offsets for this and other X-ray and γ-ray pulsars and show that there is no relationship between pulse period and phase offset. Next, we present 10 years of monitoring of PSR J1846-0258 with the Rossi X-ray Timing Explorer . We report the first measurement of the braking index for this pulsar, n = 2.65 ± 0.01, only the sixth such measurement ever made, and show that the pulsar experienced a small glitch in 2001. In May 2006, PSR J1846-0258 was briefly transformed: it exhibited a series of X-ray bursts, a dramatic increase in the source flux, and significant softening of its X-ray spectrum - behaviours best explained in the context of the magnetar model. PSR J1846-0258 was thus identified as the first rotation-powered pulsar

  2. Eight γ-Ray Pulsars Discovered In Blind Frequency Searches Of Fermi Lat Data

    DOE PAGES

    Saz Parkinson, P. M.; Dormody, M.; Ziegler, M.; ...

    2010-11-19

    We report the discovery of eight γ-ray pulsars in blind frequency searches of ~650 source positions using the Large Area Telescope (LAT), on board the Fermi Gamma-ray Space Telescope. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. PSRs J1023-5746, J1044-5737, J1413-5205, J1429-5911, and J1954+2836 are young (τ c < 100 kyr), energetic (more » $$\\dot{E} \\gtrsim 10^{36}$$ erg s–1), and located within the Galactic plane (|b| < 3°). The remaining three pulsars, PSRs J1846+0919, J1957+5033, and J2055+25, are less energetic, and located off the plane. Five pulsars are associated with sources included in the Fermi-LAT bright γ-ray source list, but only one, PSR J1413–6205, is clearly associated with an EGRET source. PSR J1023–5746 has the smallest characteristic age (τ c = 4.6 kyr) and is the most energetic ($$\\dot{E} = 1.1 \\times 10^{37}$$ erg s–1) of all γ-ray pulsars discovered so far in blind searches. By analyzing >100 ks of publicly available archival Chandra X-ray data, we have identified the likely counterpart of PSR J1023–5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant γ-ray pulsars detected so far. PSR J1023–5746 is positionally coincident with the TeV source HESS J1023–575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3σ excess reported by Milagro at a median energy of 35 TeV. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (τ c ~ 1 Myr) and are the least energetic ($$\\dot{E} \\sim 5\\times 10^{33}$$ erg s–1) of the newly discovered pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these

  3. DEATH LINE OF GAMMA-RAY PULSARS WITH OUTER GAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ren-Bo; Hirotani, Kouichi, E-mail: rbwang1225@gmail.com, E-mail: hirotani@tiara.sinica.edu.tw

    2011-08-01

    We analytically investigate the condition for a particle accelerator to be active in the outer magnetosphere of a rotation-powered pulsar. Within the accelerator (or the gap), the magnetic-field-aligned electric field accelerates electrons and positrons, which emit copious gamma-rays via the curvature process. If one of the gamma-rays emitted by a single pair materializes as a new pair on average, the gap is self-sustained. However, if the neutron-star spin-down rate decreases below a certain limit, the gap becomes no longer self-sustained and the gamma-ray emission ceases. We explicitly compute the multiplicity of cascading pairs and find that the obtained limit correspondsmore » to a modification of the previously derived outer-gap death line. In addition to this traditional death line, we find another death line, which becomes important for millisecond pulsars, by separately considering the threshold of photon-photon pair production. Combining these traditional and new death lines, we give predictions on the detectability of gamma-ray pulsars with Fermi and AGILE. An implication for X-ray observations of heated polar-cap emission is also discussed.« less

  4. THE EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY. I. SEARCH METHODS, SENSITIVITY, AND DISCOVERY OF NEW YOUNG GAMMA-RAY PULSARS

    DOE PAGES

    Clark, C. J.; Wu, J.; Pletsch, H. J.; ...

    2017-01-05

    Here, we report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between 10 34 and 4 × 10 36 erg s -1. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitchmore » $${\\rm{\\Delta }}f/f\\approx 3.5\\times {10}^{-6}$$ during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. Lastly, we also present the results of precise timing analyses for each of the newly detected pulsars.« less

  5. THE EINSTEIN@HOME GAMMA-RAY PULSAR SURVEY. I. SEARCH METHODS, SENSITIVITY, AND DISCOVERY OF NEW YOUNG GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, C. J.; Wu, J.; Pletsch, H. J.

    Here, we report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between 10 34 and 4 × 10 36 erg s -1. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitchmore » $${\\rm{\\Delta }}f/f\\approx 3.5\\times {10}^{-6}$$ during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. Lastly, we also present the results of precise timing analyses for each of the newly detected pulsars.« less

  6. The Einstein@Home Gamma-ray Pulsar Survey. I. Search Methods, Sensitivity, and Discovery of New Young Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Clark, C. J.; Wu, J.; Pletsch, H. J.; Guillemot, L.; Allen, B.; Aulbert, C.; Beer, C.; Bock, O.; Cuéllar, A.; Eggenstein, H. B.; Fehrmann, H.; Kramer, M.; Machenschalk, B.; Nieder, L.

    2017-01-01

    We report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between 1034 and 4 × 1036 erg s-1. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitch {{Δ }}f/f≈ 3.5× {10}-6 during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. We also present the results of precise timing analyses for each of the newly detected pulsars.

  7. SMC X-3: the closest ultraluminous X-ray source powered by a neutron star with non-dipole magnetic field

    NASA Astrophysics Data System (ADS)

    Tsygankov, S. S.; Doroshenko, V.; Lutovinov, A. A.; Mushtukov, A. A.; Poutanen, J.

    2017-09-01

    Aims: The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (≳1013 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached 2.5 × 1039 erg s-1 comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMC X-3 is the main goal of this paper. Methods: SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Results: Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) × 1035 erg s-1 imply a relatively weak dipole field of (1-5) × 1012 G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMC X-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.

  8. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from - 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type I1 and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  9. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2008-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 3 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z greater than 5 and one at z=6.3 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  10. Gamma Ray Burst Discoveries with the Swift Mission

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2009-01-01

    Gamma-ray bursts (GRBs) are among the most fascinating occurrences in the universe. They are powerful explosions, visible to high redshift, and thought to be the signature of black hole formation. The Swift Observatory has been detecting 100 bursts per year for 4 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from approximately 1 minute after the burst, continuing for days. Evidence is building that the long and short duration subcategories of GRBs have very different origins: massive star core collapse to a black hole for long bursts and binary neutron star coalescence to a black hole for short bursts. The similarity to Type II and Ia supernovae originating from young and old stellar progenitors is striking. Bursts are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=6.7 giving metallicity measurements and other data on galaxies at previously inaccessible distances. The talk will present the latest results from Swift in GRB astronomy.

  11. A Potential Cyclotron Resonant Scattering Feature in the Ultraluminous X-Ray Source Pulsar NGC 300 ULX1 Seen by NuSTAR and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Bachetti, M.; Fürst, F.; Barret, D.; Brightman, M.; Fabian, A. C.; Grefenstette, B. W.; Harrison, F. A.; Heida, M.; Kennea, J.; Kosec, P.; Lau, R. M.; Madsen, K. K.; Middleton, M. J.; Pinto, C.; Steiner, J. F.; Webb, N.

    2018-04-01

    Based on phase-resolved broadband spectroscopy using XMM-Newton and NuSTAR, we report on a potential cyclotron resonant scattering feature (CRSF) at E ∼ 13 keV in the pulsed spectrum of the recently discovered ultraluminous X-ray source (ULX) pulsar NGC 300 ULX1. If this interpretation is correct, the implied magnetic field of the central neutron star is B ∼ 1012 G (assuming scattering by electrons), similar to that estimated from the observed spin-up of the star, and also similar to known Galactic X-ray pulsars. We discuss the implications of this result for the connection between NGC 300 ULX1 and the other known ULX pulsars, particularly in light of the recent discovery of a likely proton cyclotron line in another ULX, M51 ULX-8.

  12. Swift/XRT detection of the hard X-ray source IGR J14549-6459

    NASA Astrophysics Data System (ADS)

    Fiocchi, M.; Bazzano, A.; Landi, R.; Bassani, L.; Gehrels, N.; Kennea, J.; Bird, A. J.

    2010-04-01

    We report the result of a short (900 sec) Swift/XRT observation of the field containing IGR J14549-6459, a new INTEGRAL source recently reported in the 4th IBIS catalogue (Bird et al. 2010, ApJS, 186, 1). The XRT data analysis is performed using the standard procedure described in details in Landi et al. 2010 (MNRAS, 403, 945). The XRT observation locates the X-ray counterpart of IGR J14549-6459 at RA(J2000)= 14h 55m 23.9s, Dec(J2000)= -65d 00m 03.2s with an error of 6".

  13. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  14. GBM Observations of Be X-Ray Binary Outbursts

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.

    2014-01-01

    Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.

  15. Chandra Observations of New X-ray Supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2016-09-01

    We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.

  16. Chandra Observations of New X-ray Supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2017-09-01

    We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.

  17. Chandra Observations of New X-ray Supernovae

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2015-09-01

    We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.

  18. Tiny Hiccups To Titanic Explosions: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2006-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  19. TINY HICCUPS TO TITANIC EXPLOSIONS: Tackling Transients in Anomalous X-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Kaspi, Victoria

    2007-09-01

    Recently discovered transient events in Anomalous X-ray Pulsars (AXPs) may be a Rosetta Stone for understanding the persistent emission from magnetars. They also may hold the key to quantifying the number of magnetars in the Galaxy. Here we request Chandra TOO time to observe any AXP following a rare transient event, including a major outburst or a long-duration flare. Specifically, the requested observations will determine the pulsed fraction and spectral evolution of a transient AXP event as the source relaxes back to quiescence, in order to quantitatively test the "twisted magnetosphere" model for magnetars, and establish the basic phenomenology of transient AXP events.

  20. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    PubMed

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  1. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  2. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity ofmore » rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.« less

  3. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    PubMed

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  4. PSR J1907+0602: A RADIO-FAINT GAMMA-RAY PULSAR POWERING A BRIGHT TeV PULSAR WIND NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; Ackermann, M.; Ajello, M.

    2010-03-01

    We present multiwavelength studies of the 106.6 ms gamma-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19{sup h}07{sup m}54.{sup s}7(2), decl. = +06{sup 0}02'16(2)'' placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed gamma-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is GAMMA = 1.76 +- 0.05 with an exponential cutoffmore » energy E{sub c} = 3.6 +- 0.5 GeV. We present the energy-dependent gamma-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of {approx_equal} 3.4 {mu}Jy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 +- 1.1 cm{sup -3} pc. This indicates a distance of 3.2 +- 0.6 kpc and a pseudo-luminosity of L{sub 1400} {approx_equal} = 0.035 mJy kpc{sup 2}. A Chandra ACIS observation revealed an absorbed, possibly extended, compact ({approx}<4'') X-ray source with significant nonthermal emission at R.A. = 19{sup h}07{sup m}54.{sup s}76, decl. = +06{sup 0}02'14.''6 with a flux of 2.3{sup +0.6}{sub -1.4} x 10{sup -14} erg cm{sup -2} s{sup -1}. From archival ASCA observations, we place upper limits on any arcminute scale 2-10 keV X-ray emission of {approx}1 x 10{sup -13} erg cm{sup -2} s{sup -1}. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5 - 0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites.« less

  5. Studying The Spectral Shape And The X-ray/uv Variability Of Active Galactic Nuclei With Data From Swift And Xmm Archives

    NASA Astrophysics Data System (ADS)

    Turriziani, Sara

    2011-01-01

    Many efforts have been made in understanding the underlying origin of variability in Active Galactic Nuclei (AGN), but at present they could give still no conclusive answers. Since a deeper knowledge of variability will enable to understand better the accretion process onto supermassive black holes, I built the first ensemble struction function analysis of the X-ray variability of samples of quasars with data from Swift and XMM-Newton archives in order to study the average properties of their variability. Moreover, it is known that UV and X-ray luminosities of quasars are correlated and recent studies quantified this relation across 5 orders of magnitude. In this context, I presents results on the X-ray/UV ratio from simultaneous observations in UV and X-ray bands of a sample of quasars with data from XMM-Newton archive. Lastly, I will present a complete sample of Swift/SDSS faint blazars and other non-thermal dominated AGNs. I used this sample to calculate the general statistical properties of faint blazars and radio galaxies and in particular their Radio LogN-LogS with fluxes down to 10 mJy, in order to gain knowledge on the contribution to Cosmic Microwave Background (CMB) and gamma-ray background radiation from the faint tail of the radio population. I acknowledge financial support through Grant ASI I/088/06/0.

  6. Gamma-ray Pulsars: Models and Predictions

    NASA Technical Reports Server (NTRS)

    Harding Alice K.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Pulsed emission from gamma-ray pulsars originates inside the magnetosphere, from radiation by charged particles accelerated near the magnetic poles or in the outer gaps. In polar cap models, the high energy spectrum is cut off by magnetic pair production above an energy that is, dependent on the local magnetic field strength. While most young pulsars with surface fields in the range B = 10(exp 12) - 10(exp 13) G are expected to have high energy cutoffs around several GeV, the gamma-ray spectra of old pulsars having lower surface fields may extend to 50 GeV. Although the gamma-ray emission of older pulsars is weaker, detecting pulsed emission at high energies from nearby sources would be an important confirmation of polar cap models. Outer gap models predict more gradual high-energy turnovers of the primary curvature emission around 10 GeV, but also predict an inverse Compton component extending to TeV energies. Detection of pulsed TeV emission, which would not survive attenuation at the polar caps, is thus an important test of outer gap models. Next-generation gamma-ray telescopes sensitive to GeV-TeV emission will provide critical tests of pulsar acceleration and emission mechanisms.

  7. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 ke

  8. Geriatric Pulsar Still Kicking

    NASA Astrophysics Data System (ADS)

    2009-02-01

    The oldest isolated pulsar ever detected in X-rays has been found with NASA's Chandra X-ray Observatory. This very old and exotic object turns out to be surprisingly active. The pulsar, PSR J0108-1431 (J0108 for short) is about 200 million years old. Among isolated pulsars -- ones that have not been spun-up in a binary system -- it is over 10 times older than the previous record holder with an X-ray detection. At a distance of 770 light years, it is one of the nearest pulsars known. Pulsars are born when stars that are much more massive than the Sun collapse in supernova explosions, leaving behind a small, incredibly weighty core, known as a neutron star. At birth, these neutron stars, which contain the densest material known in the Universe, are spinning rapidly, up to a hundred revolutions per second. As the rotating beams of their radiation are seen as pulses by distant observers, similar to a lighthouse beam, astronomers call them "pulsars". Astronomers observe a gradual slowing of the rotation of the pulsars as they radiate energy away. Radio observations of J0108 show it to be one of the oldest and faintest pulsars known, spinning only slightly faster than one revolution per second. The surprise came when a team of astronomers led by George Pavlov of Penn State University observed J0108 in X-rays with Chandra. They found that it glows much brighter in X-rays than was expected for a pulsar of such advanced years. People Who Read This Also Read... Chandra Data Reveal Rapidly Whirling Black Holes Milky Way’s Giant Black Hole Awoke from Slumber 300 Years Ago Erratic Black Hole Regulates Itself Celebrate the International Year of Astronomy Some of the energy that J0108 is losing as it spins more slowly is converted into X-ray radiation. The efficiency of this process for J0108 is found to be higher than for any other known pulsar. "This pulsar is pumping out high-energy radiation much more efficiently than its younger cousins," said Pavlov. "So, although it

  9. Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro

    2015-04-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.

  10. The Accreting Black Hole Swift J1753.5-0127 from Radio to Hard X-Ray

    NASA Astrophysics Data System (ADS)

    Tomsick, John A.; Rahoui, Farid; Kolehmainen, Mari; Miller-Jones, James; Fürst, Felix; Yamaoka, Kazutaka; Akitaya, Hiroshi; Corbel, Stéphane; Coriat, Mickael; Done, Chris; Gandhi, Poshak; Harrison, Fiona A.; Huang, Kuiyun; Kaaret, Philip; Kalemci, Emrah; Kanda, Yuka; Migliari, Simone; Miller, Jon M.; Moritani, Yuki; Stern, Daniel; Uemura, Makoto; Urata, Yuji

    2015-07-01

    We report on multiwavelength measurements of the accreting black hole Swift J1753.5-0127 in the hard state at low luminosity (L ˜ 2.7 × 1036 erg s-1 assuming a distance of d = 3 kpc) in 2014 April. The radio emission is optically thick synchrotron, presumably from a compact jet. We take advantage of the low extinction (E(B-V)=0.45 from earlier work) and model the near-IR to UV emission with a multitemperature disk model. Assuming a black hole mass of MBH = 5 M⊙ and a system inclination of i = 40°, the fits imply an inner radius for the disk of Rin/Rg > 212d3(MBH/5 M⊙)-1, where Rg is the gravitational radius of the black hole and d3 is the distance to the source in units of 3 kpc. The outer radius is Rout/Rg=90,000 d3(MBH/5 M⊙)-1, which corresponds to 6.6 × 1010 d3 cm, consistent with the expected size of the disk given previous measurements of the size of the companion's Roche lobe. The 0.5-240 keV energy spectrum measured by Swift/X-ray Telescope (XRT), Suzaku (XIS, PIN, and GSO), and Nuclear Spectroscopic Telescope Array is relatively well characterized by an absorbed power law with a photon index of Γ = 1.722 ± 0.003 (90% confidence error), but a significant improvement is seen when a second continuum component is added. Reflection is a possibility, but no iron line is detected, implying a low iron abundance. We are able to fit the entire (radio to 240 keV) spectral energy distribution (SED) with a multitemperature disk component, a Comptonization component, and a broken power law, representing the emission from the compact jet. The broken power law cannot significantly contribute to the soft X-ray emission, and this may be related to why Swift J1753.5-0127 is an outlier in the radio/X-ray correlation. The broken power law (i.e., the jet) might dominate above 20 keV, which would constrain the break frequency to be between 2.4 × 1010 and 3.6 × 1012 Hz. Although the fits to the full SED do not include significant thermal emission in the X-ray band

  11. Gamma-Ray Bursts in the Swift Era

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.; Norris, Jay P.

    2007-01-01

    GRB research has undergone a revolution in the last two years. The launch of Swift, with its rapid slewing capability, has greatly increased the number and quality of GRB localizations and X-ray and optical afterglow lightcurves. Over 160 GRBs have been detected, and nearly all that have been followed up with the on-board narrow field telescopes. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations from ground based observatories, which have given host identifications and redshifts. Theoretical models for short GRB progenitors have, for the first time, been placed on a sound foundation. The hosts for the short GRBs differ in a fundamental way from the long GRB hosts: short GRBs tend to occur in non-star forming galaxies or regions, whereas long GRBs are strongly concentrated within star forming regions. Observations are consistent with a binary neutron star merger model, but other models involving old stellar populations are also viable. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at zeta approx. 5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova. The prospects for future progress are excellent given the >10 year orbital lifetime of the Swift satellite.

  12. On the Puzzling High-Energy Pulsations of the Energetic Radio-Quiet -Ray Pulsar J1813-1246

    NASA Technical Reports Server (NTRS)

    Marelli, M.; Harding, Alice K.; Pizzocaro, D.; De Luca, A.; Wood, K. S.; Caraveo, P.; Salvetti, D.; Parkinson, P. M.; Acero, F.

    2014-01-01

    We have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813-1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase.We extended the available Fermi ephemeris to five years.We found two glitches. The gamma-ray light curve is characterized by two peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the gamma-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and gamma-ray emission of J1813. The unique X-ray and gamma-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.

  13. Recurrent nova M31N 2008-12a: The 2017-eruption X-ray turn-off seen by Swift/XRT

    NASA Astrophysics Data System (ADS)

    Henze, M.; Darnley, M. J.; Shafter, A. W.; Kafka, S.; Kato, M.; Williams, S. C.; et al.

    2018-01-01

    The detection of supersoft X-ray source (SSS) emission from the 2017 eruption (ATel #11116) of the rapidly recurring nova M31N 2008-12a (Henze et al. 2014, 2015a, 2015b; Darnley et al. 2014, 2015, 2016) with the Neil Gehrels Swift observatory was announced in ATel #11130.

  14. RXTE Observations of Anomalous X-ray Pulsar 1E 1547.0-5408 During and After its 2008 and 2009 Outbursts

    NASA Technical Reports Server (NTRS)

    Dib, Rim; Kaspi, Victoria M.; Scholz, Paul; Gavriil, Fotis P.

    2012-01-01

    We present the results of Rossi X-ray Timing Explorer (RXTE) and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative upsilon-dot, such that upsilon-dot-dot was a factor of 60 larger than that reported in data from 2007. This upsilon-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, upsilon-dot-dot was consistent with zero, and upsilon-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening approx 15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.

  15. RXTE OBSERVATIONS OF ANOMALOUS X-RAY PULSAR 1E 1547.0-5408 DURING AND AFTER ITS 2008 AND 2009 OUTBURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Rim; Kaspi, Victoria M.; Scholz, Paul

    2012-03-20

    We present the results of Rossi X-ray Timing Explorer and Swift monitoring observations of the magnetar 1E 1547.0-5408 following the pulsar's radiative outbursts in 2008 October and 2009 January. We report on a study of the evolution of the timing properties and the pulsed flux from 2008 October 4 through 2009 December 26. In our timing study, a phase-coherent analysis shows that for the first 29 days following the 2008 outburst, there was a very fast increase in the magnitude of the rotational frequency derivative {nu}-dot, such that {nu}-ddot was a factor of {approx}60 larger than that reported in datamore » from 2007. This {nu}-dot magnitude increase occurred in concert with the decay of the pulsed flux following the start of the 2008 event. Following the 2009 outburst, for the first 23 days, {nu}-ddot was consistent with zero, and {nu}-dot had returned to close to its 2007 value. In contrast to the 2008 event, the 2009 outburst showed a major increase in persistent flux, relatively little change in the pulsed flux, and sudden significant spectral hardening {approx}15 days after the outburst. We show that, excluding the month following each of the outbursts, and because of the noise and the sparsity in the data, multiple plausible timing solutions fit the pulsar's frequency behavior. We note similarities in the behavior of 1E 1547.0-5408 following the 2008 outburst to that seen in the AXP 1E 1048.1-5937 following its 2001-2002 outburst and discuss this in terms of the magnetar model.« less

  16. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    NASA Astrophysics Data System (ADS)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A.

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  17. The X-Ray Structure and Spectrum of the Pulsar Wind Nebula Surrounding PSR B1853+01 in W44

    NASA Technical Reports Server (NTRS)

    Petre, R.; Kuntz, K. D.; Shelton, R. L.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We present the result of a Chandra ACIS observation of the pulsar PSR B1853+01 and its associated pulsar wind nebula (PWN), embedded within the supernova remnant W44. A hard band ACIS map cleanly distinguishes the PWN from the thermal emission of W44. The nebula is extended in the north-south direction, with an extent about half that of the radio emission. Morphological differences between the X-ray and radio images are apparent. Spectral fitting reveals a clear difference in spectral index between the hard emission from PSR B1853+01 (Gamma approx. 1.4) and the extended nebula (Gamma approx. 2.2). The more accurate values for the X-ray flux and spectral index are used refine estimates for PWN parameters, including magnetic field strength, the average Lorentz factor gamma of the particles in the wind, the magnetization parameter sigma, and the ratio k of electrons to other particles.

  18. The Bursting Pulsar GRO J1744-28: the Slowest Transitional Pulsar?

    NASA Astrophysics Data System (ADS)

    Court, J. M. C.; Altamirano, D.; Sanna, A.

    2018-04-01

    GRO J1744-28 (the Bursting Pulsar) is a neutron star LMXB which shows highly structured X-ray variability near the end of its X-ray outbursts. In this letter we show that this variability is analogous to that seen in Transitional Millisecond Pulsars such as PSR J1023+0038: `missing link' systems consisting of a pulsar nearing the end of its recycling phase. As such, we show that the Bursting Pulsar may also be associated with this class of objects. We discuss the implications of this scenario; in particular, we discuss the fact that the Bursting Pulsar has a significantly higher spin period and magnetic field than any other known Transitional Pulsar. If the Bursting Pulsar is indeed transitional, then this source opens a new window of oppurtunity to test our understanding of these systems in an entirely unexplored physical regime.

  19. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patruno, Alessandro; King, Andrew R.; Jaodand, Amruta

    The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deepmore » radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.« less

  20. X-Ray Analysis of the Proper Motion and Pulsar Wind Nebula for PSR J1741-2054

    NASA Technical Reports Server (NTRS)

    Auchettl, Katie; Slane, Patrick; Romani, Roger W.; Posselt, Bettina; Pavlov, George G.; Kargaltsev, Oleg; Ng, C-Y.; Temim, Tea; Weisskopf, Martin C.; Bykov, Andrei; hide

    2015-01-01

    We obtained six observations of PSR J1741-2054 using the Chandra ACIS-S detector totaling approx.300 ks. By registering this new epoch of observations to an archival observation taken 3.2 yr earlier using X-ray point sources in the field of view, we have measured the pulsar proper motion at micron = 109 +/- 10 mas yr(exp. -1) in a direction consistent with the symmetry axis of the observed H(alpha) nebula. We investigated the inferred past trajectory of the pulsar but find no compelling association with OB associations in which the progenitor may have originated. We confirm previous measurements of the pulsar spectrum as an absorbed power law with photon index gamma = 2.68 +/- 0.04, plus a blackbody with an emission radius of (4.5(+3.2/-2.5))d(0.38) km, for a DM-estimated distance of 0.38d(0.38) kpc and a temperature of 61.7 +/- 3.0 eV. Emission from the compact nebula is well described by an absorbed power law model with a photon index of gamma = 1.67 +/- 0.06, while the diffuse emission seen as a trail extending northeast of the pulsar shows no evidence of synchrotron cooling. We also applied image deconvolution techniques to search for small-scale structures in the immediate vicinity of the pulsar, but found no conclusive evidence for such structures.

  1. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  2. Population Studies of Radio and Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  3. A new model for soft gamma-ray repeaters and anomalous x-ray pulsars using quark stars

    NASA Astrophysics Data System (ADS)

    Niebergal, Brian Phillip

    2007-05-01

    If indeed the strange quark matter (SQM) hypothesis is true, then it is highly probable that some stars exist with an interior composed entirely of deconfined quarks. In this thesis the consequences of this SQM hypothesis are explored in the context of strange quark stars (QSs), and the manner in which they manifest themselves, namely Soft-Gamma ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs). Discussed in this thesis is the effect of the highly superconducting SQM, which is the formation of an Abrikosov lattice occupying the entire QS, and the result of spin-down on this lattice due to magnetic braking. By including a degenerate shell or torus surrounding the QS in this model, created during the quark-nova, SGRs and AXPs can be linked into a single classification and every observation of SGRs/AXPs to date can be explained.

  4. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    NASA Technical Reports Server (NTRS)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.

    2013-01-01

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  5. The Vela-X pulsar wind nebula revisited with four years of Fermi Large Area Telescope observations

    DOE PAGES

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; ...

    2013-08-21

    Here, the Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833–45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2° × 3° south of the pulsar and observed in the radio, X-ray, and very high energy γ-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysismore » of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.« less

  6. The 2006-2007 Active Phase of Anomalous X-Ray Pulsar 4U 0142+61: Radiative and Timing Changes, Bursts,and Burst Spectral Features

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Dib, Rim; Kaspi, Victoria M.

    2011-01-01

    After at least 6 years of quiescence, Anomalous X-ray Pulsar (AXP) 4U 0142+61 entered an active phase in 2006 March that lasted several months and included six X-ray bursts as well as many changes in the persistent X-ray emission. The bursts, the first seen from this AXP in > 11 years of Rossi X-ray Timing Explorer monitoring, all occurred in the interval between 2006 April 6 and 2007 February 7. The burst durations ranged from 0.4 - 1.8 x 10(exp 3) s. The first five burst spectra are well modeled by blackbodies, with temperatures kT approx 2 - 9 keV. However, the sixth burst had a complicated spectrum that is well characterized by a blackbody plus two emission features whose amplitude varied throughout the burst. The most prominent feature was at 14.0 keV. Upon entry into the active phase the pulsar showed a significant change in pulse morphology and a likely timing glitch. The glitch had a total frequency jump of (1.9+/-0.4) x 10(exp -7) Hz, which recovered with a decay time of 17+/-2 days by more than the initial jump, implying a net spin-down of the pulsar. Within the framework of the magnetar model, the net spin-down of the star could be explained by regions of the superfluid that rotate. slower than the rest. The bursts, flux enhancements, and pulse morphology changes can be explained as arising from crustal deformations due to stresses imposed by the highly twisted internal magnetic field. However, unlike other AXP outbursts, we cannot account for a major twist being implanted in the magnetosphere.

  7. Multi-wavelength studies of Redback and Black Widow pulsars

    NASA Astrophysics Data System (ADS)

    Mignani, Roberto; Salvetti, David; Pallanca, Cristina; Marelli, Martino; De Luca, Andrea; Belfiore, Andrea Mario

    2016-07-01

    The unexpected Fermi discovery of more than 70 gamma-ray milli-second pulsars (MSPs) outside globular clusters, spurred the scientific interest on these objects, and opened new horizons in MSP astronomy and on the study of the evolution of neutron stars in compact binary systems, including the ablation process of the companion star in the so-called Black Widow (BW) and Redback (RB) systems. It is thought that an important fraction of the tens of unidentified pulsar-like Fermi sources at high latitude are MSPs, yet unidentified, owing to their extremely elusive radio emission. As shown in a few recent cases, optical observations have been instrumental to spot binary MSP candidates through the discovery of periodic modulations in the flux of their putative companions. In this contribution, we report on the recent follow-ups of several candidate binary MSPs carried out with optical and X-ray facilities, e.g. GROND and XMM-Newton, Swift. This program already lead to identification of the Fermi source 3FGL 2036.6-5618 as candidate RB system, through the detection of periodic (orbital) modulation of its X/optical flux (Salvetti et al. 2015).

  8. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  9. The Swift Burst Alert Telescope Detected Seyfert 1 Galaxies: X-Ray Broadband Properties and Warm Absorbers

    NASA Technical Reports Server (NTRS)

    Winter, Lisa M.; Veilleux, Sylvain; McKernan, Barry; Kallman, T.

    2012-01-01

    We present results from an analysis of the broadband, 0.3-195 keV, X-ray spectra of 48 Seyfert 1-1.5 sources detected in the very hard X-rays with the Swift Burst Alert Telescope (BAT). This sample is selected in an all-sky survey conducted in the 14-195 keV band. Therefore, our sources are largely unbiased toward both obscuration and host galaxy properties. Our detailed and uniform model fits to Suzaku/BAT and XMM-Newton/BAT spectra include the neutral absorption, direct power-law, reflected emission, soft excess, warm absorption, and narrow Fe I K[alpha] emission properties for the entire sample. We significantly detect O VII and O VIII edges in 52% of our sample. The strength of these detections is strongly correlated with the neutral column density measured in the spectrum. Among the strongest detections, X-ray grating and UV observations, where available, indicate outflowing material. The ionized column densities of sources with O VII and O VIII detections are clustered in a narrow range with Nwarm [approx] 1021 cm-2, while sources without strong detections have column densities of ionized gas an order of magnitude lower. Therefore, we note that sources without strong detections likely have warm ionized outflows present but at low column densities that are not easily probed with current X-ray observations. Sources with strong complex absorption have a strong soft excess, which may or may not be due to difficulties in modeling the complex spectra of these sources. Still, the detection of a flat [Gamma] [approx] 1 and a strong soft excess may allow us to infer the presence of strong absorption in low signal-to-noise active galactic nucleus spectra. Additionally, we include a useful correction from the Swift BAT luminosity to bolometric luminosity, based on a comparison of our spectral fitting results with published spectral energy distribution fits from 33 of our sources.

  10. Optical and X-ray radiation from fast pulsars - Effects of duty cycle and spectral shape

    NASA Technical Reports Server (NTRS)

    Pacini, F.; Salvati, M.

    1987-01-01

    The optical luminosity of PSR 0540 is considerably stronger than what one would have predicted in a simple model developed earlier where the pulses are synchrotron radiation by secondary electrons near the light cylinder. This discrepancy can be eliminated if one incorporates into the model the effects of the large duty cycle and the spectral properties of PSR 0540. It is also shown that the same model can provide a reasonable fit to the observed X-ray fluxes from fast pulsars.

  11. Magnetic pair creation transparency in gamma-ray pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.

    Magnetic pair creation, gamma → e+e- , is a key component in polar cap models of gamma-ray pulsars, and has informed assumptions about the still poorly understood radio emission. The Fermi Gamma-Ray Space Telescope has now detected more than 100 gamma-ray pulsars, providing rich information for the interpretation of young energetic pulsars and old millisecond pulsars. Fermi observations have established that the high-energy spectra of most of these pulsars have exponential turnovers in the 1--10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres, so their energy can be used to provide a physically motivated lower bound to the typical altitude of GeV band emission. This work computes pair creation opacities for photon propagation in neutron star magnetospheres. It explores the constraints that can be placed on the emission location of Fermi gamma-rays due to single-photon pair creation transparency below the turnover energy, as well as the limitations of this technique. These altitude bounds are typically in the range of 2--6 neutron star radii for the Fermi pulsar sample, and provide one of the few possible constraints on the emission altitude in radio quiet pulsars that do not possess double-peaked pulse profiles.

  12. Discovery of Nine Gamma-Ray Pulsars in Fermi-Lat Data Using a New Blind Search Method

    NASA Technical Reports Server (NTRS)

    Celik-Tinmaz, Ozlem; Ferrara, E. C.; Pletsch, H. J.; Allen, B.; Aulbert, C.; Fehrmann, H.; Kramer, M.; Barr, E. D.; Champion, D. J.; Eatough, R. P.; hide

    2011-01-01

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs Jl803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6 x 10(exp 35) ergs per second and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J010622+3749, Jl620-4927, Jl746-3239, J2028+3332,J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| greater than 10 degrees). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2x 10(exp 11)G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3 x l0(exp 33) erg per second) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.

  13. Superorbital Periodic Modulation in Wind-Accretion High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Krimm, Hans A.

    2013-01-01

    We report the discovery using data from the Swift-Burst Alert Telescope (BAT) of superorbital modulation in the wind-accretion supergiant high-mass X-ray binaries 4U 1909+07 (= X 1908+075), IGR J16418-4532, and IGR J16479-4514. Together with already known superorbital periodicities in 2S 0114+650 and IGR J16493-4348, the systems exhibit a monotonic relationship between superorbital and orbital periods. These systems include both supergiant fast X-ray transients and classical supergiant systems, and have a range of inclination angles. This suggests an underlying physical mechanism which is connected to the orbital period. In addition to these sources with clear detections of superorbital periods, IGR J16393-4643 (= AX J16390.4-4642) is identified as a system that may have superorbital modulation due to the coincidence of low-amplitude peaks in power spectra derived from BAT, Rossi X-Ray Timing Explorer Proportional Counter Array, and International Gamma-Ray Astrophysics Laboratory light curves. 1E 1145.1-6141 may also be worthy of further attention due to the amount of low-frequency modulation of its light curve. However, we find that the presence of superorbital modulation is not a universal feature of wind-accretion supergiant X-ray binaries.

  14. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Brent F.; Wolfram, Kenneth D.; Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamicmore » structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.« less

  15. The Imaging X-Ray Polarimetry Explorer (IXPE): Overview

    NASA Technical Reports Server (NTRS)

    O'Dell, Steve; Weisskopf, M.; Soffitta, P.; Baldini, L.; Bellazzini, R.; Costa, E.; Elsner, R.; Kaspi, V.; Kolodziejczak, J.; Latronico, L.; hide

    2017-01-01

    Mission background: Imaging x-ray polarimetry in 2–8 kiloelectronvolt band; NASA Astrophysics Small Explorer (SMEX) selected in 2017 January. Orbit: Pegasus-XL (airborne) launch in 2021, from Kwajalein; Equatorial circular orbit at greater than or approximately equal to 540 kilometers (620 kilometers, goal) altitude. Flight system: Spacecraft, payload structure, and integration by Ball Aerospace - Deployable payload boom from Orbital-ATK, under contract to Ball; X-ray Mirror Module Assemblies by NASA/MSFC; X-ray (polarization-sensitive) Instruments by IAPS/INAF (Istituto di Astrofisica e Planetologia Spaziali / Istituto Nazionale di Astrofisica) and INFN (Istituto Nazionale di Fisica Nucleare). Ground system: ASI (Agenzia Spaziale Italiana) Malindi ground station, with Singapore backup; Mission Operations Center at LASP (Laboratory for Atmospheric and Space Physics, University of Colorado); Science Operations Center at NASA/MSFC; Data archive at HEASARC (High Energy Astrophysics Science Archive Research Center), (NASA/GSFC), mirror at ASI Data Center. Science: Active galactic nuclei; Microquasars; Radio pulsars and pulsar wind nebulae; Supernova remnants; Magnetars; Accreting x-ray pulsars.

  16. Observational properties of pulsars.

    PubMed

    Manchester, R N

    2004-04-23

    Pulsars are remarkable clocklike celestial sources that are believed to be rotating neutron stars formed in supernova explosions. They are valuable tools for investigations into topics such as neutron star interiors, globular cluster dynamics, the structure of the interstellar medium, and gravitational physics. Searches at radio and x-ray wavelengths over the past 5 years have resulted in a large increase in the number of known pulsars and the discovery of new populations of pulsars, posing challenges to theories of binary and stellar evolution. Recent images at radio, optical, and x-ray wavelengths have revealed structures resulting from the interaction of pulsar winds with the surrounding interstellar medium, giving new insights into the physics of pulsars.

  17. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  18. A deceleration search for magnetar pulsations in the X-ray plateaus of short GRBs

    NASA Astrophysics Data System (ADS)

    Rowlinson, A.; Patruno, A.; O'Brien, P. T.

    2017-11-01

    A newly formed magnetar has been proposed as the central engine of short GRBs to explain ongoing energy injection giving observed plateau phases in the X-ray light curves. These rapidly spinning magnetars may be capable of emitting pulsed emission comparable to known pulsars and magnetars. In this paper we show that, if present, a periodic signal would be detectable during the plateau phases observed using the Swift/X-Ray Telescope recording data in Window Timing mode. We conduct a targeted deceleration search for a periodic signal from a newly formed magnetar in 2 Swift short GRBs and rule out any periodic signals in the frequency band 10-285 Hz to ≈15-30 per cent rms. These results demonstrate that we would be able to detect pulsations from the magnetar central engine of short GRBs if they contribute to 15-30 per cent of the total emission. We consider these constraints in the context of the potential emission mechanisms. The non-detection is consistent with the emission being reprocessed in the surrounding environment or with the rotation axis being highly aligned with the observing angle. As the emission may be reprocessed, the expected periodic emission may only constitute a few per cent of the total emission and be undetectable in our observations. Applying this strategy to future observations of the plateau phases with more sensitive X-ray telescopes may lead to the detection of the periodic signal.

  19. XMM-Newton Observations of Four Millisecond Pulsars

    NASA Technical Reports Server (NTRS)

    Zavlin, Vyacheslav E.

    2005-01-01

    I present an analysis of the XMM-Newton observations of four millisecond pulsars, J0437-4715, J2124-3358, J1024-0719, and J0034-0534. The new data provide strong evidence of thermal emission in the X-ray flux detected from the first three objects. This thermal component is best interpreted as radiation from pulsar polar caps covered with a nonmagnetic hydrogen atmosphere. A nonthermal power-law component, dominating at energies E greater than or equal to 3 keV, can also be present in the detected X-ray emission. For PSR J0437-4715, the timing analysis reveals that the shape and pulsed fraction of the pulsar light curves are energy dependent. This, together with the results obtained from the phase-resolved spectroscopy, supports the two-component (thermal plus nonthermal) interpretation of the pulsar's X-ray radiation. Highly significant pulsations have been found in the X-ray flux of PSRs 52124-3358 and 51024-0719. For PSR 50034-0534, a possible X-ray counterpart of the radio pulsar has been suggested. The inferred properties of the detected thermal emission are compared with predictions of radio pulsar models.

  20. X Persei - correlation between H-alpha and X-ray variability

    NASA Astrophysics Data System (ADS)

    Zamanov, R.; Stoyanov, K. A.; Petrov, N.; Nikolov, Y.; Marchev, D.; Wolter, U.

    2018-03-01

    We performed H-alpha spectroscopic observations of the Be/X-ray binary X Per, optical counterpart of the slow X-ray pulsar 4U 0352+30, using the 2.0m telescope of the Rozhen National Astronomical Observatory, Bulgaria and the 1.2m TIGRE telescope located in Mexico.

  1. X-ray and Optical Explorations of Spiders

    NASA Astrophysics Data System (ADS)

    Roberts, M.; Al Noori, H.; Torres, R.; Russell, D.; Mclaughlin, M.; Gentile, P.

    2017-10-01

    Black widows and redbacks are binary systems consisting of a millisecond pulsar in a close binary with a companion which is having matter driven off of its surface by the pulsar wind. X-rays due to an intrabinary shock have been observed from many of these systems, as well as orbital variations in the optical emission from the companion due to heating and tidal distortion. We have been systematically studying these systems in radio, optical and X-rays. Here we will present an overview of X-ray and optical studies of these systems, including new XMM-Newton data obtained from several of these systems, along with new optical photometry.

  2. PSR J1907+0602: A radio-faint gamma-ray pulsar powering a bright TeV pulsar wind nebula

    DOE PAGES

    Abdo, A. A.

    2010-02-06

    Here, we present multiwavelength studies of the 106.6 ms γ-ray pulsar PSR J1907+06 near the TeV source MGRO J1908+06. Timing observations with Fermi result in a precise position determination for the pulsar of R.A. = 19 h07 m54more » $$s\\atop{.}$$7(2), decl. = +06°02'16(2)'' placing the pulsar firmly within the TeV source extent, suggesting the TeV source is the pulsar wind nebula of PSR J1907+0602. Pulsed γ-ray emission is clearly visible at energies from 100 MeV to above 10 GeV. The phase-averaged power-law index in the energy range E > 0.1 GeV is Γ = 1.76 ± 0.05 with an exponential cutoff energy E c = 3.6 ± 0.5 GeV. We present the energy-dependent γ-ray pulsed light curve as well as limits on off-pulse emission associated with the TeV source. We also report the detection of very faint (flux density of sime 3.4 μJy) radio pulsations with the Arecibo telescope at 1.5 GHz having a dispersion measure DM = 82.1 ± 1.1 cm –3 pc. This indicates a distance of 3.2 ± 0.6 kpc and a pseudo-luminosity of L 1400 sime 0.035 mJy kpc 2. Furthermore, a Chandra ACIS observation revealed an absorbed, possibly extended, compact (lesssim4'') X-ray source with significant nonthermal emission at R.A. = 19 h07 m54$$s\\atop{.}$$76, decl. = +06°02'14farcs6 with a flux of 2.3 +0.6 –1.4 × 10 –14 erg cm –2 s –1. From archival ASCA observations, we place upper limits on any arcminute scale 2-10 keV X-ray emission of ~1 × 10 –13 erg cm –2 s –1. The implied distance to the pulsar is compatible with that of the supernova remnant G40.5 – 0.5, located on the far side of the TeV nebula from PSR J1907+0602, and the S74 molecular cloud on the nearer side which we discuss as potential birth sites.« less

  3. Correlations of Prompt and Afterglow Emission in Swift Long and Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrel, Neil; Barthelmy, S. d.; Burrows, D. N.; Cannizzo, J. K.; Chincarini, G.; Feinmore, E.; Kouveliotou, C.; O'Brien, P.; Palmer, D. M.; Racusin, J.; hide

    2008-01-01

    Correlation studies of prompt and afterglow emissions from gamma-ray bursts (GRBs) between different spectral bands has been difficult to do in the past because few bursts had comprehensive and intercomparable afterglow measurements. In this paper we present a large and uniform data set for correlation analysis based on bursts detected by the Swift mission. For the first time, short and long bursts can be analyzed and compared. It is found for both classes that the optical, X-ray and gamma-ray emissions are linearly correlated, but with a large spread about the correlation line; stronger bursts tend to have brighter afterglows, and bursts with brighter X-ray afterglow tend to have brighter optical afterglow. Short bursts are, on average, weaker in both prompt and afterglow emissions. No short bursts are seen with extremely low optical to X-ray ratio as occurs for 'dark' long bursts. Although statistics are still poor for short bursts, there is no evidence yet for a subgroup of short bursts with high extinction as there is for long bursts. Long bursts are detected in the dark category at the same fraction as for pre-Swift bursts. Interesting cases are discovered of long bursts that are detected in the optical, and yet have low enough optical to X-ray ratio to be classified as dark. For the prompt emission, short and long bursts have different average tracks on flux vs fluence plots. In Swift, GRB detections tend to be fluence limited for short bursts and flux limited for long events.

  4. Ultra-high energy cosmic rays from white dwarf pulsars and the Hillas criterion

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Coelho, Jaziel G.; Malheiro, M.

    2017-06-01

    The origins of ultra-high-energy cosmic rays (E ≳ 1019 eV) are a mystery and still under debate in astroparticle physics. In recent years some efforts were made to understand their nature. In this contribution we consider the possibility of Some Soft Gamma Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) beeing white dwarf pulsars, and show that these sources can achieve large electromagnetic potentials on their surface that accelerate particle almost at the speed of light, with energies E ~ 1020-21 eV. The sources SGRs/AXPs considered as highly magnetized white dwarfs are well described in the Hillas diagram, lying close to the AR Sorpii and AE Aquarii which are understood as white dwarf pulsars.

  5. Binary millisecond pulsar discovery via gamma-ray pulsations.

    PubMed

    Pletsch, H J; Guillemot, L; Fehrmann, H; Allen, B; Kramer, M; Aulbert, C; Ackermann, M; Ajello, M; de Angelis, A; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Borgland, A W; Bottacini, E; Brandt, T J; Bregeon, J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Çelik, Ö; Charles, E; Chaves, R C G; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; D'Ammando, F; Dermer, C D; Digel, S W; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Ferrara, E C; Franckowiak, A; Fukazawa, Y; Fusco, P; Gargano, F; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; den Hartog, P R; Hayashida, M; Hays, E; Hill, A B; Hou, X; Hughes, R E; Jóhannesson, G; Jackson, M S; Jogler, T; Johnson, A S; Johnson, W N; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Massaro, F; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nemmen, R; Nuss, E; Ohno, M; Ohsugi, T; Omodei, N; Orienti, M; Orlando, E; de Palma, F; Paneque, D; Perkins, J S; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Romoli, C; Sanchez, D A; Saz Parkinson, P M; Schulz, A; Sgrò, C; do Couto e Silva, E; Siskind, E J; Smith, D A; Spandre, G; Spinelli, P; Suson, D J; Takahashi, H; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Tinivella, M; Troja, E; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Waite, A P; Winer, B L; Wood, K S; Wood, M; Yang, Z; Zimmer, S

    2012-12-07

    Millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such "recycled" rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. The pulsar is in a circular orbit with an orbital period of only 93 minutes, the shortest of any spin-powered pulsar binary ever found.

  6. The Swift Gamma-ray Burst Explorer: Early views into Black-hole Creation

    NASA Technical Reports Server (NTRS)

    Hill, Joe

    2006-01-01

    Swift has exceeded every pre-launch predicted advance in GRB science. It has discovered the farthest GRB ever seen and identified new GRBs at a rate of 100/year. It has also explored a brand new time interval in GRB light curves by revealing unpredicted phenomena of GRB flares and rapid x-ray afterglow declines. Swift has conducted 20,00o successful slews to sources and is predicted to stay in orbit until 2022.

  7. ON THE PUZZLING HIGH-ENERGY PULSATIONS OF THE ENERGETIC RADIO-QUIET γ-RAY PULSAR J1813–1246

    DOE PAGES

    Marelli, M.; Harding, A.; Pizzocaro, D.; ...

    2014-10-28

    In this study, we have analyzed the new deep XMM-Newton and Chandra observations of the energetic, radio-quiet pulsar J1813–1246. The X-ray spectrum is nonthermal, very hard, and absorbed. Based on spectral considerations, we propose that J1813 is located at a distance further than 2.5 kpc. J1813 is highly pulsed in the X-ray domain, with a light curve characterized by two sharp, asymmetrical peaks, separated by 0.5 in phase. We detected no significant X-ray spectral changes during the pulsar phase. We extended the available Fermi ephemeris to five years. We found two glitches. The γ-ray light curve is characterized by twomore » peaks, separated by 0.5 in phase, with a bridge in between and no off-pulse emission. The spectrum shows clear evolution in phase, being softer at the peaks and hardening toward the bridge. Surprisingly, both X-ray peaks lag behind the γ-ray ones by a quarter of phase. We found a hint of detection in the 30-500 keV band with INTEGRAL, which is consistent with the extrapolation of both the soft X-ray and γ-ray emission of J1813. The unique X-ray and γ-ray phasing suggests a singular emission geometry. We discuss some possibilities within the current pulsar emission models. Finally, we develop an alternative geometrical model where the X-ray emission comes from polar cap pair cascades.« less

  8. FERMI large area telescope observations of the vela-x pulsar wind nebula

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-03-18

    Here, we report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833–45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8° diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2° × 3° area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0°more » $$_.$$88 ± 0°$$_.$$12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 ± 0.09 ± 0.15 and integral flux above 100 MeV of (4.73 ± 0.63 ± 1.32) × 10 –7 cm –2 s –1. The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.« less

  9. Pair Creation Transparency in Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.

    Pulsars are rapidly rotating, highly magnetized neutron stars that produce photon pulses in energies from radio to gamma-rays. The population of known gamma-ray pulsars has been increased nearly twenty-fold in the past six years since the launch of the Fermi Gamma-Ray Space Telescope; it now exceeds 145 sources and has defined an important part of Fermi's science legacy. In order to understand the detectability of pulsars in gamma-rays, it is important to consider not only the radiative mechanisms that produce gamma-rays, but the processes that can attenuate photons before they can leave the pulsar magnetosphere. Here I explore two such processes, one-photon magnetic pair creation and two-photon pair creation. Magnetic pair creation has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. Among the population characteristics well established for Fermi pulsars is the common occurrence of exponential turnovers in the spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. In this thesis, I explore such pair transparency constraints below the turnover energy and update earlier altitude bound determinations that have been deployed in various gamma-ray pulsar papers by the Fermi-LAT collaboration. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the

  10. VizieR Online Data Catalog: Gamma Ray Bursts detected by Swift (2004-2015) (Buchner+, 2017)

    NASA Astrophysics Data System (ADS)

    Buchner, J.; Schulze, S.; Bauer, F.

    2016-04-01

    Gamma Ray Bursts (GRB) typically show intrinsic LOS column densities of 1021-23cm2. We performed a thorough statistical analysis of all available X-ray spectra of Swift-detected GRBs. In the associated paper we use sub-samples to analyse the population properties of LGRB and concluded that the obscuration is due to large-scale gas inside the GRB host galaxy, due to the shape of the column density distribution and its correlation with host stellar mass. This catalogue presents X-ray spectral analysis of all Swift-detected GRBs. It includes information about the GRB (ID, Swift Trigger ID, duration, RA/Dec in J2000, galactic coordinates, Milky Way column density). Those properties are taken from the http://www.swift.ac.uk/ and http://gcn.gsfc.nasa.gov/ websites. We removed prompt emission and flares, leaving only a certain time interval for spectral extraction. We use two models to analyse X-ray spectra: TBABS and SPHERE. Both include updated abundances and cross-sections as compared to previous works. The latter includes the effects of Compton-scattering and FeKa fluorescence relevant at high column densities. Columns list the posterior mean, standard deviation, 10% and 90% quantiles. Note that the column densities are converted to hydrogen assuming local ISM abundances, but are derived primarily from photo-electric absorption of e.g. Fe and O, and therefore primarily measure metal gas. (2 data files).

  11. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  12. The Fermi Gamma-Ray Space Telescope discovers the pulsar in the young galactic supernova remnant CTA 1.

    PubMed

    Abdo, A A; Ackermann, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bogaert, G; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Carlson, P; Casandjian, J M; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Dormody, M; do Couto E Silva, E; Drell, P S; Dubois, R; Dumora, D; Edmonds, Y; Farnier, C; Focke, W B; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Harding, A K; Hartman, R C; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Kanai, Y; Kanbach, G; Katagiri, H; Kawai, N; Kerr, M; Kishishita, T; Kiziltan, B; Knödlseder, J; Kocian, M L; Komin, N; Kuehn, F; Kuss, M; Latronico, L; Lemoine-Goumard, M; Longo, F; Lonjou, V; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; McGlynn, S; Meurer, C; Michelson, P F; Mineo, T; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Nolan, P L; Nuss, E; Ohno, M; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piano, G; Pieri, L; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Parkinson, P M Saz; Schalk, T L; Sellerholm, A; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Thorsett, S E; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Usher, T L; Van Etten, A; Vilchez, N; Vitale, V; Wang, P; Watters, K; Winer, B L; Wood, K S; Yasuda, H; Ylinen, T; Ziegler, M

    2008-11-21

    Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

  13. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  14. The X-ray Absorber in the X-ray Transient NLS1 WPVS 007

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    This proposal is for a funding request for an approved XMM-Newton observations of the X-ray transient Narrow-Line Seyfert 1 galaxy WPVS 007. The request is for 4 month of salary for the PI for one year in order to do the data analysis, publish the results, and attend an international AGN meeting. XMM will observe WPVS 007 in June 2010 simultaneously with HST, Chandra, and Swift. The goal is to establish a tight connection between the UV broad absorption line troughs found in FUSE observations and the strong partial covering absorber feature found by Swift. WPVS 007 showed a dramatic transformation into a Broad Absorption line QSO like AGN between a 1996 HST observation and a 2003 FUSE observation. Several Swift monitoring observations have suggested that the absorber may have started to disappear. Therefore it is crucial for our HST COS UV spectroscopy to know what the status of the X-ray absorber is. The XMM observation will provide a well-exposed X-ray spectrum even if WPVS 007 will be in a low flux state. This spectrum will enable us to put constraints on the absorption column density and covering fraction of the partial covering absorber.

  15. A new transient pulsar in the Small Magellanic Cloud with an unusual x-ray spectrum

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1994-01-01

    This article reports the discovery of a luminous (3.5 x 10(exp 37) ergs/sec over the 0.2 to 2 keV band) transient X-ray pulsar in the Small Magellanic Cloud (SMC) with an extremely soft component to its X-ray spectrum. This is the first time that a spectrum of this type has been seen in this class of X-ray source. The pulse period is 2.7632 s, and the pulse modulation appears to vary with energy from nearly unpulsed in the low-energy band of the ROSAT Position Sensitive Proportional Counter (PSPC) (0.07 to 0.4 keV) to about 50% in the high-energy band (1.0 to 2.4 keV). The object, RX J0059.2-7138, also shows flickering variability in its X-ray emission on timescales of 50 to 100s. The pulse-phase-averaged PSPC X-ray spectrum can be well described by a two-component source model seen through an absorbing column density of approximately 10(exp 21) atoms cm(exp -2). One spectral component is a power law with photon index 2.4. The other component is significantly softer and can be described by either a steeply falling power law or a blackbody with a temperature KT(sub BB) approximately 35 eV. Ths component is transient, but evidently upulsed, and, for the blackbody model fits, requires a large bolometric luminosity: near, or even several times greater than, the Eddington luminosity for a 1.4 solar mass object. When these characteristics of its soft emission are considered, RX J0059.2-7138 appears quite similar to other X-ray sources in the magellanic Clouds, such as CAL 83, CAL 87, and RX J0527.8-6954, which show only extreme ultrasoft (EUS) X-ray spectra. The discovery of RX J0059.2-7138, a probably high-mass X-ray binary, clearly indicates that EUS spectra may arise from accretion-powered neutron-star X-ray sources. This result lends support to the idea that some of the 'pure' EUS sources may be shrouded low-mass X-ray binaries rather than accreting white dwarfs.

  16. SAX J1808.4$-$3658, an accreting millisecond pulsar shining in gamma rays?

    DOE PAGES

    de Oña Wilhelmi, E.; Papitto, A.; Li, J.; ...

    2015-12-31

    We report the detection of a possible gamma-ray counterpart of the accreting millisec- ond pulsar SAXJ1808.4–3658. The analysis of ~6 years of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope (Fermi-LAT) within a re- gion of 15° radius around the position of the pulsar reveals a point gamma-ray source detected at a significance of ~6σ (Test Statistic TS = 32), with position compatible with that of SAXJ1808.4–3658 within 95% Confidence Level. The energy flux in the energy range between 0.6 GeV and 10 GeV amounts to (2.1 ± 0.5) × 10 -12 erg cm -2more » s -1 and the spectrum is well-represented by a power-law function with photon index 2.1±0.1. We searched for significant variation of the flux at the spin frequency of the pulsar and for orbital modulation, taking into account the trials due to the uncertain- ties in the position, the orbital motion of the pulsar and the intrinsic evolution of the pulsar spin. No significant deviation from a constant flux at any time scale was found, preventing a firm identification via time variability. Nonetheless, the association of the LAT source as the gamma-ray counterpart of SAXJ1808.4–3658 would match the emission expected from the millisecond pulsar, if it switches on as a rotation-powered source during X-ray quiescence.« less

  17. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  18. Simultaneous Planck , Swift , and Fermi observations of X-ray and γ -ray selected blazars

    DOE PAGES

    Giommi, P.; Polenta, G.; Lähteenmäki, A.; ...

    2012-05-22

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and γ-ray bands, with additional 5GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all themore » BL Lac objects have been detected by the Fermi Large AreaTelescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the γ-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with >α> ~ 0 up to about 70GHz, above which it steepens to ~ -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (ν peak S) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with peak S> = 10 13.1 ± 0.1 Hz, while the mean inverse Compton peak frequency, >ν peak IC>, ranges from 1021 to 1022 Hz. The distributions of ν peak S and ν peak IC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars, defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with γ-ray selected blazars peaking at ~7 or more, and radio

  19. Simultaneous Planck, Swift, and Fermi Observations of X-ray and Gamma-ray Selected Blazars

    NASA Technical Reports Server (NTRS)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez, Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2012-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and gamma-ray bands, with additional 5 GHz flux-density limits to ensure a good probability of a Planck detection. We compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set allows us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by the Fermi Large Area Telescope (LAT), whereas 30% to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma-ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with (alpha) approx 0 up to about 70GHz, above which it steepens to (alpha) approx -0.65. The BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (nu(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (nu(sup s)(sub peak)) = 10(exp 13.1 +/- 0.1) Hz, while the mean inverse Compton peak frequency, (nu(sup IC)(sub peak)), ranges from 10(exp 21) to 10(exp 22) Hz. The distributions of nu(sup s)(sub peak) and nu(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars. defined as the ratio of the inverse Compton to synchrotron peak luminosities, ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends

  20. Simultaneous Planck, Swift, and Fermi Observations of X-Ray and gamma-Ray Selected Blazars

    NASA Technical Reports Server (NTRS)

    Giommi, P.; Polenta, G.; Laehteenmaeki, A.; Thompson, D. J.; Capalbi, M.; Cutini, S.; Gasparrini, D.; Gonzalez-Nuevo, J.; Leon-Tavares, J.; Lopez-Caniego, M.; hide

    2011-01-01

    We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and -ray bands, and we compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi Large Area Telescope (LAT), whereas 30 to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the gamma ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, with [alpha] approximately 0 up to about 70 GHz, above which it steepens to [alpha] approximately -0.65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency (v(sup IC) (sub (PEAK)), ranges from 10(sup 21) to 10(sup 22) HZ. The distribution of the rest-frame synchrotron peak frequency (v(sup s)(sub peak)) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples with (v(sup s)(sub peak) = 10(sup 13:1 plus or minus 0.1) Hz, while the mean inverse-Compton peak frequency,(v(sup IC)(sub peak) ranges from 10(sup 21) to 10(sup 22) Hz. The distributions of v(sup S)(sub peak) and of v(sup IC)(sub peak) of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method

  1. Discovery of the Millisecond Pulsar PSR J2043+1711 in a Fermi Source with the Nancay Radio Telescope

    NASA Technical Reports Server (NTRS)

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; Johnson, T. J.; Takahashi, Y.; Kataoka, J.; Desvignes, G.; Camilo, F.; Ferrara, E. C.; Harding, A. K.; hide

    2012-01-01

    We report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nancay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d approx. < 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nancay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral properties are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 micro s. This and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space-time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 solar Mass can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nancay Radio Telescope to date.

  2. Modeling the non-recycled Fermi Gamma-ray pulsar population

    DOE PAGES

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.; ...

    2013-09-25

    Here, we use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L γ depends on the period P and the period derivativemore » $$\\dot{P}$$. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L γ on P and $$\\dot{P}$$, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is $$L_\\gamma \\propto P^{-a} \\dot{P}^{b}$$ where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar to but not identical to the commonly assumed $$L_\\gamma \\propto \\sqrt{\\dot{E}} \\propto P^{-1.5} \\dot{P}^{0.5}$$. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 1010 G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. As a result, we note that these predictions significantly depend on our model assumptions.« less

  3. MODELING THE NON-RECYCLED FERMI GAMMA-RAY PULSAR POPULATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perera, B. B. P.; McLaughlin, M. A.; Cordes, J. M.

    2013-10-10

    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L{sub γ} depends on the period P and the period derivative P-dot . We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L{sub γ} on P and P-dot , including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L{sub γ}∝P{sup -a} P-dot {sup b} where a = 1.36 ± 0.03 and b = 0.44 ± 0.02, similar tomore » but not identical to the commonly assumed L{sub γ}∝√( E-dot )∝P{sup -1.5} P-dot {sup 0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7π for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2σ upper limit on the average braking index and a 2σ lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 × 10{sup 10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the 2 yr sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected 5 yr sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.« less

  4. Bayesian Inference on the Radio-quietness of Gamma-ray Pulsars

    NASA Astrophysics Data System (ADS)

    Yu, Hoi-Fung; Hui, Chung Yue; Kong, Albert K. H.; Takata, Jumpei

    2018-04-01

    For the first time we demonstrate using a robust Bayesian approach to analyze the populations of radio-quiet (RQ) and radio-loud (RL) gamma-ray pulsars. We quantify their differences and obtain their distributions of the radio-cone opening half-angle δ and the magnetic inclination angle α by Bayesian inference. In contrast to the conventional frequentist point estimations that might be non-representative when the distribution is highly skewed or multi-modal, which is often the case when data points are scarce, Bayesian statistics displays the complete posterior distribution that the uncertainties can be readily obtained regardless of the skewness and modality. We found that the spin period, the magnetic field strength at the light cylinder, the spin-down power, the gamma-ray-to-X-ray flux ratio, and the spectral curvature significance of the two groups of pulsars exhibit significant differences at the 99% level. Using Bayesian inference, we are able to infer the values and uncertainties of δ and α from the distribution of RQ and RL pulsars. We found that δ is between 10° and 35° and the distribution of α is skewed toward large values.

  5. A NEW, LOW BRAKING INDEX FOR THE LMC PULSAR B0540–69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. E.; Harding, A. K.; Guillemot, L.

    2016-08-20

    We report the results of a 16 month monitoring campaign using the Swift satellite of PSR B0540–69, a young pulsar in the Large Magellanic Cloud. Phase connection was maintained throughout the campaign so that a reliable ephemeris could be determined, and the length of the campaign is adequate to accurately determine the spin frequency ν and its first and second derivatives. The braking index n is 0.031 ± 0.013 (90% confidence), a value much lower than previously reported for B0540–69 and almost all other young pulsars. We use data from the extensive monitoring campaign with Rossi X-ray Timing Explorer tomore » show that timing noise is unlikely to significantly affect the measurement. This is the first measurement of the braking index in the pulsar's recently discovered high spin-down state. We discuss possible mechanisms for producing the low braking index.« less

  6. The 105 month Swift-BAT data release

    NASA Astrophysics Data System (ADS)

    Oh, Kyuseok; Koss, Michael; Markwardt, Craig B.; Schawinski, Kevin; Baumgartner, Wayne H.; Barthelmy, Scott D.; Cenko, Bradley; Gehrels, Neil; Mushotzky, Richard; Petulante, Abigail; Ricci, Claudio; Lien, Amy; Trakhtenbrot, Benny; NASA GSFC Swift BAT team, BAT AGN Spectroscopic Survey (BASS)

    2018-01-01

    We present a new catalog of hard X-ray sources detected in the first 105 months of observations with the Burst Alert Telescope (BAT) on board the Swift observatory. The 105 month Swift-BAT survey is a uniform hard X-ray all-sky survey with a sensitivity of 8.40×10-12 erg s-1 cm-2 over 90% of the sky and 7.24×10-12 erg s-1 cm-2 over 50% of the sky in the 14‑195 keV band. The Swift-BAT 105 month catalog provides 1632 (422 new detections) hard X-ray sources in the 14 ‑ 195 keV band above the 4.8σ significance level. Adding to the previously known hard X-ray sources, 34% (144/422) of the new detections are identified as Seyfert AGN in nearby galaxies (z < 0.2). The majority of the remaining identified sources are X-ray binaries (7%, 31) and blazars/BL Lac objects (10%, 43). As part of this new edition of the Swift-BAT catalog, we release eight-channel spectra and monthly sampled light curves for each object in the online journal and at the Swift-BAT 105 month Web site.

  7. Pulsar wind nebulae created by fast-moving pulsars

    NASA Astrophysics Data System (ADS)

    Kargaltsev, O.; Pavlov, G. G.; Klingler, N.; Rangelov, B.

    2017-10-01

    We review multiwavelength properties of pulsar wind nebulae created by supersonically moving pulsars and the effects of pulsar motion on the pulsar wind nebulae morphologies and the ambient medium. Supersonic pulsar wind nebulae are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in supersonic pulsar wind nebula studies have been made in deep observations with the Chandra and XMM-Newton X-ray observatories and the Hubble Space Telescope. In particular, these observations have revealed very diverse supersonic pulsar wind nebula morphologies in the pulsar vicinity, different spectral behaviours of long pulsar tails, the presence of puzzling outflows misaligned with the pulsar velocity and far-UV bow shocks. Here we review the current observational status focusing on recent developments and their implications.

  8. The First Fermi Large Area Telescope Catalog of Gamma-ray Pulsars

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-03-25

    The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 × 10 –8 ph cm –2 s –1 (for E>100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 × 10 –8 ph cm –2 s –1 (for E>100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range ~1-5 GeV. The rotational energy-loss rate (more » $$\\dot{E}$$) of these neutron stars spans five decades, from ~3 × 10 33 erg s –1 to 5 × 10 38 erg s –1, and the apparent efficiencies for conversion to gamma-ray emission range from ~0.1% to ~ unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by ≳0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer

  9. Discovery Of Nine Gamma-Ray Pulsars In Fermi Large Area Telescope Data Using A New Blind Search Method

    DOE PAGES

    Pletsch, H. J.; Guillemot, L.; Allen, B.; ...

    2011-12-20

    We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, andmore » characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs J1803–2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6X10 35 erg s -1 and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J0622+3749, J1620–4927, J1746–3239, J2028+3332, J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (jbj > 10°). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2X10 11G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3X10 33 erg s -1) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.« less

  10. Binary Millisecond Pulsar Discovery via Gamma-Ray Pulsations

    DOE PAGES

    Pletsch, H. J.; Guillemot, L.; Fehrmann, H.; ...

    2012-12-07

    We present that millisecond pulsars, old neutron stars spun up by accreting matter from a companion star, can reach high rotation rates of hundreds of revolutions per second. Until now, all such “recycled” rotation-powered pulsars have been detected by their spin-modulated radio emission. In a computing-intensive blind search of gamma-ray data from the Fermi Large Area Telescope (with partial constraints from optical data), we detected a 2.5-millisecond pulsar, PSR J1311-3430. This unambiguously explains a formerly unidentified gamma-ray source that had been a decade-long enigma, confirming previous conjectures. Lastly, the pulsar is in a circular orbit with an orbital period ofmore » only 93 minutes, the shortest of any spin-powered pulsar binary ever found.« less

  11. A ROTATIONALLY POWERED MAGNETAR NEBULA AROUND SWIFT J1834.9–0846

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres, Diego F.

    A wind nebula generating extended X-ray emission was recently detected surrounding Swift J1834.9–0846. This is the first magnetar for which such a wind nebula was found. Here, we investigate whether there is a plausible scenario where the pulsar wind nebula (PWN) can be sustained without the need of advocating for additional sources of energy other than rotational. We do this by using a detailed radiative and dynamical code that studies the evolution of the nebula and its particle population in time. We find that such a scenario indeed exists: Swift J1834.9–0846's nebula can be explained as being rotationally powered, asmore » all other known PWNe are, if it is currently being compressed by the environment. The latter introduces several effects, the most important of which is the appearance of adiabatic heating, being increasingly dominant over the escape of particles as reverberation goes by. The need of reverberation naturally explains why this is the only magnetar nebula detected and provides estimates for Swift 1834.9–0846's age.« less

  12. The Fermi Gamma Ray Space Telescope discovers the Pulsar in the Young Galactic Supernova-Remnant CTA 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, Aous A.; Ackermann, M.; Atwood, W.B.

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10{sup -13} s s{sup -1}. Its characteristic age of 10{sup 4} years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma ray sourcesmore » associated with star-forming regions and SNRs are such young pulsars.« less

  13. PROBING THE MSP PRENATAL STAGE: THE OPTICAL IDENTIFICATION OF THE X-RAY BURSTER EXO 1745-248 IN TERZAN 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, F. R.; Pallanca, C.; Lanzoni, B.

    2015-07-01

    We report on the optical identification of the neutron star burster EXO 1745-248 in Terzan 5. The identification was performed by exploiting Hubble Space Telescope/Advanced Camera for Surveys images acquired in Director's Discretionary Time shortly after (approximately one month) the Swift detection of the X-ray burst. The comparison between these images and previous archival data revealed the presence of a star that is currently brightened by ∼3 mag, consistent with expectations during an X-ray outburst. The centroid of this object well agrees with the position, in the archival images, of a star located in the turn-off/sub-giant-branch region of Terzan 5.more » This supports the scenario that the companion should have recently filled its Roche Lobe. Such a system represents the prenatal stage of a millisecond pulsar, an evolutionary phase during which heavy mass accretion on the compact object occurs, thus producing X-ray outbursts and re-accelerating the neutron star.« less

  14. EXTraS discovery of a 1.2-s X-ray pulsar in M31

    NASA Astrophysics Data System (ADS)

    Esposito, P.; Israel, G.; Belfiore, A.; Novara, G.; Sidoli, L.; Rodriguez Castillo, G.; De Luca, A.; Tiengo, A.; Haberl, F.; Salvaterra, R.

    2017-10-01

    A systematic search for periodic signals in the XMM-Newton's EPIC archive carried out within the EXTraS project resulted in the discovery of a 1.2-s flux modulation in 3XMM J004301.4+413017. It is the first accreting neutron star in M31 for which the spin period has been detected. Besides this distinction, 3XMM J0043 proved to be an interesting system. Doppler shifts of the spin modulation revealed an orbital motion with period of 1.27 d and the analysis of optical data shows that, while the source is likely associated to a globular cluster, a counterpart with V ˜ 22 outside the cluster cannot be excluded. The emission of the pulsar appears rather hard (most data are described by a power law with photon index <1) and, assuming the distance to M31, the 0.3-10 keV luminosity was variable, from ˜3×10^{37} to 2×10^{38} erg/s. Based on this, we discuss two main possible scenarios for 3X J0043: a peculiar low-mass X-ray binary, perhaps similar to 4U 1822-37 or 4U 1626-67, or an intermediate-mass X-ray binary akin Her X-1.

  15. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  16. When a Standard Candle Flickers: Crab Nebula Variations in Hard X-rays

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Collen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2012-01-01

    RXTE played a crucial role in our surprising discovery that the Crab Nebula is variable in hard X-rays. In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008-2010, a approx.7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed in the 15-50 keV band with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approx.3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003 and Swift/BAT starting in 2005. Before 2001 and since 2010, the Crab nebula 15-50 keV flux measured with RXTE/PCA appeared more stable, varying by less than 2% per year. In this talk I will present Crab light curves including RXTE data for the entire 16-year mission in multiple energy bands.

  17. Eclipsing cataclysmic variables. Deep eclipses in H0928+501. YY Draconis, the whirling dervish. New x ray pulsar candidates from HEAO-1

    NASA Technical Reports Server (NTRS)

    Patterson, Joseph

    1993-01-01

    The status report covering the period from 1 June 1992 to 31 May 1993 is included. Areas of research include: (1) eclipsing cataclysmic variables; (2) deep eclipses in H0928+501; (3) YY Draconis, the Whirling Dervish; and (4) new x ray pulsar candidates from HEAO-1.

  18. X-Ray and Optical Study of the Gamma-ray Source 3FGL J0838.8–2829: Identification of a Candidate Millisecond Pulsar Binary and an Asynchronous Polar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, Jules P.; Bogdanov, Slavko; Thorstensen, John R., E-mail: jules@astro.columbia.edu

    2017-04-01

    We observed the field of the Fermi source 3FGL J0838.8−2829 in optical and X-rays, initially motivated by the cataclysmic variable (CV) 1RXS J083842.1−282723 that lies within its error circle. Several X-ray sources first classified as CVs have turned out to be γ -ray emitting millisecond pulsars (MSPs). We find that 1RXS J083842.1−282723 is in fact an unusual CV, a stream-fed asynchronous polar in which accretion switches between magnetic poles (that are ≈120° apart) when the accretion rate is at minimum. High-amplitude X-ray modulation at periods of 94.8 ± 0.4 minutes and 14.7 ± 1.2 hr are seen. The former appearsmore » to be the spin period, while the latter is inferred to be one-third of the beat period between the spin and the orbit, implying an orbital period of 98.3 ± 0.5 minutes. We also measure an optical emission-line spectroscopic period of 98.413 ± 0.004 minutes, which is consistent with the orbital period inferred from the X-rays. In any case, this system is unlikely to be the γ -ray source. Instead, we find a fainter variable X-ray and optical source, XMMU J083850.38−282756.8, that is modulated on a timescale of hours in addition to exhibiting occasional sharp flares. It resembles the black widow or redback pulsars that have been discovered as counterparts of Fermi sources, with the optical modulation due to heating of the photosphere of a low-mass companion star by, in this case, an as-yet undetected MSP. We propose XMMU J083850.38−282756.8 as the MSP counterpart of 3FGL J0838.8−2829.« less

  19. The braking index of a radio-quiet gamma-ray pulsar

    DOE PAGES

    Clark, C. J.; Pletsch, H. J.; Wu, J.; ...

    2016-11-16

    Here, we report the discovery and timing measurements of PSR J1208-6238, a young and highly magnetized gamma-ray pulsar, with a spin period of 440 ms. The pulsar was discovered in gamma-ray photon data from the Fermi Large Area Telescope (LAT) during a blind-search survey of unidentified LAT sources, running on the distributed volunteer computing system Einstein@Home. No radio pulsations were detected in dedicated follow-up searches with the Parkes radio telescope, with a flux density upper limit at 1369 MHz of 30 μJy. Furthermore, by timing this pulsar's gamma-ray pulsations, we measure its braking index over five years of LAT observationsmore » to be n = 2.598 ± 0.001 ± 0.1, where the first uncertainty is statistical and the second estimates the bias due to timing noise. Assuming its braking index has been similar since birth, the pulsar has an estimated age of around 2700 years, making it the youngest pulsar to be found in a blind search of gamma-ray data and the youngest known radio-quiet gamma-ray pulsar. Despite its young age, the pulsar is not associated with any known supernova remnant or pulsar wind nebula. The pulsar's inferred dipolar surface magnetic field strength is 3.8 × 10 13 G, almost 90% of the quantum-critical level. Finally, we investigate some potential physical causes of the braking index deviating from the simple dipole model but find that LAT data covering a longer time interval will be necessary to distinguish between these.« less

  20. The Spin-down of Swift J1822.3-1606: A New Galactic Magnetar

    NASA Astrophysics Data System (ADS)

    Livingstone, M. A.; Scholz, P.; Kaspi, V. M.; Ng, C.-Y.; Gavriil, Fotis P.

    2011-12-01

    On 2011 July 14, a new magnetar candidate, Swift J1822.3-1606, was identified via a rate trigger on the Swift/Burst Alert Telescope. Here we present an initial analysis of the X-ray properties of the source, using data from the Rossi X-ray Timing Explorer, Swift, and the Chandra X-ray Observatory, spanning 2011 July 16-October 8. We measure a precise spin period of P = 8.43771968(6) s and a spin-down rate of \\dot{P}=2.54(22)\\times 10^{-13}, at MJD 55761.0, corresponding to an inferred surface dipole magnetic field of B = 4.7(2) × 1013 G, the second lowest thus far measured for a magnetar, though similar to those of 1E 2259+586 and several high-magnetic field radio pulsars. We show that the flux decay in the 1-10 keV band is best fit by a double exponential with timescales of 9 ± 1 and 55 ± 9 days. The pulsed count rate decay in the 2-10 keV band, by contrast, is better fit by a single exponential decay with timescale 15.9 ± 0.2 days. After increasing from ~35% for ~20 days after the onset of the outburst, the pulsed fraction in the 2-10 keV band remained constant at ~45%. We argue that these properties confirm this source to be a new member of the class of objects known as magnetars. We consider the distribution of magnetar periods and inferred dipole magnetic field strengths, showing that the former appears flat in the 2-12 s range, while the latter appears peaked in the 1014-1015 G range.

  1. GSFC Contributions to the NATO X-ray Astronomy Institute, Erice, July 1979. [X-ray spectra of supernova remants, galactic X-ray sources, active galactic nuclei, and clusters of galaxies

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mushotzky, R. F.

    1979-01-01

    An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.

  2. Ultraluminous X-ray sources as neutrino pulsars

    NASA Astrophysics Data System (ADS)

    Mushtukov, Alexander A.; Tsygankov, Sergey S.; Suleimanov, Valery F.; Poutanen, Juri

    2018-05-01

    The classical limit on the accretion luminosity of a neutron star is given by the Eddington luminosity. The advanced models of accretion on to magnetized neutron stars account for the appearance of magnetically confined accretion columns and allow the accretion luminosity to be higher than the Eddington value by a factor of tens. However, the recent discovery of pulsations from ultraluminous X-ray source (ULX) in NGC 5907 demonstrates that the accretion luminosity can exceed the Eddington value up to by a factor of 500. We propose a model explaining observational properties of ULX-1 in NGC 5907 without any ad hoc assumptions. We show that the accretion column at extreme luminosity becomes advective. Enormous energy release within a small geometrical volume and advection result in very high temperatures at the bottom of accretion column, which demand to account for the energy losses due to neutrino emission which can be even more effective than the radiation energy losses. We show that the total luminosity at the mass accretion rates above 1021 g s-1 is dominated by the neutrino emission similarly to the case of core-collapse supernovae. We argue that the accretion rate measurements based on detected photon luminosity in case of bright ULXs powered by neutron stars can be largely underestimated due to intense neutrino emission. The recently discovered pulsating ULX-1 in galaxy NGC 5907 with photon luminosity of {˜ } 10^{41} {erg s^{-1}} is expected to be even brighter in neutrinos and is thus the first known Neutrino Pulsar.

  3. Discovery of the millisecond pulsar PSR J2043+1711 in a Fermi source with the Nançay Radio Telescope

    DOE PAGES

    Guillemot, L.; Freire, P. C. C.; Cognard, I.; ...

    2012-04-25

    Here, we report the discovery of the millisecond pulsar PSR J2043+1711 in a search of a Fermi Large Area Telescope (LAT) source with no known associations, with the Nançay Radio Telescope. The new pulsar, confirmed with the Green Bank Telescope, has a spin period of 2.38 ms, is relatively nearby (d ≲ 2 kpc) and is in a 1.48-d orbit around a low-mass companion, probably an He-type white dwarf. Using an ephemeris based on Arecibo, Nançay and Westerbork timing measurements, pulsed gamma-ray emission was detected in the data recorded by the Fermi LAT. The gamma-ray light curve and spectral propertiesmore » are typical of other gamma-ray millisecond pulsars seen with Fermi. X-ray observations of the pulsar with Suzaku and the Swift X-ray Telescope yielded no detection. At 1.4 GHz, we also observe strong flux density variations because of interstellar diffractive scintillation; however, a sharp peak can be observed at this frequency during bright scintillation states. At 327 MHz, the pulsar is detected with a much higher signal-to-noise ratio and its flux density is far more steady. However, at that frequency the Arecibo instrumentation cannot yet fully resolve the pulse profile. Despite that, our pulse time-of-arrival measurements have a post-fit residual rms of 2 μs. Furthermore, this and the expected stability of this system have made PSR J2043+1711 one of the first new Fermi-selected millisecond pulsars to be added to pulsar gravitational wave timing arrays. It has also allowed a significant measurement of relativistic delays in the times of arrival of the pulses due to the curvature of space–time near the companion, but not yet with enough precision to derive useful masses for the pulsar and the companion. Nevertheless, a mass for the pulsar between 1.7 and 2.0 M⊙ can be derived if a standard millisecond pulsar formation model is assumed. In this paper, we also present a comprehensive summary of pulsar searches in Fermi LAT sources with the Nançay Radio

  4. Future Gamma-Ray Observations of Pulsars and their Environments

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2006-01-01

    Pulsars and pulsar wind nebulae seen at gamma-ray energies offer insight into particle acceleration to very high energies under extreme conditions. Pulsed emission provides information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars, while the pulsar wind nebulae yield information about high-energy particles interacting with their surroundings. During the next decade, a number of new and expanded gamma-ray facilities will become available for pulsar studies, including Astro-rivelatore Gamma a Immagini LEggero (AGILE) and Gamma-ray Large Area Space Telescope (GLAST) in space and a number of higher-energy ground-based systems. This review describes the capabilities of such observatories to answer some of the open questions about the highest-energy processes involving neutron stars.

  5. The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability

    NASA Astrophysics Data System (ADS)

    Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.

    2015-11-01

    We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.

  6. Photometric Periodicities of Be/X-Ray Pulsars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Schmidtke, P. C.; Cowley, A. P.

    2005-11-01

    Analysis of the long-term photometric variability of seven Be/X-ray pulsar systems in the Small Magellanic Cloud has been carried out. We find that a variety of types of variability are present, including long-term irregular changes, periodic orbital outbursts due to interaction between the stars (weeks to months), low-amplitude quasi-periodic variations of the equatorial disk (days), and nonradial pulsations of the Be primary star (hours). This paper utilizes public domain data obtained by the MACHO Project, jointly funded by the US Department of Energy through the University of California, Lawrence Livermore National Laboratory, under contract W-7405-Eng-48, by the National Science Foundation through the Center for Particle Astrophysics of the University of California under cooperative agreement AST 88-09616, and by the Mount Stromlo and Siding Spring Observatory, part of the Australian National University.

  7. Magnetic fields in Supernova Remnants and Pulsar-Wind Nebulae: Deductions from X-ray Observations

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    2016-06-01

    Magnetic field strengths B in synchrotron sources are notoriously difficult to measure. Simple arguments such as equipartition of energy can give values for which the total energy is a minimum, but there is no guarantee that Nature obeys it, or even if so, what particle population (just electrons? electrons plus ions?) should have an energy density comparable to that in magnetic field. However, the operation of synchrotron losses can provide additional information, if those losses are manifested in the synchrotron spectra as steepenings of the spectral-energy distribution above some characteristic frequency often called a "break" (though it is more typically a gradual curvature). A source of known age, if it has been accelerating particles continuously, will have such a break above the energy at which particle radiative lifetimes equal the source age, and this can give B. However, in spatially resolved sources such as supernova remnants (SNRs) and pulsar-wind nebulae (PWNe), systematic advection of particles, if at a known rate, gives a second measure of particle age to compare with radiative lifetimes. In most young SNRs, synchrotron X-rays make a contribution to the X-ray spectrum, and are usually found in thin rims at the remnant edges. If the rims are thin in the radial direction due to electron energy losses, a magnetic-field strength can be estimated. I present recent modeling of this process, along with models in which rims are thin due to decay of magnetic turbulence, and apply them to the remnants of SN 1006 and Tycho. In PWNe, outflows of relativistic plasma behind the pulsar wind termination shock are likely quite inhomogeneous, so magnetic-field estimates based on source lifetimes and assuming spatial uniformity can give misleading values for B. I shall discuss inhomogeneous PWN models and the effects they can have on B estimates.

  8. Millisecond Pulsars at Gamma-Ray Energies: Fermi Detections and Implications

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2011-01-01

    The Fermi Gamma-Ray Space Telescope has revolutionized the study of pulsar physics with the discovery of new populations of radio quiet and millisecond gamma-ray pulsars. The Fermi Large Area Telescope has so far discovered approx.20 new gamma-ray millisecond pulsars (MSPs) by both folding at periods of known radio MSPs or by detecting them as gamma-ray sources that are followed up by radio pulsar searches. The second method has resulted in a phenomenally successful synergy, with -30 new radio MSPs (to date) having been discovered at Fermi unidentified source locations and the gamma-ray pulsations having then been detected in a number of these using the radio timing solutions. Many of the newly discovered MSPs may be suitable for addition to the collection of very stable MSPs used for gravitational wave detection. Detection of such a large number of MSPs was surprising, given that most have relatively low spin-down luminosity and surface field strength. I will discuss their properties and the implications for pulsar particle acceleration and emission, as well as their potential contribution to gamma-ray backgrounds and Galactic cosmic rays.

  9. Discovery of a glitch in the accretion-powered pulsar SXP 1062

    NASA Astrophysics Data System (ADS)

    Serim, M. M.; Şahiner, Ş.; ćerri-Serim, D.; Inam, S. ć.; Baykal, A.

    2017-11-01

    We present timing analysis of the accretion-powered pulsar SXP 1062, based on the observations of Swift, XMM-Newton and Chandra satellites covering a time span of about 2 yr. We obtain a phase coherent timing solution that shows that SXP 1062 has been steadily spinning down with a rate -4.29(7) × 10-14 Hz s-1 leading to a surface magnetic field estimate of about 1.5 × 1014 G. We also resolve the binary orbital motion of the system from X-ray data that confirms an orbital period of 656(2) d. On MJD 56834.5, a sudden change in pulse frequency occurs with Δν = 1.28(5) × 10-6 Hz, which indicates a glitch event. The fractional size of the glitch is Δν/ν ˜ 1.37(6) × 10-3 and SXP 1062 continues to spin-down with a steady rate after the glitch. A short X-ray outburst 25 d prior to the glitch does not alter the spin-down of the source; therefore, the glitch should be associated with the internal structure of the neutron star. While glitch events are common for isolated pulsars, the glitch of SXP 1062 is the first confirmation of the observability of this type of events among accretion-powered pulsars. Furthermore, the value of the fractional change of pulse frequency ensures that we discover the largest glitch reported up to now.

  10. The search for MeV gamma-ray pulsars with COMPTEL

    NASA Technical Reports Server (NTRS)

    Bennett, K.; Buccheri, R.; Busetta, M.; Carraminana, A.; Connors, A.; Diehl, R.; Hermsen, W.; Kuiper, L.; Lichti, G. G.; Much, R.

    1995-01-01

    The Compton Gamma Ray Observatory (CGRO) completed a full sky survey in November 1993 during which the number of known gamma-ray pulsars more than doubled. During this survey the Compton Telescope (COMPTEL) observed the classical isolated pulsars Crab and Vela and detected PSR 1509-58. Attempts to detect the newly discovered pulsars, Geminga, PSR 1706-44 and PSR 1055-52, in the COMPTEL energy range provide only upper limits. The results of these analyses are presented together with the outcome of a search for further candidate radio pulsars whose ephemerides are given in the Princeton Pulsar Catalogue.

  11. Host Galaxy Properties of the Swift BAT Ultra Hard X-Ray Selected AGN

    NASA Technical Reports Server (NTRS)

    Koss, Michael; Mushotzky, Richard; Veilleux, Sylvain; Winter, Lisa M.; Baumgartner, Wayne; Tueller, Jack; Gehrels, Neil; Valencic, Lynne

    2011-01-01

    We have assembled the largest sample of ultra hard X-ray selected (14-195 keV) AGN with host galaxy optical data to date, with 185 nearby (z<0.05), moderate luminosity AGN from the Swift Burst Alert Telescope (BAT) sample. The BAT AGN host galaxies have intermediate optical colors (u -- r and g -- r) that are bluer than a comparison sample of inactive galaxies and optically selected AGN from the Sloan Digital Sky Survey (SDSS) which are chosen to have the same stellar mass. Based on morphological classifications from the RC3 and the Galaxy Zoo, the bluer colors of BAT AGN are mainly due to a higher fraction of mergers and massive spirals than in the comparison samples. BAT AGN in massive galaxies (log Stellar Mass >10.5) have a 5 to 10 times higher rate of spiral morphologies than in SDSS AGN or inactive galaxies. We also see enhanced far-IR emission in BAT AGN suggestive of higher levels of star formation compared to the comparison samples. BAT AGN are preferentially found in the most massive host galaxies with high concentration indexes indicative of large bulge-to-disk ratios and large supermassive black holes. The narrow-line (NL) BAT AGN have similar intrinsic luminosities as the SDSS NL Seyferts based on measurements of [O III] Lambda 5007. There is also a correlation between the stellar mass and X-ray emission. The BAT AGN in mergers have bluer colors and greater ultra hard X-ray emission compared to the BAT sample as whole. In agreement with the Unified Model of AGN, and the relatively unbiased nature of the BAT sources, the host galaxy colors and morphologies are independent of measures of obscuration such as X-ray column density or Seyfert type. The high fraction of massive spiral galaxies and galaxy mergers in BAT AGN suggest that host galaxy morphology is related to the activation and fueling of local AGN.

  12. SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnard, R.; Garcia, M. R.; Murray, S. S.

    2015-03-01

    The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less

  13. Gamma-Ray Pulsar Light Curves as Probes of Magnetospheric Structure

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    2016-01-01

    The large number of gamma-ray pulsars discovered by the Fermi Gamma-Ray Space Telescope since its launch in 2008 dwarfs the handful that were previously known. The variety of observed light curves makes possible a tomography of both the ensemble-averaged field structure and the high-energy emission regions of a pulsar magnetosphere. Fitting the gamma-ray pulsar light curves with model magnetospheres and emission models has revealed that most of the high-energy emission, and the particles acceleration, takes place near or beyond the light cylinder, near the current sheet. As pulsar magnetosphere models become more sophisticated, it is possible to probe magnetic field structure and emission that are self-consistently determined. Light curve modeling will continue to be a powerful tool for constraining the pulsar magnetosphere physics.

  14. SEXTANT - Station Explorer for X-Ray Timing and Navigation Technology

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason; Hasouneh, Monther; Winternitz, Luke; Valdez, Jennifer; Price, Sam; Semper, Sean; Yu, Wayne; Gaebler, John; Ray, Paul; Wood, Kent; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technology- demonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  15. The Zone of Avoidance as an X-ray absorber - the role of the galactic foreground modelling Swift XRT spectra

    NASA Astrophysics Data System (ADS)

    Racz, I. I.; Bagoly, Z.; Tóth, L. V.; Balázs, L. G.; Horvath, I.; Zahorecz, S.

    2018-05-01

    Gamma-ray bursts (GRBs) are the most powerful explosive events in the Universe. The prompt gamma emission is followed by an X-ray afterglow that is also detected for over nine hundred GRBs by the Swift BAT and XRT detectors. The X-ray afterglow spectrum bears essential information about the burst, and the surrounding interstellar medium (ISM). Since the radiation travels through the line of sight intergalactic medium and the ISM in the Milky Way, the observed emission is influenced by extragalactic and galactic components. The column density of the Galactic foreground ranges several orders of magnitudes, due to both the large scale distribution of ISM and its small scale structures. We examined the effect of local HI column density on the penetrating X-ray emission, as the first step towards a precise modeling of the measured X-ray spectra. We fitted the X-ray spectra using the Xspec software, and checked how the shape of the initially power low spectrum changes with varying input Galactic HI column density. The total absorbing HI column is a sum of the intrinsic and Galactic component. We also investigated the model results for the intrinsic component varying the Galactic foreground. We found that such variations may alter the intrinsic hydrogen column density up to twenty-five percent. We will briefly discuss its consequences.

  16. Geminga's tails: a pulsar bow shock probing the interstellar medium.

    PubMed

    Caraveo, P A; Bignami, G F; DeLuca, A; Mereghetti, S; Pellizzoni, A; Mignani, R; Tur, A; Becker, W

    2003-09-05

    We report the X-ray Multimirror Mission-Newton European Photon Imaging Camera observation of two elongated parallel x-ray tails trailing the pulsar Geminga. They are aligned with the object's supersonic motion, extend for approximately 2', and have a nonthermal spectrum produced by electron-synchrotron emission in the bow shock between the pulsar wind and the surrounding medium. Electron lifetime against synchrotron cooling matches the source transit time over the x-ray features' length. Such an x-ray detection of a pulsar bow shock (with no Halpha emission) allows us to gauge the pulsar electron injection energy and the shock magnetic field while constraining the angle of Geminga's motion and the local matter density.

  17. Burst and Persistent Emission Properties during the Recent Active Episode of the Anomalous X-Ray Pulsar 1E 1841-045

    NASA Technical Reports Server (NTRS)

    Lin, Lin; Kouveliotou, Chryssa; Gogus, Ersin; van der Horst, Alexander J.; Watts, Anna L.; Baring, Matthew G.; Kaneko, Yuki; Wijers, Ralph A. M. J.; Woods, Peter M.; Barthelmy, Scott; hide

    2011-01-01

    SWift/BAT detected the first burst from 1E 1841-045 in May 2010 with intermittent burst activity recorded through at least July 2011. Here we present Swift and Fermi/GBM observations of this burst activity and search for correlated changes to the persistent X-ray emission of the source. The T90 durations of the bursts range between 18 - 140 ms, comparable to other magnetar burst durations, while the energy released in each burst ranges between (0.8-25) x 1038 erg, which is in the low side of SGR bursts. We find that the bursting activity did not have a significant effect on the persistent flux level of the source. We argue that the mechanism leading to this sporadic burst activity in IE 1841-045 might not involve large scale restructuring (either crustal or magnetospheric) as seen in other magnetar sources.

  18. STUDYING FAINT ULTRA-HARD X-RAY EMISSION FROM AGN IN GOALS LIRGS WITH SWIFT/BAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koss, Michael; Casey, Caitlin M.; Mushotzky, Richard

    2013-03-10

    We present the first analysis of the all-sky Swift Burst Alert Telescope (BAT) ultra-hard X-ray (14-195 keV) data for a targeted list of objects. We find that the BAT data can be studied at three-times-fainter limits than in previous blind detection catalogs based on prior knowledge of source positions and using smaller energy ranges for source detection. We determine the active galactic nucleus (AGN) fraction in 134 nearby (z < 0.05) luminous infrared galaxies (LIRGs) from the GOALS sample. We find that LIRGs have a higher detection frequency than galaxies matched in stellar mass and redshift at 14-195 keV andmore » 24-35 keV. In agreement with work at other wavelengths, the AGN detection fraction increases strongly at high IR luminosity with half of the high-luminosity LIRGs (50%, 6/12, log L{sub IR}/L{sub Sun} > 11.8) detected. The BAT AGN classification shows 97% (37/38) agreement with Chandra and XMM-Newton AGN classification using hardness ratios or detection of an iron K{alpha} line. This confirms our statistical analysis and supports the use of the Swift/BAT all-sky survey to study fainter populations of any category of sources in the ultra-hard X-ray band. BAT AGNs in LIRGs tend to show higher column densities with 40% {+-} 9% showing 14-195 keV/2-10 keV hardness flux ratios suggestive of high or Compton-thick column densities (log N{sub H} > 24 cm{sup -2}), compared to only 12% {+-} 5% of non-LIRG BAT AGNs. We also find that using specific energy ranges of the BAT detector can yield additional sources over total band detections with 24% (5/21) of detections in LIRGs at 24-35 keV not detected at 14-195 keV.« less

  19. Three Millisecond Pulsars in Fermi LAT Unassociated Bright Sources

    NASA Technical Reports Server (NTRS)

    Ransom, S. M.; Ray, P. S.; Camilo, F.; Roberts, M. S. E.; Celik, O.; Wolff, M. T.; Cheung, C. C.; Kerr, M.; Pennucci, T.; DeCesar, M. E.; hide

    2010-01-01

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. We report the discovery of three radio and gamma-ray millisecond pulsar (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind gamma-ray pulsation searches. They seem to be relatively normal, nearby (<= 2 kpc) MSPs. These observations, in combination with the Fermi detection of gamma-rays from other known radio MSPs, imply that most, if not all, radio MSPs are efficient gamma-ray producers. The gamma-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few Ge V, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Their soft X-ray luminosities of approx 10(exp 30) - 10(exp 31) erg/s are typical of the rare radio MSPs seen in X-rays.

  20. Pulsar gamma rays from polar cap regions

    NASA Technical Reports Server (NTRS)

    Chiang, James; Romani, Roger W.

    1992-01-01

    The production is studied of pulsar gamma rays by energetic electrons flowing in the open field region above pulsar polar caps. The propagation was followed of curvature radiation from primary electrons, as well as hard synchrotron radiation generated by secondary pairs, through the pulsar magnetosphere for vacuum dipole open field geometries. Using data from radio and optical observations, models were constructed for the specific geometries and viewing angles appropriate to particular pulsars. These detailed models produce normalized spectra above 10 MeV, pulse profiles, beaming fractions and phase resolved spectra appropriate for direct comparison with COS-B and GRO data. Models are given for the Crab, Vela, and other potentially detectable pulsars; general agreement with existing data is good, although perturbations to the simplified models are needed for close matches. The calculations were extended to the millisecond pulsar range, which allows the production of predictions for the flux and spectra of populations of recycled pulsars and search strategies are pointed out.

  1. New Observations of the Crab Nebula and Pulsar

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Elsner, Ronald f.; Yakovlev, Dmitry R.; Zavlin, Vyacheslav E.; Becker, Werner

    2010-01-01

    We present a phase-resolved study of the X-ray spectrum of the Crab Pulsar, using data obtained in a special mode with the Chandra X-ray Observatory. The superb angular resolution easily enables discerning the Pulsar from the surrounding nebulosity, even at pulse minimum. We find that the Pulsar's X-ray spectral index varies sinusoidally with phase---except over the same phase range for which rather abrupt changes in optical polarization magnitude and position angle have been reported. In addition, we use the X-ray data to constrain the surface temperature for various neutron-star equations of state and atmospheres. Finally, we present new data on dynamical variations of structure within the Nebula.

  2. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space- based observatories drive the end-to-end data analysis and distribution requirements. The Swift mission is managed by the GSFC, and includes an international team of contributors that each bring their unique perspective that have proven invaluable to the mission. The spacecraft bus, provided by Spectrum Astro, Inc. was procured through a Rapid Spacecraft Development Office (RSDO) contract by the GSFC. There are three instruments: the Burst Alert Telescope (BAT) provided by the GSFC; the X-Ray Telescope (XRT) provided by a team led by the Pennsylvania State University (PSU); and the Ultra-Violet Optical Telescope (UVOT), again managed by PSU. The Mission Operations Center (MOC) was developed by and is located at PSU. Science archiving and data analysis centers are located at the GSFC, in the UK and in Italy.

  3. The increasing X-Ray Activity of PKS 2155-304

    NASA Astrophysics Data System (ADS)

    Kapanadze, Bidzina

    2016-10-01

    The southern TeV-detected HBL source PKS 2155-304 (z=0.116) is prominent with its very strong TeV/X-ray flaring behaviour (see, e.g., Aharonian et al. 2009, A & A, 502, 749; Abramowski et al. 2012, A & A, 539; Kapanadze et al. 2014, MNRAS, 444; 1076), and, therefore, it represents one of the frequent Swift targets (203 observations since 2005 November 17). In the framework of our Target of Opportunity (ToO) request Number 8344, the source was pointed nine time by X-Ray Telescope onboard the Swift satellite (Swift-XRT) since 2016 August 5 with one week intervals between the successive observations.

  4. Diffuse gamma-ray emission from pulsars in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Hartmann, Dieter H.; Brown, Lawrence E.; Schnepf, Neil

    1993-01-01

    We investigate the contribution of pulsars to the diffuse gamma-ray emission from the LMC. The pulsar birth rate in the LMC is a factor of about 10 lower than that of the Galaxy and the distance to pulsars in the LMC is about 5-10 times larger than to Galactic pulsars. The resulting total integrated photon flux from LMC pulsars is thus reduced by a factor of about 100 to 1000. However, the surface brightness is not reduced by the same amount because of the much smaller angular extent of the LMC in comparison to the diffuse glow from the Galactic plane. We show that gamma-ray emission due to pulsars born in the LMC could produce gamma-ray fluxes that are larger than the inverse Compton component from relativistic cosmic-ray electrons and a significant fraction of the extragalactic isotropic background or the diffuse Galactic background in that direction. The diffuse pulsar glow above 100 MeV should therefore be included in models of high-energy emission from the LMC. For a gamma-ray beaming fraction of order unity the detected emissions from the LMC constrain the pulsar birth rate to less than one per 50 yr. This limit is about one order of magnitude above the supernova rate inferred from the historic record or from the star-formation rate.

  5. The nature of 50 Palermo Swift-BAT hard X-ray objects through optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Rojas, A. F.; Masetti, N.; Minniti, D.; Jiménez-Bailón, E.; Chavushyan, V.; Hau, G.; McBride, V. A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Galaz, G.; Gavignaud, I.; Landi, R.; Malizia, A.; Morelli, L.; Palazzi, E.; Patiño-Álvarez, V.; Stephen, J. B.; Ubertini, P.

    2017-06-01

    We present the nature of 50 hard X-ray emitting objects unveiled through an optical spectroscopy campaign performed at seven telescopes in the northern and southern hemispheres. These objects were detected with the Burst Alert Telescope (BAT) instrument onboard the Swift satellite and listed as of unidentified nature in the 54-month Palermo BAT catalogue. In detail, 45 sources in our sample are identified as active galactic nuclei of which, 27 are classified as type 1 (with broad and narrow emission lines) and 18 are classified as type 2 (with only narrow emission lines). Among the broad-line emission objects, one is a type 1 high-redshift quasi-stellar object, and among the narrow-line emission objects, one is a starburst galaxy, one is a X-ray bright optically normal galaxy, and one is a low ionization nuclear emission line region. We report 30 new redshift measurements, 13 confirmations and 2 more accurate redshift values. The remaining five objects are galactic sources: three are Cataclismic Variables, one is a X-ray Binary probably with a low mass secondary star, and one is an active star. Based on observations obtained from the following observatories: Cerro Tololo Interamerican Observatory (Chile); Astronomical Observatory of Bologna in Loiano (Italy); Observatorio Astronómico Nacional (San Pedro Mártir, Mexico); Radcliffe telescope of the South African Astronomical Observatory (Sutherland, South Africa); Sloan Digital Sky Survey; Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias (Canary Islands, Spain) and New Technology Telescope (NTT) of La Silla Observatory, Chile.

  6. A COMPREHENSIVE SPECTRAL ANALYSIS OF THE X-RAY PULSAR 4U 1907+09 FROM TWO OBSERVATIONS WITH THE SUZAKU X-RAY OBSERVATORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivers, Elizabeth; Markowitz, Alex; Suchy, Slawomir

    2010-01-20

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku Observatory. The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx19 keV. Additionally, using the narrow CCD response of Suzaku near 6 keV allows us to study in detail the Fe K bandpass and to quantify the Fe Kbeta line for this source for the first time. The source is absorbed by fully covering material along the line of sight with a column density of N{sub H} approx 2 x 10{sup 22}more » cm{sup -2}, consistent with a wind-accreting geometry, and a high Fe abundance (approx3-4 times solar). Time- and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in N{sub H} along the line of sight, perhaps indicating clumpiness in the stellar wind.« less

  7. The puzzling case of the accreting millisecond X-ray pulsar IGR J00291+5934: flaring optical emission during quiescence

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; Campana, S.; D'Avanzo, P.; Papitto, A.; Burderi, L.; Di Salvo, T.; Muñoz-Darias, T.; Rea, N.; Torres, D. F.

    2017-04-01

    We present an optical (gri) study during quiescence of the accreting millisecond X-ray pulsar IGR J00291+5934 performed with the 10.4 m Gran Telescopio Canarias (GTC) in August 2014. Although the source was in quiescence at the time of our observations, it showed a strong optical flaring activity, more pronounced in bluer filters (I.e. the g-band). After subtracting the flares, we tentatively recovered a sinusoidal modulation at the system orbital period in all bands, even when a significant phase shift with respect to an irradiated star, typical of accreting millisecond X-ray pulsars, was detected. We conclude that the observed flaring could be a manifestation of the presence of an accretion disc in the system. The observed light curve variability could be explained by the presence of a superhump, which might be another proof of the formation of an accretion disc. In particular, the disc at the time of our observations was probably preparing the new outburst of the source, which occurred a few months later, in 2015. Based on observations made with the Gran Telescopio Canarias (GTC), installed in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, in the island of La Palma.

  8. Monitoring variable X-ray sources in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Kong, A. K. H.

    2010-12-01

    In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.

  9. The First Swift BAT Gamma-Ray Burst Catalog

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Barthelmy, S. D.; Barbier, L.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.; Palmer, D. M.; hide

    2007-01-01

    We present the first Swift Burst Alert Telescope (BAT) catalog of gamma ray bursts (GRBs), which contains bursts detected by the BAT between 2004 December 19 and 2007 June 16. This catalog (hereafter BAT1 catalog) contains burst trigger time, location, 90% error radius, duration, fluence, peak flux, and time averaged spectral parameters for each of 237 GRBs, as measured by the BAT. The BAT-determined position reported here is within 1.75' of the Swift X-ray Telescope (XRT)-determined position for 90% of these GRBs. The BAT T(sub 90) and T(sub 50) durations peak at 80 and 20 seconds, respectively. From the fluence-fluence correlation, we conclude that about 60% of the observed peak energies, E(sup obs)(sub peak) of BAT GRBs could be less than 100 keV. We confirm that GRB fluence to hardness and GRB peak flux to hardness are correlated for BAT bursts in analogous ways to previous missions' results. The correlation between the photon index in a simple power-law model and E(sup obs)(sub peak) is also confirmed. We also report the current status for the on-orbit BAT calibrations based on observations of the Crab Nebula.

  10. THE TRANSIENT ACCRETING X-RAY PULSAR XTE J1946+274: STABILITY OF X-RAY PROPERTIES AT LOW FLUX AND UPDATED ORBITAL SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcu-Cheatham, Diana M.; Pottschmidt, Katja; Kühnel, Matthias

    2015-12-10

    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weakmore » Cyclotron Resonance Scattering Feature (CRSF) at ∼35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (∼5 × 10{sup 37} erg s{sup −1}) and lowest (∼5 × 10{sup 36} erg s{sup −1}) observed 3–60 keV luminosities.« less

  11. X- And γ-Ray Pulsations Of The Nearby Radio-Faint PSR J1741–2054

    DOE PAGES

    Marelli, M.; Belfiore, A.; Saz Parkinson, P.; ...

    2014-07-02

    The results of a deep XMM-Newton observation of the radio-faint γ-ray pulsar J1741–2054 and its nebula together with the analysis of five years of Fermi Large Area Telescope (LAT) data are reported. The X-ray spectrum of the pulsar is consistent with an absorbed power law plus a blackbody, originating at least partly from the neutron star cooling. The nebular emission is consistent with that of a synchrotron pulsar wind nebula, with hints of spatial spectral variation. We extended the available Fermi LAT ephemeris and folded the γ-ray and X-ray data. We detected X-ray pulsations from the neutron star: both themore » thermal and non-thermal components are ~35%-40% pulsed, with phase-aligned maxima. A sinusoid fits the thermal-folded profile well. A 10 bin phase-resolved analysis of the X-ray emission shows softening of the non-thermal spectrum during the on-pulse phases. The radio, X-ray, and γ-ray light curves are single-peaked, not phase-aligned, with the X-ray peak trailing the γ-ray peak by more than half a rotation. Spectral considerations suggest that the most probable pulsar distance is in the 0.3-1.0 kpc range, in agreement with the radio dispersion measure.« less

  12. The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Atwood, W. B.; ...

    2008-11-21

    Energetic young pulsars and expanding blast waves (supernova remnants, SNRs) are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 ms, a period derivative of 3.614 x 10 -13 s s -1 . Its characteristic age of 10 4 years is comparable to that estimated for the SNR. It is conjectured that most unidentified Galactic gamma raymore » sources associated with star-forming regions and SNRs are such young pulsars.« less

  13. 3XMM J181923.7-170616: An X-Ray Binary with a 408 s Pulsar

    NASA Astrophysics Data System (ADS)

    Qiu, Hao; Zhou, Ping; Yu, Wenfei; Li, Xiangdong; Xu, Xiaojie

    2017-09-01

    We carry out a dedicated study of 3XMM J181923.7-170616 with an approximate pulsation period of 400 s using the XMM-Newton and Swift observations spanning across nine years. We have refined the period of the source to 407.904(7) s (at epoch MJD 57142) and constrained the 1σ upper limit on the period derivative \\dot{P}≤slant 1.1× {10}-8 {{s}} {{{s}}}-1. The source radiates hard, persistent X-ray emission during the observation epochs, which is best described by an absorbed power-law model (Γ ˜ 0.2-0.8) plus faint Fe lines at 6.4 and 6.7 keV. The X-ray flux revealed a variation within a factor of 2, along with a spectral hardening as the flux increased. The pulse shape is sinusoid-like and the spectral properties of different phases do not present significant variation. The absorption {N}{{H}} (˜ 1.3× {10}22 {{cm}}-2) is similar to the total Galactic hydrogen column density along the direction, indicating that it is a distant source. A search for the counterpart in optical and near-infrared surveys reveals a low-mass K-type giant, while the existence of a Galactic OB supergiant is excluded. A symbiotic X-ray binary (SyXB) is the favored nature of 3XMM J181923.7-170616 and can essentially explain the low luminosity of 2.78× {10}34{d}102 {erg} {{{s}}}-1, slow pulsation, hard X-ray spectrum, and possible K3 III companion. An alternative explanation of the source is a persistent Be X-ray binary (BeXB) with a companion star no earlier than B3-type.

  14. Young Pulsar Reveals Clues to Supernova

    NASA Astrophysics Data System (ADS)

    2001-09-01

    Astronomers examined the remnants of a stellar explosion with NASA's Chandra X-ray Observatory and discovered one of the youngest known pulsars. The properties of this pulsar, a neutron star rotating 15 times a second, will enable scientists to better understand how neutron stars are formed in the seconds just before a supernova explosion, and how they pump energy into the space around them for thousands of years after the explosion. A team led by Stephen Murray of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA studied 3C58, the remains of a supernova observed on Earth in 1181 AD in the constellation Cassiopeia. In addition to a pulsating central source they observed an extended X-ray source surrounding the pulsar thought to be produced by a cloud of high-energy particles about 20 light years across. These results were presented at the "Two Years of Science with Chandra" symposium in Washington, D.C. According to Murray, "Our discovery shows that all pulsars are not born equal. This pulsar is about the same age as the Crab Nebula pulsar, but there is little family resemblance." Murray explained that the 3C58 pulsar, which is now rotating at about half the rate of the Crab pulsar, is rotating almost as fast as it was when it was formed. In contrast, the Crab pulsar was formed spinning much more rapidly and has slowed to about half its initial speed. Conventional theory has assumed that all pulsars were like the Crab, born with rapid rotation and then have spun down considerably. The observations of 3C58, along with Chandra observations by another group of scientists of a pulsar associated with the supernova of 386 AD have cast doubt on that assumption, however. Furthermore, the X-ray power of 3C58 and its surrounding nebula are 20,000 and 1,000 times weaker than the Crab pulsar and its surrounding nebula respectively. One possibility for the low power of 3C58 is that the energy flow from its pulsar is primarily in the form of electromagnetic fields

  15. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, J. L.; Oates, S. R.; Schady, P.; Burrows, D. N.; de Pasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multiwavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  16. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith I.

    2011-01-01

    The new and extreme population of GRBs detected by Fermi-LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust data set of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT GRBs and the well studied, fainter, less energetic GRBs detected by Swift-BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi-GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  17. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    NASA Technical Reports Server (NTRS)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  18. Swift Multi-wavelength Observing Campaigns: Strategies and Outcomes

    NASA Technical Reports Server (NTRS)

    Krimm, Hans A.

    2007-01-01

    The Swift gamma-ray burst explorer has been operating since December 2004 as both a gamma-ray burst (GRB) monitor and telescope and a multi-wavelength observatory, covering the energy range from V band and near UV to hard X rays above 150 keV. It is designed to rapidly repoint to observe newly discovered GRBs, and this maneuverability, combined with an easily changed observing program, allows Swift to also be an effective multiwavelength observatory for non-GRB targets, both as targets of opportunity and pre-planned multi-wavelength observing campaigns. Blazars are particularly attractive targets for coordinated campaigns with TeV experiments since many blazars are bright in both the hard X-ray and TeV energy ranges. Successful coordinated campaigns have included observations of 3C454.3 during its 2005 outburst. The latest Swift funding cycles allow for non- GRB related observations to be proposed. The Burst Alert Telescope on Swift also serves as a hard X-ray monitor with a public web page that includes light curves for over 400 X-ray sources and is used to alert the astronomical community about increased activity from both known and newly discovered sources. This presentation mill include Swift capabilities, strategies and policies for coordinated multi-wavelength observations as well as discussion of the potential outcomes of such campaigns.

  19. Modeling the effect of small-scale magnetic turbulence on the X-ray properties of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.; Bandiera, R.; Olmi, B.; Del Zanna, L.

    2017-10-01

    Pulsar Wind Nebulae (PWNe) constitute an ideal astrophysical environment to test our current understanding of relativistic plasma processes. It is well known that magnetic fields play a crucial role in their dynamics and emission properties. At present, one of the main issues concerns the level of magnetic turbulence present in these systems, which in the absence of space resolved X-ray polarization measures cannot be directly constrained. In this work, we investigate, for the first time using simulated synchrotron maps, the effect of a small-scale fluctuating component of the magnetic field on the emission properties in X-ray. We illustrate how to include the effects of a turbulent component in standard emission models for PWNe and which consequences are expected in terms of net emissivity and depolarization, showing that the X-ray surface brightness maps can provide already some rough constraints. We then apply our analysis to the Crab and Vela nebulae and by comparing our model with Chandra and Vela data, we found that the typical energies in the turbulent component of the magnetic field are about 1.5-3 times the one in the ordered field.

  20. Suzaku  Observations of Heavily Obscured (Compton-thick) Active Galactic Nuclei Selected by the Swift/BAT Hard X-Ray Survey

    NASA Astrophysics Data System (ADS)

    Tanimoto, Atsushi; Ueda, Yoshihiro; Kawamuro, Taiki; Ricci, Claudio; Awaki, Hisamitsu; Terashima, Yuichi

    2018-02-01

    We present a uniform broadband X-ray (0.5–100.0 keV) spectral analysis of 12 Swift/Burst Alert Telescope selected Compton-thick ({log}{N}{{H}}/{{cm}}-2≥slant 24) active galactic nuclei (CTAGNs) observed with Suzaku. The Suzaku data of three objects are published here for the first time. We fit the Suzaku and Swift spectra with models utilizing an analytic reflection code and those utilizing the Monte-Carlo-based model from an AGN torus by Ikeda et al. The main results are as follows: (1) The estimated intrinsic luminosity of a CTAGN strongly depends on the model; applying Compton scattering to the transmitted component in an analytic model may largely overestimate the intrinsic luminosity at large column densities. (2) Unabsorbed reflection components are commonly observed, suggesting that the tori are clumpy. (3) Most of CTAGNs show small scattering fractions (<0.5%), implying a buried AGN nature. (4) Comparison with the results obtained for Compton-thin AGNs suggests that the properties of these CTAGNs can be understood as a smooth extension from Compton-thin AGNs with heavier obscuration; we find no evidence that the bulk of the population of hard-X-ray-selected CTAGNs are different from less obscured objects.

  1. Hercules X-1: Pulsed gamma-rays detected above 150 GeV

    NASA Technical Reports Server (NTRS)

    Cawley, M. F.; Fegan, D. J.; Gibbs, K. G.; Gorham, P. W.; Kenny, S.; Lamb, R. C.; Liebing, D. F.; Porter, N. A.; Stenger, V. J.; Weekes, T. C.

    1985-01-01

    The 1.24 second binary pulsar Her X-1, first observed in X-rays in 1971 by UHURU has now been seen as a sporadic gamma ray source from 1 TeV up to at least 500 TeV. In addition, reprocessed optical and infrared pulses are seen from the companion star HZ Herculis. Thus measurements of the Her X-1/HZ Herculis system span 15 decades in energy, rivaling both the Crab pulsar and Cygnus X-3 in this respect for a discrete galactic source.

  2. Mid- and Near-infrared spectral properties of a sample of Swift-BAT X-ray selected AGNs

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Miyaji, Takamitsu; Malkan, Matthew A.; Ichikawa, Kohei; Ueda, Yoshihiro; Shirahata, M.; Nakagawa, Takao; Imanishi, Masatoshi; Oyabu, Shinki

    2015-08-01

    We present a comparative study of the mid- (MIR) to near-infrared (NIR) properties of a sample of X-ray selected AGNs from the Swift/Burst Alert Telescope (BAT) 70-month all-sky hard X-ray (14-195 keV) survey. For a sample of 78 AGNs, including both Seyfert 1 and Seyfert 2 sources with black hole masses derived from 2MASS K-band magnitudes and literature, we obtain spectroscopic data from the IRC (2.5 - 5 μm) and IRS (in the 5-14 μm band) instruments onboard the Akari and Spitzer satellites, respectively. We test possible correlations between the 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7 μm polycyclic aromatic hydrocarbon (PAH) emission features, the continuum slope and CO optical depth, as well as CO2, H2O, and amorphous silicates. Using the 3.3, 6.2 and 11.3 μm PAH emission features as a proxy for the star-formation rate (SFR) we report the AGN type and Eddington-ratio dependences of circum-nuclear star formation.

  3. THE BALMER-DOMINATED BOW SHOCK AND WIND NEBULA STRUCTURE OF {gamma}-RAY PULSAR PSR J1741-2054

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romani, Roger W.; Shaw, Michael S.; Camilo, Fernando

    2010-12-01

    We have detected an H{alpha} bow shock nebula around PSR J1741-2054, a pulsar discovered through its GeV {gamma}-ray pulsations. The pulsar is only {approx}1.''5 behind the leading edge of the shock. Optical spectroscopy shows that the nebula is non-radiative, dominated by Balmer emission. The H{alpha} images and spectra suggest that the pulsar wind momentum is equatorially concentrated and implies a pulsar space velocity {approx}150 km s{sup -1}, directed 15{sup 0} {+-} 10{sup 0} out of the plane of the sky. The complex H{alpha} profile indicates that different portions of the post-shock flow dominate line emission as gas moves along themore » nebula and provide an opportunity to study the structure of this unusual slow non-radiative shock under a variety of conditions. CXO ACIS observations reveal an X-ray pulsar wind nebula within this nebula, with a compact {approx}2.''5 equatorial structure and a trail extending several arcminutes behind. Together these data support a close ({<=}0.5 kpc) distance, a spin geometry viewed edge-on, and highly efficient {gamma}-ray production for this unusual, energetic pulsar.« less

  4. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  5. Pulsar Artist Concept

    NASA Image and Video Library

    2017-01-06

    This artist's concept shows a pulsar, which is like a lighthouse, as its light appears in regular pulses as it rotates. Pulsars are dense remnants of exploded stars, and are part of a class of objects called neutron stars. Magnetars are different kinds of neutron stars -- they have violent, high-energy outbursts of X-ray and gamma ray light. A mysterious object called PSR J1119-6127 has been seen behaving as both a pulsar and a magnetar, suggesting that it could be a "missing link" between these objects. http://photojournal.jpl.nasa.gov/catalog/PIA21085

  6. PULSED GAMMA RAYS FROM THE ORIGINAL MILLISECOND AND BLACK WIDOW PULSARS: A CASE FOR CAUSTIC RADIO EMISSION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillemot, L.; Kramer, M.; Freire, P. C. C.

    2012-01-01

    We report the detection of pulsed gamma-ray emission from the fast millisecond pulsars (MSPs) B1937+21 (also known as J1939+2134) and B1957+20 (J1959+2048) using 18 months of survey data recorded by the Fermi Large Area Telescope and timing solutions based on radio observations conducted at the Westerbork and Nancay radio telescopes. In addition, we analyzed archival Rossi X-ray Timing Explorer and XMM-Newton X-ray data for the two MSPs, confirming the X-ray emission properties of PSR B1937+21 and finding evidence ({approx}4{sigma}) for pulsed emission from PSR B1957+20 for the first time. In both cases the gamma-ray emission profile is characterized by twomore » peaks separated by half a rotation and are in close alignment with components observed in radio and X-rays. These two pulsars join PSRs J0034-0534 and J2214+3000 to form an emerging class of gamma-ray MSPs with phase-aligned peaks in different energy bands. The modeling of the radio and gamma-ray emission profiles suggests co-located emission regions in the outer magnetosphere.« less

  7. X-ray observations of the accreting Be/X-ray binary pulsar A 0535+26 in outburst

    NASA Astrophysics Data System (ADS)

    Caballero, I.

    2009-04-01

    the cyclotron line energy with the X-ray luminosity are thought to be related to a change in the height of the accretion column as the mass accretion rate varies. A detailed timing analysis has been performed, and we find for the first time the onset of a spin-up, at a phase close to the periastron passage, during a normal outburst, providing evidence for an accretion disk around the neutron star. Energy-dependent pulse profiles of the source have been studied and compared to historical observations. During the rising part of the outburst a series of flares were observed. RXTE observed one of these flares, and we found during the flare the energy of the fundamental cyclotron line shifted to a significantly higher position compared to the rest of the outburst. Also, the energy-dependent pulse profiles during the flare were found to vary significantly from the rest of the outburst. These differences have been interpreted in terms of a theoretical model, based on the presence of magnetospheric instabilities at the onset of the accretion. We applied a decomposition method to A 0535+26 energy-dependent pulse profiles. Basic assumptions of the method are that the asymmetry observed in the pulse profiles is caused by non-antipodal magnetic poles, and that the emission regions have axisymmetric beam patterns. Using pulse profiles obtained from RXTE observations, the contribution of the two emission regions has been disentangled. Constraints on the geometry of the pulsar and a possible solution of the beam pattern are given. The reconstructed beam pattern is interpreted in terms of a geometrical model that includes relativistic light deflection.

  8. Enhanced high-energy gamma-ray emission from the microquasar Cygnus X-3 detected by Fermi/LAT

    NASA Astrophysics Data System (ADS)

    Loh, Alan; Corbel, Stephane

    2017-02-01

    Following the recent decrease of the hard X-ray emission from the high-mass X-ray binary Cygnus X-3 as seen by the Swift/Burst Alert Telescope (https://swift.gsfc.nasa.gov/results/transients/CygX-3/), the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, has observed significant gamma-ray emission originating from the microquasar.

  9. Swift and SALT observations of the multiple outbursts of MAXI J1957+032

    NASA Astrophysics Data System (ADS)

    Mata Sánchez, D.; Charles, P. A.; Armas Padilla, M.; Buckley, D. A. H.; Israel, G. L.; Linares, M.; Muñoz-Darias, T.

    2017-06-01

    The new recurrent X-ray transient MAXI J1957+032 has had four X-ray outbursts within 16 months, all very briefly detected (lasting <5 d). During the most recent event (2016 September/October), we obtained with the Southern African Large Telescope the first optical spectrum of the transient counterpart, showing the classic blue continuum of an X-ray irradiated disc in an LMXB and no other features. At high Galactic latitude below the plane (-13°) reddening is low but there is no quiescent counterpart visible on any of the existing sky surveys, nor any other known X-ray source in the region. Swift monitoring of three of the four events is presented, showing rapidly fading X-ray outbursts together with significant UVOT detections in the UV (W1,M2,W2), U and B bands. The optical properties are most like those of the short-period LMXBs, which, combined with the softening witnessed during the decay to quiescence would place the system at d < 13 kpc. The short duration and short recurrence time of the outbursts are reminiscent of the accreting millisecond X-ray pulsars, which exhibit peak luminosities of ˜ 1 per cent LEdd. Assuming this peak luminosity would place MAXI J1957+032 at a distance of d ˜ 5-6 kpc.

  10. BROADBAND X-RAY IMAGING AND SPECTROSCOPY OF THE CRAB NEBULA AND PULSAR WITH NuSTAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madsen, Kristin K.; Harrison, Fiona; Grefenstette, Brian W.

    We present broadband (3-78 keV) NuSTAR X-ray imaging and spectroscopy of the Crab nebula and pulsar. We show that while the phase-averaged and spatially integrated nebula + pulsar spectrum is a power law in this energy band, spatially resolved spectroscopy of the nebula finds a break at ∼9 keV in the spectral photon index of the torus structure with a steepening characterized by ΔΓ ∼ 0.25. We also confirm a previously reported steepening in the pulsed spectrum, and quantify it with a broken power law with break energy at ∼12 keV and ΔΓ ∼ 0.27. We present spectral maps ofmore » the inner 100'' of the remnant and measure the size of the nebula as a function of energy in seven bands. These results find that the rate of shrinkage with energy of the torus size can be fitted by a power law with an index of γ = 0.094 ± 0.018, consistent with the predictions of Kennel and Coroniti. The change in size is more rapid in the NW direction, coinciding with the counter-jet where we find the index to be a factor of two larger. NuSTAR observed the Crab during the latter part of a γ-ray flare, but found no increase in flux in the 3-78 keV energy band.« less

  11. A Soft X-Ray Spectral Episode for the Clocked Burster, GS 1826-24 as Measured by Swift and NuSTAR

    NASA Technical Reports Server (NTRS)

    Chenvez, J.; Galloway, D. K.; Zand, J. J. M. In 'T; Tomsick, J. A.; Barret, D.; Chakrabarty, D.; Fuerst, F.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; hide

    2016-01-01

    We report on NuSTAR and Swift observations of a soft state of the neutron star low-mass X-ray binary GS 1826-24, commonly known as the "clocked" burster. The transition to the soft state was recorded in 2014 June through an increase of the 2-20 keV source intensity measured by MAXI, simultaneous with a decrease of the 15-50 keV intensity measured by Swift/BAT. The episode lasted approximately two months, after which the source returned to its usual hard state. We analyze the broadband spectrum measured by Swift/XRT and NuSTAR and estimate the accretion rate during the soft episode to be approximately equal to 13% m(sub Edd), within the range of previous observations. However, the best-fit spectral model, adopting the double Comptonization used previously, exhibits significantly softer components. We detect seven type-I X-ray bursts, all significantly weaker (and with shorter rise and decay times) than observed previously. The burst profiles and recurrence times vary significantly, ruling out the regular bursts that are typical for this source. One burst exhibited photospheric radius expansion?and we estimate the source distance as (5.7 +/- 0.2) xi(sub b)(exp -1/2) kpc, where xi(sub b) parameterizes the possible anisotropy of the burst emission. The observed soft state may most likely be interpreted as a change in accretion geometry at about similar bolometric luminosity as in the hard state. The different burst behavior can therefore be attributed to this change in accretion flow geometry, but the fundamental cause and process for this effect remain unclear.

  12. Automatic Analysis of Swift-XRT data

    NASA Astrophysics Data System (ADS)

    Evans, P. A.; Tyler, L. G.; Beardmore, A. P.; Osborne, J. P.

    2008-08-01

    The Swift spacecraft detects and autonomously observes ˜100 Gamma Ray Bursts (GRBs) per year, ˜96% of which are detected by the X-ray telescope (XRT). GRBs are accompanied by optical transients and the field of ground-based follow-up of GRBs has expanded significantly over the last few years, with rapid response instruments capable of responding to Swift triggers on timescales of minutes. To make the most efficient use of limited telescope time, follow-up astronomers need accurate positions of GRBs as soon as possible after the trigger. Additionally, information such as the X-ray light curve, is of interest when considering observing strategy. The Swift team at Leicester University have developed techniques to improve the accuracy of the GRB positions available from the XRT, and to produce science-grade X-ray light curves of GRBs. These techniques are fully automated, and are executed as soon as data are available.

  13. Station Explorer for X-Ray Timing and Navigation Technology Architecture Overview

    NASA Technical Reports Server (NTRS)

    Hasouneh, Monther Abdel Hamid

    2014-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA astrophysics Explorer Mission of Opportunity, scheduled for launch in mid-2016, that will be hosted on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). By exploiting the regular pulsations emit-ted by the ultra dense remnants of dead stars, which rotate many hundreds of times per second, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar-based navigation is a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond and include the worlds first completely functional system architecture for navigation using X-ray pulsars. In addition, NICER SEXTANT will investigate the suit-ability of these millisecond X-ray pulsars (MSPs) as a Solar System-wide timing infrastructure to rival terrestrial atomic clocks on long timescales. This paper provides a brief overview of the SEXTANT demonstration and the design of the system architecture that consists of the NICER X-ray timing instrument, the SEXTANT flight software and algorithms, supporting ground system, and the GSFC X-ray Navigation Laboratory Testbed (GXLT).

  14. Three millisecond pulsars in FERMI LAT unassociated bright sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransom, S. M.; Ray, P. S.; Camilo, F.

    2010-12-23

    We searched for radio pulsars in 25 of the non-variable, unassociated sources in the Fermi LAT Bright Source List with the Green Bank Telescope at 820 MHz. Here, we report the discovery of three radio and γ-ray millisecond pulsars (MSPs) from a high Galactic latitude subset of these sources. All of the pulsars are in binary systems, which would have made them virtually impossible to detect in blind γ-ray pulsation searches. They seem to be relatively normal, nearby (≤2 kpc) MSPs. These observations, in combination with the Fermi detection of γ-rays from other known radio MSPs, imply that most, ifmore » not all, radio MSPs are efficient γ-ray producers. The γ-ray spectra of the pulsars are power law in nature with exponential cutoffs at a few GeV, as has been found with most other pulsars. The MSPs have all been detected as X-ray point sources. Finally, their soft X-ray luminosities of ~10 30-10 31 erg s –1 are typical of the rare radio MSPs seen in X-rays.« less

  15. Eleven years of monitoring the Seyfert 1 Mrk 335 with Swift: Characterizing the X-ray and UV/optical variability

    NASA Astrophysics Data System (ADS)

    Gallo, L. C.; Blue, D. M.; Grupe, D.; Komossa, S.; Wilkins, D. R.

    2018-05-01

    The narrow-line Seyfert 1 galaxy (NLS1) Mrk 335 has been continuously monitored with Swift since May 2007 when it fell into a long-lasting, X-ray low-flux interval. Results from the nearly 11 years of monitoring are presented here. Structure functions are used to measure the UV-optical and X-ray power spectra. The X-ray structure function measured between 10 - 100 days is consistent with the flat, low-frequency part of the power spectrum measured previously in Mrk 335. The UV-optical structure functions of Mrk 335 are comparable with those of other Seyfert 1 galaxies and of Mrk 335 itself when it was in a normal bright state. There is no indication that the current X-ray low-flux state is attributed to changes in the accretion disc structure of Mrk 335. The characteristic timescales measured in the structure functions can be attributed to thermal (for the UV) and dynamic (for the optical) timescales in a standard accretion disc. The high-quality UVW2 (˜1800 Å in the source frame) structure function appears to have two breaks and two different slopes between 10 - 160 days. Correlations between the X-ray and other bands are not highly significant when considering the entire 11-year light curves, but more significant behaviour is present when considering segments of the light curves. A correlation between the X-ray and UVW2 in 2014 (Year-8) may be predominately caused by an giant X-ray flare that was interpreted as jet-like emission. In 2008 (Year-2), possible lags between the UVW2 emission and other UV-optical waveband may be consistent with reprocessing of X-ray or UV emission in the accretion disc.

  16. Late Time Multi-Wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B.D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; hide

    2016-01-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to greater than 4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t (sup -70). Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of L (sub X) approximately equal to 5 times 10 (sup 42) ergs per second and are marginally inconsistent with a continuing decay of t (sup minus 5 divided by 3), similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of M (mass) (sub BH (black hole) equal to 3 times 10 (sup 6) the mass of the sun, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30 to 50 days, with a peak magnitude (corrected for host galaxy extinction) of M (sub R) approximately equal to minus 22 to minus 23. The luminosity of the bump is significantly higher than seen in other, nonrelativisticTDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  17. Detection of 16 gamma-ray pulsars through blind frequency searches using the Fermi LAT.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Anderson, B; Atwood, W B; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Baring, M G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Bignami, G F; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; Dormody, M; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gwon, C; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jóhannesson, G; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Primack, J R; Rainò, S; Rando, R; Ray, P S; Razzano, M; Rea, N; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J G; Thompson, D J; Tibaldo, L; Tibolla, O; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Van Etten, A; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Watters, K; Winer, B L; Wolff, M T; Wood, K S; Ylinen, T; Ziegler, M

    2009-08-14

    Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.

  18. Fermi Detection of a Luminous gamma-ray Pulsar in a Globular Cluster

    NASA Technical Reports Server (NTRS)

    Freire, P. C. C.; Abdo, A. A.; Ajello, M.; Allafort, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2011-01-01

    We report the Fermi Large Area Telescope detection of gamma -ray (>100 mega-electron volts) pulsations from pulsar J1823--3021A in the globular cluster NGC 6624 with high significance (approx 7 sigma). Its gamma-ray luminosity L (sub 3) = (8:4 +/- 1:6) X 10(exp 34) ergs per second, is the highest observed for any millisecond pulsar (MSP) to date, and it accounts for most of the cluster emission. The non-detection of the cluster in the off-pulse phase implies that its contains < 32 gamma-ray MSPs, not approx 100 as previously estimated. The gamma -ray luminosity indicates that the unusually large rate of change of its period is caused by its intrinsic spin-down. This implies that J1823--3021A has the largest magnetic field and is the youngest MSP ever detected, and that such anomalous objects might be forming at rates comparable to those of the more normal MSPs.

  19. An extremely bright gamma-ray pulsar in the Large Magellanic Cloud.

    PubMed

    2015-11-13

    Pulsars are rapidly spinning, highly magnetized neutron stars, created in the gravitational collapse of massive stars. We report the detection of pulsed giga-electron volt gamma rays from the young pulsar PSR J0540-6919 in the Large Magellanic Cloud, a satellite galaxy of the Milky Way. This is the first gamma-ray pulsar detected in another galaxy. It has the most luminous pulsed gamma-ray emission yet observed, exceeding the Crab pulsar's by a factor of 20. PSR J0540-6919 presents an extreme test case for understanding the structure and evolution of neutron star magnetospheres. Copyright © 2015, American Association for the Advancement of Science.

  20. Optical Studies of 15 Hard X-Ray Selected Cataclysmic Binaries

    NASA Astrophysics Data System (ADS)

    Halpern, Jules P.; Thorstensen, John R.; Cho, Patricia; Collver, Gabriel; Motsoaledi, Mokhine; Breytenbach, Hannes; Buckley, David A. H.; Woudt, Patrick A.

    2018-06-01

    We conducted time-resolved optical spectroscopy and/or time-series photometry of 15 cataclysmic binaries that were discovered in hard X-ray surveys by the Swift Burst Alert Telescope and the International Gamma-Ray Astrophysics Laboratory, with the goal of measuring their orbital periods and searching for spin periods. Four of the objects in this study are new optical identifications: Swift J0535.2+2830, Swift J2006.4+3645, IGR J21095+4322, and Swift J2116.5+5336. Coherent pulsations are detected from three objects for the first time, Swift J0535.2+2830 (1523 s), 2PBC J1911.4+1412 (747 s), and 1SWXRT J230642.7+550817 (464 s), indicating that they are intermediate polars (IPs). We find two new eclipsing systems in time-series photometry: 2PBC J0658.0‑1746, a polar with a period of 2.38 hr, and Swift J2116.5+5336, a disk system that has an eclipse period of 6.56 hr. Exact or approximate spectroscopic orbital periods are found for six additional targets. Of note is the long 4.637-day orbit for Swift J0623.9‑0939, which is revealed by the radial velocities of the photospheric absorption lines of the secondary star. We also discover a 12.76 hr orbital period for RX J2015.6+3711, which confirms that the previously detected 2.00 hr X-ray period from this star is the spin period of an IP, as inferred by Coti Zelati et al. These results support the conclusion that hard X-ray selection favors magnetic CVs, with IPs outnumbering polars.

  1. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  2. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  3. Observations of low luminosity X-ray sources in Vela-Puppis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Erlemitsos, P. J.; Swank, J. H.

    1978-01-01

    Results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg are presented. This region contains at least six low luminosity X-ray sources within approximately 10 deg. of PSRO833-45, which is near the center of the Gum Nebula. The X-ray source associated with the Vela pulsar, 4U0833-45, is observed at twice its 4U catalogue intensity. The lack of X-ray pulsations at the pulsar period, the non thermal power law spectrum, and models of the X-ray come from an extended source approximately 1 deg in radius. The observation of a high temperature spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OSO752-39. Other spectra from this region are discussed.

  4. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  5. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgarter, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Chaplin, V.; Connaughton, V.; hide

    2012-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, a approx.7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/PCA was particularly variable, changing by up to approx.3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab nebula, including recent data from Fermi GBM, Swift/BAT, and MAXI, and a 16-year long light curve from RXTE/PCA.

  6. Hard X-ray Variations in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Cherry, M. L.; Case, G. L.; Baumgartner, W. H.; Beklen, E.; Bhat, P. N.; Briggs, M. S.; Camero-Arranz, A.; Connaughton, V.; Finger, M. H.; hide

    2013-01-01

    In the first two years of science operations of the Fermi Gamma-ray Burst Monitor (GBM), August 2008 to August 2010, approximately 7% (70 mcrab) decline was discovered in the overall Crab Nebula flux in the 15 - 50 keV band, measured with the Earth occultation technique. This decline was independently confirmed with four other instruments: the RXTE/PCA, Swift/BAT, INTEGRAL/IBIS, and INTEGRAL/SPI. The pulsed flux measured with RXTE/PCA from 1999-2010 was consistent with the pulsar spin-down, indicating that the observed changes were nebular. From 2001 to 2010, the Crab nebula flux measured with RXTE/ PCA was particularly variable, changing by up to approximately 3.5% per year in the 15-50 keV band. These variations were confirmed with INTEGRAL/SPI starting in 2003, Swift/BAT starting in 2005, and Fermi GBM starting in 2008. Before 2001 and since 2010, the Crab nebula flux has appeared more stable, varying by less than 2% per year. I will present updated light curves in multiple energy bands for the Crab Nebula, including recent data from Fermi GBM, Swift/BAT, INTEGRAL and MAXI, and a 16-year long light curve from RXTE/PCA.

  7. X-Ray and Multi-Wavelength Observations of Gamma Ray Bursts (GRBs)

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    The launch of the Italian (with Dutch participation) satellite BeppoSAX in 1996 enabled the detection of the first X-ray GRB afterglow, which in turn led to GRB counterpart detection in multiple wavelengths. This breakthrough firmly established the cosmological nature of GRBs. However, afterglow observations of GRBs took off in large numbers after the launch of NASA's Swift satellite in 2004. Swift enabled multiple major discoveries, such as the early lightcurves of X-ray afterglows, the first detection of a short GRB afterglow and opened more questions such as where are the elusive breaks in afterglow light curves. I will describe here these results and will discuss future opportunities and improvements in the field.

  8. Late Time Multi-wavelength Observations of Swift J1644+5734: A Luminous Optical/IR Bump and Quiescent X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Tanvir, N. R.; Brown, G. C.; Metzger, B. D.; Page, K. L.; Cenko, S. B.; O'Brien, P. T.; Lyman, J. D.; Wiersema, K.; Stanway, E. R.; Fruchter, A. S.; Perley, D. A.; Bloom, J. S.

    2016-03-01

    We present late time multi-wavelength observations of Swift J1644+57, suggested to be a relativistic tidal disruption flare (TDF). Our observations extend to >4 years from discovery and show that 1.4 years after outburst the relativistic jet switched off on a timescale less than tens of days, corresponding to a power-law decay faster than t-70. Beyond this point weak X-rays continue to be detected at an approximately constant luminosity of LX ˜ 5 × 1042 erg s-1 and are marginally inconsistent with a continuing decay of t-5/3, similar to that seen prior to the switch-off. Host photometry enables us to infer a black hole mass of MBH = 3 × 106 M⊙, consistent with the late time X-ray luminosity arising from sub-Eddington accretion onto the black hole in the form of either an unusually optically faint active galactic nucleus or a slowly varying phase of the transient. Optical/IR observations show a clear bump in the light curve at timescales of 30-50 days, with a peak magnitude (corrected for host galaxy extinction) of MR ˜ -22 to -23. The luminosity of the bump is significantly higher than seen in other, non-relativistic TDFs and does not match any re-brightening seen at X-ray or radio wavelengths. Its luminosity, light curve shape, and spectrum are broadly similar to those seen in superluminous supervnovae, although subject to large uncertainties in the correction of the significant host extinction. We discuss these observations in the context of both TDF and massive star origins for Swift J1644+5734 and other candidate relativistic tidal flares.

  9. PSR J1906+0722: An Elusive Gamma-Ray Pulsar

    NASA Astrophysics Data System (ADS)

    Clark, C. J.; Pletsch, H. J.; Wu, J.; Guillemot, L.; Ackermann, M.; Allen, B.; de Angelis, A.; Aulbert, C.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bock, O.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cecchi, C.; Champion, D. J.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cuéllar, A.; Cutini, S.; D'Ammando, F.; Desiante, R.; Drell, P. S.; Eggenstein, H. B.; Favuzzi, C.; Fehrmann, H.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Hou, X.; Jogler, T.; Johnson, A. S.; Jóhannesson, G.; Kramer, M.; Krauss, F.; Kuss, M.; Laffon, H.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Machenschalk, B.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; de Palma, F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Saz Parkinson, P. M.; Schaal, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torne, P.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, K. S.; Wood, M.; Yassine, M.

    2015-08-01

    We report the discovery of PSR J1906+0722, a gamma-ray pulsar detected as part of a blind survey of unidentified Fermi Large Area Telescope (LAT) sources being carried out on the volunteer distributed computing system, Einstein@Home. This newly discovered pulsar previously appeared as the most significant remaining unidentified gamma-ray source without a known association in the second Fermi-LAT source catalog (2FGL) and was among the top 10 most significant unassociated sources in the recent third catalog (3FGL). PSR J1906+0722 is a young, energetic, isolated pulsar, with a spin frequency of 8.9 Hz, a characteristic age of 49 kyr, and spin-down power 1.0× {10}36 erg s-1. In 2009 August it suffered one of the largest glitches detected from a gamma-ray pulsar ({{Δ }}f/f≈ 4.5× {10}-6). Remaining undetected in dedicated radio follow-up observations, the pulsar is likely radio-quiet. An off-pulse analysis of the gamma-ray flux from the location of PSR J1906+0722 revealed the presence of an additional nearby source, which may be emission from the interaction between a neighboring supernova remnant and a molecular cloud. We discuss possible effects which may have hindered the detection of PSR J1906+0722 in previous searches and describe the methods by which these effects were mitigated in this survey. We also demonstrate the use of advanced timing methods for estimating the positional, spin and glitch parameters of difficult-to-time pulsars such as this.

  10. Discovery of a cyclotron absorption line in the spectrum of the binary X-ray pulsar 4U 1538 - 52 observed by Ginga

    NASA Technical Reports Server (NTRS)

    Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro

    1990-01-01

    A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.

  11. PSR J2124-3358: A Bow Shock Nebula with an X-ray Tail

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Gaensler, B. M.; Vigelius, M.; Cordes, J. M.; Arzoumanian, Z.; Stappers, B.; Ghavamian, P.; Melatos, A.

    2005-12-01

    As neutron stars move supersonically through the interstellar medium, their relativistic winds are confined by the ram pressure of the interstellar medium. The outer shocked layers may emit in Hα , producing a visible bow shock nebula, while the confined relativistic wind may produce radio or X-ray emission. The Hα bow shock nebula powered by the recycled pulsar J2124-3358 is asymmetric about the velocity vector and shows a marked kink. In recent observations with the Chandra X-ray Observatory, we have detected a long, curved X-ray tail associated with the pulsar. The tail is not aligned with the pulsar velocity, but is confined within the optical bow shock. The X-ray spectrum of the tail is well-fit by a power law, consistent with synchrotron emission from the wind termination shock and the post-shock flow. The presence of Hα and X-ray emission allows us to trace both the external ambient medium and the confined wind. In magnetohydrodynamic simulations, we verify that a bulk flow and non-uniformities in the ambient medium can produce the observed shape of the nebula, possibly in combination with an anisotropic pulsar wind. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO5-6075X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  12. Suzaku observations of the old pulsar wind nebula candidate HESS J1356-645

    NASA Astrophysics Data System (ADS)

    Izawa, Masaharu; Dotani, Tadayasu; Fujinaga, Takahisa; Bamba, Aya; Ozaki, Masanobu; Hiraga, Junko S.

    2015-06-01

    A largely extended X-ray emission was discovered around the pulsar PSR J1357-6429 with the Suzaku deep observations. The pulsar, whose characteristic age is 7.3 kyr, is located within the TeV γ-ray source HESS J1356-645. The extended emission is found to have a 1 σ X-ray size of ˜ 4', or ˜ 3 pc at 2.4 kpc, with a small offset from the pulsar. Its X-ray spectrum is well reproduced by a simple power-law model with a photon index of 1.70_{-0.06}^{+0.07}. No significant spatial variation was found for the X-ray photon index as a function of distance from the pulsar. We conclude that the extended emission is associated to the pulsar wind nebula (PWN) of PSR J1357-6429. This is a new sample of largely extended nebulae around middle-aged pulsars. We discuss the evolution of this PWN according to the relic PWN scenario.

  13. X-ray View of Four High-Luminosity Swift-BAT AGN: Unveiling Obscuration and Reflection with Suzaku

    NASA Technical Reports Server (NTRS)

    Fiorettil, V.; Angelini, L.; Mushotzky, R. F.; Koss, M.; Malaguti, G.

    2013-01-01

    Aims. A complete census of obscured Active Galactic Nuclei (AGN) is necessary to reveal the history of the super massive black hole (SMBH) growth and galaxy evolution in the Universe given the complex feedback processes and the fact that much of this growth occurs in an obscured phase. In this context, hard X-ray surveys and dedicated follow-up observations represent a unique tool for selecting highly absorbed AGN and for characterizing the obscuring matter surrounding the SMBH. Here we focus on the absorption and reflection occurring in highly luminous, quasar-like AGN, to study the relation between the geometry of the absorbing matter and the AGN nature (e.g. X-ray, optical, and radio properties), and to help to determine the column density dependency on the AGN luminosity. Methods. The Swift/BAT nine-month survey observed 153 AGN, all with ultra-hard X-ray BAT fluxes in excess of 10(exp -11) erg per square centimeter and an average redshift of 0.03. Among them, four of the most luminous BAT AGN (44.73 less than LogLBAT less than 45.31) were selected as targets of Suzaku follow-up observations: J2246.0+3941 (3C 452), J0407.4+0339 (3C 105), J0318.7+6828, and J0918.5+0425. The column density, scattered/reflected emission, the properties of the Fe K line, and a possible variability are fully analyzed. For the latter, the spectral properties from Chandra, XMM-Newton and Swift/XRT public observations were compared with the present Suzaku analysis, adding an original spectral analysis when non was available from the literature. Results. Of our sample, 3C 452 is the only certain Compton-thick AGN candidate because of i) the high absorption (N(sub H) approximately 4 × 10(exp 23) per square centimeter) and strong Compton reflection; ii) the lack of variability; iii) the "buried" nature, i.e. the low scattering fraction (less than 0.5%) and the extremely low relative [OIII] luminosity. In contrast 3C 105 is not reflection-dominated, despite the comparable column density

  14. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  15. Discovery of an Energetic Pulsar Associated with SNR G76.9+1.0

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Zaven; Gotthelf, E. V.; Ransom, S. M.; Safi-Harb, S.; Kothes, R.; Landecker, T. L.

    2012-01-01

    We report the discovery of PSR J2022-<-3842, a 24 ms radio and X-ray pulsar in the supernova remnant G76.9+i.0, in observations with the Chandra X-ray telescope, the Robert C. Byrd Green Bank Radio Telescope, and the Rossi X-ray Timing Explorer (RXTE). The pulsar's spin-down rate implies a rotation-powered luminosity E = 1.2 X 10(exp 38) erg/s, a surface dipole magnetic field strength B(sub S), = 1.0 X 10(exp 12) G, and a characteristic age of 8.9 kyr. PSR J2022+3842 is thus the second-most energetic Galactic pulsar known, after the Crab, as well as the most rapidly-rotating young, radio-bright pulsar known. The radio pulsations are highly dispersed and broadened by interstellar scattering, and we find that a large (delta f/f approximates 1.9 x 10(exp -6)) spin glitch must have occurred between our discovery and confirmation observations. The X-ray pulses are narrow (0.06 cycles FWHM) and visible up to 20 keV, consistent with magnetospheric emission from a rotation-powered pulsar. The Chandra X-ray image identifies the pulsar with a hard, unresolved source at the midpoint of the double-lobed radio morphology of G76.9+ 1.0 and embedded within faint, compact X-ray nebulosity. The spatial relationship of the X-ray and radio emissions is remarkably similar to extended structure seen around the Vela pulsar. The combined Chandra and RXTE pulsar spectrum is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.3) x 10(exp 22) / sq cm and photon index Gamma = 1.0 +/- 0.2; it implies that the Chandra point-source flux is virtually 100% pulsed. For a distance of 10 kpc, the X-ray luminosity of PSR J2022+3842 is L(sub x){2-1O keV) = 7.0 x 10(exp 33) erg/s. Despite being extraordinarily energetic, PSR J2022+3842 lacks a bright X-ray wind nebula and has an unusually low conversion efficiency of spin-down power to X-ray luminosity, Lx/E = 5.9 X 10(exp-5).

  16. First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Razzano, M.

    2009-04-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.

  17. How young the accretion-powered pulsars could be?

    NASA Astrophysics Data System (ADS)

    Kostina, M. V.; Ikhsanov, N. R.

    2017-12-01

    A question about the age of accretion-powered X-ray pulsars has recently been reopened by a discovery of the X-ray pulsar SXP 1062 in the SMC. This High Mass X-ray Binary (HMXB) contains a neutron star rotating with the period of 1062 s and is associated with a supernova remnant of the age ∼ 104 yr. An attempt to explain the origin of this young long-period X-ray pulsar within the traditional scenario of three basic states (ejector, propeller and accretor) encounters difficulties. Even if this pulsar were born as a magnetar the spin-down time during the propeller stage would exceed 104 yr. Here we explore a more circuitous way of the pulsar spin evolution in HMXBs, in which the propeller stage in the evolutionary track is avoided. We find this way to be possible if the stellar wind of the massive companion to the neutron star is magnetized. The geometry of plasma flow captured by the neutron star in this case differs from spherically symmetrical and the magnetospheric radius of the neutron star is smaller than that evaluated in the convention accretion scenarios. We show that the age of an accretion-powered pulsar in this case can be as small as ∼ 104 years without the need of invoking initial magnetic field in excess of 1013 G.

  18. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  19. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  20. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less