Sample records for x-ray radiography biomedical

  1. X-ray vector radiography imaging for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potdevin, Guillaume; Malecki, Andreas; Biernath, Thomas

    The non-invasive estimation of fracture risk in osteoporosis remains a challenge in the clinical routine and is mainly based on an assessment of bone density by dual X-ray absorption (DXA) although bone micro-architecture is known to play an important role for bone fragility. Here we report on 'X-ray vector Radiography' measurements able to provide a direct bone microstructure diagnostics on human bone samples, which we compare qualitatively and quantitatively with numerical analysis of high resolution radiographs.

  2. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  3. Flash x-ray radiography of argon jets in ambient air

    NASA Astrophysics Data System (ADS)

    Geiswiller, J.; Robert, E.; Huré, L.; Cachoncinlle, C.; Viladrosa, R.; Pouvesle, J. M.

    1998-09-01

    This paper describes the development and application of a soft x-ray flash radiography technique. A very compact soft x-ray flash source has been specially designed for these studies. The table-top x-ray source developed in this work emits strong doses, up to one roentgen at the output window, of x-ray photons, with most of them in the characteristic lines of the anode material (photon energy in the energy range 5-10 keV), in pulse of 20 ns FWHM with an x-ray emission zone smaller than 0957-0233/9/9/024/img1. All these characteristics make this source attractive for the x-ray radiography of high-speed phenomena, down to ten nanoseconds duration and/or for the media presenting weak absorption for the harder x-ray photons emitted by more conventional flash x-ray systems. Argon streams in ambient air were chosen as a typical case to enlighten the potentialities of this method. Single-shot radiographs of such an argon jet through rectangular nozzles were obtained. No attempt of quantitative measurement of local density in the argon stream has yet been performed, only the qualitative structure of the jet has been investigated. Nevertheless, these preliminary results enable us to state that the diagnostics of gaseous or plasma media, even at rather low pressures, can proceed using soft x-ray flash radiography.

  4. First experience with x-ray dark-field radiography for human chest imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Noel, Peter B.; Willer, Konstantin; Fingerle, Alexander A.; Gromann, Lukas B.; De Marco, Fabio; Scherer, Kai H.; Herzen, Julia; Achterhold, Klaus; Gleich, Bernhard; Münzel, Daniela; Renz, Martin; Renger, Bernhard C.; Fischer, Florian; Braun, Christian; Auweter, Sigrid; Hellbach, Katharina; Reiser, Maximilian F.; Schröter, Tobias; Mohr, Jürgen; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Proksa, Roland; Köhler, Thomas; Wieberneit, Nataly; Rindt, Karsten; Rummeny, Ernst J.; Pfeiffer, Franz

    2017-03-01

    Purpose: To evaluate the performance of an experimental X-ray dark-field radiography system for chest imaging in humans and to compare with conventional diagnostic imaging. Materials and Methods: The study was institutional review board (IRB) approved. A single human cadaver (52 years, female, height: 173 cm, weight: 84 kg, chest circumference: 97 cm) was imaged within 24 hours post mortem on the experimental x-ray dark-field system. In addition, the cadaver was imaged on a clinical CT system to obtain a reference scan. The grating-based dark-field radiography setup was equipped with a set of three gratings to enable grating-based dark-field contrast x-ray imaging. The prototype operates at an acceleration voltage of up to 70 kVp and with a field-of-view large enough for clinical chest x-ray (>35 x 35 cm2). Results: It was feasible to extract x-ray dark-field signal of the whole human thorax, clearly demonstrating that human x-ray dark-field chest radiography is feasible. Lung tissue produced strong scattering, reflected in a pronounced x-ray dark-field signal. The ribcage and the backbone are less prominent than the lung but are also distinguishable. Finally, the soft tissue is not present in the dark-field radiography. The regions of the lungs affected by edema, as verified by CT, showed less dark-field signal compared to healthy lung tissue. Conclusion: Our results reveal the current status of translating dark-field imaging from a micro (small animal) scale to a macro (patient) scale. The performance of the experimental x-ray dark-field radiography setup offers, for the first time, obtaining multi-contrast chest x-ray images (attenuation and dark-field signal) from a human cadaver.

  5. Flash X-Ray Apparatus With Spectrum Control Functions For Medical Use And Fuji Computed Radiography

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Sato, E.; Hayasi, Y.; Suzuki, M.; Arima, H.; Hoshino, F.

    1985-02-01

    Flash radiographic bio-medical studies at sub-microsecond intervals were performed by using both a new type of flash X-ray(FX) apparatus with spectrum control functions and Fuji Computed Radiography(FCR). This single flasher tends to have a comparatively long exposure time and the electric pulse width of the FX wave form is about 0.3,usec. The maximum FX dose is about 50mR at 1m per pulse, and the effective focal spot varies according to condenser charging voltage, A-C distance, etc., ranging from 1.0 to 3.0mm in diameter, but in the low dose rate region it can be reduced to less than 1.0mm in diameter. The FX dose is determined by the condenser charging voltage and the A-C distance, while the FX spectrum is determined by the average voltage of the FX tube and filters. Various clear FX images were obtained by controlling the spectrum and dose. FCR is a new storage medium for medical radiography developed by the Fuji Photo Film Co., Ltd. and this apparatus has various image forming functions: low dose radiography, film density control, image contrast control, subtraction management and others. We have used this new apparatus in conjunction with our FX radiography and have obtained some new and interesting biomedical radiograms: the edge enhancement image, the instantaneous enlarged image, and the single exposure energy subtraction image using the FX spectrum distribution.

  6. Intense X-ray machine for penetrating radiography

    NASA Astrophysics Data System (ADS)

    Lucht, Roy A.; Eckhouse, Shimon

    Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.

  7. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  8. Monochromatic x-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment.

    PubMed

    Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Inubushi, Yuichi; Shiraga, Hiroyuki; Azechi, Hiroshi

    2010-10-01

    Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 μm and 100 ps of spatial and temporal resolutions, respectively.

  9. X-ray vector radiography of a human hand

    NASA Astrophysics Data System (ADS)

    Jud, Christoph; Braig, Eva; Dierolf, Martin; Eggl, Elena; Günther, Benedikt; Achterhold, Klaus; Gleich, Bernhard; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Münzel, Daniela

    2017-03-01

    Grating based x-ray phase-contrast reveals differential phase-contrast (DPC) and dark-field contrast (DFC) on top of the conventional absorption image. X-ray vector radiography (XVR) exploits the directional dependence of the DFC and yields the mean scattering strength, the degree of anisotropy and the orientation of scattering structures by combining several DFC-projections. Here, we perform an XVR of an ex vivo human hand specimen. Conventional attenuation images have a good contrast between the bones and the surrounding soft tissue. Within the bones, trabecular structures are visible. However, XVR detects subtler differences within the trabecular structure: there is isotropic scattering in the extremities of the phalanx in contrast to anisotropic scattering in its body. The orientation changes as well from relatively random in the extremities to an alignment along the longitudinal trabecular orientation in the body. In the other bones measured, a similar behavior was found. These findings indicate a deeper insight into the anatomical configuration using XVR compared to conventional radiography. Since microfractures cause a discontinuous trabecular structure, XVR could help to detect so-called radiographically occult fractures of the trabecular bones.

  10. Quantitative imaging of single-shot liquid distributions in sprays using broadband flash x-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, B. R.; Roy, S.; Gord, J. R.

    Flash x-ray radiography is used to capture quantitative, two-dimensional line-of-sight averaged, single-shot liquid distribution measurements in impinging jet sprays. The accuracy of utilizing broadband x-ray radiation from compact flash tube sources is investigated for a range of conditions by comparing the data with radiographic high-speed measurements from a narrowband, high-intensity synchrotron x-ray facility at the Advanced Photon Source (APS) of Argonne National Laboratory. The path length of the liquid jets is varied to evaluate the effects of energy dependent x-ray attenuation, also known as spectral beam hardening. The spatial liquid distributions from flash x-ray and synchrotron-based radiography are compared, alongmore » with spectral characteristics using Taylor’s hypothesis. The results indicate that quantitative, single-shot imaging of liquid distributions can be achieved using broadband x-ray sources with nanosecond temporal resolution. Practical considerations for optimizing the imaging system performance are discussed, including the coupled effects of x-ray bandwidth, contrast, sensitivity, spatial resolution, temporal resolution, and spectral beam hardening.« less

  11. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  12. X-Ray Thomson Scattering and Radiography from Spherical Implosions on the OMEGA Laser

    NASA Astrophysics Data System (ADS)

    Saunders, A. M.; Laziki-Jenei, A.; Doeppner, T.; Landen, O. L.; MacDonald, M.; Nilsen, J.; Swift, D.; Falcone, R. W.

    2017-10-01

    X-ray Thomson scattering (XRTS) is an experimental technique that directly probes the physics of warm dense matter by measuring electron density, electron temperature, and ionization state. XRTS in combination with x-ray radiography offers a unique ability to measure an absolute equation of state (EOS) from material under compression. Recent experiments highlight uncertainties in EOS models and the predicted ionization of compressed matter, suggesting more validation of models is needed. We present XRTS and x-ray radiography measurements taken at the OMEGA Laser Facility from directly-driven solid carbon spheres at densities on the order of 1x1024 g cm-3 and temperatures on the order of 30 eV. The results shed light on the equations of state of matter under compression. This work performed under auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under the Stewardship Science Graduate Fellowship, Grant Number DE- NA0002135.

  13. High-energy synchrotron X-ray radiography of shock-compressed materials

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This presentation will discuss the development and application of a high-energy (50 to 250 keV) synchrotron X-ray imaging method to study shock-compressed, high-Z samples at Beamline I12 at the Diamond Light Source synchrotron (Rutherford-Appleton Laboratory, UK). Shock waves are driven into materials using a portable, single-stage gas gun designed by the Institute of Shock Physics. Following plate impact, material deformation is probed in-situ by white-beam X-ray radiography and complimentary velocimetry diagnostics. The high energies, large beam size (13 x 13 mm), and appreciable sample volumes (~ 1 cm3) viable for study at Beamline I12 compliment existing in-house pulsed X-ray capabilities and studies at the Dynamic Compression Sector. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  14. Extra-oral dental radiography for disaster victims using a flat panel X-ray detector and a hand-held X-ray generator.

    PubMed

    Ohtani, M; Oshima, T; Mimasaka, S

    2017-12-01

    Forensic odontologists commonly incise the skin for post-mortem dental examinations when it is difficult to open the victim's mouth. However, it is prohibited by law to incise dead bodies without permission in Japan. Therefore, we attempted using extra-oral dental radiography, using a digital X-ray equipment with rechargeable batteries, to overcome this restriction. A phantom was placed in the prone position on a table, and three plain dental radiographs were used per case: "lateral oblique radiographs" for left and right posterior teeth and a "contact radiograph" for anterior teeth were taken using a flat panel X-ray detector and a hand-held X-ray generator. The resolving power of the images was measured by a resolution test chart, and the scattered X-ray dose was measured using an ionization chamber-type survey meter. The resolving power of the flat panel X-ray detector was 3.0 lp/mm, which was less than that of intra-oral dental methods, but the three extra-oral plain dental radiographs provided the overall dental information from outside of the mouth, and this approach was less time-consuming. In addition, the higher dose of scattered X-rays was laterally distributed, but the dose per case was much less than that of intra-oral dental radiographs. Extra-oral plain dental radiography can be used for disaster victim identification by dental methods even when it is difficult to open the mouth. Portable and rechargeable devices, such as a flat panel X-ray detector and a hand-held X-ray generator, are convenient to bring and use anywhere, even at a disaster scene lacking electricity and water.

  15. Repetitive compact flash x-ray generators for soft radiography

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Shikoda, Arimitsu; Kimura, Shingo; Sagae, Michiaki; Oizumi, Teiji; Takahashi, Kei; Hayasi, Yasuomi; Shoji, Tetsuo; Shishido, Koro; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-01-01

    The construction and the fundamental studies for the repetitive flash x-ray generators designed by Japan Impulse Laboratory in Iwate Medical University are described. These generators are classified to the following two major types: (1) generators having diodes, and (2) generators having triodes. In order to generate high-voltage impulses, we employed the following transmission lines (pulsers): (a) high-voltage-inversion type with a maximum output voltage Vom of about 80 kV, (b) high-voltage- inversion type having a coaxial cable (Vom equals 130 kV), (c) two-stage Marx pulser (Vom equals 150 kV), (d) two-cable-type Blumlein (Vom equals 120 kV), (e) modified Blumlein (Vom equals 120 kV), (f) fundamental transmission line for triode (Vom equals 100 kV), and (g) transmission line for an enclosed triode (Vom equals 100 kV). Using these generators we succeeded in performing high-speed radiography as follows: (a) delayed radiography; (b) multiple-shot radiography; and (c) cineradiography.

  16. First demonstration of 10 keV-width energy-discrimination K-edge radiography using a cadmium-telluride X-ray camera with a tungsten-target tube

    NASA Astrophysics Data System (ADS)

    Watanabe, Manabu; Sato, Eiichi; Abderyim, Purkhet; Abudurexiti, Abulajiang; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2011-05-01

    Energy-discrimination X-ray camera is useful to perform monochromatic radiography using polychromatic X-rays. This X-ray camera was developed to carry out K-edge radiography using cerium and gadolinium-based contrast media. In this camera, objects are irradiated by a cone beam from a tungsten-target X-ray generator, and penetrating X-ray photons are detected by a cadmium-telluride detector with amplifiers. Both optimal photon-energy level and energy width are selected using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x- y stage driven by a two-stage controller, and radiograms were shown on a personal computer monitor. In radiography, tube voltage and current were 90 kV and 5.8 μA, respectively, and the X-ray intensity was 0.61 μGy/s at 1.0 m from the X-ray source. The K-edge energies of cerium and gadolinium are 40.3 and 50.3 keV, respectively, and 10 keV-width enhanced K-edge radiography was performed using X-ray photons with energies just beyond K-edge energies of cerium and gadolinium. Thus, cerium K-edge radiography was carried out using X-ray photons with an energy range from 40.3 to 50. 3 keV, and gadolinium K-edge radiography was accomplished utilizing photon energies ranging from 50.3 to 60.3 keV.

  17. Bayesian Abel Inversion in Quantitative X-Ray Radiography

    DOE PAGES

    Howard, Marylesa; Fowler, Michael; Luttman, Aaron; ...

    2016-05-19

    A common image formation process in high-energy X-ray radiography is to have a pulsed power source that emits X-rays through a scene, a scintillator that absorbs X-rays and uoresces in the visible spectrum in response to the absorbed photons, and a CCD camera that images the visible light emitted from the scintillator. The intensity image is related to areal density, and, for an object that is radially symmetric about a central axis, the Abel transform then gives the object's volumetric density. Two of the primary drawbacks to classical variational methods for Abel inversion are their sensitivity to the type andmore » scale of regularization chosen and the lack of natural methods for quantifying the uncertainties associated with the reconstructions. In this work we cast the Abel inversion problem within a statistical framework in order to compute volumetric object densities from X-ray radiographs and to quantify uncertainties in the reconstruction. A hierarchical Bayesian model is developed with a likelihood based on a Gaussian noise model and with priors placed on the unknown density pro le, the data precision matrix, and two scale parameters. This allows the data to drive the localization of features in the reconstruction and results in a joint posterior distribution for the unknown density pro le, the prior parameters, and the spatial structure of the precision matrix. Results of the density reconstructions and pointwise uncertainty estimates are presented for both synthetic signals and real data from a U.S. Department of Energy X-ray imaging facility.« less

  18. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  19. High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, Benjamin R.; Radke, Christopher D.; Reuter, Benjamin J.

    High-speed, two-dimensional synchrotron x-ray radiography and phase-contrast imaging are demonstrated in propulsion sprays. Measurements are performed at the 7-BM beamline at the Advanced Photon Source user facility at Argonne National Laboratory using a recently developed broadband x-ray white beam. This novel enhancement allows for high speed, high fidelity x-ray imaging for the community at large. Quantitative path-integrated liquid distributions and spatio-temporal dynamics of the sprays were imaged with a LuAG:Ce scintillator optically coupled to a high-speed CMOS camera. Images are collected with a microscope objective at frame rates of 20 kHz and with a macro lens at 120 kHz, achievingmore » spatial resolutions of 12 μm and 65 μm, respectively. Imaging with and without potassium iodide (KI) as a contrast-enhancing agent is compared, and the effects of broadband attenuation and spatial beam characteristics are determined through modeling and experimental calibration. In addition, phase contrast is used to differentiate liquid streams with varying concentrations of KI. The experimental approach is applied to different spray conditions, including quantitative measurements of mass distribution during primary atomization and qualitative visualization of turbulent binary fluid mixing. High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization. Available from: https://www.researchgate.net/publication/312567827_High-speed_two-dimensional_synchrotron_white-beam_x-ray_radiography_of_spray_breakup_and_atomization [accessed Aug 31, 2017].« less

  20. Optimization of exposure factors for X-ray radiography non-destructive testing of pearl oyster

    NASA Astrophysics Data System (ADS)

    Susilo; Yulianti, I.; Addawiyah, A.; Setiawan, R.

    2018-03-01

    One of the processes in pearl oyster cultivation is detecting the pearl nucleus to gain information whether the pearl nucleus is still attached in the shell or vomited. The common tool used to detect pearl nucleus is an X-ray machine. However, an X-ray machine has a drawback that is the energy used is higher than that used by digital radiography. The high energy make the resulted image is difficult to be analysed. One of the advantages of digital radiography is the energy used can be adjusted so that the resulted image can be analysed easily. To obtain a high quality of pearl image using digital radiography, the exposure factors should be optimized. In this work, optimization was done by varying the voltage, current, and exposure time. Then, the radiography images were analysed using Contrast to Noise Ratio (CNR). From the analysis, it can be determined that the optimum exposure factors are 60 kV of voltage, 16 mA of current, and 0.125 s of exposure time which result in CNR of 5.71.

  1. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N.; Izumi, N.; Landen, O. L.

    2016-08-03

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments, and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro channel plate) to provide gating and high DQE at the 40–200keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Here, experiments were performed atmore » energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.« less

  2. Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography.

    PubMed

    Dietrich, Tobias J; Pfirrmann, Christian W A; Schwab, Alexander; Pankalla, Katja; Buck, Florian M

    2013-07-01

    To compare the radiation dose, workflow, patient comfort, and financial break-even of a standard digital radiography and a biplanar low-dose X-ray system. A standard digital radiography system (Ysio, Siemens Healthcare, Erlangen, Germany) was compared with a biplanar X-ray unit (EOS, EOS imaging, Paris, France) consisting of two X-ray tubes and slot-scanning detectors, arranged at an angle of 90° allowing simultaneous vertical biplanar linear scanning in the upright patient position. We compared data of standing full-length lower limb radiographs and whole spine radiographs of both X-ray systems. Dose-area product was significantly lower for radiographs of the biplanar X-ray system than for the standard digital radiography system (e.g. whole spine radiographs; standard digital radiography system: 392.2 ± 231.7 cGy*cm(2) versus biplanar X-ray system: 158.4 ± 103.8 cGy*cm(2)). The mean examination time was significantly shorter for biplanar radiographs compared with standard digital radiographs (e.g. whole spine radiographs: 449 s vs 248 s). Patients' comfort regarding noise was significantly higher for the standard digital radiography system. The financial break-even point was 2,602 radiographs/year for the standard digital radiography system compared with 4,077 radiographs/year for the biplanar X-ray unit. The biplanar X-ray unit reduces radiation exposure and increases subjective noise exposure to patients. The biplanar X-ray unit demands a higher number of examinations per year for the financial break-even point, despite the lower labour cost per examination due to the shorter examination time.

  3. Registration of pencil beam proton radiography data with X-ray CT.

    PubMed

    Deffet, Sylvain; Macq, Benoît; Righetto, Roberto; Vander Stappen, François; Farace, Paolo

    2017-10-01

    Proton radiography seems to be a promising tool for assessing the quality of the stopping power computation in proton therapy. However, range error maps obtained on the basis of proton radiographs are very sensitive to small misalignment between the planning CT and the proton radiography acquisitions. In order to be able to mitigate misalignment in postprocessing, the authors implemented a fast method for registration between pencil proton radiography data obtained with a multilayer ionization chamber (MLIC) and an X-ray CT acquired on a head phantom. The registration was performed by optimizing a cost function which performs a comparison between the acquired data and simulated integral depth-dose curves. Two methodologies were considered, one based on dual orthogonal projections and the other one on a single projection. For each methodology, the robustness of the registration algorithm with respect to three confounding factors (measurement noise, CT calibration errors, and spot spacing) was investigated by testing the accuracy of the method through simulations based on a CT scan of a head phantom. The present registration method showed robust convergence towards the optimal solution. For the level of measurement noise and the uncertainty in the stopping power computation expected in proton radiography using a MLIC, the accuracy appeared to be better than 0.3° for angles and 0.3 mm for translations by use of the appropriate cost function. The spot spacing analysis showed that a spacing larger than the 5 mm used by other authors for the investigation of a MLIC for proton radiography led to results with absolute accuracy better than 0.3° for angles and 1 mm for translations when orthogonal proton radiographs were fed into the algorithm. In the case of a single projection, 6 mm was the largest spot spacing presenting an acceptable registration accuracy. For registration of proton radiography data with X-ray CT, the use of a direct ray-tracing algorithm to compute

  4. X-ray absorption radiography for high pressure shock wave studies

    NASA Astrophysics Data System (ADS)

    Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.

    2018-01-01

    The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.

  5. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently withmore » number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.« less

  6. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  7. Analysis of sculptures using XRF and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Calza, C.; Oliveira, D. F.; Freitas, R. P.; Rocha, H. S.; Nascimento, J. R.; Lopes, R. T.

    2015-11-01

    This work reports the analysis of two sacred images on polychrome wood using X-ray Radiography and Energy Dispersive X-Ray Fluorescence. The first case is the analysis of a sculpture portraying Saint Sebastian, the patron saint of Rio de Janeiro, which is considered the second most ancient sacred image of Brazil. This sculpture was made in Portugal and was transported to Brazil by Estácio Sá, founder of the city of Rio de Janeiro, in 1565. Nowadays, it is located on the main altar of the Church of Capuchin Friars. The second case is the analysis of a sculpture representing Our Lady of Conception, which is located in the D. João VI Museum (EBA/UFRJ, Rio de Janeiro). The objective of these analyses was to evaluate the general conditions of the sculptures, identifying possible problems and internal damages, areas that revealed signs of previous retouchings and the materials and pigments employed by the artists, in order to assist its restoration procedures. EDXRF measurements were carried out with a portable system, developed at the Nuclear Instrumentation Laboratory, consisting of a Si-PIN XR-100CR detector from Amptek and an Oxford TF3005 X-ray tube with W anode. An X-ray source, a CR System GE CR50P and IP detectors were used to perform the radiographs. The XRF analysis of the sculptures identified the original pigments in both cases and the radiographic images revealed details of the manufacture; restored regions; extensive use of lead white; presence of cracks on the wood; use of nails and spikes, etc.

  8. Enhancing Tabletop X-Ray Phase Contrast Imaging with Nano-Fabrication

    PubMed Central

    Miao, Houxun; Gomella, Andrew A.; Harmon, Katherine J.; Bennett, Eric E.; Chedid, Nicholas; Znati, Sami; Panna, Alireza; Foster, Barbara A.; Bhandarkar, Priya; Wen, Han

    2015-01-01

    X-ray phase-contrast imaging is a promising approach for improving soft-tissue contrast and lowering radiation dose in biomedical applications. While current tabletop imaging systems adapt to common x-ray tubes and large-area detectors by employing absorptive elements such as absorption gratings or monolithic crystals to filter the beam, we developed nanometric phase gratings which enable tabletop x-ray far-field interferometry with only phase-shifting elements, leading to a substantial enhancement in the performance of phase contrast imaging. In a general sense the method transfers the demands on the spatial coherence of the x-ray source and the detector resolution to the feature size of x-ray phase masks. We demonstrate its capabilities in hard x-ray imaging experiments at a fraction of clinical dose levels and present comparisons with the existing Talbot-Lau interferometer and with conventional digital radiography. PMID:26315891

  9. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  10. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  11. Observations of breakup processes of liquid jets using real-time X-ray radiography

    NASA Technical Reports Server (NTRS)

    Char, J. M.; Kuo, K. K.; Hsieh, K. C.

    1988-01-01

    To unravel the liquid-jet breakup process in the nondilute region, a newly developed system of real-time X-ray radiography, an advanced digital image processor, and a high-speed video camera were used. Based upon recorded X-ray images, the inner structure of a liquid jet during breakup was observed. The jet divergence angle, jet breakup length, and fraction distributions along the axial and transverse directions of the liquid jets were determined in the near-injector region. Both wall- and free-jet tests were conducted to study the effect of wall friction on the jet breakup process.

  12. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  13. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  14. Determination of Corrosion Rate of Artificial Bone Made of Metal at Different pH Conditions using X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Sutikno; Handayani, L.; Edi, S. S.; Susilo; Elvira

    2018-03-01

    The purpose of this research is to observe the mechanism and the rate of corrosion of artificial bone made of metal by using x-ray radiography technique. Artificial bones can be made of metallic materials and composites which are biomaterials. The most commonly used metal for bone graft is stainless steel. The interaction between artificial bone and human tissue will have important medical impacts that need to be observed and examined. This interaction can be a mechanical or chemical interaction. X-ray radiography technique is selected because it uses non-destructive method. This method is done by x-ray radiation exposure on the observed body part. The bone density and bone fracture can be seen on the resulted radiographic film or image on the monitor screen.

  15. Composite structure of helicopter rotor blades studied by neutron- and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Balaskó, M.; Veres, I.; Molnár, Gy.; Balaskó, Zs.; Sváb, E.

    2004-07-01

    In order to inspect the possible defects in the composite structure of helicopter rotor blades combined neutron- and X-ray radiography investigations were performed at the Budapest Research Reactor. Imperfections in the honeycomb structure, resin rich or starved areas at the core-honeycomb surfaces, inhomogeneities at the adhesive filling and water percolation at the sealing interfaces of the honeycomb sections were discovered.

  16. Basic investigation of dual-energy x-ray absorptiometry for bone densitometry using computed radiography

    NASA Astrophysics Data System (ADS)

    Shimura, Kazuo; Nakajima, Nobuyoshi; Tanaka, Hiroshi; Ishida, Masamitsu; Kato, Hisatoyo

    1993-09-01

    Dual-energy X-ray absorptiometry (DXA) is one of the bone densitometry techniques to diagnose osteoporosis, and has been gradually getting popular due to its high degree of precision. However, DXA involves a time-consuming examination because of its pencil-beam scan, and the equipment is expensive. In this study, we examined a new bone densitometry technique (CR-DXA) utilizing an X-ray imaging system and Computed Radiography (CR) used for medical X-ray image diagnosis. High level of measurement precision and accuracy could be achieved by X-ray rube voltage/filter optimization and various nonuniformity corrections based on simulation and experiment. The phantom study using a bone mineral block showed precision of 0.83% c.v. (coefficient of variation), and accuracy of 0.01 g/cm2, suggesting that a practically equivalent degree of measurement precision and accuracy to that of the DXA approach is achieved. CR-DXA is considered to provide bone mineral densitometry to facilitate simple, quick and precise bone mineral density measurement.

  17. Genotoxic effects of X-rays on keratinized mucosa cells during panoramic dental radiography.

    PubMed

    Cerqueira, E M M; Meireles, J R C; Lopes, M A; Junqueira, V C; Gomes-Filho, I S; Trindade, S; Machado-Santelli, G M

    2008-10-01

    The aim of this study was to evaluate the genotoxic effects of X-rays on epithelial gingival cells during panoramic dental radiography using a differentiated protocol for the micronucleus test. 40 healthy individuals who underwent this procedure for diagnostic purposes on request from their dentists agreed to participate in this study. All of them answered a questionnaire before the examination. Epithelial gingival cells were obtained from the keratinized mucosa of the upper dental arcade by gentle scraping with a cervical brush immediately before exposure and 10 days later. Cytological preparations were stained according to the Feulgen-Rossenbeck reaction, counterstained with fast green 1% for 1 min and analysed under a light microscope. Micronuclei, nuclear projections (broken eggs) and degenerative nuclear alterations (pyknosis, karyolysis, karyorrhexis and condensed chromatin) were scored. The frequency of micronuclei was significantly higher after exposure (P < 0.05), as were the frequencies of nuclear alterations indicative of apoptosis (P < 0.001). These results indicate that X-ray radiation emitted during panoramic dental radiography induces a genotoxic effect on epithelial gingival cells that increases the frequency of chromosomal damage and nuclear alterations indicative of apoptosis.

  18. [Wrapping of X-ray Cassette by a Plastic Bag in Portable Radiography: For Infection Prevention and Alleviation of Patient's Discomfort].

    PubMed

    Nakano, Tsutomu

    Portable radiography is available for the patient who is postoperative, severe condition and old. As they have weak immunity, it is important to prevent from hospital infection. Wrapping of 14×14 inch or 14×17 inch X-ray cassette by a plastic (polyethylene) bag a little bit bigger than the cassette was proposed for infection prevention in portable radiography. How to wrap the cassette easily was devised using the sheath of a polyester bag cutting at the bottom. In radiography with the grid, the plastic bag fastens the X-ray grid to the cassette substantially without any other means. In addition, the wrapped cassette, or the cassette with grid covered by the foamed plastic sheet alleviates patient's discomfort.

  19. Imaging of Rabbit VX-2 Hepatic Cancer by Cold and Thermal Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yoshinori; Matsubayashi, Masahito; Takeda, Tohoru; Lwin, Thet Thet; Wu, Jin; Yoneyama, Akio; Matsumura, Akira; Hori, Tomiei; Itai, Yuji

    2003-11-01

    Neutron radiography is based on differences in neutron mass attenuation coefficients among the elements and is a non-destructive imaging method. To investigate biomedical applications of neutron radiography, imaging of rabbit VX-2 liver cancer was performed using thermal and cold neutron radiography with a neutron imaging plate. Hepatic vessels and VX-2 tumor were clearly observed by neutron radiography, especially by cold neutron imaging. The image contrast of this modality was better than that of absorption-contrast X-ray radiography.

  20. Structural analysis of jewelry from the Moche tomb of the `lady of Cao' by X-ray digital radiography

    NASA Astrophysics Data System (ADS)

    Azeredo, S. R.; Cesareo, R.; Franco, R.; Fernandez, A.; Bustamante, A.; Lopes, R. T.

    2018-04-01

    Nose ornaments from the tomb of the `Lady of Cao', a mummified woman representative of the Moche culture and dated to the third-or-fourth century AD, were analyzed by X-ray digital radiography. These spectacular gold and silver jewels are some of the most sophisticated metalworking ever produced in ancient America. The Mochecivilization flourished along the north coast of present-day Peru, between the Andes and the Pacific Ocean, approximately between 100 and 600 AD. The Moche were very sophisticated artisans and metal smiths, being considered the finest producers of jewels and artifacts of the region. A portable X-ray digital radiography (XDR) system consisting of a flat panel detector with high resolution image and a mini X-ray tube was used for the structural analysis of the Moche jewels aiming at inferring different joining methods of the silver-gold sheets. The radiographic analysis showed some differences in the joint of the silver-and-gold sheets. Presence of filler material and adhesive for joining the silver-and-gold sheets was visible as well as silver-gold junctions without filler material (or with a material invisible in radiography). Furthermore, the technique demonstrated the advantage of using a portable XDR micro system when the sample cannot be brought to the laboratory.

  1. Energy discriminating x-ray camera utilizing a cadmium telluride detector

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Purkhet, Abderyim; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Wantanabe, Manabu; Nagao, Jiro; Nomiya, Seiichiro; Hitomi, Keitaro; Tanaka, Etsuro; Kawai, Toshiaki; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-07-01

    An energy-discriminating x-ray camera is useful for performing monochromatic radiography using polychromatic x rays. This x-ray camera was developed to carry out K-edge radiography using iodine-based contrast media. In this camera, objects are exposed by a cone beam from a cerium x-ray generator, and penetrating x-ray photons are detected by a cadmium telluride detector with an amplifier unit. The optimal x-ray photon energy and the energy width are selected out using a multichannel analyzer, and the photon number is counted by a counter card. Radiography was performed by the detector scanning using an x-y stage driven by a two-stage controller, and radiograms obtained by energy discriminating are shown on a personal computer monitor. In radiography, the tube voltage and current were 60 kV and 36 μA, respectively, and the x-ray intensity was 4.7 μGy/s. Cerium K-series characteristic x rays are absorbed effectively by iodine-based contrast media, and iodine K-edge radiography was performed using x rays with energies just beyond iodine K-edge energy 33.2 keV.

  2. Non-invasive Differentiation of Kidney Stone Types using X-ray Dark-Field Radiography

    PubMed Central

    Scherer, Kai; Braig, Eva; Willer, Konstantin; Willner, Marian; Fingerle, Alexander A.; Chabior, Michael; Herzen, Julia; Eiber, Matthias; Haller, Bernhard; Straub, Michael; Schneider, Heike; Rummeny, Ernst J.; Noël, Peter B.; Pfeiffer, Franz

    2015-01-01

    Treatment of renal calculi is highly dependent on the chemical composition of the stone in question, which is difficult to determine using standard imaging techniques. The objective of this study is to evaluate the potential of scatter-sensitive X-ray dark-field radiography to differentiate between the most common types of kidney stones in clinical practice. Here, we examine the absorption-to-scattering ratio of 118 extracted kidney stones with a laboratory Talbot-Lau Interferometer. Depending on their chemical composition, microscopic growth structure and morphology the various types of kidney stones show strongly varying, partially opposite contrasts in absorption and dark-field imaging. By assessing the microscopic calculi morphology with high resolution micro-computed tomography measurements, we illustrate the dependence of dark-field signal strength on the respective stone type. Finally, we utilize X-ray dark-field radiography as a non-invasive, highly sensitive (100%) and specific (97%) tool for the differentiation of calcium oxalate, uric acid and mixed types of stones, while additionally improving the detectability of radio-lucent calculi. We prove clinical feasibility of the here proposed method by accurately classifying renal stones, embedded within a fresh pig kidney, using dose-compatible measurements and a quick and simple visual inspection. PMID:25873414

  3. Non-destructive analysis of ancient bimetal swords from western Asia by γ-ray radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Shizuma, Kiyoshi; Kajimoto, Tsuyoshi; Endo, Satoru; Matsugi, Kazuhiro; Arimatsu, Yui; Nojima, Hisashi

    2017-09-01

    Eight ancient bimetal swords held by Hiroshima University, Japan were analyzed non-destructively through γ-ray radiography and X-ray fluorescence (XRF). 137Cs and 60Co γ-ray irradiation sources were used to obtain transmission images of swords. A scanning radiography method using a 60Co γ-ray source was developed. XRF was used for qualitative elemental analysis of the swords. The presence of iron cores in the hilts of some swords had been observed and it was assumed that the cores were a ritual symbol or had a functional purpose. However, our work reveals that these swords were originally bronze-hilted iron swords and that the rusty blades were replaced with bronze blades to maintain the swords' commercial value as an antique. Consequently, the rest of the iron blade was left in the hilt as an iron tang. The junction of the blade and the guard was soldered and painted to match the patina color. XRF analysis clearly showed that the elemental Sn/Cu ratios of the blades and the hilts were different. These findings are useful for clarifying the later modifications of the swords and are important for interpreting Bronze Age and Iron Age history correctly.

  4. Chest X-Ray (Chest Radiography)

    MedlinePlus

    ... may be necessary to clarify the results of a chest x-ray or to look for abnormalities not visible on the chest x-ray. top of page Additional Information and Resources RTAnswers.org Radiation Therapy for Lung Cancer top of page This page ...

  5. The use of x-ray radiography for measuring mass distributions of Rocket Injectors

    DTIC Science & Technology

    2013-06-01

    successfully applied to diesel injectors , aerated liquid jets and impinging-jet sprays [7-10]. X-ray radiography can be performed using either a...Rocket Injectors 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) S.A. Schumaker, A.L. Kastengren, M.D.A...measurements for injector design. Unfortunately, the mass flow rates typically encountered in rocket engines create sprays with high optical densities

  6. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  7. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    DOE PAGES

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-23

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of usingmore » stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.« less

  8. X-ray spatial frequency heterodyne imaging of protein-based nanobubble contrast agents

    PubMed Central

    Rand, Danielle; Uchida, Masaki; Douglas, Trevor; Rose-Petruck, Christoph

    2014-01-01

    Spatial Frequency Heterodyne Imaging (SFHI) is a novel x-ray scatter imaging technique that utilizes nanoparticle contrast agents. The enhanced sensitivity of this new technique relative to traditional absorption-based x-ray radiography makes it promising for applications in biomedical and materials imaging. Although previous studies on SFHI have utilized only metal nanoparticle contrast agents, we show that nanomaterials with a much lower electron density are also suitable. We prepared protein-based “nanobubble” contrast agents that are comprised of protein cage architectures filled with gas. Results show that these nanobubbles provide contrast in SFHI comparable to that of gold nanoparticles of similar size. PMID:25321797

  9. Development of a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography

    NASA Astrophysics Data System (ADS)

    Heo, D.; Jeon, S.; Kim, J.-S.; Kim, R. K.; Cha, B. K.; Moon, B. J.; Yoon, J.

    2013-02-01

    We developed a novel direct X-ray detector using photoinduced discharge (PID) readout for digital radiography. The pixel resolution is 512 × 512 with 200 μm pixel and the overall active dimensions of the X-ray imaging panel is 10.24 cm × 10.24 cm. The detector consists of an X-ray absorption layer of amorphous selenium, a charge accumulation layer of metal, and a PID readout layer of amorphous silicon. In particular, the charge accumulation is pixelated because image charges generated by X-ray should be stored pixel by pixel. Here the image charges, or holes, are recombined with electrons generated by the PID method. We used a 405 nm laser diode and cylindrical lens to make a line beam source with a width of 50 μm for PID readout, which generates charges for each pixel lines during the scan. We obtained spatial frequencies of about 1.0 lp/mm for the X-direction (lateral direction) and 0.9 lp/mm for the Y-direction (scanning direction) at 50% modulation transfer function.

  10. The x-ray light valve: a potentially low-cost, digital radiographic imaging system--a liquid crystal cell design for chest radiography.

    PubMed

    Szeto, Timothy C; Webster, Christie Ann; Koprinarov, Ivaylo; Rowlands, J A

    2008-03-01

    Digital x-ray radiographic systems are desirable as they offer high quality images which can be processed, transferred, and stored without secondary steps. However, current clinical systems are extraordinarily expensive in comparison to film-based systems. Thus, there is a need for an economical digital imaging system for general radiology. The x-ray light valve (XLV) is a novel digital x-ray detector concept with the potential for high image quality and low cost. The XLV is comprised of a photoconductive detector layer and liquid crystal (LC) cell physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected at the surface of the photoconductor, causing a change in the reflective properties of the LC cell. The visible image so formed can subsequently be digitized with an optical scanner. By choosing the properties of the LC cell in combination with the appropriate photoconductor thickness and bias potentials, the XLV can be optimized for various diagnostic imaging tasks. Specifically for chest radiography, we identified three potentially practical reflective cell designs by selecting from those commonly used in LC display technology. The relationship between reflectance and x-ray exposure (i.e., the characteristic curve) was determined for all three cells using a theoretical model. The results indicate that the reflective electrically controlled birefringence (r-ECB) cell is the preferred choice for chest radiography, provided that the characteristic curve can be shifted towards lower exposures. The feasibility of the shift of the characteristic curve is shown experimentally. The experimental results thus demonstrate that an XLV based on the r-ECB cell design exhibits a characteristic curve suitable for chest radiography.

  11. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Hellbach, Katharina; Yildirim, Ali Önder; Conlon, Thomas M.; Fernandez, Isis Enlil; Bech, Martin; Velroyen, Astrid; Meinel, Felix G.; Auweter, Sigrid; Reiser, Maximilian; Eickelberg, Oliver; Pfeiffer, Franz

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease with a median life expectancy of 4-5 years after initial diagnosis. Early diagnosis and accurate monitoring of IPF are limited by a lack of sensitive imaging techniques that are able to visualize early fibrotic changes at the epithelial-mesenchymal interface. Here, we report a new x-ray imaging approach that directly visualizes the air-tissue interfaces in mice in vivo. This imaging method is based on the detection of small-angle x-ray scattering that occurs at the air-tissue interfaces in the lung. Small-angle scattering is detected with a Talbot-Lau interferometer, which provides the so-called x-ray dark-field signal. Using this imaging modality, we demonstrate-for the first time-the quantification of early pathogenic changes and their correlation with histological changes, as assessed by stereological morphometry. The presented radiography method is significantly more sensitive in detecting morphological changes compared with conventional x-ray imaging, and exhibits a significantly lower radiation dose than conventional x-ray CT. As a result of the improved imaging sensitivity, this new imaging modality could be used in future to reduce the number of animals required for pulmonary research studies.

  12. Computer-aided diagnosis of pulmonary diseases using x-ray darkfield radiography

    NASA Astrophysics Data System (ADS)

    Einarsdóttir, Hildur; Yaroshenko, Andre; Velroyen, Astrid; Bech, Martin; Hellbach, Katharina; Auweter, Sigrid; Yildirim, Önder; Meinel, Felix G.; Eickelberg, Oliver; Reiser, Maximilian; Larsen, Rasmus; Kjær Ersbøll, Bjarne; Pfeiffer, Franz

    2015-12-01

    In this work we develop a computer-aided diagnosis (CAD) scheme for classification of pulmonary disease for grating-based x-ray radiography. In addition to conventional transmission radiography, the grating-based technique provides a dark-field imaging modality, which utilizes the scattering properties of the x-rays. This modality has shown great potential for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. The CAD scheme is developed to assist radiologists and other medical experts to develop new diagnostic methods when evaluating grating-based images. The scheme consists of three stages: (i) automatic lung segmentation; (ii) feature extraction from lung shape and dark-field image intensities; (iii) classification between healthy, emphysema and fibrosis lungs. A study of 102 mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. Each image was manually annotated to build an experimental dataset. System performance was assessed by: (i) determining the quality of the segmentations; (ii) validating emphysema and fibrosis recognition by a linear support vector machine using leave-one-out cross-validation. In terms of segmentation quality, we obtained an overlap percentage (Ω) 92.63  ±  3.65%, Dice Similarity Coefficient (DSC) 89.74  ±  8.84% and Jaccard Similarity Coefficient 82.39  ±  12.62%. For classification, the accuracy, sensitivity and specificity of diseased lung recognition was 100%. Classification between emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity was 94% and specificity 88%. In addition to the automatic classification of lungs, deviation maps created by the CAD scheme provide a visual aid for medical experts to further assess the severity of pulmonary disease in the lung, and highlights regions affected.

  13. [Design of longitudinal auto-tracking of the detector on X-ray in digital radiography].

    PubMed

    Yu, Xiaomin; Jiang, Tianhao; Liu, Zhihong; Zhao, Xu

    2018-04-01

    One algorithm is designed to implement longitudinal auto-tracking of the the detector on X-ray in the digital radiography system (DR) with manual collimator. In this study, when the longitudinal length of field of view (LFOV) on the detector is coincided with the longitudinal effective imaging size of the detector, the collimator half open angle ( Ψ ), the maximum centric distance ( e max ) between the center of X-ray field of view and the projection center of the focal spot, and the detector moving distance for auto-traking can be calculated automatically. When LFOV is smaller than the longitudinal effective imaging size of the detector by reducing Ψ , the e max can still be used to calculate the detector moving distance. Using this auto-tracking algorithm in DR with manual collimator, the tested results show that the X-ray projection is totally covered by the effective imaging area of the detector, although the center of the field of view is not aligned with the center of the effective imaging area of the detector. As a simple and low-cost design, the algorithm can be used for longitudinal auto-tracking of the detector on X-ray in the manual collimator DR.

  14. Bone X-Ray (Radiography)

    MedlinePlus Videos and Cool Tools

    ... the baby. See the Safety page for more information about pregnancy and x-rays. top of page ... procedure varies. See the Safety page for more information about radiation dose. Women should always inform their ...

  15. Trochoidal X-ray Vector Radiography: Directional dark-field without grating stepping

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Bachche, S.; Kageyama, M.; Kuribayashi, M.; Pfeiffer, F.; Lasser, T.; Momose, A.

    2018-03-01

    X-ray Vector Radiography (XVR) is an imaging technique that reveals the orientations of sub-pixel sized structures within a sample. Several dark-field radiographs are acquired by rotating the sample around the beam propagation direction and stepping one of the gratings to several positions for every pose of the sample in an X-ray grating interferometry setup. In this letter, we present a method of performing XVR of a continuously moving sample without the need of any grating motion. We reconstruct the orientations within a sample by analyzing the change in the background moire fringes caused by the sample moving and simultaneously rotating in plane (trochoidal trajectory) across the detector field-of-view. Avoiding the motion of gratings provides significant advantages in terms of stability and repeatability, while the continuous motion of the sample makes this kind of system adaptable for industrial applications such as the scanning of samples on a conveyor belt. Being the first step in the direction of utilizing advanced sample trajectories to replace grating motion, this work also lays the foundations for a full three dimensional reconstruction of scattering function without grating motion.

  16. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  17. High-energy x-ray grating-based phase-contrast radiography of human anatomy

    NASA Astrophysics Data System (ADS)

    Horn, Florian; Hauke, Christian; Lachner, Sebastian; Ludwig, Veronika; Pelzer, Georg; Rieger, Jens; Schuster, Max; Seifert, Maria; Wandner, Johannes; Wolf, Andreas; Michel, Thilo; Anton, Gisela

    2016-03-01

    X-ray grating-based phase-contrast Talbot-Lau interferometry is a promising imaging technology that has the potential to raise soft tissue contrast in comparison to conventional attenuation-based imaging. Additionally, it is sensitive to attenuation, refraction and scattering of the radiation and thus provides complementary and otherwise inaccessible information due to the dark-field image, which shows the sub-pixel size granularity of the measured object. Until recent progress the method has been mainly limited to photon energies below 40 keV. Scaling the method to photon energies that are sufficient to pass large and spacious objects represents a challenging task. This is caused by increasing demands regarding the fabrication process of the gratings and the broad spectra that come along with the use of polychromatic X-ray sources operated at high acceleration voltages. We designed a setup that is capable to reach high visibilities in the range from 50 to 120 kV. Therefore, spacious and dense parts of the human body with high attenuation can be measured, such as a human knee. The authors will show investigations on the resulting attenuation, differential phase-contrast and dark-field images. The images experimentally show that X-ray grating-based phase-contrast radiography is feasible with highly absorbing parts of the human body containing massive bones.

  18. Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography.

    PubMed

    Hellbach, Katharina; Baehr, Andrea; De Marco, Fabio; Willer, Konstantin; Gromann, Lukas B; Herzen, Julia; Dmochewitz, Michaela; Auweter, Sigrid; Fingerle, Alexander A; Noël, Peter B; Rummeny, Ernst J; Yaroshenko, Andre; Maack, Hanns-Ingo; Pralow, Thomas; van der Heijden, Hendrik; Wieberneit, Nataly; Proksa, Roland; Koehler, Thomas; Rindt, Karsten; Schroeter, Tobias J; Mohr, Juergen; Bamberg, Fabian; Ertl-Wagner, Birgit; Pfeiffer, Franz; Reiser, Maximilian F

    2018-02-08

    The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student's two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (-20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model.

  19. X-Ray Backscatter Imaging for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel; Edwards, Talion; Toh, Chin

    2011-06-01

    Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.

  20. A benchmark for comparison of dental radiography analysis algorithms.

    PubMed

    Wang, Ching-Wei; Huang, Cheng-Ta; Lee, Jia-Hong; Li, Chung-Hsing; Chang, Sheng-Wei; Siao, Ming-Jhih; Lai, Tat-Ming; Ibragimov, Bulat; Vrtovec, Tomaž; Ronneberger, Olaf; Fischer, Philipp; Cootes, Tim F; Lindner, Claudia

    2016-07-01

    Dental radiography plays an important role in clinical diagnosis, treatment and surgery. In recent years, efforts have been made on developing computerized dental X-ray image analysis systems for clinical usages. A novel framework for objective evaluation of automatic dental radiography analysis algorithms has been established under the auspices of the IEEE International Symposium on Biomedical Imaging 2015 Bitewing Radiography Caries Detection Challenge and Cephalometric X-ray Image Analysis Challenge. In this article, we present the datasets, methods and results of the challenge and lay down the principles for future uses of this benchmark. The main contributions of the challenge include the creation of the dental anatomy data repository of bitewing radiographs, the creation of the anatomical abnormality classification data repository of cephalometric radiographs, and the definition of objective quantitative evaluation for comparison and ranking of the algorithms. With this benchmark, seven automatic methods for analysing cephalometric X-ray image and two automatic methods for detecting bitewing radiography caries have been compared, and detailed quantitative evaluation results are presented in this paper. Based on the quantitative evaluation results, we believe automatic dental radiography analysis is still a challenging and unsolved problem. The datasets and the evaluation software will be made available to the research community, further encouraging future developments in this field. (http://www-o.ntust.edu.tw/~cweiwang/ISBI2015/). Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Breakup phenomena of a coaxial jet in the non-dilute region using real-time X-ray radiography

    NASA Astrophysics Data System (ADS)

    Cheung, F. B.; Kuo, K. K.; Woodward, R. D.; Garner, K. N.

    1990-07-01

    An innovative approach to the investigation of liquid jet breakup processes in the near-injector region has been developed to overcome the experimental difficulties associated with optically opaque, dense sprays. Real-time X-ray radiography (RTR) has been employed to observe the inner structure and breakup phenomena of coaxial jets. In the atomizing regime, droplets much smaller than the exit diameter are formed beginning essentially at the injector exit. Through the use of RTR, the instantaneous contour of the liquid core was visualized. Experimental results consist of controlled-exposure digital video images of the liquid jet breakup process. Time-averaged video images have also been recorded for comparison. A digital image processing system is used to analyze the recorded images by creating radiance level distributions of the jet. A rudimentary method for deducing intact-liquid-core length has been suggested. The technique of real-time X-ray radiography has been shown to be a viable approach to the study of the breakup processes of high-speed liquid jets.

  2. Crystal nucleation in metallic alloys using x-ray radiography and machine learning

    PubMed Central

    Arteta, Carlos; Lempitsky, Victor

    2018-01-01

    The crystallization of solidifying Al-Cu alloys over a wide range of conditions was studied in situ by synchrotron x-ray radiography, and the data were analyzed using a computer vision algorithm trained using machine learning. The effect of cooling rate and solute concentration on nucleation undercooling, crystal formation rate, and crystal growth rate was measured automatically for thousands of separate crystals, which was impossible to achieve manually. Nucleation undercooling distributions confirmed the efficiency of extrinsic grain refiners and gave support to the widely assumed free growth model of heterogeneous nucleation. We show that crystallization occurred in temporal and spatial bursts associated with a solute-suppressed nucleation zone. PMID:29662954

  3. Characterisation of a MeV Bremsstrahlung x-ray source produced from a high intensity laser for high areal density object radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, C.; Compant La Fontaine, A.; Bazzoli, S.

    2013-08-15

    Results of an experiment to characterise a MeV Bremsstrahlung x-ray emission created by a short (<10 ps) pulse, high intensity (1.4 × 10{sup 19} W/cm{sup 2}) laser are presented. X-ray emission is characterized using several diagnostics; nuclear activation measurements, a calibrated hard x-ray spectrometer, and dosimeters. Results from the reconstructed x-ray energy spectra are consistent with numerical simulations using the PIC and Monte Carlo codes between 0.3 and 30 MeV. The intense Bremsstrahlung x-ray source is used to radiograph an image quality indicator (IQI) heavily filtered with thick tungsten absorbers. Observations suggest that internal features of the IQI can bemore » resolved up to an external areal density of 85 g/cm{sup 2}. The x-ray source size, inferred by the radiography of a thick resolution grid, is estimated to be approximately 400 μm (full width half maximum of the x-ray source Point Spread Function)« less

  4. White-beam X-ray diffraction and radiography studies on high-boron-containing borosilicate glass at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio

    Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less

  5. White-beam X-ray diffraction and radiography studies on high-boron-containing borosilicate glass at high pressures

    DOE PAGES

    Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio; ...

    2017-02-06

    Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less

  6. K-edge subtraction synchrotron X-ray imaging in bio-medical research.

    PubMed

    Thomlinson, W; Elleaume, H; Porra, L; Suortti, P

    2018-05-01

    High contrast in X-ray medical imaging, while maintaining acceptable radiation dose levels to the patient, has long been a goal. One of the most promising methods is that of K-edge subtraction imaging. This technique, first advanced as long ago as 1953 by B. Jacobson, uses the large difference in the absorption coefficient of elements at energies above and below the K-edge. Two images, one taken above the edge and one below the edge, are subtracted leaving, ideally, only the image of the distribution of the target element. This paper reviews the development of the KES techniques and technology as applied to bio-medical imaging from the early low-power tube sources of X-rays to the latest high-power synchrotron sources. Applications to coronary angiography, functional lung imaging and bone growth are highlighted. A vision of possible imaging with new compact sources is presented. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  8. Assessment of image quality in x-ray radiography imaging using a small plasma focus device

    NASA Astrophysics Data System (ADS)

    Kanani, A.; Shirani, B.; Jabbari, I.; Mokhtari, J.

    2014-08-01

    This paper offers a comprehensive investigation of image quality parameters for a small plasma focus as a pulsed hard x-ray source for radiography applications. A set of images were captured from some metal objects and electronic circuits using a low energy plasma focus at different voltages of capacitor bank and different pressures of argon gas. The x-ray source focal spot of this device was obtained to be about 0.6 mm using the penumbra imaging method. The image quality was studied by several parameters such as image contrast, line spread function (LSF) and modulation transfer function (MTF). Results showed that the contrast changes by variations in gas pressure. The best contrast was obtained at a pressure of 0.5 mbar and 3.75 kJ stored energy. The results of x-ray dose from the device showed that about 0.6 mGy is sufficient to obtain acceptable images on the film. The measurements of LSF and MTF parameters were carried out by means of a thin stainless steel wire 0.8 mm in diameter and the cut-off frequency was obtained to be about 1.5 cycles/mm.

  9. An experimental investigation of gas fuel injection with X-ray radiography

    DOE PAGES

    Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.; ...

    2017-04-21

    In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less

  10. An experimental investigation of gas fuel injection with X-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.

    In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less

  11. Calibration of Fuji BAS-SR type imaging plate as high spatial resolution x-ray radiography recorder

    NASA Astrophysics Data System (ADS)

    Yan, Ji; Zheng, Jianhua; Zhang, Xing; Chen, Li; Wei, Minxi

    2017-05-01

    Image Plates as x-ray recorder have advantages including reusable, high dynamic range, large active area, and so on. In this work, Fuji BAS-SR type image plate combined with BAS-5000 scanner is calibrated. The fade rates of Image Plates has been measured using x-ray diffractometric in different room temperature; the spectral response of Image Plates has been measured using 241Am radioactive sealed source and fitting with linear model; the spatial resolution of Image Plates has been measured using micro-focus x-ray tube. The results show that Image Plates has an exponent decade curve and double absorption edge response curve. The spatial resolution of Image Plates with 25μ/50μ scanner resolution is 6.5lp/mm, 11.9lp/mm respectively and gold grid radiography is collected with 80lp/mm spatial resolution using SR-type Image Plates. BAS-SR type Image Plates can do high spatial resolution and quantitative radiographic works. It can be widely used in High energy density physics (HEDP), inertial confinement fusion (ICF) and laboratory astronomy physics.

  12. High Intensity e-beam Diode Development for Flash X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Oliver, Bryan

    2007-11-01

    A variety of electron beam diodes are being used and developed for the purpose of creating high-brightness, flash x-ray radiography sources. In these diodes, high energy (multi MeV), high current (multi kA), small spot (multi mm) electron beams are generated and stopped in high atomic number anode-targets (typically Ta or W). Beam stopping in the target creates copious amounts of bremsstrahlung radiation. In addition, beam heating of the target liberates material, either in the form of low density (˜10^12-10^14 cm-3) ion emission or higher density (> 10^15 cm-3) plasma. In all cases, beam/target collective effects dominate the diode and beam characteristics, affecting the radiation properties (dose and spot-size). Recent experiments at Sandia National Laboratories have demonstrated diodes capable of producing > 350 rad@m with 1.7mm FWHM x-ray source distributions. A review of our present theoretical understanding of the diode (s) operation and our experimental and simulation methods to investigate them will be presented. Emphasis will be given to e- beam sources used on state-of-the-art Inductive Voltage Adder (IVA) pulsed-power accelerators. In particular, the physics of magnetically pinched diodes (e.g. the rod-pinch [1,2]), gas-cell focusing diodes [3] and the magnetically immersed [4] diode will be discussed. Various proposed methods to optimize the x-ray intensity and the direction of future diode research will be discussed. [1] G. Cooperstein, et al., Phys. Plasmas 8, 4618 (2001).[2] B.V. Oliver et al., Phys. Plasmas 11, 3976 (2004)[3] B.V. Oliver, et al., IEEE Trans. on Plasma Science 33, 704 (2005).[4] M.G. Mazarakis, et al., Appl. Phys. Lett. 70, 832 (1997)

  13. White-Beam X-ray Diffraction and Radiography Studies on High-Boron Containing Borosilicate Glass at High Pressures

    NASA Astrophysics Data System (ADS)

    Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal

    Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.

  14. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  15. Simulating the X-Ray Image Contrast to Set-Up Techniques with Desired Flaw Detectability

    NASA Technical Reports Server (NTRS)

    Koshti, Ajay M.

    2015-01-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is being developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing X-ray detector resolution for crack detection. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  16. Spectral X-ray Radiography for Safeguards at Nuclear Fuel Fabrication Facilities: A Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Andrew J.; McDonald, Benjamin S.; Smith, Leon E.

    The methods currently used by the International Atomic Energy Agency to account for nuclear materials at fuel fabrication facilities are time consuming and require in-field chemistry and operation by experts. Spectral X-ray radiography, along with advanced inverse algorithms, is an alternative inspection that could be completed noninvasively, without any in-field chemistry, with inspections of tens of seconds. The proposed inspection system and algorithms are presented here. The inverse algorithm uses total variation regularization and adaptive regularization parameter selection with the unbiased predictive risk estimator. Performance of the system is quantified with simulated X-ray inspection data and sensitivity of the outputmore » is tested against various inspection system instabilities. Material quantification from a fully-characterized inspection system is shown to be very accurate, with biases on nuclear material estimations of < 0.02%. It is shown that the results are sensitive to variations in the fuel powder sample density and detector pixel gain, which increase biases to 1%. Options to mitigate these inaccuracies are discussed.« less

  17. Accuracy and precision of computer-assisted analysis of bone density via conventional and digital radiography in relation to dual-energy x-ray absorptiometry.

    PubMed

    Vaccaro, Calogero; Busetto, Roberto; Bernardini, Daniele; Anselmi, Carlo; Zotti, Alessandro

    2012-03-01

    To evaluate the precision and accuracy of assessing bone mineral density (BMD) by use of mean gray value (MGV) on digitalized and digital images of conventional and digital radiographs, respectively, of ex vivo bovine and equine bone specimens in relation to the gold-standard technique of dual-energy x-ray absorptiometry (DEXA). Left and right metatarsal bones from 11 beef cattle and right femurs from 2 horses. Bovine specimens were imaged by use of conventional radiography, whereas equine specimens were imaged by use of computed radiography (digital radiography). Each specimen was subsequently scanned by use of the same DEXA equipment. The BMD values resulting from each DEXA scan were paired with the MGVs obtained by use of software on the corresponding digitalized or digital radiographic image. The MGV analysis of digitalized and digital x-ray images was a precise (coefficient of variation, 0.1 and 0.09, respectively) and highly accurate method for assessing BMD, compared with DEXA (correlation coefficient, 0.910 and 0.937 for conventional and digital radiography, respectively). The high correlation between MGV and BMD indicated that MGV analysis may be a reliable alternative to DEXA in assessing radiographic bone density. This may provide a new, inexpensive, and readily available estimate of BMD.

  18. X-Ray Radiography of Laser-Driven Shocks for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Kar, A.; Radha, P. B.; Edgell, D. H.; Hu, S. X.; Boehly, T. R.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.

    2017-10-01

    Side-on x-ray radiography of shock waves transiting through the planar plastic ablator and cryogenic fuel layer will be used to study shock timing, shock coalescence, shock breakout, and hydrodynamic mixing at the ablator-fuel interface. The injection of ablator material into the fuel can potentially compromise implosion target performance. The difference in refractive indices of the ablator and the fuel can be exploited to image shocks transiting the interface. An experiment to probe the ablator-fuel interface and a postprocessor to the hydrodynamic code DRACO that uses refraction enhanced imaging to view shocks are presented. The advantages of this technique to view shocks are explored and additional applications such as viewing the spatial location of multiple shocks, or the evolution of nonuniformity on shock fronts are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  19. On the Performance of X-ray Imaging Plates in Gamma Radiography employing Reactor-produced Radioisotopes

    NASA Astrophysics Data System (ADS)

    Silvani, Maria Ines; de Almeida, Gevaldo L.; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-08-01

    Gamma-radiography employing radiographic films is a well established technique for non-destructive assays. The advent of X-ray sensitive Imaging Plates opens up new possibilities to apply this technique thanks to the advantages exhibited by this new device. Indeed, besides a sensitivity about 20 times higher then the conventional photographic film, requiring thus a shorter exposure time, it does not require a dark room for a cumbersome and time-consuming chemical processing associated to the development, an can be erased to be reused many times. Moreover, its development carried out by means of a laser beam produces digitalized images which can be promptly stored in a computer. Although its resolution is still poorer than that of the conventional film, those advantages overwhelms this specific parameter when it is not an essential feature for the intended application. This work evaluates the feasibility of employing X-ray Imaging Plates as detector for higher photon energies as those emitted by reactor-produced radioisotopes. Within this frame, radioisotopes such as 198Au and 56Mn, produced at the Argonauta research reactor in the Instituto de Engenharia Nuclear-CNEN have been employed as sources to acquire radiographic images of several pieces of equipment, devices and components. In order to keep the source appearance—with regard to the detector—as punctual as possible, reducing hence the penumbra effect, the mass of the irradiated material had to be limited. Therefore, due to the low neutron flux available at the main port of the reactor, the exposure times have to be extended along several hours or even a couple of days in order to reach an image with adequate contrast. This demand, nevertheless, does not constitute a serious hindrance as the exposure process can be carried out without any intervention or surveillance. Results have shown that in spite of the higher photon energies used, surpassing the X-ray range for which the imaging plates have been

  20. Non-destructive investigation of a time capsule using neutron radiography and X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, B. L.; Vanderstelt, J.; O'Meara, J.; McNeill, F. E.

    2016-01-01

    Non-destructive analytical techniques are becoming increasingly important for the study of objects of cultural heritage interest. This study applied two techniques: X-ray fluorescence and neutron radiography, for the investigation of a capped, tubular metal object recovered from an urban construction site in Gore Park, Hamilton, Canada. The site is an urban park containing a World War I commemorative monument that underwent renovation and relocation. Historical documentation suggested that the object buried underneath the monument was a time capsule containing a paper document listing the names of 1800 Canadians who died during WWI. The purpose of this study was to assess the condition of the object, and to verify if it was what the historical records purported. XRF analysis was used to characterize the elemental composition of the metal artifact, while neutron radiography revealed that its contents were congruent with historical records and remained intact after being interred for 91 years. Results of this study demonstrate the value of non-destructive techniques for the analysis and preservation of cultural heritage.

  1. Suresh K. AggarwalQuantified Analysis of a Production Diesel Injector Using X-Ray Radiography and Engine Diagnostics

    NASA Astrophysics Data System (ADS)

    Ramirez, Anita I.

    The work presented in this thesis pursues further the understanding of fuel spray, combustion, performance, and emissions in an internal combustion engine. Various experimental techniques including x-ray radiography, injection rate measurement, and in-cylinder endoscopy are employed in this work to characterize the effects of various upstream conditions such as injection rate profile and fuel physical properties. A single non-evaporating spray from a 6-hole full-production Hydraulically Actuated Electronically Controlled Unit Injector (HEUI) nozzle is studied under engine-like ambient densities with x-ray radiography at the Advanced Photon Source (APS) of Argonne National Laboratory (ANL). Two different injection pressures were investigated and parameters such as fuel mass distribution, spray penetration, cone angle, and spray velocity were obtained. The data acquired with x-ray radiography is used for the development and validation of improved Computational Fluid Dynamic (CFD) models. Rate of injection is studied using the same HEUI in a single cylinder Caterpillar test engine. The injection rate profile is altered to have three levels of initial injection pressure rise. Combustion behavior, engine performance, and emissions information was acquired for three rate profile variations. It is found that NOx emission reduction is achieved when the SOI timing is constant at the penalty of lower power generated in the cycle. However, if CA50 is aligned amongst the three profiles, the NOx emissions and power are constant with a slight penalty in CO emissions. The influence of physical and chemical parameters of fuel is examined in a study of the heavy alcohol, phytol (C20H40O), in internal combustion engine application. Phytol is blended with diesel in 5%, 10%, and 20% by volume. Combustion behavior is similar between pure diesel and the phytol/diesel blends with small differences noted in peak cylinder pressure, ignition delay, and heat release rate in the premix burn

  2. Assessing the dose values received by patients during conventional radiography X-ray examinations and the technical condition of the equipment used for this purpose.

    PubMed

    Bekas, Marcin; Pachocki, Krzysztof A; Waśniewska, Elżbieta; Bogucka, Dagmara; Magiera, Andrzej

    2014-01-01

    X-ray examination is associated with patient exposure to ionizing radiation. Dose values depend on the type of medical procedure used, the X-ray unit technical condition and exposure conditions selected. The aim of this study was to determine the dose value received by patients during certain conventional radiography X-ray examinations and to assess the technical condition of medical equipment used for this purpose. The study covered the total number of 118 conventional diagnostic X-ray units located in the Masovian Voivodeship. The methodology used to assess the conventional diagnostic X-ray unit technical condition and the measurement of the radiation dose rate received by patients are based on test procedures developed by the Department of Radiation Protection and Radiobiology of the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for compliance with PN-EN 17025 standard by the Polish Centre for Accreditation. It was found that 84.7% of X-ray units fully meet the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 15.3% of the units do not meet some of them. The broadest dose value range was recorded for adult patients. Particularly, during lateral (LATl) lumbar spine radiography the recorded entrance surface dose (ESD) values ranged from 283.5 to 7827 µGy (mean: 2183.3 µGy). It is absolutely necessary to constantly monitor the technical condition of all X-ray units, because it affects population exposure to ionizing radiation. Furthermore, it is essential to raise radiographers' awareness of the effects that ionizing radiation exposure can have on the human body.

  3. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws

  4. Development of cable fed flash X-ray (FXR) system

    NASA Astrophysics Data System (ADS)

    Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana

    2017-08-01

    Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

  5. Simulating the x-ray image contrast to setup techniques with desired flaw detectability

    NASA Astrophysics Data System (ADS)

    Koshti, Ajay M.

    2015-04-01

    The paper provides simulation data of previous work by the author in developing a model for estimating detectability of crack-like flaws in radiography. The methodology is developed to help in implementation of NASA Special x-ray radiography qualification, but is generically applicable to radiography. The paper describes a method for characterizing the detector resolution. Applicability of ASTM E 2737 resolution requirements to the model are also discussed. The paper describes a model for simulating the detector resolution. A computer calculator application, discussed here, also performs predicted contrast and signal-to-noise ratio calculations. Results of various simulation runs in calculating x-ray flaw size parameter and image contrast for varying input parameters such as crack depth, crack width, part thickness, x-ray angle, part-to-detector distance, part-to-source distance, source sizes, and detector sensitivity and resolution are given as 3D surfaces. These results demonstrate effect of the input parameters on the flaw size parameter and the simulated image contrast of the crack. These simulations demonstrate utility of the flaw size parameter model in setting up x-ray techniques that provide desired flaw detectability in radiography. The method is applicable to film radiography, computed radiography, and digital radiography.

  6. Phase imaging using highly coherent X-rays: radiography, tomography, diffraction topography.

    PubMed

    Baruchel, J; Cloetens, P; Härtwig, J; Ludwig, W; Mancini, L; Pernot, P; Schlenker, M

    2000-05-01

    Several hard X-rays imaging techniques greatly benefit from the coherence of the beams delivered by the modern synchrotron radiation sources. This is illustrated with examples recorded on the 'long' (145 m) ID19 'imaging' beamline of the ESRF. Phase imaging is directly related to the small angular size of the source as seen from one point of the sample ('effective divergence' approximately microradians). When using the ;propagation' technique, phase radiography and tomography are instrumentally very simple. They are often used in the 'edge detection' regime, where the jumps of density are clearly observed. The in situ damage assessment of micro-heterogeneous materials is one example of the many applications. Recently a more quantitative approach has been developed, which provides a three-dimensional density mapping of the sample ('holotomography'). The combination of diffraction topography and phase-contrast imaging constitutes a powerful tool. The observation of holes of discrete sizes in quasicrystals, and the investigation of poled ferroelectric materials, result from this combination.

  7. X-Ray Radiography of Gas Turbine Ceramics.

    DTIC Science & Technology

    1979-10-20

    Microfocus X-ray equipment. 1a4ihe definition of equipment concepts for a computer assisted tomography ( CAT ) system; and 4ffthe development of a CAT ...were obtained from these test coupons using Microfocus X-ray and image en- hancement techniques. A Computer Assisted Tomography ( CAT ) design concept...monitor. Computer reconstruction algorithms were investigated with respect to CAT and a preferred approach was determined. An appropriate CAT algorithm

  8. Insights into Spray Development from Metered-Dose Inhalers Through Quantitative X-ray Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason-Smith, Nicholas; Duke, Daniel J.; Kastengren, Alan L.

    Typical methods to study pMDI sprays employ particle sizing or visible light diagnostics, which suffer in regions of high spray density. X-ray techniques can be applied to pharmaceutical sprays to obtain information unattainable by conventional particle sizing and light-based techniques. We present a technique for obtaining quantitative measurements of spray density in pMDI sprays. A monochromatic focused X-ray beam was used to perform quantitative radiography measurements in the near-nozzle region and plume of HFA-propelled sprays. Measurements were obtained with a temporal resolution of 0.184 ms and spatial resolution of 5 mu m. Steady flow conditions were reached after around 30more » ms for the formulations examined with the spray device used. Spray evolution was affected by the inclusion of ethanol in the formulation and unaffected by the inclusion of 0.1% drug by weight. Estimation of the nozzle exit density showed that vapour is likely to dominate the flow leaving the inhaler nozzle during steady flow. Quantitative measurements in pMDI sprays allow the determination of nozzle exit conditions that are difficult to obtain experimentally by other means. Measurements of these nozzle exit conditions can improve understanding of the atomization mechanisms responsible for pMDI spray droplet and particle formation.« less

  9. Real-Time X-ray Radiography Diagnostics of Components in Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Cortopassi, A. C.; Martin, H. T.; Boyer, E.; Kuo, K. K.

    2012-01-01

    the recession of the solid propellant grain can drastically alter the flow-field and effect the recession of internal insulation and nozzle materials. Simultaneous measurement of the overall erosion rate, the development of the char layer, and the recession of the char-virgin interface during the motor operation can be rather difficult. While invasive techniques have been used with limited success, they have serious drawbacks. Break wires or make wire sensors can be installed into a sufficient number of locations in the charring material from which a time history of the charring surface can be deduced. These sensors fundamentally alter the local structure of the material in which they are imbedded. Also, the location of these sensors within the material is not known precisely without the use of an X-ray. To determine instantaneous recession rates, real-time X-ray radiography (X-ray RTR) has been utilized in several SRM experiments at PSU. The X-ray RTR system discussed in this paper consists of an X-ray source, X-ray image intensifier, and CCD camera connected to a capture computer. The system has been used to examine the ablation process of internal insulation as well as nozzle material erosion in a subscale SRM. The X-ray source is rated to 320 kV at 10 mA and has both a large (5.5 mm) and small (3.0 mm) focal spot. The lead-lined cesium iodide X-ray image intensifier produces an image which is captured by a CCD camera with a 1,000 x 1,000 pixel resolution. To produce accurate imagery of the object of interest, the alignment of the X-ray source to the X-ray image intensifier is crucial. The image sequences captured during the operation of an SRM are then processed to enhance the quality of the images. This procedure allows for computer software to extract data on the total erosion rate and the char layer thickness. Figure 1 Error! Reference source not found.shows a sequence of images captured during the operation the subscale SRM with the X-ray RTR system. The X-ray

  10. X-ray and neutron interrogation of air cargo for mobile applications

    NASA Astrophysics Data System (ADS)

    Van Liew, Seth

    2015-06-01

    A system for scanning break-bulk cargo for mobile applications is presented. This combines a 140 kV multi-view, multi-energy X-ray system with 2.5 MeV neutrons. The system uses dual energy X-ray radiography with neutron radiography. The X-ray and neutron systems were designed to be collocated in a mobile environment. Various materials were interrogated with the intent of distinguishing threat materials such as explosives from similar benign materials. In particular, the identification of threats and bengins with nearly identical effective atomic numbers has been demonstrated.

  11. X-ray radiography of cavitation in a beryllium alloy nozzle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Matusik, Katarzyna E.; Kastengren, Alan L.

    In this study, making quantitative measurements of the vapor distribution in a cavitating nozzle is difficult, owing to the strong scattering of visible light at gas–liquid boundaries and wall boundaries, and the small lengths and time scales involved. The transparent models required for optical experiments are also limited in terms of maximum pressure and operating life. Over the past few years, x-ray radiography experiments at Argonne’s Advanced Photon Source have demonstrated the ability to perform quantitative measurements of the line of sight projected vapor fraction in submerged, cavitating plastic nozzles. In this paper, we present the results of new radiographymore » experiments performed on a submerged beryllium nozzle which is 520 μm in diameter, with a length/diameter ratio of 6. Beryllium is a light, hard metal that is very transparent to x-rays due to its low atomic number. We present quantitative measurements of cavitation vapor distribution conducted over a range of non-dimensional cavitation and Reynolds numbers, up to values typical of gasoline and diesel fuel injectors. A novel aspect of this work is the ability to quantitatively measure the area contraction along the nozzle with high spatial resolution. Analysis of the vapor distribution, area contraction and discharge coefficients are made between the beryllium nozzle and plastic nozzles of the same nominal geometry. When gas is dissolved in the fuel, the vapor distribution can be quite different from that found in plastic nozzles of the same dimensions, although the discharge coefficients are unaffected. In the beryllium nozzle, there were substantially fewer machining defects to act as nucleation sites for the precipitation of bubbles from dissolved gases in the fuel, and as such the effect on the vapor distribution was greatly reduced.« less

  12. X-ray radiography of cavitation in a beryllium alloy nozzle

    DOE PAGES

    Duke, Daniel J.; Matusik, Katarzyna E.; Kastengren, Alan L.; ...

    2017-01-17

    In this study, making quantitative measurements of the vapor distribution in a cavitating nozzle is difficult, owing to the strong scattering of visible light at gas–liquid boundaries and wall boundaries, and the small lengths and time scales involved. The transparent models required for optical experiments are also limited in terms of maximum pressure and operating life. Over the past few years, x-ray radiography experiments at Argonne’s Advanced Photon Source have demonstrated the ability to perform quantitative measurements of the line of sight projected vapor fraction in submerged, cavitating plastic nozzles. In this paper, we present the results of new radiographymore » experiments performed on a submerged beryllium nozzle which is 520 μm in diameter, with a length/diameter ratio of 6. Beryllium is a light, hard metal that is very transparent to x-rays due to its low atomic number. We present quantitative measurements of cavitation vapor distribution conducted over a range of non-dimensional cavitation and Reynolds numbers, up to values typical of gasoline and diesel fuel injectors. A novel aspect of this work is the ability to quantitatively measure the area contraction along the nozzle with high spatial resolution. Analysis of the vapor distribution, area contraction and discharge coefficients are made between the beryllium nozzle and plastic nozzles of the same nominal geometry. When gas is dissolved in the fuel, the vapor distribution can be quite different from that found in plastic nozzles of the same dimensions, although the discharge coefficients are unaffected. In the beryllium nozzle, there were substantially fewer machining defects to act as nucleation sites for the precipitation of bubbles from dissolved gases in the fuel, and as such the effect on the vapor distribution was greatly reduced.« less

  13. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  14. X-ray attenuation properties of stainless steel (u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lily L; Berry, Phillip C

    2009-01-01

    Stainless steel vessels are used to enclose solid materials for studying x-ray radiolysis that involves gas release from the materials. Commercially available stainless steel components are easily adapted to form a static or a dynamic condition to monitor the gas evolved from the solid materials during and after the x-ray irradiation. Experimental data published on the x-ray attenuation properties of stainless steel, however, are very scarce, especially over a wide range of x-ray energies. The objective of this work was to obtain experimental data that will be used to determine how a poly-energetic x-ray beam is attenuated by the stainlessmore » steel container wall. The data will also be used in conjunction with MCNP (Monte Carlos Nuclear Particle) modeling to develop an accurate method for determining energy absorbed in known solid samples contained in stainless steel vessels. In this study, experiments to measure the attenuation properties of stainless steel were performed for a range of bremsstrahlung x-ray beams with a maximum energy ranging from 150 keV to 10 MeV. Bremsstrahlung x-ray beams of these energies are commonly used in radiography of engineering and weapon components. The weapon surveillance community has a great interest in understanding how the x-rays in radiography affect short-term and long-term properties of weapon materials.« less

  15. Genetic damage in exfoliated cells from oral mucosa of individuals exposed to X-rays during panoramic dental radiographies.

    PubMed

    Cerqueira, E M M; Gomes-Filho, I S; Trindade, S; Lopes, M A; Passos, J S; Machado-Santelli, G M

    2004-08-08

    The genotoxic effects of X-ray emitted during dental panoramic radiography were evaluated in exfoliated cells from oral epithelium through a differentiated protocol of the micronucleus test. Thirty-one healthy individuals agreed to participate in this study and were submitted to this procedure for diagnosis purpose after being requested by the dentist. All of them answered a questionnaire before the examination. Cells were obtained from both sides of the cheek by gentle scrapping with a cervical brush, immediately before the exposure and after 10 days. Cytological preparations were stained according to Feulgen-Rossenbeck reaction and analyzed under light and laser scanning confocal microscopies. Micronuclei, nuclear projections (buds and broken eggs) and degenerative nuclear alterations (condensed chromatin, karyolysis and karyorrhexis) were scored. The frequencies of micronuclei, karyolysis and pycnosis were similar before and after exposure (P > 0.90), whereas the condensation of the chromatin and the karyorrhexis increased significantly after exposure (P < 0.0001). In contrast, both bud and broken egg frequencies were significantly higher before the examination (P < 0.005), suggesting that these structures are associated to the normal epithelium differentiation. The results suggest that the X-ray exposure during panoramic dental radiography induces a cytotoxic effect by increasing apoptosis. We also believe that the score of other nuclear alterations in addition to the micronucleus improves the sensitivity of genotoxic effects detection.

  16. X-ray radiography for container inspection

    DOEpatents

    Katz, Jonathan I [Clayton, MO; Morris, Christopher L [Los Alamos, NM

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  17. Image reconstruction of x-ray tomography by using image J platform

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.

    2017-01-01

    A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.

  18. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography

    NASA Astrophysics Data System (ADS)

    Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E.

    2015-12-01

    A simple and efficient method, based on X-ray radiography, is developed to check the quality (homogeneity of the thickness, presence of defects) of NMC-, LFP- and NMC/LFP-based electrode coating for Li-ion batteries at the scale of several cm2 with a resolution of 20 μm. As a first step, the attenuation coefficient of NMC- and LFP-based coating is experimentally determined according to the Beer-Lambert law. Then, the attenuation coefficient of each active material is estimated from these experimental results and X-ray attenuation databases, which allows establishing an attenuation law for any coating composition. Finally, thanks to this relationship, the thickness can be evaluated in each spot of the film and the defects, such as pinholes or broad edges with gradual decrease of the thickness coating, can be detected. The analysis of NMC-, LFP- and NMC/LFP-based electrodes shows that the coating quality decreases as coating thickness increases and as the nanometric vs. micrometric material content increases in the coating composition. This reveals detrimental aspects of nanomaterials with respect to their use in composite electrode manufactured through conventional slot-die or casting process.

  19. Quantitative studies on inner interfaces in conical metal joints using hard x-ray inline phase contrast radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabler, S.; Rack, T.; Nelson, K.

    2010-10-15

    Quantitative investigation of micrometer and submicrometer gaps between joining metal surfaces is applied to conical plug-socket connections in dental titanium implants. Microgaps of widths well beyond the resolving power of industrial x-ray systems are imaged by synchrotron phase contrast radiography. Furthermore, by using an analytical model for the relatively simple sample geometry and applying it to numerical forward simulations of the optical Fresnel propagation, we show that quantitative measurements of the microgap width down to 0.1 {mu}m are possible. Image data recorded at the BAMline (BESSY-II light source, Germany) are presented, with the resolving power of the imaging system beingmore » 4 {mu}m in absorption mode and {approx}14 {mu}m in phase contrast mode (z{sub 2}=0.74 m). Thus, phase contrast radiography, combined with numerical forward simulations, is capable of measuring the widths of gaps that are two orders of magnitude thinner than the conventional detection limit.« less

  20. Embossed radiography utilizing energy subtraction.

    PubMed

    Osawa, Akihiro; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    Currently, it is difficult to carry out refraction-contrast radiography by using a conventional X-ray generator. Thus, we developed an embossed radiography system utilizing dual-energy subtraction for decreasing the absorption contrast in unnecessary regions, and the contrast resolution of a target region was increased by use of image-shifting subtraction and a linear-contrast system in a flat panel detector (FPD). The X-ray generator had a 100-microm-focus tube. Energy subtraction was performed at tube voltages of 45 and 65 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. A 1.0-mm-thick aluminum filter was used for absorbing low-photon-energy bremsstrahlung X-rays. Embossed radiography was achieved with cohesion imaging by use of the FPD with pixel sizes of 48 x 48 microm, and the shifting dimension of an object in the horizontal direction ranged from 100 to 200 microm. At a shifting distance of 100 mum, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 83 microm. In embossed radiography of non-living animals, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in the kidney, and coronary arteries approximately 100 microm in diameter.

  1. Digital radiography can reduce scoliosis x-ray exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kling, T.F. Jr.; Cohen, M.J.; Lindseth, R.E.

    1990-09-01

    Digital radiology is a new computerized system of acquiring x-rays in a digital (electronic) format. It possesses a greatly expanded dose response curve that allows a very broad range of x-ray dose to produce a diagnostic image. Potential advantages include significantly reduced radiation exposure without loss of image quality, acquisition of images of constant density irrespective of under or over exposure, and reduced repeat rates for unsatisfactory films. The authors prospectively studied 30 adolescents with scoliosis who had both conventional (full dose) and digital (full, one-half, or one-third dose) x-rays. They found digital made AP and lateral image with allmore » anatomic areas clearly depicted at full and one-half dose. Digital laterals were better at full dose and equal to conventional at one-half dose. Cobb angles were easily measured on all one-third dose AP and on 8 of 10 one-third dose digital laterals. Digital clearly depicted the Risser sign at one-half and one-third dose and the repeat rate was nil in this study, indicating digital compensates well for exposure errors. The study indicates that digital does allow radiation dose to be reduced by at least one-half in scoliosis patients and that it does have improved image quality with good contrast over a wide range of x-ray exposure.« less

  2. X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  3. X-ray radiation detectors of ``scintillator-photoreceiving device type'' for industrial digital radiography with improved spatial resolution

    NASA Astrophysics Data System (ADS)

    Ryzhykov, V. D.; Lysetska, O. K.; Opolonin, O. D.; Kozin, D. N.

    2003-06-01

    Main types of photoreceivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of "scintillator-photoreceiving device" (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm.

  4. Semi-simultaneous application of neutron and X-ray radiography in revealing the defects in an Al casting.

    PubMed

    Balaskó, M; Korösi, F; Szalay, Zs

    2004-10-01

    A semi-simultaneous application of neutron and X-ray radiography (NR, XR) respectively, was applied to an Al casting. The experiments were performed at the 10MW VVR-SM research reactor in Budapest (Hungary). The aim was to reveal, identify and parameterize the hidden defects in the Al casting. The joint application of NR and XR revealed hidden defects located in the Al casting. Image analysis of the NR and XR images unveiled a cone-like dimensionality of the defects. The spectral density analysis of the images showed a distinctly different character for the hidden defect region of Al casting in comparison with that of the defect-free one.

  5. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    ERIC Educational Resources Information Center

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  6. National reference doses for dental cephalometric radiography.

    PubMed

    Holroyd, J R

    2011-12-01

    Diagnostic reference levels (DRLs) are an important tool in the optimisation of clinical radiography. Although national DRLs are provided for many diagnostic procedures including dental intra-oral radiography, there are currently no national DRLs set for cephalometric radiography. In the absence of formal national DRLs, the Health Protection Agency (HPA) has previously published National Reference Doses (NRDs) covering a wide range of diagnostic X-ray examinations. The aim of this study was to determine provisional NRDs for cephalometric radiography. Measurements made by the Dental X-ray Protection Service (DXPS) of the HPA, as part of the cephalometric X-ray equipment testing service provided to dentists and dental trade companies throughout the UK, were used to derive provisional NRDs. Dose-area product measurements were made on 42 X-ray sets. Third quartile dose-area product values for adult and child lateral cephalometric radiography were found to be 41 mGy cm² and 25 mGy cm², respectively, with individual measurements ranging from 3 mGy cm² to 108 mGy cm². This report proposes provisional NRDs of 40 mGy cm² and 25 mGy cm² for adult and child lateral cephalometric radiographs, respectively; these doses could be considered by employers when establishing their local DRLs.

  7. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT

    NASA Astrophysics Data System (ADS)

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Hansen, David C.; Beaulieu, Luc; Seco, Joao

    2017-09-01

    The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work was to develop a systematic method that yields accurate and patient-specific RSPs by combining (1) pre-treatment x-ray CT and (2) daily proton radiography of the patient. The method was formulated as a penalized least squares optimization problem (argmin(\\Vert {A}{x}-{b}\\Vert _22 )). The parameter A represents the cumulative path-length crossed by the proton in each material, separated by thresholding on the HU. The material RSPs (water equivalent thickness/physical thickness) are denoted by x. The parameter b is the list-mode proton radiography produced using Geant4 simulations. The problem was solved using a non-negative linear-solver with {x}≥slant0 . A was computed by superposing proton trajectories calculated with a cubic or linear spline approach to the CT. The material’s RSP assigned in Geant4 were used for reference while the clinical HU-RSP calibration curve was used for comparison. The Gammex RMI-467 phantom was first investigated. The standard deviation between the estimated material RSP and the calculated RSP is 0.45%. The robustness of the techniques was then assessed as a function of the number of projections and initial proton energy. Optimization with two initial projections yields precise RSP (⩽1.0%) for 330 MeV protons. 250 MeV protons have shown higher uncertainty (⩽2.0%) due to the loss of precision in the path estimate. Anthropomorphic phantoms of the head, pelvis, and lung were subsequently evaluated. Accurate RSP has been obtained for the head (μ =0.21+/-1.63% ), the lung (μ=0.06+/-0.99% ) and the pelvis (μ=0.90+/-3.87% ). The range precision has been optimized using the calibration curves obtained with the algorithm, yielding a mean R80 difference to the reference of 0.11  ±0.09%, 0.28  ±  0.34% and 0.05 +/- 0.06% in the same order. The solution’s accuracy is limited by the

  8. Synchrotron hard X-ray imaging of shock-compressed metal powders

    NASA Astrophysics Data System (ADS)

    Rutherford, Michael E.; Chapman, David J.; Collinson, Mark A.; Jones, David R.; Music, Jasmina; Stafford, Samuel J. P.; Tear, Gareth R.; White, Thomas G.; Winters, John B. R.; Drakopoulos, Michael; Eakins, Daniel E.

    2015-06-01

    This poster will present the application of a new, high-energy (50 to 250 keV) synchrotron X-ray radiography technique to the study of shock-compressed granular materials. Following plate-impact loading, transmission radiography was used to quantitatively observe the compaction and release processes in a range of high-Z metal powders (e.g. Fe, Ni, Cu). By comparing the predictions of 3D numerical models initialized from X-ray tomograms-captured prior to loading-with experimental results, this research represents a new approach to refining mesoscopic compaction models. The authors gratefully acknowledge the ongoing support of Imperial College London, EPSRC, STFC and the Diamond Light Source, and AWE Plc.

  9. X-ray dark-field radiography facilitates the diagnosis of pulmonary fibrosis in a mouse model.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Conlon, Thomas M; Braunagel, Margarita B; Auweter, Sigrid; Yildirim, Ali Ö; Eickelberg, Oliver; Pfeiffer, Franz; Reiser, Maximilian F; Meinel, Felix G

    2017-03-23

    The aim of this study was to evaluate whether diagnosing pulmonary fibrosis with projection radiography can be improved by using X-ray dark-field radiograms. Pulmonary X-ray transmission and dark-field images of C57Bl/6N mice, either treated with bleomycin to induce pulmonary fibrosis or PBS to serve as controls, were acquired with a prototype grating-based small-animal scanner. Two blinded readers, both experienced radiologists and familiar with dark-field imaging, had to assess dark-field and transmission images for the absence or presence of fibrosis. Furthermore readers were asked to grade their stage of diagnostic confidence. Histological evaluation of the lungs served as the standard of reference in this study. Both readers showed a notably higher diagnostic confidence when analyzing the dark-field radiographs (p < 0.001). Diagnostic accuracy improved significantly when evaluating the lungs in dark-field images alone (p = 0.02) or in combination with transmission images (p = 0.01) compared to sole analysis of absorption images. Interreader agreement improved from good when assessing only transmission images to excellent when analyzing dark-field images alone or in combination with transmission images. Adding dark-field images to conventional transmission images in a murine model of pulmonary fibrosis leads to an improved diagnosis of this disease on chest radiographs.

  10. In-vivo dark-field and phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F.

    2013-11-01

    Novel radiography approaches based on the wave nature of x-rays when propagating through matter have a great potential for improved future x-ray diagnostics in the clinics. Here, we present a significant milestone in this imaging method: in-vivo multi-contrast x-ray imaging of a mouse using a compact scanner. Of particular interest is the enhanced contrast in regions related to the respiratory system, indicating a possible application in diagnosis of lung diseases (e.g. emphysema).

  11. X-Ray Radiography Measurements of the Thermal Energy in Spark Ignition Plasma at Variable Ambient Conditions

    DOE PAGES

    Matusik, Katarzyna E.; Duke, Daniel J.; Kastengren, Alan L.; ...

    2017-04-09

    The sparking behavior in an internal combustion engine affects the fuel efficiency, engine-out emissions, and general drivability of a vehicle. As emissions regulations become progressively stringent, combustion strategies, including exhaust gas recirculation (EGR), lean-burn, and turbocharging are receiving increasing attention as models of higher efficiency advanced combustion engines with reduced emissions levels. Because these new strategies affect the working environment of the spark plug, ongoing research strives to understand the influence of external factors on the spark ignition process. Due to the short time and length scales involved and the harsh environment, experimental quantification of the deposited energy from themore » sparking event is difficult to obtain. We present the results of x-ray radiography measurements of spark ignition plasma generated by a conventional spark plug. Our measurements were performed at the 7-BM beamline of the Advanced Photon Source at Argonne National Laboratory. The synchrotron x-ray source enables time-resolved measurements of the density change due to glow discharge in the spark gap with 153 ns temporal and 5 μm spatial resolutions. We also explore the effects of charging time, EGR-relevant gas compositions, and gas pressure on the sparking behavior. We also quantify the influence of the measurement technique on the obtained results.« less

  12. Pre-treatment patient-specific stopping power by combining list-mode proton radiography and x-ray CT.

    PubMed

    Collins-Fekete, Charles-Antoine; Brousmiche, Sébastien; Hansen, David C; Beaulieu, Luc; Seco, Joao

    2017-08-03

    The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work was to develop a systematic method that yields accurate and patient-specific RSPs by combining (1) pre-treatment x-ray CT and (2) daily proton radiography of the patient. The method was formulated as a penalized least squares optimization problem (argmin([Formula: see text])). The parameter A represents the cumulative path-length crossed by the proton in each material, separated by thresholding on the HU. The material RSPs (water equivalent thickness/physical thickness) are denoted by x. The parameter b is the list-mode proton radiography produced using Geant4 simulations. The problem was solved using a non-negative linear-solver with [Formula: see text]. A was computed by superposing proton trajectories calculated with a cubic or linear spline approach to the CT. The material's RSP assigned in Geant4 were used for reference while the clinical HU-RSP calibration curve was used for comparison. The Gammex RMI-467 phantom was first investigated. The standard deviation between the estimated material RSP and the calculated RSP is 0.45%. The robustness of the techniques was then assessed as a function of the number of projections and initial proton energy. Optimization with two initial projections yields precise RSP (⩽1.0%) for 330 MeV protons. 250 MeV protons have shown higher uncertainty (⩽2.0%) due to the loss of precision in the path estimate. Anthropomorphic phantoms of the head, pelvis, and lung were subsequently evaluated. Accurate RSP has been obtained for the head ([Formula: see text]), the lung ([Formula: see text]) and the pelvis ([Formula: see text]). The range precision has been optimized using the calibration curves obtained with the algorithm, yielding a mean [Formula: see text] difference to the reference of 0.11  ±0.09%, 0.28  ±  0.34% and [Formula: see text] in the same order. The solution

  13. Large area x-ray detectors for cargo radiography

    NASA Astrophysics Data System (ADS)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  14. Characterization of the external and internal flow structure of an aerated-liquid injector using X-ray radiography and fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peltier, Scott J.; Lin, Kuo-Cheng; Carter, Campbell D.

    In the present study, the internal flowfield of aerated-liquid fuel injectors is examined through x-ray radiography and x-ray fluorescence. An inside-out injector, consisting of a perforated aerating tube within an annular liquid stream, sprays into a quiescent environment at a fixed mass flow rate of water and nitrogen gas. The liquid is doped with bromine (in the form of NaBr) to create an x-ray fluorescence signal. This allows for reasonable absorption and fluorescence signals, and one or both diagnostics can be used to track the liquid distribution. The injector housing is fabricated from beryllium (Be), which allows the internal flowfieldmore » to be examined (as Be has relatively low x-ray attenuation coefficient). Two injector geometries are compared, illustrating the effects of aerating orifice size and location on the flow evolution. Time-averaged equivalent pathlength (EPL) and line-of-sight averaged density ρ(y) reveal the formation of the two-phase mixture, showing that the liquid film thickness along the injector walls is a function of the aerating tube geometry, though only upstream of the nozzle. These differences in gas and liquid distribution (between injectors with different aerating tube designs) are suppressed as the mixture traverses the nozzle contraction. The averaged liquid velocity (computed from the density and liquid mass flow rate) reveal a similar trend. This suggests that at least for the current configurations, the plume width, liquid mass distribution, and averaged liquid velocity for the time-averaged external spray are insensitive to the aerating tube geometry.« less

  15. X-radiography of trace fossils in limestones and dolostones from the Jurassic Smackover Formation, south Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, R.A.; Castleman, S.P.; King, D.T. Jr.

    X-radiography has been useful in studying biogenic sedimentary structures in unconsolidated sediments but the technique has not been applied often to the study of hard carbonate rock. The authors have applied x-radiography to the study of the lower part of the Smackover to enhance the complete petrologic description of the rock. The lower Smackover has many dense micrite intervals and intervals of monotonous, thin graded beds. Parts of the lower Smackover is also dolomitized. None of the above rocks contains significant amount of skeletal debris and trace fossils are not generally obvious in an etched slab of core. In limestone,more » they have detected well-preserved trace fossils by x-radiography, however. The dolostones show no traces using our method. In limestones, the traces are marked by minute amounts of finely divided iron sulfides. This causes a slight density difference resulting in greater x-ray absorption. They recognize two main trace-fossil types: a Thalassinoides best seen in slabs cut parallel to bedding and a Zoophycos best seen in slabs cut perpendicular to bedding. The technique requires a slab cut 8 mm thick with parallel flat surfaces and a medical x-ray unit using accelerating voltages of 66 kV and 10 mas. Traces are most successfully imaged on industrial-quality films.« less

  16. Miniature, mobile X-ray computed radiography system

    DOEpatents

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  17. Total-reflection X-ray fluorescence studies of trace elements in biomedical samples

    NASA Astrophysics Data System (ADS)

    Kubala-Kukuś, A.; Braziewicz, J.; Pajek, M.

    2004-08-01

    Application of the total-reflection X-ray fluorescence (TXRF) analysis in the studies of trace element contents in biomedical samples is discussed in the following aspects: (i) a nature of trace element concentration distributions, (ii) censoring approach to the detection limits, and (iii) a comparison of two sets of censored data. The paper summarizes the recent results achieved in this topics, in particular, the lognormal, or more general logstable, nature of concentration distribution of trace elements, the random left-censoring and the Kaplan-Meier approach accounting for detection limits and, finally, the application of the logrank test to compare the censored concentrations measured for two groups. These new aspects, which are of importance for applications of the TXRF in different fields, are discussed here in the context of TXRF studies of trace element in various samples of medical interest.

  18. X-ray focal spot reconstruction by circular penumbra analysis-Application to digital radiography systems.

    PubMed

    Di Domenico, Giovanni; Cardarelli, Paolo; Contillo, Adriano; Taibi, Angelo; Gambaccini, Mauro

    2016-01-01

    The quality of a radiography system is affected by several factors, a major one being the focal spot size of the x-ray tube. In fact, the measurement of such size is recognized to be of primary importance during acceptance tests and image quality evaluations of clinical radiography systems. The most common device providing an image of the focal spot emission distribution is a pin-hole camera, which requires a high tube loading in order to produce a measurable signal. This work introduces an alternative technique to obtain an image of the focal spot, through the processing of a single radiograph of a simple test object, acquired with a suitable magnification. The radiograph of a magnified sharp edge is a well-established method to evaluate the extension of the focal spot profile along the direction perpendicular to the edge. From a single radiograph of a circular x-ray absorber, it is possible to extract simultaneously the radial profiles of several sharp edges with different orientations. The authors propose a technique that allows to obtain an image of the focal spot through the processing of these radial profiles by means of a pseudo-CT reconstruction technique. In order to validate this technique, the reconstruction has been applied to the simulated radiographs of an ideal disk-shaped absorber, generated by various simulated focal spot distributions. Furthermore, the method has been applied to the focal spot of a commercially available mammography unit. In the case of simulated radiographs, the results of the reconstructions have been compared to the original distributions, showing an excellent agreement for what regards both the overall distribution and the full width at half maximum measurements. In the case of the experimental test, the method allowed to obtain images of the focal spot that have been compared with the results obtained through standard techniques, namely, pin-hole camera and slit camera. The method was proven to be effective for simulated

  19. First centenary of Röntgen's discovery of X-rays

    NASA Astrophysics Data System (ADS)

    Valkovic, V.

    1996-04-01

    Usually it takes a decade or even several decades, from a discovery to its practical applications. This was not the case with X-rays; they were widely applied in medical and industrial radiography within a year of their discovery in 1895 by W.C. Röntgen. Today, X-ray analysis covers a wide range of techniques and fields of applications: from deduction of atomic arrangements by observation of diffraction phenomena to measurements of trace element concentration levels, distributions and maps by measuring fluorescence, X-ray attenuation or scattering. Although the contribution of analytical applications of X-rays to the present knowledge is difficult to surpass, modern application cover a wide range of activities from three-dimensional microfabrication using synchroton radiation to collecting information from the deep space by X-ray astronomy.

  20. X-ray system simulation software tools for radiology and radiography education.

    PubMed

    Kengyelics, Stephen M; Treadgold, Laura A; Davies, Andrew G

    2018-02-01

    To develop x-ray simulation software tools to support delivery of radiological science education for a range of learning environments and audiences including individual study, lectures, and tutorials. Two software tools were developed; one simulated x-ray production for a simple two dimensional radiographic system geometry comprising an x-ray source, beam filter, test object and detector. The other simulated the acquisition and display of two dimensional radiographic images of complex three dimensional objects using a ray casting algorithm through three dimensional mesh objects. Both tools were intended to be simple to use, produce results accurate enough to be useful for educational purposes, and have an acceptable simulation time on modest computer hardware. The radiographic factors and acquisition geometry could be altered in both tools via their graphical user interfaces. A comparison of radiographic contrast measurements of the simulators to a real system was performed. The contrast output of the simulators had excellent agreement with measured results. The software simulators were deployed to 120 computers on campus. The software tools developed are easy-to-use, clearly demonstrate important x-ray physics and imaging principles, are accessible within a standard University setting and could be used to enhance the teaching of x-ray physics to undergraduate students. Current approaches to teaching x-ray physics in radiological science lack immediacy when linking theory with practice. This method of delivery allows students to engage with the subject in an experiential learning environment. Copyright © 2017. Published by Elsevier Ltd.

  1. High-intensity soft-flash x-ray generator utilizing a low-vacuum diode

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroshi; Sato, Eiichi; Shikoda, Arimitsu; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies on the high-intensity single flash x-ray generator having a low-vacuum diode for biomedical radiography are described. This generator consisted of the following essential components: a high-voltage power supply, a high-voltage pulser with a coaxial oil condenser of l5OnF, a low impedance transmission line made from four coaxial cables with lengths of 5. 6m and a total capacity of 292OpF, a mechanical booster pump, and a flash x-ray tube. The x-ray tube was of the diode-type which was connected to the booster pump with a constant pressure of 1. 7Pa and consisted of the following major devices: a long anode tip made of tungsten with a diameter (D) of less than 3. 0mm and a length (L) of 50mm, a long cathode tip made of tungsten with a D of 1. 0mm and a L of 40mm, a polyoxymethylene insulator, lead diaphragms, and an x-ray window made of polyethylene terephthalate. The coaxial oil condenser in the pulser was charged from 50 to 90kV, and the electric charges in the condenser were discharged to the flash x-ray tube through a transmission line by using a gas gap switch with a highcurrent capacity. The peak voltage increased according to increases in the condenser charged voltage and its value was more than the charged voltage. The peak current primarily increased when the charged voltage was increased, and its value was less than 4OkA. The pulse width of the flash x-rays ranged from 60 to 8Ons, and the time integrated x-ray intensity with a charged voltage of 90kV and an anode cathode (A-C) space of 3. 0mm was about 4pC/kg at 1. Om per pulse the source. The effective focal spot size was primarily determined by the diameter of the anode tip, and its value was about 3. 0mm when an anode diameter of 3. 0mm was employed.

  2. Proton Radiography Peers into Metal Solidification

    DOE PAGES

    Clarke, Amy J.; Imhoff, Seth D.; Gibbs, Paul J.; ...

    2013-06-19

    Historically, metals are cut up and polished to see the structure and to infer how processing influences the evolution. We can now peer into a metal during processing without destroying it using proton radiography. Understanding the link between processing and structure is important because structure profoundly affects the properties of engineering materials. Synchrotron x-ray radiography has enabled real-time glimpses into metal solidification. However, x-ray energies favor the examination of small volumes and low density metals. In this study, we use high energy proton radiography for the first time to image a large metal volume (>10,000 mm 3) during melting andmore » solidification. We also show complementary x-ray results from a small volume (<1mm 3), bridging four orders of magnitude. In conclusion, real-time imaging will enable efficient process development and the control of the structure evolution to make materials with intended properties; it will also permit the development of experimentally informed, predictive structure and process models.« less

  3. A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.

    PubMed

    Costa, A M; Caldas, L V E

    2003-01-01

    A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.

  4. Impact of rare earth element added filters on the X-ray beam spectra: a Monte Carlo approach.

    PubMed

    Eskandarlou, Amir; Jafari, Amir Abbas; Mohammadi, Mohammad; Zehtabian, Mehdi; Faghihi, Reza; Shokri, Abbas; Pourolajal, Jalal

    2014-01-01

    The effectiveness of added filters including conventional and rare earth materials for dental radiography tasks was investigated using a simulation approach. Current study focuses on the combination of a range of various filters to investigate the reduction of radiation absorbed dose and improving the quality of a radiography image. To simulate the X-ray beam spectrum, a MCNP5 code was applied. Relative intensity, beam quality, and mean energy were investigated for a typical dental radiography machine. The impact of different rare-earth materials with different thicknesses and tube voltages on the X-ray spectrum was investigated. For Aluminum as a conventional filter, the modeled X-ray spectra and HVL values were in a good agreement with those reported by IPEM. The results showed that for a 70 kVp voltage, with an increase of the thickness and atomic number of a given added filters, an increase of HVL values were observed. However, with the increase of the attenuator thickness, X-ray beam intensity decreases. For mean energy, different results were observed. It was also found that rare earth made filters reduce high energy X-ray radiation due to k-edge absorption. This leads to an ideal beam for intra-oral radiography tasks. However, as a disadvantage of rare earth added filters, the reduction of the tube output levels should also be considered.

  5. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  6. Infrared Radiography: Modeling X-ray Imaging Without Harmful Radiation

    NASA Astrophysics Data System (ADS)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the detection of transmitted radiation, the spatial organization and composition of materials in the body can be ascertained. In this paper, we describe an original apparatus that teaches these concepts by utilizing near infrared radiation and an up-converting phosphorescent screen to safely probe the contents of an opaque enclosure.

  7. Simultaneous wood and metal particle detection on dark-field radiography.

    PubMed

    Braig, Eva-Maria; Birnbacher, Lorenz; Schaff, Florian; Gromann, Lukas; Fingerle, Alexander; Herzen, Julia; Rummeny, Ernst; Noël, Peter; Pfeiffer, Franz; Muenzel, Daniela

    2018-01-01

    Currently, the detection of retained wood is a frequent but challenging task in emergency care. The purpose of this study is to demonstrate improved foreign-body detection with the novel approach of preclinical X-ray dark-field radiography. At a preclinical dark-field x-ray radiography, setup resolution and sensitivity for simultaneous detection of wooden and metallic particles have been evaluated in a phantom study. A clinical setting has been simulated with a formalin fixated human hand where different typical foreign-body materials have been inserted. Signal-to-noise ratios (SNR) have been determined for all test objects. On the phantom, the SNR value for wood in the dark-field channel was strongly improved by a factor 6 compared to conventional radiography and even compared to the SNR of an aluminium structure of the same size in conventional radiography. Splinters of wood < 300 μm in diameter were clearly detected on the dark-field radiography. Dark-field radiography of the formalin-fixated human hand showed a clear signal for wooden particles that could not be identified on conventional radiography. x-ray dark-field radiography enables the simultaneous detection of wooden and metallic particles in the extremities. It has the potential to improve and simplify the current state-of-the-art foreign-body detection.

  8. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  9. Facilitated Diagnosis of Pneumothoraces in Newborn Mice Using X-ray Dark-Field Radiography.

    PubMed

    Hellbach, Katharina; Yaroshenko, Andre; Willer, Konstantin; Pritzke, Tina; Baumann, Alena; Hesse, Nina; Auweter, Sigrid; Reiser, Maximilian F; Eickelberg, Oliver; Pfeiffer, Franz; Hilgendorff, Anne; Meinel, Felix G

    2016-10-01

    The aim of this study was to evaluate the diagnostic value of x-ray dark-field imaging in projection radiography-based depiction of pneumothoraces in the neonatal murine lung, a potentially life-threatening medical condition that requires a timely and correct diagnosis. By the use of a unique preclinical model, 7-day-old C57Bl/6N mice received mechanical ventilation for 2 or 8 hours with oxygen-rich gas (FIO2 = 0.4; n = 24). Unventilated mice either spontaneously breathed oxygen-rich gas (FIO2 = 0.4) for 2 or 8 hours or room air (n = 22). At the end of the experiment, lungs were inflated with a standardized volume of air after a lethal dose of pentobarbital was administered to the pups. All lungs were imaged with a prototype grating-based small-animal scanner to acquire x-ray transmission and dark-field radiographs. Image contrast between the air-filled pleural space and lung tissue was quantified for both transmission and dark-field radiograms. After the independent expert's assessment, 2 blinded readers evaluated all dark-field and transmission images for the presence or absence of pneumothoraces. Contrast ratios, diagnostic accuracy, as well as reader's confidence and interreader agreement were recorded for both imaging modalities. Evaluation of both x-ray transmission and dark-field radiographs by independent experts revealed the development of a total of 10 pneumothoraces in 8 mice. Here, the contrast ratio between the air-filled pleural space of the pneumothoraces and the lung tissue was significantly higher in the dark field (8.4 ± 3.5) when compared with the transmission images (5.1 ± 2.8; P < 0.05). Accordingly, the readers' diagnostic confidence for the diagnosis of pneumothoraces was significantly higher for dark-field compared with transmission images (P = 0.001). Interreader agreement improved from moderate for the analysis of transmission images alone (κ = 0.41) to very good when analyzing dark-field images alone (κ = 0.90) or in combination with

  10. Lightweight Target Generates Bright, Energetic X-Rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    Radiography with x rays is a long-established method to see inside objects, from human limbs to weapon parts. Livermore scientists have a continuing need for powerful x rays for such applications as backlighting, or illuminating, inertial confinement fusion (ICF) experiments and imaging still or exploding materials for the nation's Stockpile Stewardship Program. X-radiography is one of the prime diagnostics for ICF experiments because it captures the fine detail needed to determine what happens to nearly microscopic targets when they are compressed by laser light. For example, Livermore scientists participating in the National Ignition Facility's (NIF's) 18-month-long Early Light experimental campaign,more » which ended in 2004, used x rays to examine hydrodynamic instabilities in jets of plasma. In these experiments, one laser beam irradiated a solid target of titanium, causing it to form a high-temperature plasma that generated x rays of about 4.65 kiloelectronvolts (keV). These x rays backlit a jet of plasma formed when two other laser beams hit a plastic ablator and sent a shock to an aluminum washer. Livermore physicist Kevin Fournier of the Physics and Advanced Technologies Directorate leads a team that is working to increase the efficiency of converting laser energy into x rays so the resulting images provide more information about the object being illuminated. The main characteristics of x-ray sources are energy and brightness. ''As experimental targets get larger and as compression of the targets increases, the backlighter sources must be brighter and more energetic'', says Fournier. The more energetic the x rays, the further they penetrate an object. The brighter the source--that is, the more photons it has--the clearer the image. historically, researchers have used solid targets such as thin metal foils to generate x rays. however, when photon energies are greater than a few kiloelectronvolts, the conversion efficiency of solid targets is only a

  11. Non-destructive imaging of fragments of historical beeswax seals using high-contrast X-ray micro-radiography and micro-tomography with large area photon-counting detector array.

    PubMed

    Karch, Jakub; Bartl, Benjamin; Dudak, Jan; Zemlicka, Jan; Krejci, Frantisek

    2016-12-01

    Historical beeswax seals are unique cultural heritage objects. Unfortunately, a number of historical sealing waxes show a porous structure with a strong tendency to stratification and embrittlement, which makes these objects extremely prone to mechanical damage. The understanding of beeswax degradation processes therefore plays an important role in the preservation and consequent treatment of these objects. Conventional methods applied for the investigation of beeswax materials (e.g. gas chromatography) are of a destructive nature or bring only limited information about the sample surface (microscopic techniques). Considering practical limitations of conventional methods and ethical difficulties connected with the sampling of the historical material, radiation imaging methods such as X-ray micro-tomography presents a promising non-destructive tool for the onward scientific research in this field. In this contribution, we present the application of high-contrast X-ray micro-radiography and micro-tomography for the investigation of beeswax seal fragments. The method is based on the application of the large area photon-counting detector recently developed at our institute. The detector combines the advantages of single-photon counting technology with a large field of view. The method, consequently, enables imaging of relatively large objects with high geometrical magnification. In the reconstructed micro-tomographies of investigated historical beeswax seals, we are able to reveal morphological structures such as stratification, micro-cavities and micro-fractures with spatial resolution down to 5μm non-destructively and with high imaging quality. The presented work therefore demonstrates that a combination of state-of-the-art hybrid pixel semiconductor detectors and currently available micro-focus x-ray sources makes it possible to apply X-ray micro-radiography and micro-tomography as a valuable non-destructive tool for volumetric beeswax seal morphological studies

  12. MIXI: Mobile Intelligent X-Ray Inspection System

    NASA Astrophysics Data System (ADS)

    Arodzero, Anatoli; Boucher, Salime; Kutsaev, Sergey V.; Ziskin, Vitaliy

    2017-07-01

    A novel, low-dose Mobile Intelligent X-ray Inspection (MIXI) concept is being developed at RadiaBeam Technologies. The MIXI concept relies on a linac-based, adaptive, ramped energy source of short X-ray packets of pulses, a new type of fast X-ray detector, rapid processing of detector signals for intelligent control of the linac, and advanced radiography image processing. The key parameters for this system include: better than 3 mm line pair resolution; penetration greater than 320 mm of steel equivalent; scan speed with 100% image sampling rate of up to 15 km/h; and material discrimination over a range of thicknesses up to 200 mm of steel equivalent. Its minimal radiation dose, size and weight allow MIXI to be placed on a lightweight truck chassis.

  13. X-Ray Imaging Applied to Problems in Planetary Materials

    NASA Technical Reports Server (NTRS)

    Jurewicz, A. J. G.; Mih, D. T.; Jones, S. M.; Connolly, H.

    2000-01-01

    Real-time radiography (X-ray imaging) can be a useful tool for tasks such as (1) the non-destructive, preliminary examination of opaque samples and (2) optimizing how to section opaque samples for more traditional microscopy and chemical analysis.

  14. Real time observation of mouse fetal skeleton using a high resolution X-ray synchrotron

    PubMed Central

    Chang, Dong Woo; Kim, Bora; Shin, Jae Hoon; Yun, Young Min; Je, Jung Ho; Hwu, Yeu kuang; Yoon, Jung Hee

    2011-01-01

    The X-ray synchrotron is quite different from conventional radiation sources. This technique may expand the capabilities of conventional radiology and be applied in novel manners for special cases. To evaluate the usefulness of X-ray synchrotron radiation systems for real time observations, mouse fetal skeleton development was monitored with a high resolution X-ray synchrotron. A non-monochromatized X-ray synchrotron (white beam, 5C1 beamline) was employed to observe the skeleton of mice under anesthesia at embryonic day (E)12, E14, E15, and E18. At the same time, conventional radiography and mammography were used to compare with X-ray synchrotron. After synchrotron radiation, each mouse was sacrificed and stained with Alizarin red S and Alcian blue to observe bony structures. Synchrotron radiation enabled us to view the mouse fetal skeleton beginning at gestation. Synchrotron radiation systems facilitate real time observations of the fetal skeleton with greater accuracy and magnification compared to mammography and conventional radiography. Our results show that X-ray synchrotron systems can be used to observe the fine structures of internal organs at high magnification. PMID:21586868

  15. [An investigation of the effect of gamma rays emitted by patients undergoing radionuclide bone scintigraphy in computed radiography during X-ray mammography examination].

    PubMed

    Kamigiri, Akira; Nagasawa, Naoki; Yamaji, Masami; Nakamura, Mikako; Ito, Morihiro; Nakanishi, Satoshi; Kitano, Tokio

    2010-03-20

    For convenience of outpatients, mammographies of outpatients are often taken after the injection of a radionuclide. In this study, we investigated the effects of gamma rays emitted by a patient onto imaging plates (IPs). We used a flat container filled with (99m)Tc solution as a planar source to irradiate gamma rays onto IPs. We changed irradiation times on each IP, and took radiographies of an ACR-specified 156 model phantom and AGH-D210F phantom. We evaluated radiography images, using visual evaluation, and profile curves, histograms, and CNR and RMS granularities analyses. The results indicated that the depiction ability of a fibrous part began to fall when the irradiation time exceeded 3 minutes. With an increase in irradiation time, an increase in pixel value and RMS granularity value and a decrease in CNR value were observed. In conclusion, IP exposed by gamma rays influenced the evaluation of phantom images.

  16. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    PubMed

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  17. Prospects of molybdenum and rhenium octahedral cluster complexes as X-ray contrast agents.

    PubMed

    Krasilnikova, Anna A; Shestopalov, Michael A; Brylev, Konstantin A; Kirilova, Irina A; Khripko, Olga P; Zubareva, Kristina E; Khripko, Yuri I; Podorognaya, Valentina T; Shestopalova, Lidiya V; Fedorov, Vladimir E; Mironov, Yuri V

    2015-03-01

    Investigation of new X-ray contrast media for radiography is an important field of science since discovering of X-rays in 1895. Despite the wide diversity of available X-ray contrast media the toxicity, especially nephrotoxicity, is still a big problem to be solved. The octahedral metal-cluster complexes of the general formula [{M6Q8}L6] can be considered as quite promising candidates for the role of new radiocontrast media due to the high local concentration of heavy elements, high tuning ability of ligand environment and low toxicity. To exemplify this, the X-ray computed tomography experiments for the first time were carried out on some octahedral cluster complexes of molybdenum and rhenium. Based on the obtained data it was proposed to investigate the toxicological proprieties of cluster complex Na2H8[{Re6Se8}(P(CH2CH2CONH2)(CH2CH2COO)2)6]. Observed low cytotoxic and acute toxic effects along with rapid renal excretion of the cluster complex evidence its perspective as an X-ray contrast media for radiography. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. X-ray examinations of newborns

    NASA Astrophysics Data System (ADS)

    Potrakhov, N. N.; Potrakhov, Y. N.

    2018-02-01

    At the present time, the basis of instrumental diagnostics of atelectasis is lung radiography. In the case of preterm infants, it should be performed immediately after birth, and then regularly throughout the entire nursing period. The purpose of the project, within the framework of which this development is carried out, is the creation of an original domestic digital low-dose technology for X-ray examinations in neonatology, including in non-stationary conditions.

  19. Development of optics for x-ray phase-contrast imaging of high energy density plasmas.

    PubMed

    Stutman, D; Finkenthal, M; Moldovan, N

    2010-10-01

    Phase-contrast or refraction-enhanced x-ray radiography can be useful for the diagnostic of low-Z high energy density plasmas, such as imploding inertial confinement fusion (ICF) pellets, due to its sensitivity to density gradients. To separate and quantify the absorption and refraction contributions to x-ray images, methods based on microperiodic optics, such as shearing interferometry, can be used. To enable applying such methods with the energetic x rays needed for ICF radiography, we investigate a new type of optics consisting of grazing incidence microperiodic mirrors. Using such mirrors, efficient phase-contrast imaging systems could be built for energies up to ∼100 keV. In addition, a simple lithographic method is proposed for the production of the microperiodic x-ray mirrors based on the difference in the total reflection between a low-Z substrate and a high-Z film. Prototype mirrors fabricated with this method show promising characteristics in laboratory tests.

  20. The x-ray light valve: a low-cost, digital radiographic imaging system-spatial resolution

    NASA Astrophysics Data System (ADS)

    MacDougall, Robert D.; Koprinarov, Ivaylo; Webster, Christie A.; Rowlands, J. A.

    2007-03-01

    In recent years, new x-ray radiographic systems based on large area flat panel technology have revolutionized our capability to produce digital x-ray radiographic images. However, these active matrix flat panel imagers (AMFPIs) are extraordinarily expensive compared to the systems they are replacing. Thus there is a need for a low cost digital imaging system for general applications in radiology. Different approaches have been considered to make lower cost, integrated x-ray imaging devices for digital radiography, including: scanned projection x-ray, an integrated approach based on computed radiography technology and optically demagnified x-ray screen/CCD systems. These approaches suffer from either high cost or high mechanical complexity and do not have the image quality of AMFPIs. We have identified a new approach - the X-ray Light Valve (XLV). The XLV has the potential to achieve the immediate readout in an integrated system with image quality comparable to AMFPIs. The XLV concept combines three well-established and hence lowcost technologies: an amorphous selenium (a-Se) layer to convert x-rays to image charge, a liquid crystal (LC) cell as an analog display, and an optical scanner for image digitization. Here we investigate the spatial resolution possible with XLV systems. Both a-Se and LC cells have both been shown separately to have inherently very high spatial resolution. Due to the close electrostatic coupling in the XLV, it can be expected that the spatial resolution of this system will also be very high. A prototype XLV was made and a typical office scanner was used for image digitization. The Modulation Transfer Function was measured and the limiting factor was seen to be the optical scanner. However, even with this limitation the XLV system is able to meet or exceed the resolution requirements for chest radiography.

  1. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  2. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  3. Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.

  4. Design of a normal incidence multilayer imaging X-ray microscope

    NASA Astrophysics Data System (ADS)

    Shealy, David L.; Gabardi, David R.; Hoover, Richard B.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    Normal incidence multilayer Cassegrain X-ray telescopes were flown on the Stanford/MSFC Rocket X-ray Spectroheliograph. These instruments produced high spatial resolution images of the sun and conclusively demonstrated that doubly reflecting multilayer X-ray optical systems are feasible. The images indicated that aplanatic imaging soft X-ray/EUV microscopes should be achievable using multilayer optics technology. A doubly reflecting normal incidence multilayer imaging X-ray microscope based on the Schwarzschild configuration has been designed. The design of the microscope and the results of the optical system ray trace analysis are discussed. High resolution aplanatic imaging X-ray microscopes using normal incidence multilayer X-ray mirrors should have many important applications in advanced X-ray astronomical instrumentation, X-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  5. Synchrotron X-Ray Interrogation of Turbulent Gas–Liquid Mixing in Cryogenic Rocket Sprays

    DOE PAGES

    Radke, Christopher D.; McManamen, J. Patrick; Kastengren, Alan L.; ...

    2017-07-31

    The atomization and vaporization of liquid jets within turbulent gaseous flows are characterized by the mixing phenomena occurring over a wide range of spatiotemporal scales. This creates a complex, turbid medium that is not easily interrogated using conventional optical-measurement techniques. In the current study, the optically dense, multiphase flow created by a cryogenic liquid jet injected into a turbulent gaseous coflow is probed using high-speed (MHz) X-ray radiography from a focused, narrowband synchrotron source to resolve the internal cascade of scales and the evolution to isotropic, homogeneous turbulence. Changes in the spectral characteristics for different flow conditions are furthermore correlatedmore » with changes in the spatial distributions of the liquid and gas phases within the spray using simultaneous X-ray radiography and tracer (krypton) fluorescence. It is found that an increase in entrainment and mixing infers an evolution in spectral characteristics toward the well-known -5/3 law of energy dissipation in the context of the classical Kolmogorov theory. Finally, these data demonstrate the utility of the synchrotron-based X-ray radiography and fluorescence for uncovering the internal, turbulent mixing processes in multiphase and optically dense flows.« less

  6. Synchrotron X-Ray Interrogation of Turbulent Gas–Liquid Mixing in Cryogenic Rocket Sprays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radke, Christopher D.; McManamen, J. Patrick; Kastengren, Alan L.

    The atomization and vaporization of liquid jets within turbulent gaseous flows are characterized by the mixing phenomena occurring over a wide range of spatiotemporal scales. This creates a complex, turbid medium that is not easily interrogated using conventional optical-measurement techniques. In the current study, the optically dense, multiphase flow created by a cryogenic liquid jet injected into a turbulent gaseous coflow is probed using high-speed (MHz) X-ray radiography from a focused, narrowband synchrotron source to resolve the internal cascade of scales and the evolution to isotropic, homogeneous turbulence. Changes in the spectral characteristics for different flow conditions are furthermore correlatedmore » with changes in the spatial distributions of the liquid and gas phases within the spray using simultaneous X-ray radiography and tracer (krypton) fluorescence. It is found that an increase in entrainment and mixing infers an evolution in spectral characteristics toward the well-known -5/3 law of energy dissipation in the context of the classical Kolmogorov theory. Finally, these data demonstrate the utility of the synchrotron-based X-ray radiography and fluorescence for uncovering the internal, turbulent mixing processes in multiphase and optically dense flows.« less

  7. Ultrafast table-top dynamic radiography of spontaneous or stimulated events

    DOEpatents

    Smilowitz, Laura; Henson, Bryan

    2018-01-16

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing radiography. For example, certain embodiments concern X-ray radiography of spontaneous events. Particular embodiments of the disclosed technology provide continuous high-speed x-ray imaging of spontaneous dynamic events, such as explosions, reaction-front propagation, and even material failure. Further, in certain embodiments, x-ray activation and data collection activation are triggered by the object itself that is under observation (e.g., triggered by a change of state detected by one or more sensors monitoring the object itself).

  8. X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments

    NASA Astrophysics Data System (ADS)

    Li, Liang; Chen, Zhiqiang; Zhao, Ziran; Wu, Dufan

    2013-01-01

    At present, there are mainly three x-ray imaging modalities for dental clinical diagnosis: radiography, panorama and computed tomography (CT). We develop a new x-ray digital intra-oral tomosynthesis (IDT) system for quasi-three-dimensional dental imaging which can be seen as an intermediate modality between traditional radiography and CT. In addition to normal x-ray tube and digital sensor used in intra-oral radiography, IDT has a specially designed mechanical device to complete the tomosynthesis data acquisition. During the scanning, the measurement geometry is such that the sensor is stationary inside the patient's mouth and the x-ray tube moves along an arc trajectory with respect to the intra-oral sensor. Therefore, the projection geometry can be obtained without any other reference objects, which makes it be easily accepted in clinical applications. We also present a compressed sensing-based iterative reconstruction algorithm for this kind of intra-oral tomosynthesis. Finally, simulation and experiment were both carried out to evaluate this intra-oral imaging modality and algorithm. The results show that IDT has its potentiality to become a new tool for dental clinical diagnosis.

  9. Technical Note: Synchrotron-based high-energy x-ray phase sensitive microtomography for biomedical research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Huiqiang; Wu, Xizeng, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn; Xiao, Tiqiao, E-mail: xwu@uabmc.edu, E-mail: tqxiao@sinap.ac.cn

    Purpose: Propagation-based phase-contrast CT (PPCT) utilizes highly sensitive phase-contrast technology applied to x-ray microtomography. Performing phase retrieval on the acquired angular projections can enhance image contrast and enable quantitative imaging. In this work, the authors demonstrate the validity and advantages of a novel technique for high-resolution PPCT by using the generalized phase-attenuation duality (PAD) method of phase retrieval. Methods: A high-resolution angular projection data set of a fish head specimen was acquired with a monochromatic 60-keV x-ray beam. In one approach, the projection data were directly used for tomographic reconstruction. In two other approaches, the projection data were preprocessed bymore » phase retrieval based on either the linearized PAD method or the generalized PAD method. The reconstructed images from all three approaches were then compared in terms of tissue contrast-to-noise ratio and spatial resolution. Results: The authors’ experimental results demonstrated the validity of the PPCT technique based on the generalized PAD-based method. In addition, the results show that the authors’ technique is superior to the direct PPCT technique as well as the linearized PAD-based PPCT technique in terms of their relative capabilities for tissue discrimination and characterization. Conclusions: This novel PPCT technique demonstrates great potential for biomedical imaging, especially for applications that require high spatial resolution and limited radiation exposure.« less

  10. Development of an x-ray prism for analyzer based imaging systems

    NASA Astrophysics Data System (ADS)

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  11. Development of an x-ray prism for analyzer based imaging systems.

    PubMed

    Bewer, Brian; Chapman, Dean

    2010-08-01

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.

  12. Lab-based x-ray nanoCT imaging

    NASA Astrophysics Data System (ADS)

    Müller, Mark; Allner, Sebastian; Ferstl, Simone; Dierolf, Martin; Tuohimaa, Tomi; Pfeiffer, Franz

    2017-03-01

    Due to the recent development of transmission X-ray tubes with very small focal spot sizes, laboratory-based CT imaging with sub-micron resolutions is nowadays possible. We recently developed a novel X-ray nanoCT setup featuring a prototype nanofocus X-ray source and a single-photon counting detector. The system is based on mere geometrical magnification and can reach resolutions of 200 nm. To demonstrate the potential of the nanoCT system for biomedical applications we show high resolution nanoCT data of a small piece of human tooth comprising coronal dentin. The reconstructed CT data clearly visualize the dentin tubules within the tooth piece.

  13. In situ observation of self-propagating high temperature syntheses of Ta5Si3, Ti5Si3 and TiB2 by proton and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Bernert, T.; Winkler, B.; Haussühl, E.; Trouw, F.; Vogel, S. C.; Hurd, A. J.; Smilowitz, L.; Henson, B. F.; Merrill, F. E.; Morris, C. L.; Mariam, F. G.; Saunders, A.; Juarez-Arellano, E. A.

    2013-08-01

    Self-propagating high temperature reactions of tantalum and titanium with silicon and titanium with boron were studied using proton and X-ray radiography, small-angle neutron scattering, neutron time-of-flight, X-ray and neutron diffraction, dilatometry and video recording. We show that radiography allows the observation of the propagation of the flame front in all investigated systems and the determination of the widths of the burning zones. X-ray and neutron diffraction showed that the reaction products consisted of ≈90 wt% of the main phase and one or two secondary phases. For the reaction 5Ti + 3Si → Ti5Si3 flame front velocities of 7.1(3)-34.2(4) mm/s were determined depending on the concentration of a retardant added to the starting material, the geometry and the green density of the samples. The flame front width was determined to be 1.17(4)-1.82(8) mm and depends exponentially on the flame front velocity. Similarly, for the reaction Ti + 2B → TiB2 flame front velocities of 15(2)-26.6(4) mm/s were determined, while for a 5Ta + 3Si → Ta5Si3 reaction the flame front velocity was 7.05(4) mm/s. The micro structure of the product phase Ta5Si3 shows no texture. From SANS measurements the dependence of the specific surface of the product phase on the particle sizes of the starting materials was studied.

  14. Investigation of time-resolved proton radiography using x-ray flat-panel imaging system

    NASA Astrophysics Data System (ADS)

    Jee, K.-W.; Zhang, R.; Bentefour, E. H.; Doolan, P. J.; Cascio, E.; Sharp, G.; Flanz, J.; Lu, H.-M.

    2017-03-01

    Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2  ×  2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.

  15. Investigation of time-resolved proton radiography using x-ray flat-panel imaging system.

    PubMed

    Jee, K-W; Zhang, R; Bentefour, E H; Doolan, P J; Cascio, E; Sharp, G; Flanz, J; Lu, H-M

    2017-03-07

    Proton beam therapy benefits from the Bragg peak and delivers highly conformal dose distributions. However, the location of the end-of-range is subject to uncertainties related to the accuracy of the relative proton stopping power estimates and thereby the water-equivalent path length (WEPL) along the beam. To remedy the range uncertainty, an in vivo measurement of the WEPL through the patient, i.e. a proton-range radiograph, is highly desirable. Towards that goal, we have explored a novel method of proton radiography based on the time-resolved dose measured by a flat panel imager (FPI). A 226 MeV pencil beam and a custom-designed range modulator wheel (MW) were used to create a time-varying broad beam. The proton imaging technique used exploits this time dependency by looking at the dose rate at the imager as a function of time. This dose rate function (DRF) has a unique time-varying dose pattern at each depth of penetration. A relatively slow rotation of the MW (0.2 revolutions per second) and a fast image acquisition (30 frames per second, ~33 ms sampling) provided a sufficient temporal resolution for each DRF. Along with the high output of the CsI:Tl scintillator, imaging with pixel binning (2  ×  2) generated high signal-to-noise data at a very low radiation dose (~0.1 cGy). Proton radiographs of a head phantom and a Gammex CT calibration phantom were taken with various configurations. The results of the phantom measurements show that the FPI can generate low noise and high spatial resolution proton radiographs. The WEPL values of the CT tissue surrogate inserts show that the measured relative stopping powers are accurate to ~2%. The panel did not show any noticeable radiation damage after the accumulative dose of approximately 3831 cGy. In summary, we have successfully demonstrated a highly practical method of generating proton radiography using an x-ray flat panel imager.

  16. The Dram As An X-Ray Sensor

    NASA Astrophysics Data System (ADS)

    Jacobs, Alan M.; Cox, John D.; Juang, Yi-Shung

    1987-01-01

    A solid-state digital x-ray detector is described which can replace high resolution film in industrial radiography and has potential for application in some medical imaging. Because of the 10 micron pixel pitch on the sensor, contact magnification radiology is possible and is demonstrated. Methods for frame speed increase and integration of sensor to a large format are discussed.

  17. X-ray detectors in medical imaging

    NASA Astrophysics Data System (ADS)

    Spahn, Martin

    2013-12-01

    Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.

  18. A Taxonomy of Functions of Dental X-Ray Technologists.

    ERIC Educational Resources Information Center

    Doty, Charles R.; And Others

    The taxonomy of the functions of dental x-ray technologists presented in this report resulted from a dental radiography curriculum development project undertaken at Middlesex County College (MCC) in 1981. After an introductory section citing arguments for creating taxonomies of objectives, the report explains the impetus for the curriculum…

  19. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  20. In situ X-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramkrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ X-ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (O)1, (O)3, (O)5, and (O)8 composite specimens showed that X-ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  1. In-situ x-ray monitoring of damage accumulation in SiC/RBSN tensile specimens

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Bhatt, Ramakrishna T.

    1991-01-01

    The room-temperature tensile testing of silicon carbide fiber reinforced reaction-bonded silicon nitride (SiC/RBSN) composite specimens was monitored by using in-situ x ray film radiography. Radiographic evaluation before, during, and after loading provided data on the effect of preexisting volume flaws (high density impurities, and local density variations) on the fracture behavior of composites. Results from (0)1, (0)3, (0)5, and (0)8 composite specimens, showed that x ray film radiography can monitor damage accumulations during tensile loading. Matrix cracking, fiber-matrix debonding, and fiber pullout were imaged throughout the tensile loading history of the specimens. Further, in-situ film radiography was found to be a helpful and practical technique for estimating interfacial shear strength between the SiC fiber and the RBSN matrix by the matrix crack spacing method. It is concluded that pretest, in-situ, and post-test radiography can provide for a greater understanding of ceramic matrix composite mechanical behavior, a verification of related experimental procedures, and a validation and development of related analytical models.

  2. Method and Apparatus for Computed Imaging Backscatter Radiography

    NASA Technical Reports Server (NTRS)

    Shedlock, Daniel (Inventor); Sabri, Nissia (Inventor); Dugan, Edward T. (Inventor); Jacobs, Alan M. (Inventor); Meng, Christopher (Inventor)

    2013-01-01

    Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data using rotational motion.

  3. Hard X-ray dosimetry of a plasma focus suitable for industrial radiography

    NASA Astrophysics Data System (ADS)

    Knoblauch, P.; Raspa, V.; Di Lorenzo, F.; Clausse, A.; Moreno, C.

    2018-04-01

    Dosimetric measurements of the hard X-ray emission by a small-chamber 4.7 kJ Mather-type plasma focus device capable of producing neat radiographs of metallic objects, were carried out with a set of thermoluminescent detectors TLD 700 (LiF:Mg,Ti). Measurements of the hard X-ray dose dependence with the angular position relative to the electrodes axis, are presented. The source-detector distance was changed in the range from 50 to 100 cm, and the angular positions were explored between ± 70°, relative to the symmetry axis of the electrodes. On-axis measurements show that the X-ray intensity is uniform within a half aperture angle of 6°, in which the source delivers an average dose of (1.5 ± 0.1) mGy/sr per shot. Monte Carlo calculations suggest that the energy of the electron beam responsible for the X-ray emission ranges 100-600 keV.

  4. Development of an x-ray prism for analyzer based imaging systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bewer, Brian; Chapman, Dean

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less

  5. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector

    PubMed Central

    Dudak, Jan; Zemlicka, Jan; Karch, Jakub; Patzelt, Matej; Mrzilkova, Jana; Zach, Petr; Hermanova, Zuzana; Kvacek, Jiri; Krejci, Frantisek

    2016-01-01

    Using dedicated contrast agents high-quality X-ray imaging of soft tissue structures with isotropic micrometre resolution has become feasible. This technique is frequently titled as virtual histology as it allows production of slices of tissue without destroying the sample. The use of contrast agents is, however, often an irreversible time-consuming procedure and despite the non-destructive principle of X-ray imaging, the sample is usually no longer usable for other research methods. In this work we present the application of recently developed large-area photon counting detector for high resolution X-ray micro-radiography and micro-tomography of whole ex-vivo ethanol-preserved mouse organs. The photon counting detectors provide dark-current-free quantum-counting operation enabling acquisition of data with virtually unlimited contrast-to-noise ratio (CNR). Thanks to the very high CNR even ethanol-only preserved soft-tissue samples without addition of any contrast agent can be visualized in great detail. As ethanol preservation is one of the standard steps of tissue fixation for histology, the presented method can open a way for widespread use of micro-CT with all its advantages for routine 3D non-destructive soft-tissue visualisation. PMID:27461900

  6. New developments in flash radiography

    NASA Astrophysics Data System (ADS)

    Mattsson, Arne

    2007-01-01

    The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.

  7. Dose audit for patients undergoing two common radiography examinations with digital radiology systems.

    PubMed

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey.

  8. Medical X-ray sources now and for the future

    NASA Astrophysics Data System (ADS)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  9. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosionmore » stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.« less

  10. Qualitative comparison of bremsstrahlung X-rays and 800 MeV protons for tomography of urania fuel pellets

    DOE PAGES

    Morris, Christopher L.; Bourke, Mark A.; Byler, Darrin D.; ...

    2013-02-11

    We present an assessment of x-rays and proton tomography as tools for studying the time dependence of the development of damage in fuel rods. Also, we show data taken with existing facilities at Los Alamos National Laboratory that support this assessment. Data on surrogate fuel rods has been taken using the 800 MeV proton radiography (pRad) facility at the Los Alamos Neutron Science Center (LANSCE), and with a 450 keV bremsstrahlung X-ray tomography facility. The proton radiography pRad facility at LANSCE can provide good position resolution (<70 μm has been demonstrate, 20 μm seems feasible with minor changes) for tomographymore » on activated fuel rods. Bremsstrahlung x-rays may be able to provide better than 100 μm resolution but further development of sources, collimation and detectors is necessary for x-rays to deal with the background radiation for tomography of activated fuel rods.« less

  11. New contrasts for x-ray imaging and synergy with optical imaging

    NASA Astrophysics Data System (ADS)

    Wang, Ge

    2017-02-01

    Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).

  12. X-ray vision of fuel sprays.

    PubMed

    Wang, Jin

    2005-03-01

    With brilliant synchrotron X-ray sources, microsecond time-resolved synchrotron X-ray radiography and tomography have been used to elucidate the detailed three-dimensional structure and dynamics of high-pressure high-speed fuel sprays in the near-nozzle region. The measurement allows quantitative determination of the fuel distribution in the optically impenetrable region owing to the multiple scattering of visible light by small atomized fuel droplets surrounding the jet. X-radiographs of the jet-induced shock waves prove that the fuel jets become supersonic under appropriate injection conditions and that the quantitative analysis of the thermodynamic properties of the shock waves can also be derived from the most direct measurement. In other situations where extremely axial-asymmetric sprays are encountered, mass deconvolution and cross-sectional fuel distribution models can be computed based on the monochromatic and time-resolved X-radiographic images collected from various rotational orientations of the sprays. Such quantitative analysis reveals the never-before-reported characteristics and most detailed near-nozzle mass distribution of highly transient fuel sprays.

  13. X-ray phase contrast tomography by tracking near field speckle

    PubMed Central

    Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal

    2015-01-01

    X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237

  14. Hard-X-ray dark-field imaging using a grating interferometer.

    PubMed

    Pfeiffer, F; Bech, M; Bunk, O; Kraft, P; Eikenberry, E F; Brönnimann, Ch; Grünzweig, C; David, C

    2008-02-01

    Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.

  15. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis

    PubMed Central

    Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena

    2018-01-01

    The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878

  16. X-Ray Radiographic Observation of Directional Solidification Under Microgravity: XRMON-GF Experiments on MASER12 Sounding Rocket Mission

    NASA Technical Reports Server (NTRS)

    Reinhart, G.; NguyenThi, H.; Bogno, A.; Billia, B.; Houltz, Y.; Loth, K.; Voss, D.; Verga, A.; dePascale, F.; Mathiesen, R. H.; hide

    2012-01-01

    The European Space Agency (ESA) - Microgravity Application Promotion (MAP) programme entitled XRMON (In situ X-Ray MONitoring of advanced metallurgical processes under microgravity and terrestrial conditions) aims to develop and perform in situ X-ray radiography observations of metallurgical processes in microgravity and terrestrial environments. The use of X-ray imaging methods makes it possible to study alloy solidification processes with spatio-temporal resolutions at the scales of relevance for microstructure formation. XRMON has been selected for MASER 12 sounding rocket experiment, scheduled in autumn 2011. Although the microgravity duration is typically six minutes, this short time is sufficient to investigate a solidification experiment with X-ray radiography. This communication will report on the preliminary results obtained with the experimental set-up developed by SSC (Swedish Space Corporation). Presented results dealing with directional solidification of Al-Cu confirm the great interest of performing in situ characterization to analyse dynamical phenomena during solidification processes.

  17. Automatic segmentation of mandible in panoramic x-ray.

    PubMed

    Abdi, Amir Hossein; Kasaei, Shohreh; Mehdizadeh, Mojdeh

    2015-10-01

    As the panoramic x-ray is the most common extraoral radiography in dentistry, segmentation of its anatomical structures facilitates diagnosis and registration of dental records. This study presents a fast and accurate method for automatic segmentation of mandible in panoramic x-rays. In the proposed four-step algorithm, a superior border is extracted through horizontal integral projections. A modified Canny edge detector accompanied by morphological operators extracts the inferior border of the mandible body. The exterior borders of ramuses are extracted through a contour tracing method based on the average model of mandible. The best-matched template is fetched from the atlas of mandibles to complete the contour of left and right processes. The algorithm was tested on a set of 95 panoramic x-rays. Evaluating the results against manual segmentations of three expert dentists showed that the method is robust. It achieved an average performance of [Formula: see text] in Dice similarity, specificity, and sensitivity.

  18. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging

    PubMed Central

    Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha

    2017-01-01

    This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines. PMID:28272336

  19. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging.

    PubMed

    Kim, Tae-Hoon; Heo, Dong-Woon; Jeong, Chang-Won; Ryu, Jong-Hyun; Jun, Hong Young; Han, Seung-Jun; Ha, Taeuk; Yoon, Kwon-Ha

    2017-03-07

    This study developed a device measuring the X-ray source-detector angle (SDA) and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR) was evaluated using the signal-to-noise (SNR), contrast-to-noise ratio (CNR), spatial resolution, distortion and entrance surface dose (ESD). According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm) and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles ( p < 0.05), whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines.

  20. Repetitive flash x-ray generator having a high-durability diode driven by a two-cable-type line pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.

    1994-04-01

    The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.

  1. Dose audit for patients undergoing two common radiography examinations with digital radiology systems

    PubMed Central

    İnal, Tolga; Ataç, Gökçe

    2014-01-01

    PURPOSE We aimed to determine the radiation doses delivered to patients undergoing general examinations using computed or digital radiography systems in Turkey. MATERIALS AND METHODS Radiographs of 20 patients undergoing posteroanterior chest X-ray and of 20 patients undergoing anteroposterior kidney-ureter-bladder radiography were evaluated in five X-ray rooms at four local hospitals in the Ankara region. Currently, almost all radiology departments in Turkey have switched from conventional radiography systems to computed radiography or digital radiography systems. Patient dose was measured for both systems. The results were compared with published diagnostic reference levels (DRLs) from the European Union and International Atomic Energy Agency. RESULTS The average entrance surface doses (ESDs) for chest examinations exceeded established international DRLs at two of the X-ray rooms in a hospital with computed radiography. All of the other ESD measurements were approximately equal to or below the DRLs for both examinations in all of the remaining hospitals. Improper adjustment of the exposure parameters, uncalibrated automatic exposure control systems, and failure of the technologists to choose exposure parameters properly were problems we noticed during the study. CONCLUSION This study is an initial attempt at establishing local DRL values for digital radiography systems, and will provide a benchmark so that the authorities can establish reference dose levels for diagnostic radiology in Turkey. PMID:24317331

  2. [The preoperative thoracic X-ray for tactical decisions for the thoracic injuries treatment].

    PubMed

    Voskresenskiĭ, O V; Beresneva, É A; Sharifullin, F A; Popova, I E; Abakumov, M M

    2011-01-01

    Data of 379 patients with penetrating thoracic wounds were analyzed. The pathologic changes on X-ray of the thoracic cavity were registered 239 (63,1%) patients: the hemothorax was diagnosed in 44,3%, pneumothorax - in 26,8% and hemopneumothorax - in 28,9%. 154 patients had videothoracoscopic surgery and 225 patients were operated on using traditional open methods. Operative findings were compared with X-ray data. The sensitivity of plain chest radiography in diagnostics of hemothorax was 52,1%, the specificity - 92,1%. Mistakes of interpreting X-ray data in diagnosing of low-volume hemo- or pneumothorax were defined. The computed tomography of the thorax proved to be the most precise means of intrapleural injuries diagnostics. The optimal algorithm of preoperative thoracic X-ray was suggested.

  3. Taguchi's technique: an effective method for improving X-ray medical radiographic screen performance.

    PubMed

    Vlachogiannis, J G

    2003-01-01

    Taguchi's technique is a helpful tool to achieve experimental optimization of a large number of decision variables with a small number of off-line experiments. The technique appears to be an ideal tool for improving the performance of X-ray medical radiographic screens under a noise source. Currently there are very many guides available for improving the efficiency of X-ray medical radiographic screens. These guides can be refined using a second-stage parameter optimization. based on Taguchi's technique, selecting the optimum levels of controllable X-ray radiographic screen factors. A real example of the proposed technique is presented giving certain performance criteria. The present research proposes the reinforcement of X-ray radiography by Taguchi's technique as a novel hardware mechanism.

  4. Time-sequenced X-ray Observation of a Thermal Explosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J W; Molitoris, J D; Smilowitz, L

    The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 {micro}s. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of {micro}s after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less

  5. TIME-SEQUENCED X-RAY OBSERVATION OF A THERMAL EXPLOSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W.; Molitoris, J. D.; Kercher, J. R.

    The evolution of a thermally-initiated explosion is studied using a multiple-image x-ray system. HMX-based PBX 9501 is used in this work, enabling direct comparison to recently-published data obtained with proton radiography [1]. Multiple x-ray images of the explosion are obtained with image spacing of ten microseconds or more. The explosion is simultaneously characterized with a high-speed camera using an interframe spacing of 11 mus. X-ray and camera images were both initiated passively by signals from an embedded thermocouple array, as opposed to being actively triggered by a laser pulse or other external source. X-ray images show an accelerating reacting frontmore » within the explosive, and also show unreacted explosive at the time the containment vessel bursts. High-speed camera images show debris ejected from the vessel expanding at 800-2100 m/s in the first tens of mus after the container wall failure. The effective center of the initiation volume is about 6 mm from the geometric center of the explosive.« less

  6. Nanosecond time resolved x-ray diagnostics of relativistic electron beam initiated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuswa, Glenn W.; Chang, James

    The dynamic behavior of a test sample during aid shortly after it has teen irradiated by an intense relativistic electron beam (REB) is of great interest to the study of team energy deposition. Since the sample densities are far beyond the cutoff in the optical region, flash x-radiography techniques have been developed to diagnose the evolution of the samples. The conventional approach of analyzing the dynamic behavior of solid densities utilizes one or more short x-ray bursts to record images on photographic emulsion. This technique is not useful in the presence of the intense x-rays from the REB interacting withmore » the sample. We report two techniques for isolating the film package from the REB x-ray pulse.« less

  7. Design of a normal incidence multilayer imaging x-ray microscope.

    PubMed

    Shealy, D L; Gabardi, D R; Hoover, R B; Walker, A B; Lindblom, J F; Barbee, T W

    1989-01-01

    Normal incidence multilayer Cassegrain x-ray telescopes were flown on the Stanford/MSFC Rocket X-Ray Spectroheliograph. These instruments produced high spatial resolution images of the Sun and conclusively demonstrated that doubly reflecting multilayer x-ray optical systems are feasible. The images indicated that aplanatic imaging soft x-ray /EUV microscopes should be achievable using multilayer optics technology. We have designed a doubly reflecting normal incidence multilayer imaging x-ray microscope based on the Schwarzschild configuration. The Schwarzschild microscope utilizes two spherical mirrors with concentric radii of curvature which are chosen such that the third-order spherical aberration and coma are minimized. We discuss the design of the microscope and the results of the optical system ray trace analysis which indicates that diffraction-limited performance with 600 Å spatial resolution should be obtainable over a 1 mm field of view at a wavelength of 100 Å. Fabrication of several imaging soft x-ray microscopes based upon these designs, for use in conjunction with x-ray telescopes and laser fusion research, is now in progress. High resolution aplanatic imaging x-ray microscopes using normal incidence multilayer x-ray mirrors should have many important applications in advanced x-ray astronomical instrumentation, x-ray lithography, biological, biomedical, metallurgical, and laser fusion research.

  8. Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system.

    PubMed

    Gil, Youngmi; Oh, Youngdo; Cho, Moohyun; Namkung, Won

    2011-02-01

    We propose a method to identify materials in the dual energy X-ray (DeX) inspection system. This method identifies materials by combining information on the relative proportions T of high-energy and low-energy X-rays transmitted through the material, and the ratio R of the attenuation coefficient of the material when high-energy are used to that when low energy X-rays are used. In Monte Carlo N-Particle Transport Code (MCNPX) simulations using the same geometry as that of the real container inspection system, this T vs. R method successfully identified tissue-equivalent plastic and several metals. In further simulations, the single-shot mode of operating the accelerator led to better distinguishing of materials than the dual-shot system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Tsuchiya, Y.; Kuroe, T.; Zeniya, T.; Wu, J.; Lwin, Thet-Thet; Yashiro, T.; Yuasa, T.; Hyodo, K.; Matsumura, K.; Dilmanian, F. A.; Itai, Y.; Akatsuka, T.

    2004-05-01

    A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100μm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications.

  10. X ray attenuation measurements for high-temperature materials characterization and in-situ monitoring of damage accumulation. Ph.D. Thesis - Cleveland State Univ., 1991

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1992-01-01

    The scope of this dissertation is to develop and apply x ray attenuation measurement systems that are capable of: (1) characterizing density variations in high-temperature materials, e.g., monolithic ceramics, ceramic and intermetallic matrix composites, and (2) noninvasively monitoring damage accumulation and failure sequences in ceramic matrix composites under room temperature tensile testing. This dissertation results in the development of: (1) a point scan digital radiography system, and (2) an in-situ x ray material testing system. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. Further in-situ radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction bonded silicon nitride matrix. It is concluded that pretest, in-situ, and post test x ray imaging can provide for greater understanding of ceramic matrix composite mechanical behavior.

  11. [Comparative study of X-ray digital DTS imaging and kidney ureter bladder radiography in urinary calculi].

    PubMed

    Liu, Shifeng; Guo, Jian; Hu, Xiaokun; Zhang, Hao; Shang, Qingjun; Xu, Wenjian; Feng, Weihua

    2015-07-07

    To investigate the value of X-ray digital tomosynthesis (DTS) in the diagnosis of urinary stones compared with kidney ureter bladder radiography. Between February 2011 and February 2012, 80 consecutively enrolled patients with urinary stones proved by UMDCT, the total number of which was 138, underwent additional DTS and KUB (kidney, ureter and bladder) then the number of stones and the proportions (the sensitivity of detecting stones) were recorded under all kinds of circumstances. Any two cases were selected in comparison with each other among the following four cases (DTS and KUB before and after bowel preparation).The data from all cases were statistically processed by chi-square test of four-fold table. The diagnostic sensitivity of DTS before and after bowel preparation, KUB before and after preparation were 94.2%, 96.4%, 47.8% and 66.7%, respectively. No significant differences between DTS before bowel preparation and DTS after bowel preparation were found. Significant differences were observed in other five ways. DTS is hardly affected by intestinal gas, feces and bones compared with KUB. Use of DTS results in improved detection rate and definition of stones with the same positioning function as KUB.

  12. Megavoltage cargo radiography with dual energy material decomposition

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.

    2018-02-01

    Megavoltage (MV) radiography has important applications in imaging large cargos for detecting illicit materials. A useful feature of MV radiography is the possibility of decomposing and quantifying materials with different atomic numbers. This can be achieved by imaging cargo at two different X-ray energies, or dual energy (DE) radiography. The performance of both single energy and DE radiography depends on beam energy, beam filtration, radiation dose, object size, and object content. The purpose of this work was to perform comprehensive qualitative and quantitative investigations of the image quality in MV radiography depending on the above parameters. A digital phantom was designed including Fe background with thicknesses of 2cm, 6cm, and 18cm, and materials samples of Polyethylene, Fe, Pb, and U. The single energy images were generated at x-ray beam energies 3.5MV, 6MV, and 9MV. The DE material decomposed images were generated using interlaced low and high energy beams 3.5/6MV and 6/9MV. The X-ray beams were filtered by low-Z (Polyethylene) and high-Z (Pb) filters with variable thicknesses. The radiation output of the accelerator was kept constant for all beam energies. The image quality metrics was signal-to-noise ratio (SNR) of the particular sample over a particular background. It was found that the SNR depends on the above parameters in a complex way, but can be optimized by selecting a particular set of parameters. For some imaging setups increased filter thicknesses, while strongly absorbing the beams, increased the SNR of material decomposed images. Beam hardening due to polyenergetic x-ray spectra resulted in material decomposition errors, but this could be addressed using region of interest decomposition. It was shown that it is not feasible to separate the materials with close atomic numbers using the DE method. Particularly, Pb and U were difficult to decompose, at least at the dose levels allowed by radiation source and safety requirements.

  13. System for phase-contrast x-ray radiography using X pinch radiation and a method thereof

    DOEpatents

    Chandler, Katherine; Chelkovenko, Tatiana; Hammer, David; Pikuz, Sergei; Sinars, Daniel; Song, Byungmoo

    2007-11-06

    A radiograph system with an anode plate, a cathode plate, and a power source coupled to said anode plate and the cathode plate. At least two wires coupled between the anode plate and the cathode plate provide a configuration to form an X-pinch having a photon source size of less than five microns at energies above 2.5 keV. Material at the configuration forming the X-pinch vaporizes upon application of a suitable current to the wires forming a dense hot plasma and emitting a single x-ray pulse with sufficient photons having energies in the range of from about 2.5 keV to about 20 keV to provide a phase contrast image of an object in the path of the photons. Multiple simultaneous images may be formed of a plurality of objects. Suitable filters and x-ray detectors are provided.

  14. X-ray Radiography Measurements of Shear Coaxial Rocket Injectors

    DTIC Science & Technology

    2013-05-07

    injector EPL profiles have elliptical shape expected from a solid liquid jet  EPL decreases as liquid core is atomized and droplets are...study diesel, swirl, gas-centered swirl-coaxial, impingers, and aerated liquid jet injectors  Use a monochromatic beam of x-rays at a synchrotron...Shear coaxial jets can be found in a number of combustion devices – Turbofan engine exhaust, air blast furnaces, and liquid rocket engines

  15. Advances in functional X-ray imaging techniques and contrast agents

    PubMed Central

    Chen, Hongyu; Rogalski, Melissa M.

    2012-01-01

    X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667

  16. Talbot-Lau x-ray interferometry for high energy density plasma diagnostic.

    PubMed

    Stutman, D; Finkenthal, M

    2011-11-01

    High resolution density diagnostics are difficult in high energy density laboratory plasmas (HEDLP) experiments due to the scarcity of probes that can penetrate above solid density plasmas. Hard x-rays are one possible probe for such dense plasmas. We study the possibility of applying an x-ray method recently developed for medical imaging, differential phase-contrast with Talbot-Lau interferometers, for the diagnostic of electron density and small-scale hydrodynamic instabilities in HEDLP experiments. The Talbot method uses micro-periodic gratings to measure the refraction and ultra-small angle scatter of x-rays through an object and is attractive for HEDLP diagnostic due to its capability to work with incoherent and polychromatic x-ray sources such as the laser driven backlighters used for HEDLP radiography. Our paper studies the potential of the Talbot method for HEDLP diagnostic, its adaptation to the HEDLP environment, and its extension of high x-ray energy using micro-periodic mirrors. The analysis is illustrated with experimental results obtained using a laboratory Talbot interferometer. © 2011 American Institute of Physics

  17. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY-A CADAVERIC STUDY.

    PubMed

    Djernaes, Julie D; Nielsen, Jon V; Berg, Lise C

    2017-03-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired. Sequential radiographs were acquired with each interspinous space in focus. Measurements were performed for each interspinous space in the focus position and up to eight angled positions as the interspinous space moved away from focus (±). Focus position measurements were compared to matching sagittal CT measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous spaces in position +3 (P = 0.038). Changes in width did not follow a consistent pattern. Interspinous space widths in focus position were significantly smaller in radiographs compared to matching reconstructed CT images for backs diagnosed with kissing spine syndrome (P < 0.001). Geometric distortion markedly affected appearance of interspinous space width between planes. In conclusion, X-ray beam angle and geometric distortion influence radiographically measured widths of interspinous spaces in the equine thoracolumbar spine, and this should be taken into consideration when evaluating sport horses. © 2016 American College of Veterinary Radiology.

  18. Tomosynthesis can facilitate accurate measurement of joint space width under the condition of the oblique incidence of X-rays in patients with rheumatoid arthritis.

    PubMed

    Ono, Yohei; Kashihara, Rina; Yasojima, Nobutoshi; Kasahara, Hideki; Shimizu, Yuka; Tamura, Kenichi; Tsutsumi, Kaori; Sutherland, Kenneth; Koike, Takao; Kamishima, Tamotsu

    2016-06-01

    Accurate evaluation of joint space width (JSW) is important in the assessment of rheumatoid arthritis (RA). In clinical radiography of bilateral hands, the oblique incidence of X-rays is unavoidable, which may cause perceptional or measurement error of JSW. The objective of this study was to examine whether tomosynthesis, a recently developed modality, can facilitate a more accurate evaluation of JSW than radiography under the condition of oblique incidence of X-rays. We investigated quantitative errors derived from the oblique incidence of X-rays by imaging phantoms simulating various finger joint spaces using radiographs and tomosynthesis images. We then compared the qualitative results of the modified total Sharp score of a total of 320 joints from 20 patients with RA between these modalities. A quantitative error was prominent when the location of the phantom was shifted along the JSW direction. Modified total Sharp scores of tomosynthesis images were significantly higher than those of radiography, that is to say JSW was regarded as narrower in tomosynthesis than in radiography when finger joints were located where the oblique incidence of X-rays is expected in the JSW direction. Tomosynthesis can facilitate accurate evaluation of JSW in finger joints of patients with RA, even with oblique incidence of X-rays. Accurate evaluation of JSW is necessary for the management of patients with RA. Through phantom and clinical studies, we demonstrate that tomosynthesis may achieve more accurate evaluation of JSW.

  19. How often are x-rays used as diagnostic tool by healthcare providers in the Mazovian province of Poland.

    PubMed

    Bekas, Marcin; Gajewski, Antoni K; Pachocki, Krzysztof

    2013-01-01

    Within the medical facilities provided by state healthcare services, a universally applied technique for patient diagnosis and treatment relies on ionising radiation; for example in radiotherapy and X-ray (ie. examination). Human exposure to such radiation is not however entirely free of associated health risks. To determine and estimate the numbers and types of X-ray based medical procedures that are performed in general and dental radiography, mammography and computer tomography on patients from the Mazovian province in Poland, which included children, women and men subjects. The numbers of patient subjects undergoing X-rays was estimated by surveying the patient intake in X-ray testing rooms within the healthcare facilities of the Mazovian province. Questionnaires were either dispatched by mail to such healthcare centres or were completed by the X-ray operating staff during the testing of quality control. Results so obtained from the latter, were compared to entries from the X-ray rooms' register During 2009, the number of X-rays performed were 7612046 equivalent to 1460 examinations per 1000 inhabitants. The majority were done on women ie. 3847961 (50.55%), followed by 3193781 (41.96%) on men and 570 304 (7.49%) for children. Results indicated that the predominating medical procedure used of this type, was for making general diagnoses; especially through using chest radiography. Others included, in descending order; dental X-ray (mainly intra-oral examination), computer tomography (mainly CT head examinations) and mammography procedures. It was also found that the annual numbers of having X-rays has increased compared to previous years.

  20. Phase contrast imaging using a micro focus x-ray source

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.

    2014-09-01

    Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.

  1. Measurement of Solid Rocket Propellant Burning Rate Using X-ray Imaging

    NASA Astrophysics Data System (ADS)

    Denny, Matthew D.

    The burning rate of solid propellants can be difficult to measure for unusual burning surface geometries, but X-ray imaging can be used to measure burning rate. The objectives of this work were to measure the baseline burning rate of an electrically-controlled solid propellant (ESP) formulation with real-time X-ray radiography and to determine the uncertainty of the measurements. Two edge detection algorithms were written to track the burning surface in X-ray videos. The edge detection algorithms were informed by intensity profiles of simulated 2-D X-ray images. With a 95% confidence level, the burning rates measured by the Projected-Slope Intersection algorithm in the two combustion experiments conducted were 0.0839 in/s +/-2.86% at an average pressure of 407 psi +/-3.6% and 0.0882 in/s +/-3.04% at 410 psi +/-3.9%. The uncertainty percentages were based on the statistics of a Monte Carlo analysis on burning rate.

  2. Computed radiography imaging plates and associated methods of manufacture

    DOEpatents

    Henry, Nathaniel F.; Moses, Alex K.

    2015-08-18

    Computed radiography imaging plates incorporating an intensifying material that is coupled to or intermixed with the phosphor layer, allowing electrons and/or low energy x-rays to impart their energy on the phosphor layer, while decreasing internal scattering and increasing resolution. The radiation needed to perform radiography can also be reduced as a result.

  3. [Radiation exposure of children in pediatric radiology. Part 5: organ doses in chest radiography].

    PubMed

    Seidenbusch, M C; Schneider, K

    2009-05-01

    Reconstruction of organ doses of selected organs and tissues from radiographic settings and exposure data collected during chest X-ray examinations of children of various age groups performed in Dr. von Hauner's Kinderspital (children's hospital of the University of Munich, DvHK) between 1976 and 2007. The dosimetric data of all X-ray examinations performed since 1976 at DvHK were stored electronically in a database. After 30 years of data collection, the database now includes 305 107 radiological examinations (radiographs and fluoroscopies), especially 119 150 chest radiographs of all age groups. Reconstruction of organ doses in 40 organs and tissues in X-ray examinations of the chest was performed based on the conversion factor concept. The radiation exposure of organs in projection radiography is determined by the exact site of the organs relative to the edges of the X-ray field and the beam direction of X-rays. Optimal collimation in chest radiography can reduce the exposure of organs located at the periphery of the X-ray field, e. g. thyroid gland, stomach and partially the liver, by a factor of 2 to 3, while organs located in the center of the X-ray-field, e. g. thymus, breasts, lungs, esophagus and red bone marrow, are not affected by exact collimation. The high frequency of the roentgen examination of the chest in early age groups increases the collective radiation burden to radiosensitive organs. Therefore, radiation protection of the patient during chest radiographies remains of great importance.

  4. Recent Developments in X-Ray Diagnostics for Cryogenic and Optically Dense Coaxial Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher D.; Kastengren, Alan L.; Meyer, Terrence R.

    2017-01-01

    The mixing and atomization of propellants is often characterized by optically dense flow fields and complex breakup dynamics. In the development of propulsion systems, the complexity of relevant physics and the range of spatio-temporal scales often makes computational simulation impractical for full scale injector elements; consequently, continued research into improved systems for experimental flow diagnostics is ongoing. One area of non-invasive flow diagnostics which has seen widespread growth is using synchrotron based x-ray diagostics. Over the past 3 years, a series of water and cryogenic based experiments were performed at the Advanced Photon Source, Argonne National Lab, on a NASA in-house designed swirl co-axial rocket injector, designed for operation using liquid oxygen and liquid methane in support of Project Morpheus. A range of techniques, such as x-ray fluorescence and time-averaged radiography were performed providing qualitative and quantitative mass and phase distributions, and were complemented by investigations using time-resolved radiography and white beam imaging, which provided information on breakup and mixing dynamics. Results of these investigations are presented, and conclusions regarding the viability of x-ray based diagnostics are discussed.

  5. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  6. Nondestructive Evaluation of Advanced Materials with X-ray Phase Mapping

    NASA Technical Reports Server (NTRS)

    Hu, Zhengwei

    2005-01-01

    X-ray radiation has been widely used for imaging applications since Rontgen first discovered X-rays over a century ago. Its large penetration depth makes it ideal for the nondestructive visualization of the internal structure and/or defects of materials unobtainable otherwise. Currently used nondestructive evaluation (NDE) tools, X-ray radiography and tomography, are absorption-based, and work well in heavy-element materials where density or composition variations due to internal structure or defects are high enough to produce appreciable absorption contrast. However, in many cases where materials are light-weight and/or composites that have similar mass absorption coefficients, the conventional absorption-based X-ray methods for NDE become less useful. Indeed, the light-weight and ultra-high-strength requirements for the most advanced materials used or developed for current flight mission and future space exploration pose a great challenge to the standard NDE tools in that the absorption contrast arising from the internal structure of these materials is often too weak to be resolved. In this presentation, a solution to the problem, the use of phase information of X-rays for phase contrast X-ray imaging, will be discussed, along with a comparison between the absorption-based and phase-contrast imaging methods. Latest results on phase contrast X-ray imaging of lightweight Space Shuttle foam in 2D and 3D will be presented, demonstrating new opportunities to solve the challenging issues encountered in advanced materials development and processing.

  7. Spectral correction algorithm for multispectral CdTe x-ray detectors

    NASA Astrophysics Data System (ADS)

    Christensen, Erik D.; Kehres, Jan; Gu, Yun; Feidenhans'l, Robert; Olsen, Ulrik L.

    2017-09-01

    Compared to the dual energy scintillator detectors widely used today, pixelated multispectral X-ray detectors show the potential to improve material identification in various radiography and tomography applications used for industrial and security purposes. However, detector effects, such as charge sharing and photon pileup, distort the measured spectra in high flux pixelated multispectral detectors. These effects significantly reduce the detectors' capabilities to be used for material identification, which requires accurate spectral measurements. We have developed a semi analytical computational algorithm for multispectral CdTe X-ray detectors which corrects the measured spectra for severe spectral distortions caused by the detector. The algorithm is developed for the Multix ME100 CdTe X-ray detector, but could potentially be adapted for any pixelated multispectral CdTe detector. The calibration of the algorithm is based on simple attenuation measurements of commercially available materials using standard laboratory sources, making the algorithm applicable in any X-ray setup. The validation of the algorithm has been done using experimental data acquired with both standard lab equipment and synchrotron radiation. The experiments show that the algorithm is fast, reliable even at X-ray flux up to 5 Mph/s/mm2, and greatly improves the accuracy of the measured X-ray spectra, making the algorithm very useful for both security and industrial applications where multispectral detectors are used.

  8. Micro-XRF complemented by x-radiography and digital microscopy imaging for the study of hidden paintings

    NASA Astrophysics Data System (ADS)

    Gasanova, Svetlana; Hermon, Sorin

    2017-07-01

    The present study describes a novel approach to the study of hidden by integrating the non-invasive micro-X-Ray Fluorescence spectroscopy, X-radiography and digital microscopy. The case study analysed is a portrait of a male figure discovered under the painting of Ecce Homo, attributed to Titian's studio with an estimated date in the 1550s. The X-radiography images exposed the details of the underpainting, which appeared to be a nearly finished portrait of a standing man, overpainted by the current composition of Ecce Homo at a 180° angle. The microscopy observations of the upper painting's cracks and flaked areas enabled the study of the exposed underlayers in terms of their colour appearance and pigment particles. The subsequent pigment analysis was performed by micro-XRF. Since the described XRF analysis was performed not in scanner mode, the correct selection of the measurement spots for the micro analysis and separation between pigments of the lower and the upper painting was of paramount importance. The described approach for spot selection was based on the results of the preceding X-radiography and digital microscopy tests. The presence of lead white, vermilion, copper green and iron earth in the underlying portrait was confirmed by the multiple point XRF analysis of Pb, Hg, Cu, Fe and Mn lines. The described investigation method proved to be useful in the identification of the pigments of the underlying painting and consequently assisted in the tentative reconstruction of its colour palette. Moreover, the undertaken approach allowed discovering the potential of micro-XRF technique in the study of hidden compositions.

  9. Potential for Imaging Engineered Tissues with X-Ray Phase Contrast

    PubMed Central

    Appel, Alyssa; Anastasio, Mark A.

    2011-01-01

    As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604

  10. On Detailed Contrast of Biomedical Object in X-ray Dark-Field Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimao, Daisuke; Mori, Koichi; Sugiyama, Hiroshi

    2007-01-19

    Over the past 10 years, refraction-based X-ray imaging has been studied together with a perspective view to clinical application. X-ray Dark-Field Imaging that utilizes a Laue geometry analyzer has recently been proposed and has the proven ability to depict articular cartilage in an intact human finger. In the current study, we researched detailed image contrast using X-ray Dark-Field Imaging by observing the edge contrast of an acrylic rod as a simple case, and found differences in image contrast between the right and left edges of the rod. This effect could cause undesirable contrast in the thin articular cartilage on themore » head of the phalanx. To avoid overlapping with this contrast at the articular cartilage, which would lead to a wrong diagnosis, we suggest that a joint surface on which articular cartilage is located should be aligned in the same sense as the scattering vector of the Laue case analyzer crystal. Defects of articular cartilage were successfully detected under this condition. When utilized under appropriate imaging conditions, X-ray Dark-Field Imaging will be a powerful tool for the diagnosis of arthropathy, as minute changes in articular cartilage may be early-stage features of this disease.« less

  11. Microdome-gooved Gd(2)O(2)S:Tb scintillator for flexible and high resolution digital radiography.

    PubMed

    Jung, Phill Gu; Lee, Chi Hoon; Bae, Kong Myeong; Lee, Jae Min; Lee, Sang Min; Lim, Chang Hwy; Yun, Seungman; Kim, Ho Kyung; Ko, Jong Soo

    2010-07-05

    A flexible microdome-grooved Gd(2)O(2)S:Tb scintillator is simulated, fabricated, and characterized for digital radiography applications. According to Monte Carlo simulation results, the dome-grooved structure has a high spatial resolution, which is verified by X-ray image performance of the scintillator. The proposed scintillator has lower X-ray sensitivity than a nonstructured scintillator but almost two times higher spatial resolution at high spatial frequency. Through evaluation of the X-ray performance of the fabricated scintillators, we confirm that the microdome-grooved scintillator can be applied to next-generation flexible digital radiography systems requiring high spatial resolution.

  12. SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.D.; Scherrer, B; Don, S

    Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient.more » The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.« less

  13. An Overview of the MaRIE X-FEL and Electron Radiography LINAC RF Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Joseph Thomas III; Rees, Daniel Earl; Scheinker, Alexander

    The purpose of the Matter-Radiation Interactions in Extremes (MaRIE) facility at Los Alamos National Laboratory is to investigate the performance limits of materials in extreme environments. The MaRIE facility will utilize a 12 GeV linac to drive an X-ray Free-Electron Laser (FEL). Most of the same linac will also be used to perform electron radiography. The main linac is driven by two shorter linacs; one short linac optimized for X-FEL pulses and one for electron radiography. The RF systems have historically been the one of the largest single component costs of a linac. We will describe the details of themore » different types of RF systems required by each part of the linacs. Starting with the High Power RF system, we will present our methodology for the choice of RF system peak power and pulselength with respect to klystron parameters, modulator parameters, performance requirements and relative costs. We will also present an overview of the Low Level RF systems that are proposed for MaRIE and briefly describe their use with some proposed control schemes.« less

  14. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The

  15. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, Stanislaw; Wojcik, Randolph F.

    1998-01-01

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible.

  16. Dual energy scanning beam laminographic x-radiography

    DOEpatents

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  17. An update on carbon nanotube-enabled X-ray sources for biomedical imaging.

    PubMed

    Puett, Connor; Inscoe, Christina; Hartman, Allison; Calliste, Jabari; Franceschi, Dora K; Lu, Jianping; Zhou, Otto; Lee, Yueh Z

    2018-01-01

    A new imaging technology has emerged that uses carbon nanotubes (CNT) as the electron emitter (cathode) for the X-ray tube. Since the performance of the CNT cathode is controlled by simple voltage manipulation, CNT-enabled X-ray sources are ideal for the repetitive imaging steps needed to capture three-dimensional information. As such, they have allowed the development of a gated micro-computed tomography (CT) scanner for small animal research as well as stationary tomosynthesis, an experimental technology for large field-of-view human imaging. The small animal CT can acquire images at specific points in the respiratory and cardiac cycles. Longitudinal imaging therefore becomes possible and has been applied to many research questions, ranging from tumor response to the noninvasive assessment of cardiac output. Digital tomosynthesis (DT) is a low-dose and low-cost human imaging tool that captures some depth information. Known as three-dimensional mammography, DT is now used clinically for breast imaging. However, the resolution of currently-approved DT is limited by the need to swing the X-ray source through space to collect a series of projection views. An array of fixed and distributed CNT-enabled sources provides the solution and has been used to construct stationary DT devices for breast, lung, and dental imaging. To date, over 100 patients have been imaged on Institutional Review Board-approved study protocols. Early experience is promising, showing an excellent conspicuity of soft-tissue features, while also highlighting technical and post-acquisition processing limitations that are guiding continued research and development. Additionally, CNT-enabled sources are being tested in miniature X-ray tubes that are capable of generating adequate photon energies and tube currents for clinical imaging. Although there are many potential applications for these small field-of-view devices, initial experience has been with an X-ray source that can be inserted into the

  18. Use of electron cyclotron resonance x-ray source for nondestructive testing application

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Selvakumaran, T. S.

    2006-03-01

    Electron cyclotron resonance (ECR) technique is being used for generating x rays in the low-energy region (<150keV). Recently, the source is used for the calibration of thermoluminescent dosimetry (TLD) badges. In order to qualify the ECR x-ray source for imaging application, the source should give uniform flux over the area under study. Lead collimation arrangement is made to get uniform flux. The flux profile is measured using a teletector at different distance from the port and uniform field region of 10×10cm2 has been marked at 20cm from the x-ray exit port. A digital-to-analog converter (DAC) circuit pack is used for examining the source performance. The required dose for nondestructive testing examination has been estimated using a hospital x-ray machine and it is found to be 0.05mSv. Our source experimental parameters are tuned and the DAC circuit pack was exposed for nearly 7min to get the required dose value. The ECR x-ray source operating parameters are argon pressure: 10-5Torr, microwave power: 350W, and coil current: 0A. The effective energy of the x-ray spectrum is nearly 40keV. The x-ray images obtained from ECR x-ray source and hospital medical radiography machine are compared. It is found that the image obtained from ECR x-ray source is suitable for NDT application.

  19. MO-G-18A-01: Radiation Dose Reducing Strategies in CT, Fluoroscopy and Radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahesh, M; Gingold, E; Jones, A

    2014-06-15

    Advances in medical x-ray imaging have provided significant benefits to patient care. According to NCRP 160, there are more than 400 million x-ray procedures performed annually in the United States alone that contributes to nearly half of all the radiation exposure to the US population. Similar growth trends in medical x-ray imaging are observed worldwide. Apparent increase in number of medical x-ray imaging procedures, new protocols and the associated radiation dose and risk has drawn considerable attention. This has led to a number of technological innovations such as tube current modulation, iterative reconstruction algorithms, dose alerts, dose displays, flat panelmore » digital detectors, high efficient digital detectors, storage phosphor radiography, variable filters, etc. that are enabling users to acquire medical x-ray images at a much lower radiation dose. Along with these, there are number of radiation dose optimization strategies that users can adapt to effectively lower radiation dose in medical x-ray procedures. The main objectives of this SAM course are to provide information and how to implement the various radiation dose optimization strategies in CT, Fluoroscopy and Radiography. Learning Objectives: To update impact of technological advances on dose optimization in medical imaging. To identify radiation optimization strategies in computed tomography. To describe strategies for configuring fluoroscopic equipment that yields optimal images at reasonable radiation dose. To assess ways to configure digital radiography systems and recommend ways to improve image quality at optimal dose.« less

  20. Detection of X-ray photons by solution-processed organic-inorganic perovskites

    PubMed Central

    Yakunin, Sergii; Sytnyk, Mykhailo; Kriegner, Dominik; Shrestha, Shreetu; Richter, Moses; Matt, Gebhard J.; Azimi, Hamed; Brabec, Christoph J.; Stangl, Julian; Kovalenko, Maksym V.; Heiss, Wolfgang

    2017-01-01

    The evolution of real-time medical diagnostic tools such as angiography and computer tomography from radiography based on photographic plates was enabled by the development of integrated solid-state X-ray photon detectors, based on conventional solid-state semiconductors. Recently, for optoelectronic devices operating in the visible and near infrared spectral regions, solution-processed organic and inorganic semiconductors have also attracted immense attention. Here we demonstrate a possibility to use such inexpensive semiconductors for sensitive detection of X-ray photons by direct photon-to-current conversion. In particular, methylammonium lead iodide perovskite (CH3NH3PbI3) offers a compelling combination of fast photoresponse and a high absorption cross-section for X-rays, owing to the heavy Pb and I atoms. Solution processed photodiodes as well as photoconductors are presented, exhibiting high values of X-ray sensitivity (up to 25 µC mGyair-1 cm-3) and responsivity (1.9×104 carriers/photon), which are commensurate with those obtained by the current solid-state technology. PMID:28553368

  1. X-ray Thomson scattering measurement of temperature in warm dense carbon

    DOE PAGES

    Falk, Katerina; Fryer, C. L.; Gamboa, E. J.; ...

    2016-11-22

    Here, a novel platform to measure the equation of state using a combination of diagnostics, where the spectrally resolved x-ray Thomson scattering (XRTS) is used to obtain accurate temperature measurements of warm dense matter (WDM) was developed for the OMEGA laser facility. OMEGA laser beams have been used to drive strong shocks in carbon targets creating WDM and generating the Ni He-alpha x-ray probe used for XRTS. Additional diagnostics including x-ray radiography, velocity interferometry and streaked optical pyrometry provided complementary measurements of density and pressure. The WDM regime of near solid density and moderate temperatures (1–100 eV) is a challengingmore » yet important area of research in inertial confinement fusion and astrophysics. This platform has been used to study off-Hugoniot states of shock-released diamond and graphite at pressures between 1 and 10 Mbar and temperatures between 5 and 15 eV as well as first x-ray Thomson scattering data from shocked low density CH foams reaching five times compression and temperatures of 20–30 eV.« less

  2. AXIS: an instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF.

    PubMed

    Hall, G N; Izumi, N; Tommasini, R; Carpenter, A C; Palmer, N E; Zacharias, R; Felker, B; Holder, J P; Allen, F V; Bell, P M; Bradley, D; Montesanti, R; Landen, O L

    2014-11-01

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detector for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV-200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.

  3. T-REX: Thomson-Radiated Extreme X-rays Moving X-Ray Science into the ''Nuclear'' Applications Space with Thompson Scattered Photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, C P; Hartemann, F V

    2004-09-21

    The scattering of laser photons from relativistic electrons (Thomson scattering) has been demonstrated to be a viable method for the production of ultrashort-duration pulses of tunable radiation in the 10-keV to 100-keV range. Photons in this range are capable of exciting or ionizing even the most tightly bound of atomic electrons. A wide variety of atomistic scale applications are possible. For example, Thomson x-ray sources have been constructed at LLNL (PLEIADES) and LBL as picosecond, stroboscopic probes of atomic-scale dynamics and at Vanderbilt University as element-specific tools for medical radiography and radiology. While these sources have demonstrated an attractive abilitymore » to simultaneously probe on an atomic spatial and temporal scale, they do not necessarily exploit the full potential of the Thomson scattering process to produce high-brightness, high-energy photons. In this white paper, we suggest that the peak brightness of Thomson sources can scale as fast as the 4th power of electron beam energy and that production via Thomson scattering of quasi-monochromatic, tunable radiation in the ''nuclear-range'' between 100-keV and several MeV is potentially a much more attractive application space for this process. Traditional sources in this regime are inherently ultra-broadband and decline rapidly in brightness as a function of photon energy. The output from dedicated, national-laboratory-scale, synchrotron facilities, e.g. APS, SPring8, ESRF etc., declines by more than 10 orders from 100 keV to 1 MeV. At 1 MeV, we conservatively estimate that Thomson-source, peak brightness can exceed that of APS (the best machine in the DOE complex) by more than 15 orders of magnitude. In much the same way that tunable lasers revolutionized atomic spectroscopy, this ''Peta-step'' advance in tunable, narrow-bandwidth, capability should enable entirely new fields of study and new, programmatically-interesting, applications such as: micrometer

  4. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  5. Development of X-ray computed tomography inspection facility for the H-II solid rocket boosters

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Fujita, T.; Fukushima, Y.; Shimizu, M.; Itoh, S.; Satoh, A.; Miyamoto, H.

    The National Space Development Agency of Japan (NASDA) initiated the development of an X-ray computed tomography (CT) equipment for the H-II solid rocket boosters (SRBs) in 1987 for the purpose of minimizing inspection time and achieving high cost-effectiveness. The CT facility has been completed in Jan. 1991 in Tanegashima Space Center for the inspection of the SRBs transported from the manufacturer's factory to the launch site. It was first applied to the qualification model SRB from Feb. to Apr. in 1991. Through the CT inspection of the SRB, it has been confirmed that inspection time decreased significantly compared with the X-ray radiography method and that even an unskilled inspector could find various defects. As a result, the establishment of a new reliable inspection method for the SRB has been verified. In this paper, the following are discussed: (1) the defect detectability of the CT equipment using a dummy SRB with various artificial defects, (2) the performance comparison between the CT method and the X-ray radiography method, (3) the reliability of the CT equipment, and (4) the radiation shield design of the nondestructive test building.

  6. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Shiroto, T.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm 2. Lastly, the temporalmore » evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  7. Dose measurements in intraoral radiography using thermoluminescent dosimeters

    NASA Astrophysics Data System (ADS)

    Azorín, C.; Azorín, J.; Aguirre, F.; Rivera, T.

    2015-01-01

    The use of X-ray in medicine demands to expose the patient and the professional to the lowest radiation doses available in agreement with ALARA philosophy. The reference level for intraoral dental radiography is 7 mGy and, in Mexico, a number of examinations of this type are performed annually. It is considered that approximately 25% of all the X-rays examinations carried out in our country correspond to intraoral radiographies. In other hand, most of the intraoral X-ray equipment correspond to conventional radiological systems using film, which are developed as much manual as automatically. In this work the results of determining the doses received by the patients in intraoral radiological examinations made with different radiological systems using LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters are presented. In some conventional radiological systems using film, when films are developed manual or automatically, incident kerma up to 10.61 ± 0.74 mGv were determined. These values exceed that reference level suggested by the IAEA and in the Mexican standards for intraoral examinations.

  8. X-ray backlighting of imploding aluminium liners on PTS facility

    NASA Astrophysics Data System (ADS)

    Yang, Qingguo; Liu, Dongbing; Mu, Jian; Huang, Xianbin; Dan, Jiakun; Xie, Xudong; Deng, Wu; Feng, Shuping; Wang, Meng; Ye, Yan; Peng, Qixian; Li, Zeren

    2016-09-01

    The x-ray backlighting systems, including a 1.865 keV (Si Heα line) spherically bent crystal imaging system and an ˜8.3 keV (Cu Heα line) point-projection imaging system, newly fielded on the Primary Test Stand facility are introduced and its preliminary experimental results in radiography of the aluminium (Al) liners with seeded sinusoidal perturbations are presented. The x-ray backlighter source is created using a 1 TW, 1 kJ Nd: glass high power laser, kilo-joule laser system, recently constructed at China Academy of Engineering Physics. The ablation melt and instability of the imploding Al liner outer edge under the driving current of ˜7.5 MA are successfully observed using these two backlighting systems, respectively.

  9. Infection control procedures used in conjunction with computed dental radiography.

    PubMed

    Hubar, J S; Gardiner, D M

    2000-10-01

    Infection control guidelines for dental radiography have been modified since 1986, when the American Dental Association and the Centers for Disease Control and Prevention supported the concept of "universal blood and body fluid precautions." With the introduction of computed digital radiography, hardware manufacturers recommend that alternative infection control techniques are necessary to prevent potential damage to the digital x-ray sensors placed inside the patient's mouth. Thirty first-year dental hygiene students were asked to insert and remove a Schick CDR number 2 size intraoral digital x-ray sensor into modified Rinn XCP bitewing bite blocks and a modified Rinn Snap-a-ray five times with each of the recommended infection control covers. Reduced rates of cross contamination are possible if the plastic barrier envelope has an additional latex finger cot stretched over it and the x-ray sensor. Sole usage of a latex finger cot will result in a reduced incidence of contamination, but still not to acceptable levels. However, a plastic barrier envelope placed over the x-ray sensor and over the modified XCP bite block together or a covered sensor in a Snap-a-ray under normal conditions does not result in a perforation and is least likely to result in cross contamination.

  10. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  11. Technical characterization of five x-ray detectors for paediatric radiography applications

    NASA Astrophysics Data System (ADS)

    Marshall, N. W.; Smet, M.; Hofmans, M.; Pauwels, H.; De Clercq, T.; Bosmans, H.

    2017-12-01

    Physical image quality of five x-ray detectors used in the paediatric imaging department is characterized with the aim of establishing the range/scope of imaging performance provided by these detectors for neonatal imaging. Two computed radiography (CR) detectors (MD4.0 powder imaging plate (PIP) and HD5.0 needle imaging plate (NIP), Agfa HealthCare NV, B-2640 Mortsel, Belgium) and three flat panel detectors (FPD) (the Agfa DX-D35C and DX-D45C and the DRX-2530C (Carestream Health Inc., Rochester, NY 14608, USA)) were assessed. Physical image quality was characterized using the detector metrics given by the International Electrotechnical Commission (IEC 62220-1) to measure modulation transfer function (MTF), the noise power spectrum (NPS) and the detective quantum efficiency (DQE) using the IEC-specified beam qualities of RQA3 and RQA5. The DQE was evaluated at the normal operating detector air kerma (DAK) level, defined at 2.5 µGy for all detectors, and at factors of 1/3.2 and 3.2 times the normal level. MTF curves for the different detectors were similar at both RQA3 and RQA5 energies; the average spatial frequency for the 50% point (MTF0.5) at RQA3 was 1.26 mm-1, with a range from 1.20 mm-1 to 1.37 mm-1. The DQE of the NIP CR compared to the PIP CR was notably greater and similar to that for the FPD devices. At RQA3, average DQE for the FPD and NIP (at 0.5 mm-1 2.5 µGy) was 0.57 compared to 0.26 for the PIP CR. At the RQA5 energy, the DRX-2530C and the DX-D45C had the highest DQE (~0.6 at 0.5 mm-1 2.5 µGy). Noise separation analysis using the polynomial model showed higher electronic noise for the DX-D35C and DRX-2530C detectors; this explains the reduced DQE seen at 0.7 µGy/image. The NIP CR detector offers notably improved DQE performance compared to the PIP CR system and a value similar to the DQE for FPD devices at the RQA3 energy.

  12. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    PubMed Central

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required. PMID:23793151

  13. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.

    PubMed

    Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-07-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  14. Development of a stationary chest tomosynthesis system using carbon nanotube x-ray source array

    NASA Astrophysics Data System (ADS)

    Shan, Jing

    X-ray imaging system has shown its usefulness for providing quick and easy access of imaging in both clinic settings and emergency situations. It greatly improves the workflow in hospitals. However, the conventional radiography systems, lacks 3D information in the images. The tissue overlapping issue in the 2D projection image result in low sensitivity and specificity. Both computed tomography and digital tomosynthesis, the two conventional 3D imaging modalities, requires a complex gantry to mechanically translate the x-ray source to various positions. Over the past decade, our research group has developed a carbon nanotube (CNT) based x-ray source technology. The CNT x-ray sources allows compacting multiple x-ray sources into a single x-ray tube. Each individual x-ray source in the source array can be electronically switched. This technology allows development of stationary tomographic imaging modalities without any complex mechanical gantries. The goal of this work is to develop a stationary digital chest tomosynthesis (s-DCT) system, and implement it for a clinical trial. The feasibility of s-DCT was investigated. It is found that the CNT source array can provide sufficient x-ray output for chest imaging. Phantom images have shown comparable image qualities as conventional DCT. The s-DBT system was then used to study the effects of source array configurations and tomosynthesis image quality, and the feasibility of a physiological gated s-DCT. Using physical measures for spatial resolution, the 2D source configuration was shown to have improved depth resolution and comparable in-plane resolution. The prospective gated tomosynthesis images have shown substantially reduction of image blur associated with lung motions. The system was also used to investigate the feasibility of using s-DCT as a diagnosis and monitoring tools for cystic fibrosis patients. A new scatter reduction methods for s-DCT was also studied. Finally, a s-DCT system was constructed by

  15. Generalized Uncertainty Quantification for Linear Inverse Problems in X-ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Michael James

    2014-04-25

    In industrial and engineering applications, X-ray radiography has attained wide use as a data collection protocol for the assessment of material properties in cases where direct observation is not possible. The direct measurement of nuclear materials, particularly when they are under explosive or implosive loading, is not feasible, and radiography can serve as a useful tool for obtaining indirect measurements. In such experiments, high energy X-rays are pulsed through a scene containing material of interest, and a detector records a radiograph by measuring the radiation that is not attenuated in the scene. One approach to the analysis of these radiographsmore » is to model the imaging system as an operator that acts upon the object being imaged to produce a radiograph. In this model, the goal is to solve an inverse problem to reconstruct the values of interest in the object, which are typically material properties such as density or areal density. The primary objective in this work is to provide quantitative solutions with uncertainty estimates for three separate applications in X-ray radiography: deconvolution, Abel inversion, and radiation spot shape reconstruction. For each problem, we introduce a new hierarchical Bayesian model for determining a posterior distribution on the unknowns and develop efficient Markov chain Monte Carlo (MCMC) methods for sampling from the posterior. A Poisson likelihood, based on a noise model for photon counts at the detector, is combined with a prior tailored to each application: an edge-localizing prior for deconvolution; a smoothing prior with non-negativity constraints for spot reconstruction; and a full covariance sampling prior based on a Wishart hyperprior for Abel inversion. After developing our methods in a general setting, we demonstrate each model on both synthetically generated datasets, including those from a well known radiation transport code, and real high energy radiographs taken at two U. S. Department of Energy

  16. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Lee, S.; Nagatomo, H.

    2016-06-20

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm{sup 2}. The temporal evolution of the experimental andmore » simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.« less

  17. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  18. AXIS: An instrument for imaging Compton radiographs using the Advanced Radiography Capability on the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Tommasini, R.

    2014-11-15

    Compton radiography is an important diagnostic for Inertial Confinement Fusion (ICF), as it provides a means to measure the density and asymmetries of the DT fuel in an ICF capsule near the time of peak compression. The AXIS instrument (ARC (Advanced Radiography Capability) X-ray Imaging System) is a gated detector in development for the National Ignition Facility (NIF), and will initially be capable of recording two Compton radiographs during a single NIF shot. The principal reason for the development of AXIS is the requirement for significantly improved detection quantum efficiency (DQE) at high x-ray energies. AXIS will be the detectormore » for Compton radiography driven by the ARC laser, which will be used to produce Bremsstrahlung X-ray backlighter sources over the range of 50 keV–200 keV for this purpose. It is expected that AXIS will be capable of recording these high-energy x-rays with a DQE several times greater than other X-ray cameras at NIF, as well as providing a much larger field of view of the imploded capsule. AXIS will therefore provide an image with larger signal-to-noise that will allow the density and distribution of the compressed DT fuel to be measured with significantly greater accuracy as ICF experiments are tuned for ignition.« less

  19. Measuring Cavitation with Synchrotron X-Rays

    NASA Astrophysics Data System (ADS)

    Duke, Daniel; Kastengren, Alan; Powell, Chris; X-Ray Fuel Spray Group, Energy Systems Division Team

    2012-11-01

    Cavitation plays an important role in the formation of sprays from small nozzles such as those found in fuel injection systems. A sharp-edged inlet from the sac into the nozzle of a diesel fuel injector is shown to inititate a strong sheet-like cavitation along the boundary layer of the nozzle throat, which is difficult to measure and can lead to acoustic damage. To investigate this phenomenon, a diagnostic technique capable of mapping the density field of the nozzle through regions of intense cavitation is required. Available visible-light techniques are limited to qualitative observations of the outer extent of cavitation zones. However, brilliant X-rays from a synchrotron source have negligible refraction and are capable of penetrating the full extent of cavitation zones. We present the early results of a novel application of line-of-sight, time-resolved X-ray radiography on a cavitating model nozzle. Experiments were conducted at Sector 7-BM of the Advanced Photon Source. Density and vapor distribution are measured from the quantitative absorption of monochromatic X-rays. The density field can then be tomographically reconstructed from the projections. The density is then validated against a range of compressible and incompressible numerical simulations. This research was performed at the 7-BM beamline of the Advanced Photon Source. We acknowledge the support of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 and the DOE Vehicle Technologies Program (DOE-EERE).

  20. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  1. X-Ray Computed Tomography Monitors Damage in Composites

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1997-01-01

    The NASA Lewis Research Center recently codeveloped a state-of-the-art x-ray CT facility (designated SMS SMARTSCAN model 100-112 CITA by Scientific Measurement Systems, Inc., Austin, Texas). This multipurpose, modularized, digital x-ray facility includes an imaging system for digital radiography, CT, and computed laminography. The system consists of a 160-kV microfocus x-ray source, a solid-state charge-coupled device (CCD) area detector, a five-axis object-positioning subassembly, and a Sun SPARCstation-based computer system that controls data acquisition and image processing. The x-ray source provides a beam spot size down to 3 microns. The area detector system consists of a 50- by 50- by 3-mm-thick terbium-doped glass fiber-optic scintillation screen, a right-angle mirror, and a scientific-grade, digital CCD camera with a resolution of 1000 by 1018 pixels and 10-bit digitization at ambient cooling. The digital output is recorded with a high-speed, 16-bit frame grabber that allows data to be binned. The detector can be configured to provide a small field-of-view, approximately 45 by 45 mm in cross section, or a larger field-of-view, approximately 60 by 60 mm in cross section. Whenever the highest spatial resolution is desired, the small field-of-view is used, and for larger samples with some reduction in spatial resolution, the larger field-of-view is used.

  2. Association between leukaemia and X-ray in children: a nationwide study.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Muo, Chin-Shin; Kao, Chia-Hung

    2014-08-01

    The frequency of employing radiography is increasing. Long-term risks of performing X-ray procedures on children and adolescents for medical diagnosis have raised significant concerns. In this study, we adopt the case-control methodology to evaluate the relationship between the incidence rate of acute leukaemia and exposure to radiation during diagnostic X-ray examinations for children. Based on 1998-2010 data obtained from the Taiwan Bureau of National Health Insurance database, we selected 58 children with leukaemia and randomly selected an additional 232 children as the control group. The mean age of children with leukaemia is 8.92 ± 5.24 years. The risk of leukaemia in children who underwent X-ray examinations increased 2.14-fold (95% CI, 1.18-3.87). In this study, we identified that, when undergoing X-ray examinations, the risk of leukaemia in children increased for both sex and age groups. Specifically, the relationship between leukaemia and X-ray in boys (OR = 3.28, 95%CI, 1.33-8.07) and in ages of 6 to 11 years (OR = 2.58, 95%CI, 1.09-6.10) was significant. Overall, the risk of leukaemia in children who underwent X-ray examinations progressively increased from a ratio of 1.65 to 3.14. Moreover, an identical trend was observed for boys (1.85 to 6.42). Exposure to X-ray increased the risk of leukaemia in children. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  3. Development of an X-ray prism for a combined diffraction enhanced imaging and fluorescence imaging system

    NASA Astrophysics Data System (ADS)

    Bewer, Brian E.

    Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.

  4. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pashby, J.; Glenn, S.; Divin, C.

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source.more » Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.« less

  5. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  6. Spatial resolution of imaging plate with flash X-rays and its utilization for radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaikh, A. M., E-mail: shaikham@barc.gov.in; Romesh, C.; Kolage, T. S.

    2015-06-24

    A flash X-ray source developed using pulsed electron accelerator with electron energy range of 400keV to 1030keV and a field emission cathode is characterized using X-ray imaging plates. Spatial resolution of the imaging system is measured using edge spread function fitted to data obtained from radiograph of Pb step wedge. A spatial resolution of 150±6 µm is obtained. The X-ray beam size is controlled by the anode-cathode configuration. Optimum source size of ∼13±2 mm diameter covering an area with intensity of ∼27000 PSL/mm{sup 2} is obtained on the imaging plate kept at a distance of ∼200 mm from the tip of the anode.more » It is used for recording radiographs of objects like satellite cable cutter, aero-engine turbine blade and variety of pyro-devices used in aerospace industry.« less

  7. Technology enablers for improved aerospace x-ray NDE

    NASA Astrophysics Data System (ADS)

    Strabel, George; Ross, Joseph; Graham, Larry; Smith, Kevin

    1996-11-01

    In the current climate of reduced Military spending and lower commercial demand for aerospace products, it is of critical importance to allocate scarce technology development resources to meet projected needs. During the past decade, dramatic advances in x-ray nondestructive evaluation (NDE) technology have results in commercially viable digital radiography (DR) and computed tomography (CT) systems. X-ray CT has become an important NDE technique that not only provides data about material integrity, but also valuable volumetric data which is finding applications in reverse engineering, rapid prototyping, process control and 3D metrology. Industrial DR and CT systems have been available for almost 10 years, but are very costly, generally designed for specific applications and have well known limitations for both process development and final inspection. They have inadequate energy/flux to penetrate many large components and structures. In order to support the US Aerospace Industry in its drive towards global competitiveness, it is imperative that key enabling tools such as DR and CT be improved, made affordable, and implemented to meet the anticipated needs of the next decade of aerospace applications. This paper describes a strategy for a consortium of suppliers and users of x-ray NDE systems, academia and national laboratories to work together to attain this goal.

  8. An industrial radiography exposure device based on measurement of transmitted gamma-ray intensity

    NASA Astrophysics Data System (ADS)

    Polee, C.; Chankow, N.; Srisatit, S.; Thong-Aram, D.

    2015-05-01

    In film radiography, underexposure and overexposure may happen particularly when lacking information of specimen material and hollowness. This paper describes a method and a device for determining exposure in industrial gamma-ray radiography based on quick measurement of transmitted gamma-ray intensity with a small detector. Application software was developed for Android mobile phone to remotely control the device and to display counting data via Bluetooth communication. Prior to film exposure, the device is placed behind a specimen to measure transmitted intensity which is inversely proportional to the exposure. Unlike in using the conventional exposure curve, correction factors for source decay, source-to- film distance, specimen thickness and kind of material are not needed. The developed technique and device make radiographic process economic, convenient and more reliable.

  9. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, M.; McKay, T.A.

    1998-04-21

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD. 13 figs.

  10. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device

    DOEpatents

    Atac, Muzaffer; McKay, Timothy A.

    1998-01-01

    An imaging system is provided for direct detection of x-rays from an irradiated biological tissue. The imaging system includes an energy source for emitting x-rays toward the biological tissue and a charge coupled device (CCD) located immediately adjacent the biological tissue and arranged transverse to the direction of irradiation along which the x-rays travel. The CCD directly receives and detects the x-rays after passing through the biological tissue. The CCD is divided into a matrix of cells, each of which individually stores a count of x-rays directly detected by the cell. The imaging system further includes a pattern generator electrically coupled to the CCD for reading a count from each cell. A display device is provided for displaying an image representative of the count read by the pattern generator from the cells of the CCD.

  11. Digital radiography using amorphous selenium: photoconductively activated switch (PAS) readout system.

    PubMed

    Reznik, Nikita; Komljenovic, Philip T; Germann, Stephen; Rowlands, John A

    2008-03-01

    A new amorphous selenium (a-Se) digital radiography detector is introduced. The proposed detector generates a charge image in the a-Se layer in a conventional manner, which is stored on electrode pixels at the surface of the a-Se layer. A novel method, called photoconductively activated switch (PAS), is used to read out the latent x-ray charge image. The PAS readout method uses lateral photoconduction at the a-Se surface which is a revolutionary modification of the bulk photoinduced discharge (PID) methods. The PAS method addresses and eliminates the fundamental weaknesses of the PID methods--long readout times and high readout noise--while maintaining the structural simplicity and high resolution for which PID optical readout systems are noted. The photoconduction properties of the a-Se surface were investigated and the geometrical design for the electrode pixels for a PAS radiography system was determined. This design was implemented in a single pixel PAS evaluation system. The results show that the PAS x-ray induced output charge signal was reproducible and depended linearly on the x-ray exposure in the diagnostic exposure range. Furthermore, the readout was reasonably rapid (10 ms for pixel discharge). The proposed detector allows readout of half a pixel row at a time (odd pixels followed by even pixels), thus permitting the readout of a complete image in 30 s for a 40 cm x 40 cm detector with the potential of reducing that time by using greater readout light intensity. This demonstrates that a-Se based x-ray detectors using photoconductively activated switches could form a basis for a practical integrated digital radiography system.

  12. X-ray backscatter imaging for radiography by selective detection and snapshot: Evolution, development, and optimization

    NASA Astrophysics Data System (ADS)

    Shedlock, Daniel

    Compton backscatter imaging (CBI) is a single-sided imaging technique that uses the penetrating power of radiation and unique interaction properties of radiation with matter to image subsurface features. CBI has a variety of applications that include non-destructive interrogation, medical imaging, security and military applications. Radiography by selective detection (RSD), lateral migration radiography (LMR) and shadow aperture backscatter radiography (SABR) are different CBI techniques that are being optimized and developed. Radiography by selective detection (RSD) is a pencil beam Compton backscatter imaging technique that falls between highly collimated and uncollimated techniques. Radiography by selective detection uses a combination of single- and multiple-scatter photons from a projected area below a collimation plane to generate an image. As a result, the image has a combination of first- and multiple-scatter components. RSD techniques offer greater subsurface resolution than uncollimated techniques, at speeds at least an order of magnitude faster than highly collimated techniques. RSD scanning systems have evolved from a prototype into near market-ready scanning devices for use in a variety of single-sided imaging applications. The design has changed to incorporate state-of-the-art detectors and electronics optimized for backscatter imaging with an emphasis on versatility, efficiency and speed. The RSD system has become more stable, about 4 times faster, and 60% lighter while maintaining or improving image quality and contrast over the past 3 years. A new snapshot backscatter radiography (SBR) CBI technique, shadow aperture backscatter radiography (SABR), has been developed from concept and proof-of-principle to a functional laboratory prototype. SABR radiography uses digital detection media and shaded aperture configurations to generate near-surface Compton backscatter images without scanning, similar to how transmission radiographs are taken. Finally, a

  13. Local liquid velocity measurement of Trickle Bed Reactor using Digital Industrial X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Mohd Salleh, Khairul Anuar

    Trickle Bed Reactors (TBRs) are fixed beds of particles in which both liquid and gas flow concurrently downward. They are widely used to produce not only fuels but also lubrication products. The measurement and the knowledge of local liquid velocities (VLL) in TBRs is less which is essential for advancing the understanding of its hydrodynamics and for validation computational fluid dynamics (CFD). Therefore, this work focused on developing a new, non-invasive, statistically reliable technique that can be used to measure local liquid velocity (VLL) in two-dimensions (2-D). This is performed by combining Digital Industrial X-ray Radiography (DIR) and Particle Tracking Velocimetry (PTV) techniques. This work also make possible the development of three-dimensional (3-D) VLL measurements that can be taken in TBRs. Measurements taken through both the combined and the novel technique, once validated, were found to be comparable to another technique (a two-point fiber optical probe) currently being developed at Missouri University of Science and Technology. The results from this study indicate that, for a gas-liquid-solid type bed, the measured VLL can have a maximum range that is between 35 and 51 times that of its superficial liquid velocity (VSL). Without the existence of gas, the measured VLL can have a maximum range that is between 4 and 4.7 times that of its VSL. At a higher V SL, the particle tracer was greatly distributed and became carried away by a high liquid flow rate. Neither the variance nor the range of measured VLL varied for any of the replications, confirming the reproducibility of the experimental measurements used, regardless of the VSL . The liquid's movement inside the pore was consistent with findings from previous studies that used various techniques.

  14. Hard x-ray nanoprobe of beamline P06 at PETRA III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroer, C. G., E-mail: christian.schroer@desy.de; Department Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg; Baumbach, C.

    2016-07-27

    The hard x-ray scanning microscope at beamline P06 of PETRA III at DESY in Hamburg serves a large user community, from physics, chemistry, and nanotechnology to the bio-medical, materials, environmental, and geosciences. It has been in user operation since 2012, and is mainly based on nanofocusing refractive x-ray lenses. Using refractive optics, nearly gaussian-limited nanobeams in the range from 50 to 100 nm can be generated in the hard x-ray energy range from 8 to 30 keV. The degree of coherence can be traded off against the flux in the nanobeam by a two-stage focusing scheme. We give a briefmore » overview on published results from this instrument and describe its most important components and parameters.« less

  15. Astronomy and Cancer Research: X-Rays and Nanotechnology from Black Holes to Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil K.; Nahar, Sultana N.

    It seems highly unlikely that any connection is to be found between astronomy and medicine. But then it also appears to be obvious: X-rays. However, that is quite superficial because the nature of X-rays in the two disciplines is quite different. Nevertheless, we describe recent research on exactly that kind of link. Furthermore, the linkage lies in atomic physics, and via spectroscopy which is a vital tool in astronomy and may also be equally valuable in biomedical research. This review begins with the physics of black hole environments as viewed through X-ray spectroscopy. It is then shown that similar physics can be applied to spectroscopic imaging and therapeutics using heavy-element (high-Z) moieties designed to target cancerous tumors. X-ray irradiation of high-Z nanomaterials as radiosensitizing agents should be extremely efficient for therapy and diagnostics (theranostics). However, broadband radiation from conventional X-ray sources (such as CT scanners) results in vast and unnecessary radiation exposure. Monochromatic X-ray sources are expected to be considerably more efficient. We have developed a new and comprehensive methodology—Resonant Nano-Plasma Theranostics (RNPT)—that encompasses the use of monochromatic X-ray sources and high-Z nanoparticles. Ongoing research entails theoretical computations, numerical simulations, and in vitro and in vivo biomedical experiments. Stemming from basic theoretical studies of Kα resonant photoabsorption and fluorescence in all elements of the Periodic Table, we have established a comprehensive multi-disciplinary program involving researchers from physics, chemistry, astronomy, pathology, radiation oncology and radiology. Large-scale calculations necessary for theory and modeling are done at a variety of computational platforms at the Ohio Supercomputer Center. The final goal is the implementation of RNPT for clinical applications.

  16. Using Digital Radiography To Image Liquid Nitrogen in Voids

    NASA Technical Reports Server (NTRS)

    Cox, Dwight; Blevins, Elana

    2007-01-01

    Digital radiography by use of (1) a field-portable x-ray tube that emits low-energy x rays and (2) an electronic imaging x-ray detector has been found to be an effective technique for detecting liquid nitrogen inside voids in thermal-insulation panels. The technique was conceived as a means of investigating cryopumping (including cryoingestion) as a potential cause of loss of thermal insulation foam from space-shuttle external fuel tanks. The technique could just as well be used to investigate cryopumping and cryoingestion in other settings. In images formed by use of low-energy x-rays, one can clearly distinguish between voids filled with liquid nitrogen and those filled with gaseous nitrogen or other gases. Conventional film radiography is of some value, but yields only non-real-time still images that do not show time dependences of levels of liquids in voids. In contrast, the present digital radiographic technique yields a succession of images in real time at a rate of about 10 frames per second. The digitized images can be saved for subsequent analysis to extract data on time dependencies of levels of liquids and, hence, of flow paths and rates of filling and draining. The succession of images also amounts to a real-time motion picture that can be used as a guide to adjustment of test conditions.

  17. Assessment of Restoration Methods of X-Ray Images with Emphasis on Medical Photogrammetric Usage

    NASA Astrophysics Data System (ADS)

    Hosseinian, S.; Arefi, H.

    2016-06-01

    Nowadays, various medical X-ray imaging methods such as digital radiography, computed tomography and fluoroscopy are used as important tools in diagnostic and operative processes especially in the computer and robotic assisted surgeries. The procedures of extracting information from these images require appropriate deblurring and denoising processes on the pre- and intra-operative images in order to obtain more accurate information. This issue becomes more considerable when the X-ray images are planned to be employed in the photogrammetric processes for 3D reconstruction from multi-view X-ray images since, accurate data should be extracted from images for 3D modelling and the quality of X-ray images affects directly on the results of the algorithms. For restoration of X-ray images, it is essential to consider the nature and characteristics of these kinds of images. X-ray images exhibit severe quantum noise due to limited X-ray photons involved. The assumptions of Gaussian modelling are not appropriate for photon-limited images such as X-ray images, because of the nature of signal-dependant quantum noise. These images are generally modelled by Poisson distribution which is the most common model for low-intensity imaging. In this paper, existing methods are evaluated. For this purpose, after demonstrating the properties of medical X-ray images, the more efficient and recommended methods for restoration of X-ray images would be described and assessed. After explaining these approaches, they are implemented on samples from different kinds of X-ray images. By considering the results, it is concluded that using PURE-LET, provides more effective and efficient denoising than other examined methods in this research.

  18. Experimental comparison of various techniques for spot size measurement of high-energy X-ray

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Li, Cheng-Gang; Li, Hong; Long, Quan-Hong; Shi, Jin-Shui; Deng, Jian-Jun

    2016-08-01

    In flash-radiography experiments, the quality of the acquired image strongly depends on the focal size of the X-ray source spot. A variety of techniques based on imaging of the pinhole, the slit and the rollbar are adopted to measure the focal spot size of the Dragon-I linear induction accelerator. The image of the pinhole provides a two-dimensional distribution of the X-ray spot, while those of the slit and the rollbar give a line-spread distribution and an edge-spread distribution, respectively. The spot size characterized by the full-width at half-maximum and that characterized by the LANL definition are calculated for comparison.

  19. Characterization of a gamma-ray source based on a laser-plasma accelerator with applications to radiography

    NASA Astrophysics Data System (ADS)

    Edwards, R. D.; Sinclair, M. A.; Goldsack, T. J.; Krushelnick, K.; Beg, F. N.; Clark, E. L.; Dangor, A. E.; Najmudin, Z.; Tatarakis, M.; Walton, B.; Zepf, M.; Ledingham, K. W. D.; Spencer, I.; Norreys, P. A.; Clarke, R. J.; Kodama, R.; Toyama, Y.; Tampo, M.

    2002-03-01

    The application of high intensity laser-produced gamma rays is discussed with regard to picosecond resolution deep-penetration radiography. The spectrum and angular distribution of these gamma rays is measured using an array of thermoluminescent detectors for both an underdense (gas) target and an overdense (solid) target. It is found that the use of an underdense target in a laser plasma accelerator configuration produces a much more intense and directional source. The peak dose is also increased significantly. Radiography is demonstrated in these experiments and the source size is also estimated.

  20. Dental radiography in New Zealand: digital versus film.

    PubMed

    Ting, N A; Broadbent, J M; Duncan, W J

    2013-09-01

    Digital x-ray systems offer advantages over conventional film systems, yet many dentists have not adopted digital technology. To assess New Zealand dental practitioners' use of--and preferences for--dental radiography systems. Cross-sectional survey. General and specialist dental practice. Postal questionnaire survey of a sample of 770 dentists (520 randomly selected general dental practitioners and all 250 specialists) listed in the 2012 NZ Dental Council Register. Type of radiography systems used by dentists. Dentists' experiences and opinions of conventional film and digital radiography. The participation rate was 55.2%. Digital radiography systems were used by 58.0% of participating dentists, most commonly among those aged 31-40 years. Users of digital radiography tended to report greater satisfaction with their radiography systems than users conventional films. Two-thirds of film users were interested in switching to digital radiography in the near future. Reasons given by conventional film users for not using digital radiography included cost, difficulty in integrating with other software systems, concern about potential technical errors, and the size and nature of the intra-oral sensors. Many dental practitioners have still not adopted digital radiography, yet its users are more satisfied with their radiography systems than are conventional film users. The latter may find changing to a digital system to be satisfying and rewarding.

  1. Phase contrast imaging with coherent high energy X-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snigireva, I.

    X-ray imaging concern high energy domain (>6 keV) like a contact radiography, projection microscopy and tomography is used for many years to discern the features of the internal structure non destructively in material science, medicine and biology. In so doing the main contrast formation is absorption that makes some limitations for imaging of the light density materials and what is more the resolution of these techniques is not better than 10-100 {mu}m. It was turned out that there is now way in which to overcome 1{mu}m or even sub-{mu}m resolution limit except phase contrast imaging. It is well known inmore » optics that the phase contrast is realised when interference between reference wave front and transmitted through the sample take place. Examples of this imaging are: phase contrast microscopy suggested by Zernike and Gabor (in-line) holography. Both of this techniques: phase contrast x-ray microscopy and holography are successfully progressing now in soft x-ray region. For imaging in the hard X-rays to enhance the contrast and to be able to resolve phase variations across the beam the high degree of the time and more importantly spatial coherence is needed. Because of this it was reasonable that the perfect crystal optics was involved like Bonse-Hart interferometry, double-crystal and even triple-crystal set-up using Laue and Bragg geometry with asymmetrically cut crystals.« less

  2. Muscle parameters estimation based on biplanar radiography.

    PubMed

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography.

  3. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzen, Julia; Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching; Donath, Tilman

    2011-11-15

    X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects withmore » high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.« less

  4. A leaded apron for use in panoramic dental radiography.

    PubMed

    Whitcher, B L; Gratt, B M; Sickles, E A

    1980-05-01

    The leaded aprons currently available for use during dental radiography do not protect the thyroid gland from radiation. Conventional aprons may produce artifacts when used with panoramic dental x-ray units. This study measures the dose reduction obtained with an experimental leaded apron designed for use with panoramic dental x-ray units. Skin exposures measured at the thyroid and at the sternum were reduced with the use of the apron. Films produced during the study were free from apron artifacts.

  5. Axial Tomography from Digitized Real Time Radiography

    DOE R&D Accomplishments Database

    Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.

    1985-01-18

    Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.

  6. Does transitioning from computed radiography (CR) to direct radiography (DR) with portable imaging systems affect workflow efficiency?

    NASA Astrophysics Data System (ADS)

    Gali, Raja L.; Roth, Christopher G.; Smith, Elizabeth; Dave, Jaydev K.

    2018-03-01

    In digital radiography, computed radiography (CR) technology is based on latent image capture by storage phosphors whereas direct radiography (DR) technology is based either on indirect conversion using a scintillator or direct conversion using a photoconductor. DR-based portable imaging systems may enhance workflow efficiency. The purpose of this work was to investigate changes in workflow efficiency at a tertiary healthcare center after transitioning from CR to DR technology for imaging with portable x-ray units. An IRB exemption was obtained. Data for all inpatient-radiographs acquired with portable x-ray units from July-2014 till June-2015 (period 1) with CR technology (AMX4 or AMX4+ portable unit from GE Healthcare, NX workstation from Agfa Healthcare for digitization), from July-2015 till June-2016 (period 2) with DR technology (Carestream DRX-Revolution x-ray units and DRX-1C image receptors) and from July-2016 till January-2017 (period 3; same DR technology) were extracted using Centricity RIS-IC (GE Healthcare). Duration between the imaging-examination scheduled time and completed time (timesch-com) was calculated and compared using non-parametric tests (between the three time periods with corrections for multiple comparisons; three time periods were used to identify if there were any other potential temporal trends not related to transitioning from CR to DR). IBM's SPSS package was used for statistical analysis. Overall data was obtained from 33131, 32194, and 18015 cases in periods 1, 2 and 3, respectively. Independent-Samples Kruskal-Wallis test revealed a statistically significant difference in timesch-com across the three time periods (χ2(2, n= 83,340) = 2053, p < 0.001). The timesch-com was highest for period 1 i.e., radiographs acquired with CR technology (median: 64 minutes) and it decreased significantly for radiographs acquired with DR technology in periods 2 (median: 49 minutes; p < 0.001) and 3 (median∶ 44 minutes; p < 0.001). Overall

  7. Technological aspects of GEM detector design and assembling for soft x-ray application

    NASA Astrophysics Data System (ADS)

    Kowalska-Strzeciwilk, E.; Chernyshova, M.

    2016-09-01

    Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.

  8. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation.

    PubMed

    Zhou, Tunhe; Wang, Hongchang; Connolley, Thomas; Scott, Steward; Baker, Nick; Sawhney, Kawal

    2018-05-01

    The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. open access.

  9. Development of an X-ray imaging system to prevent scintillator degradation for white synchrotron radiation

    PubMed Central

    Zhou, Tunhe; Wang, Hongchang; Scott, Steward

    2018-01-01

    The high flux of the white X-ray beams from third-generation synchrotron light sources can significantly benefit the development of high-speed X-ray imaging, but can also bring technical challenges to existing X-ray imaging systems. One prevalent problem is that the image quality deteriorates because of dust particles accumulating on the scintillator screen during exposure to intense X-ray radiation. Here, this problem has been solved by embedding the scintillator in a flowing inert-gas environment. It is also shown that the detector maintains the quality of the captured images even after days of X-ray exposure. This modification is cost-efficient and easy to implement. Representative examples of applications using the X-ray imaging system are also provided, including fast tomography and multimodal phase-contrast imaging for biomedical and geological samples. PMID:29714191

  10. Measurement of the effective energy of pulsed X-rays emitted from a Mather-type plasma focus device.

    PubMed

    Miremad, Seyed Milad; Shirani Bidabadi, Babak

    2017-07-01

    The current study examined the effective energy of pulsed x-rays emitted from a Mather-type plasma focus device with copper anodes at an energy range of 2-3kJ using x-ray transmission radiography. Aluminum filters of different thicknesses and dental x-ray film were used. When air gas was used at a constant voltage of 21kV at 0.3, 0.6, 0.9 and 1.2 mbar, the effective energy of pulsed the x-ray was 10.9, 10.7, 17.3 and 15.8keV, respectively. At 0.6 mbar of air, as the operating voltage increased to 19, 21 and 23kV, the effective energy of the x-ray radiation was 10.6, 10.7 and 12.4keV, respectively. Comprehensive investigation of the characteristics of x-ray emission from plasma focus devices makes it feasible to use this device as an intensive x-ray generator for medical and industrial purposes. The present study is a part of a program which is planned to realize these applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Design and theoretical investigation of a digital x-ray detector with large area and high spatial resolution

    NASA Astrophysics Data System (ADS)

    Gui, Jianbao; Guo, Jinchuan; Yang, Qinlao; Liu, Xin; Niu, Hanben

    2007-05-01

    X-ray phase contrast imaging is a promising new technology today, but the requirements of a digital detector with large area, high spatial resolution and high sensitivity bring forward a large challenge to researchers. This paper is related to the design and theoretical investigation of an x-ray direct conversion digital detector based on mercuric iodide photoconductive layer with the latent charge image readout by photoinduced discharge (PID). Mercuric iodide has been verified having a good imaging performance (high sensitivity, low dark current, low voltage operation and good lag characteristics) compared with the other competitive materials (α-Se,PbI II,CdTe,CdZnTe) and can be easily deposited on large substrates in the manner of polycrystalline. By use of line scanning laser beam and parallel multi-electrode readout make the system have high spatial resolution and fast readout speed suitable for instant general radiography and even rapid sequence radiography.

  12. 3D-printed coded apertures for x-ray backscatter radiography

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Many different mask patterns can be used for X-ray backscatter imaging using coded apertures, which can find application in the medical, industrial and security sectors. While some of these patterns may be considered to have a self-supporting structure, this is not the case for some of the most frequently used patterns such as uniformly redundant arrays or any pattern with a high open fraction. This makes mask construction difficult and usually requires a compromise in its design by drilling holes or adopting a no two holes touching version of the original pattern. In this study, this compromise was avoided by 3D printing a support structure that was then filled with a radiopaque material to create the completed mask. The coded masks were manufactured using two different methods, hot cast and cold cast. Hot casting involved casting a bismuth alloy at 80°C into the 3D printed acrylonitrile butadiene styrene mould which produced an absorber with density of 8.6 g cm-3. Cold casting was undertaken at room temperature, when a tungsten/epoxy composite was cast into a 3D printed polylactic acid mould. The cold cast procedure offered a greater density of around 9.6 to 10 g cm-3 and consequently greater X-ray attenuation. It was also found to be much easier to manufacture and more cost effective. A critical review of the manufacturing procedure is presented along with some typical images. In both cases the 3D printing process allowed square apertures to be created avoiding their approximation by circular holes when conventional drilling is used.

  13. Study of Lead as a Source X-ray Radiation Protection with an Analysis Grey Level Image

    NASA Astrophysics Data System (ADS)

    Susilo; Rahma, I. N.; Mosik; Masturi

    2017-04-01

    X-ray utilization in the medical field still has a potential danger for the human. This occurs when exposure to x-ray radiation received exceeds the dose limit value. It required a radiation shielding to prevent the hazard, and lead is one of the metals usually used as x-ray radiation shield. This work aims to determine the metallic lead properties to find out of the step wedge lead radiograph image. The instruments used are the plane x-ray, digital radiography system and personal computer installed by MATLAB, while the material is step wedge lead. The image of radiograph was analysed using GUI applications on MATLAB software to determine the values of grey level from the image and the optical density of the radiograph image. The results showed the greater optical density, the higher the image contrast, and the value of optical density in the image is inversely proportional to the voltage x-ray since the value of grey level at high voltage is smaller than that of at low voltage.

  14. Development of fast neutron radiography system based on portable neutron generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Chia Jia, E-mail: gei-i-kani@hotmail.com; Nilsuwankosit, Sunchai, E-mail: sunchai.n@chula.ac.th

    Due to the high installation cost, the safety concern and the immobility of the research reactors, the neutron radiography system based on portable neutron generator is proposed. Since the neutrons generated from a portable neutron generator are mostly the fast neutrons, the system is emphasized on using the fast neutrons for the purpose of conducting the radiography. In order to suppress the influence of X-ray produced by the neutron generator, a combination of a shielding material sandwiched between two identical imaging plates is used. A binary XOR operation is then applied for combining the information from the imaging plates. Themore » raw images obtained confirm that the X-ray really has a large effect and that XOR operation can help enhance the effect of the neutrons.« less

  15. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  16. Effects of microstructure on water imbibition in sandstones using X-ray computed tomography and neutron radiography

    NASA Astrophysics Data System (ADS)

    Zhao, Yixin; Xue, Shanbin; Han, Songbai; Chen, Zhongwei; Liu, Shimin; Elsworth, Derek; He, Linfeng; Cai, Jianchao; Liu, Yuntao; Chen, Dongfeng

    2017-07-01

    Capillary imbibition in variably saturated porous media is important in defining displacement processes and transport in the vadose zone and in low-permeability barriers and reservoirs. Nonintrusive imaging in real time offers the potential to examine critical impacts of heterogeneity and surface properties on imbibition dynamics. Neutron radiography is applied as a powerful imaging tool to observe temporal changes in the spatial distribution of water in porous materials. We analyze water imbibition in both homogeneous and heterogeneous low-permeability sandstones. Dynamic observations of the advance of the imbibition front with time are compared with characterizations of microstructure (via high-resolution X-ray computed tomography (CT)), pore size distribution (Mercury Intrusion Porosimetry), and permeability of the contrasting samples. We use an automated method to detect the progress of wetting front with time and link this to square-root-of-time progress. These data are used to estimate the effect of microstructure on water sorptivity from a modified Lucas-Washburn equation. Moreover, a model is established to calculate the maximum capillary diameter by modifying the Hagen-Poiseuille and Young-Laplace equations based on fractal theory. Comparing the calculated maximum capillary diameter with the maximum pore diameter (from high-resolution CT) shows congruence between the two independent methods for the homogeneous silty sandstone but less effectively for the heterogeneous sandstone. Finally, we use these data to link observed response with the physical characteristics of the contrasting media—homogeneous versus heterogeneous—and to demonstrate the sensitivity of sorptivity expressly to tortuosity rather than porosity in low-permeability sandstones.

  17. High-energy x-ray Talbot-Lau radiography of a human knee

    NASA Astrophysics Data System (ADS)

    Horn, F.; Gelse, K.; Jabari, S.; Hauke, C.; Kaeppler, S.; Ludwig, V.; Meyer, P.; Michel, T.; Mohr, J.; Pelzer, G.; Rieger, J.; Riess, C.; Seifert, M.; Anton, G.

    2017-08-01

    We report on a radiographic measurement of an ex vivo human knee using a grating-based phase-contrast imaging setup and a medical x-ray tube at a tube voltage of 70 kV. The measurement has been carried out using a Talbot-Lau setup that is suitable to achieve a high visibility in the energy regime of medical imaging. In a medical reading by an experienced trauma surgeon signatures of chondrocalcinosis in the medial meniscus have been identified more evidently using the dark-field image in comparison to the conventional attenuation image. The analysis has been carried out at various dose levels down to 0.14 mGy measured as air kerma, which is a dose comparable to clinically used radiographic devices. The diagnosis has been confirmed by a histological analysis of the meniscus tissue. In the introduced high-frequency filtered phase-contrast image the anterior and posterior horn of the medial meniscus and the posterior cruciate ligament have also been visible. Furthermore, atherosclerotic plaque is visible in both imaging modalities, attenuation and dark-field, despite the presence of overlaying bone. This measurement, for the first time, proves the feasibility of Talbot-Lau x-ray imaging at high-energy spectra above 40 kVp and reasonable dose levels with regard to spacious and dense objects.

  18. Various clinical application of phase contrast X-ray

    NASA Astrophysics Data System (ADS)

    Oh, Chilhwan; Park, Sangyong; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Je, Jungho

    2008-02-01

    In biomedical application study using phase contrast X-ray, both sample thickness or density and absorption difference are very important factors in aspects of contrast enhancement. We present experimental evidence that synchrotron hard X-ray are suitable for radiological imaging of biological samples down to the cellular level. We investigated the potential of refractive index radiology using un-monochromatized synchrotron hard X-rays for the imaging of cell and tissue in various diseases. Material had been adopted various medical field, such as apoE knockout mouse in cardiologic field, specimen from renal and prostatic carcinoma patient in urology, basal cell epithelioma in dermatology, brain tissue from autosy sample of pakinson's disease, artificially induced artilrtis tissue from rabbits and extracted tooth from patients of crack tooth syndrome. Formalin and paraffin fixed tissue blocks were cut in 3 mm thickness for the X-ray radiographic imaging. From adjacent areas, 4 μm thickness sections were also prepared for hematoxylin-eosin staining. Radiographic images of dissected tissues were obtained using the hard X-rays from the 7B2 beamline of the Pohang Light Source (PLS). The technique used for the study was the phase contrast images were compared with the optical microscopic images of corresponding histological slides. Radiographic images of various diseased tissues showed clear histological details of organelles in normal tissues. Most of cancerous lesions were well differentiated from adjacent normal tissues and detailed histological features of each tumor were clearly identified. Also normal microstructures were identifiable by the phase contrast imaging. Tissue in cancer or other disease showed clearly different findings from those of surrounding normal tissue. For the first time we successfully demonstrated that synchrotron hard X-rays can be used for radiological imaging of relatively thick tissue samples with great histological details.

  19. A hyperspectral X-ray computed tomography system for enhanced material identification

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng

    2017-08-01

    X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.

  20. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  1. A phase-contrast X-ray imaging system—with a 60×30 mm field of view—based on a skew-symmetric two-crystal X-ray interferometer

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu, Jin; Thet-Thet-Lwin; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system—with a 60×30 mm field of view—for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60×30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  2. Multi-energy method of digital radiography for imaging of biological objects

    NASA Astrophysics Data System (ADS)

    Ryzhikov, V. D.; Naydenov, S. V.; Opolonin, O. D.; Volkov, V. G.; Smith, C. F.

    2016-03-01

    This work has been dedicated to the search for a new possibility to use multi-energy digital radiography (MER) for medical applications. Our work has included both theoretical and experimental investigations of 2-energy (2E) and 3- energy (3D) radiography for imaging the structure of biological objects. Using special simulation methods and digital analysis based on the X-ray interaction energy dependence for each element of importance to medical applications in the X-ray range of energy up to 150 keV, we have implemented a quasi-linear approximation for the energy dependence of the X-ray linear mass absorption coefficient μm (E) that permits us to determine the intrinsic structure of the biological objects. Our measurements utilize multiple X-ray tube voltages (50, 100, and 150 kV) with Al and Cu filters of different thicknesses to achieve 3-energy X-ray examination of objects. By doing so, we are able to achieve significantly improved imaging quality of the structure of the subject biological objects. To reconstruct and visualize the final images, we use both two-dimensional (2D) and three-dimensional (3D) palettes of identification. The result is a 2E and/or 3E representation of the object with color coding of each pixel according to the data outputs. Following the experimental measurements and post-processing, we produce a 3D image of the biological object - in the case of our trials, fragments or parts of chicken and turkey.

  3. Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer

    NASA Astrophysics Data System (ADS)

    Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore

    2017-11-01

    The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.

  4. Use of the posteroanterior projection: a method of reducing x-ray exposure to specific radiosensitive organs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, E.D.; Stears, J.G.; Gray, J.E.

    The posteroanterior projection was studied to determine if it could be a substitute for the commonly used anteroposterior projection as a method of reducing x-ray exposure to specific radiosensitive organs during intracranial tomography and scoliosis radiography. The use of the posteroanterior projection resulted in a reduction of 95% in exposure to the lens of the eye during intracranial tomography and of more than 90% to the thyroid, sternum, and breasts during scoliosis radiography. In addition to the major reduction in radiation exposure, the diagnostic capability of the examination was not reduced and comfort in most patients was not affected.

  5. X-ray Radiation-Controlled NO-Release for On-Demand Depth-Independent Hypoxic Radiosensitization.

    PubMed

    Fan, Wenpei; Bu, Wenbo; Zhang, Zhen; Shen, Bo; Zhang, Hui; He, Qianjun; Ni, Dalong; Cui, Zhaowen; Zhao, Kuaile; Bu, Jiwen; Du, Jiulin; Liu, Jianan; Shi, Jianlin

    2015-11-16

    Multifunctional stimuli-responsive nanotheranostic systems are highly desirable for realizing simultaneous biomedical imaging and on-demand therapy with minimized adverse effects. Herein, we present the construction of an intelligent X-ray-controlled NO-releasing upconversion nanotheranostic system (termed as PEG-USMSs-SNO) by engineering UCNPs with S-nitrosothiol (R-SNO)-grafted mesoporous silica. The PEG-USMSs-SNO is designed to respond sensitively to X-ray radiation for breaking down the S-N bond of SNO to release NO, which leads to X-ray dose-controlled NO release for on-demand hypoxic radiosensitization besides upconversion luminescent imaging through UCNPs in vitro and in vivo. Thanks to the high live-body permeability of X-ray, our developed PEG-USMSs-SNO may provide a new technique for achieving depth-independent controlled NO release and positioned radiotherapy enhancement against deep-seated solid tumors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhanced Imaging of Corrosion in Aircraft Structures with Reverse Geometry X-ray(registered tm)

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cmar-Mascis, Noreen A.; Parker, F. Raymond

    2000-01-01

    The application of Reverse Geometry X-ray to the detection and characterization of corrosion in aircraft structures is presented. Reverse Geometry X-ray is a unique system that utilizes an electronically scanned x-ray source and a discrete detector for real time radiographic imaging of a structure. The scanned source system has several advantages when compared to conventional radiography. First, the discrete x-ray detector can be miniaturized and easily positioned inside a complex structure (such as an aircraft wing) enabling images of each surface of the structure to be obtained separately. Second, using a measurement configuration with multiple detectors enables the simultaneous acquisition of data from several different perspectives without moving the structure or the measurement system. This provides a means for locating the position of flaws and enhances separation of features at the surface from features inside the structure. Data is presented on aircraft specimens with corrosion in the lap joint. Advanced laminographic imaging techniques utilizing data from multiple detectors are demonstrated to be capable of separating surface features from corrosion in the lap joint and locating the corrosion in multilayer structures. Results of this technique are compared to computed tomography cross sections obtained from a microfocus x-ray tomography system. A method is presented for calibration of the detectors of the Reverse Geometry X-ray system to enable quantification of the corrosion to within 2%.

  7. TU-FG-BRB-04: A New Optimization Method for Pre-Treatment Patient-Specific Stopping-Power by Combining Proton Radiography and X-Ray CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins-Fekete, C; Centre Hospitalier University de Quebec, Quebec, QC; Mass General Hospital

    Purpose: The relative stopping power (RSP) uncertainty is the largest contributor to the range uncertainty in proton therapy. The purpose of this work is to develop a robust and systematic method that yields accurate patient specific RSPs by combining pre-treatment X-ray CT and daily proton radiography. Methods: The method is formulated as a penalized least squares optimization (PLSO) problem min(|Ax-B|). The matrix A represents the cumulative path-length crossed in each material computed by calculating proton trajectories through the X-ray CT. The material RSPs are denoted by x and B is the pRad, expressed as water equivalent thickness. The equation ismore » solved using a convex-conic optimizer. Geant4 simulations were made to assess the feasibility of the method. RSP extracted from the Geant4 materials were used as a reference and the clinical HU-RSP curve as a comparison. The PLSO was first tested on a Gammex RMI-467 phantom. Then, anthropomorphic phantoms of the head, pelvis and lung were studied and resulting RSPs were evaluated. A pencil beam was generated in each phantom to evaluate the proton range accuracy achievable by using the optimized RSPs. Finally, experimental data of a pediatric head phantom (CIRS) were acquired using a recently completed experimental pCT scanner. Results: Numerical simulations showed precise RSP (<0.75%) for Gammex materials except low-density lung (LN-300) (1.2%). Accurate RSP have been obtained for the head (µ=−0.10%, 1.5σ=1.12%), lung (µ=−0.33, 1.5σ=1.02%) and pelvis anthropomorphic phantoms (µ=0.12, 1.5σ=0,99%). The range precision has been improved with an average R80 difference to the reference (µ±1.5σ) of −0.20±0.35%, −0.47±0.92% and −0.06±0.17% in the head, lung and pelvis phantoms respectively, compared to the 3.5% clinical margin. Experimental HU-RSP curve have been produced on the CIRS pediatric head. Conclusion: The proposed PLSO with prior knowledge X-ray CT shows promising potential (R80 σ<1

  8. Development of high-resolution x-ray CT system using parallel beam geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika; Hyodo, Kazuyuki

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  9. ID16B: a hard X-ray nanoprobe beamline at the ESRF for nano-analysis

    PubMed Central

    Martínez-Criado, Gema; Villanova, Julie; Tucoulou, Rémi; Salomon, Damien; Suuronen, Jussi-Petteri; Labouré, Sylvain; Guilloud, Cyril; Valls, Valentin; Barrett, Raymond; Gagliardini, Eric; Dabin, Yves; Baker, Robert; Bohic, Sylvain; Cohen, Cédric; Morse, John

    2016-01-01

    Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5–70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results. PMID:26698084

  10. A note on digital dental radiography in forensic odontology.

    PubMed

    Chiam, Sher-Lin

    2014-09-01

    Digital dental radiography, intraoral and extraoral, is becoming more popular in dental practice. It offers convenience, such as lower exposure to radiation, ease of storing of images, and elimination of chemical processing. However, it also has disadvantages and drawbacks. One of these is the potential for confusion of the orientation of the image. This paper outlines one example of this, namely, the lateral inversion of the image. This source of confusion is partly inherent in the older model of phosphor storage plates (PSPs), as they allow both sides to be exposed without clue to the fact that the image is acquired on the wrong side. The native software allows digital manipulation of the X-ray image, permitting both rotation and inversion. Attempts to orientate the X-ray according to the indicator incorporated on the plate can then sometimes lead to inadvertent lateral inversion of the image. This article discusses the implications of such mistakes in dental digital radiography to forensic odontology and general dental practice.

  11. Patient exposure dose for chest and skull radiographies in Mazandaran hospitals.

    PubMed

    Etemadinezhad, Siavash; Rahimi, Seyed Ali

    2010-01-01

    Radiographic techniques are essential methods of diagnosis, and their use has been increased, especially with the development of the new technologies. Inappropriate administration of these techniques may put both the patients and personnel at unnecessary risks. The objective of this research was to measure the skin dose of chest and skull radiographies used in Mazandaran hospitals and to compare these doses with national and international standards. In this cross-sectional study, six X-ray generators at six hospitals affiliated to Mazandaran University of Medical Sciences were included. One hundred and twenty patients referred to the radiology wards for radiographic examinations of chest and skull with normal body mass index (BMI) were selected (20 patients for each radiography unit). The generators were matched for mAs, kvp, type of amplifier sheets, and technical conditions as much as possible. Calibrated thermo luminescence dosimeters (TLD-USA, Lif-100) were used to measure the skin dose by placing them on the patients' back and the absorbed doses by TLDs were read by a TLD reader (model: Harshuu, TLD3500, Japan). The mean values of the skin dose were 0.51 mGray for posteroanterior (PA), chest X-ray (CXR), 3.36 mGray for lateral CXR, 7.25 mGray for anterroposterior (AP) or PA skull X-rays, and 7.59 mGray for lateral skull X-rays. The measured values were higher than the national and international standards. The results of this research revealed that the conditions of the X-ray generators should be monitored and modified periodically. Modifying the X-ray generators plus improving technicians' skills would, to some extent, reduce the radiation exposure of the patients.

  12. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  13. A study on the dependence of exposure dose reduction and image evaluation on the distance from the dental periapical X-ray machine

    NASA Astrophysics Data System (ADS)

    Joo, Kyu-Ji; Shin, Jae-Woo; Dong, Kyung-Rae; Lim, Chang-Seon; Chung, Woon-Kwan; Kim, Young-Jae

    2013-11-01

    Reducing the exposure dose from a periapical X-ray machine is an important aim in dental radiography. Although the radiation exposure dose is generally low, any radiation exposure is harmful to the human body. Therefore, this study developed a method that reduces the exposure dose significantly compared to that encountered in a normal procedure, but still produces an image with a similar resolution. The correlation between the image resolution and the exposure dose of the proposed method was examined with increasing distance between the dosimeter and the X-ray tube. The results were compared with those obtained from the existing radiography method. When periapical radiography was performed once according to the recommendations of the International Commission on Radiological Protection (ICRP), the measured skin surface dose was low at 7 mGy or below. In contrast, the skin surface dose measured using the proposed method was only 1.57 mGy, showing a five-fold reduction. These results suggest that further decreases in dose might be achieved using the proposed method.

  14. Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics

    DOE PAGES

    Hashem, Joseph Anthony; Pryor, Mitch; Landsberger, Sheldon; ...

    2017-03-28

    Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. Themore » X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17 μm in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. In conclusion, this paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.« less

  15. Automating High-Precision X-Ray and Neutron Imaging Applications with Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashem, Joseph Anthony; Pryor, Mitch; Landsberger, Sheldon

    Los Alamos National Laboratory and the University of Texas at Austin recently implemented a robotically controlled nondestructive testing (NDT) system for X-ray and neutron imaging. This system is intended to address the need for accurate measurements for a variety of parts and, be able to track measurement geometry at every imaging location, and is designed for high-throughput applications. This system was deployed in a beam port at a nuclear research reactor and in an operational inspection X-ray bay. The nuclear research reactor system consisted of a precision industrial seven-axis robot, 1.1-MW TRIGA research reactor, and a scintillator-mirror-camera-based imaging system. Themore » X-ray bay system incorporated the same robot, a 225-keV microfocus X-ray source, and a custom flat panel digital detector. The robotic positioning arm is programmable and allows imaging in multiple configurations, including planar, cylindrical, as well as other user defined geometries that provide enhanced engineering evaluation capability. The imaging acquisition device is coupled with the robot for automated image acquisition. The robot can achieve target positional repeatability within 17 μm in the 3-D space. Flexible automation with nondestructive imaging saves costs, reduces dosage, adds imaging techniques, and achieves better quality results in less time. Specifics regarding the robotic system and imaging acquisition and evaluation processes are presented. In conclusion, this paper reviews the comprehensive testing and system evaluation to affirm the feasibility of robotic NDT, presents the system configuration, and reviews results for both X-ray and neutron radiography imaging applications.« less

  16. Simulation of a complete X-ray digital radiographic system for industrial applications.

    PubMed

    Nazemi, E; Rokrok, B; Movafeghi, A; Choopan Dastjerdi, M H

    2018-05-19

    Simulating X-ray images is of great importance in industry and medicine. Using such simulation permits us to optimize parameters which affect image's quality without the limitations of an experimental procedure. This study revolves around a novel methodology to simulate a complete industrial X-ray digital radiographic system composed of an X-ray tube and a computed radiography (CR) image plate using Monte Carlo N Particle eXtended (MCNPX) code. In the process of our research, an industrial X-ray tube with maximum voltage of 300 kV and current of 5 mA was simulated. A 3-layer uniform plate including a polymer overcoat layer, a phosphor layer and a polycarbonate backing layer was also defined and simulated as the CR imaging plate. To model the image formation in the image plate, at first the absorbed dose was calculated in each pixel inside the phosphor layer of CR imaging plate using the mesh tally in MCNPX code and then was converted to gray value using a mathematical relationship determined in a separate procedure. To validate the simulation results, an experimental setup was designed and the images of two step wedges created out of aluminum and steel were captured by the experiments and compared with the simulations. The results show that the simulated images are in good agreement with the experimental ones demonstrating the ability of the proposed methodology for simulating an industrial X-ray imaging system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics.

    PubMed

    Valdivia, M P; Stutman, D; Stoeckl, C; Theobald, W; Mileham, C; Begishev, I A; Bromage, J; Regan, S P

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10(23) cm(-3) in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. The 50 ± 15 μm spatial resolution achieved across the full field of view was found to be limited by the x-ray source-size, similar to conventional radiography.

  18. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  19. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  20. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    NASA Astrophysics Data System (ADS)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  1. Compact and reliable triggering method for near muzzle flash radiography

    NASA Astrophysics Data System (ADS)

    Lee, Eun S.; Hwang, Eul H.; Yim, Dong W.; Song, So Y.

    1993-01-01

    Precise timing for x-ray bursts is crucial in acquiring useful information from flash radiographic experiments. Triggering the flash x-ray system near the muzzle is a difficult task because of the intrinsic nature of the muzzle blast. In this work a compact and reliable triggering method for near muzzle flash radiography is introduced; a piezoelectric pin probe attached at the end of the barrel. These types of probes have not been activated by the precursor shock wave, but they have been activated by the main blast wave only. Reliability in triggering the flash x-ray system has been confirmed throughout a series of flash radiographic experiments near the muzzle for gun barrels with calibers up to 105 mm.

  2. Novel X-ray backscatter technique for detection of dangerous materials: application to aviation and port security

    NASA Astrophysics Data System (ADS)

    Kolkoori, S.; Wrobel, N.; Osterloh, K.; Zscherpel, U.; Ewert, U.

    2013-09-01

    Radiological inspections, in general, are the nondestructive testing (NDT) methods to detect the bulk of explosives in large objects. In contrast to personal luggage, cargo or building components constitute a complexity that may significantly hinder the detection of a threat by conventional X-ray transmission radiography. In this article, a novel X-ray backscatter technique is presented for detecting suspicious objects in a densely packed large object with only a single sided access. It consists of an X-ray backscatter camera with a special twisted slit collimator for imaging backscattering objects. The new X-ray backscatter camera is not only imaging the objects based on their densities but also by including the influences of surrounding objects. This unique feature of the X-ray backscatter camera provides new insights in identifying the internal features of the inspected object. Experimental mock-ups were designed imitating containers with threats among a complex packing as they may be encountered in reality. We investigated the dependence of the quality of the X-ray backscatter image on (a) the exposure time, (b) multiple exposures, (c) the distance between object and slit camera, and (d) the width of the slit. At the end, the significant advantages of the presented X-ray backscatter camera in the context of aviation and port security are discussed.

  3. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  4. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    NASA Astrophysics Data System (ADS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  5. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique overmore » conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.« less

  6. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Kemner, K. M.; Maser, J.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and theirmore » associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.« less

  7. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-04-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.

  8. High brightness x ray source for directed energy and holographic imaging applications, phase 2

    NASA Astrophysics Data System (ADS)

    McPherson, Armon; Rhodes, Charles K.

    1992-03-01

    Advances in x-ray imaging technology and x-ray sources are such that a new technology can be brought to commercialization enabling the three-dimensional (3-D) microvisualization of hydrated biological specimens. The Company is engaged in a program whose main goal is the development of a new technology for direct three dimensional (3-D) x-ray holographic imaging. It is believed that this technology will have a wide range of important applications in the defense, medical, and scientific sectors. For example, in the medical area, it is expected that biomedical science will constitute a very active and substantial market, because the application of physical technologies for the direct visualization of biological entities has had a long and extremely fruitful history.

  9. State of the Art and Development Trends of the Digital Radiography Systems for Cargo Inspection

    NASA Astrophysics Data System (ADS)

    Udod, V.; Van, J.; Osipov, S.; Chakhlov, S.; Temnik, A.

    2016-01-01

    Increasing requirements for technical parameters of inspection digital radiography systems are caused by increasing incidences of terrorism, drug trafficking and explosives via variety of transport. These requirements have determined research for new technical solutions that enable to ensure the safety of passengers and cargos in real-time. The main efforts in the analyzed method of testing are aimed at the creation of new and modernization of operated now systems of digital radiography as a whole and their main components and elements in particular. The number of these main components and elements includes sources of X-ray recording systems and transformation of radiometric information as well as algorithms and software that implements these algorithms for processing, visualization and results interpretation of inspection. Recent developments of X-ray units and betatrons used for inspection of small- and large-sized objects that are made from different materials are deserve special attention. The most effective X-ray detectors are a line and a radiometric detector matrix based on various scintillators. The most promising methods among the algorithms of material identification of testing objects are dual-energy methods. The article describes various models of digital radiography systems applied in Russia and abroad to inspection of baggage, containers, vehicles and large trucks.

  10. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  11. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at framemore » rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.« less

  12. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press.

    PubMed

    Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-07-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10(5) frames/second (fps) in air and up to ∼10(4) fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  13. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  14. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  15. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  16. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms

    PubMed Central

    NAGAMINE, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described. PMID:27725469

  17. Radiography with cosmic-ray and compact accelerator muons; Exploring inner-structure of large-scale objects and landforms.

    PubMed

    Nagamine, Kanetada

    2016-01-01

    Cosmic-ray muons (CRM) arriving from the sky on the surface of the earth are now known to be used as radiography purposes to explore the inner-structure of large-scale objects and landforms, ranging in thickness from meter to kilometers scale, such as volcanic mountains, blast furnaces, nuclear reactors etc. At the same time, by using muons produced by compact accelerators (CAM), advanced radiography can be realized for objects with a thickness in the sub-millimeter to meter range, with additional exploration capability such as element identification and bio-chemical analysis. In the present report, principles, methods and specific research examples of CRM transmission radiography are summarized after which, principles, methods and perspective views of the future CAM radiography are described.

  18. X-ray tests of a microchannel plate detector and amorphous silicon pixel array readout for neutron radiography

    NASA Astrophysics Data System (ADS)

    Ambrosi, R. M.; Street, R.; Feller, B.; Fraser, G. W.; Watterson, J. I. W.; Lanza, R. C.; Dowson, J.; Ross, D.; Martindale, A.; Abbey, A. F.; Vernon, D.

    2007-03-01

    High-performance large area imaging detectors for fast neutrons in the 5-14 MeV energy range do not exist at present. The aim of this project is to combine microchannel plates or MCPs (or similar electron multiplication structures) traditionally used in image intensifiers and X-ray detectors with amorphous silicon (a-Si) pixel arrays to produce a composite converter and intensifier position sensitive imaging system. This detector will provide an order of magnitude improvement in image resolution when compared with current millimetre resolution limits obtained using phosphor or scintillator-based hydrogen rich converters. In this study we present the results of the initial experimental evaluation of the prototype system. This study was carried out using a medical X-ray source for the proof of concept tests, the next phase will involve neutron imaging tests. The hybrid detector described in this study is a unique development and paves the way for large area position sensitive detectors consisting of MCP or microsphere plate detectors and a-Si or polysilicon pixel arrays. Applications include neutron and X-ray imaging for terrestrial applications. The technology could be extended to space instrumentation for X-ray astronomy.

  19. CMT for biomedical and other applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spanne, P.

    This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.

  20. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  1. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  2. Transitioning to digital radiography.

    PubMed

    Drost, Wm Tod

    2011-04-01

    To describe the different forms of digital radiography (DR), image file formats, supporting equipment and services required for DR, storage of digital images, and teleradiology. Purchasing a DR system is a major investment for a veterinary practice. Types of DR systems include computed radiography, charge coupled devices, and direct or indirect DR. Comparison of workflow for analog and DR is presented. On the surface, switching to DR involves the purchase of DR acquisition hardware. The X-ray machine, table and grids used in analog radiography are the same for DR. Realistically, a considerable infrastructure supports the image acquisition hardware. This infrastructure includes monitors, computer workstations, a robust computer network and internet connection, a plan for storage and back up of images, and service contracts. Advantages of DR compared with analog radiography include improved image quality (when used properly), ease of use (more forgiving to the errors of radiographic technique), speed of making a complete study (important for critically ill patients), fewer repeat radiographs, less time looking for imaging studies, less physical storage space, and the ability to easily send images for consultation. With an understanding of the infrastructure requirements, capabilities and limitations of DR, an informed veterinary practice should be better able to make a sound decision about transitioning to DR. © Veterinary Emergency and Critical Care Society 2011.

  3. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  4. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging

    PubMed Central

    Iwanczyk, Jan S.; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C.; Hartsough, Neal E.; Malakhov, Nail; Wessel, Jan C.

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm2/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a 57Co source. An output rate of 6×106 counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and energy

  5. Single x-ray transmission system for bone mineral density determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian; Espinosa-Arbelaez, Diego G.

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many differentmore » applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.« less

  6. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    PubMed

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  7. Single x-ray transmission system for bone mineral density determination

    NASA Astrophysics Data System (ADS)

    Jimenez-Mendoza, Daniel; Espinosa-Arbelaez, Diego G.; Giraldo-Betancur, Astrid L.; Hernandez-Urbiola, Margarita I.; Vargas-Vazquez, Damian; Rodriguez-Garcia, Mario E.

    2011-12-01

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm2)], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  8. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Di; Li Yuhua; Wong, Molly D.

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signalmore » radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.« less

  9. Evaluation of a Fluorochlorozirconate Glass-Ceramic Storage Phosphor Plate for Gamma-Ray Computed Radiography

    DOE PAGES

    Leonard, Russell L.; Gray, Sharon K.; Alvarez, Carlos J.; ...

    2015-05-21

    In this paper, a fluorochlorozirconate (FCZ) glass-ceramic containing orthorhombic barium chloride crystals doped with divalent europium was evaluated for use as a storage phosphor in gamma-ray imaging. X-ray diffraction and phosphorimetry of the glass-ceramic sample showed the presence of a significant amount of orthorhombic barium chloride crystals in the glass matrix. Transmission electron microscopy and scanning electron microscopy were used to identify crystal size, structure, and morphology. The size of the orthorhombic barium chloride crystals in the FCZ glass matrix was very large, ~0.5–0.7 μm, which can limit image resolution. The FCZ glass-ceramic sample was exposed to 1 MeV gammamore » rays to determine its photostimulated emission characteristics at high energies, which were found to be suitable for imaging applications. Test images were made at 2 MeV energies using gap and step wedge phantoms. Gaps as small as 101.6 μm in a 440 stainless steel phantom were imaged using the sample imaging plate. Analysis of an image created using a depleted uranium step wedge phantom showed that emission is proportional to incident energy at the sample and the estimated absorbed dose. Finally, the results showed that the sample imaging plate has potential for gamma-ray-computed radiography and dosimetry applications.« less

  10. Improvement of the clinical use of computed radiography for mobile chest imaging: Image quality and patient dose

    NASA Astrophysics Data System (ADS)

    Rill, Lynn Neitzey

    Chest radiography is technically difficult because of the wide variation of tissue attenuations in the chest and limitations of screen-film systems. Mobile chest radiography, performed bedside on hospital inpatients, presents additional difficulties due to geometrical and equipment limitations inherent to mobile x-ray procedures and the severity of illness in patients. Computed radiography (CR) offers a new approach for mobile chest radiography by utilizing a photostimulable phosphor. Photostimulable phosphors are more efficient in absorbing lower-energy x-rays than standard intensifying screens and overcome some image quality limitations of mobile chest imaging, particularly because of the inherent latitude. This study evaluated changes in imaging parameters for CR to take advantage of differences between CR and screen-film radiography. Two chest phantoms, made of acrylic and aluminum, simulated x-ray attenuation for average-sized and large- sized adult chests. The phantoms contained regions representing the lungs, heart and subdiaphragm. Acrylic and aluminum disks (1.9 cm diameter) were positioned in the chest regions to make signal-to-noise ratio (SNR) measurements for different combinations of imaging parameters. Disk thicknesses (contrast) were determined from disk visibility. Effective dose to the phantom was also measured for technique combinations. The results indicated that using an anti-scatter grid and lowering x- ray tube potential improved the SNR significantly; however, the dose to the phantom also increased. An evaluation was performed to examine the clinical applicability of the observed improvements in SNR. Parameter adjustments that improved phantom SNRs by more than 50% resulted in perceived image quality improvements in the lung region of clinical mobile chest radiographs. Parameters that produced smaller improvements in SNR had no apparent effect on clinical image quality. Based on this study, it is recommended that a 3:1 grid be used for

  11. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  12. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  13. Evaluation of a Noise Reduction Procedure for Chest Radiography

    PubMed Central

    Fukui, Ryohei; Ishii, Rie; Kodani, Kazuhiko; Kanasaki, Yoshiko; Suyama, Hisashi; Watanabe, Masanari; Nakamoto, Masaki; Fukuoka, Yasushi

    2013-01-01

    Background The aim of this study was to evaluate the usefulness of noise reduction procedure (NRP), a function in the new image processing for chest radiography. Methods A CXDI-50G Portable Digital Radiography System (Canon) was used for X-ray detection. Image noise was analyzed with a noise power spectrum (NPS) and a burger phantom was used for evaluation of density resolution. The usefulness of NRP was evaluated by chest phantom images and clinical chest radiography. We employed the Bureau of Radiological Health Method for scoring chest images while carrying out our observations. Results NPS through the use of NRP was improved compared with conventional image processing (CIP). The results in image quality showed high-density resolution through the use of NRP, so that chest radiography examination can be performed with a low dose of radiation. Scores were significantly higher than for CIP. Conclusion In this study, use of NRP led to a high evaluation in these so we are able to confirm the usefulness of NRP for clinical chest radiography. PMID:24574577

  14. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  15. An experimental and theoretical study of the dark current and x-ray sensitivity of amorphous selenium x-ray photoconductors

    NASA Astrophysics Data System (ADS)

    Frey, Joel Brandon

    Recently, the world of diagnostic radiography has seen the integration of digital flat panel x-ray image detectors into x-ray imaging systems, replacing analog film screens. These flat panel x-ray imagers (FPXIs) have been shown to produce high quality x-ray images and provide many advantages that are inherent to a fully digital technology. Direct conversion FPXIs based on a photoconductive layer of stabilized amorphous selenium (a-Se) have been commercialized and have proven particularly effective in the field of mammography. In the operation of these detectors, incident x-ray photons are converted directly to charge carriers in the a-Se layer and drifted to electrodes on either side of the layer by a large applied field (10 V/microm). The applied field causes a dark current to flow which is not due to the incident radiation and this becomes a source of noise which can reduce the dynamic range of the detector. The level of dark current in commercialized detectors has been reduced by the deposition of thin n- and p- type blocking layers between the electrodes and the bulk of the a-Se. Despite recent research into the dark current in metal/a-Se/metal sandwich structures, much is still unknown about the true cause and nature of this phenomenon. The work in this Ph.D. thesis describes an experimental and theoretical study of the dark current in these structures. Experiments have been performed on five separate sets of a-Se samples which approximate the photoconductive layer in an FPXI. The dark current has been measured as a function of time, sample structure, applied field, sample thickness and contact metal used. This work has conclusively shown that the dark current is almost entirely due to the injection of charge carriers from the contacts and the contribution of Poole-Frenkel enhanced bulk thermal generation is negligible. There is also evidence that while the dark current is initially controlled by the injection of holes from the positive contact, several

  16. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  17. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.

    PubMed

    Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A

    2014-11-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.

  18. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  19. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  20. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  1. Wettability measurement under high P-T conditions using X-ray imaging with application to the brine-supercritical CO 2 system: WETTABILITY MEASUREMENT USING X-RAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, Kuldeep; Guiltinan, Eric J.; Cardenas, M. Bayani

    2015-08-30

    We present a new method for measuring wettability or contact angle of minerals at reservoir pressure-temperature conditions using high-resolution X-ray computed tomography (HRXCT) and radiography. In this method, a capillary or a narrow slot is constructed from a mineral or a rock sample of interest wherein two fluids are allowed to form an interface that is imaged using X-rays. After some validation measurements at room pressure-temperature conditions, we illustrate this method by measuring the contact angle of CO 2-brine on quartz, muscovite, shale, borosilicate glass, polytetrafluoroethylene (PTFE or Teflon), and polyether ether ketone (PEEK) surfaces at 60–71°C and 13.8–22.8 MPa.more » At reservoir conditions, PTFE and PEEK surfaces were found to be CO 2-wet with contact angles of 140° and 127°, respectively. Quartz and muscovite were found to be water-wet with contact angles of 26° and 58°, respectively, under similar conditions. Borosilicate glass-air-brine at room conditions showed strong water-wet characteristics with a contact angle of 9°, whereas borosilicate glass-CO 2-brine at 13.8 MPa and 60°C showed a decrease in its water-wetness with contact angle of 54°. This method provides a new application for X-ray imaging and an alternative to other methods.« less

  2. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    DOE PAGES

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; ...

    2016-02-10

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 10 23 cm ₋3more » in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of <8%. We found the 50 ± 15 μm spatial resolution achieved across the full field of view was limited by the x-ray source-size, similar to conventional radiography.« less

  3. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  4. Medical radiography examinations and carcinogenic effects.

    PubMed

    Domina, E A

    2014-09-01

    The purpose of the review was the synthesis of the literature data and the results of our radiobiological (biodosimetric) research on the development of radiation-associated tumors as a result of medical radiography (X-ray) diagnostic. Medical X-ray examinations contribute the most to the excess of radiation exposure of the population, much of which is subject to examination to diagnose the underlying disease, the dynamic observation of the patient during treatment, the research of related deseases, and preventative examinations. The review provides arguments for the necessity of developing a more balanced indication for preventative radiological examination of the population in the aftermath of radio-ecological crisis caused by the Chornobyl accident, taking into account the likelihood of radiation carcinogenesis. The problems and tasks of biological (cytogenetic) dosimetry in radiology are formulated. E. A. Domina.

  5. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  6. High-speed photon-counting x-ray computed tomography system utilizing a multipixel photon counter

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Enomoto, Toshiyuki; Watanabe, Manabu; Hitomi, Keitaro; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akiro; Onagawa, Jun

    2009-07-01

    High-speed photon counting is useful for discriminating photon energy and for decreasing absorbed dose for patients in medical radiography, and the counting is usable for constructing an x-ray computed tomography (CT) system. A photon-counting x-ray CT system is of the first generation type and consists of an x-ray generator, a turn table, a translation stage, a two-stage controller, a multipixel photon counter (MPPC) module, a 1.0-mm-thick LSO crystal (scintillator), a counter card (CC), and a personal computer (PC). Tomography is accomplished by repeating the linear scanning and the rotation of an object, and projection curves of the object are obtained by the linear scanning using the detector consisting of a MPPC module and the LSO. The pulses of the event signal from the module are counted by the CC in conjunction with the PC. The lower level of the photon energy is roughly determined by a comparator circuit in the module, and the unit of the level is the photon equivalent (pe). Thus, the average photon energy of the x-ray spectra increases with increasing the lower-level voltage of the comparator. The maximum count rate was approximately 20 Mcps, and energy-discriminated CT was roughly carried out.

  7. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  8. Area beam equalization: optimization and performance of an automated prototype system for chest radiography.

    PubMed

    Xu, Tong; Shikhaliev, Polad M; Berenji, Gholam R; Tehranzadeh, Jamshid; Saremi, Farhood; Molloi, Sabee

    2004-04-01

    To evaluate the feasibility and performance of an x-ray beam equalization system for chest radiography using anthropomorphic phantoms. Area beam equalization involves the process of the initial unequalized image acquisition, attenuator thickness calculation, mask generation using a 16 x 16 piston array, and final equalized image acquisition. Chest radiographs of three different anthropomorphic phantoms were acquired with no beam equalization and equalization levels of 4.8, 11.3, and 21. Six radiologists evaluated the images by scoring them from 1-5 using 13 different criteria. The dose was calculated using the known attenuator material thickness and the mAs of the x-ray tube. The visibility of anatomic structures in the under-penetrated regions of the chest radiographs was shown to be significantly (P < .01) improved after beam equalization. An equalization level of 4.8 provided most of the improvements with moderate increases in patient dose and tube loading. Higher levels of beam equalization did not show much improvement in the visibility of anatomic structures in the under-penetrated regions. A moderate level of x-ray beam equalization in chest radiography is superior to both conventional radiographs and radiographs with high levels of beam equalization. X-ray beam equalization can significantly improve the visibility of anatomic structures in the under-penetrated regions while maintaining good image quality in the lung region.

  9. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  10. X-ray scatter imaging of hepatocellular carcinoma in a mouse model using nanoparticle contrast agents

    DOE PAGES

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...

    2015-10-29

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less

  11. X-ray Scatter Imaging of Hepatocellular Carcinoma in a Mouse Model Using Nanoparticle Contrast Agents

    NASA Astrophysics Data System (ADS)

    Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph

    2015-10-01

    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.

  12. A beam hardening and dispersion correction for x-ray dark-field radiography.

    PubMed

    Pelzer, Georg; Anton, Gisela; Horn, Florian; Rieger, Jens; Ritter, André; Wandner, Johannes; Weber, Thomas; Michel, Thilo

    2016-06-01

    X-ray dark-field imaging promises information on the small angle scattering properties even of large samples. However, the dark-field image is correlated with the object's attenuation and phase-shift if a polychromatic x-ray spectrum is used. A method to remove part of these correlations is proposed. The experimental setup for image acquisition was modeled in a wave-field simulation to quantify the dark-field signals originating solely from a material's attenuation and phase-shift. A calibration matrix was simulated for ICRU46 breast tissue. Using the simulated data, a dark-field image of a human mastectomy sample was corrected for the finger print of attenuation- and phase-image. Comparing the simulated, attenuation-based dark-field values to a phantom measurement, a good agreement was found. Applying the proposed method to mammographic dark-field data, a reduction of the dark-field background and anatomical noise was achieved. The contrast between microcalcifications and their surrounding background was increased. The authors show that the influence of and dispersion can be quantified by simulation and, thus, measured image data can be corrected. The simulation allows to determine the corresponding dark-field artifacts for a wide range of setup parameters, like tube-voltage and filtration. The application of the proposed method to mammographic dark-field data shows an increase in contrast compared to the original image, which might simplify a further image-based diagnosis.

  13. Genotoxic effects of X-rays in buccal mucosal cells in children subjected to dental radiographs

    PubMed Central

    Preethi, Naveena; Chikkanarasaiah, Nagarathna; Bethur, Shakuntala S

    2016-01-01

    Objectives/Aims: Bitewing and digital dental panoramic radiographs have become important adjuvants for successful dental practice in pediatric dentistry. Both methods lead to genetic changes in the oral buccal epithelium that have not yet been satisfactorily explored. The aim of the present study was to evaluate the genotoxic effects induced by X-ray radiation from bitewing and panoramic dental radiography in exfoliated buccal epithelial cells of children, using the Buccal Micronucleus Cytome assay. Materials and Methods: Children (n=40) who met the inclusion criteria and provided signed informed consent were included in the study. Children were selected for undergoing bitewing radiographs (group 1; n=20) or digital dental panoramic radiographs (group 2; n=20). Exfoliated buccal mucosal cells were obtained by scraping the right/left buccal mucosa with a wooden spatula immediately before the X-ray exposure and 10±2 days after exposure. Results: The frequency of micronuclei increases significantly post exposure to both bitewing and digital dental panoramic radiography in children, but the frequency was higher in bitewing radiographs. Conclusion: It was concluded that the frequency of micronuclei increases post exposure to both bitewing and digital panoramic radiographs. Increased radiation exposure results in an increase in micronuclei frequency. PMID:29607062

  14. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  15. The Hangover: The Early and Lasting Effects of the Controversial Incorporation of X-Ray Technology into Chiropractic.

    PubMed

    Young, Kenneth J; Bakkum, Barclay W; Siordia, Lawrence

    2016-01-01

    Chiropractic first adopted the X-ray in 1910 for the purpose of demonstrating tiny misalignments of spinal bones, theorised to cause all disease, which they called chiropractic subluxations. This paper explores the apparent contradiction and resultant controversy of a system of natural healing adopting a medical technology. It centres on the actions of B.J. Palmer, the first chiropractor to use X-rays. It also clarifies details of Palmer's decision to incorporate the technology and interprets the change in the sociological context of boundary work. The continuing use of the subluxation paradigm for radiography by chiropractors has had a lingering effect on the profession, a metaphorical hangover of vitalism that is not consistent with modern healthcare practice. As a result of this conflict, arguments within the profession on the use of X-rays contribute to the continuing schism between evidence-based and subluxation-based chiropractors.

  16. X-Ray Imaging Study

    NASA Technical Reports Server (NTRS)

    OBrien, Susan K.; Workman, Gary L.

    1996-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper

  17. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walstrom, Peter Lowell; Garnett, Robert William; Chapman, Catherine A. B

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electronmore » and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.« less

  18. Antioxidant protects blood-testis barrier against synchrotron radiation X-ray-induced disruption

    PubMed Central

    Zhang, Tingting; Liu, Tengyuan; Shao, Jiaxiang; Sheng, Caibin; Hong, Yunyi; Ying, Weihai; Xia, Weiliang

    2015-01-01

    Synchrotron radiation (SR) X-ray has wide biomedical applications including high resolution imaging and brain tumor therapy due to its special properties of high coherence, monochromaticity and high intensity. However, its interaction with biological tissues remains poorly understood. In this study, we used the rat testis as a model to investigate how SR X-ray would induce tissue responses, especially the blood-testis barrier (BTB) because BTB dynamics are critical for spermatogenesis. We irradiated the male gonad with increasing doses of SR X-ray and obtained the testicles 1, 10 and 20 d after the exposures. The testicle weight and seminiferous tubule diameter reduced in a dose- and time-dependent manner. Cryosections of testes were stained with tight junction (TJ) component proteins such as occludin, claudin-11, JAM-A and ZO-1. Morphologically, increasing doses of SR X-ray consistently induced developing germ cell sloughing from the seminiferous tubules, accompanied by shrinkage of the tubules. Interestingly, TJ constituent proteins appeared to be induced by the increasing doses of SR X-ray. Up to 20 d after SR X-ray irradiation, there also appeared to be time-dependent changes on the steady-state level of these protein exhibiting differential patterns at 20-day after exposure, with JAM-A/claudin-11 still being up-regulated whereas occludin/ZO-1 being down-regulated. More importantly, the BTB damage induced by 40 Gy of SR X-ray could be significantly attenuated by antioxidant N-Acetyl-L-Cysteine (NAC) at a dose of 125 mg/kg. Taken together, our studies characterized the changes of TJ component proteins after SR X-ray irradiation, illustrating the possible protective effects of antioxidant NAC to BTB integrity. PMID:26413412

  19. Composition-Tunable Optical Properties of Zn x Cd(1 - x)S Quantum Dot-Carboxymethylcellulose Conjugates: Towards One-Pot Green Synthesis of Multifunctional Nanoplatforms for Biomedical and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Mansur, Alexandra A. P.; Mansur, Herman S.; Caires, Anderson J.; Mansur, Rafael L.; Oliveira, Luiz C.

    2017-07-01

    Quantum dots (QDs) are colloidal semiconductor nanocrystals with unique properties that can be engineered by controlling the nanoparticle size and chemical composition by doping and alloying strategies. However, due to their potential toxicity, augmenting their biocompatibility is yet a challenge for expanding to several biomedical and environmentally friendly applications. Thus, the main goal of this study was to develop composition-tunable and biocompatible Zn x Cd1 - x S QDs using carboxymethylcellulose polysaccharide as direct capping ligand via green colloidal aqueous route at neutral pH and at room temperature for potential biomedical and environmental applications. The ternary alloyed QDs were extensively characterized using UV-vis spectroscopy, photoluminescence spectroscopy (PL), transmission electron microscopy (TEM), X-ray diffraction (XRD), electron energy loss spectroscopy (EELS), and X-ray photoelectrons spectroscopy (XPS). The results indicated that Zn x Cd(1 - x)S QDs were surface stabilized by carboxymethylcellulose biopolymer with spherical morphology for all composition of alloys and narrow sizes distributions ranging from 4 to 5 nm. The XRD results indicated that monophasic ternary alloyed Zn x Cd1 - x S nanocrystals were produced with homogenous composition of the core as evidenced by EELS and XPS analyses. In addition, the absorption and emission optical properties of Zn x Cd1 - x S QDs were red shifted with increasing the amount of Cd2+ in the alloyed nanocrystals, which have also increased the quantum yield compared to pure CdS and ZnS nanoparticles. These properties of alloyed nanomaterials were interpreted based on empirical model of Vegard's law and chemical bond model (CBM). As a proof of concept, these alloyed-QD conjugates were tested for biomedical and environmental applications. The results demonstrated that they were non-toxic and effective fluorophores for bioimaging live HEK293T cells (human embryonic kidney cells) using confocal

  20. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevalier, S.; Banerjee, R.; Lee, J.

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. Frommore » this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.« less

  1. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source

    PubMed Central

    Le Gros, Mark A.; McDermott, Gerry; Cinquin, Bertrand P.; Smith, Elizabeth A.; Do, Myan; Chao, Weilun L.; Naulleau, Patrick P.; Larabell, Carolyn A.

    2014-01-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with ‘water window’ X-rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies. PMID:25343808

  2. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  3. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  4. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  5. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Radu, T.; Iacovita, C.; Benea, D.; Turcu, R.

    2017-05-01

    We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe3O4) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe2O3 (by oxygen dissociation) which in turn was transformed into α-Fe2O3. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  6. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  7. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  8. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  9. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  10. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  11. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  12. Large field of view, fast and low dose multimodal phase-contrast imaging at high x-ray energy.

    PubMed

    Astolfo, Alberto; Endrizzi, Marco; Vittoria, Fabio A; Diemoz, Paul C; Price, Benjamin; Haig, Ian; Olivo, Alessandro

    2017-05-19

    X-ray phase contrast imaging (XPCI) is an innovative imaging technique which extends the contrast capabilities of 'conventional' absorption based x-ray systems. However, so far all XPCI implementations have suffered from one or more of the following limitations: low x-ray energies, small field of view (FOV) and long acquisition times. Those limitations relegated XPCI to a 'research-only' technique with an uncertain future in terms of large scale, high impact applications. We recently succeeded in designing, realizing and testing an XPCI system, which achieves significant steps toward simultaneously overcoming these limitations. Our system combines, for the first time, large FOV, high energy and fast scanning. Importantly, it is capable of providing high image quality at low x-ray doses, compatible with or even below those currently used in medical imaging. This extends the use of XPCI to areas which were unpractical or even inaccessible to previous XPCI solutions. We expect this will enable a long overdue translation into application fields such as security screening, industrial inspections and large FOV medical radiography - all with the inherent advantages of the XPCI multimodality.

  13. Investigation of water seepage through porous media using X-ray imaging technique

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Lim, Seungmin; Lee, Sang Joon

    2012-07-01

    SummaryDynamic movement of wetting front and variation of water contents through three different porous media were investigated using X-ray radiography. Water and natural sand particles were used as liquid and porous media in this study. To minimize the effects of minor X-ray attenuation and uneven illumination, the flat field correction (FFC) was applied before determining the position of wetting front. In addition, the thickness-averaged (in the direction of the X-ray penetration) water content was obtained by employing the Beer-Lambert law. The initial inertia of water droplet influences more strongly on the vertical migration, compared to the horizontal migration. The effect of initial inertia on the horizontal migration is enhanced as sand size decreases. The pattern of water transport is observed to be significantly affected by the initial water contents. As the initial water contents increases, the bulb-type transport pattern is shifted to a trapezoidal shape. With increasing surface temperature, water droplets are easily broken on the sand surface. This consequently decreases the length of the initial inertia region. Different from the wetting front migration, the water contents at the initial stage clearly exhibit a preferential flow along the vertical direction. The water transport becomes nearly uniform in all directions beyond the saturation state.

  14. MRI Before Radiography for Patients With New Shoulder Conditions.

    PubMed

    Small, Kirstin M; Rybicki, Frank J; Miller, Lindsay R; Daniels, Stephen D; Higgins, Laurence D

    2017-06-01

    To assess the patterns of Appropriate Criteria application among orthopedic specialists and other fields of medicine for use of MRI and radiography and the subsequent necessity for surgical intervention. The hospital electronic medical record was used to identify all shoulder MRI studies at a single large urban teaching hospital between January 2, 2011, and June 30, 2011. For each study, variables collected included ordering department, patient age, patient gender, patient's self-reported race/ethnicity, whether the patient obtained surgery for an issue related to the MRI diagnosis, the type of MRI ordered, the date of pain onset, the date of x-ray (if any), and the date of the MRI. A total of 475 patients who underwent shoulder MRI were included in our study. We found significant associations between a patient having had a prior x-ray and ordering department (P < .0001), male gender (P = .0005), and subjects who had subsequent surgery (P = .0006). Neither age nor race and ethnicity had an influence on x-ray before MRI. Orthopedic specialists ordering MRIs had the highest percentage of patients undergo subsequent surgery (33.3%) compared with the second-most, primary care (18.4%), and all other ordering departments (P = .0009). Detailed analysis suggests that providers who do not have specific training in shoulder pathology should consider consultation with an orthopedic surgeon before ordering shoulder MRI for patients who may need additional imaging after radiography. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  16. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Improved diagnosis of pulmonary emphysema using in vivo dark-field radiography.

    PubMed

    Meinel, Felix G; Yaroshenko, Andre; Hellbach, Katharina; Bech, Martin; Müller, Mark; Velroyen, Astrid; Bamberg, Fabian; Eickelberg, Oliver; Nikolaou, Konstantin; Reiser, Maximilian F; Pfeiffer, Franz; Yildirim, Ali Ö

    2014-10-01

    The purpose of this study was to assess whether the recently developed method of grating-based x-ray dark-field radiography can improve the diagnosis of pulmonary emphysema in vivo. Pulmonary emphysema was induced in female C57BL/6N mice using endotracheal instillation of porcine pancreatic elastase and confirmed by in vivo pulmonary function tests, histopathology, and quantitative morphometry. The mice were anesthetized but breathing freely during imaging. Experiments were performed using a prototype small-animal x-ray dark-field scanner that was operated at 35 kilovolt (peak) with an exposure time of 5 seconds for each of the 10 grating steps. Images were compared visually. For quantitative comparison of signal characteristics, regions of interest were placed in the upper, middle, and lower zones of each lung. Receiver-operating-characteristic statistics were performed to compare the effectiveness of transmission and dark-field signal intensities and the combined parameter "normalized scatter" to differentiate between healthy and emphysematous lungs. A clear visual difference between healthy and emphysematous mice was found for the dark-field images. Quantitative measurements of x-ray dark-field signal and normalized scatter were significantly different between the mice with pulmonary emphysema and the control mice and showed good agreement with pulmonary function tests and quantitative histology. The normalized scatter showed a significantly higher discriminatory power (area under the receiver-operating-characteristic curve [AUC], 0.99) than dark-field (AUC, 0.90; P = 0.01) or transmission signal (AUC, 0.69; P < 0.001) alone did, allowing for an excellent discrimination of healthy and emphysematous lung regions. In a murine model, x-ray dark-field radiography is technically feasible in vivo and represents a substantial improvement over conventional transmission-based x-ray imaging for the diagnosis of pulmonary emphysema.

  18. Accuracy of real time radiography burning rate measurement

    NASA Astrophysics Data System (ADS)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  19. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  20. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  1. Hydrodynamics of laser-driven double-foil collisions studied by orthogonal x-ray imaging

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Obenschain, S. P.; Schmitt, A. J.; Velikovich, A. L.; Gardner, J. H.; Weaver, J.; Oh, J.

    2006-10-01

    With this experiment we start the study of the physics of hydrodynamic instability seeding and growth during the deceleration and stagnation phases. Our first targets consisted of two separated parallel plastic foils -- flat and rippled. The flat foil was irradiated by the 4 ns Nike KrF laser pulses at 50 TW/cm^2 and accelerated towards the rippled one. Orthogonal imaging, i. e., a simultaneous side-on and face-on radiography of the targets has been used in these experiments. Side-on x-ray radiography and VISAR data yield shock and target velocities before and after the collision. Face-on streaks revealed well-pronounced oscillatory behavior of the single-mode mass perturbations. Both sets of synchronized data were compared with 1D and 2D simulations. Observed velocities, timing and the peak value of areal mass variation are in good agreement with the simulated ones.

  2. Development of a universal medical X-ray imaging phantom prototype.

    PubMed

    Groenewald, Annemari; Groenewald, Willem A

    2016-11-08

    Diagnostic X-ray imaging depends on the maintenance of image quality that allows for proper diagnosis of medical conditions. Maintenance of image quality requires quality assurance programs on the various X-ray modalities, which consist of pro-jection radiography (including mobile X-ray units), fluoroscopy, mammography, and computed tomography (CT) scanning. Currently a variety of modality-specific phantoms are used to perform quality assurance (QA) tests. These phantoms are not only expensive, but suitably trained personnel are needed to successfully use them and interpret the results. The question arose as to whether a single universal phantom could be designed and applied to all of the X-ray imaging modalities. A universal phantom would reduce initial procurement cost, possibly reduce the time spent on QA procedures and simplify training of staff on the single device. The aim of the study was to design and manufacture a prototype of a universal phantom, suitable for image quality assurance in general X-rays, fluoroscopy, mammography, and CT scanning. The universal phantom should be easy to use and would enable automatic data analysis, pass/fail reporting, and corrective action recommendation. In addition, a universal phantom would especially be of value in low-income countries where finances and human resources are limited. The design process included a thorough investigation of commercially available phantoms. Image quality parameters necessary for image quality assurance in the different X-ray imaging modalities were determined. Based on information obtained from the above-mentioned investigations, a prototype of a universal phantom was developed, keeping ease of use and reduced cost in mind. A variety of possible phantom housing and insert materials were investigated, considering physical properties, machinability, and cost. A three-dimensional computer model of the first phantom prototype was used to manufacture the prototype housing and inserts. Some of the

  3. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  4. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  5. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  6. Applications of Cosmic Ray Muon Radiography

    NASA Astrophysics Data System (ADS)

    Guardincerri, E.; Durham, J. M.; Morris, C. L.; Rowe, C. A.; Poulson, D. C.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D. J.

    2015-12-01

    The Dome of Santa Maria del Fiore, Florence Cathedral, was built between 1420 and 1436 by architect Filippo Brunelleschi and it is now cracking under its own weight. Engineering efforts are underway to model the dome's structure and reinforce it against further deterioration. According to some scholars, Brunelleschi might have built reinforcement structures into the dome itself; however, the only confirmed known subsurface reinforcement is a chain of iron and stone around the dome's base. Tomography with cosmic ray muons is a non-destructive imaging method that can be used to image the interior of the wall and therefore ascertain the layout and status of any iron substructure in the dome. We will show the results from a muon tomography measurement of iron hidden in a mockup of the dome's wall performed at Los Alamos National Lab in 2015. The sensitivity of this technique, and the status of this project will be also discussed. At last, we will show results on muon attenuation radiography of larger shallow targets.

  7. X-ray imaging using amorphous selenium: photoinduced discharge (PID) readout for digital general radiography.

    PubMed

    Rowlands, J A; Hunter, D M

    1995-12-01

    Digital radiographic systems based on photoconductive layers with the latent charge image readout by photoinduced discharge (PID) are investigated theoretically. Previously, a number of different systems have been proposed using sandwiched photoconductor and insulator layers and readout using a scanning laser beam. These systems are shown to have the general property of being very closely coupled (i.e., optimization of one imaging characteristic usually impacts negatively on others). The presence of a condensed state insulator between the photoconductor surface and the readout electrode does, however, confer a great advantage over systems using air gaps with their relatively low breakdown field. The greater breakdown field of condensed state dielectrics permits the modification of the electric field during the period between image formation and image readout. The trade-off between readout speed and noise makes this system suitable for instant general radiography and even rapid sequence radiography, however, the system is unsuitable for the low exposure rates used in fluoroscopy.

  8. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    PubMed Central

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; Zhidkov, A.; Pikuz, T. A.; Nishiuchi, M.; Pikuz, S. A.; Skobelev, I. Yu.; Abdallah, J.; Sakaki, H.; Sagisaka, A.; Pirozhkov, A. S.; Ogura, K.; Fukuda, Y.; Kanasaki, M.; Hasegawa, N.; Nishikino, M.; Kando, M.; Watanabe, Y.; Kawachi, T.; Masuda, S.; Hosokai, T.; Kodama, R.; Kondo, K.

    2015-01-01

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 1021  W/cm2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery, changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~1017  W/cm2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. Femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems. PMID:26330230

  9. Nonlinear increase of X-ray intensities from thin foils irradiated with a 200 TW femtosecond laser

    DOE PAGES

    Faenov, A. Ya.; Colgan, J.; Hansen, S. B.; ...

    2015-09-02

    We report, for the first time, that the energy of femtosecond optical laser pulses, E, with relativistic intensities I > 10 21 W/cm 2 is efficiently converted to X-ray radiation, which is emitted by “hot” electron component in collision-less processes and heats the solid density plasma periphery. As shown by direct high-resolution spectroscopic measurements X-ray radiation from plasma periphery exhibits unusual non-linear growth ~E 4–5 of its power. The non-linear power growth occurs far earlier than the known regime when the radiation reaction dominates particle motion (RDR). Nevertheless, the radiation is shown to dominate the kinetics of the plasma periphery,more » changing in this regime (now labeled RDKR) the physical picture of the laser plasma interaction. Although in the experiments reported here we demonstrated by observation of KK hollow ions that X-ray intensities in the keV range exceeds ~10 17 W/cm 2, there is no theoretical limit of the radiation power. Therefore, such powerful X-ray sources can produce and probe exotic material states with high densities and multiple inner-shell electron excitations even for higher Z elements. As a result, femtosecond laser-produced plasmas may thus provide unique ultra-bright X-ray sources, for future studies of matter in extreme conditions, material science studies, and radiography of biological systems.« less

  10. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy

    PubMed Central

    Ortega, Richard; Devès, Guillaume; Carmona, Asunción

    2009-01-01

    The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles. PMID:19605403

  11. A novel x-ray detector design with higher DQE and reduced aliasing: Theoretical analysis of x-ray reabsoprtion in detector converter material

    NASA Astrophysics Data System (ADS)

    Nano, Tomi; Escartin, Terenz; Karim, Karim S.; Cunningham, Ian A.

    2016-03-01

    The ability to improve visualization of structural information in digital radiography without increasing radiation exposures requires improved image quality across all spatial frequencies, especially at high frequencies. The detective quantum efficiency (DQE) as a function of spatial frequency quantifies image quality given by an x-ray detector. We present a method of increasing DQE at high spatial frequencies by improving the modulation transfer function (MTF) and reducing noise aliasing. The Apodized Aperature Pixel (AAP) design uses a detector with micro-elements to synthesize desired pixels and provide higher DQE than conventional detector designs. A cascaded system analysis (CSA) that incorporates x-ray interactions is used for comparison of the theoretical MTF, noise power spectrum (NPS), and DQE. Signal and noise transfer through the converter material is shown to consist of correlated an uncorrelated terms. The AAP design was shown to improve the DQE of both material types that have predominantly correlated transfer (such as CsI) and predominantly uncorrelated transfer (such as Se). Improvement in the MTF by 50% and the DQE by 100% at the sampling cut-off frequency is obtained when uncorrelated transfer is prevalent through the converter material. Optimizing high-frequency DQE results in improved image contrast and visualization of small structures and fine-detail.

  12. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  13. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    PubMed

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  14. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method

    PubMed Central

    Liu, Fei; Luo, Jianwen; Xie, Yaoqin; Bai, Jing

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods. PMID:27576245

  15. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  16. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  17. Proton radiography for inline treatment planning and positioning verification of small animals.

    PubMed

    Müller, Johannes; Neubert, Christian; von Neubeck, Cläre; Baumann, Michael; Krause, Mechthild; Enghardt, Wolfgang; Bütof, Rebecca; Dietrich, Antje; Lühr, Armin

    2017-11-01

    As proton therapy becomes increasingly well established, there is a need for high-quality clinically relevant in vivo data to gain better insight into the radiobiological effects of proton irradiation on both healthy and tumor tissue. This requires the development of easily applicable setups that allow for efficient, fractionated, image-guided proton irradiation of small animals, the most widely used pre-clinical model. Here, a method is proposed to perform dual-energy proton radiography for inline positioning verification and treatment planning. Dual-energy proton radiography exploits the differential enhancement of object features in two successively measured two-dimensional (2D) dose distributions at two different proton energies. The two raw images show structures that are dominated by energy absorption (absorption mode) or scattering (scattering mode) of protons in the object, respectively. Data post-processing allowed for the separation of both signal contributions in the respective images. The images were evaluated regarding recognizable object details and feasibility of rigid registration to acquired planar X-ray scans. Robust, automated rigid registration of proton radiography and planar X-ray images in scattering mode could be reliably achieved with the animal bedding unit used as registration landmark. Distinguishable external and internal features of the imaged mouse included the outer body contour, the skull with substructures, the lung, abdominal structures and the hind legs. Image analysis based on the combined information of both imaging modes allowed image enhancement and calculation of 2D water-equivalent path length (WEPL) maps of the object along the beam direction. Fractionated irradiation of exposed target volumes (e.g., subcutaneous tumor model or brain) can be realized with the suggested method being used for daily positioning and range determination. Robust registration of X-ray and proton radiography images allows for the irradiation of

  18. Closed bore XMR (CBXMR) systems for aortic valve replacement: Investigation of rotating-anode x-ray tube heat loadability

    PubMed Central

    Bracken, John A.; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2008-01-01

    In order to improve the safety and efficacy of percutaneous aortic valve replacement procedures, a closed bore hybrid x-ray∕MRI (CBXMR) system is proposed in which an x-ray C-arm will be positioned with its isocenter ≈1 m from the entrance of a clinical MRI scanner. This system will harness the complementary strengths of both modalities to improve clinical outcome. A key component of the CBXMR system will be a rotating anode x-ray tube to produce high-quality x-ray images. There are challenges in positioning an x-ray tube in the magnetic fringe field of the MRI magnet. Here, the effects of an external magnetic field on x-ray tube induction motors of radiography x-ray tubes and the corresponding reduction of x-ray tube heat loadability are investigated. Anode rotation frequency fanode was unaffected when the external magnetic field Bb was parallel to the axis of rotation of the anode but decreased when Bb was perpendicular to the axis of rotation. The experimental fanode values agreed with predicted values to within ±3% over a Bb range of 0–30 mT. The MRI fringe field at the proposed location of the x-ray tube mounted on the C-arm (≈4 mT) reduced fanode by only 1%, so x-ray tube heat loadability will not be compromised when using CBXMR systems for percutaneous aortic valve replacement procedures. Eddy current heating power in the rotor due to an MRI fringe field was found to be two orders of magnitude weaker than the heating power produced on the anode due to a fluoroscopic exposure, so eddy current heating had no effect on x-ray tube heat loadability. PMID:18841857

  19. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  20. Ultra-Small-Angle X-ray Scattering – X-ray Photon Correlation Spectroscopy Studies of Incipient Structural Changes in Amorphous Calcium Phosphate Based Dental Composites

    PubMed Central

    Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.

    2012-01-01

    The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649

  1. Ultrasonographic localization of the thyroid gland for its optimal shielding prior to lateral cephalometric radiography: a pilot study

    PubMed Central

    Hurmerinta, Kirsti; Rice, David; Suomalainen, Anni

    2016-01-01

    Objectives: Lateral cephalometric radiography is a common radiographic examination technique in children. The exclusion of the thyroid gland from the primary X-ray beam is important especially with children. However, patient treatment might require displaying the four most cranial cervical vertebrae (C1–C4) for the assessment of cervical vertebral maturation. Our aim was to present a safe way to display C1–C4 and exclude the thyroid gland from the X-ray beam during lateral cephalometric radiography. Methods: The thyroid glands of 25, 7- to 12-year-old patients were localized by ultrasound examination and shielded prior to lateral cephalometric radiography. A roentgen-positive mark was taped on the patient's skin at the level of most cranial level of the thyroid gland in the midsagittal plane. After exposure, each lateral cephalometric radiograph (LCR) was analyzed for the visibility of the cervical vertebrae. The distance between the ear post and the highest edge of the thyroid shield (TS) at the lateral part of the neck was measured and compared with the distance between the centre of the radiological external auditory meatus, and a roentgen-positive mark was made on the LCR. Results: 68% of the LCRs displayed C1–C4, and the rest of them displayed C1–C3. In all of the patients, the highest edge of the TS in the lateral parts of the neck was located in a higher position than the actual most cranial level of the thyroid gland. Conclusions: Despite localizing the thyroid gland prior to lateral cephalometric radiography, simultaneous visualization of C1–C4 and exclusion of the thyroid gland from the primary X-ray beam during lateral cephalometric radiography might not be completely possible in children because of the design and poor fitness of the TS. PMID:26764584

  2. X-ray backscatter radiography with lower open fraction coded masks

    NASA Astrophysics Data System (ADS)

    Muñoz, André A. M.; Vella, Anna; Healy, Matthew J. F.; Lane, David W.; Jupp, Ian; Lockley, David

    2017-09-01

    Single sided radiographic imaging would find great utility for medical, aerospace and security applications. While coded apertures can be used to form such an image from backscattered X-rays they suffer from near field limitations that introduce noise. Several theoretical studies have indicated that for an extended source the images signal to noise ratio may be optimised by using a low open fraction (<0.5) mask. However, few experimental results have been published for such low open fraction patterns and details of their formulation are often unavailable or are ambiguous. In this paper we address this process for two types of low open fraction mask, the dilute URA and the Singer set array. For the dilute URA the procedure for producing multiple 2D array patterns from given 1D binary sequences (Barker codes) is explained. Their point spread functions are calculated and their imaging properties are critically reviewed. These results are then compared to those from the Singer set and experimental exposures are presented for both type of pattern; their prospects for near field imaging are discussed.

  3. Paediatric x-ray radiation dose reduction and image quality analysis.

    PubMed

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  4. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  5. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  6. PLEIADES: a picosecond Compton scattering x-ray source for advanced backlighting and time-resolved material studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, D J; Anderson, S G; Barty, C P

    2003-10-20

    The PLEIADES (Picosecond Laser-Electron Inter-Action for the Dynamical Evaluation of Structures) facility has produced first light at 70 keV. This milestone offers a new opportunity to develop laser-driven, compact, tunable x-ray sources for critical applications such as diagnostics for the National Ignition Facility and time-resolved material studies. The electron beam was focused to 50 {micro}m rms, at 57 MeV, with 260 C of charge, a relative energy spread of 0.2%, and a normalized emittance of 5 mm mrad horizontally and 13 mm mrad vertically. The scattered 820-nm laser pulse had an energy of 180 mJ and a duration of 54more » fs. Initial x-rays were captured with a cooled charge-coupled device using a Cesium Iodide scintillator; the peak photon energy was approximately 78 keV, with a total x-ray flux of 1.3 x 10{sup 6} photons/shot, and the observed angular distribution found to agree very well with three-dimensional codes. Simple K-edge radiography of a tantalum foil showed good agreement with the theoretical divergence-angle dependence of the x-ray energy. Optimization of the x-ray dose is currently underway, with the goal of reaching 10{sup 8} photons per shot and a peak brightness approaching 10{sup 20} photons/mm{sup 2}/mrad{sup 2}/s/0.1%bandwidth.« less

  7. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  8. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  9. Near-isothermal furnace for in situ and real time X-ray radiography solidification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, M., E-mail: maike.becker@dlr.de; Dreißigacker, C.; Klein, S.

    2015-06-15

    In this paper, we present a newly developed near-isothermal X-ray transparent furnace for in situ imaging of solidification processes in thin metallic samples. We show that the furnace is ideally suited to study equiaxed microstructure evolution and grain interaction. To observe the growth dynamics of equiaxed dendritic structures, a minimal temperature gradient across the sample is required. A uniform thermal profile inside a circular sample is achieved by positioning the sample in the center of a cylindrical furnace body surrounded by a circular heater arrangement. Performance tests with the hypo-eutectic Al-15wt.%Cu and the near-eutectic Al-33wt.%Cu alloys validate the near-isothermal charactermore » of the sample environment. Controlled cooling rates of less than 0.5 K min{sup −1} up to 10 K min{sup −1} can be achieved in a temperature range of 720 K–1220 K. Integrated in our rotatable laboratory X-ray facility, X-RISE, the furnace provides a large field of view of 10.5 mm in diameter and a high spatial resolution of ∼4 μm. With the here presented furnace, equiaxed dendrite growth models can be rigorously tested against experiments on metal alloys by, e.g., enabling dendrite growth velocities to be determined as a function of undercooling or solutal fields in front of the growing dendrite to be measured.« less

  10. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  11. X-ray computed tomography for virtually unrolling damaged papyri

    NASA Astrophysics Data System (ADS)

    Allegra, Dario; Ciliberto, Enrico; Ciliberto, Paolo; Petrillo, Giuseppe; Stanco, Filippo; Trombatore, Claudia

    2016-03-01

    The regular format for ancient works of literature was the papyrus roll. Recently many efforts to perform virtual restoration of this archeological artifact have been done. In fact the case of ancient rolled papyrus is very intriguing. Old papyruses are the substrates of very important historical information, probably being the use of papyrus dated to the Pre-Dynastic Period. Papyrus degradation is often very hard so that physical unrolling is sometime absolutely impossible. In this paper, authors describe their effort in setting a new virtual restoration methodology based on software manipulation of X-ray tomographic images. A realistic model, obtained by painting a hieroglyph inscription of Thutmosis III on a papyrus substrate made by the original method described by Plinius the Elder and by pigments and binders compatible with the Egyptian use (ochers with natural glue), was made for the X-ray investigation. A GE Optima 660 64 slice was used to obtain a stack of tomographic slices of the rolled model. Each slice appears as spiral. The intensity variations along the cross-sectional result from ink on the papyrus. The files were elaborated with original software, written by the use of MATLAB high-level language, and the final result was quite similar to the radiography of the physically unrolled sheet.

  12. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  13. System for uncollimated digital radiography

    DOEpatents

    Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent

    2015-08-11

    The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.

  14. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  15. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  16. ESTIMATION OF ADULT PATIENT DOSES FOR CHEST X-RAY EXAMINATIONS AND COMPARISON WITH DIAGNOSTIC REFERENCE LEVELS (DRLs).

    PubMed

    Bas Mor, H; Altinsoy, N; Söyler, I

    2018-05-08

    The aim of this study was to evaluate the radiation doses to patient during chest (posterior anterior/and lateral) examinations. The study was performed in three public hospitals of İstanbul province with a total of 300 adult patients. Entrance surface dose (ESD) measurements were conducted on computed radiography, digital radiography and screen film system. ESD was estimated by using International Atomic Energy Agency (IAEA) model and Davies model which are the common indirect models. Results were compared with diagnostic reference levels from the European Commission, IAEA and National Radiological Protection Board. Although the results are compatible with the international diagnostic reference levels, they present variations between the hospitals. Dose variations for the same type of X-ray examination support the idea that further optimization is possible.

  17. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  18. Systematic search for spherical crystal X-ray microscopes matching 1–25 keV spectral line sources

    DOE PAGES

    Schollmeier, Marius S.; Loisel, Guillaume P.

    2016-12-29

    Spherical-crystal microscopes are used as high-resolution imaging devices for monochromatic x-ray radiography or for imaging the source itself. Crystals and Miller indices (hkl) have to be matched such that the resulting lattice spacing d is close to half the spectral wavelength used for imaging, to fulfill the Bragg equation with a Bragg angle near 90° which reduces astigmatism. Only a few suitable crystal and spectral-line combinations have been identified for applications in the literature, suggesting that x-ray imaging using spherical crystals is constrained to a few chance matches. In this paper, after performing a systematic, automated search over more thanmore » 9 × 10 6 possible combinations for x-ray energies between 1 and 25 keV, for six crystals with arbitrary Miller-index combinations hkl between 0 and 20, we show that a matching, efficient crystal and spectral-line pair can be found for almost every He α or K α x-ray source for the elements Ne to Sn. Finally, using the data presented here it should be possible to find a suitable imaging combination using an x-ray source that is specifically selected for a particular purpose, instead of relying on the limited number of existing crystal imaging systems that have been identified to date.« less

  19. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  20. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  1. Digital radiography: a survey of pediatric dentists.

    PubMed

    Russo, Julie M; Russo, James A; Guelmann, Marcio

    2006-01-01

    The purpose of this study was to: (1) determine the popularity of digital radiography among members of the American Academy of Pediatric Dentistry (AAPD); and (2) report the most common systems in use. An AAPD-approved, voluntary, and anonymous electronic survey was developed and sent to 923 board certified pediatric dentists. Years in practice and in-office x-ray technology (digital or conventional) were inquired about initially. If negative for the use of digital radiography, future consideration for converting to digital radiography was ascertained. For positive responses, more in-depth information was requested. Information on type of system (sensor or phosphor plate), user friendliness, diagnostic ability, patient's comfort, general costs, durability, and parental and overall satisfaction was collected. For most of the questions, a 5-point assessment scale was used. Opportunity for additional comments was provided upon survey completion. Data was analyzed using descriptive statistics. A 32% (296/923) response rate was obtained. Twenty-six percent of practitioners (78/296) implemented digital radiography in their practices, whereas 71% considered future acquisition. Similar distribution for sensor and phosphor plate users was found. Sensor technology was reported to produce faster images, but was less tolerable by young children due to size and thickness. Phosphor plates were considered more children friendly, less expensive, and less durable. Parental satisfaction was very high with great marketing value. Picture quality was comparable to conventional film. Overall, digital radiography users would recommend it to other pediatric dentists. Digital radiography is not yet popular among pediatric dentists. Cost reduction and technology advancement may enhance utilization.

  2. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  3. [Gonad protective effect of radiation protective apron in chest radiography].

    PubMed

    Hashimoto, Masatoshi; Kato, Hideyuki; Fujibuchi, Toshiou; Ochi, Shigehiro; Morita, Fuminori

    2004-12-01

    Depending on the facility, a radiation protective apron (protector) is used to protect the gonad from radiation exposure in chest radiography. To determine the necessity of using a protector during chest radiography, we measured the effect of the protector on the gonad in this study. First, using a human body phantom, we measured the absorbed dose of the female gonad with and without the protector, using a thermoluminescence dosimeter (TLD), and confirmed its protective effect. Using the protector, the absorbed dose was reduced to 28+/-2% and 39+/-4% for field sizes of 14 x 17 inch and 14 x 14 inch, respectively. Next, we used Monte Carlo simulation and confirmed, not only the validity of the actual measurement values, but also the fact that the influence of radiation on the absorbed dose of the gonad was mostly from scattered radiation from inside the body for the 14 x 17 inch field size, and also from the X-ray tube for the 14 x 14 inch field size. Although a certain protective effect is achieved by using the protector, the radiation dose to the gonad is only a few microGy even without a protector. Thus, the risk of a genetic effect would be as small as 10(-8). Given that acceptable risk is below 10(-6), we conclude the use of a radiation protective apron is not necessary for diagnostic chest radiography.

  4. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  5. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  6. Small-animal dark-field radiography for pulmonary emphysema evaluation

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Andre; Meinel, Felix G.; Hellbach, Katharina; Bech, Martin; Velroyen, Astrid; Müller, Mark; Bamberg, Fabian; Nikolaou, Konstantin; Reiser, Maximilian F.; Yildirim, Ali Ã.-.; Eickelberg, Oliver; Pfeiffer, Franz

    2014-03-01

    Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide and emphysema is one of its main components. The disorder is characterized by irreversible destruction of the alveolar walls and enlargement of distal airspaces. Despite the severe changes in the lung tissue morphology, conventional chest radiographs have only a limited sensitivity for the detection of mild to moderate emphysema. X-ray dark-field is an imaging modality that can significantly increase the visibility of lung tissue on radiographic images. The dark-field signal is generated by coherent, small-angle scattering of x-rays on the air-tissue interfaces in the lung. Therefore, morphological changes in the lung can be clearly visualized on dark-field images. This is demonstrated by a preclinical study with a small-animal emphysema model. To generate a murine model of pulmonary emphysema, a female C57BL/6N mouse was treated with a single orotracheal application of porcine pancreatic elastase (80 U/kg body weight) dissolved in phosphate-buffered saline (PBS). Control mouse received PBS. The mice were imaged using a small-animal dark-field scanner. While conventional x-ray transmission radiography images revealed only subtle indirect signs of the pulmonary disorder, the difference between healthy and emphysematous lungs could be clearly directly visualized on the dark-field images. The dose applied to the animals is compatible with longitudinal studies. The imaging results correlate well with histology. The results of this study reveal the high potential of dark-field radiography for clinical lung imaging.

  7. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    PubMed

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  9. Maintaining radiation exposures as low as reasonably achievable (ALARA) for dental personnel operating portable hand-held x-ray equipment.

    PubMed

    McGiff, Thomas J; Danforth, Robert A; Herschaft, Edward E

    2012-08-01

    Clinical experience indicates that newly available portable hand-held x-ray units provide advantages compared to traditional fixed properly installed and operated x-ray units in dental radiography. However, concern that hand-held x-ray units produce higher operator doses than fixed x-ray units has caused regulatory agencies to mandate requirements for use of hand-held units that go beyond those recommended by the manufacturer and can discourage the use of this technology. To assess the need for additional requirements, a hand-held x-ray unit and a pair of manikins were used to measure the dose to a simulated operator under two conditions: exposures made according to the manufacturer's recommendations and exposures made according to manufacturer's recommendation except for the removal of the x-ray unit's protective backscatter shield. Dose to the simulated operator was determined using an array of personal dosimeters and a pair of pressurized ion chambers. The results indicate that the dose to an operator of this equipment will be less than 0.6 mSv y⁻¹ if the device is used according to the manufacturer's recommendations. This suggests that doses to properly trained operators of well-designed, hand-held dental x-ray units will be below 1.0 mSv y⁻¹ (2% of the annual occupational dose limit) even if additional no additional operational requirements are established by regulatory agencies. This level of annual dose is similar to those reported as typical dental personnel using fixed x-ray units and appears to satisfy the ALARA principal for this class of occupational exposures.

  10. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  11. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  12. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...

  13. X-Ray Exam: Forearm

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: Forearm What's in this article? What ... Have Questions Print What It Is A forearm X-ray is a safe and painless test that ...

  14. X-Ray Exam: Ankle

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What ... Have Questions Print What It Is An ankle X-ray is a safe and painless test that ...

  15. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  16. X-Ray Exam: Wrist

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: Wrist What's in this article? What ... Have Questions Print What It Is A wrist X-ray is a safe and painless test that ...

  17. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  18. X-Ray Exam: Pelvis

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: Pelvis What's in this article? What ... Have Questions Print What It Is A pelvis X-ray is a safe and painless test that ...

  19. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  20. Experimental validation of a multi-energy x-ray adapted scatter separation method

    NASA Astrophysics Data System (ADS)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-12-01

    Both in radiography and computed tomography (CT), recently emerged energy-resolved x-ray photon counting detectors enable the identification and quantification of individual materials comprising the inspected object. However, the approaches used for these operations require highly accurate x-ray images. The accuracy of the images is severely compromised by the presence of scattered radiation, which leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in CT. The aim of the present study was to experimentally evaluate a recently introduced partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. For this purpose, a prototype x-ray system was used. Several radiographic acquisitions of an anthropomorphic thorax phantom were performed. Reference primary images were obtained via the beam-stop (BS) approach. The attenuation images acquired from PASSSA-corrected data showed a substantial increase in local contrast and internal structure contour visibility when compared to uncorrected images. A substantial reduction of scatter induced bias was also achieved. Quantitatively, the developed method proved to be in relatively good agreement with the BS data. The application of the proposed scatter correction technique lowered the initial normalized root-mean-square error (NRMSE) of 45% between the uncorrected total and the reference primary spectral images by a factor of 9, thus reducing it to around 5%.

  1. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  2. [Development of image quality assurance support system using image recognition technology in radiography in lacked images of chest and abdomen].

    PubMed

    Shibuya, Toru; Kato, Kyouichi; Eshima, Hidekazu; Sumi, Shinichirou; Kubo, Tadashi; Ishida, Hideki; Nakazawa, Yasuo

    2012-01-01

    In order to provide a precise radiography for diagnosis, it is required that we avoid radiography with defects by having enough evaluation. Conventionally, evaluation was performed only by observation of a radiological technologist (RT). The evaluation support system was developed for providing a high quality assurance without depending on RT observation only. The evaluation support system, called as the Image Quality Assurance Support System (IQASS), is characterized in that "image recognition technology" for the purpose of diagnostic radiography of chest and abdomen areas. The technique of the system used in this study. Of the 259 samples of posterior-anterior (AP) chest, lateral chest, and upright abdominal x-rays, the sensitivity and specificity was 93.1% and 91.8% in the chest AP, 93.3% and 93.6% in the chest lateral, and 95.0% and 93.8% in the upright abdominal x-rays. In the light of these results, it is suggested that AIQAS could be applied to practical usage for the RT.

  3. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  4. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  5. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  6. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  7. Modeling of photocurrent and lag signals in amorphous selenium x-ray detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddiquee, Sinchita; Kabir, M. Z., E-mail: kabir@encs.concordia.ca

    2015-07-15

    A mathematical model for transient photocurrent and lag signal in x-ray imaging detectors has been developed by considering charge carrier trapping and detrapping in the energy distributed defect states under exponentially distributed carrier generation across the photoconductor. The model for the transient and steady-state carrier distributions and hence the photocurrent has been developed by solving the carrier continuity equation for both holes and electrons. The residual (commonly known as lag signal) current is modeled by solving the trapping rate equations considering the thermal release and trap filling effects. The model is applied to amorphous selenium (a-Se) detectors for both chestmore » radiography and mammography. The authors analyze the dependence of the residual current on various factors, such as x-ray exposure, applied electric field, and temperature. The electron trapping and detrapping mostly determines the residual current in a-Se detectors. The lag signal is more prominent in chest radiographic detector than in mammographic detectors. The model calculations are compared with the published experimental data and show a very good agreement.« less

  8. High efficiency microcolumnar Lu2O3:Eu scintillator thin film for hard X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Marton, Z.; Bhandari, H. B.; Brecher, C.; Miller, S. R.; Singh, B.; Nagarkar, V. V.

    2013-03-01

    We have developed microstructured Lu2O3:Eu scintillator films capable of providing spatial resolution on the order of micrometers for hard X-ray imaging. In addition to their extraordinary resolution, Lu2O3:Eu films simultaneously provide high absorption efficiency for 20 to 100 keV X-rays, and bright 610 nm emission, with intensity rivalling that of the brightest known scintillators. At present, high spatial resolution of such a magnitude is achieved using ultra-thin scintillators measuring only about 1 to 5 μm in thickness, which limits absorption efficiency to ~3% for 12 keV X-rays and less than 0.1% for 20 to 100 keV X-rays, resulting in excessive measurement time and exposure to the specimen. Lu2O3:Eu would significantly improve that (99.9% @12 keV and 30% @ 70 keV). Important properties and features of our Lu2O3:Eu scintillator material, fabricated by our electron-beam physical vapour deposition (EB-PVD) process, combines superior density of 9.5 g/cm3, microcolumnar structure emitting 48000 photons/MeV whose wavelength is an ideal match for the underlying CCD detector array. We grew thin films measuring 5-50μm in thickness as well as covering areas up to 5 × 5 cm2 which can be a suitable basis for microtomography, digital radiography as well as CT and hard X-ray Micro-Tomography (XMT).

  9. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar; Consejo Nacional de Investigaciones Científicas y Técnicas; Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cementmore » ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.« less

  10. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  11. Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-07-01

    Our aim in this study is to derive an identification limit on a dosimeter for not disturbing a medical image when patients wear a small-type optically stimulated luminescence (OSL) dosimeter on their bodies during X-ray diagnostic imaging. For evaluation of the detection limit based on an analysis of X-ray spectra, we propose a new quantitative identification method. We performed experiments for which we used diagnostic X-ray equipment, a soft-tissue-equivalent phantom (1-20 cm), and a CdTe X-ray spectrometer assuming one pixel of the X-ray imaging detector. Then, with the following two experimental settings, corresponding X-ray spectra were measured with 40-120 kVp and 0.5-1000 mAs at a source-to-detector distance of 100 cm: (1) X-rays penetrating a soft-tissue-equivalent phantom with the OSL dosimeter attached directly on the phantom, and (2) X-rays penetrating only the soft-tissue-equivalent phantom. Next, the energy fluence and errors in the fluence were calculated from the spectra. When the energy fluence with errors concerning these two experimental conditions was estimated to be indistinctive, we defined the condition as the OSL dosimeter not being identified on the X-ray image. Based on our analysis, we determined the identification limit of the dosimeter. We then compared our results with those for the general irradiation conditions used in clinics. We found that the OSL dosimeter could not be identified under the irradiation conditions of abdominal and chest radiography, namely, one can apply the OSL dosimeter to measurement of the exposure dose in the irradiation field of X-rays without disturbing medical images.

  12. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  13. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  14. The dose received by patients during dental X-ray examination and the technical condition of radiological equipment.

    PubMed

    Bekas, Marcin; Pachocki, Krzysztof A

    2013-01-01

    Implementation of X-ray dental examination is associated with the patients exposure to ionizing radation. The size of the exposure depends on the type of medical procedure, the technical condition of the X-ray unit and selected exposure conditions. The aim of this study was to determine the dose received by patients during dental X-ray examination and the assessment of the technical condition of medical equipment, The study included a total number of 79 dental X-ray units located in the region of Mazovia. The test methods for the assessment of the technical condition of dental X-ray units and measurement of radiation dose received by patients were based on the procedures elaborated in the Department of Radiation Hygiene and Radiobiology in the National Institute of Public Health - National Institute of Hygiene (Warszawa, Poland) accredited for the certification of compliance with PN-EN 17025. The research found that 69.6% fully meets the criteria set out in the Polish legislation regarding the safe use of ionizing radiation in medicine, while 30.4% did not meet some of them. A tenfold difference in the size of the dose received by patients during dental X-ray examinations was discovered. For example, during a radiography of the canine teeth of a child, the recorded entrance surface dose (ESD) ranged from 72.8 to 2430 microGy with the average value of 689.1 microGy. Cases where the dose reference level defined in Polish legislation of 5 mGy was exceeded were also found. CONCKUSIONS: It is essential to constantly monitor the situation regarding the technical condition of X-ray units which affects the size of the population's exposure to ionizing radiation as well as raising dentists' awareness about the effects of X-rays on the human body.

  15. In-line phase contrast micro-CT reconstruction for biomedical specimens.

    PubMed

    Fu, Jian; Tan, Renbo

    2014-01-01

    X-ray phase contrast micro computed tomography (micro-CT) can non-destructively provide the internal structure information of soft tissues and low atomic number materials. It has become an invaluable analysis tool for biomedical specimens. Here an in-line phase contrast micro-CT reconstruction technique is reported, which consists of a projection extraction method and the conventional filter back-projection (FBP) reconstruction algorithm. The projection extraction is implemented by applying the Fourier transform to the forward projections of in-line phase contrast micro-CT. This work comprises a numerical study of the method and its experimental verification using a biomedical specimen dataset measured at an X-ray tube source micro-CT setup. The numerical and experimental results demonstrate that the presented technique can improve the imaging contrast of biomedical specimens. It will be of interest for a wide range of in-line phase contrast micro-CT applications in medicine and biology.

  16. Trace fossils revealed through x-radiography in facies analysis of Smackover Formation, southwest Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, R.A.; King, D.T. Jr.

    The use of x-radiography has been applied to slabbed cores of Jurassic Smackover limestones from southwestern Alabama to enhance the complete petrologic description of the rocks. Through x-radiography, trace fossils have been revealed in what would otherwise appear to be homogeneous rock. In these biogenic structures, organic material, partly fecal in origin, is concentrated as infill packing in actively filled burrows. A microreducing environment within the burrow results in the mineralization by finely disseminated FeS/sub 2/. The density difference between FeS/sub 2/, which has a high absorption coefficient, and the surrounding calcium carbonate highlights the burrows in the x-radiographs. Thismore » characteristic burrow mineralization is shown well in the Smackover where a Zoophycus-Thalassinoides trace-fossil assemblage has been identified. Zoophycus, a feeding structure, is characterized by concave-upward traces with whorled peaks, and is best seen in slabs cut perpendicular to bedding. Thalassinoides is a dwelling structure characterized by a boxwork burrow system and is best seen in cores cut parallel to bedding. This assemblage is restricted to facies that is laterally persistent throughout the Smackover in most of Escambia County, Alabama. This trace-fossil assemblage is found in an oolitic pelletal packstone. This unit is overlain by an oolitic grainstone and is stratigraphically above a sparsely fossiliferous, laminated wackestone and packstone. Trace fossils in this horizon are abundant, but the traces are not found in stratigraphically adjacent lithofacies. Detecting these otherwise unseen trace fossils by x-radiography assisted the paleoenvironmental interpretation of this depositional facies as a low-energy subwave-base carbonate-shelf deposit.« less

  17. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  18. Watching proteins function with time-resolved x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  19. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  20. Digital Radiography Qualification of Tube Welding

    NASA Technical Reports Server (NTRS)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  1. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  2. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  3. Abdominal x-ray

    MedlinePlus

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...

  4. X-Ray Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  5. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, A M; Anderson, S G; Betts, S

    2005-05-19

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less

  6. Calibrating the X-ray attenuation of liquid water and correcting sample movement artefacts during in operando synchrotron X-ray radiographic imaging of polymer electrolyte membrane fuel cells.

    PubMed

    Ge, Nan; Chevalier, Stéphane; Hinebaugh, James; Yip, Ronnie; Lee, Jongmin; Antonacci, Patrick; Kotaka, Toshikazu; Tabuchi, Yuichiro; Bazylak, Aimy

    2016-03-01

    Synchrotron X-ray radiography, due to its high temporal and spatial resolutions, provides a valuable means for understanding the in operando water transport behaviour in polymer electrolyte membrane fuel cells. The purpose of this study is to address the specific artefact of imaging sample movement, which poses a significant challenge to synchrotron-based imaging for fuel cell diagnostics. Specifically, the impact of the micrometer-scale movement of the sample was determined, and a correction methodology was developed. At a photon energy level of 20 keV, a maximum movement of 7.5 µm resulted in a false water thickness of 0.93 cm (9% higher than the maximum amount of water that the experimental apparatus could physically contain). This artefact was corrected by image translations based on the relationship between the false water thickness value and the distance moved by the sample. The implementation of this correction method led to a significant reduction in false water thickness (to ∼0.04 cm). Furthermore, to account for inaccuracies in pixel intensities due to the scattering effect and higher harmonics, a calibration technique was introduced for the liquid water X-ray attenuation coefficient, which was found to be 0.657 ± 0.023 cm(-1) at 20 keV. The work presented in this paper provides valuable tools for artefact compensation and accuracy improvements for dynamic synchrotron X-ray imaging of fuel cells.

  7. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  8. X-ray online detection for laser welding T-joint of Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Zhan, Xiaohong; Bu, Xing; Qin, Tao; Yu, Haisong; Chen, Jie; Wei, Yanhong

    2017-05-01

    In order to detect weld defects in laser welding T-joint of Al-Li alloy, a real-time X-ray image system is set up for quality inspection. Experiments on real-time radiography procedure of the weldment are conducted by using this system. Twin fillet welding seam radiographic arrangement is designed according to the structural characteristics of the weldment. The critical parameters including magnification times, focal length, tube current and tube voltage are studied to acquire high quality weld images. Through the theoretical and data analysis, optimum parameters are settled and expected digital images are captured, which is conductive to automatic defect detection.

  9. Radiation dose and magnification in pelvic X-ray: EOS™ imaging system versus plain radiographs.

    PubMed

    Chiron, P; Demoulin, L; Wytrykowski, K; Cavaignac, E; Reina, N; Murgier, J

    2017-12-01

    In plain pelvic X-ray, magnification makes measurement unreliable. The EOS™ (EOS Imaging, Paris France) imaging system is reputed to reproduce patient anatomy exactly, with a lower radiation dose. This, however, has not been assessed according to patient weight, although both magnification and irradiation are known to vary with weight. We therefore conducted a prospective comparative study, to compare: (1) image magnification and (2) radiation dose between the EOS imaging system and plain X-ray. The EOS imaging system reproduces patient anatomy exactly, regardless of weight, unlike plain X-ray. A single-center comparative study of plain pelvic X-ray and 2D EOS radiography was performed in 183 patients: 186 arthroplasties; 104 male, 81 female; mean age 61.3±13.7years (range, 24-87years). Magnification and radiation dose (dose-area product [DAP]) were compared between the two systems in 186 hips in patients with a mean body-mass index (BMI) of 27.1±5.3kg/m 2 (range, 17.6-42.3kg/m 2 ), including 7 with morbid obesity. Mean magnification was zero using the EOS system, regardless of patient weight, compared to 1.15±0.05 (range, 1-1.32) on plain X-ray (P<10 -5 ). In patients with BMI<25, mean magnification on plain X-ray was 1.15±0.05 (range, 1-1.25) and, in patients with morbid obesity, 1.22±0.06 (range, 1.18-1.32). The mean radiation dose was 8.19±2.63dGy/cm 2 (range, 1.77-14.24) with the EOS system, versus 19.38±12.37dGy/cm 2 (range, 4.77-81.75) with plain X-ray (P<10 -4 ). For BMI >40, mean radiation dose was 9.36±2.57dGy/cm 2 (range, 7.4-14.2) with the EOS system, versus 44.76±22.21 (range, 25.2-81.7) with plain X-ray. Radiation dose increased by 0.20dGy with each extra BMI point for the EOS system, versus 0.74dGy for plain X-ray. Magnification did not vary with patient weight using the EOS system, unlike plain X-ray, and radiation dose was 2.5-fold lower. 3, prospective case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  11. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  12. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  13. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  14. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  15. Emphysema diagnosis using X-ray dark-field imaging at a laser-driven compact synchrotron light source

    PubMed Central

    Schleede, Simone; Meinel, Felix G.; Bech, Martin; Herzen, Julia; Achterhold, Klaus; Potdevin, Guillaume; Malecki, Andreas; Adam-Neumair, Silvia; Thieme, Sven F.; Bamberg, Fabian; Nikolaou, Konstantin; Bohla, Alexander; Yildirim, Ali Ö.; Loewen, Roderick; Gifford, Martin; Ruth, Ronald; Eickelberg, Oliver; Reiser, Maximilian; Pfeiffer, Franz

    2012-01-01

    In early stages of various pulmonary diseases, such as emphysema and fibrosis, the change in X-ray attenuation is not detectable with absorption-based radiography. To monitor the morphological changes that the alveoli network undergoes in the progression of these diseases, we propose using the dark-field signal, which is related to small-angle scattering in the sample. Combined with the absorption-based image, the dark-field signal enables better discrimination between healthy and emphysematous lung tissue in a mouse model. All measurements have been performed at 36 keV using a monochromatic laser-driven miniature synchrotron X-ray source (Compact Light Source). In this paper we present grating-based dark-field images of emphysematous vs. healthy lung tissue, where the strong dependence of the dark-field signal on mean alveolar size leads to improved diagnosis of emphysema in lung radiographs. PMID:23074250

  16. Monte Carlo derivation of filtered tungsten anode X-ray spectra for dose computation in digital mammography.

    PubMed

    Paixão, Lucas; Oliveira, Bruno Beraldo; Viloria, Carolina; de Oliveira, Marcio Alves; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2015-01-01

    Derive filtered tungsten X-ray spectra used in digital mammography systems by means of Monte Carlo simulations. Filtered spectra for rhodium filter were obtained for tube potentials between 26 and 32 kV. The half-value layer (HVL) of simulated filtered spectra were compared with those obtained experimentally with a solid state detector Unfors model 8202031-H Xi R/F & MAM Detector Platinum and 8201023-C Xi Base unit Platinum Plus w mAs in a Hologic Selenia Dimensions system using a direct radiography mode. Calculated HVL values showed good agreement as compared with those obtained experimentally. The greatest relative difference between the Monte Carlo calculated HVL values and experimental HVL values was 4%. The results show that the filtered tungsten anode X-ray spectra and the EGSnrc Monte Carlo code can be used for mean glandular dose determination in mammography.

  17. An in-line optical image translator with applications in x-ray videography.

    PubMed

    Picot, P A; Cardinal, H N; Fenster, A

    1990-01-01

    Many applications in radiography require, or would benefit from, the ability to translate, i.e. move, an optical image in the detector plane. In this paper, we describe the design and characterization of a prism-based optical image translator for insertion into existing XRII-video imaging systems. A pair of prisms rotatable about the optical axis form a very compact in-line optical image translator for installation in the parallel light path between an x-ray image intensifier and its video camera. Rotation of the prisms translates the XRII optical image on the camera target. With the addition of x-ray and light collimators to limit the image to a single video line, x-ray streak images may be acquired. By rotating an object in the x-ray beam during a streak, a complete computed tomography (CT) data set may be acquired. This image translator can translate an image anywhere in the focal plane of a 50-mm-output lens within a 40-mm-diam circle. The prisms have an aperture of 50 mm, permitting an optical speed of F/2 with a 50-mm output lens. The design is insensitive to angular alignment errors. This image translator is achromatic, since the spectral width of the output phosphorus of image intensifiers is sufficient to introduce blurring in a nonacrhomatic design. A prism-based image translator introduces image distortion, since the prisms do not operate at minimum deviation. The distortion is less than 4% over all parts of a typical detector area, and less than 1% in the central region of the image.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  19. A New Approach in Coal Mine Exploration Using Cosmic Ray Muons

    NASA Astrophysics Data System (ADS)

    Darijani, Reza; Negarestani, Ali; Rezaie, Mohammad Reza; Fatemi, Syed Jalil; Akhond, Ahmad

    2016-08-01

    Muon radiography is a technique that uses cosmic ray muons to image the interior of large scale geological structures. The muon absorption in matter is the most important parameter in cosmic ray muon radiography. Cosmic ray muon radiography is similar to X-ray radiography. The main aim in this survey is the simulation of the muon radiography for exploration of mines. So, the production source, tracking, and detection of cosmic ray muons were simulated by MCNPX code. For this purpose, the input data of the source card in MCNPX code were extracted from the muon energy spectrum at sea level. In addition, the other input data such as average density and thickness of layers that were used in this code are the measured data from Pabdana (Kerman, Iran) coal mines. The average thickness and density of these layers in the coal mines are from 2 to 4 m and 1.3 gr/c3, respectively. To increase the spatial resolution, a detector was placed inside the mountain. The results indicated that using this approach, the layers with minimum thickness about 2.5 m can be identified.

  20. Development and Characterization of a 16.3 keV X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Barrios, M. A.; Schneider, M. B.; Khan, S.; Chen, H.; Coppari, F.; Rygg, R.; Hohenberger, M.; Albert, F.; Moody, J.; Ralph, J.; Kemp, G. E.; Regan, S. P.

    2014-10-01

    X-ray sources at the National Ignition Facility are needed for radiography of in-flight capsules in inertial confinement fusion experiments and for diffraction studies of materials at high pressures. In the former case, we want to optimize signal to noise and signal over background ratios for the radiograph, in the latter case, we want to minimize high-energy emission from the backlighter that creates background on the diffraction data. Four interleaved shots at NIF were taken in one day, with laser irradiances on a Zr backlighter target ranging from 5 to 14 × 1015 W/cm2. Two shots were for source optimization as a function of laser irradiance. X-ray fluxes were measured with the time-resolved NIF X-ray Spectrometer (NXS) and the DANTE array of calibrated, filtered diodes. Two shots were optimized to make backscatter measurements with the FABS and NBI optical power systems. The backscatter levels are investigated to look for correlation with hot electron populations inferred from high-energy x rays measured with the FFLEX broadband spectrometer. Results from all shots are presented and compared with models. Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  1. Shape-from-silhouette for three-dimensional reconstruction from x-ray radiography

    NASA Astrophysics Data System (ADS)

    Simioni, E.; Ratti, F.; Poletto, L.

    2011-06-01

    We present the application of the shape-from-silhouette algorithm to reconstruct the 3D profile of handworks from a set of X-ray absorption images taken at different angles around the object. The acquisition technique is similar to tomography, but the number of images that are required to reconstruct the 3D appearance is very low compared to tomography, therefore the acquisition time is substantially reduced. Some reference points are placed on a structure corotating with the object and are acquired on the images for calibration and registration. The shape-from-silhouette algorithm gives finally the 3D appearance of the object. We present the analysis of a tin pendant from the Venetic area, VI century b.C., that was completely hidden by corrosion products and solid ground at the moment of the retrieval. The 3D reconstruction shows that the pendant is a very elaborated piece, with two embraced figures that were completely invisible before restoration.

  2. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  3. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  4. Mitigation of Hot Electrons from Laser-Plasma Instabilities in Laser-Generated X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Fein, Jeffrey R.

    This thesis describes experiments to understand and mitigate energetic or "hot" electrons from laser-plasma instabilities (LPIs) in an effort to improve radiographic techniques using laser-generated x-ray sources. Initial experiments on the OMEGA-60 laser show evidence of an underlying background generated by x-rays with energies over 10 keV on radiographs using backlit pinhole radiography, whose source is consistent with hard x-rays from LPI-generated hot electrons. Mitigating this background can dramatically reduce uncertainties in measured object densities from radiographs and may be achieved by eliminating the target components in which LPIs are most likely to grow. Experiments were performed on the OMEGA-EP laser to study hot electron production from laser-plasma instabilities in high-Z plasmas relevant to laser-generated x-ray sources. Measurements of hard x-rays show a dramatic reduction in hot-electron energy going from low-Z CH to high-Z Au targets, in a manner that is consistent with steepening electron density profiles that were also measured. The profile-steepening, we infer, increased thresholds of LPIs and contributed to the reduced hot-electron production at higher Z. Possible mechanisms for generating hot electrons include the two-plasmon decay and stimulated Raman scattering instabilities driven by multiple laser beams. Radiation hydrodynamic simulations using the CRASH code predict that both of these instabilities were above threshold with linear threshold parameters that decreased with increasing Z due to steepening length-scales, as well as enhanced laser absorption and increased collisional and Landau damping of electron plasma waves. Another set of experiments were performed on the OMEGA-60 laser to test whether hard x-ray background could be mitigated in backlit pinhole imagers by controlling laser-plasma instabilities. Based on the results above, we hypothesized that LPIs and hot electrons that lead to hard x-ray background would be reduced

  5. A case for ZnO nanowire field emitter arrays in advanced x-ray source applications

    NASA Astrophysics Data System (ADS)

    Robinson, Vance S.; Bergkvist, Magnus; Chen, Daokun; Chen, Jun; Huang, Mengbing

    2016-09-01

    Reviewing current efforts in X-ray source miniaturization reveals a broad spectrum of applications: Portable and/or remote nondestructive evaluation, high throughput protein crystallography, invasive radiotherapy, monitoring fluid flow and particulate generation in situ, and portable radiography devices for battle-front or large scale disaster triage scenarios. For the most part, all of these applications are being addressed with a top-down approach aimed at improving portability, weight and size. That is, the existing system or a critical sub-component is shrunk in some manner in order to miniaturize the overall package. In parallel to top-down x-ray source miniaturization, more recent efforts leverage field emission and semiconductor device fabrication techniques to achieve small scale x-ray sources via a bottom-up approach where phenomena effective at a micro/nanoscale are coordinated for macro-scale effect. The bottom-up approach holds potential to address all the applications previously mentioned but its entitlement extends into new applications with much more ground-breaking potential. One such bottom-up application is the distributed x-ray source platform. In the medical space, using an array of microscale x-ray sources instead of a single source promises significant reductions in patient dose as well as smaller feature detectability and fewer image artifacts. Cold cathode field emitters are ideal for this application because they can be gated electrostatically or via photonic excitation, they do not generate excessive heat like other common electron emitters, they have higher brightness and they are relatively compact. This document describes how ZnO nanowire field emitter arrays are well suited for distributed x-ray source applications because they hold promise in each of the following critical areas: emission stability, simple scalable fabrication, performance, radiation resistance and photonic coupling.

  6. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  7. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  8. Response of optically stimulated luminescence dosimeters subjected to X-rays in diagnostic energy range

    NASA Astrophysics Data System (ADS)

    Musa, Y.; Hashim, S.; Karim, M. K. A.; Bakar, K. A.; Ang, W. C.; Salehhon, N.

    2017-05-01

    The use of optically stimulated luminescence (OSL) for dosimetry applications has recently increased considerably due to availability of commercial OSL dosimeters (nanoDots) for clinical use. The OSL dosimeter has a great potential to be used in clinical dosimetry because of its prevailing advantages in both handling and application. However, utilising nanoDot OSLDs for dose measurement in diagnostic radiology can only be guaranteed when the performance and characteristics of the dosimeters are apposite. In the present work, we examined the response of commercially available nanoDot OSLD (Al2O3:C) subjected to X-rays in general radiography. The nanoDots response with respect to reproducibility, dose linearity and signal depletion were analysed using microStar reader (Landauer, Inc., Glenwood, IL). Irradiations were performed free-in-air using 70, 80 and 120 kV tube voltages and tube currents ranging from 10 - 100 mAs. The results showed that the nanoDots exhibit good linearity and reproducibility when subjected to diagnostic X-rays, with coefficient of variations (CV) ranging between 2.3% to 3.5% representing a good reproducibility. The results also indicated average of 1% signal reduction per readout. Hence, the nanoDots showed a promising potential for dose measurement in general X-ray procedure.

  9. Proton radiography based on near-threshold Cerenkov radiation

    DOEpatents

    van Bibber, Karl A.; Dietrich, Frank S.

    2003-01-01

    A Cerenkov imaging system for charged particle radiography that determines the energy loss of the charged particle beam passing through an object. This energy loss information provides additional detail on target densities when used with traditional radiographic techniques like photon or x-ray radiography. In this invention a probe beam of 800 MeV to 50 GeV/c charged particles is passed through an object to be imaged, an imaging magnetic spectrometer, to a silicon aerogel Cerenkov radiator where the charged particles emitted Cerenkov light proportional to their velocity. At the same beam focal plane, a particle scintillator produces a light output proportional to the incident beam flux. Optical imaging systems relay the Cerenkov and scintillator information to CCD's or other measurement equipment. A ratio between the Cerenkov and scintillator is formed, which is directly proportional to the line density of the object for each pixel measured. By rotating the object, tomographic radiography may be performed. By applying pulses of beam, discrete time-step movies of dynamic objects may be made.

  10. Model and reconstruction of a K-edge contrast agent distribution with an X-ray photon-counting detector

    PubMed Central

    Meng, Bo; Cong, Wenxiang; Xi, Yan; De Man, Bruno; Yang, Jian; Wang, Ge

    2017-01-01

    Contrast-enhanced computed tomography (CECT) helps enhance the visibility for tumor imaging. When a high-Z contrast agent interacts with X-rays across its K-edge, X-ray photoelectric absorption would experience a sudden increment, resulting in a significant difference of the X-ray transmission intensity between the left and right energy windows of the K-edge. Using photon-counting detectors, the X-ray intensity data in the left and right windows of the K-edge can be measured simultaneously. The differential information of the two kinds of intensity data reflects the contrast-agent concentration distribution. K-edge differences between various matters allow opportunities for the identification of contrast agents in biomedical applications. In this paper, a general radon transform is established to link the contrast-agent concentration to X-ray intensity measurement data. An iterative algorithm is proposed to reconstruct a contrast-agent distribution and tissue attenuation background simultaneously. Comprehensive numerical simulations are performed to demonstrate the merits of the proposed method over the existing K-edge imaging methods. Our results show that the proposed method accurately quantifies a distribution of a contrast agent, optimizing the contrast-to-noise ratio at a high dose efficiency. PMID:28437900

  11. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  12. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  13. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  14. Advanced applications of cosmic-ray muon radiography

    NASA Astrophysics Data System (ADS)

    Perry, John

    The passage of cosmic-ray muons through matter is dominated by the Coulomb interaction with electrons and atomic nuclei. The muon's interaction with electrons leads to continuous energy loss and stopping through the process of ionization. The muon's interaction with nuclei leads to angular diffusion. If a muon stops in matter, other processes unfold, as discussed in more detail below. These interactions provide the basis for advanced applications of cosmic-ray muon radiography discussed here, specifically: 1) imaging a nuclear reactor with near horizontal muons, and 2) identifying materials through the analysis of radiation lengths weighted by density and secondary signals that are induced by cosmic-ray muon trajectories. We have imaged a nuclear reactor, type AGN-201m, at the University of New Mexico, using data measured with a particle tracker built from a set of sealed drift tubes, the Mini Muon Tracker (MMT). Geant4 simulations were compared to the data for verification and validation. In both the data and simulation, we can identify regions of interest in the reactor including the core, moderator, and shield. This study reinforces our claims for using muon tomography to image reactors following an accident. Warhead and special nuclear materials (SNM) imaging is an important thrust for treaty verification and national security purposes. The differentiation of SNM from other materials, such as iron and aluminum, is useful for these applications. Several techniques were developed for material identification using cosmic-ray muons. These techniques include: 1) identifying the radiation length weighted by density of an object and 2) measuring the signals that can indicate the presence of fission and chain reactions. By combining the radiographic images created by tracking muons through a target plane with the additional fission neutron and gamma signature, we are able to locate regions that are fissionable from a single side. The following materials were imaged

  15. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  16. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  18. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  19. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  20. High-durability surface-discharge flash x-ray tube driven by a two-stage Marx pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, Arimitsu; Sato, Eiichi; Kimura, Shingo; Oizumi, Teiji; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-02-01

    We developed a high-durability flash x-ray tube with a plate-shaped ferrite cathode for the use in the field of biomedical engineering and technology. The surface-discharge cathode was very useful for generating stable flash x rays. This flash x-ray generator consisted of the following essential components: a high-voltage power supply, an energy-storage condenser of 97 nF, a two-stage Marx type pulser, an oil diffusion pump, and a flash x-ray tube. This x-ray tube was of a diode which was connected to the turbo molecular pump and had plate-shaped anode and cathode electrodes. The cathode electrode was made of ferrite, and its edge was covered with a thin gold film by means of the spattering in order to decrease contact resistance. The space between the anode and cathode electrodes could be regulated from the outside of the x-ray rube. The two condensers in Marx circuit were charged from 50 to 70 kV by a power supply, and the condensers were connected in series after closing a gap switch. Thus the maximum output voltages from the pulser were about two times the charged voltages. In this experiment, the maximum tube voltage and the current were about 110 kV and 0.8 kA, respectively. The pulse widths were less than 140 ns, and the maximum x-ray intensity was 1.27 (mu) C/kg at 0.5 m per pulse. The size of the focal spot and the maximum repetition rate were about 2 X 2.5 mm and 50 Hz (fps), respectively.