Sample records for x-ray sem-edx analysis

  1. Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id

    Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.

  2. Nail Damage (Severe Onychodystrophy) Induced by Acrylate Glue: Scanning Electron Microscopy and Energy Dispersive X-Ray Investigations

    PubMed Central

    Pinteala, Tudor; Chiriac, Anca Eduard; Rosca, Irina; Larese Filon, Francesca; Pinteala, Mariana; Chiriac, Anca; Podoleanu, Cristian; Stolnicu, Simona; Coros, Marius Florin; Coroaba, Adina

    2017-01-01

    Background Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) techniques have been used in various fields of medical research, including different pathologies of the nails; however, no studies have focused on obtaining high-resolution microscopic images and elemental analysis of disorders caused by synthetic nails and acrylic adhesives. Methods Damaged/injured fingernails caused by the use of acrylate glue and synthetic nails were investigated using SEM and EDX methods. Results SEM and EDX proved that synthetic nails, acrylic glue, and nails damaged by contact with acrylate glue have a different morphology and different composition compared to healthy human nails. Conclusions SEM and EDX analysis can give useful information about the aspects of topography (surface sample), morphology (shape and size), hardness or reflectivity, and the elemental composition of nails. PMID:28232921

  3. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory


    Recent interest in monitoring and speciation of particulate matter has led to increased application of scanning electron microscopy (SEM) coupled with energy-dispersive x-ray analysis (EDX) to individual particle analysis. SEM/EDX provides information on the size, shape, co...

  4. Computer-aided screening system for cervical precancerous cells based on field emission scanning electron microscopy and energy dispersive x-ray images and spectra

    NASA Astrophysics Data System (ADS)

    Jusman, Yessi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Kurnia, Rahmadi; Osman, Noor Azuan Bin Abu; Teoh, Kean Hooi

    2016-10-01

    The capability of field emission scanning electron microscopy and energy dispersive x-ray spectroscopy (FE-SEM/EDX) to scan material structures at the microlevel and characterize the material with its elemental properties has inspired this research, which has developed an FE-SEM/EDX-based cervical cancer screening system. The developed computer-aided screening system consisted of two parts, which were the automatic features of extraction and classification. For the automatic features extraction algorithm, the image and spectra of cervical cells features extraction algorithm for extracting the discriminant features of FE-SEM/EDX data was introduced. The system automatically extracted two types of features based on FE-SEM/EDX images and FE-SEM/EDX spectra. Textural features were extracted from the FE-SEM/EDX image using a gray level co-occurrence matrix technique, while the FE-SEM/EDX spectra features were calculated based on peak heights and corrected area under the peaks using an algorithm. A discriminant analysis technique was employed to predict the cervical precancerous stage into three classes: normal, low-grade intraepithelial squamous lesion (LSIL), and high-grade intraepithelial squamous lesion (HSIL). The capability of the developed screening system was tested using 700 FE-SEM/EDX spectra (300 normal, 200 LSIL, and 200 HSIL cases). The accuracy, sensitivity, and specificity performances were 98.2%, 99.0%, and 98.0%, respectively.

  5. 1998 Technology Showcase. JOAP International Condition Monitoring Conference.

    DTIC Science & Technology

    1998-04-01

    Systems using Automated SEM/ EDX and New Diagnostic Routines 276 N. W Farrant & T. Luckhurst ADVANCED DIAGNOSTIC SYSTEMS Model-Based Diagnostics of Gas...Microscopy with Energy Dispersive X-Ray (SEM/ EDX ) micro analysis packages and Energy Dispersive X-Ray Fluorescence (EDXRF) analytical equipment. Therqfore...wear particles separated by ferrogram method. a- I WEAR PARTICLE A SLAS 97 (HOME PAGE) Fig I Home Page NONFE;RROUS MATERIAL A wW~ a48 -1, rV fr , ý b

  6. GUIDELINES FOR THE APPLICATION OF SEM/EDX ANALYTICAL TECHNIQUES FOR FINE AND COARSE PM SAMPLES

    EPA Science Inventory

    Scanning Electron Microscopy (SEM) coupled with Energy-Dispersive X-ray analysis (EDX) is a powerful tool in the characterization and source apportionment of environmental particulate matter (PM), providing size, chemistry, and morphology of particles as small as a few tenths ...

  7. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  8. Determination of anisotropy and multimorphology in fly ash based geopolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Irfan, E-mail: mirfanwazir@gmail.com; Azizli, Khairun, E-mail: khairun-azizli@petronas.com.my; Sufian, Suriati, E-mail: suriati@petronas.com.my

    2015-07-22

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  9. Determination of anisotropy and multimorphology in fly ash based geopolymers

    NASA Astrophysics Data System (ADS)

    Khan, M. Irfan; Azizli, Khairun; Sufian, Suriati; Man, Zakaria; Siyal, Ahmer Ali; Ullah, Hafeez

    2015-07-01

    In this study, Malaysian coal fly ash-based geopolymers were investigated for its morphology and chemical composition using scanning electron microscopy coupled with energy dispersive X-rays (SEM-EDX). Geopolymer was synthesized using sodium hydroxide as activator. SEM studies revealed multiphasous structure of the material, composed of geopolymeric gel, partially reacted fly ashparticles and selectively leached particles. EDX analysis confirmed the chemical composition of different regions. Infra red spectroscopic studies supported the SEM-EDX analysis by confirming presence of unreacted quartzite and mullite in geopolymers. It is concluded that geopolymers possese a non uniform chemistry through out the structure.

  10. Characterization of As-polluted soils by laboratory X-ray-based techniques coupled with sequential extractions and electron microscopy: the case of Crocette gold mine in the Monte Rosa mining district (Italy).

    PubMed

    Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo

    2018-06-24

    Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.

  11. Single Particulate SEM-EDX Analysis of Iron-Containing Coarse Particulate Matter in an Urban Environment: Sources and Distribution of Iron within Cleveland, Ohio

    EPA Science Inventory

    The physicochemical properties of coarse-mode, iron-containing particles, and their temporal and spatial distributions are poorly understood. Single particle analysis combining x-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively ...

  12. Remineralization of enamel subsurface lesions with casein phosphopeptide-amorphous calcium phosphate: A quantitative energy dispersive X-ray analysis using scanning electron microscopy: An in vitro study

    PubMed Central

    Hegde, Mithra N; Moany, Anu

    2012-01-01

    Aim: The objective of this study was to quantitatively evaluate the remineralization potential of casein phosphopeptide-amor-phous calcium phosphate paste on enamel subsurface lesions using scanning electron microscopy with energy dispersive X-ray analysis (SEM-EDX). Materials and Methods: Ninety enamel specimens were prepared from extracted human molars. All specimens were evaluated for mineral content (% weight) using SEM-EDX. The specimens were placed in demineralizing solution for four days to produce artificial carious lesions. The mineral content (calcium/phosphorus ratios, Ca/P ratios) was remeasured using SEM-EDX. The specimens were then randomly assigned to five study groups and one control group of 15 specimens per group. Except for the control group, all group specimens were incubated in remineralizing paste (CPP-ACP paste) for 7, 14, 21, 28, and 35 days twice daily for three minutes. The control group received no treatment with remineralizing paste. All the 90 specimens were stored in artificial saliva at 37°C. After remineralization, the mineral content (% weight) of the samples was measured using SEM-EDX. Results: All the study groups showed very highly significant differences between Ca/P ratios of the demineralized and remineralized samples. There was no significant difference seen in the control group. Conclusion: CPP-ACP paste could significantly remineralize the artificial enamel subsurface lesions in vitro: the remineralizing rates increasing with the time for which the samples were kept in the remineralizing paste. Energy dispersive X-ray analysis is an efficient way to quantitatively assess the changes in mineral content during demineralization and in vitro remineralization processes. PMID:22368338

  13. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  14. Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning

    NASA Astrophysics Data System (ADS)

    Jany, B. R.; Janas, A.; Krok, F.

    2017-11-01

    The quantitative composition of metal alloy nanowires on InSb(001) semiconductor surface and gold nanostructures on germanium surface is determined by blind source separation (BSS) machine learning (ML) method using non negative matrix factorization (NMF) from energy dispersive X-ray spectroscopy (EDX) spectrum image maps measured in a scanning electron microscope (SEM). The BSS method blindly decomposes the collected EDX spectrum image into three source components, which correspond directly to the X-ray signals coming from the supported metal nanostructures, bulk semiconductor signal and carbon background. The recovered quantitative composition is validated by detailed Monte Carlo simulations and is confirmed by separate cross-sectional TEM EDX measurements of the nanostructures. This shows that SEM EDX measurements together with machine learning blind source separation processing could be successfully used for the nanostructures quantitative chemical composition determination.

  15. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and aerosol time-of-flight mass spectrometry (ATOFMS) single particle analysis of metallurgy plant emissions.

    PubMed

    Arndt, J; Deboudt, K; Anderson, A; Blondel, A; Eliet, S; Flament, P; Fourmentin, M; Healy, R M; Savary, V; Setyan, A; Wenger, J C

    2016-03-01

    The chemical composition of single particles deposited on industrial filters located in three different chimneys of an iron-manganese (Fe-Mn) alloy manufacturing plant have been compared using aerosol time-of-flight mass spectrometry (ATOFMS) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). Very similar types of particles were observed using both analytical techniques. Calcium-containing particles dominated in the firing area of the sintering unit, Mn and/or Al-bearing particles were observed at the cooling area of the sintering unit, while Mn-containing particles were dominant at the smelting unit. SEM-EDX analysis of particles collected downstream of the industrial filters showed that the composition of the particles emitted from the chimneys is very similar to those collected on the filters. ATOFMS analysis of ore samples was also performed to identify particulate emissions that could be generated by wind erosion and manual activities. Specific particle types have been identified for each emission source (chimneys and ore piles) and can be used as tracers for source apportionment of ambient PM measured in the vicinity of the industrial site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Scanning Electron Microscopy-Energy-Dispersive X-Ray (SEM/EDX): A Rapid Diagnostic Tool to Aid the Identification of Burnt Bone and Contested Cremains.

    PubMed

    Ellingham, Sarah T D; Thompson, Tim J U; Islam, Meez

    2018-03-01

    This study investigates the use of Scanning electron microscopy-energy-dispersive X-ray (SEM-EDX) as a diagnostic tool for the determination of the osseous origin of samples subjected to different temperatures. Sheep (Ovis aries) ribs of two experimental groups (fleshed and defleshed) were burned at temperatures of between 100°C and 1100°C in 100°C increments and subsequently analyzed with the SEM-EDX to determine the atomic percentage of present elements. Three-factor ANOVA analysis showed that neither the exposure temperature, nor whether the burning occurred with or without soft tissue present had any significant influence on the bone's overall elemental makeup (p > 0.05). The Ca/P ratio remained in the osseous typical range of between 1.6 and 2.58 in all analyzed samples. This demonstrates that even faced with high temperatures, the overall gross elemental content and atomic percentage of elements in bone remain stable, creating a unique "fingerprint" for osseous material, even after exposure to extreme conditions. © 2017 American Academy of Forensic Sciences.

  17. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Juan; Arey, Bruce W.; Yang, Li

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid. A synthesized AlOOH particle is used as a model in the liquid SEM illustration. Our results demonstrate that particles can be imaged in the SE modemore » with good resolution. The AlOOH EDX spectrum shows significant signal from the Al compared with deionized water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical details in how to conduct liquid SEM imaging and EDX analysis using SALVI and reduce potential pitfalls using this approach for other researchers.« less

  18. Microscopic and Metallurgical Aspects of the Space Shuttle Columbia Accident Investigation and Reconstruction

    NASA Technical Reports Server (NTRS)

    McDaniels, Steven J.

    2004-01-01

    The Space Shuttle Columbia was descending for a landing at the Kennedy Space Center (KSC) on February 1, 2003. Approximately 20 minutes prior to touchdown, the Columbia began disintegrating over the western United States; the majority of debris eventually impacted in eastern Texas and western Louisiana. A monumental effort eventually recovered approximately 84,000 pieces of debris, approximately 38% of the Orbiter's original dry weight. The debris was transported to KSC, where the items were catalogued and evaluated. Critical areas of interest, such as the left and right leading edge surfaces and the underside of the ship, were placed upon a grid to aid in the reconstruction. Items of interest included metallic structures, reinforced carbon-carbon composites, and ceramic heat insulation tiles. Many of the leading edge elements had re-solidified metallic deposits spattered on them. These deposits became known as slag and were one of the main focuses of the investigation. In order to help determine the sequence of events inside the left wing during the accident, the slag's composition, layering order, and directionality of deposition were studied. A myriad of analytical tests were performed in an attempt to ascertain the compositional and depositional characteristics of selected slag deposits, including the ordering of deposited layers within each individual slag deposit harvested. Initially, Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy (SEM/EDX) were performed to quickly characterize the overall composition of individual slag deposits: SEM utilizes a narrowlyfocused high-energy electron beam impinging upon a specimen. The incident beam excites and liberates lower energy secondary electrons, which are detected and analyzed, providing a visual representation of the sample's surface topography. EDX also relies on an incident electron beam, except an EDX unit measures X-ray energies generated by the impinging beam. Each element generates a unique X-ray signature; the EDX detector measures these discreet energies. EDX actually penetrates approximately 2 microns into the bulk of the sample. However, random examination of various portions of slag, coupled with the semiquantitative nature of the SEM/EDX analysis, did not yield convincingly pertinent data. Therefore, X-ray dot mapping was conducted, which provided more understandable data, both in terms of slag layering and composition. An X-ray dot map is generated by performing numerous EDX scans for individual elements, then compiling the scans in a visual representation. Eventually, specimens consisting of not only the slag, but of the adjacent RCC substrate as well were cross-sectioned. X-Ray dot mapping of the materialographicallymounted and -polished cross- sections provided a visual representation of both the layering sequence and compositional characteristics of the slag. Contemporaneously, Electron Spectroscopy for Chemical Analysis/X-Ray Photoelectron Spectroscopy (ESCA/XPS) and powdered X-Ray Diffraction (XRD) were performed to further characterize the deposits and to attempt to identify what, if any, compounds were present. The ESCA/XPS analysis allowed the analyst to "sputter" into the sample with an electron gun, aiding in the identification of the layering sequence. XPS uses photons, rather than electrons, which impinge upon the surface of the sample. XPS measures the electrons emitted from within the first 5 nm of the sample's surface. The XRD measures the scatter angles of incident X-rays; the angle and intensity of scatter depend upon the crystalline structure of the pulverized sample. XRD is considered a qualitative rather than quantitative technique. ESCA/XPS revealed that the final layer to deposit was predominantly carbonaceous. XRD was successful in identifying specific compounds, such as Al 2O3, Al and/or Al3 21SiO47, mullite (3(Al2)O3 -SiO2), and nickel-aluminides. Eventually, Electron MicroProbe Analysis (EMPA) was conducted on the marialographically-prepared cross- sections of selected slag deposits. Microprobe combines SEM and Wavelength Dispersive X-Ray Spectroscopy (WDS), and, like EDX, uses a narrowly-focused high-energy electron beam impinging upon a specimen to elicit, in the case of EPMA, characteristic X-rays with specific wavelengths. This quantitative, analytical tool proved the most useful in determining depositional layering and composition of the slag deposits. This information was utilized in verifying the location of the breach in the left leading edge of the wing of the Columbia.

  19. Three-dimensional mapping of soil chemical characteristics at micrometric scale: Statistical prediction by combining 2D SEM-EDX data and 3D X-ray computed micro-tomographic images

    NASA Astrophysics Data System (ADS)

    Hapca, Simona

    2015-04-01

    Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.

  20. Preparation of N-doped ZnO-loaded halloysite nanotubes catalysts with high solar-light photocatalytic activity.

    PubMed

    Cheng, Zhi-Lin; Sun, Wei

    2015-01-01

    N-doped ZnO nanoparticles were successfully assembled into hollow halloysite nanotubes (HNTs) by using the impregnation method. The catalysts based on N-doped ZnO-loaded HNTs nanocomposites (N-doped ZnO/HNTs) were characterized by X-ray diffraction (XRD), transmission electron microscopy-energy dispersive X-ray (TEM-EDX), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), UV-vis and Fourier transform infrared spectroscopy (FT-IR) techniques. The XRD pattern showed ZnO nanoparticles with hexagonal structure loaded on HNTs. The TEM-EDX analysis indicated ZnO particles with the crystal size of ca.10 nm scattered in hollow structure of HNTs, and furthermore the concentration of N atom in nanocomposites was up to 2.31%. The SEM-EDX verified most of N-ZnO nanoparticles existing in hollow nanotubes of HNTs. Besides containing an obvious ultraviolet absorbance band, the UV-vis spectra of the N-doped ZnO/HNTs catalysts showed an available visible absorbance band by comparing to HNTs and non-doped ZnO/HNTs. The photocatalytic activity of the N-doped ZnO/HNTs catalysts was evaluated by the degradation of methyl orange (MO) solution with the concentration of 20 mg/L under the simulated solar-light irradiation. The result showed that the N-doped ZnO/HNTs catalyst exhibited a desirable solar-light photocatalytic activity.

  1. Gunshot residue testing in suicides: Part I: Analysis by scanning electron microscopy with energy-dispersive X-ray.

    PubMed

    Molina, D Kimberley; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a deceased person's hands, including scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX) and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Each of these techniques has been extensively studied, especially on living individuals. The current studies (Part I and Part II) were designed to compare the use and utility of the different GSR testing techniques in a medical examiner setting. In Part I, the hands of deceased persons who died from undisputed suicidal handgun wounds were tested for GSR by SEM-EDX over a 4-year period. A total of 116 cases were studied and analyzed for caliber of weapon, proximity of wound, and results of GSR testing, including spatial deposition upon the hands. It was found that in only 50% of cases with a known self-inflicted gunshot wound was SEM-EDX positive for at least 1 specific particle for GSR. In 18% of the cases there was a discernible pattern (spatial distribution) of the particles on the hand such that the manner in which the weapon was held could be determined. Since only 50% of cases where the person is known to have fired a weapon immediately prior to death were positive for GSR by SEM-EDX, this test should not be relied upon to determine whether a deceased individual has discharged a firearm. Furthermore, in only 18% of cases was a discernible pattern present indicating how the firearm was held. The low sensitivity, along with the low percentage of cases with a discernible pattern, limits the usefulness of GSR test results by SEM-EDX in differentiating self-inflicted from non-self-inflicted wounds.

  2. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    PubMed

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  3. Comparative analysis of textile metal threads from liturgical vestments and folk costumes in Croatia

    NASA Astrophysics Data System (ADS)

    Šimić, Kristina; Zamboni, Ivana; Fazinić, Stjepko; Mudronja, Domagoj; Sović, Lea; Gouasmia, Sabrina; Soljačić, Ivo

    2018-02-01

    Textile is essential for everyday life in all societies. It is used in clothes for protection and warmth but also to indicate class and position, show wealth and social status. Threads from precious metals have also been used in combination with fibres for decoration in order to create luxury fabrics for secular and religious elites. We performed elemental analysis of 17th to 20th century metal threads from various textile articles of liturgical vestments and festive folk costumes collected in the museums of northern, southern and central Croatian regions. In order to determine elemental concentrations in threads we performed comparative X-ray Spectroscopy measurements using: (i) Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) at the Faculty of Textile Technology, (ii) X-ray Fluorescence Spectroscopy (XRF) at the Croatian Conservation Institute and (iii) Particle Induced X-ray Spectroscopy (PIXE) at the Ruđer Bošković Institute Tandem Accelerator Facility using ion micro beam. Rutherford Backscattering Spectroscopy (RBS) was performed as well on selected samples. SEM-EDX investigations of cross-sections along with the surfaces were also performed. In this work we report and discuss the results obtained by the three X-ray methods and RBS for major (gold, silver, copper) and minor elements on different threads like stripes, wires and "srma" (metal thread wrapped around textile yarn).

  4. SEM-EDX analysis of an unknown "known" white powder found in a shipping container from Peru

    NASA Astrophysics Data System (ADS)

    Albright, Douglas C.

    2009-05-01

    In 2008, an unknown white powder was discovered spilled inside of a shipping container of whole kernel corn during an inspection by federal inspectors in the port of Baltimore, Maryland. The container was detained and quarantined while a sample of the powder was collected and sent to a federal laboratory where it was screened using chromatography for the presence of specific poisons and pesticides with negative results. Samples of the corn kernels and the white powder were forwarded to the Food and Drug Administration, Forensic Chemistry Center for further analysis. Stereoscopic Light Microscopy (SLM), Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry (SEM/EDX), and Polarized Light Microscopy/Infrared Spectroscopy (PLM-IR) were used in the analysis of the kernels and the unknown powder. Based on the unique particle analysis by SLM and SEM as well as the detection of the presence of aluminum and phosphorous by EDX, the unknown was determined to be consistent with reacted aluminum phosphide (AlP). While commonly known in the agricultural industry, aluminum phosphide is relatively unknown in the forensic community. A history of the use and acute toxicity of this compound along with some very unique SEM/EDX analysis characteristics of aluminum phosphide will be discussed.

  5. A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis

    NASA Technical Reports Server (NTRS)

    Lane, John

    2009-01-01

    A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.

  6. Bone matrix calcification during embryonic and postembryonic rat calvarial development assessed by SEM-EDX spectroscopy, XRD, and FTIR spectroscopy.

    PubMed

    Henmi, Akiko; Okata, Hiroshi; Anada, Takahisa; Yoshinari, Mariko; Mikami, Yasuto; Suzuki, Osamu; Sasano, Yasuyuki

    2016-01-01

    Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.

  7. Initial stages of microbiologically influenced tarnishing on titanium after 20 months of immersion in freshwater.

    PubMed

    Moreno, D A; Cano, E; Ibars, J R; Polo, J L; Montero, F; Bastidas, J M

    2004-05-01

    This paper studies the initial stages of iridescent tarnishes on titanium heat exchanger tubes in contact with running freshwater on the river Tagus in Spain for up to 20 months. Electrochemical impedance spectroscopy (EIS), scanning electron microscopy [(SEM with energy dispersive X-ray (EDX)] and X-ray photoelectron spectroscopy (XPS) in conjunction with argon-ion sputtering were the techniques used. The EIS data indicated a capacitive behavior, showing a semicircle that was better defined as the experimental time increased, indicating a decreasing tarnishing resistance of titanium. XPS and EDX results indicated that the main elements identified were calcium, phosphorus, nitrogen, and iron. The amount of these elements was higher on the tarnished titanium specimens than on the untarnished specimens. SEM analysis showed the presence of diatoms in the iridescent tarnishes on titanium tubes. Copyright 2003 Springer-Verlag

  8. Simultaneous recovery of phosphorus and potassium as magnesium potassium phosphate from synthetic sewage sludge effluent.

    PubMed

    Nakao, Satoshi; Nishio, Takayuki; Kanjo, Yoshinori

    2017-10-01

    Bench-scale experiments were performed to investigate simultaneous recovery of phosphorus and potassium from synthetic sewage sludge effluent as crystals of magnesium potassium phosphate (MPP or struvite-(K), MgKPO 4 ·6H 2 O). The optimal pH of MPP formation was 11.5. A phosphorus level of at least 3 mM and K:P molar ratio over 3 were necessary to form MPP, which showed higher content rate of phosphorus and potassium in precipitate. MPP crystallization was confirmed by analysing the precipitates using a scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) apparatus and an X-ray Diffractometer (XRD). Inhibition of MPP crystallization by iron and aluminium was confirmed by precipitation experiments and SEM-EDX analysis. Potassium ratio against magnesium in precipitate decreased for iron concentrations greater than over 0.2 mM and aluminium concentrations over 0.05 mM.

  9. Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, characterization and photocatalytic degradation of methylene blue dye

    NASA Astrophysics Data System (ADS)

    Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul

    2016-09-01

    Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.

  10. Application of biocompatible magnetite nanoparticles for the removal of arsenic and copper from water

    NASA Astrophysics Data System (ADS)

    Iconaru, S. L.; Beuran, M.; Turculet, C. S.; Negoi, I.; Teleanu, G.; Prodan, A. M.; Motelica-Heino, M.; Guégan, R.; Ciobanu, C. S.; Jiga, G.; Predoi, Daniela

    2018-02-01

    The progress of nanotechnology made possible the use of nanomaterials as adsorbents and magnetic iron oxides represents one of the first generations of nanoscale materials used in environment technologies [1]. A systematic characterization of commercial magnetite (Fe3O4) is presented in this research. The commercial (Fe3O4) magnetic adsorbents were characterized by various characterizations methods such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX). This study was also focused on the study of adsorption isotherms and the kinetics evaluation. X-ray studies indicated that As3+ and Cu2+ removed by Fe3O4 did not seem to alter the structure of Fe3O4 but they were highlighted in the EDX analysis. In addition, the SEM studies were consistent with the XRD results. The rate of adsorption of contaminants, in contaminated solutions decreases when the amount of contaminant increases in all experiments performed. The results revealed that Fe3O4 nanoparticles are promising candidates which could be used as sorbents for the removal of arsenic from the marine environment, for site remediation and groundwater treatment.

  11. Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.

    PubMed

    Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima

    2014-03-01

    In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandraboss, V.L.; Natanapatham, L.; Karthikeyan, B.

    Graphical abstract: The hetero-junctions that are formed between the ZnO and the Bi provide an internal electric field that facilitates separation of the electron-hole pairs and induces faster carrier migration. Thus they often enhanced photocatalytic reaction. - Highlights: • Bi-doped ZnO nanocomposite material was prepared by precipitation method. • Characterized by XRD, HR-SEM with EDX, UV–visible DRS and FT-RAMAN analysis. • Bi-doped ZnO nanocomposite material was used to photodegradation of Congo red. • Mechanism and photocatalytic effect of nanocomposite material have been discussed. - Abstract: Bismuth (Bi)-doped ZnO nanocomposite material was prepared by precipitation method with doping precursors of bismuthmore » nitrate pentahydrate and oxalic acid, characterized by X-ray diffraction (XRD), High Resolution-Scanning Electron Microscopy (HR-SEM) with Energy Dispersive X-ray (EDX) analysis, UV–visible Diffuse Reflectance Spectroscopy (UV–visible DRS) and Fourier Transform-Raman (FT-RAMAN) analysis. The enhanced photocatalytic activity of the Bi-doped ZnO is demonstrated through photodegradation of Congo red under UV-light irradiation. The mechanism of photocatalytic effect of Bi-doped ZnO nanocomposite material has been discussed.« less

  13. Laser-induced Multi-energy Processing in Diamond Growth

    DTIC Science & Technology

    2012-05-01

    microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions

  14. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  15. Chemical form analysis of reaction products in Cs-adsorption on stainless steel by means of HAXPES and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Kobata, M.; Okane, T.; Nakajima, K.; Suzuki, E.; Ohwada, K.; Kobayashi, K.; Yamagami, H.; Osaka, M.

    2018-01-01

    In this study, for the understandings of Cesium (Cs) adsorption behavior on structure materials in severe accidents in a light water nuclear reactor, the chemical state of Cs and its distribution on the surface of SUS304 stainless steel (SS) with different Si concentrations was investigated by hard X-ray photoelectron spectroscopy (HAXPES) and scanning electron microscope/energy dispersive X-ray spectroscopy (SEM/EDX). As a result, it was found that Cs is selectively adsorbed at the site where Si distributes with a high concentration. CsFeSiO4 is the dominant Cs products in case of low Si content, while Cs2Si2O5 and Cs2Si4O9 are formed in addition to CsFeSiO4 in case of high Si content. The chemical forms of the Cs compounds produced in the adsorption process on the SS surface have a close correlation with the concentration and chemical states of Si originally included in SS.

  16. The hoard of Beçin—non-destructive analysis of the silver coins

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Schreiner, M.; Mäder, M.; Melcher, M.; Guerra, M.; Salomon, J.; Radtke, M.; Alram, M.; Schindel, N.

    2010-05-01

    We report the results of an analytical investigation on 416 silver-copper coins stemming from the Ottoman Empire (end of 16th and beginning of 17th centuries), using synchrotron micro X-ray fluorescence analysis (SRXRF). In the past, analyses had already been conducted with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy with energy dispersive X-ray spectrometry (SEM/EDX) and proton induced X-ray emission spectroscopy (PIXE). With this combination of techniques it was possible to confirm the fineness of the coinage as well as to study the provenance of the alloy used for the coins. For the interpretation of the data statistical analysis (principal component analysis—PCA) has been performed. A definite local assignment was explored and significant clustering was obtained regarding the minor and trace elements composing the coin alloys.

  17. Analytical investigation of Mudéjar polychrome on the carpentry in the Casa de Pilatos palace in Seville using non-destructive XRF and complementary techniques

    NASA Astrophysics Data System (ADS)

    Garrote, M. A.; Robador, M. D.; Perez-Rodriguez, J. L.

    2017-02-01

    The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art.

  18. Analytical investigation of Mudéjar polychrome on the carpentry in the Casa de Pilatos palace in Seville using non-destructive XRF and complementary techniques.

    PubMed

    Garrote, M A; Robador, M D; Perez-Rodriguez, J L

    2017-02-15

    The pigments, execution technique and repainting used on the polychrome wood ceilings and doors in the Casa de Pilatos (Seville, Spain) were studied using portable X-ray fluorescence equipment. Cross-sections of small samples were also analysed by optical microscopy, SEM with EDX analysis, micro-Raman and micro-infrared spectroscopy and X-ray diffraction. These carpentry works are magnificent examples of the Mudéjar art made in Spain in the early 16th century. Portable X-ray fluorescence gave good information on the different components of the polychrome. The SEM-EDX study of the surfaces of small samples gave information on their components and also characterized the compounds that had been deposited or formed by environmental contamination or by the alteration of some pigments. The SEM-EDX study of cross-sections facilitated the characterization of all layers and pigments from the support to the most external layer. The following pigments were characterized: red (cinnabar/vermillion, lead oxide, iron oxides and orpiment/realgar), black (carbon black), white (white lead and titanium barium white), yellow-orange-red-brown (orpiment/realgar and iron oxides), green (chromium oxide), blue (indigo blue and ultramarine blue), and gilding (gold leaf on bole). False gold, bronze and brass were also found. The pigments were applied with the oil painting technique over a support layer that had been primed with animal glue. This support layer was gypsum in some cases and white lead in others. This study is essential to the polychrome conservation of the studied artwork, and it will help clarify uncertainties in the history and painting of Mudéjar art. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires

    NASA Astrophysics Data System (ADS)

    Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.

    Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.

  20. Deposition of magnesium nitride thin films on stainless steel-304 substrates by using a plasma focus device

    NASA Astrophysics Data System (ADS)

    Ramezani, Amir Hoshang; Habibi, Maryam; Ghoranneviss, Mahmood

    2014-08-01

    In this research, for the first time, we synthesize magnesium nitride thin films on 304-type stainless steel substrates using a Mather-type (2 kJ) plasma focus (PF) device. The films of magnesium nitride are coated with different number of focus shots (like 15, 25 and 35) at a distance of 8 cm from the anode tip and at 0° angular position with respect to the anode axis. For investigation of the structural properties and surface morphology of magnesium nitride films, we utilized the X-ray diffractometer (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis, respectively. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. Furthermore, Vicker's microhardness is used to study the mechanical properties of the deposited films. The results show that the degree of crystallinity of deposited thin films (from XRD), the average size of particles and surface roughness (from AFM), crystalline growth of structures (from SEM) and the hardness values of the films depend on the number of focus shots. The EDX analysis demonstrates the existence of the elemental composition of magnesium in the deposited samples.

  1. [The "silica" component in the PM10 of an urban site].

    PubMed

    De Berardis, Barbara; Incocciati, Emma; Massera, S; Gargaro, G; Paoletti, L

    2007-01-01

    In vivo and in vitro toxicological studies have shown that the aged fracturated crystalline silica, which is a component of airborne particulate, exerts an important inflammatory action on airways. The evaluation of the concentration level of airborne crystalline silica in an urban area is an important research subject in order to determine the exposure levels of the general population. The aim was to study the seasonal trend of the quartz (the most common form of crystalline silica) concentration levels in the particulate inhalable faction (PM10) in the urban area of Rome. PM10, sampled by a cascade impactor, was analysed by scanning electron microscopy, equipped with a thin-window system for X-ray microanalysis (SEM/EDX) for qualitative analysis. Parallely the concentration levels of quartz in the particulate were determined by X-ray diffractometry (XRD) for quantitative analysis, using the NIOSH 7500 method (NIOSH, 1994). From September 2004 to October 2005 the abundance of silica particles, evaluated by SEM/EDX was in the range 1.6/10.4%, with a concentration level of free crystalline silica in the range 0.25/2.87 microg/mi. The equivalent diameter of silica particles ranged from 0.3 to 10.5 mircom, moreover, more than 87% of particles showed a diameter less than 2.5 microm. The correlations between SEM/EDX and XRD data seem to suggest that the airborne silica particles in the urban location studied consisted mostly of crystalline silica. Moreover, the data suggest the existence of a significant contribution of silica particles due to southwest wind carrying a fine dust from the Sahara desert to Mediterranean Europe.

  2. Elucidating the Wavelength Dependence of Phonon Scattering in Nanoparticle-Matrix Composites using Phonon Spectroscopy

    DTIC Science & Technology

    2016-07-11

    composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically   Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3

  3. Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp.

    NASA Astrophysics Data System (ADS)

    Du, Liangwei; Xian, Liang; Feng, Jia-Xun

    2011-03-01

    In this work, the fungus Penicillium was used for rapid extra-/intracellular biosynthesis of gold nanoparticles. AuCl4 - ions reacted with the cell filtrate of Penicillium sp. resulting in extracellular biosynthesis of gold nanoparticles within 1 min. Intracellular biosynthesis of gold nanoparticles was obtained by incubating AuCl4 - solution with fungal biomass for 8 h. The gold nanoparticles were characterized by means of visual observation, UV-Vis absorption spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The extracellular nanoparticles exhibited maximum absorbance at 545 nm in UV-Vis spectroscopy. The XRD spectrum showed Bragg reflections corresponding to the gold nanocrystals. TEM exhibited the formed spherical gold nanoparticles in the size range from 30 to 50 nm with an average size of 45 nm. SEM and TEM revealed that the intracellular gold nanoparticles were well dispersed on the cell wall and within the cell, and they are mostly spherical in shape with an average diameter of 50 nm. The presence of gold was confirmed by EDX analysis.

  4. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.« less

  5. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury

    PubMed Central

    Li, Cen; Yang, Hongxia; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao

    2016-01-01

    Zuotai (gTso thal) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100–800 nm, which commonly further aggregate into 1–30 μm loosely amorphous particles. XRD test shows that β-HgS, S8, and α-HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai, and it would play a positive role in interpreting this mysterious Tibetan drug. PMID:27738409

  6. Chemical Species, Micromorphology, and XRD Fingerprint Analysis of Tibetan Medicine Zuotai Containing Mercury.

    PubMed

    Li, Cen; Yang, Hongxia; Du, Yuzhi; Xiao, Yuancan; Zhandui; Sanglao; Wang, Zhang; Ladan, Duojie; Bi, Hongtao; Wei, Lixin

    2016-01-01

    Zuotai ( gTso thal ) is one of the famous drugs containing mercury in Tibetan medicine. However, little is known about the chemical substance basis of its pharmacodynamics and the intrinsic link of different samples sources so far. Given this, energy dispersive spectrometry of X-ray (EDX), scanning electron microscopy (SEM), atomic force microscopy (AFM), and powder X-ray diffraction (XRD) were used to assay the elements, micromorphology, and phase composition of nine Zuotai samples from different regions, respectively; the XRD fingerprint features of Zuotai were analyzed by multivariate statistical analysis. EDX result shows that Zuotai contains Hg, S, O, Fe, Al, Cu, and other elements. SEM and AFM observations suggest that Zuotai is a kind of ancient nanodrug. Its particles are mainly in the range of 100-800 nm, which commonly further aggregate into 1-30  μ m loosely amorphous particles. XRD test shows that β -HgS, S 8 , and α -HgS are its main phase compositions. XRD fingerprint analysis indicates that the similarity degrees of nine samples are very high, and the results of multivariate statistical analysis are broadly consistent with sample sources. The present research has revealed the physicochemical characteristics of Zuotai , and it would play a positive role in interpreting this mysterious Tibetan drug.

  7. Synthesis, characterizations and anti-bacterial activities of pure and Ag doped CdO nanoparticles by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Sivakumar, S.; Venkatesan, A.; Soundhirarajan, P.; Khatiwada, Chandra Prasad

    2015-02-01

    In the present study, synthesized pure and Ag (1%, 2%, and 3%) doped Cadmium Oxide (CdO) nanoparticles by chemical precipitation method. Then, the synthesized products were characterized by thermo gravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, Ultra violet-Vis diffused reflectance spectroscopy (UV-Vis-DRS), Scanning electron microscopy (SEM), Energy dispersive X-rays (EDX) spectroscopy, and anti-bacterial activities, respectively. The transition temperatures and phase transitions of Cd(OH)2 to CdO at 400 °C was confirmed by TG-DTA analysis. The XRD patterns show the cubic shape and average particle sizes are 21, 40, 34, and 37 nm, respectively for pure and Ag doped samples. FT-IR study confirmed the presence of CdO and Ag at 677 and 459 cm-1, respectively. UV-Vis-DRS study shows the variation on direct and indirect band gaps. The surface morphologies and elemental analysis have been confirmed from SEM and with EDX. In addition, the synthesized products have been characterized by antibacterial activities against Gram-positive and negative bacteria. Further, the present investigation suggests that CdO nanoparticles have the great potential applications on various industrial and medical fields of research.

  8. Toward Quantifying the Mass-Based Hygroscopicity of Individual Submicron Atmospheric Aerosol Particles with STXM/NEXAFS and SEM/EDX

    NASA Astrophysics Data System (ADS)

    Yancey Piens, D.; Kelly, S. T.; OBrien, R. E.; Wang, B.; Petters, M. D.; Laskin, A.; Gilles, M. K.

    2014-12-01

    The hygroscopic behavior of atmospheric aerosols influences their optical and cloud-nucleation properties, and therefore affects climate. Although changes in particle size as a function of relative humidity have often been used to quantify the hygroscopic behavior of submicron aerosol particles, it has been noted that calculations of hygroscopicity based on size contain error due to particle porosity, non-ideal volume additivity and changes in surface tension. We will present a method to quantify the hygroscopic behavior of submicron aerosol particles based on changes in mass, rather than size, as a function of relative humidity. This method results from a novel experimental approach combining scanning transmission x-ray microscopy with near-edge x-ray absorption fine spectroscopy (STXM/NEXAFS), as well as scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM/EDX) on the same individual particles. First, using STXM/NEXAFS, our methods are applied to aerosol particles of known composition ‒ for instance ammonium sulfate, sodium bromide and levoglucosan ‒ and validated by theory. Then, using STXM/NEXAFS and SEM/EDX, these methods are extended to mixed atmospheric aerosol particles collected in the field at the DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility at the Southern Great Planes sampling site in Oklahoma, USA. We have observed and quantified a range of hygroscopic behaviors which are correlated to the composition and morphology of individual aerosol particles. These methods will have implications for parameterizing aerosol mixing state and cloud-nucleation activity in atmospheric models.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li; Zhu, Zihua; Yu, Xiao-Ying

    In this study, we report new results of in situ study of 5 nm goat anti-mouse IgG gold nanoparticles in a novel portable vacuum compatible microfluidic device using scanning electron microscope (SEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The unique feature of the liquid flow cell is that the detection window is open to the vacuum allowing direct probing of the liquid surface. The flow cell is composed of a silicon nitride (SiN) membrane and polydimethylsiloxane (PDMS), and it is fully compatible with vacuum operations for surface analysis. The aperture can be drilled through the 100 nm SiN membranemore » using a focused ion beam. Characteristic signals of the conjugated gold nanoparticles were successfully observed through the aperture by both energy-dispersive X-ray spectroscopy (EDX) in SEM and ToF-SIMS. Comparison was also made among wet samples, dry samples, and liquid sample in the flow cell using SEM/EDX. Stronger gold signal can be observed in our novel portable device by SEM/EDX compared with the wet or dry samples, respectively. Our results indicate that analyses of the nanoparticle components are better made in their native liquid environment. This is made possible using our unique microfluidic flow cell.« less

  10. Enhanced EDX images by fusion of multimodal SEM images using pansharpening techniques.

    PubMed

    Franchi, G; Angulo, J; Moreaud, M; Sorbier, L

    2018-01-01

    The goal of this paper is to explore the potential interest of image fusion in the context of multimodal scanning electron microscope (SEM) imaging. In particular, we aim at merging the backscattered electron images that usually have a high spatial resolution but do not provide enough discriminative information to physically classify the nature of the sample, with energy-dispersive X-ray spectroscopy (EDX) images that have discriminative information but a lower spatial resolution. The produced images are named enhanced EDX. To achieve this goal, we have compared the results obtained with classical pansharpening techniques for image fusion with an original approach tailored for multimodal SEM fusion of information. Quantitative assessment is obtained by means of two SEM images and a simulated dataset produced by a software based on PENELOPE. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  11. Preparation and antibacterial effect of silver hydroxyapatite/titania nanocomposite thin film on titanium

    NASA Astrophysics Data System (ADS)

    Mo, Anchun; Liao, Juan; Xu, Wei; Xian, Suqin; Li, Yubao; Bai, Shi

    2008-11-01

    The composite which contains Ag + and nanosized hydroxyapatite with TiO 2 was deposited onto titanium by dipping method. The morphology, chemical components and structures of the thin film were characterized by XRD, scanning electronic microscope (SEM) and energy dispersive X-ray analysis (EDX). Staphylococcus aureus and Escherichia coli were utilized to test the antibacterial effect. XRD results demonstrated that the films have characteristic diffraction peaks of pure HA. EDX results showed that the deposited films consisted of Ca, P, Ti, O and Ag, all of which distribute uniformly. With regard to the antibacterial effect, 98% of S. aureus and more than 99% of E. coli were killed after 24 h incubation and pictures of SEM showed obviously fewer cells on the surface with coating.

  12. A comparative study of heterostructured CuO/CuWO4 nanowires and thin films

    NASA Astrophysics Data System (ADS)

    Polyakov, Boris; Kuzmin, Alexei; Vlassov, Sergei; Butanovs, Edgars; Zideluns, Janis; Butikova, Jelena; Kalendarev, Robert; Zubkins, Martins

    2017-12-01

    A comparative study of heterostructured CuO/CuWO4 core/shell nanowires and double-layer thin films was performed through X-ray diffraction, confocal micro-Raman spectroscopy and electron (SEM and TEM) microscopies. The heterostructures were produced using a two-step process, starting from a deposition of amorphous WO3 layer on top of CuO nanowires and thin films by reactive DC magnetron sputtering and followed by annealing at 650 °C in air. The second step induced a solid-state reaction between CuO and WO3 oxides through a thermal diffusion process, revealed by SEM-EDX analysis. Morphology evolution of core/shell nanowires and double-layer thin films upon heating was studied by electron (SEM and TEM) microscopies. A formation of CuWO4 phase was confirmed by X-ray diffraction and confocal micro-Raman spectroscopy.

  13. Parts, Materials, and Processes Control Program for Expendable Launch Vehicles

    DTIC Science & Technology

    2015-07-31

    burn-in, electrical tests (DWV, room and hot IR, partial discharge when in corona region); perform DPA with SEM/EDX analysis of dielectric...life test; x-ray and vicinal illumination inspection; electrical tests (DWV, room and hot IR, partial discharge when in corona region) Termination...defects; proper voltage derating. Partial discharge testing, corona inception testing up to 60% of rated voltage; CSAM screening; voltage burn

  14. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy.

    PubMed

    Panduric, Dragana Gabric; Juric, Ivona Bago; Music, Svetozar; Molčanov, Krešimir; Sušic, Mato; Anic, Ivica

    2014-07-01

    The purpose of this study was to analyze morphological, chemical, and crystallographic changes of bone tissue after osteotomy performed with an erbium:yttrium-aluminium-garnet (Er:YAG) laser and a low speed pilot drill. Bone blocks were prepared from porcine ribs, and on each block, two tunnel preparations were performed using the Er:YAG laser (pulse energy: 1000 mJ, pulse duration: 300 μs, pulse repetition rate: 20 Hz) or the low-speed surgical pilot drill. The morphological changes of the cortical and the spongious surface of the tunnel preparations were analyzed under the field emission scanning electron microscopy (FE-SEM) at low and high resolution. The distribution and the level of chemical elements in the treated surfaces were evaluated by qualitative and semiquantitative energy dispersive x-ray analysis (SEM-EDX). Diffraction x-ray analysis was used to detect any differences and thermally induced modifications of hydroxyapatite crystals. FE-SEM revealed sharp edges of the Er:YAG preparations, with empty intertrabecular spaces and no signs of carbonization. In the drill group, the surface of the preparations was smooth, completely covered with smear layer and microcracks, and with hairy-like irregularities on the edges. SEM-EDX analysis did not reveal any differences in the number of specific chemical elements between the laser and the drill group. There were no thermally induced modifications of hydroxyapatite crystal structure in the bone tissue in either group. The Er:YAG laser ablation did not cause any chemical or crystallographic changes of the bone tissue. Compared with the drill, Er:YAG laser created well-defined edges of the preparations, and cortical bone had no smear layer.

  15. Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces.

    PubMed

    Ciobanu, Gabriela; Ciobanu, Octavian

    2013-04-01

    This study uses an in vitro experimental approach to investigate the roles of collagen and vitamins in regulating the deposition of hydroxyapatite layer on the pure titanium surface. Titanium implants were coated with a hydroxyapatite layer under biomimetic conditions by using a supersaturated calcification solution (SCS), modified by adding vitamins A and D3, and collagen. The hydroxyapatite deposits on titanium were investigated by means of scanning electron microscopy (SEM) coupled with X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy. The results obtained have shown that hydroxyapatite coatings were produced in vitro under vitamins and collagen influence. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus.

    PubMed

    Zhao, Changsong; Liu, Jun; Tu, Hong; Li, Feize; Li, Xiyang; Yang, Jijun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Sun, Qun

    2016-12-01

    Uranium(VI) biosorption from aqueous solutions was investigated in batch studies by using fungus Pleurotus ostreatus biomass. The optimal biosorption conditions were examined by investigating the reaction time, biomass dosage, pH, temperature, and uranium initial concentration. The interaction between fungus biomass and uranium was confirmed using Fourier transformed infrared (FT-IR), scanning electronic microscopy energy dispersive X-ray (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) analysis. Results exhibited that the maximum biosorption capacity of uranium on P. ostreatus was 19.95 ± 1.17 mg/g at pH 4.0. Carboxylic, amine, as well as hydroxyl groups were involved in uranium biosorption according to FT-IR analysis. The pseudo-second-order model properly evaluated the U(VI) biosorption on fungus P. ostreatus biomass. The Langmuir equation provided better fitting in comparison with Freundlich isotherm models. The obtained thermodynamic parameters suggested that biosorption is feasible, endothermic, and spontaneous. SEM-EDX and XPS were additionally conducted to comprehend the biosorption process that could be described as a complex process involving several mechanisms of physical adsorption, chemisorptions, and ion exchange. Results obtained from this work indicated that fungus P. ostreatus biomass can be used as potential biosorbent to eliminate uranium or other radionuclides from aqueous solutions.

  17. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  18. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  19. Chemical and structural analysis of gallstones from the Indian subcontinent.

    PubMed

    Ramana Ramya, J; Thanigai Arul, K; Epple, M; Giebel, U; Guendel-Graber, J; Jayanthi, V; Sharma, M; Rela, M; Narayana Kalkura, S

    2017-09-01

    Representative gallstones from north and southern parts of India were analyzed by a combination of physicochemical methods: X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), CHNS analysis, thermal analysis and Nuclear Magnetic Resonance (NMR) spectroscopy ( 1 H and 13 C). The stones from north Indian were predominantly consisting of cholesterol monohydrate and anhydrous cholesterol which was confirmed by XRD analysis. FTIR spectroscopy confirmed the presence of cholesterol and calcium bilirubinate in the south Indian gallstones. EDX spectroscopy revealed the presence of carbon, nitrogen, oxygen, calcium, sulfur, sodium and magnesium and chloride in both south Indian and north Indian gallstones. FTIR and NMR spectroscopy confirmed the occurrence of cholesterol in north Indian gallstones. The respective colour of the north Indian and south Indian gallstones was yellowish and black. The morphology of the constituent crystals of the north Indian and south Indian gallstones were platy and globular respectively. The appreciable variation in colour, morphology and composition of south and north Indian gallstones may be due to different food habit and habitat. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Assessment of the Effects Exerted by Acid and Alkaline Solutions on Bone: Is Chemistry the Answer?

    PubMed

    Amadasi, Alberto; Camici, Arianna; Porta, Davide; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Profumo, Antonella; Rassifi, Nabila; Cattaneo, Cristina

    2017-09-01

    The treatment of corpses with extremely acid or basic liquids is sometimes performed in criminal contexts. A thorough characterization by chemical analysis may provide further help to macroscopic and microscopic analysis; 63 porcine bone samples were treated with solutions at different pH (1-14) for immersion periods up to 70 days, as well as in extremely acidic sulfuric acid solutions (9 M/18 M) and extremely basic sodium hydroxide. Inductively coupled optical emission spectrometry (ICP-OES)/plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray analysis (EDX), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM) showed that only the sulfuric acid solution 18 M was able to completely dissolve the sample. In addition, chemical analysis allowed to recognize the contact between bone and substances. Hydrated calcium sulfate arose from extreme pH. The possibility of detecting the presence of human material within the residual solution was demonstrated, especially with FT-IR, ICP-OES, and EDX. © 2017 American Academy of Forensic Sciences.

  1. Multifunctional AgNPs@Wool: colored, UV-protective and antioxidant functional textiles

    NASA Astrophysics Data System (ADS)

    Shabbir, Mohd; Mohammad, Faqeer

    2018-02-01

    Nanomaterials have great impact on textile industry for multifunctional and smart clothing as per the need of present, and further, green nanotechnology is the current hotspot of research and industrial developments. Silver nanoparticles (AgNPs) are synthesized (in situ) by using natural compounds of plant extracts (naphthoquinones, phenolics/flavonoids, polyphenols) as reducing or stabilizing agents, and simultaneously deposited on wool fabric for coloration, UV protection and antioxidant properties. UV-visible spectroscopy is used to monitor the route of biosynthesis of nanoparticles and transmission electron microscopy for morphological characteristics of synthesized AgNPs. Spherical and almost oval-shaped AgNPs were synthesized by naphthoquinones, polyphenols and flavonoids, respectively. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction pattern (XRD) and Fourier transform infrared spectroscopy were used for the AgNPs@Wool fabrics characterization. SEM-EDX analysis and XRD patterns confirmed the successful deposition of silver nanoparticles on wool. Coloration characteristics in terms of color strength (K/S) and CIEL*a*b*c*h° values, UV protection abilities in terms of UV transmittance and UV protection factor, and % antioxidant activity of AgNPs@Wool are suggestive of good-to-excellent results.

  2. Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films

    NASA Astrophysics Data System (ADS)

    Ahmad, Syed Muhammad; Hussain, Tousif; Ahmad, Riaz; Siddiqui, Jamil; Ali, Dilawar

    2018-01-01

    In a quest to identify more economic routes for synthesis of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, dense plasma focus device was used with multiple plasma focus shots. Structural, bonding between composite films, surface morphological, compositional and hardness properties of MAS thin films were investigated by using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive x-rays (EDX) analysis and Vickers micro hardness test respectively. In XRD graph, the presence of MgAl2O4 diffraction peaks in crystallographic orientations (222), (400) and (622) pointed out the successful formation of polycrystalline thin films of MgAl2O4 with face centered cubic structure. The FTIR spectrums showed a major common transmittance band at 697.95 cm-1 which belongs to MgAl2O4. SEM micrographs illustrated a mesh type, granular and multi layers microstructures with significant melting effects. EDX spectrum confirmed the existence of magnesium, oxygen and aluminum in MAS films. A common increasing behavior in micro-hardness of composite MgAl2O4 films by increasing number of plasma focus shots was found.

  3. Synthesis, characterization and antimicrobial activity of dextran sulphate stabilized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Cakić, Milorad; Glišić, Slobodan; Nikolić, Goran; Nikolić, Goran M.; Cakić, Katarina; Cvetinov, Miroslav

    2016-04-01

    Dextran sulphate stabilized silver nanoparticles (AgNPs - DS) were synthesized from aqueous solution of silver nitrate (AgNO3) and dextran sulphate sodium salt (DS). The characterization of AgNPs - DS was performed by ultraviolet-visible spectroscopy (UV-VIS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and antimicrobial activity. The formation of AgNPs - DS was monitored by colour changes of the reaction mixture from yellowish to brown and by measuring the surface plasmon resonance absorption peak in UV-VIS spectra at 420 nm. The SEM analysis was used for size and shape determination of AgNPs - DS. The presence of elemental silver and its crystalline structure in AgNPs - DS were confirmed by EDX and XRD analyses. The possible functional groups of DS responsible for the reduction and stabilization of AgNPs were determinated by FTIR spectroscopy. The AgNPs - DS showed strong antibacterial activity against Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 11778, Bacillus luteus in haus strain, Bacillus subtilis ATTC 6633, Listeria monocytogenes ATCC 15313, Escherichia coli ATTC 25922, Pseudomonas aeruginosa ATTC 27853, Klebsiella pneumoniae ATTC 700603, Proteus vulgaris ATTC 8427, and antifungal activity against Candida albicans ATTC 2091.

  4. Intercalated chitosan/hydroxyapatite nanocomposites: Promising materials for bone tissue engineering applications.

    PubMed

    Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender

    2017-11-01

    Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Orthogonal identification of gunshot residue with complementary detection principles of voltammetry, scanning electron microscopy, and energy-dispersive X-ray spectroscopy: sample, screen, and confirm.

    PubMed

    O'Mahony, Aoife M; Samek, Izabela A; Sattayasamitsathit, Sirilak; Wang, Joseph

    2014-08-19

    Field-deployable voltammetric screening coupled with complementary laboratory-based analysis to confirm the presence of gunshot residue (GSR) from the hands of a subject who has handled, loaded, or discharged a firearm is described. This protocol implements the orthogonal identification of the presence of GSR utilizing square-wave stripping voltammetry (SWSV) as a rapid screening tool along with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) to confirm the presence of the characteristic morphology and metal composition of GSR particles. This is achieved through the judicious modification of the working electrode of a carbon screen-printed electrode (CSPE) with carbon tape (used in SEM analysis) to fix and retain a sample. A comparison between a subject who has handled and loaded a firearm and a subject who has had no contact with GSR shows the significant variations in voltammetric signals and the presence or absence of GSR-consistent particles and constituent metals. This initial electrochemical screening has no effect on the integrity of the metallic particles, and SEM/EDX analysis conducted prior to and postvoltammetry show no differences in analytical output. The carbon tape is instrumental in retaining the GSR sample after electrochemical analysis, supported by comparison with orthogonal detection at a bare CSPE. This protocol shows great promise as a two-tier detection system for the presence of GSR from the hands of a subject, whereby initial screening can be conducted rapidly onsite by minimally trained operators; confirmation can follow at the same substrate to substantiate the voltammetric results.

  6. Carbon abundances, major element chemistry, and mineralogy of hydrated interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Thomas, K. L.; Mckay, D. S.

    1993-01-01

    Hydrated interplanetary dust particles (IDP's) comprise a major fraction of the interplanetary dust particles collected in the stratosphere. While much is known about the mineralogy and chemistry of hydrated IDP's, little is known about the C abundance in this class of IDP's, the nature of the C-bearing phases, and how the C abundance is related to other physical properties of hydrated IDP's. Bulk compositional data (including C and O) for 11 hydrated IDP's that were subsequently examined by the transition electron microscopy (TEM) to determine their mineralogy and mineral chemistry are reported. Our analysis indicates that these hydrated IDP's are strongly enriched in C relative to the most C-rich meteorites. The average abundance of C in these hydrated IDP's is 4X CI chondrite values. The bulk compositions (including C and O) of 11 hydrated IDP's were determined by thin-window, energy-dispersive x ray (EDX) spectroscopy of the uncoated IDP's on Be substrates in the scanning electron microscopy (SEM). As a check on our C measurements, one of the IDP's (L2006H5) was embedded in glassy S, and microtome thin sections were prepared and placed onto Be substrates. Thin-film EDX analyses of multiple thin sections of L2006H5 show good agreement with the bulk value determined in the SEM. Following EDX analysis, the mineralogy and mineral chemistry of each IDP was determined by analyzing ultramicrotome thin sections in a TEM equipped with an EDX spectrometer.

  7. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3.

    PubMed

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2016-03-01

    The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium. Copyright © 2015. Published by Elsevier B.V.

  8. Focused ion beam (FIB)/scanning electron microscopy (SEM) in tissue structural research.

    PubMed

    Leser, Vladka; Milani, Marziale; Tatti, Francesco; Tkalec, Ziva Pipan; Strus, Jasna; Drobne, Damjana

    2010-10-01

    The focused ion beam (FIB) and scanning electron microscope (SEM) are commonly used in material sciences for imaging and analysis of materials. Over the last decade, the combined FIB/SEM system has proven to be also applicable in the life sciences. We have examined the potential of the focused ion beam/scanning electron microscope system for the investigation of biological tissues of the model organism Porcellio scaber (Crustacea: Isopoda). Tissue from digestive glands was prepared as for conventional SEM or as for transmission electron microscopy (TEM). The samples were transferred into FIB/SEM for FIB milling and an imaging operation. FIB-milled regions were secondary electron imaged, back-scattered electron imaged, or energy dispersive X-ray (EDX) analyzed. Our results demonstrated that FIB/SEM enables simultaneous investigation of sample gross morphology, cell surface characteristics, and subsurface structures. The same FIB-exposed regions were analyzed by EDX to provide basic compositional data. When samples were prepared as for TEM, the information obtained with FIB/SEM is comparable, though at limited magnification, to that obtained from TEM. A combination of imaging, micro-manipulation, and compositional analysis appears of particular interest in the investigation of epithelial tissues, which are subjected to various endogenous and exogenous conditions affecting their structure and function. The FIB/SEM is a promising tool for an overall examination of epithelial tissue under normal, stressed, or pathological conditions.

  9. Microbial Immobilization of Si, Mn, Fe, and Sr Ions in the Nacreous Layer of Sinohyliopsis schlegeli and Environmental Factors

    NASA Astrophysics Data System (ADS)

    Tazaki, Kazue; Morii, Issei

    Environmental changes recorded in the shell nacre of Sinohyliopsis schlegeli were observed with elemental factors of characteristic water and nutrition for eight months in a cultivated drainage pond at Kanazawa University, Ishikawa Prefecture, Japan. Tetracycline as an indicator was injected into the shell nacre once every month from May to November in 2007. Water qualities such as the pH, redox potential, electrical conductivity, dissolved oxygen concentration, and water temperature were measured periodically, and the suspended solids in the water were removed by filtration for optical microscopy, X-ray fluorescence analysis, and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) observations. X-ray fluorescence chemical analysis of shell nacre indicated layers with strong tetracycline accumulation corresponding to high concentrations of Si, Mn, Fe, and Sr ions. The redox potential and dissolved oxygen concentration measurements supported the existence of layers in the nacre. The suspended materials in the drainage pond water comprised mainly of Si, Mn, and Fe elements, which were the same elements involved in microbial immobilization in the shell nacre during the summer of 2007. SEM-EDX analyses confirmed that the ions originated from diatoms, Siderocapsa sp. and Gallionella ferruginea in the stomach. There was little microbial immobilization of the ions in winter. The results suggested elemental immobilization in the layered shell nacre and indicated that Sinohyliopsis schlegeli fed on the ions, to grow the nacre during summer. Sinohyliopsis schlegeli with these biogenic oxides might contribute to the scavenging of heavy metals in natural water.

  10. Determination of the sequence of intersecting lines using Focused Ion Beam/Scanning Electron Microscope.

    PubMed

    Kim, Jiye; Kim, MinJung; An, JinWook; Kim, Yunje

    2016-05-01

    The aim of this study was to verify that the combination of focused ion beam (FIB) and scanning electron microscope/energy-dispersive X-ray (SEM/EDX) could be applied to determine the sequence of line crossings. The samples were transferred into FIB/SEM for FIB milling and an imaging operation. EDX was able to explore the chemical components and the corresponding elemental distribution in the intersection. The technique was successful in determining the sequence of heterogeneous line intersections produced using gel pens and red sealing ink with highest success rate (100% correctness). These observations show that the FIB/SEM was the appropriate instrument for an overall examination of document. © 2016 American Academy of Forensic Sciences.

  11. Synthesis of Galaxite, Mn0.9Co0.1Al2O4, and its application as a novel nanocatalyst for electrochemical hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Saeidfirozeh, Homa; Shafiekhani, Azizollah; Beheshti-Marnani, Amirkhosro; Askari, Mohammad Bagher

    2018-06-01

    A new compound Mn0.9Co0.1Al2O4 nanowires were synthesized by thermal method. The resulting powder samples were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). We found that a set of phase transformation occurred during the process. Eventually, five phases including three spinal phases, the corundum (á-Al2O3) and MnO were formed at 1100 °C.As dominant morphology, the cubic galaxite nanowires were identified by X-ray analysis. Moreover, X-ray analysis showed that Mn3O4 and Co3O4 nanoparticles were formed in tetragonal and cubic symmetry respectively. The SEM image revealed that a dominate morphology of product has cubic nanowires shape with an average diameter in range 38-43 nm. Furthermore, we observed that influence of temperature was very important in the nanowire formation process. Electrochemical hydrogen evolution reaction (HER) of synthetic composite was evaluated and the over potential of HER was calculated about 110 mV with low Tafel slope equal to 42 mV dec-1, which was comparable with amounts reported transition metal dichalcogenides with satisfying durability.

  12. One-dimensional nanoferroic rods; synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Seddik, U.; Okasha, N.; Imam, N. G.

    2015-11-01

    One-dimensional nanoferroic rods of BaTiO3 were synthesized by improved citrate auto-combustion technology using tetrabutyl titanate. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize the prepared sample. The results indicated that the crystal structure of BaTiO3 is tetragonal phase with an average crystallite size of 47 nm. SEM image gives a cauliflower-like morphology of the agglomerated nanorods. The stoichiometry of the chemical composition of the BaTiO3 ceramic was confirmed by EDX. TEM micrograph exhibited that BaTiO3 nanoparticles have rod-like shape with an average length of 120 nm and width of 43 nm. AFM was used to investigate the surface topography and its roughness. The topography image in 3D showed that the BaTiO3 particles have a rod shape with an average particle size of 116 nm which in agreement with 3D TEM result.

  13. Progress toward Synthesis and Characterization of Rare-Earth Nanoparticles

    NASA Astrophysics Data System (ADS)

    Romero, Dulce G.; Ho, Pei-Chun; Attar, Saeed; Margosan, Dennis

    2010-03-01

    Magnetic nanoparticles exhibit interesting phenomena, such as enhanced magnetization and reduced magnetic ordering temperature (i.e. superparamagnetism), which has technical applications in industry, including magnetic storage, magnetic imaging, and magnetic refrigeration. We used the inverse micelle technique to synthesize Gd and Nd nanoparticles given its potential to control the cluster size, amount of aggregation, and prevent oxidation of the rare-earth elements. Gd and Nd were reduced by NaBH4 from the chloride salt. The produced clusters were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The results from the XRD show that the majority of the peaks match those of the surfactant, DDAB. No peaks of Gd were observed due to excess surfactant or amorphous clusters. However, the results from the SEM and EDX indicate the presence of Gd and Nd in our clusters microscopically, and current synthesized samples contain impurities. We are using liquid-liquid extraction method to purify the sample, and the results will be discussed.

  14. Eco-friendly and green synthesis of BiVO4 nanoparticle using microwave irradiation as photocatalayst for the degradation of Alizarin Red S

    NASA Astrophysics Data System (ADS)

    Abraham, S. Daniel; David, S. Theodore; Bennie, R. Biju; Joel, C.; Kumar, D. Sanjay

    2016-06-01

    Bismuth vanadate (BiVO4) nanocrystals have been successfully synthesised using microwave-assisted combustion synthesis (MCS), and characterised using Fourier transform infrared (FT-IR) and Raman spectra, surface area analysis (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy Dispersive X-ray analysis (EDX), diffused reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The XRD results confirmed the formation of monoclinic bismuth vanadate. The formations of BiO & VO43-vibrations were ascertained from FT-IR data. The morphology of hallow internal structural micro entities were confirmed by SEM. The optical properties were determined by DRS and PL spectra. Hence, the influence of the preparation methods on the structure, morphology and optical activities of bismuth vanadate was investigated systematically. Photocatalytic degradation (PCD) of Alizarin Red S (ARS), an effective disrupting chemical in aqueous medium was investigated using BiVO4 nanoparticles. The kinetics of PCD was found to follow pseudo first-order.

  15. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou Province

    USGS Publications Warehouse

    Ding, Z.; Zheng, B.; Zhang, Jiahua; Belkin, H.E.; Finkelman, R.B.; Zhao, F.; Zhou, D.; Zhou, Y.; Chen, C.

    1999-01-01

    Coal samples from high arsenic coal areas have been analyzed by electron microprobe analyzer (EMPA), scanning electron microscopy with an energy dispersive X-ray analyzer (SEM-EDX), X-ray diffraction analysis (XRD), low temperature ashing (LTA), transmission electron microscopy (TEM), X-ray absorption fine structure (XAFS), instrument neutron activation analysis (INAA) and wet chemical analysis. Although some As-bearing minerals such as pyrite, arsenopyrite, realgar (?), As-bearing sulfate, and As-bearing clays are found in the high arsenic coals, their contents do not account for the abundance of arsenic in the some coals. Analysis of the coal indicates that arsenic exists mainly in the form of As5+ and As3+, combined with compounds in the organic matrix. The occurrence of such exceptionally high arsenic contents in coal and the fact that the arsenic is dominantly organically associated are unique observations. The modes of occurrence of arsenic in high As-coals are discussed.

  16. Studies of Al-Ti Alloys by SEM

    NASA Astrophysics Data System (ADS)

    Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.

    2007-04-01

    Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.

  17. Scanning electron microscopy study of new bone formation following small and large defects preserved with xenografts supplemented with pamidronate-A pilot study in Fox-Hound dogs at 4 and 8 weeks.

    PubMed

    Lozano-Carrascal, Naroa; Satorres-Nieto, Marta; Delgado-Ruiz, Rafael; Maté-Sánchez de Val, José Eduardo; Gehrke, Sergio Alexandre; Gargallo-Albiol, Jorge; Calvo-Guirado, José Luis

    2017-01-01

    The aim of the present study was to evaluate the feasibility of SEM and EDX microanalysis on evaluating the effect of porcine xenografts (MP3 ® ) supplemented with pamidronate during socket healing. Mandibular second premolars (P2) and first molars (M1) were extracted from six Beagle dogs. P2 were categorized as small defects (SD) and M1 as large defects (LD). Four random groups were created: SC (small control defects with MP3 ® ), ST (small test defects MP3 ® +pamidronate), LC (large control defects with MP3 ® ), and LT (large test defects MP3 ® +pamidronate). At four and eight weeks of healing the samples were evaluated fisically through scanning electron microscopy (SEM), and chemical element mapping was carried out by Energy dispersive X-ray spectroscopy (EDX). After four weeks of healing, SEM and EDX analysis revealed more mineralized bone in ST and LT groups compared with control groups (p<0.05). After eight weeks, Ca/P ratios were slightly higher for small defects (groups SC and ST); in SEM description, in both control and test groups, trabecular bone density was similar to the adjacent mineralized cortical bone. Within the limitations of this experimental study, SEM description and EDX elemental microanalysis have demonstrated to be useful techniques to assess bone remodelling of small and large defects. Both techniques show increased bone formation in test groups (MP3 ® modified with pamidronate) after four and eight weeks of healing. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Facile Synthesis and Characterization of ZrO₂ Nanoparticles via Modified Co-Precipitation Method.

    PubMed

    Ramachandran, M; Subadevi, R; Liu, Wei-Ren; Sivakumar, M

    2018-01-01

    The crystalline Zirconium oxide (ZrO2) nano particles were synthesized using optimized content of Zirconium nitrate (Zr(NO3)2·3H2O) with varying KOH concentration (0.5, 1 and 1.5 M) by co-precipitation method. The thermal history of the precursor was carefully analyzed through Thermogravimetric (TG/DTA) measurement. The as prepared samples were characterized to ensure structural, functional, morphological, compositional, chemical composition and band gap by X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Laser Raman, scanning electron microscopy (SEM), High resolution Transverse Electron Microscopy (HR-TEM), X-ray photo electron spectroscopy (XPS), EDX, Photo luminescence spectroscopy (PL). The monoclinic structure with space group P21/c has been confirmed from XRD (JCPDS 89-9066). The Zr-O stretching vibration and Zr-O2-Zr bending vibrations were confirmed through FTIR analysis. The well dispersed particles with spherical morphology were confirmed through SEM and TEM analysis. The oxidation states of Zr, O and C were confirmed through XPS analysis. The oxygen vacancies and band gap of the particles were investigated through PL analysis.

  19. Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garfias-Mesias, L.F.; Alodan, M.; James, P.I.

    1998-06-01

    Scanning electrochemical microscopy (SECM) in ferrocyanide and bromide solutions was used to locate active sites (pitting precursors) on polycrystalline Ti where oxidation of Br{sup {minus}} and Fe(CN){sub 6}{sup 4{minus}} was possible. Analysis of the electrochemically active sites was done by using electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM), and in situ confocal laser scanning microscopy (CLSM). In most cases, the active sites were found to be associated with particles (inclusions) which contained mainly Al and Si; however, some other areas not associated with particles were also found to be active. Although the size of themore » inclusions was normally smaller than 20 {micro}m, as revealed by SEM and AFM imaging, in some cases larger particles were also found. Pitting corrosion tests in bromide solution at potentials above 1.5 V{sub SCE} followed by EDX analysis inside the pits and in situ CLSM observation, confirmed that most of the localized attack started in the areas where particles had been located.« less

  20. Laser engravings as reason for mechanical failure of titanium-alloyed total hip stems.

    PubMed

    Kluess, Daniel; Steinhauser, Erwin; Joseph, Micheal; Koch, Ursula; Ellenrieder, Martin; Mittelmeier, Wolfram; Bader, Rainer

    2015-07-01

    Two revisions of broken β-titanium total hip stems had to be performed in our hospital after 2 and 4 years in situ. Since both fractures were located at the level of a laser engraving, a failure analysis was conducted. Both retrieved hip stems were disinfected and collected in our retrieval database after patient's signed agreement. Each fragment was macroscopically photographed. Fracture surfaces were analyzed using scanning electron microscopy (SEM). Quantification of element content was conducted using energy dispersive X-ray (EDX) analysis. Both stems show fatigue fracture, as displayed by the lines of rest on the fracture surface. The origin of fracture was identified directly at the laser engraving of the company logo at both stems by means of SEM. The EDX analysis showed an oxygen level beneath the laser engraving about twice as high as in the substrate, causing material embrittlement. Laser engravings need to be reduced to a minimum of necessary information, and should be placed at locations with minimum mechanical load. Biomechanical analyses are recommended to identify less loaded areas in implant components to avoid such implant failures.

  1. Effects of laser-aided circumferential supracrestal fiberotomy on root surfaces.

    PubMed

    Lee, Ji-Won; Park, Ki-Ho; Chung, Jong-Hyuk; Kim, Su-Jung

    2011-11-01

    To evaluate and compare the effects of circumferential supracrestal fiberotomy in vivo (using diode, CO(2), and Er∶YAG lasers) on the morphology and chemical composition of the root surface. Forty healthy premolar teeth, intended for extraction for orthodontic reasons, were used in this study. Root surfaces were treated using different laser methods, as follows: (1) control; (2) Er∶YAG laser (2.94 µm, 100 mJ, 10 Hz); (3) diode laser (808 nm, 1.2 W, continuous wave); and (4) CO(2) laser (10.6 µm, 3 W, continuous wave). Subsequently, the teeth were removed and subjected to scanning electron microscopic (SEM) examination and energy dispersive x-ray (EDX) spectrometric analysis. SEM analysis indicated that no thermal changes, including melting or carbonization, were observed following the lasing procedures. EDX analysis showed that the laser procedures resulted in similar mineral contents (weight % of calcium and phosphate) as compared to those in the control group. Based on these findings, we concluded that laser-aided procedures, when used at appropriate laser settings, preserve the original morphology and chemical composition of cementum.

  2. Analysis of particulates on tape lift samples

    NASA Astrophysics Data System (ADS)

    Moision, Robert M.; Chaney, John A.; Panetta, Chris J.; Liu, De-Ling

    2014-09-01

    Particle counts on tape lift samples taken from a hardware surface exceeded threshold requirements in six successive tests despite repeated cleaning of the surface. Subsequent analysis of the particle size distributions of the failed tests revealed that the handling and processing of the tape lift samples may have played a role in the test failures. In order to explore plausible causes for the observed size distribution anomalies, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to perform chemical analysis on collected particulates. SEM/EDX identified Na and S containing particles on the hardware samples in a size range identified as being responsible for the test failures. ToF-SIMS was employed to further examine the Na and S containing particulates and identified the molecular signature of sodium alkylbenzene sulfonates, a common surfactant used in industrial detergent. The root cause investigation suggests that the tape lift test failures originated from detergent residue left behind on the glass slides used to mount and transport the tape following sampling and not from the hardware surface.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernard, Laetitia, E-mail: laetitia.bernard@empa.ch; Leemann, Andreas

    In this study, the potential of time-of-flight secondary ion mass spectrometry (ToF-SIMS) for the application in cement-based materials is assessed in combination and comparison with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). Mortar, concrete and samples from model systems providing products formed by the alkali–silica reaction (ASR) were studied. ToF-SIMS provides qualitative data on alkalis in cases where EDX reaches its limits in regard to detectable concentration, lateral resolution and atomic number of the elements. Due to its high in-depth resolution of a few atomic monolayers, thin layers of reaction products can be detected on the surfaces andmore » chemically analyzed with ToF-SIMS. Additionally, it delivers information on the molecular conformation within the ASR product, its hydrogen content and its isotope ratios, information not provided by EDX. Provided the samples are carefully prepared, ToF-SIMS opens up new possibilities in the analysis of cement-based materials.« less

  4. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  5. X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi.

    PubMed

    Rodak, Bruna Wurr; Freitas, Douglas Siqueira; Bamberg, Soraya Marx; Carneiro, Marco Aurélio Carbone; Guilherme, Luiz Roberto Guimarães

    2017-01-01

    The symbiosis between legumes, arbuscular mycorrhizal (AM) fungi, and N 2 -fixing bacteria (NFB) provides mutual nutritional gains. However, assessing the nutritional status of the microorganisms is a difficult task. A methodology that could assess this status, in situ, could assist managing these organisms in agriculture. This study used X-ray microanalyses to quantify and locate mineral elements in structures formed in a tripartite symbiosis. Lima bean (Phaseolus lunatus L. Walp) was cultivated in pots under greenhouse conditions, to which we have added AM fungal isolates (Glomus macrocarpum and Acaulospora colombiana) and NFB (Bradyrhizobium japonicum) inocula. Uninoculated control plants were also included. Symbionts were evaluated at the onset of flowering. Quantification of the mineral elements in the symbiotic components was performed using energy dispersive X-ray spectroscopy (EDX) and a scanning electron microscopy (SEM) was used to identify structures. EDX analysis detected 13 elements with the most abundant being N, Ca, and Se, occurring in all tissues, Fe in roots, Ni and Al in epidermis and P and Mo in nodules. Elemental quantification in fungal structures was not possible. The distribution of elements was related to their symbiotic function. X-ray microanalysis can be efficiently applied for nutritional diagnosis in tripartite symbiosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy-energy-dispersive X-ray spectrometry.

    PubMed

    Choël, Marie; Deboudt, Karine; Osán, János; Flament, Pascal; Van Grieken, René

    2005-09-01

    Atmospheric aerosols consist of a complex heterogeneous mixture of particles. Single-particle analysis techniques are known to provide unique information on the size-resolved chemical composition of aerosols. A scanning electron microscope (SEM) combined with a thin-window energy-dispersive X-ray (EDX) detector enables the morphological and elemental analysis of single particles down to 0.1 microm with a detection limit of 1-10 wt %, low-Z elements included. To obtain data statistically representative of the air masses sampled, a computer-controlled procedure can be implemented in order to run hundreds of single-particle analyses (typically 1000-2000) automatically in a relatively short period of time (generally 4-8 h, depending on the setup and on the particle loading). However, automated particle analysis by SEM-EDX raises two practical challenges: the accuracy of the particle recognition and the reliability of the quantitative analysis, especially for micrometer-sized particles with low atomic number contents. Since low-Z analysis is hampered by the use of traditional polycarbonate membranes, an alternate choice of substrate is a prerequisite. In this work, boron is being studied as a promising material for particle microanalysis. As EDX is generally said to probe a volume of approximately 1 microm3, geometry effects arise from the finite size of microparticles. These particle geometry effects must be corrected by means of a robust concentration calculation procedure. Conventional quantitative methods developed for bulk samples generate elemental concentrations considerably in error when applied to microparticles. A new methodology for particle microanalysis, combining the use of boron as the substrate material and a reverse Monte Carlo quantitative program, was tested on standard particles ranging from 0.25 to 10 microm. We demonstrate that the quantitative determination of low-Z elements in microparticles is achievable and that highly accurate results can be obtained using the automatic data processing described here compared to conventional methods.

  7. A Golden Drachma From Bruttia: Counterfeit Money Revealed By Scanning Electron Microscopy and Cathodoluminescence.

    NASA Astrophysics Data System (ADS)

    Pingitore, Valentino; Barberio, Marianna; Oliva, Antonino; Noce, Nicoletta; Gattuso, Caterina; Davoli, Mariano

    Diagnostic studies performed on an ancient coin are presented in order to find if the coin is authentic or is a coinage proof. Our investigation includes Scanning Electron Microscopy - Energy Dispersive X-ray (SEM-EDX) and Cathodoluminescence (CL). The coin is a Drachma representing on the obverse the portrait of Poseidon and, on the reverse the figure of Anfitrite riding a seahorse while Eros is shooting an arrow. The coin is well known in the numismatic studies and originals can also be found in Catanzaro, Naples or Milan museums. The EDX analysis, executed on narrow points of the surface, revealed Pb and Cu as main components of the coin on both sides: 51% of Pb and 35% of Cu their weight and surprisingly on both sides traces of gold was found. The maximum dimensions and the percentage in weight of the small revealed gold spots were respectively on the order of 20 μm and 95%. At the same time luminescence emission induced by electron bombardment (CL) on these spots was executed. This analysis confirmed SEM results, though the presence of Au was more evident than in SEM analysis. In fact CL analysis showed a little presence of Au throughout the sample surface.

  8. Magnetic cellulose/Ag as a novel eco-friendly nanobiocomposite to catalyze synthesis of chromene-linked nicotinonitriles.

    PubMed

    Maleki, Ali; Movahed, Hamed; Ravaghi, Parisa

    2017-01-20

    In this work, design, preparation and performance of magnetic cellulose/Ag nanobiocomposite as a recyclable and highly efficient heterogeneous nanocatalyst is described. Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) pattern, vibrating sample magnetometer (VSM) curve, field-emission scanning electron microscopy (FE-SEM) image, energy dispersive X-ray (EDX) analysis and thermogravimetric analysis/differential thermal analysis (TGA/DTA) were used for the characterization. Then, its activity was investigated in the synthesis of 2-amino-6-(2-oxo-2H-chromen-3-yl)-4-phenylnicotinonitrile derivatives. The main advantages of the reaction are high yields and short reaction times. The remarkable magnetic property of the nanobiocomposite catalyst provides easy separation from the reaction mixture by an external magnet without considerable loss of its catalytic activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The role of extracellular DNA in uranium precipitation and biomineralisation.

    PubMed

    Hufton, Joseph; Harding, John H; Romero-González, Maria E

    2016-10-26

    Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.

  10. Impact of physical and chemical parameters on the hydroxyapatite nanopowder synthesized by chemical precipitation method

    NASA Astrophysics Data System (ADS)

    Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai

    2013-09-01

    In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.

  11. Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability

    NASA Astrophysics Data System (ADS)

    Feliu, S.; Llorente, I.

    2015-08-01

    This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.

  12. Characterization of morphology and composition of inorganic fillers in dental alginates.

    PubMed

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450(°)C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C-81.59%, H-79.89%, O-78.87%, H5-77.95%, JP-66.88%, wt). The filler fractions in volume (vt) were as follows: H5-84.85%, JP-74.76%, H-70.03%, O-68.31%, and C-56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology.

  13. Photoelectrochemical Performance of TiO2/Ti Electrode for Organic Compounds

    NASA Astrophysics Data System (ADS)

    Maulidiyah, M.; Wijawan, I. B. P.; Wibowo, D.; Aladin, A.; Hamzah, B.; Nurdin, M.

    2018-05-01

    Photoelectrochemical performance of TiO2/Ti electrode was investigated by using organic compounds. The TiO2/Ti electrode was prepared by anodic oxidation at a potential bias of 25 V for 4 h then calcined for 450 °C to obtain the anatase polymorph. Subsequently, it was characterized by X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX). The XRD pattern showed that TiO2 has anatase phase as confirmed by 2θ peaks at 37.93° 63.00°, and 83.00°. Using SEM-EDX data the TiO2 layer was formed on Ti plate with the composition of Ti (4.5 keV) and O (0.5 keV) elements. Furthermore, the photoelectrochemical sensing on the three organic compounds (ascorbic acid, glucose, and titan yellow) with the electrolyte addition showed that the linearity of TiO2/Ti electrode were 0.937, 0.968, and 0.938, meanwhile without the electrolyte were 0.998, 0.989, and 0.923, respectively.

  14. Synthesis and characterization of palm oil fuel ash (POFA) and metakaolin based geopolymer for possible application in nanocoating

    NASA Astrophysics Data System (ADS)

    Khan, Ihsan Ullah; Bhat, A. H.; Masset, Patrick J.; Khan, Farman Ullah; Rehman, Wajid Ur

    2016-11-01

    The main aim of this study was to synthesize and characterize highly amorphous geopolymer from palm oil fuel ash (POFA) and metakaolin, to be used as nanocoating. Geopolymers are man-made aluminosilicate materials that are amorphous analogues of zeolites. The geopolymers were made by condensing a mixture of raw materials metakaolin and palm oil fuel ash (POFA) with alkaline activator at a fixed ratio at room temperature. The kaolin type clay was calcined at 700 °C for 4hrs to transform it into amorphous metakaolin which is more reactive precursor for geopolymer formation. The characteristics of metakaolin and geopolymers (metakaolin and palm oil fuel ash based geopolymers) were analyzed by using x-ray fluorescence (XRF), Fourier transform infra-red spectrometry (FTIR), Thermogravimetric analysis (TG/DTA) and scanning electron microscopy with energy dispersive x-ray analysis (SEM-EDX). FTIR revealed the presence of Al-O and Si-O stretching vibrations of amorphous alumino-silicate structure for metakaolin, palm oil fuel ash and geopolymers. SEM-EDX images showed the presence of reaction product complementary to NASH (N = Na2O, A = Al2O3, S = SiO2, H = H2O) solid. The resulting geopolymers that were synthesized with NaOH/Na2SiO3 solution cured at 60 °C for 3 days. The results demonstrated the suitability of metakaolin and palm oil fuel ash (POFA) for synthesis of geopolymer at room temperatures.

  15. Using ICP-OES and SEM-EDX in biosorption studies

    PubMed Central

    Chojnacka, Katarzyna; Marycz, Krzysztof

    2010-01-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution. Figure The advantages and disadvantages of ICP-OES and SEM-EDX techniques Electronic supplementary material The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users. PMID:21423317

  16. Using ICP-OES and SEM-EDX in biosorption studies.

    PubMed

    Michalak, Izabela; Chojnacka, Katarzyna; Marycz, Krzysztof

    2011-02-01

    We have compared the analytical results obtained by inductively coupled plasma optical emission spectroscopy (ICP-OES) and by scanning electron microscopy with an energy dispersive X-ray analytical system (SEM-EDX) in order to explore the mechanism of metal ions biosorption by biomass using two independent methods. The marine macroalga Enteromorpha sp. was enriched with Cu(II), Mn(II), Zn(II), and Co(II) ions via biosorption, and the biosorption capacity of alga determined from the solution and biomass composition before and after biosorption process was compared. The first technique was used to analyze the composition of the natural and metal-loaded biomass, and additionally the composition of the solution before and after biosorption. The second technique was used to obtain a picture of the surface of natural and metal ion-loaded macroalgae, to map the elements on the cell wall of dry biomass, and to determine their concentration before and after biosorption. ICP-OES showed a better precision and lower detection limit than EDX, but SEM-EDX gave more information regarding the sample composition of Enteromorpha sp. Both techniques confirmed that biosorption is a surface phenomenon, in which alkali and alkaline earth metal ions were exchanged by metal ions from aqueous solution.FigureThe advantages and disadvantages of ICP-OES and SEM-EDX techniques ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00604-010-0468-0) contains supplementary material, which is available to authorized users.

  17. Direct Metal Deposition of Functional Graded Structures in Ti- Al System

    NASA Astrophysics Data System (ADS)

    Shishkovsky, I.; Missemer, F.; Smurov, I.

    A direct laser metal deposition (DLMD) technology with co-axial powder injection is used to fabricate a complex functional graded structure (FGS) fabrication. The aim of the study is to demonstrate the possibility to produce intermetallic phases in the Ti-Al powder systems in the course of a single-step DMD process. Besides, relationships between the main laser cladding parameters and the intermetallic phase structures of the built-up objects have been studied. In our research we applied the optical microscopy, X-ray analysis, microhardness measurement and SEM with EDX analysis of the laser-fabricated intermetallics. The discussion of the mechanisms of Ti x Al y (x,y = 1.3) intermetallic transformations in exothermal reactions is also offered in the report.

  18. Role of Oxides and Porosity on High-Temperature Oxidation of Liquid-Fueled HVOF Thermal-Sprayed Ni50Cr Coatings

    NASA Astrophysics Data System (ADS)

    Song, B.; Bai, M.; Voisey, K. T.; Hussain, T.

    2017-02-01

    High chromium content in Ni50Cr thermally sprayed coatings can generate a dense and protective scale at the surface of coating. Thus, the Ni50Cr coating is widely used in high-temperature oxidation and corrosion applications. A commercially available gas atomized Ni50Cr powder was sprayed onto a power plant steel (ASME P92) using a liquid-fueled high velocity oxy-fuel thermal spray with three processing parameters in this study. Microstructure of as-sprayed coatings was examined using oxygen content analysis, mercury intrusion porosimetry, scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). Short-term air oxidation tests (4 h) of freestanding coatings (without boiler steel substrate) in a thermogravimetric analyzer at 700 °C were performed to obtain the kinetics of oxidation of the as-sprayed coating. Long-term air oxidation tests (100 h) of the coated substrates were performed at same temperature to obtain the oxidation products for further characterization in detail using SEM/EDX and XRD. In all samples, oxides of various morphologies developed on top of the Ni50Cr coatings. Cr2O3 was the main oxidation product on the surface of all three coatings. The coating with medium porosity and medium oxygen content has the best high-temperature oxidation performance in this study.

  19. Galvanic coupling of steel and gold alloy lingual brackets with orthodontic wires.

    PubMed

    Polychronis, Georgios; Al Jabbari, Youssef S; Eliades, Theodore; Zinelis, Spiros

    2018-03-06

    The aim of this research was to assess galvanic behavior of lingual orthodontic brackets coupled with representative types of orthodontic wires. Three types of lingual brackets: Incognito (INC), In-Ovation L (IOV), and STb (STB) were combined with a stainless steel (SS) and a nickel-titanium (NiTi) orthodontic archwire. All materials were initially investigated by scanning electron microscopy / x-ray energy dispersive spectroscopy (SEM/EDX) while wires were also tested by x-ray diffraction spectroscopy (XRD). All bracket-wire combinations were immersed in acidic 0.1M NaCl 0.1M lactic acid and neutral NaF 0.3% (wt) electrolyte, and the potential differences were continuously recorded for 48 hours. The SEM/EDX analysis revealed that INC is a single-unit bracket made of a high gold (Au) alloy while IOV and STB are two-piece appliances in which the base and wing are made of SS alloys. The SS wire demonstrated austenite and martensite iron phase, while NiTi wire illustrated an intense austenite crystallographic structure with limited martensite. All bracket wire combinations showed potential differences below the threshold of galvanic corrosion (200 mV) except for INC and STB coupled with NiTi wire in NaF media. The electrochemical results indicate that all brackets tested demonstrated galvanic compatibility with SS wire, but fluoride treatment should be used cautiously with NiTi wires coupled with Au and SS brackets.

  20. Identification of possible sources of particulate matter in the personal cloud using SEM/EDX

    NASA Astrophysics Data System (ADS)

    Conner, Teri L.; Williams, Ronald W.

    2004-10-01

    The United States Environmental Protection Agency (US EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility residents using personal exposure sampling devices. These sampling devices were also used to obtain PM2.5 samples at fixed locations within the personal monitoring subjects' apartments. Selected personal and apartment samples were examined using scanning electron microscopy with individual-particle X-ray analysis (SEM/EDX), providing a qualitative assessment of the chemical and physical characteristics of geological and trace element particles collected within these micro-environments at the retirement facility. This information was used to identify possible indoor source particles. The manual surveys of the personal samples revealed that some particles larger than 2.5 μm reached the filter surface. Using SEM/EDX, several particle types with possible indoor origins were identified. The Al-Zr-Cl particle is likely to have originated from a personal antiperspirant product. Particles with a talc or alumino-silicate composition point to cosmetics as a possible source. Large cadmium-containing particles were also found, which may indicate the use of art pigments or ceramic glazes, or emissions from television screen phosphors. A greater variety of particles was observed in a personal sample compared with its corresponding fixed-location apartment sample.

  1. In vivo surface analysis of titanium and stainless steel miniplates and screws.

    PubMed

    Matthew, I R; Frame, J W; Browne, R M; Millar, B G

    1996-12-01

    This study was undertaken to characterize the surfaces of Champy titanium and stainless steel miniplates and screws that had been used to stabilize fractures of the mandible in an animal model. Miniplates and screws were retrieved at 4, 12, and 24 weeks after surgery. Low-vacuum scanning electron microscopy (SEM) of autoclaved unused (control) and test miniplates from the same production batches was undertaken. Energy-dispersive X-ray (EDX) analysis was used to identify compositional variations of the miniplate surface, and Vickers hardness testing was performed. At autopsy, clinical healing of all fractures was noted. SEM analysis indicated no perceptible difference in the surface characteristics of the miniplates at all time intervals. Aluminium and silicon deposits were identified by EDX analysis over the flat surfaces. There was extensive damage to some screw heads. It is concluded that there were no significant changes in the surface characteristics of miniplates retrieved up to 24 weeks after implantation in comparison with controls. Damage to the screws during insertion due to softness of the materials may render their removal difficult. There was no evidence to support the routine removal of titanium or stainless steel miniplates because of surface corrosion up to 6 months after implantation.

  2. Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity

    NASA Astrophysics Data System (ADS)

    You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.

    2014-12-01

    A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.

  3. Effect of copper and nickel doping on the optical and structural properties of ZnO

    NASA Astrophysics Data System (ADS)

    Muǧlu, G. Merhan; Sarıtaş, S.; ćakıcı, T.; Şakar, B.; Yıldırım, M.

    2017-02-01

    The present study is focused on the Cu doped ZnO and Ni doped ZnO dilute magnetic semiconductor thin films. ZnO:Cu and ZnO:Ni thin films were grown by Chemically Spray Pyrolysis (CSP) method on glass substrates. Optical analysis of the films was done spectral absorption and transmittance measurements by UV-Vis double beam spectrophotometer technique. The structure, morphology, topology and elemental analysis of ZnO:Cu and ZnO:Ni dilute magnetic thin films were investigated by X-ray diffraction (XRD), Raman Analysis, field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) techniques, respectively. Also The magnetic properties of the ZnO:Ni thin film was investigated by vibrating sample magnetometer (VSM) method. VSM measurements of ZnO:Ni thin film showed that the ferromagnetic behavior.

  4. Synergistic effect of tartaric acid with 2,6-diaminopyridine on the corrosion inhibition of mild steel in 0.5 M HCl

    PubMed Central

    Qiang, Yujie; Guo, Lei; Zhang, Shengtao; Li, Wenpo; Yu, Shanshan; Tan, Jianhong

    2016-01-01

    The inhibitive ability of 2,6-diaminopyridine, tartaric acid and their synergistic effect towards mild steel corrosion in 0.5 M HCl solution was evaluated at various concentrations using potentiodynamic polarization measurements, electrochemical impedance spectroscopy (EIS), and weight loss experiments. Corresponding surfaces of mild steel were examined by atomic force microscope (AFM), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) analysis. The experimental results are in good agreement and reveal a favorable synergistic effect of 2,6-diaminopyridine with tartaric acid, which could protect mild steel from corrosion effectively. Besides, quantum chemical calculations and Monte Carlo simulation were used to clarify the inhibition mechanism of the synergistic effect. PMID:27628901

  5. Preparation of Ag-loaded octahedral Bi2WO6 photocatalyst and its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    An, Liang; Wang, Guanghui; Zhou, Xuan; Wang, Yi; Gao, Fang; Cheng, Yang

    2014-12-01

    In this work, an Ag-loaded octahedral Bi2WO6 photocatalyst has been successfully prepared by the hydrothermal method and photo deposition method. X-ray diffraction (XRD), energy dispersive analysis of X-ray (EDX), field-emission scanning electron microscopy (FE-SEM) and ultra-violet adsorption spectrum (UV-Vis) were employed for characterization of the composite photocatalyst. Furthermore, two different photocatalysts including the obtained Ag-loaded octahedral Bi2WO6 were employed here for photodegradation of model contaminated water of Orange II (OII). Results show that Ag-loaded Bi2WO6 photocatalyst exhibits superior photocatalytic properties compared to the undoped Bi2WO6. The reasons for improvement in photocatalytic activity of the Ag-loaded octahedral Bi2WO6 were also discussed.

  6. Structural and optical properties of Ni-doped CdS thin films prepared by chemical bath deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premarani, R.; Saravanakumar, S., E-mail: sarophy84@gmail.com; Chandramohan, R.

    2015-06-24

    The structural and optical behavior of undoped Cadmiun Sulphide (CdS) and Ni-doped CdS thinfilms prepared by Chemical Bath Deposition (CBD) technique is reported. The crystallite sizes of the thinfilms have been characterized by X-ray diffraction pattern (XRD). The particle sizes increase with the increase of Ni content in the CdS thinfilms. Scanning Electron Microscope (SEM) results indicated that CdS thinfilms is made up of aggregate of spherical-like particles. The composition was estimated by Energy Dispersive Analysis of X-ray (EDX) and reported. Spectroscopic studies revealed considerable improvement in transmission and the band gap of the films changes with addition of Nimore » dopant that is associated with variation in crystallite sizes in the nano regime.« less

  7. SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia.

    PubMed

    Williamson, B J; Mikhailova, I; Purvis, O W; Udachin, V

    2004-04-25

    Scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX) of particulate matter on lichen transplant thalli (Hypogymnia physodes) was assessed as a complementary technique to wet chemical analysis for source apportionment of airborne contaminants. Transplants (2 month exposure) stationed in the Cu smelter and former mining town of Karabash were compared with those from a control site 30 km south. Particulate matter in Karabash samples (715 analyses) showed higher levels of S, Pb, Cu, Sn and Zn compared with the control (598 analyses). Complex element associations among the particles confounded detailed mineralogical identifications, and therefore a simplified particle classification scheme was devised for source apportionment. Karabash samples contained high levels of particles classified as mining-related (MRP), and these were also identified in control samples, indicating wide spatial dispersion from the smelter and highlighting the sensitivity of the method. It was noted that MRP <2.5-microm diameter were poorly represented on lichen surfaces suggesting this may limit the usefulness of Hypogymnia transplants as proxies when assessing human health impacts from airborne particulates. Analyses of the lichen thallus surface (away from surface particulates) revealed high levels of Cu, Zn, Fe and Pb associated with organics in the Karabash samples compared with the control, with a proportionate loss of K, interpreted as being due to a stress-related increase in cell membrane permeability. This type of analysis may provide a novel SEM-EDX-based method for assessing lichen vitality. The techniques developed are presented and further implications of the study are discussed.

  8. Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties.

    PubMed

    Grazziotin-Soares, R; Nekoofar, M H; Davies, T E; Bafail, A; Alhaddar, E; Hübler, R; Busato, A L S; Dummer, P M H

    2014-06-01

    To assess the effect of bismuth oxide (Bi2 O3 ) on the chemical characterization and physical properties of White mineral trioxide aggregate (MTA) Angelus. Commercially available White MTA Angelus and White MTA Angelus without Bi2 O3 provided by the manufacturer especially for this study were subjected to the following tests: Rietveld X-ray diffraction analysis (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), compressive strength, Vickers microhardness test and setting time. Chemical analysis data were reported descriptively, and physical properties were expressed as means and standard deviations. Data were analysed using Student's t-test and Mann-Whitney U test (P = 0.05). Calcium silicate peaks were reduced in the diffractograms of both hydrated materials. Bismuth particles were found on the surface of White MTA Angelus, and a greater amount of particles characterized as calcium hydroxide was observed by visual examination on White MTA without Bi2 O3 . The material without Bi2 O3 had the shortest final setting time (38.33 min, P = 0.002), the highest Vickers microhardness mean value (72.35 MPa, P = 0.000) and similar compressive strength results (P = 0.329) when compared with the commercially available White MTA Angelus containing Bi2 O3 . The lack of Bi2 O3 was associated with an increase in Vickers microhardness, a reduction in final setting time, absence of Bi2 O3 peaks in diffractograms, as well as a large amount of calcium and a morphology characteristic of calcium hydroxide in EDX/SEM analysis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  9. Compositional analysis of projectile residues on LDEF instrument AO187-1

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Horz, F.

    1992-01-01

    Impact craters greater than 30 microns and associated projectile residues were analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDXA). Objectives were to analyze a statistically significant number of projectiles to evaluate their chemical variability and possible clustering into discrete particle types. Bay A11 exposed six collector surfaces of anodized 1100-T4 (greater than 99 percent pure) aluminum sheets, 0.32 cm thick, yielding an exposed surface area of 1.1 sq. m. Four of the six panels have been retained at JSC, and were optically scanned, one (A11E00E) was prepared for SEM/EDX analysis. Bay A03 was occupied by high purity (99.99 percent) gold sheets, 0.5 mm thick, yielding an exposed surface area of 0.85 sq. m. Sample processing included the optical scanning (6X), labeling, and dislodging (by a punch-die device) of each individual impact greater than 75 microns for the aluminum and 30 microns for the gold. The 209 craters were dislodged form A11E00E, having crater diameters up to 3500 microns. Optical examination of the gold surfaces detected 238 craters, 198 of which were retained at JSC and analyzed via SEM/EDX. The analytical procedures included maximizing the geometric efficiency (take-off angles), using relatively long count times (500-1000 sec) and sufficiently high accelerating currents (25-30Kev). Despite diligent examination, a large number of craters did not exhibit measurable signals above background. Detectable resides were classified as either micrometeoritic or as man-made debris.

  10. [Imprints of coronary plaque particles in the PTCA balloon surface during the dilatation processing].

    PubMed

    Werner, D; Behrend, D; Schmitz, K P; Urbaszek, W

    1995-05-01

    Seventy-six PTCA-balloons after coronary angioplasty were studied for superficial changes using scanning electron microscopy (SEM) after fixing in glutardialdehyde. Coronary plaque particles were identified on the balloon surface in 52 cases (68%). Twelve new and unused balloons were subjected to the same chemical treatment and SEM showed no imprints. The average length of the longest imprinted plaques was 128 +/- 201 microns and the average number of plaque particles per balloon was 4.9 +/- 2.7. The maximal dilatation pressure and the number of dilatations showed no influence on the impregnation of plaque particles. However, longer plaque imprints tended to occur under low dilatation pressure. Imprints of plaque particles were significantly higher in patients with low cholesterol (p = 0.0001) and low triglycerides (p = 0.0016). No correlation was seen between imprint length and lipid levels. Similarly, the different balloon materials (polyethylene, polyolefincopolymer) showed no significant differences with regard to plaque occurrence. The PTCA-balloons, plaque particles and six coronary plaques obtained after endatherectomy were subjected to energy dispersive x-ray analysis (EDX) under SEM as EDX reveals qualitative and quantitative information about the structural elements. Highly significant differences in calcium, sodium, phosphorus and silicon contents (p = 0.0000) between plaque particles and balloon surface were observed, owing to the absence of these in balloon material. Thus EDX offers additional advantages over SEM in that it clearly differentiates deformed balloon surface, plaque particle, and retained contrast medium. Plaque particles can be recovered from balloon surfaces after PTCA. Depending upon their size, they could lead to coronary spasm or microembolic phenomenon.

  11. A novel study based on adaptive metal tolerance behavior in fungi and SEM-EDX analysis.

    PubMed

    Chen, Si Hui; Ng, Si Ling; Cheow, Yuen Lin; Ting, Adeline Su Yien

    2017-07-15

    Four fungal isolates: Simplicillium chinense (iso 9, accession no. KX425621), Penicillium simplicissimum (iso 10, KP713758), Trichoderma asperellum (iso 11, KP792512), and Coriolopsis sp. (1c3, KM403574) were subjected to a series of induced-tolerance training under high metal concentrations to determine if greater tolerance could be achieved from constant exposure to such conditions. Adaptive tolerance assay (Tolerance Index, TI) and Field-Emission Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDX) characterized their metal tolerance. "Untrained" S. chinense, P. simplicissimum and T. asperellum showed tolerance towards 4000-4500ppm Al(III) (TI: 0.64-0.71), 1000ppm Cr(III) (0.52-0.83) and Pb(II) (0.32-0.88). With tolerance training, tolerance towards 2000-6000ppm Al(III), 500-3000ppm Pb(II) and 2000-3000ppm Cr(III) were achieved (TI: 0.01-0.82) compared to untrained cultures (0.00-0.59). In contrast, tolerance training for Coriolopsis sp. and P. simplicissimum was less successful, with TI values similar or lower than untrained cultures. SEM-EDX analysis proposed biosorption and bioaccumulation as mechanisms for metal removal. The latter was demonstrated with the removal of Cr(III) and Pb(II) by S. chinense (12.37 and 11.52mgg -1 , respectively) and T. asperellum (10.44 and 7.50mgg -1 ). Induced-tolerance training may render benefit in the long run, but this delicate approach is suggestively species and metal dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Calcification of Hydrophilic Acrylic Intraocular Lenses With a Hydrophobic Surface: Laboratory Analysis of 6 Cases.

    PubMed

    Gartaganis, Sotirios P; Prahs, Philipp; Lazari, Eftichia D; Gartaganis, Panos S; Helbig, Horst; Koutsoukos, Petros G

    2016-08-01

    To investigate the nature and characteristic features of deposits causing opacification of intraocular lenses (IOLs) based on the examination of clinical findings using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX) analysis. Retrospective, observational case series. This is a multicenter study of 6 hydrophilic acrylic IOLs (Lentis LS-502-1; Oculentis GmbH, Berlin, Germany) with a hydrophobic surface that were explanted from 5 patients because of opacification. Three patients had an uncomplicated phacoemulsification. One patient underwent combined phacoemulsification and pars plana vitrectomy for retinal detachment and later silicone oil endotamponade owing to redetachment. The last patient had a pars plana vitrectomy and silicone oil instillation combined with phacoemulsification for tractive retinal detachment and diabetic retinopathy. The explanted lenses were submitted to our laboratory and were examined by SEM and EDX in order to identify the morphologic features and the composition of the deposits. SEM and EDX analyses confirmed the presence of calcific deposits in the interior of the opacified hydrophilic IOLs, with a pattern showing the formation of lumps on the surface. The lumps were due to subsurface formation of calcium phosphate crystalline deposits. The crystallite clusters seemed to diffuse from the IOL interior to the surface. We demonstrated the calcification pattern of the hydrophilic IOL (Lentis LS-502-1) with a hydrophobic surface. Although hydrophilic acrylic lenses have a hydrophobic surface, the development of calcification is a possible threat initiating from the hydrophilic subsurface of the IOLs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Combined effect of pulse electron beam treatment and thin hydroxyapatite film on mechanical features of biodegradable AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Surmeneva, M. A.; Tyurin, A. I.; Teresov, A. D.; Koval, N. N.; Pirozhkova, T. S.; Shuvarin, I. A.; Surmenev, R. A.

    2015-11-01

    The morphology, elemental, phase composition, nanohardness, and Young's modulus of the hydroxyapatite (HA) coating deposited via radio frequency (RF) magnetron sputtering onto the AZ31 surface were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and nanoindentationtechniques. The calcium phosphate (Ca/P) molar ratio of the HA coating deposited via RF-magnetron sputtering onto AZ31 substrates according to EDX was 1.57+0.03. The SEM experiments revealed significant differences in the morphology of the HA film deposited on untreated and treated with the pulsed electron beam (PEB) AZ31 substrate. Nanoindentation studies demonstrated significant differences in the mechanical responses of the HA film deposited on the initial and PEB-modified AZ31 substrates. The nanoindentation hardness and the Young's modulus of the HA film on the magnesium alloy modified using the PEB treatment were higher than that of the HA layer on the untreated substrate. Moreover, the HA film fabricated onto the PEB-treated surface was more resistant to plastic deformation than the same film on the untreated AZ31 surface.

  14. Mechanism of Action of TiF4 on Dental Enamel Surface: SEM/EDX, KOH-Soluble F, and X-Ray Diffraction Analysis.

    PubMed

    Comar, Lívia P; Souza, Beatriz M; Al-Ahj, Luana P; Martins, Jessica; Grizzo, Larissa T; Piasentim, Isabelle S; Rios, Daniela; Buzalaf, Marília Afonso Rabelo; Magalhães, Ana Carolina

    2017-10-12

    This in vitro study aimed to evaluate the action of TiF4 on sound and carious bovine and human enamel. Sound (S) and pre-demineralised (DE) bovine and human (primary and permanent) enamel samples were treated with TiF4 (pH 1.0) or NaF varnishes (pH 5.0), containing 0.95, 1.95, or 2.45% F for 12 h. The enamel surfaces were analysed using SEM-EDX (scanning electron microscopy/energy-dispersive X-ray spectroscopy) (n = 10, 5 S and 5 DE) and KOH-soluble fluoride was quantified (n = 20, 10 S and 10 DE). Hydroxyapatite powder produced by precipitation method was treated with the corresponding fluoride solutions for 1 min (n = 2). The formed compounds were detected using X-ray diffraction (XRD). All TiF4 varnishes produced a coating layer rich in Ti and F on all types of enamel surface, with micro-cracks in its extension. TiF4 (1.95 and 2.45% F) provided higher fluoride deposition than NaF, especially for bovine enamel (p < 0.0001). It also induced a higher fluoride deposition on DE samples compared to S samples (p < 0.0001), except for primary enamel. The Ti content was higher for bovine and human primary enamel than human permanent enamel, with some differences between S and DE. The XRD analysis showed that TiF4 induced the formation of new compounds such as CaF2, TiO2, and Ti(HPO4)2·H2O. In conclusion, TiF4 (>0.95% F) interacts better, when compared to NaF, with bovine and human primary enamel than with human permanent enamel. TiF4 provoked higher F deposition compared to NaF. Carious enamel showed higher F uptake than sound enamel by TiF4 application, while Ti uptake was dependent on the enamel condition and origin. © 2017 S. Karger AG, Basel.

  15. Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.

    PubMed

    Yang, X; Wang, J Y; Pan, H Y

    2009-02-01

    Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.

  16. Characterization of Morphology and Composition of Inorganic Fillers in Dental Alginates

    PubMed Central

    Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Consani, Simonides; de Carvalho, Rodrigo Varella; Lopes, Murilo Baena; Meneghel, Luciana Lira; da Silva, Fabiane Borges; Sinhoreti, Mário Alexandre Coelho

    2014-01-01

    Energy dispersive X-ray spectroscopy microanalysis (EDX), scanning electron microscopy (SEM), and Archimedes' Principle were used to determine the characteristics of inorganic filler particles in five dental alginates, including Cavex ColorChange (C), Hydrogum 5 (H5), Hydrogum (H), Orthoprint (O), and Jeltrate Plus (JP). The different alginate powders (0.5 mg) were fixed on plastic stubs (n = 5) and sputter coated with carbon for EDX analysis, then coated with gold, and observed using SEM. Volume fractions were determined by weighing a sample of each material in water before and after calcining at 450°C for 3 h. The alginate materials were mainly composed of silicon (Si) by weight (C—81.59%, H—79.89%, O—78.87%, H5—77.95%, JP—66.88%, wt). The filler fractions in volume (vt) were as follows: H5—84.85%, JP—74.76%, H—70.03%, O—68.31%, and C—56.10%. The tested materials demonstrated important differences in the inorganic elemental composition, filler fraction, and particle morphology. PMID:25165690

  17. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  18. Study of the Wall Paintings of the Cenador Del Leon in the Real Alcazar of Seville

    NASA Astrophysics Data System (ADS)

    Robador, Maria Dolores; Mancera, Inmaculada; Perez-Maqueda, Rafael; Albardonedo, Antonio

    2017-10-01

    The paintings on the walls of the Cenador del Leon located in the gardens of the Real Alcazar in Seville next to the Pabellon de Carlos V in the Jardin Ingles area have been studied. The components of the wall paintings cross-sections, which were prepared using small samples taken from the walls of Cenador del Leon, were characterized using infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. The cross-sections of the collected samples indicated that the paint layer is well adhered to the preparation layer without any discontinuity, and only one carbonation layer exists at the top of the sequence of layers. These data suggest that the paint was applied on a fresco surface, and therefore, the adopted technique was fresco. Based on the different elements detected by EDX analysis of the cross-sections, the detected pigments included iron oxides accompanied by clay minerals (or earths) in the red pink, golden yellow and yellow colours, blue smelt for the blue colour and basic copper chloride (atacamite) for the green colour. In one sample, the particles were composed of Ba and S from barium sulphate and Ti and O from rutile titanium oxide due to a modern pigment.

  19. Green Synthesis of Silver Nanoparticles Using an Aqueous Extract of Monotheca buxifolia (Flac.) Dcne

    NASA Astrophysics Data System (ADS)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Anwar, Saad

    2018-01-01

    This study deals with the synthesis and physicochemical investigation of silver nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of silver nitrate with the plant extract, silver nanoparticles were rapidly fabricated. The synthesized particles were characterized by using UV-visible spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AgNPs was confirmed by noting the change in colour through visual observations as well as via UV-Vis spectroscopy. UV-Vis spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 440 nm. FTIR was used to identify the chemical composition of silver nanoparticles and Ag-capped plant extract. The presence of elemental silver was also confirmed through EDX analysis. The SEM analysis of the silver nanoparticles showed that they have a uniform spherical shape with an average size in the range of 40-78 nm. This green system showed better capping and stabilizing agent for the fine particles. Further, in vitro the antioxidant activity of Monotheca buxifolia (Flac.) and Ag-capped with the plant was also evaluated using FeCl3/K3Fe (CN)6 essay.

  20. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Li, Siheng; Wang, Enbo; Tian, Chungui; Mao, Baodong; Kang, Zhenhui; Li, Qiuyu; Sun, Guoying

    2008-07-01

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag@ MFe 2O 4 ( M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag@C microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe 3+ and M 2+ on the surface of the Ag@C spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core.

  1. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  2. The effect of milling time on the synthesis of Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kursun, C., E-mail: celalkursun@ksu.edu.tr; Gogebakan, M., E-mail: gogebakan@ksu.edu.tr

    In the present work, nanocrystalline Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy was produced by mechanical alloying from mixtures of pure crystalline Cu, Mg, Ti and Ni powders using a Fritsch planetary ball mill with a ball to powder ratio of 10:1. Morphological changes, microstructural evolution and thermal behaviour of the Cu-Mg-Ti-Ni powders at different stages of milling were characterised by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX) and differential thermal analysis (DTA). This alloy resulted in formation of single phase solid solution with FCC structure α-Cu (Mg, Ti, Ni) after 80 h of milling. In the initialmore » stage of milling different sized and shaped elemental powders became uniform during mechanical alloying. The homogeneity of the Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy increased with increasing milling time. The EDX result also confirmed the compositional homogeneity of the powder alloy. The crystallite size of alloy was calculated below 10 nm from XRD data.« less

  3. Green synthesis of silver nanoparticles using tannins

    NASA Astrophysics Data System (ADS)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  4. Nanostructured ZnO Films for Room Temperature Ammonia Sensing

    NASA Astrophysics Data System (ADS)

    Dhivya Ponnusamy; Sridharan Madanagurusamy

    2014-09-01

    Zinc oxide (ZnO) thin films have been deposited by a reactive dc magnetron sputtering technique onto a thoroughly cleaned glass substrate at room temperature. X-ray diffraction revealed that the deposited film was polycrystalline in nature. The field emission scanning electron micrograph (FE-SEM) showed the uniform formation of a rugby ball-shaped ZnO nanostructure. Energy dispersive x-ray analysis (EDX) confirmed that the film was stoichiometric and the direct band gap of the film, determined using UV-Vis spectroscopy, was 3.29 eV. The ZnO nanostructured film exhibited better sensing towards ammonia (NH3) at room temperature (˜30°C). The fabricated ZnO film based sensor was capable of detecting NH3 at as low as 5 ppm, and its parameters, such as response, selectivity, stability, and response/recovery time, were also investigated.

  5. Delaminating and restacking MgAl-layered double hydroxide monitored and characterized by a range of instrumental methods

    NASA Astrophysics Data System (ADS)

    Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István

    2017-07-01

    The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).

  6. Thermal, structural, functional, optical and magnetic studies of pure and Ba doped CdO nanoparticles.

    PubMed

    Sivakumar, S; Venkatesan, A; Soundhirarajan, P; Khatiwada, Chandra Prasad

    2015-12-05

    In this research, a chemical precipitation method was used to synthesize undoped and doped cadmium oxide nanoparticles and studied by TG-DTA, XRD, FT-IR, SEM, with EDX and antibacterial activities, respectively. The melting points, thermal stability and the kinetic parameters like entropy (ΔS), enthalpy (ΔH), Gibb's energy (ΔG), activation energy (E), frequency factor (A) were evaluated from TG-DTA measurements. X-ray diffraction analysis (XRD) brought out the information about the synthesized products exist in spherical in shape with cubic structure. The functional groups and band area of the samples were established by Fourier transform infrared (FT-IR) spectroscopy. The direct and indirect band gap energy of pure and doped samples were determined by UV-Vis-DRS. The surface morphological, elemental compositions and particles sizes were evaluated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Finally, antibacterial activities indicated the Gram-positive and Gram-negative bacteria are more active in transporter, dehydrogenize and periplasmic enzymatic activities of pure and doped samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  8. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis

    PubMed Central

    Scimeca, Manuel; Bischetti, Simone; Lamsira, Harpreet Kaur; Bonfiglio, Rita; Bonanno, Elena

    2018-01-01

    The Energy Dispersive X-ray (EDX) microanalysis is a technique of elemental analysis associated to electron microscopy based on the generation of characteristic Xrays that reveals the presence of elements present in the specimens. The EDX microanalysis is used in different biomedical fields by many researchers and clinicians. Nevertheless, most of the scientific community is not fully aware of its possible applications. The spectrum of EDX microanalysis contains both semi-qualitative and semi-quantitative information. EDX technique is made useful in the study of drugs, such as in the study of drugs delivery in which the EDX is an important tool to detect nanoparticles (generally, used to improve the therapeutic performance of some chemotherapeutic agents). EDX is also used in the study of environmental pollution and in the characterization of mineral bioaccumulated in the tissues. In conclusion, the EDX can be considered as a useful tool in all works that require element determination, endogenous or exogenous, in the tissue, cell or any other sample. PMID:29569878

  9. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase. Finally, automated serial slicing and imaging in the FIB-SEM generated a stack of secondary electron images of the particles’ interior surfaces that allowed for the 3-D reconstruction of the particles, a process known as FIB tomography. Interior surface of light-absorbing carbonaceous particle from FIB-SEM analysis.

  10. Elemental composition and structural characteristics of as-received TriTaniumTM orthodontic archwire

    NASA Astrophysics Data System (ADS)

    Ilievska, I.; Petrov, V.; Mihailov, V.; Karatodorov, S.; Andreeva, L.; Zaleski, A.; Mikli, V.; Gueorgieva, M.; Petrova, V.; Stoyanova-Ivanova, A.

    2018-03-01

    Orthodontic archwires are among the most important devices of fixed orthodontic therapy. Many types of archwires are made available on the market by various manufacturers with different elemental composition and structural characteristics. Knowing this information is important when choosing a suitable archwire for a particular stage of orthodontic treatment. The aim of our study is to characterize a new type orthodontic archwires (TriTaniumTM, American Orthodontics) before their placement in the oral cavity. To achieve the aim, we used modern methods for determining their elemental composition and structural characteristics: laser-induced plasma spectroscopy (LIBS), X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and differential scanning calorimetry (DSC). The results obtained from the qualitative elemental analysis by LIBS and the quantitative elemental analysis by EDX showed that Ni and Ti are the main elements in the archwire studied. The room-temperature XRD patterns showed peaks typical for a Ni-Ti alloy with an austenite-type structure. Monitoring the phase transitions by means of DSC measurements in the temperature range from –50 °C to +50 °C, we showed that in TriTaniumTM archwires, besides the austenite to martensite transition, there exists a rhombohedral intermediate phase (R phase). This study will be useful in assisting orthodontists in applying appropriate nickel-titanium orthodontic archwires in the clinical practice.

  11. Total reflection X-ray fluorescence analysis of airborne silver nanoparticles from fabrics.

    PubMed

    Menzel, Magnus; Fittschen, Ursula Elisabeth Adriane

    2014-03-18

    Ag nanoparticles (NPs) are usually applied to consumer products because of their antimicrobial properties, which are desired in fabrics for sportswear as well as cloth used for cleaning. Hazards to human health from airborne Ag NPs may occur when the NPs are inhaled. NPs are comparable in size to macromolecules and viruses and able to penetrate deep into the lungs, e.g., the alveoli, where they may cause damage to cells and tissue due to their large surface area. In this study, aerosols released form fabrics treated with Ag NPs were collected using a low pressure Berner impactor and analyzed with total reflection X-ray fluorescence (TXRF). We found that the Ag NPs are released primarily in the form of larger particles, mainly 0.13-2 μm, probably attached to fiber material. Using an electron micro probe, single particles could be identified. The detection of backscattered electrons suggests small spots on the particle consist of a heavier element, which most likely is Ag, although the signal in energy-dispersive X-ray spectroscopy (EDX) was below the lower limit of detection (LOD). To achieve LODs necessary for Ag determination, Ar peaks were eliminated by a nitrogen atmosphere provided by the "Picofox-box". This enables linear calibration and quantification of Ag. The LOD was calculated at 0.2 ng (2.0 ppb). Following the TXRF and scanning electron microscopy (SEM)/EDX analysis, the aerosol samples were dissolved in nitric acid and analyzed with ICPMS to successfully confirm the results obtained by the TXRF measurements.

  12. Structural and morphological study of Fe-doped Bi-based superconductor

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath; Kumar, Rohitash

    2018-05-01

    In the present work, we report the study of iron-doped Bi-based superconductor sample with stoichiometric composition of Bi2Sr2Can-1(Cu1-x Fex)3O2n+4 where n=3 and x = 0.7. This sample was prepared by grinding the precursor oxides in the Ball mill for 6 hours continuous at the rate of 400 rpm for a proper mixing and to obtain the required grain size. Then the solid-state reaction method was used to prepare the sample. X-ray diffraction (XRD) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray fluorescence analysis (EDX) were performed for determination of the crystal structure, surface morphology and trace the material elements of samples, respectively. The surface microscopy data were collected over a selected area of the surface of the material and a two-dimensional image generated that displays spatial variations in properties including chemical characterization and orientation of materials.

  13. Thermodynamic modeling of solid solutions between monosulfate and monochromate 3CaO Bullet Al{sub 2}O{sub 3} Bullet Ca[(CrO{sub 4}){sub x}(SO{sub 4}){sub 1-x}] Bullet nH{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leisinger, Sabine M., E-mail: sabine.leisinger@eawag.ch; Institute of Biogeochemistry and Pollutant Dynamics, ETH, CH-8092 Zurich; Lothenbach, Barbara

    2012-01-15

    In hydrated cement paste AFm-phases are regarded to play an important role in the binding of the toxic contaminant chromate through isomorphic substitution with sulfate. Solid solutions formation can lower the solubility of the solids, thus reducing chromate leaching concentrations. Solid solutions between monosulfate and monochromate were synthesized and characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX) and inductive coupled plasma optical emission spectroscopy (ICP-OES). Based on the measured ion concentrations in solution total solubility products of the solid solution series were determined. For pure monochromate a logK = - 28.4more » {+-} 0.7 was determined. Results from solid and solution analysis showed that limited solid solutions exist. Based on XRD diffractograms a solid solution with a miscibility gap 0.15 < Crx < 0.85 with a dimensionless Guggenheim parameter of 2.43 was proposed.« less

  14. Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kursun, Celal; Gogebakan, Musa; Eskalen, Hasan

    2018-03-01

    We report on a work of the influence of the mechanical alloying on the microstructure, thermal and mechanical features of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys. The Mg-based alloys were produced by mechanical alloying technique from mixtures of pure crystalline Mg, Ni, Y and Si powders. These alloys were investigated using a variety of analytical techniques including x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and differential scanning calorimetry (DSC). The mechanical properties of the alloys were investigated by Vickers microhardness (HV) tester. After 75 h of milling time, three different intermetallic phases were obtained. These phases were defined as Mg24Y5, Mg2Ni3Si and Mg2Ni by XRD data. The particle and crystallite sizes of the Mg-based alloys were decreased by increasing milling time and they were calculated 2 μm and ˜9 nm, respectively. From the EDX analysis, it was determined that compositional homogeneity of the Mg-based alloys was fairly high. The microhardness values of the Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys increased by increasing Si into the alloys and were determined 101, 131 and 158 HV, respectively.

  15. Coordination polymer-derived nano-sized zinc ferrite with excellent performance in nitro-explosive detection.

    PubMed

    Singha, Debal Kanti; Mahata, Partha

    2017-08-29

    Herein, a mixed metal coordination polymer, {(H 2 pip)[Zn 1/3 Fe 2/3 (pydc-2,5) 2 (H 2 O)]·2H 2 O} 1 {where H 2 pip = piperazinediium and pydc-2,5 = pyridine-2,5-dicarboxylate}, was successfully synthesized using a hydrothermal technique. To confirm the structure and phase purity of 1, single crystals of an isomorphous pure Fe compound, {(H 2 pip)[Fe(pydc-2,5) 2 (H 2 O)]·2H 2 O} 1a, were synthesized based on similar synthetic conditions. Single crystal X-ray data of 1a confirmed the one-dimensional anionic metal-organic coordination polymer hydrogen bonded with protonated piprazine (piperazinediium) and lattice water molecules. The phase purity of 1 and 1a were confirmed via powder X-ray diffraction. Compound 1 was systematically characterized using IR, TGA, SEM, and EDX elemental mapping analysis. Compound 1 was used as a single source precursor for the preparation of nano-sized ZnFe 2 O 4 via thermal decomposition. The as-obtained ZnFe 2 O 4 was fully characterized using PXRD, SEM, TEM, and EDX elemental mapping analysis. It was found that ZnFe 2 O 4 was formed in its pure form with particle size in the nano-dimension. The aqueous dispersion of nano-sized ZnFe 2 O 4 exhibits a strong emission at 402 nm upon excitation at 310 nm. This emissive property was employed for luminescence-based detection of nitroaromatic explosives in an aqueous medium through luminescence quenching for the first time. Importantly, selective detections have been observed for phenolic nitroaromatics based on differential luminescence quenching behaviour along with a detection limit of 57 ppb for 2,4,6-trinitrophenol (TNP) in water.

  16. Determination of the post mortem interval in skeletal remains by the comparative use of different physico-chemical methods: Are they reliable as an alternative to 14C?

    PubMed

    Amadasi, Alberto; Cappella, Annalisa; Cattaneo, Cristina; Cofrancesco, Pacifico; Cucca, Lucia; Merli, Daniele; Milanese, Chiara; Pinto, Andrea; Profumo, Antonella; Scarpulla, Valentina; Sguazza, Emanuela

    2017-05-01

    The determination of the post-mortem interval (PMI) of skeletal remains is a challenging aspect in the forensic field. Previous studies focused their attention on different macroscopic and morphological aspects but a thorough and complete evaluation of the potential of chemical and physical analyses in this field of research has not been performed. In addition to luminol test and Oxford histology index (OHI) reported in a recent paper, widely spread and accessible methods based on physical aspect and chemical characteristics of skeletal remains have been investigated as potential alternatives to dating by determination of 14 C. The investigation was performed on a total of 24 archeological and forensic bone samples with known PMI, with inductively coupled plasma optical emission spectrometer (ICP-OES), inductively coupled plasma quadruple mass spectrometry (ICP-MS), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray analysis (EDX), powder X-ray diffraction analysis (XRPD) and scanning electron microscopy (SEM). Finally, the feasibility of such alternative methods was discussed. Some results such as carbonates/phosphates ratio from FT-IR, the amounts of organic and inorganic matter by EDX, crystallite sizes with XRPD, and surface morphology obtained by SEM, showed significant trends along with PMI. Though, from a chemical point of view cut-off values and gold-standard methods still present challenges, and rather different techniques together can provide useful information toward the assessment of the PMI of skeletal remains. It is however clear that in a hypothetical flowchart those methods may be placed practically at the same level and a choice should always consider the evaluation of results by each technique, execution times and a costs/benefits relationship. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    NASA Astrophysics Data System (ADS)

    Lehr, I. L.; Saidman, S. B.

    2012-03-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  18. Characterization of size-resolved urban haze particles collected in summer and winter at Taiyuan City, China using quantitative electron probe X-ray microanalysis

    NASA Astrophysics Data System (ADS)

    Geng, Hong; Jin, Chun-Song; Zhang, Dong-Peng; Wang, Shu-Rong; Xu, Xiao-Tian; Wang, Xu-Ran; Zhang, Yuan; Wu, Li; Ro, Chul-Un

    2017-07-01

    The aim of the study is to characterize the size-resolved urban haze particles and investigate their modification in morphology and composition in summer and winter using the semi-quantitative electron probe X-ray microanalysis (EPMA) based on both scanning and transmission electron microscopies equipped with ultrathin-window energy dispersive X-ray spectrometers (SEM-EDX and TEM-EDX). The haze and non-haze particles were collected through a seven-stage May cascade impactor on Dec. 29-30, 2009 and Jan. 8-9 and July 11-14, 2010 in Taiyuan, a typical inland city in the North China Plain. Approximately 3752 atmospheric particles in the size ranges of 4-2 μm, 2-1 μm, 1-0.5 μm, and 0.5-0.25 μm in aerodynamic diameter were measured and identified according to their secondary electron or TEM images and elemental atomic concentrations calculated through a Monte Carlo simulation program. Results show that on the haze days many reacted or aged mineral dust particles were encountered, in which the sulfate-containing ones outnumbered the nitrate-containing ones in the winter samples while it was on the contrary in the summer samples, suggesting different haze formation and evolution mechanisms in summer and winter. Furthermore, in the haze events (especially in summer), many CNOS-rich particles, likely mixtures of water-soluble organic carbon with (NH4)2SO4 or NH4HSO4, were observed not only in the submicron but also in the super-micron fractions. The simultaneous observation of the fresh and aged CNOS-rich particles in the same SEM or TEM images implied that the status and components of secondary particles were complicated and changeable. The significant increase of both elemental concentration ratios of [N]/[S] and [C]/[S] in the aged ones compared to the fresh ones indicated that NH4NO3 and secondary organic matter were likely absorbed onto (NH4)2SO4 or NH4HSO4 particles and mixed with them. K-rich, Fe-rich, and heavy metal-containing particles in TEM-EDX measurement were detected more in the winter haze samples than in the summer ones, suggesting that they tend to be smaller in size and mainly derive from anthropogenic biomass burning and coal combustion. It was concluded that the combined use of SEM-EDX and TEM-EDX can identify both submicron and super-micron urban haze particles in a straightforward way and trace their modifications in size, shape, mixing state, and chemical compositions in different seasons, helping address their evolution processes and hazards on human health.

  19. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    PubMed

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  20. Silica Deposition on the Leaves of Mir- and Earth-Grown Super Dwarf Wheat

    NASA Technical Reports Server (NTRS)

    Campbell, William F.; Bubenheim, David L.; Salisbury, Frank B.; Bingham, Gail E.; McManus, William R.; Biesinger, H. D.; Strickland, D. T.; Levinskikh, Maragarita; Sytchev, Vladimir N.; Podolsky, Igor

    2000-01-01

    Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) microanalysis were used to investigate the nature of crystals deposited on leaves of Mir- and Earth-grown Super Dwarf wheat (Triticum aestivum L.) plants. Leaves from these plants exhibited dense and uniformly distributed crystals on leaf abaxial surfaces when viewed by SEM. Young leaves showed that crystals initially accumulated around the stomata on the adaxial surface, but became more dense and uniformly distributed as the leaves aged. EDX microanalyses of the Balkanine (a nutrient charged clinoptilolite zeolite) medium in which the wheat plants were grown showed an elemental pattern similar to that observed on the wheat leaves. The absence of N and P in the Balkanine suggests that they were completely utilized by the plants. Only Si and O were evident in the drying agent, Sorb-it-Silica (trademark), and perhaps could have accounted for some of the Si observed on the plant tissue.

  1. Formation of silicon carbide by laser ablation in graphene oxide-N-methyl-2-pyrrolidone suspension on silicon surface

    NASA Astrophysics Data System (ADS)

    Jaleh, Babak; Ghasemi, Samaneh; Torkamany, Mohammad Javad; Salehzadeh, Sadegh; Maleki, Farahnaz

    2018-01-01

    Laser ablation of a silicon wafer in graphene oxide-N-methyl-2-pyrrolidone (GO-NMP) suspension was carried out with a pulsed Nd:YAG laser (pulse duration = 250 ns, wavelength = 1064 nm). The surface of silicon wafer before and after laser ablation was studied using optical microscopy, scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The results showed that the ablation of silicon surface in liquid by pulsed laser was done by the process of melt expulsion under the influence of the confined plasma-induced pressure or shock wave trapped between the silicon wafer and the liquid. The X-ray diffraction‌ (XRD) pattern of Si wafer after laser ablation showed that 4H-SiC layer is formed on its surface. The formation of the above layer was also confirmed by Raman spectroscopy, and X-ray photoelectron spectroscopy‌ (XPS), as well as EDX was utilized. The reflectance of samples decreased with increasing pulse energy. Therefore, the morphological alteration and the formation of SiC layer at high energy increase absorption intensity in the UV‌-vis regions. Theoretical calculations confirm that the formation of silicon carbide from graphene oxide and silicon wafer is considerably endothermic. Development of new methods for increasing the reflectance without causing harmful effects is still an important issue for crystalline Si solar cells. By using the method described in this paper, the optical properties of solar cells can be improved.

  2. Non-destructive determination of thickness of the dielectric layers using EDX

    NASA Astrophysics Data System (ADS)

    Sokolov, S. A.; Kelm, E. A.; Milovanov, R. A.; Abdullaev, D. A.; Sidorov, L. N.

    2016-12-01

    In this work a non-destructive method for measuring the thickness of the dielectric layers consisting of silicon dioxide and silicon nitride has been developed using a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometer (EDS). Rising in accelerating voltage of electron beam leads to increasing in the depth of generation of the characteristic X-ray. If the ratio of the signal intensity of one of the substrate's elements to the noise equal to 3 suggests that the generation's depth of the characteristic X-ray coincides with the thickness of the overlying film. Dependence of the overlying film's thickness on the accelerating voltage can be plotted. Validation of the results was carried out by using the equation of Anderson-Hassler. The generation's volume of the characteristic X-Ray was simulated by CASINO program. The simulations results are in good agreement with experimental results for small thicknesses.

  3. The Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits.

    PubMed

    Fialová, Dana; Skoupý, Radim; Drozdová, Eva; Paták, Aleš; Piňos, Jakub; Šín, Lukáš; Beňuš, Radoslav; Klíma, Bohuslav

    2017-12-01

    The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirm the hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to Napoleonic Wars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet), which were used during the 18th and the 19th century AD. All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.

  4. Phase transformation from cubic ZnS to hexagonal ZnO by thermal annealing

    NASA Astrophysics Data System (ADS)

    Mahmood, K.; Asghar, M.; Amin, N.; Ali, Adnan

    2015-03-01

    We have investigated the mechanism of phase transformation from ZnS to hexagonal ZnO by high-temperature thermal annealing. The ZnS thin films were grown on Si (001) substrate by thermal evaporation system using ZnS powder as source material. The grown films were annealed at different temperatures and characterized by X-ray diffraction (XRD), photoluminescence (PL), four-point probe, scanning electron microscope (SEM) and energy dispersive X-ray diffraction (EDX). The results demonstrated that as-deposited ZnS film has mixed phases but high-temperature annealing leads to transition from ZnS to ZnO. The observed result can be explained as a two-step process: (1) high-energy O atoms replaced S atoms in lattice during annealing process, and (2) S atoms diffused into substrate and/or diffused out of the sample. The dissociation energy of ZnS calculated from the Arrhenius plot of 1000/T versus log (resistivity) was found to be 3.1 eV. PL spectra of as-grown sample exhibits a characteristic green emission at 2.4 eV of ZnS but annealed samples consist of band-to-band and defect emission of ZnO at 3.29 eV and 2.5 eV respectively. SEM and EDX measurements were additionally performed to strengthen the argument.

  5. Characterization of Arsenic Contamination on Rust from Ton Containers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold; Recep Avci; Robert V. Fox

    The speciation and spatial distribution of arsenic on rusted steel surfaces affects both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples was probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the +3 and or +5more » oxidation state is homogeneously distributed at the very top-most layer of the rust samples, and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nm, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several microns, but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent, however several locations showed very high As in a metallic form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic.« less

  6. Structural and mechanical properties of hydroxyapatite coatings formed by ion-beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.

    2018-03-01

    The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.

  7. Scanning Electron Microscopy Investigation of a Sample Depth Profile Through the Martian Meteorite Nakhla

    NASA Technical Reports Server (NTRS)

    Toporski, Jan; Steele, Andrew; Westall, Frances; McKay, David S.

    2000-01-01

    The ongoing scientific debate as to whether or not the Martian meteorite ALH84001 contained evidence of possible biogenic activities showed the need to establish consistent methods to ascertain the origin of such evidence. To distinguish between terrestrial organic material/microbial contaminants and possible indigenous microbiota within meteorites is therefore crucial. With this in mind a depth profile consisting of four samples from a new sample allocation of Martian meteorite Nakhla was investigated using scanning electron microscopy (SEM) and energy dispersive X-ray analysis. SEM imaging of freshly broken fractured chips revealed structures strongly recent terrestrial microorganisms, in some cases showing evidence of active growth. This conclusion was supported by EDX analysis, which showed the presence of carbon associated with these structures, we concluded that these structures represent recent terrestrial contaminants rather than structures indigenous to the meteorite. Page

  8. TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.

    PubMed

    Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu

    2012-01-01

    TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.

  9. Heavy doping of CdTe single crystals by Cr ion implantation

    NASA Astrophysics Data System (ADS)

    Popovych, Volodymyr D.; Böttger, Roman; Heller, Rene; Zhou, Shengqiang; Bester, Mariusz; Cieniek, Bogumil; Mroczka, Robert; Lopucki, Rafal; Sagan, Piotr; Kuzma, Marian

    2018-03-01

    Implantation of bulk CdTe single crystals with high fluences of 500 keV Cr+ ions was performed to achieve Cr concentration above the equilibrium solubility limit of this element in CdTe lattice. The structure and composition of the implanted samples were studied using secondary ion mass spectrometry (SIMS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS) to characterize the incorporation of chromium into the host lattice and to investigate irradiation-induced damage build-up. It was found that out-diffusion of Cr atoms and sputtering of the targets alter the depth distribution and limit concentration of the projectile ions in the as-implanted samples. Appearance of crystallographically oriented, metallic α-Cr nanoparticles inside CdTe matrix was found after implantation, as well as a strong disorder at the depth far beyond the projected range of the implanted ions.

  10. Hexagonal pencil-like CdS nanorods: Facile synthesis and enhanced visible light photocatalytic performance

    NASA Astrophysics Data System (ADS)

    An, Liang; Wang, Guanghui; Zhao, Lei; Zhou, Yong; Gao, Fang; Cheng, Yang

    2015-07-01

    In the present study, hexagonal pencil-like CdS nanorods have been successfully synthesized through a typical facile and economical one-step hydrothermal method without using any surfactant or template. The product was characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and energy dispersive analysis of X-ray (EDX). The results revealed that the prepared CdS photocatalyst consisted of a large quantity of straight and smooth solid hexagonal nanorods and a few nanoparticles. The photocatalytic activities of CdS nanorods and commercial CdS powders were investigated by the photodegradation of Orange II (OII) in aqueous solution under visible light, and the CdS nanorods presented the highest photocatalytic activity. Its photocatalytic efficiency enhancement was attributed to the improved transmission of photogenerated electron-hole pairs in the CdS nanostructures. The present findings may provide a facile approach to synthesize high efficient CdS photocatalysts.

  11. A one-step method to fabricate PLLA scaffolds with deposition of bioactive hydroxyapatite and collagen using ice-based microporogens

    PubMed Central

    Li, Jiashen; Chen, Yun; Mak, Arthur F.T.; Tuan, Rocky S.; Li, Lin; Li, Yi

    2010-01-01

    Porous poly(L-lactic acid) (PLLA) scaffolds with bioactive coatings were prepared by a novel one-step method. In this process, ice-based microporogens containing bioactive molecules, such as hydroxyapatite (HA) and collagen, served as both porogens to form the porous structure and vehicles to transfer the bioactive molecules to the inside of PLLA scaffolds in a single step. Based on scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, the bioactive components were found to be transferred successfully from the porogens to PLLA scaffolds evenly. Osteoblast cells were used to evaluate the cellular behaviors of the composite scaffolds. After 8 days culturing, MTT assay and alkaline phosphatase (ALP) activity results suggested that HA/collagen could improve the interactions between osteoblast cells and the polymeric scaffold. PMID:20004261

  12. Growth of different phases and morphological features of MnS thin films by chemical bath deposition: Effect of deposition parameters and annealing

    NASA Astrophysics Data System (ADS)

    Hannachi, Amira; Maghraoui-Meherzi, Hager

    2017-03-01

    Manganese sulfide thin films have been deposited on glass slides by chemical bath deposition (CBD) method. The effects of preparative parameters such as deposition time, bath temperature, concentration of precursors, multi-layer deposition, different source of manganese, different complexing agent and thermal annealing on structural and morphological film properties have been investigated. The prepared thin films have been characterized using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It exhibit the metastable forms of MnS, the hexagonal γ-MnS wurtzite phase with preferential orientation in the (002) plane or the cubic β-MnS zinc blende with preferential orientation in the (200) plane. Microstructural studies revealed the formation of MnS crystals with different morphologies, such as hexagons, spheres, cubes or flowers like.

  13. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb+2 as lead phosphate.

    PubMed

    Naik, M M; Khanolkar, D; Dubey, S K

    2013-02-01

    A lead-resistant bacteria isolated from soil contaminated with car battery waste were identified as Providencia alcalifaciens based on biochemical characteristics, FAME profile and 16S rRNA sequencing and designated as strain 2EA. It resists lead nitrate up to 0·0014 mol l(-1) by precipitating soluble lead as insoluble light brown solid. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometric analysis (SEM-EDX) and X-ray diffraction spectroscopy (XRD) revealed extracellular light brown precipitate as lead orthophosphate mineral, that is, Pb(9) (PO(4))(6) catalysed by phosphatase enzyme. This lead-resistant bacterial strain also demonstrated tolerance to high levels of cadmium and mercury along with multiple antibiotic resistance. Providencia alcalifaciens strain 2EA could be used for bioremediation of lead-contaminated environmental sites, as it can efficiently precipitate lead as lead phosphate. © 2012 The Society for Applied Microbiology.

  14. Gunshot residue testing in suicides: Part II: Analysis by inductive coupled plasma-atomic emission spectrometry.

    PubMed

    Molina, D Kimberley; Castorena, Joe L; Martinez, Michael; Garcia, James; DiMaio, Vincent J M

    2007-09-01

    Several different methods can be employed to test for gunshot residue (GSR) on a decedent's hands, including scanning electron microscopy with energy dispersive x-ray (SEM/EDX) and inductive coupled plasma-atomic emission spectrometry (ICP-AES). In part I of this 2-part series, GSR results performed by SEM/EDX in undisputed cases of suicidal handgun wounds were studied. In part II, the same population was studied, deceased persons with undisputed suicidal handgun wounds, but GSR testing was performed using ICP-AES. A total of 102 cases were studied and analyzed for caliber of weapon, proximity of wound, and the results of the GSR testing. This study found that 50% of cases where the deceased was known to have fired a handgun immediately prior to death had positive GSR results by ICP/AES, which did not differ from the results of GSR testing by SEM/EDX. Since only 50% of cases where the person is known to have fired a weapon were positive for GSR by either method, this test should not be relied upon to determine whether someone has discharged a firearm and is not useful as a determining factor of whether or not a wound is self-inflicted or non-self-inflicted. While a positive GSR result may be of use, a negative result is not helpful in the medical examiner setting as a negative result indicates that either a person fired a weapon prior to death or a person did not fire a weapon prior to death.

  15. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    PubMed

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  16. Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles.

    PubMed

    Corral Nuñez, Camila; Covarrubias, Cristian; Fernandez, Eduardo; Oliveira, Osmir Batista de

    2017-01-01

    To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs) into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France) and to assess their bioactive properties. nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD) were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan) were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD), attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF.

  17. Obtaining titanium dioxide nanoparticles with spherical shape and antimicrobial properties using M. citrifolia leaves extract by hydrothermal method.

    PubMed

    M, Sundrarajan; K, Bama; M, Bhavani; S, Jegatheeswaran; S, Ambika; A, Sangili; P, Nithya; R, Sumathi

    2017-06-01

    In this work, we synthesized titanium dioxide (TiO 2 ) nanoparticles using leaf extract of Morinda citrifolia (M. citrifolia) by the advanced hydrothermal method. The synthesized TiO 2 nanoparticles were characterized by X-ray diffraction (XRD), Fourier transmission infrared (FT-IR), Ultraviolet-visible diffuse reflectance (UV-Vis DRS), Ultraviolet-visible spectroscopy (UV-Vis), Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with EDX) techniques. The XRD major peak at 27.3° corresponds to the (110) lattice plane of tetragonal rutile TiO 2 phase and average crystalline size of nanoparticles is 10nm. The FT-IR result confirmed that TiO 2 nanoparticles and the presences of very few amount of anthraquinone and phenolic compounds of the leaf extract. The obtained nanoparticles were also characterized by UV-Vis DRS absorption spectroscopy and an intense band at 423nm clearly reveals the formation of nanoparticles. SEM images with EDX spectra clearly reveal the size of the nanoparticles, between 15 and 19nm in excellent quasi-spherical shape, by virtue of stabilization (capping) agent. The presence of elements-titanium and oxygen was verified with EDX spectrum. Furthermore, the inhibitory activity of green synthesized TiO 2 nanoparticles was tested against human pathogens like Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Candida albicans, and Aspergillus niger by the agar well-diffusion method. The TiO 2 nanoparticles exhibited superior antimicrobial activity against Gram-positive bacteria, demonstrating their antimicrobial value against pathogenic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahri, M. I.; Othman, N. K.; Samsu, Z.

    2014-09-03

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm{sup 2} and −13.5225 mg/cm{sup 2} respectively. The surfacemore » morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} were the main phases developed and detected by XRD technique. Cr{sub 2}O{sub 3} was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region.« less

  19. Investigation of tin oxide nanofibers synthesized via bio-template technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kundu, Virender Singh, E-mail: vskundu-kuk@rediffmail.com; Dhiman, Jonny; Kumar, Suresh

    In the present paper tin oxide nanofibers have been by synthesized using cotton as bio-template via sol-gel route. This is comparatively a new synthesis technique. The structure and morphology of the obtained SnO{sub 2} nanofibers were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX). The optical properties of the same have been studied by using UV-Vis spectroscopy. The observed XRD pattern showed that peaks are very narrow and sharp which indicates crystalline nature of samples. SEM images gave an idea about the sample morphology and confirm that the obtained sample were nanofibers. The optical absorbancemore » spectrum of the sample under study was recorded in UV-visible region (200nm- 800nm). The band gap of the sample was found to be 3.95 eV which is higher than their bulk counterpart.« less

  20. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    NASA Astrophysics Data System (ADS)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  1. Radioactive Cobalt(II) Removal from Aqueous Solutions Using a Reusable Nanocomposite: Kinetic, Isotherms, and Mechanistic Study

    PubMed Central

    Wang, Ximing; Chen, Zhangjing

    2017-01-01

    A lignocellulose/montmorillonite (LMT) nanocomposite was prepared as a reusable adsorbent for cobalt(II) ions, and characterized by nitrogen (N2) adsorption/desorption isotherm, X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FTIR). LMT exhibited efficient adsorption of cobalt ions (Co(II)), and the adsorbed Co(II) was readily desorbed by nitric acid (HNO3). All parameters affecting the adsorption and/or desorption of Co(II), including initial Co(II) concentration, pH value, temperature, HNO3 concentration, and time, were optimized. The kinetic data analysis showed that the adsorption followed the pseudo-second-order kinetic model and fit well into the Langmuir isotherm equation. Notably, the nanocomposite can be used four times without significantly losing adsorbent capability. The Energy-Dispersive X-ray (EDX) and FTIR spectra analysis also revealed that the adsorption mechanism may be mainly a chemical adsorption dominated process. PMID:29186794

  2. Carbide-derived carbon (CDC) linear actuator properties in combination with conducting polymers

    NASA Astrophysics Data System (ADS)

    Kiefer, Rudolf; Aydemir, Nihan; Torop, Janno; Kilmartin, Paul A.; Tamm, Tarmo; Kaasik, Friedrich; Kesküla, Arko; Travas-Sejdic, Jadranka; Aabloo, Alvo

    2014-03-01

    Carbide-derived Carbon (CDC) material is applied for super capacitors due to their nanoporous structure and their high charging/discharging capability. In this work we report for the first time CDC linear actuators and CDC combined with polypyrrole (CDC-PPy) in ECMD (Electrochemomechanical deformation) under isotonic (constant force) and isometric (constant length) measurements in aqueous electrolyte. CDC-PPy actuators showing nearly double strain under cyclic voltammetric and square wave potential measurements in comparison to CDC linear actuators. The new material is investigated by SEM (scanning electron microscopy) and EDX (energy dispersive X-ray analysis) to reveal how the conducting polymer layer and the CDC layer interfere together.

  3. Spectroscopic study of Pbs nano-structured layer prepared by Pld utilized as a Hall-effect magnetic sensor

    NASA Astrophysics Data System (ADS)

    Atwa, D. M.; Aboulfotoh, N.; El-magd, A. Abo; Badr, Y.

    2013-10-01

    Lead sulfide (PbS) nano-structured films have been grown on quartz substrates using PLD technique. The deposited films were characterized by several structural techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Selected-area electron diffraction patterns (SAED). The results prove the formation of cubic phase of PbS nanocrystals. Elemental analysis of the deposited films compared to the bulk target was obtained via laser induced fluorescence of the produced plasma particles and the energy dispersive X-ray "EDX" technique. The Hall coefficient measurements indicate an efficient performance of the deposited films as a magnetic sensor.

  4. The green synthesis of fine particles of gold using an aqueous extract of Monotheca buxifolia (Flac.)

    NASA Astrophysics Data System (ADS)

    Anwar, Natasha; Khan, Abbas; Shah, Mohib; Azam, Andaleeb; Zaman, Khair; Parven, Zahida

    2016-12-01

    This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV-Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV-Vis spectroscopy. UV‒Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70-78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.

  5. Synthesis of N-doped potassium tantalate perovskite material for environmental applications

    NASA Astrophysics Data System (ADS)

    Rao, Martha Purnachander; Nandhini, Vellangattupalayam Ponnusamy; Wu, Jerry J.; Syed, Asad; Ameen, Fuad; Anandan, Sambandam

    2018-02-01

    Nitrogen containing potassium tantalate perovskite material has been synthesized by the solvothermal method using urea (CH4N2O) as a nitrogen source. The as-prepared sample was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The particle size of nitrogen containing KTaO3 observed from SEM images was found to be 100-150 nm. Doping KTaO3 with nitrogen causes reduction of band gap from 3.5 to 2.54 eV. The incorporation of Nitrogen into the crystal lattice of KTaO3 not only extended the absorption of light from UV (ultraviolet) region to visible region and also enhanced the photocatalytic activity. As prepared nitrogen containing KTaO3 samples exhibit cubic-like morphology and noticed efficient photocatalytic activity towards methylene blue dye degradation under visible light illumination. The intermediates formed during photodegradation were identified by mass spectrometry (GC-MS) and proposed suitable degradation pathway.

  6. Characterisation of gunshot residue from three ammunition types using suppressed anion exchange chromatography.

    PubMed

    Gilchrist, Elizabeth; Jongekrijg, Fleur; Harvey, Laura; Smith, Norman; Barron, Leon

    2012-09-10

    Gunshot residue (GSR) is commonly analysed in forensic casework using either scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) or gas chromatography-mass spectrometry (GC-MS). Relatively little work has been reported on the post-discharge GSR content of non-metallic inorganic or low molecular weight organic anions to distinguish between different ammunition types. The development of an analytical method using suppressed micro-bore anion exchange chromatography (IC) is presented for the analysis of GSR. A hydroxide gradient was optimised for the separation of 19 forensically relevant organic and inorganic anions in <23min and sensitivities of the order of 0.12-3.52ng of anion detected for all species were achieved. Along with an optimised extraction procedure, this method was applied to the analysis of post-ignition residues from three selected ammunition types. By profiling and comparing the anionic content in each ammunition residue, the possibility to distinguish between each type using their anionic profiles and absolute weight is presented. The potential for interference is also discussed with respect to sample types which are typically problematic in the analysis of GSR using SEM-EDX and GC-MS. To the best of our knowledge this represents the first study on the analysis of inorganic anions in GSR using suppressed ion chromatography. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Mineralogy and geochemistry of atmospheric particulates in western Iran

    NASA Astrophysics Data System (ADS)

    Ahmady-Birgani, Hesam; Mirnejad, Hassan; Feiznia, Sadat; McQueen, Ken G.

    2015-10-01

    This study investigates the mineralogy and physico-chemical properties of atmospheric particulates collected at Abadan (southwestern Iran) near the Persian Gulf coast and Urmia (northwestern Iran) during ambient and dust events over 6 months (winter 2011; spring 2012). Particle sizes collected were: TSP (total suspended particulates); PM10 (particulates <10 μm); and PM2.5 (particulates <2.5 μm). Minerals were identified using X-ray diffraction (XRD); particle morphology and composition were examined by scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM-EDX). Major minerals detected are calcite, quartz, clay minerals and gypsum, with relative abundance related to sampling site, collection period, wind direction, sampling head, and total sample amount. The anomalously high calcite content appears a characteristic feature originated from calcareous soils of the region. SEM observations indicated a wide range of particle morphologies over the 1-50 μm size range, with spherical, platy, cubic, elongate and prismatic shapes and rounding from angular to rounded. Energy dispersive X-ray analysis of TSP samples from both sites for non-dusty periods indicated that the sampled mineral suite contained Al, Mg, Na, Cl, P, S, Ca, K, Fe, Ti, and Si, mostly reflecting calcite, quartz, aluminosilicates, clays, gypsum and halite. Additionally, As, Pb, Zn, Mn, Sc, Nd, W, Ce, La, Ba and Ni were detected in TSP, PM10 and PM2.5 samples collected during dust events.

  8. Characterization of electron-beam-modified surface coated clay fillers and their influence on physical properties of rubbers

    NASA Astrophysics Data System (ADS)

    Ray, Sudip; Bhowmick, Anil K.; Sarma, K. S. S.; Majali, A. B.; Tikku, V. K.

    2002-12-01

    A novel process of surface modification of clay filler has been developed by coating this with an acrylate monomer, trimethylol propane triacrylate (TMPTA) or a silane coupling agent, triethoxy vinyl silane (TEVS) followed by electron beam irradiation. Characterization of these surface modified fillers has been carried out by Fourier-transform infrared analysis (FTIR), electron spectroscopy for chemical analysis (ESCA), wettability by dynamic wicking method measuring the rise of a liquid through a filler-packed capillary tube and water flotation test, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). Presence of the acrylate and the silane coupling agent on the modified fillers has been confirmed from FTIR, ESCA, and EDX studies, which has also been supported by TGA studies. The contact angle measurement by dynamic wicking method suggests improvement in hydrophobicity of the treated fillers, which is supported by water flotation test especially in the case of silanized clay. However, XRD studies demonstrate that the entire modification process does not affect the bulk properties of the fillers. Finally, both unmodified and modified clay fillers have been incorporated in styrene butadiene rubber (SBR) and nitrile rubber (NBR). Rheometric and mechanical properties reveal that there is a definite improvement using these modified fillers specially in the case of silanized clay compared to the control sample, probably due to successful enhancement in interaction between the treated clay and the base polymer.

  9. Effects of erbium, chromium:YSGG laser irradiation on root surface: morphological and atomic analytical studies.

    PubMed

    Kimura, Y; Yu, D G; Kinoshita, J; Hossain, M; Yokoyama, K; Murakami, Y; Nomura, K; Takamura, R; Matsumoto, K

    2001-04-01

    The purpose of this study was to investigate the morphological and atomic changes on the root surface by stereoscopy, field emission-scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectroscopy (SEM-EDX) after erbium, chromium:yttrium, scandium, gallium, garnet (Er,Cr:YSGG) laser irradiation in vitro. There have been few reports on morphological and atomic analytical study on root surface by Er,Cr:YSGG laser irradiation. Eighteen extracted human premolar and molar teeth were irradiated on root surfaces at a vertical position with water-air spray by an Er,Cr:YSGG laser at the parameter of 5.0 W and 20 Hz for 5 sec while moving. The samples were then morphologically observed by stereoscopy and FE-SEM and examined atomic-analytically by SEM-EDX. Craters having rough but clean surfaces and no melting or carbonization were observed in the samples. An atomic analytical examination showed that the calcium ratio to phosphorus showed no significant changes between the control and irradiated areas (p > 0.01). These results showed that the Er,Cr:YSGG laser has a good cutting effect on root surface and causes no burning or melting after laser irradiation.

  10. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route

    NASA Astrophysics Data System (ADS)

    Rahmawati, R.; Melati, A.; Taufiq, A.; Sunaryono; Diantoro, M.; Yuliarto, B.; Suyatman, S.; Nugraha, N.; Kurniadi, D.

    2017-05-01

    The composites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sand were successfully prepared via the sonochemical route. In this experiment, the MWCNT-Fe3O4 nanocomposites were prepared with different compositions of MWCNT (0.01%, 0.02%, and 0.04%) with the constant composition of Fe3O4 particles. The characterizations were performed by means of X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer and Scanning Electron Microscopy (SEM) integrated with Energy Dispersive X-Ray (EDX). The XRD data analysis showed that the Fe3O4 crystallize in spinel structure in nanometric size. Furthermore, the crystallinity of the samples tended to reduce by increasing the MWCNT compositions. The SEM images showed that Fe3O4 tend to agglomerate in nanometric size. The FTIR spectra detected the functional groups of Fe-O bonding that showed the existence of Fe2+ and Fe3+. In the composites, the Fe3O4 nanoparticles were physically mixed with the MWCNTs constructing a unique structure. The as prepared MWCNT-Fe3O4 nanocomposites have the potential for bio-applications.

  11. Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres

    NASA Astrophysics Data System (ADS)

    Yu, Changlin; Yu, Jimmy C.; Chan, Mui

    2009-05-01

    A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.

  12. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    NASA Astrophysics Data System (ADS)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  13. Field-emission scanning electron microscopy and energy-dispersive x-ray analysis to understand the role of tannin-based dyes in the degradation of historical wool textiles.

    PubMed

    Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Pérez-Arantegui, Josefina; Colombini, Maria Perla

    2014-10-01

    An innovative approach, combining field-emission scanning electron microscopy (FESEM) with energy dispersive X-ray spectroscopy (EDX) analysis, is presented to investigate the degradation mechanisms affecting tannin-dyed wool. In fact, tannin-dyed textiles are more sensitive to degradation then those dyed with other dyestuffs, even in the same conservation conditions. FESEM-EDX was first used to study a set of 48 wool specimens (artificially aged) dyed with several raw materials and mordants, and prepared according to historical dyeing recipes. EDX analysis was performed on the surface of wool threads and on their cross-sections. In addition, in order to validate the model formulated by the analysis of reference materials, several samples collected from historical and archaeological textiles were subjected to FESEM-EDX analysis. FESEM-EDX investigations enabled us to reveal the correlation between elemental composition and morphological changes. In addition, aging processes were clarified by studying changes in the elemental composition of wool from the protective cuticle to the fiber core in cross-sections. Morphological and elemental analysis of wool specimens and of archaeological and historical textiles showed that the presence of tannins increases wool damage, primarily by causing a sulfur decrease and fiber oxidation.

  14. A standards-based method for compositional analysis by energy dispersive X-ray spectrometry using multivariate statistical analysis: application to multicomponent alloys.

    PubMed

    Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W

    2013-02-01

    Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.

  15. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea.

    PubMed

    Jung, Hae-Jin; Kim, BoWha; Malek, Md Abdul; Koo, Yong Sung; Jung, Jong Hoon; Son, Youn-Suk; Kim, Jo-Chun; Kim, HyeKyoung; Ro, Chul-Un

    2012-04-30

    Previous studies have reported the major chemical species of underground subway particles to be Fe-containing species that are generated from wear and friction processes at rail-wheel-brake and catenaries-pantographs interfaces. To examine chemical composition of Fe-containing particles in more details, floor dusts were collected at five sampling locations of an underground subway station. Size-segregated floor dusts were separated into magnetic and non-magnetic fractions using a permanent magnet. Using X-ray diffraction (XRD) and scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDX), iron metal, which is relatively harmless, was found to be the dominating chemical species in the floor dusts of the <25 μm size fractions with minor fractions of Mg, Al, Si, Ca, S, and C. From SEM analysis, the floor dusts of the <25 μm size fractions collected on railroad ties appeared to be smaller than 10 μm, indicating that their characteristics should somewhat reflect the characteristics of airborne particles in the tunnel and the platform. As most floor dusts are magnetic, PM levels at underground subway stations can be controlled by removing magnetic indoor particles using magnets. In addition, airborne subway particles, most of which were smaller than 10 μm, were collected using permanent magnets at two underground subway stations, namely Jegi and Yangjae stations, in Seoul, Korea. XRD and SEM/EDX analyses showed that most of the magnetic aerosol particles collected at Jegi station was iron metal, whereas those at Yangjae station contained a small amount of Fe mixed with Na, Mg, Al, Si, S, Ca, and C. The difference in composition of the Fe-containing particles between the two subway stations was attributed to the different ballast tracks used. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Scanning electron microscopy (SEM) and X-ray dispersive spectrometry evaluation of direct laser metal sintering surface and human bone interface: a case series.

    PubMed

    Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad

    2011-01-01

    Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.

  17. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    PubMed

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The Influence of Novel Alloying Additions on the Performance of Magnesium Alloy AZ31B

    DTIC Science & Technology

    2013-11-01

    More recently, alloys using a variety of the rare earth elements have been developed. Typically, these alloys have shown significant improvements...in mechanical properties and to a lesser degree in corrosion performance. However, rare earth elements are often costly and heavier than Mg. Thus...1.0 0.004 Max — — Note: Fe = iron; RE = rare earth . SEM micrograph and energy-dispersive x-ray (EDX) results for selected alloys are shown in

  19. Enhanced bioactive properties of BiodentineTM modified with bioactive glass nanoparticles

    PubMed Central

    CORRAL NUÑEZ, Camila; COVARRUBIAS, Cristian; FERNANDEZ, Eduardo; de OLIVEIRA, Osmir Batista

    2017-01-01

    Abstract Objective To prepare nanocomposite cements based on the incorporation of bioactive glass nanoparticles (nBGs) into BiodentineTM (BD, Septodent, Saint-Maur-des-Fosses Cedex, France) and to assess their bioactive properties. Material and Methods nBGs were synthesised by the sol-gel method. BD nanocomposites (nBG/BD) were prepared with 1 and 2% nBGs by weight; unmodified BD and GC Fuji IX (GIC, GC Corporation, Tokyo, Japan) were used as references. The in vitro ability of the materials to induce apatite formation was assessed in SBF by X-ray diffraction (XRD), attenuated total reflectance with Fourier transform infrared spectroscopy (ATR-FTIR), and scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis. BD and nBG/BD were also applied to dentine discs for seven days; the morphology and elemental composition of the dentine-cement interface were analysed using SEM-EDX. Results One and two percent nBG/BD composites accelerated apatite formation on the disc surface after short-term immersion in SBF. Apatite was detected on the nBG/BD nanocomposites after three days, compared with seven days for unmodified BD. No apatite formation was detected on the GIC surface. nBG/BD formed a wider interfacial area with dentine than BD, showing blockage of dentine tubules and Si incorporation, suggesting intratubular precipitation. Conclusions The incorporation of nBGs into BD improves its in vitro bioactivity, accelerating the formation of a crystalline apatite layer on its surface after immersion in SBF. Compared with unmodified BD, nBG/BD showed a wider interfacial area with greater Si incorporation and intratubular precipitation of deposits when immersed in SBF. PMID:28403358

  20. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    NASA Astrophysics Data System (ADS)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  1. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    PubMed

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  2. Mustard plant ash: a source of micronutrient and an adsorbent for removal of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Trivedi, Nikhilesh S; Mandavgane, Sachin A; Kulkarni, Bhaskar D

    2016-10-01

    The work highlights the utilization of an agricultural waste mustard plant ash (MPA) as a soil additive and an adsorbent. MPA was characterized by X-ray fluorescence (XRF), energy-dispersive X-ray spectroscopy (EDX), proximate analysis, CHNS analysis, Brunauer-Emmett-Teller (BET) surface area analysis, zeta potential measurements, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). XRF analysis confirmed the presence of CaO (31.35 %), K 2 O (18.55 %), and P 2 O 5 (6.99 %), all of which act as micronutrients to plants. EDX also confirms high amount of elemental O, Ca, K, and P. The adsorptive ability of MPA was investigated using a commonly used herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), as a representative chemical. Batch adsorption experiments were conducted to study the effect of different operational parameters such as adsorbent dose, initial 2,4-D concentration, contact time, and temperature on the adsorption process. Data from experiments were fitted to various kinetic and isothermal models. The pseudo-second-order kinetic model was found to show the best fit (R 2  > 0.99), with the highest k 2 value of the order 10 5 . Based on the study results, dosage of MPA/hectare for different crops has been recommended for effective removal of 2,4-D. To our knowledge, this is the first study in which MPA has been characterized in detail and investigated for dual applications (as an adsorbent and as a soil additive).

  3. Nanosilver microalgae biosynthesis: cell appearance based on SEM and EDX methods

    NASA Astrophysics Data System (ADS)

    Pancasakti Kusumaningrum, Hermin; Zainuri, Muhammad; Marhaendrajaya, Indras; Subagio, Agus

    2018-05-01

    Microbial contamination has caused public health problems in the world population. This problem has spurred the development of methods to overcome and prevent microbial invasion. The extensive use of antibiotics has facilitated the continued emergence and spread of resistant organisms. Synthesized of silver nanoparticle (AgNPs) on microalgae Chlorella pyrenoidosa offer environmentally safe antimicrobial agent. The present study is focused on the biosynthesis of AgNPs using microalgae C. pyrenoidosa. The research methods was conducted by insertion of nanosilver particle into microalgae cells with and without agitation to speed up the process of formation nanosilver microalgae. The formation of microalgae SNP was analyzes by UV-Vis spectrophotometer, Scanning Electron Micrograph (SEM) and Energy-dispersive X-ray spectroscopy (EDX) methods. The research result showed that nanosilver microalgae biosynthesis using the agitation treatment was exhibited better performance in particle insertion and cell stability, comparing with no agitation treatment. However, synthesis of nanosilver microalgae tend to reduce the cell size.

  4. Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li

    A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.

  5. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  6. Fabrication of solar light induced Fe-TiO{sub 2} immobilized on glass-fiber and application for phenol photocatalytic degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Shaohua, E-mail: linsh75@163.com; Zhang, Xiwang; Sun, Qinju

    2013-11-15

    Graphical abstract: - Highlights: • Fe-doped TiO{sub 2} immobilized on glass-fiber net were prepared by sol–gel method. • Fe inhibited the phase transition of TiO{sub 2} from anatase to rutile. • The optimal Fe doping dose was around 0.005 wt%. • The optimal calcination temperature was around 600 °C. - Abstract: Iron-doped anatase titanium dioxide catalysts coated on glass-fiber were successfully synthesized by a dip-coating sol–gel method. The prepared catalysts were characterized by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy to understand the synthesis mechanism, and their photocatalytic activities weremore » evaluated by photodegradation of phenol under simulated solar irradiation. EDX analysis confirmed the existence of iron in the immobilized catalysts. XRD suggested that the phase transition of the catalysts from anatase to rutile were restrained, and almost pure anatase TiO{sub 2} could retain even the calcination temperature reached 800 °C. The UV-Vis diffuse reflectance spectroscopy of the catalysts showed a red shift and increased photoabsorbance in the visible range for all the doped samples. Iron loading and calcination temperature have obvious influences on photocatalytic activity. In this study, the optimal doping dose and calcination temperature were around 0.005 wt% and 600 °C, respectively.« less

  7. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  8. Synthesis and characterization of CdS-based ternary composite for enhanced visible light-driven photocatalysis

    NASA Astrophysics Data System (ADS)

    Singh, Arvind; Sinha, A. S. K.

    2018-09-01

    Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.

  9. Synthesis of nanocrystalline CdS thin film by SILAR and their characterization

    NASA Astrophysics Data System (ADS)

    Mukherjee, A.; Satpati, B.; Bhattacharyya, S. R.; Ghosh, R.; Mitra, P.

    2015-01-01

    Cadmium sulphide (CdS) thin film was prepared by successive ion layer adsorption and reaction (SILAR) technique using ammonium sulphide as anionic precursor. Characterization techniques of XRD, SEM, TEM, FTIR and EDX were utilized to study the microstructure of the films. Structural characterization by x-ray diffraction reveals the polycrystalline nature of the films. Cubic structure is revealed from X-ray diffraction and selected area diffraction (SAD) patterns. The particle size estimated using X-ray line broadening method is approximately 7 nm. Instrumental broadening was taken into account while particle size estimation. TEM shows CdS nanoparticles in the range 5-15 nm. Elemental mapping using EFTEM reveals good stoichiometric composition of CdS. Characteristic stretching vibration mode of CdS was observed in the absorption band of FTIR spectrum. Optical absorption study exhibits a distinct blue shift in band gap energy value of about 2.56 eV which confirms the size quantization.

  10. Monodispersed fabrication and dielectric studies on ethylenediamine passivated α-manganese dioxide nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, A. Martin; Kumar, R. Thilak, E-mail: manojthilak@yahoo.com

    2016-09-15

    Highlights: • Monodispersed ethylenediamine (EDA) passivated α-MnO{sub 2} nanorods were fabricated by inexpensive wet chemical method. • FTIR analysis indicated that surface passivation is strongly influenced by the introduction of the organic ligand. • XRD and HR-SEM revealed the structure and morphology of the fabricated α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. • Dielectric studies pointed out that the fabricated α-MnO{sub 2} is semiconducting in nature with resistivity, ρ = 1.46 to 5.76 × 10{sup 3} Ωcm. • The optical energy gap for the fabricated α-MnO{sub 2} nanorods is found to be around 1.37more » eV. - Abstract: In this present work, pure α-MnO{sub 2} nanorods were fabricated by the reduction of 0.2 m/L of KMnO{sub 4} with 0.2 m/L of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O and by passivating with the organic ligand Ethylenediamine (EDA). The structural, functional, morphological and chemical composition of the nanorods were investigated by X-Ray Diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), High Resolution Scanning Electron Microscope (HR-SEM) and Energy Dispersive X-Ray Spectrometry (EDX). The XRD analysis indicated high crystalline nature of the product and FTIR confirmed the contribution of the organic ligand in surface passivation. HR-SEM image revealed the morphology of the α-MnO{sub 2} nanorods with an average size of about 40 × 200 nm. EDX confirmed the presence of Mn and O in the material. UV–visible spectrophotometery was used to determine the absorption behavior of the nanorods and an indirect band gap of 1.37 eV was acquired by Taucplot. Dielectric studies were carried out using Broadband Dielectric Spectrometer(BDS) and the resistivity was found to be around the semiconductor range (ρ = 1.46 to 5.76 × 10{sup 3} Ωcm).« less

  11. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods

    NASA Astrophysics Data System (ADS)

    Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud

    2016-09-01

    In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).

  12. Coatings of titanium substrates with xCaO · (1 - x)SiO2 sol-gel materials: characterization, bioactivity and biocompatibility evaluation.

    PubMed

    Catauro, M; Papale, F; Bollino, F

    2016-01-01

    The objective of this study has been to develop low temperature sol-gel coatings to modify the surface of commercially pure titanium grade 4 (a material generally used in dental application) and to evaluate their bioactivity and biocompatibility on the substrate. Glasses of composition expressed by the following general formula xCaO · (1 - x)SiO2 (0.0

  13. Hierarchical MnO2 nanosheets synthesized via electrodeposition-hydrothermal method for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Zheng, Dongdong; Qiang, Yujie; Xu, Shenying; Li, Wenpo; Yu, Shanshan; Zhang, Shengtao

    2017-02-01

    Metal oxides have emerged as one kind of important supercapacitor electrode materials. Herein, we report hierarchical MnO2 nanosheets prepared of indium tin oxide (ITO) coated glass substrates via a hybrid two-step protocol, including a cathodic electrodeposition technique and a hydrothermal process. The samples are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), and transmission electron microscope (TEM). SEM and TEM images show that the as-synthesized MnO2 nanosheets are hierarchical and porous, which could increase the active surface and short paths for fast ion diffusion. The results of nitrogen adsorption-desorption analysis indicate that the BET surface area of the MnO2 nanosheets is 53.031 m2 g-1. Furthermore, the electrochemical properties of the MnO2 are elucidated by cyclic voltammograms (CV), galvanostatic charge-discharge (GCD) tests, and electrochemical impedance spectroscopy (EIS) in 0.1 M Na2SO4 electrolyte. The electrochemical results demonstrate that the as-grown MnO2 nanosheet exhibits an excellent specific capacitance of 335 F g-1 at 0.5 A g-1 when it is applied as a potential electrode material for an electrochemical supercapacitor. Additionally, the MnO2 nanosheet electrode also presents high rate capability and good cycling stability with 91.8% retention after 1000 cycles. These excellent properties indicate that the hierarchical MnO2 nanosheets are a potential electrode material for electrochemical supercapacitors.

  14. A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth

    NASA Astrophysics Data System (ADS)

    Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan

    2006-11-01

    We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.

  15. Calcium copper-titanate thin film growth: tailoring of the operational conditions through nanocharacterization and substrate nature effects.

    PubMed

    Lo Nigro, Raffaella; Toro, Roberta G; Malandrino, Graziella; Fragalà, Ignazio L; Losurdo, Maria; Giangregorio, Michelaria M; Bruno, Giovanni; Raineri, Vito; Fiorenza, Patrick

    2006-09-07

    A novel approach based on a molten multicomponent precursor source has been applied for the MOCVD fabrication of high-quality CaCu(3)Ti(4)O(12) (CCTO) thin films on various substrates. The adopted in situ strategy involves a molten mixture consisting of Ca(hfa)(2).tetraglyme, Ti(tmhd)(2)(O-iPr)(2), and Cu(tmhd)(2) [Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione; tetraglyme = 2,5,8,11,14-pentaoxapentadecane; Htmhd = 2,2,6,6-tetramethyl-3,5-heptandione; O-iPr = isopropoxide] precursors. Film structural and morphological characterizations have been carried out by several techniques [X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM)], and in particular the energy filtered TEM mapping and X-ray energy dispersive (EDX) analysis in TEM mode provided a suitable correlation between nanostructural properties of CCTO films and deposition conditions and/or the substrate nature. Correlation between the nanostructure and optical/dielectric properties has been investigated exploiting spectroscopic ellipsometry.

  16. Calcium phosphate coatings obtained by Nd:YAG laser cladding: physicochemical and biologic properties.

    PubMed

    Lusquiños, F; De Carlos, A; Pou, J; Arias, J L; Boutinguiza, M; León, B; Pérez-Amor, M; Driessens, F C M; Hing, K; Gibson, I; Best, S; Bonfield, W

    2003-03-15

    The plasma spray (PS) technique is the most popular method commercially in use to produce calcium phosphate (CaP) coatings to promote fixation and osteointegration of the cementless prosthesis. Nevertheless, PS has some disadvantages, such as the poor coating-to-substrate adhesion, low mechanical strength, and brittleness of the coating. In order to overcome the drawbacks of plasma spraying, we introduce in this work a new method to apply a CaP coating on a Ti alloy using a well-known technique in the metallurgical field: laser surface cladding. The physicochemical characterization of the coatings has been carried out by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). The biologic properties of the coatings have been assessed in vitro with human osteoblast-like MG-63 cells. The overall results of this study affirm that the Nd:YAG laser cladding technique is a promising method in the biomedical field. Copyright 2003 Wiley Periodicals, Inc.

  17. Synthesis and characterization of mangenese(III) porphyrin supported on imidazole modified chloromethylated MIL-101(Cr): A heterogeneous and reusable catalyst for oxidation of hydrocarbons with sodium periodate

    NASA Astrophysics Data System (ADS)

    Zadehahmadi, Farnaz; Tangestaninejad, Shahram; Moghadam, Majid; Mirkhani, Valiollah; Mohammadpoor-Baltork, Iraj; Khosropour, Ahmad R.; Kardanpour, Reihaneh

    2014-10-01

    In the present work, chloromethylated MIL-101(Cr) modified with imidazole, Im-MIL-101, was applied as a support for immobilizing of tetraphenylporphyrinatomangenese(III) chloride. The imidazole-bound MIL-101, Im-MIL-101, not only used as support for immobilization of manganese porphyrin but also applied as a heterogeneous axial base. The Mn(TPP)Cl@Im-MIL-101 catalyst was characterized by UV-vis, FT-IR, X-ray diffraction (XRD), N2 adsorption, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), elemental analysis and inductively coupled plasma (ICP) methods. The catalytic activity of this new catalytic system was investigated in the alkene epoxidation and alkane hydroxylation using NaIO4 as an oxidant in CH3CN/H2O at room temperature. This heterogeneous catalyst is highly efficient, stable and reusable in the oxidation of hydrocarbons.

  18. Template-Free Synthesis and Enhanced Photocatalytic Performance of Uniform BiOCI Flower-Like Microspheres.

    PubMed

    Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin

    2015-02-01

    Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.

  19. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  20. A potential cause for kidney stone formation during space flights: enhanced growth of nanobacteria in microgravity.

    PubMed

    Ciftçioglu, Neva; Haddad, Ruwaida S; Golden, D C; Morrison, Dennis R; McKay, David S

    2005-02-01

    Although some information is available regarding the cellular/molecular changes in immune system exposed to microgravity, little is known about the reasons of the increase in the kidney stone formation in astronauts during and/or after long duration missions at zero gravity (0 g). In our earlier studies, we have assessed a unique agent, nanobacteria (NB), in kidney stones and hypothesized that NB have an active role in calcium phosphate-carbonate deposition in kidney. In this research we studied effect of microgravity on multiplication and calcification of NB in vitro. We examined NB cultures in High Aspect Rotating Vessels (HARVs) designed at the NASA's Johnson Space Center, which are designed to stimulate some aspects of microgravity. Multiplication rate and calcium phosphate composition of those NB were compared with NB cultured on stationary and shaker flasks. Collected aliquots of the cultures from different incubation periods were analyzed using spectrophotometer, SEM, TEM, EDX, and x-ray diffraction techniques. The results showed that NB multiplied 4.6x faster in HARVs compared to stationary cultures, and 3.2x faster than shaker flask conditions. X-ray diffraction and EDX analysis showed that the degree of apatite crystal formation and the properties of the apatite depend on the specific culture conditions used. We now report an increased multiplication rate of NB in microgravity-simulated conditions. Thus, NB infection may have a potential role in kidney stone formation in crew members during space flights. For further proof to this hypothesis, screening of the NB antigen and antibody level in flight crew before and after flight would be necessary.

  1. A new approach for the recovery of precious metals from solution and from leachates derived from electronic scrap.

    PubMed

    Macaskie, L E; Creamer, N J; Essa, A M M; Brown, N L

    2007-03-01

    A new approach is described for the recovery of precious metals (PMs: Au, Pd and Ag) with >99% efficiency from aqueous solution utilising biogas produced during the aerobic growth of Klebsiella pneumoniae. Gold was recovered from electronic scrap leachate ( approximately 95%) by this method, with some selectivity against Cu. The recovered PM solids all contained metal and sulphur as determined by energy dispersive X-ray microanalysis (EDX). X-ray powder diffraction analysis (XRD) showed no crystalline metal sulphur compounds but a crystalline palladium amine was recorded. Silver was recovered as a sulphide (found by EDX), carbonate and oxide (found by XRD). EDX analysis of the Au-precipitate showed mainly gold and sulphur, with some metallic Au(0) detected by XRD. The gold compound was shock-sensitive; upon grinding it detonated to leave a sooty black deposit.

  2. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation

    NASA Astrophysics Data System (ADS)

    Ragupathy, S.; Raghu, K.; Prabu, P.

    2015-03-01

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models.

  3. Study of Surface Wettability Change of Unconsolidated Sand Using Diffuse Reflectance Infrared Fourier Transform Spectroscopy and Thermogravimetric Analysis.

    PubMed

    Gómora-Herrera, Diana; Navarrete Bolaños, Juan; Lijanova, Irina V; Olivares-Xometl, Octavio; Likhanova, Natalya V

    2018-04-01

    The effects exerted by the adsorption of vapors of a non-polar compound (deuterated benzene) and a polar compound (water) on the surface of Ottawa sand and a sample of reservoir sand (Channel), which was previously impregnated with silicon oil or two kinds of surfactants, (2-hydroxyethyl) trimethylammonium oleate (HETAO) and (2-hydroxyethyl)trimethylammonium azelate (HETAA), were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The surface chemistry of the sandstone rocks was elucidated by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). Terminal surface groups such as hydroxyls can strongly adsorb molecules that interact with these surface groups (surfactants), resulting in a wettability change. The wettability change effect suffered by the surface after treating it with surfactants was possible to be detected by the DRIFTS technique, wherein it was observed that the surface became more hydrophobic after being treated with silicon oil and HETAO; the surface became more hydrophilic after treating it with HETAA.

  4. ZnO/TiO2 nanocomposite rods synthesized by microwave-assisted method for humidity sensor application

    NASA Astrophysics Data System (ADS)

    Ashok, CH.; Venkateswara Rao, K.

    2014-12-01

    The nanocomposite rods shows well known properties compared with nano structured materials for various applications like light-emitting diodes, electron field emitters, solar cells, optoelectronics, sensors, transparent conductors and fabrication of nano devices. Present paper investigates the properties of ZnO/TiO2 nanocomposite rods. The bi component of ZnO/TiO2 nanocomposite rods was synthesized by microwave-assisted method which is very simple, rapid and uniform in heating. The frequency of microwaves 2.45 GHz was used and temperature maintained 180 °C. Zinc acetate and titanium isopropoxide precursors were used in the preparation. The obtained ZnO/TiO2 nanocomposite rods were annealed at 500 °C and 600 °C. ZnO/TiO2 nanocomposite rods have been characterized by X-ray Diffraction (XRD) for average crystallite size and phase of the composite material, Particle Size Analyser (PSA) for average particle size, Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) for morphology study, Energy Dispersive X-ray Spectrometry (EDX) for elemental analysis, and Thermal Gravimetric and Differential Thermal Analysis (TG-DTA) for thermal property.

  5. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas.

    PubMed

    Wang, Chao-Qiang; Lin, Xiao-Yan; He, Ming; Wang, Dan; Zhang, Si-Lan

    2017-09-15

    The overall objective of this research project is to investigate the feasibility of incorporating oil-based drilling cuttings pyrolysis residues (ODPR) and fly ash serve as replacements for fine aggregates and cementitious materials in concrete. Mechanical and physical properties, detailed environmental performances, and microstructure analysis were carried out. Meanwhile, the early hydration process and hydrated products of ODPR concrete were analyzed with X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that ODPR could not be categorize into hazardous wastes. ODPR had specific pozzolanic characteristic and the use of ODPR had certain influence on slump and compressive strength of concrete. The best workability and optimal compressive strength were achieved with the help of 35% ODPR. Environmental performance tests came to conclusion that ODPR as recycled aggregates and admixture for the preparation of concrete, from the technique perspective, were the substance of mere environmental contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Novel chemical synthesis and characterization of copper pyrovanadate nanoparticles and its influence on the flame retardancy of polymeric nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghiyasiyan-Arani, Maryam; Masjedi-Arani, Maryam; Ghanbari, Davood; Bagheri, Samira; Salavati-Niasari, Masoud

    2016-05-01

    In this work, copper pyrovanadate (Cu3V2O7(OH)2(H2O)2) nanoparticles have been synthesized by a simple and rapid chemical precipitation method. Different copper-organic complexes were used to control the size and morphology of products. The morphology and structure of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrum, electron dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and photoluminescence (PL) spectroscopy. The influence of copper pyrovanadate nanostructures on the flame retardancy of the polystyrene, poly vinyl alcohol and cellulose acetate was studied. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents the flame and oxygen from the sample during decomposition of the polymer. Cu3V2O7(OH)2(H2O)2 is converted to Cu3V2O8 with an endothermic reaction which simultaneously releases water and decrease the temperature of the flame region.

  7. One Step Synthesis of NiO Nanoparticles via Solid-State Thermal Decomposition at Low-Temperature of Novel Aqua(2,9-dimethyl-1,10-phenanthroline)NiCl2 Complex

    PubMed Central

    Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail

    2013-01-01

    [NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867

  8. One-step growth of nanosheet-assembled BiOCl/BiOBr microspheres for highly efficient visible photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfeng; Lv, Jiali; Dai, Kai; Liang, Changhao; Liu, Qi

    2018-02-01

    In this work, we have developed a simple synthetic approach of nanosheet-assembled BiOCl/BiOBr microspheres by an ethylene glycol (EG)-assisted hydrothermal method. The crystalline form, morphology, chemical composition, optical performance and surface area of BiOCl/BiOBr microspheres were identified using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution TEM (HRTEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy spectra (EDX), UV-vis diffuse reflectance spectroscopy (DRS) analysis, high resolution X-ray photoelectron spectra (XPS) and N2 adsorption-desorption isotherms. BiOCl/BiOBr microspheres were nanosheet-assembled particles, which possessed visible light absorption under LED light irridation. Additionally, the methylene blue (MB) photodegradation performance of different BiOCl/BiOBr microspheres irradiated under 410 nm LED light arrays were investigated, the results exhibited that as-prepared BiOCl/BiOBr products showed higher catalytic effiency than pure BiOCl or BiOBr. By optimizing the composition ration of the BiOCl and BiOBr, up to 93% degradation rate can be obtained in the 40%BiOCl/BiOBr microspheres. Finally, the photocatalytic mechanism of BiOCl/BiOBr microspheres had been proposed.

  9. Glass-ceramic coating material for the CO2 laser based sintering of thin films as caries and erosion protection.

    PubMed

    Bilandžić, Marin Dean; Wollgarten, Susanne; Stollenwerk, Jochen; Poprawe, Reinhart; Esteves-Oliveira, Marcella; Fischer, Horst

    2017-09-01

    The established method of fissure-sealing using polymeric coating materials exhibits limitations on the long-term. Here, we present a novel technique with the potential to protect susceptible teeth against caries and erosion. We hypothesized that a tailored glass-ceramic material could be sprayed onto enamel-like substrates to create superior adhesion properties after sintering by a CO 2 laser beam. A powdered dental glass-ceramic material from the system SiO 2 -Na 2 O-K 2 O-CaO-Al 2 O 3 -MgO was adjusted with individual properties suitable for a spray coating process. The material was characterized using X-ray fluorescence analysis (XRF), heating microscopy, dilatometry, scanning electron microscopy (SEM), grain size analysis, biaxial flexural strength measurements, fourier transform infrared spectroscopy (FTIR), and gas pycnometry. Three different groups of samples (each n=10) where prepared: Group A, powder pressed glass-ceramic coating material; Group B, sintered hydroxyapatite specimens; and Group C, enamel specimens (prepared from bovine teeth). Group B and C where spray coated with glass-ceramic powder. All specimens were heat treated using a CO 2 laser beam process. Cross-sections of the laser-sintered specimens were analyzed using laser scanning microscopy (LSM), energy dispersive X-ray analysis (EDX), and SEM. The developed glass-ceramic material (grain size d50=13.1mm, coefficient of thermal expansion (CTE)=13.310 -6 /K) could be spray coated on all tested substrates (mean thickness=160μm). FTIR analysis confirmed an absorption of the laser energy up to 95%. The powdered glass-ceramic material was successfully densely sintered in all sample groups. The coating interface investigation by SEM and EDX proved atomic diffusion and adhesion of the glass-ceramic material to hydroxyapatite and to dental enamel. A glass-ceramic material with suitable absorption properties was successfully sprayed and laser-sintered in thin films on hydroxyapatite as well as on bovine enamel. The presented novel technique of tooth coating with a dental glass-ceramic using a CO 2 -laser holds a great potential as a possible method to protect susceptible teeth against caries and erosion. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Zircon Supported Copper Catalysts for the Steam Reforming of Methanol

    NASA Astrophysics Data System (ADS)

    Widiastri, M.; Fendy, Marsih, I. N.

    2008-03-01

    Steam reforming of methanol (SRM) is known as one of the most favorable catalytic processes for producing hydrogen. Current research on zirconia, ZrO2 supported copper catalyst revealed that CuO/ZrO2 as an active catalyst for the SRM. Zircon, ZrSiO4 is available from the by-product of tin mining. In the work presented here, the catalytic properties of CuO/ZrSiO4 with various copper oxide compositions ranging from 2.70% (catalyst I), 4.12% (catalyst II), and 7.12%-mass (catalyst III), synthesized by an incipient wetness impregnation technique, were investigated to methanol conversion, selectivity towards CO formation, and effect of ZnO addition (7.83%CuO/8.01%ZnO/ZrSiO4 = catalyst V). The catalytic activity was obtained using a fixed bed reactor and the zircon supported catalyst activity was compared to those of CuO/ZnO/Al2O3 catalyst (catalyst IV) and commercial Kujang LTSC catalyst. An X-ray powder diffraction (XRD) analysis was done to identify the abundant phases of the catalysts. The catalysts topography and particle diameter were measured with scanning electron microscopy (SEM) and composition of the catalysts was measured by SEM-EDX, scanning electron microscope-energy dispersive using X-ray analysis. The results of this research provide information on the possibility of using zircon (ZrSiO4) as solid support for SRM catalysts.

  11. Rare earth substitution on structural and optical behaviour of CdSe thin films

    NASA Astrophysics Data System (ADS)

    Singh, Sarika; Shrivastava, A. K.; Tapdiya, Swati

    2018-05-01

    A series of Sm2+,Gd2+ doped with Cadmium selenide CdSe (x =0.01) has been prepared by using Chemical bath deposition technique. Structural, Optical and Morphological studies were performed using X-ray diffraction (XRD), UV-Visible spectrometer, Raman Studies and Scanning Electron Microscopy (SEM). XRD patterns confirm the samples with Sm,Gd ions, some diffraction peaks appeared which belongs to the cubic phase structure. The values of lattice parameter (a) decreased and particle size decrease on doping. Morphology of the grown films reveals that surface are homogeneous and uniformly spread on the substrates. The elemental analysis of CdSe doped Sm and Gd (1%) different composition was analyzed by Energy Dispersive X-Rays (EDX). The optical values of some important parameters of the studied films were calculated by UVstudy are determined from transmission spectra at wavelength 200 to 900nm. Optical band gap Eg was calculated by tauc relation. Energy band gap of CdSe doped with Sm and Gd varies at 1.8eV and 1.9eV respectively. Bandgap In Raman analysis, a prominent peak shows that confirmation of nano crystalline phase. And intensity of peaks was decreasing after doping.

  12. Synthesis and characterization of a novel schiff base of 1,2-diaminopropane with substituted salicyaldehyde and its transition metal complexes: Single crystal structures and biological activities

    NASA Astrophysics Data System (ADS)

    Tadavi, Samina K.; Yadav, Abhijit A.; Bendre, Ratnamala S.

    2018-01-01

    A novel schiff base H2L derived from simple condensation of 2-hydroxy-6-isopropyl-3-methyl benzaldehyde and 1,2-diaminopropane in 2:1 M ratio and its [MnL], [CoL] and [NiL]2 complexes have been prepared and characterized by spectroscopic technique, elemental analysis, SEM-EDX analysis, and cyclic voltammetry. Additionally, single crystal X-ray diffraction technique has been applied to the schiff base ligand H2L and its nickel complex. The structure of nickel complex exhibited dimeric form with formula [NiL]2 with distorted square planar geometry around each nickel center. Furthermore, all the synthesized compounds were screened for their antimicrobial and antioxidant and DNA cleavage activities.

  13. Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP).

    PubMed

    Rajput, Shalini; Singh, Lok P; Pittman, Charles U; Mohan, Dinesh

    2017-04-15

    Superparamagnetic maghemite (γ-Fe 2 O 3 ) nanoparticles of controllable morphology were successfully synthesized using a flame spray pyrolysis (FSP) technique. Their physico-chemical properties, size, morphology, and surface chemistries were determined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), selected area electron diffraction patterns (SAED), SEM-EDX, scanning electron microscopy (SEM), and pH ZPC (6.3). Elemental contents before and after adsorption were identified using energy dispersive X-ray fluorescence (ED-XRF), energy dispersive X-ray analysis (EDX) and elemental mapping. Surface area (S BET 79.35m 2 /g) and size distribution analyses were conducted using a surface area analyzer and dynamic light scattering (DLS), respectively. The magnetic moment (44.5 at 300K and 50.16 at 2K) was determined using a physical properties measurement system (PPMS). The first adsorption study using γ-Fe 2 O 3 nanoparticles synthesized by FSP to successfully remediate Pb 2+ and Cu 2+ from water is reported. Batch adsorption studies were carried out. An optimum pH of 5.0 was studied for Pb 2+ and Cu 2+ removal. Pb 2+ and Cu 2+ removal mechanisms by these maghemite nanoparticles were presented. The adsorption of Pb 2+ and Cu 2+ was highly pH-dependent. The metal ion uptake was mainly governed by electrostatic attractions. Sorption kinetic data followed the pseudo-second-order model. The Freundlich, Langmuir, Redlich-Peterson, Radke and Sips adsorption isotherm models were applied to interpret equilibrium data. The Freundlich and Langmuir isotherm equations best fit the respective equilibrium data for Pb 2+ and Cu 2+ . The maximum Langmuir adsorption capacities of these maghemite nanoparticles were 68.9mg/g at 45°C for Pb 2+ and 34.0mg/g at 25 °C for Cu 2+ . Thus, these maghemite nanoparticles made by FSP were readily prepared, characterized and showed promise for remediating heavy metal ions from aqueous solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evaluation of poly (vinyl alcohol) based cryogel-zinc oxide nanocomposites for possible applications as wound dressing materials.

    PubMed

    Chaturvedi, Archana; Bajpai, Anil K; Bajpai, Jaya; K Singh, Sunil

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter<100nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1992-01-01

    Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.

  16. Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO 2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hamadanian, M.; Reisi-Vanani, A.; Majedi, A.

    2010-01-01

    A novel copper and sulfur codoped TiO 2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl 2·2H 2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO 2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO 2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced "red-shift" in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO 2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO 2 catalyst has higher activity than undoped and Cu or S doped TiO 2 catalysts.

  17. Direct-write maskless lithography using patterned oxidation of Si-substrate Induced by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2013-03-01

    In this study we report a new method for direct-write maskless lithography using oxidized silicon layer induced by high repetition (MHz) ultrafast (femtosecond) laser pulses under ambient condition. The induced thin layer of predetermined pattern can act as an etch stop during etching process in alkaline etchants such as KOH. The proposed method can be leading to promising solutions for direct-write maskless lithography technique since the proposed method offers a higher degree of flexibility and reduced time and cost of fabrication which makes it particularly appropriate for rapid prototyping and custom scale manufacturing. A Scanning Electron Microscope (SEM), Micro-Raman, Energy Dispersive X-ray (EDX), optical microscope and X-ray diffraction spectroscopy (XRD) were used to evaluate the quality of oxidized layer induced by laser pulses.

  18. Mechanical properties of tantalum-based ceramic coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    Donkov, N.; Walkowicz, J.; Zavaleyev, V.; Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.

    2018-03-01

    The properties were studied of Ta, Ta2O5 and Ta/Ta2O5 coatings deposited by reactive magnetron sputtering on stainless steel (AISI 316) substrates. The compositional, structural and morphological parameters of the coatings were investigated by means of X-ray photoemission spectroscopy (XPS), energy dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The roughness parameters, adhesion strength, hardness, elastic modulus, and H/E ratio were evaluated by standard techniques. The hardness parameters of the Ta2O5 and Ta/Ta2O5 coatings increased in comparison with pure Ta films, while the relatively low Young’s modulus was related to high elastic recovery and high resistance to cracking. The tantalum-based coatings possessed good biomechanical parameters for advanced implant and stent applications.

  19. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  20. Micro-Raman and FT-IR spectroscopic studies of ceramic shards excavated from ancient Stratonikeia city at Eskihisar village in West-South Turkey

    NASA Astrophysics Data System (ADS)

    Bahçeli, Semiha; Güleç, Gamze; Erdoğan, Hasan; Söğüt, Bilal

    2016-02-01

    In this study, micro-Raman and Fourier transformed infrared (FT-IR) spectroscopies, X-ray diffraction (XRD) and scanning electron microscope with energy dispersive X-ray (SEM-EDX) were used to characterize the mineralogical structures of pigments of four ceramic fragments in which one of them belongs to Hellenistic period (1st - IVth century BC) and other three ceramic shards belong to Early Rome (IVth century BC- 1st century AD) excavated from Stratonikeia ancient city. In the results of investigations on these four ceramic fragments, the various phases were identified: quartz, kaolinite, albit (or Na-feldspar), calcite, anastase, hematite and magnetite. Furthermore, the obtained findings indicate that firing temperature is about 800-850 °C for all the shards.

  1. Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method

    NASA Astrophysics Data System (ADS)

    Sundararajan, M.; John Kennedy, L.; Nithya, P.; Judith Vijaya, J.; Bououdina, M.

    2017-09-01

    Co1-xMgxFe2O4 (0≤x≤0.5) spinel nanoparticles were synthesized by a simple microwave combustion method. The characterization of the samples were performed using X-ray diffraction (XRD) analysis, scanning electron (SEM) microscopy, energy dispersive X-ray (EDX) analysis, UV-visible and diffuse reflectance (DRS) spectroscopy, photoluminescence (PL) spectroscopy, Fourier transformed infrared (FT-IR) spectroscopy and vibrating sample magnetometry (VSM) analysis. The XRD patterns indicate the formation of cubic inverse spinel structure. The calculated average crystallite size using Debye Scherrer's equation is found to be around 46-38 nm. The morphology of spinel nanoparticles was observed from SEM images and the elemental mapping of magnesium doped cobalt ferrite was obtained by using energy dispersive X-ray technique. Optical studies were carried out for the deeper understanding of the conduction band (CB) and valence band (VB) edges of the synthesized nanoparticles. The intrinsic stretching vibrations of Fe3+-O2- in tetrahedral sites leads to the appearance of IR band at around 573 cm-1. The magnetic properties such as remanence magnetization (Mr), coercivity (Hc) and saturation magnetization (Ms) were calculated from the hysteresis curves. The maximum photocatalytic degradation efficiency for Co0.6Mg0.4Fe2O4 is around (99.5%) when compared to that of CoFe2O4 whose efficiency is around (73.0%). The improvement in photocatalytic degradation efficiency is due to the effective separation and prevention of electron-hole pair recombination. The R2 values for the first order rate kinetics are found to be better than R2 values for the second order rate kinetics and this proves that photocatalytic degradation of RhB dye follows first order kinetics. The probable mechanism for the photocatalytic degradation of RhB dye is proposed.

  2. Phytoremediation of arsenic by Trapa natans in a hydroponic system.

    PubMed

    Baruah, Sangita; Borgohain, Jayasree; Sarma, K P

    2014-05-01

    Phytoremediation of arsenic (As) by water chestnut (Trapa natans) in a hydroponic system was studied. Plants were grown at two concentrations of arsenic, 1.28 mg/L and 10.80 mg/L, in a single metal solution. Scanning Electron Microscope-Energy Dispersive X-ray (SEM-EDX) confirmed highest arsenic concentration in the roots, followed by shoots and leaves. SEM-EDX also confirmed internalization of arsenic in T. natans and the damage caused due to arsenic exposure. Fourier Transform Infra Red Spectroscopy (FT-IRS) indicated that the binding characteristics of the arsenic ions involved the hydroxyl, amide, amino, and thiol groups in the biomass. Chlorophyll concentration decreased with increasing metal concentration and duration of exposure, but proline content increases with increasing concentration in the plant. Morphological changes were studied on the 3rd, 5th and 7th day. Unhealthy growth and chlorosis were found to be related with arsenic toxicity. From the above studies it is clear that T. natans can be used successfully for the removal of arsenic ions by a phytoremediation process.

  3. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX

    PubMed Central

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-01-01

    Background During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Material/Methods Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). Results The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Conclusions Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients’ oral cavities. PMID:24857929

  4. Mapping chemical elements on the surface of orthodontic appliance by SEM-EDX.

    PubMed

    Mikulewicz, Marcin; Wołowiec, Paulina; Michalak, Izabela; Chojnacka, Katarzyna; Czopor, Wojciech; Berniczei-Royko, Adam; Vegh, Andras; Gedrange, Thomas

    2014-05-25

    During orthodontic treatment, the various elements that constitute the fixed appliance undergo different processes. As a result of a change of the surface, elution/coverage of metals on the surface can be observed in the process of corrosion/passivation. Scanning electron microscopy with an energy-dispersive X-ray analytical system (SEM-EDX) was used to analyze the composition of stainless steel elements of orthodontic fixed appliances (before and after orthodontic treatment), to obtain the composition of the surface of the elements. The analyzed elements were: brackets (Victory Series APC PLUS 022, 3M Unitek, Monrovia, CA, USA); wires (0.017×0.025, 3M Unitek, Monrovia, CA, USA); and bands (37+, 3M Unitek, Monrovia, CA, USA). The results showed a decrease of chromium and iron contribution to the surface, with increase of oxygen content in used vs. new elements of the appliance. Our results confirm the formation of oxides (passivation layer) on the surface of stainless steel as a result of the presence of the orthodontic appliance in patients' oral cavities.

  5. Enhanced ionic conductivity in planar sodium-β"-alumina electrolyte for electrochemical energy storage applications.

    PubMed

    La Rosa, Daniela; Monforte, Giuseppe; D'Urso, Claudia; Baglio, Vincenzo; Antonucci, Vincenzo; Aricò, Antonino S

    2010-12-17

    Solid Na-β"-Al₂O₃ electrolyte is prepared by a simple chemical route involving a pseudo-boehmite precursor and thermal treatment. Boehmite powder is used for manufacturing the planar electrolyte with appropriate bulk density after firing at 1500 °C. The structure, morphology, and surface properties of precursor powders and sintered electrolytes are investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). As shown by XRD and TEM analyses, nanometer-sized particles are obtained for the boehmite precursor and a pure crystallographic phase is achieved for the sintered electrolyte. SEM analysis of the cross-section indicates good sintering characteristics. XPS shows a higher Na/Al atomic ratio on the surface for the planar electrolyte compared to a commercial tubular electrolyte (0.57 vs. 0.46). Energy-dispersive X-ray microanalysis (EDX) shows an Na/Al ratio in the bulk of 0.16, similar in the two samples. The ionic conductivity of the planar electrolyte is larger than that measured on a commercial tube of sodium-β"-alumina in a wide temperature range. At 350 °C, conductivity values of 0.5 S cm⁻¹ and 0.26 S cm⁻¹ are obtained for the planar electrolyte and the commercial tube, respectively. AC-impedance spectra show smaller grain boundary effects in the planar electrolyte than in the tubular electrolyte. These favorable properties may increase the perspectives for applying planar Na-β"-Al₂O₃ electrolytes in high-temperature batteries.

  6. Evolution of Shock Melt Compositions in Lunar Agglutinates

    NASA Technical Reports Server (NTRS)

    Vance, A. M.; Christoffersen, R.; Keller, L. P.

    2015-01-01

    Lunar agglutinates are aggregates of regolith grains fused together in a glassy matrix of shock melt produced during smaller-scale (mostly micrometeorite) impacts. Agglutinate formation is a key space weathering process under which the optically-active component of nanophase metallic Fe (npFe(sup 0)) is added to the lunar regolith. Here we have used energy-dispersive X-ray (EDX) compositional spectrum imaging in the SEM to quantify the chemical homogeneity of agglutinitic glass, correlate its homogeneity to its parent soil maturity, and identify the principle chemical components contributing to the shock melt compositional variations.

  7. Galvanic displacement reaction and rapid thermal annealing in size/shape controlling silver nanoparticles on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Satpati, Biswarup

    2017-05-01

    The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.

  8. Synthesize of zinc nanoparticles using Indonesian velvet bean (Mucuna pruriens) extract and evaluate its potency in lowering catalepsy in mice

    NASA Astrophysics Data System (ADS)

    Eko Sardjono, Ratnaningsih; Khoerunnisa, Fitri; Musthopa, Iqbal; Khairunisa, Dinar; Astuti Suganda, Putri; Rachmawati, Rahmi

    2018-01-01

    This study aims to synthesize zinc nanoparticles using Indonesian velvet bean (Mucuna pruriens) seed extract and evaluate its potency in lowering catalepsy in mice. The research conducted consist of extraction of M. pruriens seed powder, synthesis of zinc-M. pruriens seed extract nanoparticles (Zn-MPn), characterization of Zn-MPn, and catalepsy test of Zn-MPn. M. pruriens seed powder was extracted by maceration using ethanol-water (1:1) at pH 3 adjusted with citric acid. The Zn-MPn was synthesized by reacting zinc acetate dihydrate (Zn(CH3COO2)2.2H2O) solution with M. pruriens seed extract for 40 min, dispersibility of the reaction was controlled by using sonication and ultrasonic homogenizer. The Zn-MPn obtained was characterized by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR). Catalepsy test of Zn-MPn was conducted at doses of 5, 10, 15, 20 and 25 mg/kg body weight. The results of SEM-EDX and TEM analysis showed that the Zn-MPn formed nanoparticles with a particle diameter of 55 nm. Based on FTIR analysis, the absorption band at 464.8 cm-1 was a typical absorption indicated the Zn-O interaction on Zn-MPn. Catalepsy test showed that Zn-MPn on the all five doses were able to lower the catalepsy in mice with the best dose was 10 mg/kg body weight.

  9. Formation of cerussite and hydrocerussite during adsorption of lead from aqueous solution on oxidized carbons by cold oxygen plasma

    NASA Astrophysics Data System (ADS)

    De Velasco Maldonado, Paola S.; Hernández-Montoya, Virginia; Concheso, A.; Montes-Morán, Miguel A.

    2016-11-01

    A new procedure of elimination of Pb2+ from aqueous solution using carbon adsorbents, in which high amounts of cerussite and hydrocerussite are deposited on the carbon surfaces, is reported. The procedure includes the preparation of carbons from selected lignocellulosic wastes (pecan nut shells and peach stones) by single carbonization and further oxidation with cold oxygen plasma. The materials prior and after the oxidation treatment were characterized using elemental analysis, FT-IR spectroscopy, SEM/EDX analysis, adsorption of N2 at -196 °C and X-ray photoelectron spectroscopy. The adsorption of Pb2+ was carried out in batch systems under constant agitation. The formation of cerussite and hydrocerussite on the spent carbon surfaces was confirmed by XRD, SEM/EDX and FT-IR. A Pb2+ removal mechanism is proposed in which a co-precipitation of lead nitrate and calcium carbonate would render the formation of the lead carbonates. In such mechanism, the occurrence of CaCO3 on the surface of the adsorbents plays a crucial role. The presence of calcium carbonate on the precursors is understood on the basis of the thermal evolution of calcium oxalate originally present in the biomass. The oxygen plasma treatment helps to expose the calcium carbonate nanocrystals thus improving dramatically the removal capacity of Pb2+. Accordingly, retention capacities as high as 63 mg of Pb2+ per gram of adsorbent have been attained.

  10. A potential cause for kidney stone formation during space flights: enhanced growth of nanobacteria in microgravity

    NASA Technical Reports Server (NTRS)

    Ciftcioglu, Neva; Haddad, Ruwaida S.; Golden, D. C.; Morrison, Dennis R.; McKay, David S.

    2005-01-01

    BACKGROUND: Although some information is available regarding the cellular/molecular changes in immune system exposed to microgravity, little is known about the reasons of the increase in the kidney stone formation in astronauts during and/or after long duration missions at zero gravity (0 g). In our earlier studies, we have assessed a unique agent, nanobacteria (NB), in kidney stones and hypothesized that NB have an active role in calcium phosphate-carbonate deposition in kidney. In this research we studied effect of microgravity on multiplication and calcification of NB in vitro. METHODS: We examined NB cultures in High Aspect Rotating Vessels (HARVs) designed at the NASA's Johnson Space Center, which are designed to stimulate some aspects of microgravity. Multiplication rate and calcium phosphate composition of those NB were compared with NB cultured on stationary and shaker flasks. Collected aliquots of the cultures from different incubation periods were analyzed using spectrophotometer, SEM, TEM, EDX, and x-ray diffraction techniques. RESULTS: The results showed that NB multiplied 4.6x faster in HARVs compared to stationary cultures, and 3.2x faster than shaker flask conditions. X-ray diffraction and EDX analysis showed that the degree of apatite crystal formation and the properties of the apatite depend on the specific culture conditions used. CONCLUSION: We now report an increased multiplication rate of NB in microgravity-simulated conditions. Thus, NB infection may have a potential role in kidney stone formation in crew members during space flights. For further proof to this hypothesis, screening of the NB antigen and antibody level in flight crew before and after flight would be necessary.

  11. The effect of concentration ratio and type of functional group on synthesis of CNT-ZnO hybrid nanomaterial by an in situ sol-gel process

    NASA Astrophysics Data System (ADS)

    Hosseini Largani, Sekineh; Akbarzadeh Pasha, Mohammad

    2017-12-01

    In this research, MWCNT-ZnO hybrid nanomaterials were synthesized by a simple sol-gel process using Zn(CH3COO)2·2H2O and functionalized MWCNT with carboxyl(COOH) and hydroxyl(OH) groups. Three different mass ratios of MWCNT:ZnO = 3:1, 1:1 and 1:3 were examined. The prepared nanomaterials were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). Successful growth of MWCNT-ZnO hybrids for both COOH and OH functional groups and all the three mass ratios were obtained. The ZnO nanoparticles attached on the surfaces of CNTs have rather spherical shapes and hexagonal crystal structure. By increasing the concentration of ZnO, the number and average size of ZnO nanoparticles decorated the body of CNTs in hybrid structures increase. By increasing the ZnO precursor, the distribution of ZnO nanoparticles that appeared on the surface of CNTs becomes more uniform. The SEM observation beside EDX analysis revealed that at the same concentration ratio the amount of ZnO loading on the surface of MWCNT-COOH is more than MWCNT-OH. Moreover, the average size of ZnO nanoparticles attached on the surface of COOH functionalized CNTs is relatively smaller than that of OH functionalized ones.

  12. Photocatalytic properties of h-WO3 nanoparticles obtained by annealing and h-WO3 nanorods prepared by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Boyadjiev, Stefan I.; Nagy-Kovács, Teodóra; Lukács, István; Szilágyi, Imre M.

    2016-03-01

    In the present study, two different methods for preparing hexagonal WO3 (h-WO3) photocatalysts were used - controlled thermal decomposition and hydrothermal synthesis. WO3 nanoparticles with hexagonal structure were obtained by annealing (NH4)xWO3-y at 500 °C in air. WO3 nanorods were prepared by a hydrothermal method using sodium tungstate Na2WO4, HCl, (COOH)2 and NaSO4 precursors at 200 °C. The formation, morphology, structure and composition of the as-prepared nanoparticles and nanorods were studied by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX). The photocatalytic activity of the h-WO3 nanoparticles and nanorods was studied by decomposing methyl orange in aqueous solution under UV light irradiation.

  13. The preparation and cathodoluminescence of ZnS nanowires grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Huang, Meng-Wen; Cheng, Yin-Wei; Pan, Ko-Ying; Chang, Chen-Chuan; Shieu, F. S.; Shih, Han C.

    2012-11-01

    Single crystal ZnS nanowires were successfully synthesized in large quantities on Si (1 0 0) substrates by simple thermal chemical vapor deposition without using any catalyst. The morphology, composition, and crystal structure were characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and cathodoluminescence (CL) spectroscopy. SEM observations show that the nanowires have diameters about 20-50 nm and lengths up to several tens of micrometers. XRD and TEM results confirmed that the nanowires exhibited both wurtzite and zinc blende structures with growth directions aligned along [0 0 0 2] and [1 1 1], respectively. The CL spectrum revealed emission bands in the UV and blue regions. The blue emissions at 449 and ˜581 nm were attributed to surface states and impurity-related defects of the nanowires, respectively. The perfect crystal structure of the nanowires indicates their potential applications in nanotechnology and in the fabrication of nanodevices.

  14. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    NASA Astrophysics Data System (ADS)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  15. Sonochemical Assisted Solvothermal Synthesis of Gallium Oxynitride Nanosheets and their Solar-Driven Photoelectrochemical Water-Splitting Applications.

    PubMed

    Iqbal, Naseer; Khan, Ibrahim; Yamani, Zain H; Qurashi, Ahsanullhaq

    2016-08-26

    Gallium oxynitride (GaON) nanosheets for photoelectrochemical (PEC) analysis are synthesized via direct solvothermal approach. Their FE-SEM revealed nanosheets morphology of GaON prepared at a reaction time of 24 hours at 180 °C. The elemental composition and mapping of Ga, O and N are carried out through electron dispersive X-ray spectroscopy (EDX). The cubic structure of GaON nanosheets is elucidated by X-ray diffraction (XRD)analysis. The X-ray Photoelectron Spectroscopy (XPS) further confirms Ga, O and N in their respective ratios and states. The optical properties of GaON nanosheets are evaluated via UV-Visible, Photoluminescence (PL) and Raman spectroscopy's. The band gap energy of ~1.9 eV is calculated from both absorption and diffused reflectance spectroscopy's which showed stronger p-d repulsions in the Ga (3d) and N (2p) orbitals. This effect and chemical nitridation caused upward shift of valence band and band gap reduction. The GaON nanosheets are investigated for PEC studies in a standard three electrode system under 1 Sun irradiation in 0.5 M Na2SO4. The photocurrent generation, oxidation and reduction reactions during the measurements are observed by Chronoampereometry, linear sweep Voltametry (LSV) and Cyclic Voltametry (CV) respectively. Henceforward, these GaON nanosheets can be used as potential photocatalyts for solar water splitting.

  16. Sonochemical Assisted Solvothermal Synthesis of Gallium Oxynitride Nanosheets and their Solar-Driven Photoelectrochemical Water-Splitting Applications

    PubMed Central

    Iqbal, Naseer; Khan, Ibrahim; Yamani, Zain H.; Qurashi, Ahsanullhaq

    2016-01-01

    Gallium oxynitride (GaON) nanosheets for photoelectrochemical (PEC) analysis are synthesized via direct solvothermal approach. Their FE-SEM revealed nanosheets morphology of GaON prepared at a reaction time of 24 hours at 180 °C. The elemental composition and mapping of Ga, O and N are carried out through electron dispersive X-ray spectroscopy (EDX). The cubic structure of GaON nanosheets is elucidated by X-ray diffraction (XRD)analysis. The X-ray Photoelectron Spectroscopy (XPS) further confirms Ga, O and N in their respective ratios and states. The optical properties of GaON nanosheets are evaluated via UV-Visible, Photoluminescence (PL) and Raman spectroscopy’s. The band gap energy of ~1.9 eV is calculated from both absorption and diffused reflectance spectroscopy’s which showed stronger p-d repulsions in the Ga (3d) and N (2p) orbitals. This effect and chemical nitridation caused upward shift of valence band and band gap reduction. The GaON nanosheets are investigated for PEC studies in a standard three electrode system under 1 Sun irradiation in 0.5 M Na2SO4. The photocurrent generation, oxidation and reduction reactions during the measurements are observed by Chronoampereometry, linear sweep Voltametry (LSV) and Cyclic Voltametry (CV) respectively. Henceforward, these GaON nanosheets can be used as potential photocatalyts for solar water splitting. PMID:27561646

  17. FE-SEM, FIB and TEM Study of Surface Deposits of Apollo 15 Green Glass Volcanic Spherules

    NASA Technical Reports Server (NTRS)

    Ross, Daniel K.; Thomas-Keprta, K. L.; Rahman, Z.; Wentworth, S. J.; McKay, D. S.

    2011-01-01

    Surface deposits on lunar pyroclastic green (Apollo 15) and orange (Apollo 17) glass spherules have been attributed to condensation from the gas clouds that accompanied fire-fountain eruptions. The fire fountains cast molten lava high above the lunar surface and the silicate melt droplets quenched before landing producing the glass beads. Early investigations showed that these deposits are rich in sulfur and zinc. The deposits are extremely fine-grained and thin, so that it was never possible to determine their chemical compositions cleanly by SEM/EDX or electron probe x-ray analysis because most of the excited volume was in the under-lying silicate glass. We are investigating the surface deposits by TEM, using focused ion beam (FIB) microscopy to extract and thin the surface deposits. Here we report on chemical mapping of a FIB section of surface deposits of an Apollo green glass bead 15401using the ultra-high resolution JEOL 2500 STEM located at NASA Johnson Space Center.

  18. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques.

    PubMed

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-10-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74-10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city.

  19. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques

    PubMed Central

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-01-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087

  20. A step toward development of printable dosage forms for poorly soluble drugs.

    PubMed

    Raijada, Dhara; Genina, Natalja; Fors, Daniela; Wisaeus, Erik; Peltonen, Jouko; Rantanen, Jukka; Sandler, Niklas

    2013-10-01

    The purpose of this study was to formulate printable dosage forms for a poorly soluble drug (piroxicam; PRX) and to gain understanding of critical parameters to be considered during development of such dosage forms. Liquid formulations of PRX were printed on edible paper using piezoelectric inkjet printing (PIJ) and impression printing (flexography). The printed dosage forms were characterized using scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the amount of drug was determined using high-performance liquid chromatography. Solutions of PRX in polyethylene glycol 400 (PEG-400):ethanol (40:60) and in PEG-400 were found to be optimal formulations for PIJ and flexography, respectively. SEM-EDX analysis revealed no visible solid particles on the printed dosage forms indicating the drug most likely remained in solution after printing. More accurate drug deposition was obtained by PIJ as compared with flexography. More than 90% drug release was achieved within 5 min regardless of printing method used. The solubility of drug in solvents/cosolvents, rheological properties of formulations, properties of substrate, feasibility and accuracy of the printing methods, and detection limit of analytical techniques for characterization of printed dosage forms are some of the concerns that need to be addressed for development of printable dosage forms of poorly soluble drugs. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  1. Detection of Gunshot Residues Using Mass Spectrometry

    PubMed Central

    Blanes, Lucas; Cole, Nerida; Doble, Philip; Roux, Claude

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. PMID:24977168

  2. Detection and distribution analysis of organosilicon compounds in wood by means of SEM-EDX and micro-CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vetter, L. de; Cnudde, V.; Masschaele, B.

    This article explores the potential of a scanning electron microscope with an energy dispersive X-ray spectrometer in combination with a new non-destructive 3D visualization technique, X-ray micro-computed tomography, as detection methods for siloxanes/silanes mixtures applied as wood preservatives. In order to have a higher contrast, bromine functional silane was added to the mixture. Scots pine and beech samples were dipped or impregnated with the mixture and subsequently scanned. Both silicon and bromine were easily detectable with both techniques. Dipped siloxanes/silanes covered the cell walls partly in beech and the lumen partly or completely in Scots pine. Impregnated siloxanes/silanes could bemore » found in the cell walls of both wood species. From the results, it can be concluded that, under the circumstances as described in the article, impregnation with a siloxane is necessary to have cell wall penetration. The combination of scanning electron microscopy, energy dispersive X-ray spectroscopy and micro-computed tomography can offer important information concerning the localization of certain products inside wood. While the last of these can monitor changes in 3D, the other two techniques can provide detailed 2D information. Both techniques are complementary and provide important extra information.« less

  3. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics

    PubMed Central

    Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan

    2015-01-01

    The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field. PMID:26670467

  4. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics

    NASA Astrophysics Data System (ADS)

    Ji, Xuqiang; Zhang, Wenling; Shan, Lei; Tian, Yu; Liu, Jingquan

    2015-12-01

    The core-shell structured SiO2@Ni-Al layered double hydroxide (LDH) composites were prepared via self-assembly of Ni-Al LDH on the surface of SiO2 spheres. Only coating a layer of ultrathin Ni-Al LDH sheet, the resulting SiO2@Ni-Al LDH composites exhibit significantly enhanced electrorheological (ER) characteristics compared to conventional bare SiO2 spheres. The monodispersed SiO2 spheres with average diameters of 260 nm were synthesized by the hydrolysis of tetraethyl orthosilicate (TEOS), while the shell part, Ni-Al LDH sheet was prepared by the hydrothermal procedure. The morphology of the samples was investigated via scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure of the samples was characterized by X-ray diffraction (XRD). The species and distribution of elements in samples were confirmed by X-ray photoelectron spectroscopy (XPS), Energy dispersive analysis of X-ray (EDX) and elemental mapping in STEM. Subsequently, the ER characteristics of the composites dispersed in insulating oil were characterized by a rotational rheometer. The electric field-stimulated rheological performances (yield stress, viscosity, modulus, etc.) were observed under an external electric field, which is different from the Newtonian state in the free electric field.

  5. Seasonal variability of aerosols and their characteristics in urban and rural locations of Delhi-NCR

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Purnima; Pandey, Alok Kumar; Kumar, Krishan; Jain, V. K.

    2017-10-01

    Present study shows the seasonal variation of the Aerosol Optical Depth (AOD) and aerosols characteristics in an urban and rural environment over Delhi-NCR. Aerosol sampling was carried out using a Mini-Volume sampler at an urban and rural location in Delhi-NCR. A relatively higher PM2.5 (particulate matter of size < 2.5 μm) concentrations were observed at the urban sampling site than the rural one in the summer as well as winter season. PM2.5 samples were further analyzed by Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX) in order to understand the morphology and elemental composition of the PM2.5 aerosols. Summer SEM results showed the dominance of fluffy agglomerate (soot) in urban area whereas the rural area was relatively clean. The winter season SEM results showed the presence of aggregates of smaller particles at urban site whereas flaky, round and irregular shaped particles were observed at the rural site. EDX analysis showed the presence of elements such as C, Cu, Zn, Ga and Fe (representative elements) in varying concentrations at both the urban and rural sampling locations. NASA's Aqua satellite MODIS sensor AOD data for summer and winter seasons have been used to study the spatial distributions of aerosols over the study region. AOD was found to be relatively higher in urban area as compared to the rural area in both the summer and winter seasons indicating the contribution of high amount of anthropogenic aerosols in the urban atmosphere.

  6. Isolation and characterization of Bacillus cereus IST105 from electroplating effluent for detoxification of hexavalent chromium.

    PubMed

    Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar

    2011-08-01

    Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.

  7. Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders

    NASA Astrophysics Data System (ADS)

    Latifi, S. M.; Fathi, M. H.; Golozar, M. A.

    One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.

  8. Surface modification of a natural zeolite by treatment with cold oxygen plasma: Characterization and application in water treatment

    NASA Astrophysics Data System (ADS)

    De Velasco-Maldonado, Paola S.; Hernández-Montoya, Virginia; Montes-Morán, Miguel A.; Vázquez, Norma Aurea-Rangel; Pérez-Cruz, Ma. Ana

    2018-03-01

    In the present work the possible surface modification of natural zeolite using cold oxygen plasma was studied. The sample with and without treatment was characterized using nitrogen adsorption isotherms at -196 °C, FT-IR spectroscopy, SEM/EDX analysis and X-Ray Diffraction. Additionally, the two samples were used for the removal of lead and acid, basic, reactive and food dyes in batch systems. The natural zeolite was found to be a mesoporous material with a low specific surface area (23 m2/g). X-ray patterns confirmed that clinoptilolite was the main crystal structure present in the natural zeolite. The molecular properties of dyes and the zeolitic structure were studied using molecular simulation, with the purpose to understand the adsorption mechanism. The results pointed out that only the roughness of the clinoptilolite was affected by the plasma treatment, whereas the specific surface area, chemical functionality and crystal structure remained constant. Finally, adsorption results confirmed that the plasma treatment had no significant effects on the dyes and lead retention capacities of the natural zeolite.

  9. Application of Membrane Crystallization for Minerals’ Recovery from Produced Water

    PubMed Central

    Ali, Aamer; Quist-Jensen, Cejna Anna; Macedonio, Francesca; Drioli, Enrico

    2015-01-01

    Produced water represents the largest wastewater stream from oil and gas production. Generally, its high salinity level restricts the treatment options. Membrane crystallization (MCr) is an emerging membrane process with the capability to extract simultaneously fresh water and valuable components from various streams. In the current study, the potential of MCr for produced water treatment and salt recovery was demonstrated. The experiments were carried out in lab scale and semi-pilot scale. The effect of thermal and hydrodynamic conditions on process performance and crystal characteristics were explored. Energy dispersive X-ray (EDX) and X-ray diffraction (XRD) analyses confirmed that the recovered crystals are sodium chloride with very high purity (>99.9%), also indicated by the cubic structure observed by microscopy and SEM (scanning electron microscopy) analysis. It was demonstrated experimentally that at recovery factor of 37%, 16.4 kg NaCl per cubic meter of produced water can be recovered. Anti-scaling surface morphological features of membranes were also identified. In general, the study provides a new perspective of isolation of valuable constituents from produced water that, otherwise, is considered as a nuisance. PMID:26610581

  10. Synthesis, structural properties and catalytic activity of MgO-SnO2 nanocatalysts

    NASA Astrophysics Data System (ADS)

    Perveen, Hina; Farrukh, Muhammad Akhyar; Khaleeq-ur-Rahman, Muhammad; Munir, Badar; Tahir, Muhammad Ashraf

    2015-01-01

    Surfactant controlled synthesis of magnesium oxide-tin oxide (MgO-SnO2) nanocatalysts was carried out via the hydrothermal method. Concentration of sodium dodecyl sulfate (SDS) was varied while all other reaction conditions were kept constant same for this purpose. Furthermore, MgO-SnO2 nanocatalysts were also prepared by changing the precursor's concentration. These precursors are magnesium nitrate Mg(NO3)2 · 6H2O and tin chloride (SnCl4 · 5H2O). The influence of these reaction parameters on the sizes and morphology of the nanocatalysts were studied by using Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX), Powder X-ray diffraction (XRD), Transmission electron microscopy and Thermo gravimetric analysis (TGA). The catalytic efficiency of MgO-SnO2 was checked against 2,4-dinitrophenylhydrazine (DNPH), which is an explosive compound. The nanocatalysts were found as a good catalyst to degrade the DNPH. Catalytic activity of nanocatalysts was observed up to 19.13% for the degradation DNPH by using UV-spectrophotometer.

  11. Cellular compatibility of nanocomposite scaffolds based on hydroxyapatite entrapped in cellulose network for bone repair.

    PubMed

    Beladi, Faranak; Saber-Samandari, Samaneh; Saber-Samandari, Saeed

    2017-06-01

    In the past few decades, artificial graft materials for bone tissue engineering have gained much importance. In this study, novel porous 3D nanocomposite scaffolds composed of polyacrylamide grafted cellulose and hydroxyapatite were proposed. They were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction analysis (XRD). The swelling behavior of the scaffolds was examined in both water and phosphate buffer saline (PBS) solution. The cytotoxicity of the scaffolds was determined by MTT assays on human fibroblast gum (HuGu) cells. Results showed that the nanocomposite scaffolds were highly porous with maximum porosity of 85.7% interconnected with a pore size of around 72-125μm. The results of cell culture experiments showed that the scaffolds extracts do not have cytotoxicity in any concentration. Obtained results suggested that the introduced scaffolds are comparable with the trabecular bone from the compositional, structural, and mechanical perspectives and have a great potential as a bone substitute. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In2O3-ZnO heterostructure development in electrical and photoluminescence properties of In2O3 1-D nanostructures

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Ghafouri, V.

    2014-05-01

    Indium Oxide quasi one-dimensional (1D) nanostructures known as nanowires and nanorods synthesis using the thermal evaporation method, has been articulated. To nucleate growth sites, substrate seeding promoted 1D nanostructures growth. The catalyst-mediated growth mechanism showed more favorable morphologies and physical properties in under vacuum conditions associated with bottom-up technique. Scanning electron microscopy (SEM) results showed that the Zn-doped 1D nanostructures had spherical caps. The X-ray diffraction (XRD) pattern and energy-dispersive X-ray (EDX) spectrum indicated that these caps intensively associated with ZnO. Therefore, it was reasonable that the vapor-liquid-solid mechanism (VLS) was responsible for the growth of the In2O3-ZnO heterostructure nanowires. This technique enhances optical and electrical properties in nanostructures. The photoluminescence (PL) analysis in Zn-doped In2O3 nanowires and nanorods shows that the intensity of the visible and UV-region emissions overwhelmingly increases and resistance measurement professes the improvement of linear conductance in VLS growth mechanism.

  13. Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity.

    PubMed

    Venil, Chidambaram Kulandaisamy; Sathishkumar, Palanivel; Malathi, Mahalingam; Usha, Rajamanickam; Jayakumar, Rajarajeswaran; Yusoff, Abdull Rahim Mohd; Ahmad, Wan Azlina

    2016-02-01

    In this work, the synthesis of silver nanoparticles from a pigment produced by a recently-discovered bacterium, Chryseobacterium artocarpi CECT 8497, was achieved, followed by an investigation of its anticancer properties. The bacterial pigment was identified as flexirubin following NMR ((1)H NMR and (13)C NMR), UV-Vis, and LC-MS analysis. An aqueous silver nitrate solution was treated with isolated flexirubin to produce silver nanoparticles. The synthesised silver nanoparticles were subsequently characterised by UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), X-Ray Diffraction (XRD), and Fourier Transform Infrared (FTIR) Spectroscopy methodologies. Furthermore, the anticancer effects of synthesised silver nanoparticles in a human breast cancer cell line (MCF-7) were evaluated. The tests showed significant cytotoxicity activity of the silver nanoparticles in the cultured cells, with an IC50 value of 36μgmL(-1). This study demonstrates that silver nanoparticles, synthesised from flexirubin from C. artocarpi CECT 8497, may have potential as a novel chemotherapeutic agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water.

    PubMed

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-06-15

    The present study was carried out to investigate the degradation of phenol by ultrasonically dispersed nano-metallic particles (NMPs) in an aqueous solution of phenol. Leaching liquor from automobile shredder residue (ASR) was used to obtain the NMPs. The prepared NMPs were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and by X-ray diffraction (XRD). The SEM images show that the diameters of the NMPs were less than 50 nm. An SEM-EDX elemental analysis reveals that Fe was the most commonly found element (weight %) in the NMPs. The FTIR and XRD peaks indicate the presence of metals oxides on the surfaces of the NMPs. The results of the XPS analysis indicate that various elements (e.g., C, O, Zn, Cu, Mn, Fe) are present on the surfaces of the NMPs. The effects of the NMP dose, the initial solution pH, and of different concentrations of phenol and H2O2 on the phenol degradation characteristics were evaluated. The results of this study demonstrate that phenol degradation can be improved by increasing the amount of NMPs, whereas it is reduced with an increase in the phenol concentration. The degradation of phenol by ultrasonically dispersed NMPs followed the pseudo-first-order kinetics. The probable mechanism of phenol degradation by ultrasonically dispersed NMPs was the oxidation of phenol caused by the hydroxyl radicals produced during the reaction between H2O2 and the NMPs during the ultrasonication process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synthesis and characterization of TiO2 loaded cashew nut shell activated carbon and photocatalytic activity on BG and MB dyes under sunlight radiation.

    PubMed

    Ragupathy, S; Raghu, K; Prabu, P

    2015-03-05

    Synthesis of titanium dioxide (TiO2) nanoparticles and TiO2 loaded cashew nut shell activated carbon (TiO2/CNSAC) had been undertaken using sol-gel method and their application in BG and MB dyes removal under sunlight radiation has been investigated. The synthesized photocatalysts were characterized by X-ray diffraction analysis (XRD), Fourier infra-red spectroscopy (FT-IR), UV-Vis-diffuse reflectance spectroscopy (DRS) and scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX). The various experimental parameters like amount of catalyst, contact time for efficient dyes degradation of BG and MB were concerned in this study. Activity measurements performed under solar irradiation has shown good results for the photodegradation of BG and MB in aqueous solution. It was concluded that the higher photocatalytic activity in TiO2/CNSAC was due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. The kinetic data were also described by the pseudo-first-order and pseudo-second-order kinetic models. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Fabrication of multicolor fluorescent polyvinyl alcohol through surface modification with conjugated polymers by oxidative polymerization

    NASA Astrophysics Data System (ADS)

    Hai, Thien An Phung; Sugimoto, Ryuichi

    2018-06-01

    A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.

  17. Photocatalytic activity against azo dye and cytotoxicity on MCF-7 cell lines of zirconium oxide nanoparticle mediated using leaves of Lagerstroemia speciosa.

    PubMed

    Sai Saraswathi, V; Santhakumar, K

    2017-04-01

    Metal oxide nanoparticles are gaining interest in recent years. The present paper explains about the green synthesis of zirconium oxide nanoparticles (ZrO NPs) mediated from the leaves of Lagerstroemia speciosa. The prepared ZrO NPs were characterized by UV-vis spectroscopy, FT-IR, X-ray diffraction analysis (XRD), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Thermogravimetric Analysis (TGA). The photocatalytic activity of ZrO NPs was studied for azo dye by exposing to sunlight. The azo dye was degraded up to 94.58%. Also the ZrO NPs were studied for in vitro cytotoxicity activity against breast cancer cell lines-MCF-7 and evaluated by MTT assay. The cell morphological changes were recorded by light microscope. The cells viability was seen at 500μg/mL when compared against control. Hence the research highlights, that the method was simple, eco-friendly towards environment by phytoremediation activity of the azo dye and cytotoxicity activity against MCF-7 cell lines. Hence the present paper may help to further explore the metal nanoparticle for its potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sadhan Kumar; Malodia, Lalit

    2017-11-01

    Green synthesis of zinc oxide nanoparticles was carried out using Calotropis leaf extract with zinc acetate salt in the presence of 2 M NaOH. The combination of 200 mM zinc acetate salt and 15 ml of leaf extract was ideal for the synthesis of less than 20 nm size of highly monodisperse crystalline nanoparticles. Synthesized nanoparticles were characterized through UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), EDX (energy dispersive X-ray), and AFM (atomic force microscopy). Effects of biogenic zinc oxide (ZnO) nanoparticles on growth and development of tree seedlings in nursery stage were studied in open-air trenches. The UV-Vis absorption maxima showed peak near 350 nm, which is characteristic of ZnO nanoparticles. DLS data showed that single peak is at 11 nm (100%) and Polydispersity Index is 0.245. XRD analysis showed that these are highly crystalline ZnO nanoparticles having an average size of 10 nm. FTIR spectra were recorded to identify the biomolecules involved in the synthesis process, which showed absorption bands at 4307, 3390, 2825, 871, 439, and 420 cm-1. SEM images showed that the particles were spherical in nature. The presence of zinc and oxygen was confirmed by EDX and the atomic % of zinc and oxygen were 33.31 and 68.69, respectively. 2D and 3D images of ZnO nanoparticles were obtained by AFM studies, which indicated that these are monodisperse having size ranges between 1.5 and 8.5 nm. Significant enhancement of growth was observed in Neem ( Azadirachta indica), Karanj ( Pongamia pinnata), and Milkwood-pine ( Alstonia scholaris) seedlings in foliar spraying ZnO nanoparticles to nursery stage of tree seedlings. Out of the three treated saplings, Alstonia scholaris showed maximum height development.

  19. Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract

    NASA Astrophysics Data System (ADS)

    Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.

    2013-02-01

    A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.

  20. Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network

    NASA Astrophysics Data System (ADS)

    Fedorková, A.; Oriňáková, R.; Oriňák, A.; Kupková, M.; Wiemhöfer, H.-D.; Audinot, J. N.; Guillot, J.

    2012-08-01

    High performance PPy/PEG-LiFePO4 nanocomposites as cathode materials were synthesized by solvothermal method and simple chemical oxidative polymerization of pyrrole (Py) monomer on the surface of LiFePO4 particles. The samples were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometry (XPS) and charge-discharge tests. PPyPEG hybrid layers decrease particle to particle contact resistance while the impedance measurements confirmed that the coating of PPy-PEG significantly decreases the charge transfer resistance of the electrode material. The initial discharge capacities of this sample at C/5 and 1C are 150 and 128 mAh/g, respectively. The results show that PPy/PEGLiFePO4 composites are more effective than bare LiFePO4 as cathode material.

  1. Direct laser sintered WC-10Co/Cu nanocomposites

    NASA Astrophysics Data System (ADS)

    Gu, Dongdong; Shen, Yifu

    2008-04-01

    In the present work, the direct metal laser sintering (DMLS) process was used to prepare the WC-Co/Cu nanocomposites in bulk form. The WC reinforcing nanoparticles were added in the form of WC-10 wt.% Co composite powder. The microstructural features and mechanical properties of the laser-sintered sample were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX), and nanoindentation tester. It showed that the original nanometric nature of the WC reinforcing particulates was well retained without appreciable grain growth after laser processing. A homogeneous distribution of the WC reinforcing nanoparticles with a coherent particulate/matrix interfacial bonding was obtained in the laser-sintered structure. The 94.3% dense nanocomposites have a dynamic nanohardness of 3.47 GPa and a reduced elastic modulus of 613.42 GPa.

  2. Ion Beam And Plasma Jet Generated By A 3 kJ Plasma Focus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, L. K.; Ngoi, S. K.; Yap, S. L.

    The plasma focus device is well known as a copious source of X-ray, neutrons, ion and electron beams. In this work, the characteristics of energetic ion beam emission in a 3 kJ Mather-type plasma focus is studied. The plasma focus system is operated at low pressure with argon as the working gas. The objective of the project is to obtain the argon ion beam and the plasma jet. The ion beam and plasma jet are used for material processing. In order to investigate the effect of the ion beam and plasma jet, crystalline silicon substrates are placed above the anode.more » Samples obtained after irradiation with the plasma focus discharge are analyzed by using the Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX).« less

  3. Friction and wear properties of high-velocity oxygen fuel sprayed WC-17Co coating under rotational fretting conditions

    NASA Astrophysics Data System (ADS)

    Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao

    2016-05-01

    Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.

  4. Chlorination Kinetics of Titanium Nitride for Production of Titanium Tetrachloride from Nitrided Ilmenite

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing

    2017-10-01

    The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.

  5. Band edge movement and structural modifications in transition metal doped TiO2 nanocrystals for the application of DSSC

    NASA Astrophysics Data System (ADS)

    Patle, L. B.; Huse, V. R.; Chaudhari, A. L.

    2017-10-01

    Nanocrystalline undoped and transition metal ion doped (TM:Cu2+, Mn2+ and Fe3+) TiO2 nanoparticles, with 1 mol% were synthesized by a simple and cost effective modified co-precipitation method at room temperature and were successfully used as photoanode for dye sensitized solar cell (DSSC). The effect of transition metal ions into TiO2 nano crystalline powder has been systematically investigated using x-ray diffraction (XRD), UV-Vis spectroscope, scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX). The results of XRD confirm nanocrystalline anatase tetragonal structure of prepared undoped and TM doped TiO2 semiconductor. The influence of doping on band edge movement has been estimated using UV-visible spectroscopy. The SEM results indicate that microscopic effect of doping on morphology of the TiO2. The peaks of EDX signify incorporation of transition metal cations into TiO2 lattice. The effect of doping on flat band potential was estimated using interpolation on Mott-Schottky plot. The performances of DSSCs of undoped and doped TiO2 photoelectrodes were investigated under light illumination. In comparison with undoped and (Cu2+, Fe3+) doped TiO2 photoanodes we found that incorporation of Mn2+ into TiO2 exhibits improvement in photoconversion efficiency (η). There is increase in photoconversion efficiency of DSSCs with Mn2+ doped TiO2 by 6% as compared to that of undoped TiO2 photoanode.

  6. A Direct Electric Field-Aided Biomimetic Mineralization System for Inducing the Remineralization of Dentin Collagen Matrix

    PubMed Central

    Wu, Xiao-Ting; Mei, May Lei; Li, Quan-Li; Cao, Chris Ying; Chen, Jia-Long; Xia, Rong; Zhang, Zhi-Hong; Chu, Chun Hung

    2015-01-01

    This in vitro study aimed to accelerate the remineralization of a completely demineralized dentine collagen block in order to regenerate the dentinal microstructure of calcified collagen fibrils by a novel electric field-aided biomimetic mineralization system in the absence of non-collagenous proteins. Completely demineralized human dentine slices were prepared using ethylene diamine tetraacetic acid (EDTA) and treated with guanidine hydrochloride to extract the bound non-collagenous proteins. The completely demineralized dentine collagen blocks were then remineralized in a calcium chloride agarose hydrogel and a sodium hydrogen phosphate and fluoride agarose hydrogel. This process was accelerated by subjecting the hydrogels to electrophoresis at 20 mA for 4 and 12 h. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were used to evaluate the resultant calcification of the dentin collagen matrix. SEM indicated that mineral particles were precipitated on the intertubular dentin collagen matrix; these densely packed crystals mimicked the structure of the original mineralized dentin. However, the dentinal tubules were not occluded by the mineral crystals. XRD and EDX both confirmed that the deposited crystals were fluorinated hydroxyapatite. TEM revealed the existence of intrafibrillar and interfibrillar mineralization of the collagen fibrils. A novel electric field-aided biomimetic mineralization system was successfully developed to remineralize a completely demineralized dentine collagen matrix in the absence of non-collagenous proteins. This study developed an accelerated biomimetic mineralization system which can be a potential protocol for the biomineralization of dentinal defects. PMID:28793685

  7. Optical study of Erbium-doped-porous silicon based planar waveguides

    NASA Astrophysics Data System (ADS)

    Najar, A.; Ajlani, H.; Charrier, J.; Lorrain, N.; Haesaert, S.; Oueslati, M.; Haji, L.

    2007-06-01

    Planar waveguides were formed from porous silicon layers obtained on P + substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er 3+ ions in the IR range and the decay curve of the 1.53 μm emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 μm after doping.

  8. Surface characterization of Nb samples electropolished together with real superconducting rf accelerator cavities

    DOE PAGES

    Xin Zhao; Geng, Rong -Li; Tyagi, P. V.; ...

    2010-12-30

    Here, we report the results of surface characterizations of niobium (Nb) samples electropolished together with a single cell superconducting radio-frequency accelerator cavity. These witness samples were located in three regions of the cavity, namely at the equator, the iris and the beam-pipe. Auger electron spectroscopy (AES) was utilized to probe the chemical composition of the topmost four atomic layers. Scanning electron microscopy with energy dispersive X-ray for elemental analysis (SEM/EDX) was used to observe the surface topography and chemical composition at the micrometer scale. A few atomic layers of sulfur (S) were found covering the samples non-uniformly. Niobium oxide granulesmore » with a sharp geometry were observed on every sample. Some Nb-O granules appeared to also contain sulfur.« less

  9. Formulation of microemulsion propolis fluoride (PF) as varnish topical agent to stop activity of teeth caries

    NASA Astrophysics Data System (ADS)

    Sahlan, Muhamad; Prakoso, Chandra Dwi; Darwita, Risqa Rina; Hermansyah, Heri

    2017-02-01

    Topical fluoride is proven to have higher efficacy in preventing dental caries with low production cost and easy to apply. The objective of this research is to formulate alternative agent topical fluoride NH4F 5% mixed with extract ethanol propolis (EEP) in the micro-emulsion system that has high stability, antimicrobial activity, and remineralization capability to arrest teeth caries activity. By using total plate count (TPC) analysis, formulation 2.7% EEP; 6,3% surfactant; and 90,9% NH4F shows good perform to inhibit cariogenic bacteria development around 78-80%. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) result also showed that sample successfully remineralized enamel surface. In addition, sample showed good pH, flavonoid, and polyphenol stability for 40 days.

  10. Tribological evaluation of high-speed steels with a regulated carbide phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Janusz

    2003-06-15

    Wear resistance of a commercial steel and titanium-niobium high-speed steels with a regulated carbide phase was evaluated by employing a micro-scale abrasive wear test with alumina particles. The worn volumes and corresponding wear coefficients were the lowest for the new non-ledeburitic grades containing titanium, then the two niobium grades, the conventional (both wrought and by powder metallurgy) steels exhibited the worse wear resistance. Fractography SEM observations together with energy-dispersive X-ray (EDX) chemical analysis revealed the decisive role of the steels' MC particles in the wear process. These carbides influenced the abrasion by stoppage of the wear scars and/or changing theirmore » trajectories. Directional and nondirectional abrasion modes in the steels tested using alumina and carborundum abrasives were found and are discussed.« less

  11. Development of Processing Techniques for Advanced Thermal Protection Materials

    NASA Technical Reports Server (NTRS)

    Selvaduray, Guna; Cox, Michael; Srinivasan, Vijayakumar

    1997-01-01

    Thermal Protection Materials Branch (TPMB) has been involved in various research programs to improve the properties and structural integrity of the existing aerospace high temperature materials. Specimens from various research programs were brought into the analytical laboratory for the purpose of obtaining and refining the material characterization. The analytical laboratory in TPMB has many different instruments which were utilized to determine the physical and chemical characteristics of materials. Some of the instruments that were utilized by the SJSU students are: Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction Spectrometer (XRD), Fourier Transform-Infrared Spectroscopy (FTIR), Ultra Violet Spectroscopy/Visible Spectroscopy (UV/VIS), Particle Size Analyzer (PSA), and Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The above mentioned analytical instruments were utilized in the material characterization process of the specimens from research programs such as: aerogel ceramics (I) and (II), X-33 Blankets, ARC-Jet specimens, QUICFIX specimens and gas permeability of lightweight ceramic ablators. In addition to analytical instruments in the analytical laboratory at TPMB, there are several on-going experiments. One particular experiment allows the measurement of permeability of ceramic ablators. From these measurements, physical characteristics of the ceramic ablators can be derived.

  12. Understanding corrosion behavior of Mg-Zn-Ca alloys from subcutaneous mouse model: effect of Zn element concentration and plasma electrolytic oxidation.

    PubMed

    Jang, Yongseok; Tan, Zongqing; Jurey, Chris; Xu, Zhigang; Dong, Zhongyun; Collins, Boyce; Yun, Yeoheung; Sankar, Jagannathan

    2015-03-01

    Mg-Zn-Ca alloys are considered as suitable biodegradable metallic implants because of their biocompatibility and proper physical properties. In this study, we investigated the effect of Zn concentration of Mg-xZn-0.3Ca (x=1, 3 and 5wt.%) alloys and surface modification by plasma electrolytic oxidation (PEO) on corrosion behavior in in vivo environment in terms of microstructure, corrosion rate, types of corrosion, and corrosion product formation. Microstructure analysis of alloys and morphological characterization of corrosion products were conducted using x-ray computed tomography (micro-CT) and scanning electron microscopy (SEM). Elemental composition and crystal structure of corrosion products were determined using x-ray diffraction (XRD) and electron dispersive x-ray spectroscopy (EDX). The results show that 1) as-cast Mg-xZn-0.3Ca alloys are composed of Mg matrix and a secondary phase of Ca2Mg6Zn3 formed along grain boundaries, 2) the corrosion rate of Mg-xZn-0.3Ca alloys increases with increasing concentration of Zn in the alloy, 3) corrosion rates of alloys treated by PEO sample are decreased in in vivo environment, and 4) the corrosion products of these alloys after in vivo tests are identified as brucite (Mg(OH)2), hydroxyapatite (Ca10(PO4)6(OH)2), and magnesite (MgCO3·3H2O). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersivemore » X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.« less

  14. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  15. Biosorption and biotransformation of chromium by Serratia sp. isolated from tannery effluent.

    PubMed

    Srivastava, Shaili; Thakur, Indu Shekhar

    2012-01-01

    A bacterium isolated from soil and sediment ofa leather tanning mill's effluent was identified as Serratia sp. by the analysis of 16S rDNA. Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM) were used to assess morphological changes and confirm chromium biosorption in Serratia sp. both in a shake-flask culture containing chromium and in a tannery wastewater. The SEMEDX and the elemental analysis of the chromate-containing samples confirmed the binding of chromium with the bacterial biomass. The TEM exhibited chromium accumulation throughout the bacterial cell, with some granular deposits in the cell periphery and in the cytoplasm. X-ray diffraction analysis (XRD) was used to quantify the chromium and to determine the chemical nature of the metal-microbe interaction. The XRD data showed the crystalline character of the precipitates, which consisted of mainly calcium chromium oxide, chromium fluoride phosphate and related organo-Cr(III) complex crystals. The XRD data also revealed a strong involvement of cellular carboxyl and phosphate groups in chromium binding by the bacterial biomass. The results of the study indicated that a combined mechanism of ion-exchange, complexation, croprecipitation and immobilization was involved in the biosorption of chromium by bacterial cells in contaminated environments.

  16. Preliminary study of the biomechanical behavior and physical characteristics of tantalum (Ta)-coated prostheses.

    PubMed

    Duan, Yonghong; Liu, Lie; Wang, Ling; Guo, Fei; Li, Haoping; Shi, Lei; Li, Mao; Yin, Dayu; Jiang, Chi; Zhu, Qingsheng

    2012-03-01

    Use of Ta biomaterials in medicine started in the middle of the last century. The good biocompatibility and chemical stability, and the unique physical characteristics of Ta metal have resulted in many possible developments of Ta biomaterials. In this study, histopathological observation, histomorphometric analysis, scanning electron microscope (SEM) observation, energy-dispersive X-ray spectroscopy (EDX) analysis, biomechanical testing, and examination of the coating's mechanical strength have been used to evaluate the value of clinical application of Ta-coated prostheses prepared by a plasma-spraying process. Histopathological observation has demonstrated that the periprosthetic new bone tissues tightly and stably adhere to the Ta coating after the implantation, with no signs of loosening. Early after implantation, there is no significant difference in periprosthetic bone volume and ultimate shear strength between Ta-coated and Ti-coated prostheses (P > 0.05). EDX analysis suggests that the ultimate shear stress does not damage Ta coating. Mechanical strength testing shows that the adhesive strength and Vicker's surface hardness (HV) of the Ta coating are significantly higher than those of the Ti coating (P < 0.01). Ta coating has good stability and bone biocompatibility; the extraordinary physical characteristics of Ta coating have great significance in maintaining prosthetic stability and surface porosity after implantation.

  17. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material.

    PubMed

    Priyadarshini, Balasankar M; Selvan, Subramanian T; Narayanan, Karthikeyan; Fawzy, Amr S

    2017-06-22

    This study explores the delivery of novel calcium hydroxide [Ca(OH)₂] microparticles loaded with chlorhexidine (CHX) for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH)₂ [Ca(OH)₂/Blank] and CHX-loaded/Ca(OH)₂ microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM), Fourier-transform infrared-spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning-calorimetry (DSC). Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH)₂ microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH)₂/Blank were hexagonal-shaped with highest z -average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface "rounded deposits" and a negative-shift in diameter. CHX:Ca(OH)₂/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH)₂ microparticles.

  18. New airtight transfer box for SEM experiments: Application to lithium and sodium metals observation and analyses.

    PubMed

    Stephant, Nicolas; Grissa, Rabeb; Guillou, Fanch; Bretaudeau, Mickaël; Borjon-Piron, Yann; Guillet, Jacques; Moreau, Philippe

    2018-04-18

    The surface of some materials reacts very quickly on contact with air, either because it is oxidized or because it gets humidity from the air. For the sake of original surface observation by scanning electron microscopy (SEM), we conceived an airtight transfer box to keep the samples under vacuum from the place of manufacturing to the SEM chamber. This object is designed to fit in all the models of SEM including those provided with an airlock chamber. The design is voluntarily simplified to allow the manufacturing of the object by a standard mechanical workshop. The transfer box can be easily opened by gravity inside the SEM and allows the preservation of the best vacuum inside, before opening. SEM images and energy dispersive spectroscopy (EDX) analyses of metallic lithium and sodium samples are presented prior and after exposure to the air. X-ray Photoelectron Spectroscopy (XPS) analyses of all samples are also discussed in order to investigate the chemical environments of the detected elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Mn-Cr isotopic systematics of individual Chainpur chondrules. [Abstract only

    NASA Technical Reports Server (NTRS)

    Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Martinez, R.; Bansal, B.; Mittlefehldt, D.; Shih, C.-Y.; Wentworth, S.

    1994-01-01

    Twenty-eight chondrules separated from Chainpur (LL3.4) were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by Instrumental Neutron Activation Analysis (INAA). Six, weighting 0.6-1.5 mg each, were chosen for Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray (EDX) and high-precision Ce-isotopic studies. LL-chondrite-normalized (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) were found to be useful in categorizing them. Five chondrules (CH-16, -17, -18, -23, and -28) were in the range 0.5 less than (Mn/Fe)(sub LL) less than 1. 4 and 0.5 less than (Sc/Fe)(sub LL) less than 1.4. The sixth (CH-25) had (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) ratios of 0.40 and 8.1, respectively, and was enriched in the refractory lithophile elements Sc and Hf and the refractory siderophile element Ir by 2.7 and 4.4x LL abundances respectively. SEM/EDX of exterior surfaces of the chondrules showed they consisted of varying proportions of low- and high-Ca pyroxenes, olivine, glass, kamacite/taenite, and Fe-sulfides. Chromium-53/chromium-52 for the six chondrules and bulk Chainpur (WR) are presented. Chromium-54/chromium-52 is close to terrestrial and does not correlate with Mn/Cr. We provisionally ignore the possibility of initial Cr isotopic heterogeneities among the chondrules. Omitting both the CH-25 and WR data, a linear regression gives initial (Mn-53/Mn-55)(sub I) = 8 +/- 4 x 10(exp -6), corresponding to chondrule formation at Delta(t)(sub LEW) = -9 +/- 4 Ma prior to igneous crystallization of the LEW 86010 angrite. If initial (Mn-53/Mn-55)(sub 0) in the solar system were as high as approximately 4.4 x 10(exp -5) when Allende CAI formed, our data suggest Chainpur chondrules formed approximately 9 Ma later, in qualitative agreement with 'late' I-Xe formation ages for most Chainpur chondrules.

  20. Ag/CuO nanoparticles prepared from a novel trinuclear compound [Cu(Imdz)4(Ag(CN)2)2] (Imdz = imidazole) by a pyrolysis display excellent antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay

    2016-06-01

    One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.

  1. Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples

    NASA Astrophysics Data System (ADS)

    Zięba-Palus, J.

    1999-11-01

    The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.

  2. The effects of viscoelastic polymer substrates on adult stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Chang, Chungchueh; Fields, Adam; Ramek, Alex; Jurukovski, Vladimir; Simon, Marcia; Rafailovich, Miriam

    2009-03-01

    Dental Pulp Stem Cells (DPSCs) are known to differentiate in either bone, dentine, or nerve tissue by different environment signals. In this study, we have determined whether differentiation could only through modification of the substrate mechanics. Atomic Force Microscopy (AFM) on Shear Modulation Force Microscopy (SMFM) mode indicated that the spun-cast polybutadiene (PB) thin films could be used to provide different stiffness substrates by changing the thicknesses of thin films. DPSCs were then plated on these substrates and cultured in standard media. After 28 days incubation, Lasar Scanning Confocal Microscopy (LSCM) with mercury lamp indicated that the crystals were observed only on hard surfaces. The Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis (EDX analysis) indicated that the crystals are calcium phosphates. The Glancing Incidence Diffraction (GID) was also used to determine the structure of crystals. These results indicate that DPSCs could be differentiated into osteoblasts by mechanical stimuli from substrate mechanics.

  3. Sustainable carbothermal reduction and nitridation of Malaysian ilmenite by polyethylene terephthalate and coal

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Hamid, Sheikh Abdul Rezan Sheikh Abdul; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Ramakrishnan, Sivakumar; Fauzi, M. N. Ahmad; Ismail, Hanafi

    2017-07-01

    In this paper, the carbothermal reduction and nitridation (CTRN) of Malaysian ilmenite has been studied as a part of crucial steps involved in reduction and subsequent chlorination processes for synthesizing titanium tetrachloride (TiCl4) from nitrided Malaysian ilmenite concentrates. In CTRN, waste plastics such as polyethylene terephthalate (PET) could be utilized as an alternative source of carbon reductant. In this study, titanium oxycarbonitride (TiOxCyNz) separated from iron (Fe) phase was synthesized by non-isothermal CTRN of Malaysian ilmenite under H2-N2 atmosphere by utilizing a mixture of Sarawak Mukah-Balingan coal and PET as reducing agents in a horizontal tube furnace. Experiments have been carried out in the temperature range of 1150-1250°C for 3 hours with various ratios of PET to coal (25 wt.% PET, 50 wt.% PET, and 75 wt.% PET). X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods of analysis were conducted to assess the microstructures and chemical compositions of the unreduced and reduced samples. The results indicated that utilizing PET had a significant effect on iron separation from titanium oxycarbonitride (TiO0.02C0.13N0.85) at 1250°C with a mixture of 75 wt.% PET. Furthermore, XRD and SEM studies demonstrated that with increasing PET weight ratio in the mixtures, the rate of conversion increased and a low-carbon TiOxCyNz with minimal intermediate titanium sub-oxides was synthesized. The method of applying PET as potential reductant for CTRN of ilmenite has beneficial side effects in sustainable recycling of waste PET.

  4. LaNi0.6Co0 4O3-δ dip-coated on Fe-Cr mesh as a composite cathode contact material on intermediate solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Morán-Ruiz, Aroa; Vidal, Karmele; Larrañaga, Aitor; Laguna-Bercero, Miguel Angel; Porras-Vázquez, Jose Manuel; Slater, Peter Raymond; Arriortua, María Isabel

    2014-12-01

    The feasibility of using Crofer22APU mesh dip coated with LaNi0.6Co0.4O3-δ (LNC) ceramic paste as a uniform contact layer on a Crofer22APU channeled interconnect was studied. The control of LNC dip coating thickness on Fe-Cr mesh was carried out by rheological measurements of the suspension. SEM cross-section of formed composite contact material showed good adherence between ceramic and metallic components. The measured area specific resistance (ASR) value at 800 °C was 0.46 ± 0.01 mΩ cm2, indicating low contact resistance itself. The long term stability of metallic/ceramic composite was also studied. The contact resistance, when composite contact material was adhered to channeled Crofer22APU interconnect, was 5.40 ± 0.01 mΩ cm2, which is a suitable value for the performance of IT-SOFC stack. The stability of the system after treating at 800 °C for 1000 h was characterized using X-ray Micro-Diffraction (XRMD), Scanning Electron Microscope equipped with an Energy Dispersive X-ray analyzer (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) techniques. The oxidation rate of the alloy and Fe3O4 phase formation were enhanced on the channels of the interconnect. Thus, the formation of CrO3 (g) and CrO2(OH)2 (g) species was accelerated on the composite surface under the channel. Through XRMD and XPS analysis the coexistence of two perovskite phases (initial LNC and Cr-perovskite) was observed.

  5. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  6. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics

    NASA Astrophysics Data System (ADS)

    Tiwari, Sadhana; Vinchurkar, Madhuri; Rao, V. Ramgopal; Garnier, Gil

    2017-03-01

    Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.

  7. Investigation of the nanoscale two-component ZnS-ZnO heterostructures by means of HR-TEM and X-ray based analysis

    NASA Astrophysics Data System (ADS)

    Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V.

    2018-06-01

    This article is devoted to the spectroscopic characterization of ZnS-ZnO nanoscale heterostructures synthesized by the microwave-assisted solvothermal method. The synthesized samples were investigated by means of X-ray powder diffraction (XRPD), high energy resolution fluorescence detected X-ray absorption near-edge-structure (HERFD-XANES) spectroscopy, valence-to-core X-ray emission spectroscopy (VtC-XES) and high resolution transmission electron microscopy (HR-TEM) as well as energy dispersive X-ray spectroscopy (EDX). The average crystallite size estimated by the broadening of XRPD peaks increases from 2.7 nm to 3.7 nm in the temperature range from 100 °C to 150 °C. HR-TEM images show that nanoparticles are arranged in aggregates with the 60-200 nm size. Theoretical estimation shows that the systems synthesized at higher temperatures more prone to the agglomeration. The full profile Reitveld analysis of XRPD data reveals the formation of hexagonal zinc sulfide structure, whereas electron diffraction data reveal also the formation of cubic zinc sulfide and claim the polymorphous character of the system. High energy resolution Zn K-edge XANES data unambiguously demonstrate the presence of a certain amount of the zinc oxide which is likely to have an amorphous structure and could not be detected by XRPD. Qualitative analysis of XANES data allows deriving ZnS/ZnO ratio as a function of synthesis temperature. EDX analysis depicts homogeneous distribution of ZnS and amorphous ZnO phases across the conglomerates. A complementary element-selective valence to core X-ray emission spectroscopy evidences formation of two-component system and confirms estimations of ZnS/ZnO fractions obtained by linear combination fit of XANES data.

  8. Ultrastructure and elemental analysis of Hypoxis hemerocallidea: a multipurpose medicinal plant.

    PubMed

    Afolayan, Anthony J; Otunola, Gloria A

    2014-01-01

    Herbal medicine is a popular means of medical management in some parts of the world especially in Africa. Hypoxis hemerocallidea Fisch.C.A.Mey. & Avé-Lall, also known as African potato of the Hypoxidaecae family, is one of the medicinal plants that have enjoyed long usage as an herbal medicine in South Africa. In this study, the morphology and elemental constituents of H. hemerocallidea leaf was investigated to correlate the functional role of the ultrastructure in the production of therapeutic compounds. Fresh leaves of H. hemerocallidea were prepared for analysis using standard methods. The ultrastructure and crystal deposits of the plant were assessed using scanning electron microscopy (SEM), and energy dispersive x-ray (EDX). It was observed that the leaves were characterised by multicelullar glandular and non glandular trichomes which are sparsely distributed over the entire surfaces. The glandular trichomes (GTs) in H. hemerocallidea leaf have boulbous heads which are probably filled with secretions, while the non glandular trichomes were long, fibrous and sparse. EDX-SEM of Hypoxis hemerocallidea leaf revealed that carbon, oxygen, nitrogen and silicon are the major components of the deposits, while other elements such as iron, sulphur, sodium, calcium, magnesium, potassium, manganese, iodine, chromium and iodine were present in small but variable amounts. The presence of these elements which are crucial to maintaining good health, in addition to other bioactive constituents might be accountable for the multipurpose therapeutic uses of Hypoxis hemerocallidea in the treatment of cancers, HIV/AIDS related diseases, urinary tract infections, cardiovascular disorders, diabetes and other chronic ailments of humans.

  9. Surface martensitization of Carbon steel using Arc Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Wahyudi, Haris; Dimyati, Arbi; Sebayang, Darwin

    2018-03-01

    In this paper new technology of surface structure modification of steel by short plasma exposure in Arc Plasma Sintering (APS) device is presented. APS is an apparatus working based on plasma generated by DC pulsed current originally used for synthesizing materials via sintering and melting. Plasma exposure in APS was applied into the specimens for 1 and 3 seconds which generate temperature approximately about 1300-1500°C. The SUP9, pearlitic carbon steel samples were used. The hardness, hardening depth and microstructure of the specimens have been investigated by Vickers micro hardness test and Scanning Electron Microscopy (SEM) supported by Energy Dispersive X-Ray Spectroscopy (EDX). The results have showed that the mechanical property was significantly improved due to the formation of single martensitic structures as identified by SEM. The hardness of treated surface evaluated by Vickers hardness test showed significant improvement nearly three time from 190 VHN before to 524 VHN after treatment. Furthermore, EDX confirmed that the formation of martensite layer occurred without altering its composition. The APS also produced uniform hardened layer up to 250 μm. The experiment has demonstrated that arc plasma process was successfully improved the mechanical properties of steel in relatively very short time.

  10. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-03

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while themore » degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.« less

  11. Glycolysis of carbon fiber-epoxy unidirectional mat catalysed by sodium hydroxide

    NASA Astrophysics Data System (ADS)

    Zaini, Mariana Binti Mohd; Badri, Khairiah Haji

    2014-09-01

    This study was conducted to recycle carbon fibre-epoxy (CFRP) composite in woven sheet/ mat form. The CFRP was recycled through glycolysis with polyethlyene glycol (PEG 200) as the solvent. The CFRP was loaded into the solvent at a ratio of 4:1 (w/w). PEG200 was diluted with water to a ratio of 80:20 (v/v). This reaction was catalysed by sodium hydroxide (NaOH) solution with varying concentrations at 1.5, 1.7 and 1.9% (w/v). The glycolysis was conducted at 180-190 °C. The recovered CF (rCF) was analysed using Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) while the degraded solution was analysed using FTIR and the epoxy content was determined. The FTIR spectrum of the rCF exhibited the disappearance of the COC peak belonged to epoxy and supported by the SEM micrographs that showed clear rCF. On the other hand, the analysed filtrate detected the disappearance of oxygen peak element in the EDX spectrum for all rCF samples. This gave an indication that the epoxy resin has been removed from the surface of the carbon fiber.

  12. Inhibition effect of fatty amides with secondary compound on carbon steel corrosion in hydrodynamic condition

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.

    2018-03-01

    The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.

  13. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route

    PubMed Central

    Beshkar, Farshad; Zinatloo-Ajabshir, Sahar; Bagheri, Samira; Salavati-Niasari, Masoud

    2017-01-01

    Highly photocatalytically active copper chromite nanostructured material were prepared via a novel simple hydrothermal reaction between [Cu(en)2(H2O)2]Cl2 and [Cr(en)3]Cl3.3H2O at low temperature, without adding any pH regulator or external capping agent. The as-synthesized nanostructured copper chromite was analyzed by transmission electron microscopy (TEM), UV–vis diffuse reflectance spectroscopy, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Results of the morphological investigation of the as-synthesized products illustrate that the shape and size of the copper chromite depended on the surfactant sort, reaction duration and temperature. Moreover, the photocatalytic behavior of as-obtained copper chromite was evaluated by photodegradation of acid blue 92 (anionic dye) as water pollutant. PMID:28582420

  14. Rapid and solvent-free solid-state synthesis and characterization of Zn3V2O8 nanostructures and their phenol red aqueous solution photodegradation

    NASA Astrophysics Data System (ADS)

    Mazloom, Fatemeh; Masjedi-Arani, Maryam; Salavati-Niasari, Masoud

    2017-08-01

    Zinc vanadate (Zn3V2O8) nanostructures have been successfully synthesized via simple, rapid and solvent-free solid-state method by using different complex precursors of Zn and NH4VO3 as novel starting materials. Effects of various zinc (II) Schiff base complex precursors and calcination temperatures were investigated to reach optimum condition. It was found that particle size and optical property of the as-prepared products could be greatly influenced via these parameters. The products were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectra, energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Photoluminescence and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic activity of zinc vanadate nano and bulk structures were compared by degradation of phenol red aqueous solution.

  15. Surface characterization of ZnO/ZnMn2O4 and Cu/Mn3O4 powders obtained by thermal degradation of heterobimetallic complexes

    NASA Astrophysics Data System (ADS)

    Barrault, Joël; Makhankova, Valeriya G.; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe

    2012-03-01

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2'-bipyridyl by thermal degradation at relatively low (350 °C) temperature, it was possible to get either well defined spinel ZnMn2O4 over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn3O4) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33±0.2 and 9±0.06 m2 g-1 for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products.

  16. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtrom, Alex I.; Buhler, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopymore » (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.« less

  17. Identification and characterization of the intermediate phase in hybrid organic-inorganic MAPbI3 perovskite.

    PubMed

    Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens

    2016-03-07

    Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.

  18. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberislycium Royle.

    PubMed

    Mehmood, Ansar; Murtaza, Ghulam; Bhatti, Tariq Mahmood; Kausar, Rehana; Ahmed, Muhammad Jamil

    2016-01-01

    Various biological methods are being recognized for the fabrication of silver nanoparticles, which are used in several fields. The phytosynthesis of nanoparticles came out as a cost effective and enviro-friendly approach. When root bark extract of Berberis lycium was treated with silver ions, they reduced to silver nanoparticles, which were spherical, crystalline, size ranged from 10-100nm and capped by biomolecules. Synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD) and Fourier Transform Infra Red Spectroscopy (FTIR). The plant mediated synthesized silver nanoparticles showed pronounced antimicrobial activities against both Gram negative bacteria (Escherichia coli, Klebseilla pneumoniae, Pseudomonas aeruginosa) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis). The plant mediated process proved to be non-toxic and low cost contender as reducing agent for synthesizing stable silver nanoparticles.

  19. Explanation of the photocurrent generation of Cu2O quantum dots (QDs) sensitized p-CuSCN stable photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Karunarathna, P. G. D. C. K.; Samarakoon, S. P. A. U. K.; Fernando, C. A. N.

    2018-01-01

    Fabrication of Cu2O quantum dots (QDs) sensitized p-CuSCN photoelectrode provides a significant photocurrent enhancement in photoelectrochemical medium for the first time. The variation of photocurrent quantum efficiency (Ф%) with Cu2O amount formed on p-CuSCN was presented. Here, two maxima of photocurrent could be observed in Cu/p-CuSCN/Cu2O photoelectrodes. The first photocurrent peak was due to the Cu2O QDs sensitization on p-CuSCN layer, and the second photocurrent peak was due to the formation of p-n junction. Time development of the photocurrent for Cu/p-CuSCN/n-Cu2O photoelectrodes and material characterization from Fourier transform infrared (FTIR) spectra, scanning electron microscope (SEM) images, energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD) were done in this study in detailed.

  20. Interaction of intermetallic compound formation in Cu/SnAgCu/NiAu sandwich solder joints

    NASA Astrophysics Data System (ADS)

    Xia, Yanghua; Lu, Chuanyan; Chang, Junling; Xie, Xiaoming

    2006-05-01

    The interaction between Cu/solder interface and solder/Ni interface at a Cu/SnAgCu/NiAu sandwich solder joint with various surface finishes and solder heights was investigated. The interfacial microstructure and composition of intermetallic compounds (IMCs) were characterized by a scanning electron microscope (SEM) equipped with energy-dispersive x-ray spectroscopy (EDX). The phase structure of IMC was identified by x-ray diffraction (XRD). It is found that ternary (Cu,Ni)6Sn5 IMCs form at both interfaces. The composition, thickness, and morphology of the ternary IMCs depend not only on the interface itself, but also on the opposite interface. That is to say, strong coupling effects exist between the two interfaces. Lattice parameters of (Cu,Ni)6Sn5 shrink with increasing Ni content, in agreement with Vegard’s law. The mechanism of ternary IMC formation and interface coupling effects are discussed in this paper.

  1. Au sensitized ZnO nanorods for enhanced liquefied petroleum gas sensing properties

    NASA Astrophysics Data System (ADS)

    Nakate, U. T.; Bulakhe, R. N.; Lokhande, C. D.; Kale, S. N.

    2016-05-01

    The zinc oxide (ZnO) nanorods have grown on glass substrate by spray pyrolysis deposition (SPD) method using zinc acetate solution. The phase formation, surface morphology and elemental composition of ZnO films have been investigated using X-ray diffraction, field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX) techniques. The liquefied petroleum gas (LPG) sensing response was remarkably improved by sensitization of gold (Au) surface noble metal on ZnO nanorods film. Maximum LPG response of 21% was observed for 1040 ppm of LPG, for pure ZnO nanorods sample. After Au sensitization on ZnO nanorods film sample, the LPG response greatly improved up to 48% at operating temperature 623 K. The improved LPG response is attributed Au sensitization with spill-over mechanism. Proposed model for LPG sensing mechanism discussed.

  2. Low Cost CaTiO3 Perovskite Synthesized from Scallop (Anadara granosa) Shell as Antibacterial Ceramic Material

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Nur Ilahi, Rico; Pratami, Rismayanti

    2018-01-01

    Research on perovskite CaTiO3 synthesis from scallop (Anadara granosa) shell and its test as material for antibacterial ceramic application have been conducted. The synthesis was performed by calcium extraction from the scallop shell followed by solid-solid reaction of obtained calcium with TiO2. Physicochemical character of the perovskite wasstudied by measurement of crystallinity using x-ray diffraction (XRD), diffuse-reflectance UV Visible spectrophotometry, scanning electrone microscope-energy dispersive x-ray (SEM-EDX) and Fourier-Transform InfraRed. Considering the future application of the perovskite as antibacterial agent, laboratory test of the peroskite as material in antibacterial ceramic preparation was also conducted. Result of research indicated that perovskite formation was obtained and the material demonstrated photocatalytic activity as identified by band gap energy (Eg) value. The significant activity was also reflected by the antibacterial action of formed ceramic.

  3. Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Shalendra, E-mail: shailuphy@gmail.com; School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 641-773; Song, T.K., E-mail: tksong@changwon.ac.kr

    Highlights: • XRD and HR-TEM results show the single phase nature of Co doped ZnO nanoparticles. • XMCD and dc magnetization results indicate the RT-FM in Co doped ZnO nanoparticles. • Co L{sub 3,2} NEXAFS spectra infer that Co ions are in 2+ valence state. • O K edge NEXAFS spectra show that O vacancy increases with Co doping in ZnO. - Abstract: We reported structural, magnetic and electronic structure studies of Co doped ZnO nanoparticles. Doping of Co ions in ZnO host matrix has been studied and confirmed using various methods; such as X-ray diffraction (XRD), field emission scanningmore » electron microscopy (FE-SEM), energy dispersed X-ray (EDX), high resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, magnetic hysteresis loop measurements and X-ray magnetic circular dichroism (XMCD). From the XRD and HR-TEM results, it is observed that Co doped ZnO nanoparticles have single phase nature with wurtzite structure and exclude the possibility of secondary phase formation. FE-SEM and TEM micrographs show that pure and Co doped nanoparticles are nearly spherical in shape. O K edge NEXAFS spectra indicate that O vacancies increase with Co doping. The Co L{sub 3,2} edge NEXAFS spectra revealed that Co ions are in 2+ valence state. DC magnetization hysteresis loops and XMCD results clearly showed the intrinsic origin of temperature ferromagnetism in Co doped ZnO nanoparticles.« less

  4. Errors in quantitative backscattered electron analysis of bone standardized by energy-dispersive x-ray spectrometry.

    PubMed

    Vajda, E G; Skedros, J G; Bloebaum, R D

    1998-10-01

    Backscattered electron (BSE) imaging has proven to be a useful method for analyzing the mineral distribution in microscopic regions of bone. However, an accepted method of standardization has not been developed, limiting the utility of BSE imaging for truly quantitative analysis. Previous work has suggested that BSE images can be standardized by energy-dispersive x-ray spectrometry (EDX). Unfortunately, EDX-standardized BSE images tend to underestimate the mineral content of bone when compared with traditional ash measurements. The goal of this study is to investigate the nature of the deficit between EDX-standardized BSE images and ash measurements. A series of analytical standards, ashed bone specimens, and unembedded bone specimens were investigated to determine the source of the deficit previously reported. The primary source of error was found to be inaccurate ZAF corrections to account for the organic phase of the bone matrix. Conductive coatings, methylmethacrylate embedding media, and minor elemental constituents in bone mineral introduced negligible errors. It is suggested that the errors would remain constant and an empirical correction could be used to account for the deficit. However, extensive preliminary testing of the analysis equipment is essential.

  5. Physicochemical characterizations of nano-palm oil fuel ash

    NASA Astrophysics Data System (ADS)

    Rajak, Mohd Azrul Abdul; Majid, Zaiton Abdul; Ismail, Mohammad

    2015-07-01

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM) and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m2/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.

  6. Novel Gemini cationic surfactants as anti-corrosion for X-65 steel dissolution in oilfield produced water under sweet conditions: Combined experimental and computational investigations

    NASA Astrophysics Data System (ADS)

    Migahed, M. A.; elgendy, Amr.; EL-Rabiei, M. M.; Nady, H.; Zaki, E. G.

    2018-05-01

    Two new sequences of Gemini di-quaternary ammonium salts were synthesized characterized by FTIR and 1HNMR spectroscopic techniques and evaluated as corrosion inhibitor for X-65 steel dissolution in deep oil wells formation water saturated with CO2. The anti-corrosion performance of these compounds was studied by different electrochemical techniques i.e. (potentiodynamic polarization and AC impedance methods), Surface morphology (SEM and EDX) analysis and quantum chemical calculations. Results showed that the synthesized compounds were of mixed-type inhibitors and the inhibition capability was influenced by the inhibitor dose and the spacer substitution in their structure as indicated by Tafel plots. Surface active parameters were determined from the surface tension profile. The synthesized compounds adsorbed via Langmuir adsorption model with physiochemical adsorption as inferred from the standard free energy (ΔG°ads) values. Surface morphology (SEM and EDX) data for inhibitor (II) shows the development of adsorbed film on steel specimen. Finally, the experimental results were supported by the quantum chemical calculations using DFT theory.

  7. Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yue, Dan; Lu, Wei; Li, Chunyang; Zhang, Xinlei; Liu, Chunxia; Wang, Zhenling

    2014-01-01

    Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light.Ln3+ (Ln = Tb, Eu) doped zinc phosphate tetrahydrate (ZPT:Ln3+) and ammonium zinc phosphate (AZP:Ln3+) nano-/micro-structured materials were synthesized in aqueous solution without the addition of any structure-directing agent. The phase structures, morphologies and luminescence properties of the as-synthesized samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), photoluminescence (PL) spectroscopy and lifetime. These investigations indicate that different phosphate sources MnH(3-n)PO4 (M = NH4+ or Na+, n = 1, 2, 3) can lead to the altering of morphology from nanosheet to microflower, but have no significant effect on the phase structure of the samples. The microlump, nanosheet, and microflower (constructed by the primary microlumps or nanosheets) of orthorhombic ZPT:Ln3+ could be selectively prepared by adjusting the pH value from 3.5 to 7.0. A mixture of orthorhombic ZPT:Ln3+ and monoclinic AZP:Ln3+ with a microflower morphology was obtained when the pH value was adjusted to 8.0. Monoclinic AZP:Ln3+ microplate, microcube and nanoparticle morphologies were obtained at pH values of 8.5, 9.0 and 11.0 respectively. The phase transformation and growth mechanism of the diverse morphologies were proposed, and ZPT:Ln3+ (Ln3+ = Eu or Tb) samples exhibit red or green emission under the excitation of UV light. Electronic supplementary information (ESI) available: Additional XRD patterns, EDX, SEM and TEM images, dependence of the average lifetimes on the different doping concentrations of Eu3+ and Tb3+. See DOI: 10.1039/c3nr03749e

  8. Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity

    PubMed Central

    Du, Haiying; Yao, PengJun; Sun, Yanhui; Wang, Jing; Wang, Huisheng; Yu, Naisen

    2017-01-01

    In2O3/SnO2 composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In2O3/SnO2 hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). Gas sensing properties of In2O3/SnO2 composite hetero-nanofibers were measured with six kinds of indoor volatile organic gases in concentration range of 0.5~50 ppm at the operating temperature of 275 °C. The In2O3/SnO2 composite hetero-nanofibers sensor exhibited good formaldehyde sensing properties, which would be attributed to the formation of n-n homotype heterojunction in the In2O3/SnO2 composite hetero-nanofibers. Finally, the sensing mechanism of the In2O3/SnO2 composite hetero-nanofibers was analyzed based on the energy-band principle. PMID:28792433

  9. Na0.44MnO2 nanorods as a cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Avci, Sevda; Oz, Erdinc; Demirel, Serkan; Altin, Emine; Altin, Serdar; Bayri, Ali; Yakinci, Eyyuphan

    2014-03-01

    Lithium-ion batteries have dominated the rechargeable battery market because of their high energy and power capability. On the other hand, sodium is one of the more abundant elements on Earth unlike Li. Moreover, Na has similar chemical properties to Li, indicating that Na-ion batteries can be an alternative to Li counterparts. With that respect, we have synthesized Na0.44MnO2 nanorods as cathode materials for Na-ion batteries. We have investigated the effects of structural, electrical, and magnetic properties on battery performance. We report the synthesis conditions and growth mechanism of the nanorods. The structure and the morphology of the materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM) techniques. Temperature dependent structural changes were determined via in situ X-ray diffraction and TG-DTA measurements showing structural changes above room temperature. This work is funded by The Scientific and Technological Research Council of Turkey with Grant No:112M487.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap}more » (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.« less

  11. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria.

    PubMed

    Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr

    2018-01-01

    Concentrations of particulate matter less than 1  μm, 2.5  μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Electrochemical Detection of Nicotine Using Cerium Nanoparticles Modified Carbon Paste Sensor and Anionic Surfactant

    NASA Astrophysics Data System (ADS)

    Fekry, A. M.; Azab, S. M.; Shehata, M.; Ameer, M. A.

    A promising electrochemical sensor for the determination of nicotine (NIC) was developed by electrodeposition of Ce-Nanoparticles on a carbon paste electrode (CPE). The interaction of nicotine was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Scanning electron microscope (SEM) and Energy Dispersive X-Ray Analysis (EDX) techniques, in both aqueous and micellar media. The NIC Measurements were carried out in Britton-Robinson (B-R) buffer solution of pH range (2.0-8.0) containing (1.0 mM) sodium dodecylsulfate (SDS). The linear response range of the sensor was between 8 × 10-6 and 10-4 M with a detection limit of 9.43 × 10-8 M. Satisfactory results were achieved for the detection of NIC in real samples as urine and different brands of commercial cigarettes.

  13. Surface morphological properties of Ag-Al2O3 nanocermet layers using dip-coating technique

    NASA Astrophysics Data System (ADS)

    Muhammad, Nor Adhila; Suhaimi, Siti Fatimah; Zubir, Zuhana Ahmad; Daud, Sahhidan

    2017-12-01

    Ag-Al2O3 nanocermet layer was deposited on Cu coated glass substrate using dip-coating technique. The aim of this study was to observe the surface morphology properties of Ag-Al2O3 nanocermet layers after annealing process at 350°C in H2. The surface morphology of Ag-Al2O3 nanocermet will be characterized by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-Ray Diffractometer (XRD), respectively. The results show that nearly isolated Ag particles having a large and small size were present in the Al2O3 dielectric matrix after annealing process. The face centered cubic crystalline structure of Ag nanoparticles inclusion in the amorphous alumina dielectric matrix was confirmed using XRD pattern and supported by EDX spectra analysis.

  14. Enhanced electrical properties in sub-10-nm WO3 nanoflakes prepared via a two-step sol-gel-exfoliation method

    PubMed Central

    2014-01-01

    The morphology and electrical properties of orthorhombic β-WO3 nanoflakes with thickness of ~7 to 9 nm were investigated at the nanoscale with a combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), current sensing force spectroscopy atomic force microscopy (CSFS-AFM, or PeakForce TUNA™), Fourier transform infra-red absorption spectroscopy (FTIR), linear sweep voltammetry (LSV) and Raman spectroscopy techniques. CSFS-AFM analysis established good correlation between the topography of the developed nanostructures and various features of WO3 nanoflakes synthesized via a two-step sol-gel-exfoliation method. It was determined that β-WO3 nanoflakes annealed at 550°C possess distinguished and exceptional thickness-dependent properties in comparison with the bulk, micro and nanostructured WO3 synthesized at alternative temperatures. PMID:25221453

  15. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere.

    PubMed

    Lü, Senlin; Zhang, Rui; Yao, Zhenkun; Yi, Fei; Ren, Jingjing; Wu, Minghong; Feng, Man; Wang, Qingyue

    2012-01-01

    Ambient coarse particles (diameter 1.8-10 microm), fine particles (diameter 0.1-1.8 microm), and ultrafine particles (diameter < 0.1 microm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 +/- 2.18, 8.82 +/- 3.52, and 2.02 +/- 0.41 microg/m3, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM10, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

  16. Scanning Electron Microscopy and Energy-Dispersive X-Ray Microanalysis of Set CEM Cement after Application of Different Bleaching Agents.

    PubMed

    Samiei, Mohammad; Janani, Maryam; Vahdati, Amin; Alemzadeh, Yalda; Bahari, Mahmoud

    2017-01-01

    The present study evaluated the element distribution in completely set calcium-enriched mixture (CEM) cement after application of 35% carbamide peroxide, 40% hydrogen peroxide and sodium perborate as commercial bleaching agents using an energy-dispersive x-ray microanalysis (EDX) system. The surface structure was also observed using the scanning electron microscope (SEM). Twenty completely set CEM cement samples, measuring 4×4 mm 2 , were prepared in the present in vitro study and randomly divided into 4 groups based on the preparation technique as follows: the control group; 35% carbamide peroxide group in contact for 30-60 min for 4 times; 40% hydrogen peroxide group with contact time of 15-20 min for 3 times; and sodium perborate group, where the powder and liquid were mixed and placed on CEM cement surface 4 times. Data were analyzed at a significance level of 0.05 through the one Way ANOVA and Tukey's post hoc tests. EDX showed similar element distribution of oxygen, sodium, calcium and carbon in CEM cement with the use of carbamide peroxide and hydroxide peroxide; however, the distribution of silicon was different ( P <0.05). In addition, these bleaching agents resulted in significantly higher levels of oxygen and carbon ( P <0.05) and a lower level of calcium ( P <0.05) compared to the control group. SEM of the control group showed plate-like and globular structure. Sodium perborate was similar to control group due to its weak oxidizing properties. Globular structures and numerous woodpecker holes were observed on the even surface on the carbamide peroxide group. The mean elemental distribution of completely set CEM cement was different when exposed to sodium perborate, carbamide peroxide and hydrogen peroxide.

  17. Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules.

    PubMed

    Saffarpour, Mahshid; Mohammadi, Maryam; Tahriri, Mohammadreza; Zakerzadeh, Azadeh

    2017-07-01

    This study assessed the efficacy of modified bioactive glass (MBG) for dentin remineralization and obstruction of dentinal tubules. Thirty-six dentin discs were made from 20 third molars and were stored in 12% lactic acid solution for two weeks to induce demineralization. The samples were divided into three groups (n=12): 1- BG, 2- BG modified with 5% strontium (Sr) and 3- BG modified with 10% Sr. After applying the BG, the samples were stored in artificial saliva for 7, 14 and 21 days. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis were used to assess remineralization. Also, 6 dentin discs were divided into three groups of BG, BG modified with 5% Sr and BG modified with 10% Sr, to examine tubular occlusion. The discs were etched using 0.5M of EDTA for two minutes and were stored in artificial saliva for 7 days. Changes in dentin surface morphology were evaluated under SEM. Group 3 showed high rates of remineralization at days 7 and 14, although the rate decreased at day 21. Group 2 exhibited high rates of remineralization at days 7, 14 and 21. Dentinal tubules were partially occluded by BG and BG modified with 5% Sr, while they were almost completely obstructed after the use of BG modified with 10% Sr. Strontium increases remineralization. Addition of 10% Sr to BG enhances apatite formation; however, the apatite dissolves over time. Addition of 5% Sr to BG stabilizes the apatite lattice and increases the remineralization.

  18. Applications of RIGAKU Dmax Rapid II micro-X-ray diffractometer in the analysis of archaeological metal objects

    NASA Astrophysics Data System (ADS)

    Mozgai, Viktória; Szabó, Máté; Bajnóczi, Bernadett; Weiszburg, Tamás G.; Fórizs, István; Mráv, Zsolt; Tóth, Mária

    2017-04-01

    During material analysis of archaeological metal objects, especially their inlays or corrosion products, not only microstructure and chemical composition, but mineralogical composition is necessary to be determined. X-ray powder diffraction (XRD) is a widely-used method to specify the mineralogical composition. However, when sampling is not or limitedly allowed due to e.g. the high value of the object, the conventional XRD analysis can hardly be used. Laboratory micro-XRD instruments provide good alternatives, like the RIGAKU Dmax Rapid II micro-X-ray diffractometer, which is a unique combination of a MicroMax-003 third generation microfocus, sealed tube X-ray generator and a curved 'image plate' detector. With this instrument it is possible to measure as small as 10 µm area in diameter on the object. Here we present case studies for the application of the micro-XRD technique in the study of archaeological metal objects. In the first case niello inlay of a Late Roman silver augur staff was analysed. Due to the high value of the object, since it is the only piece known from the Roman Empire, only non-destructive analyses were allowed. To reconstruct the preparation of the niello, SEM-EDX analysis was performed on the niello inlays to characterise their chemical composition and microstructure. Two types of niello are present: a homogeneous, silver sulphide niello (acanthite) and an inhomogeneous silver-copper sulphide niello (exsolution of acanthite and jalpaite or jalpaite and stromeyerite). The micro-X-ray diffractometer was used to verify the mineralogical composition of the niello, supposed on the base of SEM results. In the second case corrosion products of a Late Roman copper cauldron with uncertain provenance were examined, since they may hold clues about the burial conditions (pH, Eh, etc.) of the object. A layer by layer analysis was performed in cross sections of small metal samples by using electron microprobe and micro-X-ray diffractometer. The results show two corrosion zones: 1) the original (internal) surface zone of the metallic copper object was replaced by copper(I) oxide (cuprite), while 2) basic copper(II) carbonate (malachite) was deposited (externally) on the original surface. In our view these two minerals were formed during long-time burial, and protected the cauldron from further corrosion. Rarely copper(I) chloride (nantokite), basic copper(II) trihydroxychloride (atacamite/paratacamite) and basic copper(II) sulphate (brochantite) were also identified in the two corrosion zones. Their uneven distribution on the cauldron and their known formation conditions indicate, that these latter mineral phases may be the results of active corrosion, started possibly after excavation.

  19. Investigation of radiation-induced free radicals and luminescence properties in fresh pomegranate fruits.

    PubMed

    Shahbaz, Hafiz M; Akram, Kashif; Ahn, Jae-Jun; Kwon, Joong-Ho

    2013-05-01

    Radiation-induced free radicals and luminescence properties were investigated in γ-irradiated (0-3 kGy) pomegranate ( Punica granatum L.) fruits. Photostimulated luminescence (PSL) analysis showed limited applicability, and only 3 kGy-irradiated pomegranates showed positive PSL values (>5000 PCs). Thermoluminescence (TL) glow curve features, such as intensity and the presence of maximum glow peak in radiation-specific temperature range (150-250 °C), provided definite proof of irradiation, and the TL ratios (TL1/TL2) also confirmed the reliability of TL results. Scanning electron microscopy energy dispersive X-ray (SEM-EDX) analysis of the separated minerals showed that feldspar and quartz minerals were responsible for the luminescence properties. Radiation-induced cellulose radicals were detected in the seeds and rinds by ESR analysis. The ESR results were better in freeze-dried samples than in alcohol-extracted ones. A positive correlation was found between the ESR and TL signal intensities and irradiation doses; however, the most promising detection of the irradiation status was possible through TL analysis.

  20. [Simultaneous determination of multiple elements in airborne particulate samples by X-ray fluorescence spectrometry].

    PubMed

    Takada, T; Hitosugi, M; Kadowaki, T; Kudo, M

    1983-07-01

    An energy dispersive X-ray fluorescence spectrometer (EDX) has been applied to determine multielements in the workplace air. The standards for X-ray fluorescence analysis were prepared by the chelate precipitation method on polyvinyl chloride (PVC) membrane filter. And, the specimens were prepared to deposit various metal compounds of different chemical forms by the suspension method on PVC membrane filter, and they were determined with EDX and atomic absorption spectrometer (AAS). The results obtained were as follows. Though there is a difference by each element, an amount less than 3 microgram/cm2 per unit area makes it possible to undergo multielement analysis, that is, is has no influence on fine particle effect (particle size; under 5 microns). Then, effects of the X-ray intensity by different chemical forms are negligible. At the presence the neighboring element and other elements this technique showed greater precision by carrying out on corrective treatment, etc. The coefficient of variation of this technique was in the range of 2.5-6.5% at DDTC-Cu of 0.5-5.0 micrograms/cm2, with the limit of detection for As : 0.002 microgram/cm2, Zn : 0.003 microgram/cm2, Pb : 0.003 microgram/cm2, Cu : 0.004 microgram/cm2, Ni : 0.003 microgram/cm2, Fe : 0.005 microgram/cm2, Mn : 0.008 microgram/cm2, Cr : 0.013 microgram/cm2, respectively. Aerosols collected at the workplace were analyzed with EDX and AAS, and the obtained results showed good agreement with such regression line as y = 1.04 chi + 0.04, the coefficient of correlation being r = 0.995. From these results, this technique was found to be a very excellent method for monitoring of multielements in the workplace air.

  1. Structural properties and optical characterization of flower-like Mg doped NiO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allaedini, Ghazaleh, E-mail: jiny-ghazaleh@yahoo.com; Tasirin, Siti Masrinda; Aminayi, Payam

    In this study, un-doped and Mg doped NiO nanoparticles have been synthesized through a simple sol-gel method. To investigate the effect of Mg-doping on the structure of NiO, the obtained nanoparticles were characterized using scanning electron microscopy (SEM). Flower/star like morphology was clearly observed in the SEM micrographs. The BET (Brunauer-Emmett-Teller) nitrogen absorption isotherm exhibits high specific surface area (∼37 m{sup 2} /g) for the Mg doped NiO nanoparticles. X-Ray diffraction (XRD) of the prepared Mg-NiO nanoparticles showed a face-centered cubic (f.c.c) structure, and the average particle size was estimated to be 32 nm using Scherrer’s formula. Energy Dispersive X-Ray (EDX)more » confirms that the NiO particles are successfully doped with Mg. Photoluminescence (PL) and UV-Vis optical absorption characteristics of the prepared nanoparticles have also been investigated in this study. The PL emission response showed a blue shift when NiO was doped with Mg, which is indicative of interstitial oxygen. The UV-Vis results demonstrate a band gap increase as NiO nanoparticles are doped with Mg.« less

  2. Ultrasonic-assisted synthesis of ZrO2 nanoparticles and their application to improve the chemical stability of Nafion membrane in proton exchange membrane (PEM) fuel cells.

    PubMed

    Taghizadeh, Mohammad Taghi; Vatanparast, Morteza

    2016-12-01

    Zirconium dioxide (ZrO2) nanoparticles were fabricated successfully via ultrasonic-assisted method using ZrO(NO3)2·H2O, ethylenediamine and hydrazine as precursors in aqueous solution. Morphology, structure and composition of the obtained products were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR) and diffuse reflectance spectroscopy (DRS). Then, the synthesized nanoparticles were used to prepare Nafion/ZrO2 nanocomposite membranes. The properties of the membranes were studied by ion exchange capacity (IEC) proton conductivity (σ), thermal stability and water uptake measurements. The ex-situ Fenton's test was used to investigate the chemical stability of the membranes. From our results, compared with Nafion membrane, the nanocomposite membrane exhibited lower fluoride release and weight loss. Therefore, it can concluded that Nafion/ZrO2 nanocomposite exhibit more chemical stability than the pure Nafion membrane. ATR-FTIR spectra and SEM surface images of membranes also confirm these results. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties.

    PubMed

    Zhang, Mingyi; Shao, Changlu; Guo, Zengcai; Zhang, Zhenyi; Mu, Jingbo; Cao, Tieping; Liu, Yichun

    2011-02-01

    In the present work, 2,9,16,23-tetranitrophthalocyanine copper(II) (TNCuPc)/TiO(2) hierarchical nanostructures were successfully fabricated by a simple combination method of electrospinning technique and solvothermal processing. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), UV-vis diffuse reflectance (DR), Fourier transform infrared spectrum (FT-IR), X-ray photoelectron spectroscopy (XPS), and thermal gravimetric and differential thermal analysis (TG-DTA) were used to characterize the as-synthesized TNCuPc/TiO(2) hierarchical nanostructures. The results showed that the secondary TNCuPc nanostructures were not only successfully grown on the primary TiO(2) nanofibers substrates but also uniformly distributed without aggregation. By adjusting the solvothermal fabrication parameters, the TNCuPc nanowires or nanoflowers were facilely fabricated, and also the loading amounts of TNCuPc could be controlled on the TNCuPc/TiO(2) hierarchical nanostructural nanofibers. And, there might exist the interaction between TNCuPc and TiO(2). A possible mechanism for the formation of TNCuPc/TiO(2) hierarchical nanostructures was suggested. The photocatalytic studies revealed that the TNCuPc/TiO(2) hierarchical nanostructures exhibited enhanced photocatalytic efficiency of photodegradation of Rhodamine B (RB) compared with the pure TNCuPc or TiO(2) nanofibers under visible-light irradiation.

  4. Cobalt terephthalate MOF-templated synthesis of porous nano-crystalline Co3O4 by the new indirect solid state thermolysis as cathode material of asymmetric supercapacitor

    NASA Astrophysics Data System (ADS)

    Bigdeli, Hadise; Moradi, Morteza; Hajati, Shaaker; Kiani, Mohammad Ali; Toth, Jozsef

    2017-10-01

    In this work, two different types of Co3O4 nano-crystals were synthesized by (i) conventional direct solid state thermolysis of cobalt terephthalate metal-organic framework (MOF-71) and (ii) new indirect solid state thermolysis of Co(OH)2 derived by alkaline aqueous treatment of MOF-71. The products were then characterized by X-ray diffraction technique (XRD), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Reflection electron energy loss spectroscopy (REELS), Brunauer, Emmett, and Teller (BET), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques. By REELS analysis the energy band gap of MOF-71 was determined to be 3.7 eV. Further, electrochemical performance of each Co3O4 nanostructure was studied by the cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a three-electrode system in KOH electrolyte. An asymmetric supercapacitor was fabricated using indirect Co3O4 nanoparticles as cathode and electrochemically reduced graphene oxide as anode, and the electrochemical properties were studied and showed a high energy density of 13.51 Wh kg-1 along with a power density of 9775 W kg-1 and good cycling stability with capacitance retention rate of 85% after 2000 cycles.

  5. Effect of Electron Beam Irradiation on Structural and Optical Properties of Cu-Doped In2O3 Films Prepared by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Krishnan, R. Reshmi; Sanjeev, Ganesh; Prabhu, Radhakrishna; Pillai, V. P. Mahadevan

    2018-02-01

    Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet-visible (UV-vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.

  6. Influences of PZT addition on phase formation and magnetic properties of perovskite Pb(Fe0.5Nb0.5)O3-based ceramics

    NASA Astrophysics Data System (ADS)

    Amonpattaratkit, P.; Jantaratana, P.; Ananta, S.

    2015-09-01

    In this work, the investigation of phase formation, crystal structure, microstructure, microchemical composition and magnetic properties of perovskite (1-x)PFN-xPZT (x=0.1-0.5) multiferroic ceramics derived from a combination of perovskite stabilizer PZT and a wolframite-type FeNbO4 B-site precursor was carried out by using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analyzer and vibrating sample magnetometer (VSM) techniques. The addition of PZT phase and its concentration have been found to have pronounced effects on the perovskite phase formation, densification, grain growth and magnetic properties of the sintered ceramics. XRD spectra from these ceramics reveal transformation of the (pseudo) cubic into the tetragonal perovskite structure. When increasing PZT content, the degree of perovskite phase formation and the tetragonality value of the ceramics increase gradually accompanied with the variation of cell volume, the M-H hysteresis loops, however, become narrower accompanied by the decrease of maximum magnetization (Mmax), remanent polarization (Mr), and coercive field (HC).

  7. Sb-Te alloy nanostructures produced on a graphite surface by a simple annealing process

    NASA Astrophysics Data System (ADS)

    Kuwahara, Masashi; Uratsuji, Hideaki; Abe, Maho; Sone, Hayato; Hosaka, Sumio; Sakai, Joe; Uehara, Yoichi; Endo, Rie; Tsuruoka, Tohru

    2015-08-01

    We have produced Sb-Te alloy nanostructures from a thin Sb2Te3 layer deposited on a highly oriented pyrolytic graphite substrate using a simple rf-magnetron sputtering and annealing technique. The size, shape, and chemical composition of the structures were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive X-ray spectrometry (EDX), respectively. The shape of the nanostructures was found to depend on the annealing temperature; nanoparticles appear on the substrate by annealing at 200 °C, while nanoneedles are formed at higher temperatures. Chemical composition analysis has revealed that all the structures were in the composition of Sb:Te = 1:3, Te rich compared to the target composition Sb2Te3, probably due to the higher movability of Te atoms on the substrate compared with Sb. We also tried to observe the production process of nanostructures in situ using SEM. Unfortunately, this was not possible because of evaporation in vacuum, suggesting that the formation of nanostructures is highly sensitive to the ambient pressure.

  8. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material

    PubMed Central

    Priyadarshini, Balasankar M.; Selvan, Subramanian T.; Narayanan, Karthikeyan; Fawzy, Amr S.

    2017-01-01

    This study explores the delivery of novel calcium hydroxide [Ca(OH)2] microparticles loaded with chlorhexidine (CHX) for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH)2 [Ca(OH)2/Blank] and CHX-loaded/Ca(OH)2 microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM), Fourier-transform infrared-spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and differential scanning-calorimetry (DSC). Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH)2 microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH)2/Blank were hexagonal-shaped with highest z-average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface “rounded deposits” and a negative-shift in diameter. CHX:Ca(OH)2/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH)2 microparticles. PMID:28952538

  9. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  10. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte.

    PubMed

    Shruthi, B; Bheema Raju, V; Madhu, B J

    2015-01-25

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44×10(-12) cm(2) s(-1). Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    NASA Astrophysics Data System (ADS)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  12. New catalyst supports prepared by surface modification of graphene- and carbon nanotube structures with nitrogen containing carbon coatings

    NASA Astrophysics Data System (ADS)

    Oh, Eun-Jin; Hempelmann, Rolf; Nica, Valentin; Radev, Ivan; Natter, Harald

    2017-02-01

    We present a new and facile method for preparation of nitrogen containing carbon coatings (NCC) on the surface of graphene- and carbon nanotubes (CNT), which has an increased electronic conductivity. The modified carbon system can be used as catalyst support for electrocatalytic applications, especially for polymer electrolyte membrane fuel cells (PEMFC). The surface modification is performed by impregnating carbon structures with a nitrogen containing ionic liquid (IL) with a defined C:N ratio, followed by a thermal treatment under ambient conditions. We investigate the influence of the main experimental parameters (IL amount, temperature, substrate morphology) on the formation of the NCC. Additionally, the structure and the chemical composition of the resulting products are analyzed by electron microscopic techniques (SEM, TEM), energy disperse X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and hot extraction analysis. The modified surface has a nitrogen content of 29 wt% which decreases strongly at temperatures above 600 °C. The new catalyst supports are used for the preparation of PEMFC anodes which are characterized by polarization measurements and electrochemical impedance spectroscopy (EIS). Compared to unmodified graphene and CNT samples the electronic conductivity of the modified systems is increased by a factor of 2 and shows improved mass transport properties.

  13. Correlation of Optical Properties with Atmospheric Solid Organic Particles (ASOPs) in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bonanno, D.; Fraund, M. W.; Pham, D.; China, S.; Wang, B.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2017-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed to obtain airborne soil organic particles (ASOP), which are believed to be ejected following rain events. The unique composition of the ASOP have been shown to affect optical properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP) from the ARM archive are correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with optical properties.

  14. Properties of transparent conducting tin monoxide(SnO) thin films prepared by chemical spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Eqbal, Ebitha; Anila, E. I.

    2018-01-01

    Transparent conducting Stannous Oxide (SnO) thin films were obtained by chemical spray pyrolysis method on glass substrates for 0.1 M and 0.25 M concentration of precursor solutions. Their structural, morphological, optical and electrical properties were investigated. X-ray diffraction (XRD) study shows polycrystalline nature of the films with orthorhombic crystal structure. The morphological analysis was carried out by Scanning electron microscopy (SEM) and elemental analysis was done by Energy dispersive X-ray spectroscopy (EDX). The band gap of 0.1 M and 0.25 M thin film samples were found to be 3.58eV with 82% transmission and 3 eV with 30% transmission respectively. The film thickness, refractive index (n) and extinction coefficient (k) of the films were obtained by ellipsometric technique. Hall effect measurements reveal p-type conduction with mobility 7.8 cm2V-1s-1 and 15 cm2V-1s-1 and conductivity of 8.5 S/cm and 17.1 S/cm respectively for the 0.1 M and 0.25 M samples. Photoluminescence (PL) spectrum of the samples show a broad emission which covers near band edge (NBE) as well as deep level emission (DLE) in the region 380 nm-620 nm.

  15. Atmospheric corrosion performance of different steels in early exposure in the coastal area region West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Nuraini, Lutviasari; Prifiharni, Siska; Priyotomo, Gadang; Sundjono, Gunawan, Hadi; Purawiardi, Ibrahim

    2018-05-01

    The performance of carbon steel, galvanized steel and aluminium after one month exposed in the atmospheric coastal area, which is in Limbangan and Karangsong Beach, West Java, Indonesia was evaluated. The corrosion rate was determined by weight loss method and the morphology of the steel after exposed was observed by Scanning Electron Microscopy(SEM)/Energy Dispersive X-Ray Analysis(EDX). The site was monitored to determine the chloride content in the marine atmosphere. Then, the corrosion products formed at carbon steel were characterized by X-Ray diffraction (XRD). The result showed the aggressively corrosion in Karangsong beach, indicated from the corrosion rate of carbon steel, galvanized steel and aluminium were 38.514 mpy; 4.7860 mpy and 0.5181 mpy, respectively. While in Limbangan Beach the corrosion rate of specimen carbon steel, galvanized steel and aluminium were 3.339; 0.219 and 0.166 mpy, respectively. The chloride content was found to be the main factor that influences in the atmospheric corrosion process in this area. Chloride content accumulated in Karangsong and Limbangan was 497 mg/m2.day and 117 mg/m2.day, respectively. The XRD Analysis on each carbon steel led to the characterization of a complex mixture of iron oxides phases.

  16. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control.

    PubMed

    Govindarajan, Marimuthu; Rajeswary, Mohan; Veerakumar, Kaliyan; Muthukumaran, Udaiyan; Hoti, S L; Mehlhorn, Heinz; Barnard, Donald R; Benelli, Giovanni

    2016-02-01

    Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag(+) ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

  17. Microstructural and optical properties of CdS nanoparticles synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Mahdi, Hadeel Salih; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    Semiconductor nanoparticles of CdS are of great interest for both fundamental research and industrial development due to their unique size-dependent optical and electronic properties and their exciting utilization in the fields of light-emitting diode, electro-chemical cells, laser, hydrogen producing catalyst, biological label. We present a scheme to measure the optical properties of CdS nanoparticles The peaks were indexed by powder-x software. The XRD pattern analysis showed that CdS composition was found to have hexagonal structure with well crystalline nature. the surface morphology and the composition of the samples were investigated by SEM (JEOL, japan). The image shows the presence of large spherical aggregates of smaller individual nanoparticles of various sizes for pure cds. to check the chemical composition of the material, energy dispersive X-ray (EDX) spectroscopic analysis was also performed which further confirmed the presence of cd and s ions in the matrix. The optical absorption spectra of CdS sample was recorded by uv-vis spectrophotometer in the range of 200 to 800 nm.

  18. Spectral, thermal, XRD and SEM studies of charge-transfer complexation of hexamethylenediamine and three types of acceptors: π-, σ- and vacant orbital acceptors that include quinol, picric acid, bromine, iodine, SnCl4 and ZnCl2 acceptors

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.

    2013-11-01

    In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.

  19. Adhesion of nitrile rubber to UV-assisted surface chemical modified PET fabric, part II: Interfacial characterization of MDI grafted PET

    NASA Astrophysics Data System (ADS)

    Razavizadeh, Mahmoud; Jamshidi, Masoud

    2016-08-01

    Fiber to rubber adhesion is an important subject in rubber industry. It is well known that surface treatment (i.e. physical, mechanical and chemical) is an effective method to improve interfacial bonding of fibers and/or fabrics to rubbers. UV irradiation is an effective method which has been used to increase fabric-rubber interfacial interactions. In this research UV assisted chemical modification of PET fabrics was used to increase PET to nitrile rubber (NBR) adhesion. Nitrile rubber is a perfect selection as fuel and oil resistant rubber. However it has weak bonding to PET fabric. For this purpose PET fabric was carboxylated under UV irradiation and then methylenediphenyl diisocyanate (MDI) was grafted on carboxylated PET. The chemical composition of the fabric before and after surface treatment was investigated by X-ray photoelectron spectroscopy (XPS). The sectional morphology of the experimental PET fibers and the interface between rubber compound and PET fabric was studied using scanning electron microscope (SEM). The morphology and structure of the product were analyzed by an energy dispersive X-ray spectrometer (EDX). FTIR-ATR and H NMR analysis were used to assess surface modifications on the PET irradiated fabrics.

  20. Graphene oxide based CdSe photocatalysts: Synthesis, characterization and comparative photocatalytic efficiency of rhodamine B and industrial dye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Trisha; Lee, Jeong-Ho; Meng, Ze-Da

    Highlights: ► CdSe–graphene is synthesized by hydrothermal method. ► Three molar solutions of CdSe were used making three different composites. ► RhB and Texbrite MST-L were used as sample dye solutions. ► Texbrite MST-L is photo degraded in visible light. ► UV-spectroscopic analysis was done to measure degradation. - Abstract: CdSe–graphene composites were prepared using simple “hydrothermal method” where the graphene surface was modified using different molar solutions of cadmium selenide (CdSe) in aqueous media. The characterization of CdSe–graphene composites were studied by X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscope (SEM), and with transmission electron microscope (TEM).more » The catalytic activities of CdSe-composites were evaluated by degradation of rhodamine B (RhB) and commercial industrial dye “Texbrite MST-L (TXT-MST)” with fixed concentration. The degradation was observed by the decrease in the absorbance peak studied by UV spectrophotometer. The decrease in the dye concentration indicated catalytic degradation effect by CdSe–graphene composites.« less

  1. Electroless silver plating on PET fabric initiated by in situ reduction of polyaniline

    NASA Astrophysics Data System (ADS)

    Mu, Shipeng; Xie, Huayang; Wang, Wei; Yu, Dan

    2015-10-01

    Novel electroless silver plating poly(ethylene terephthalate) (PET) fabric was prepared by a two-step procedure. In the first step, the in situ polymerized polyaniline (PANI) occurred on the fabric surface in the presence of ammonium persulfate (APS). Then, Ag(0) species reduced from silver nitrate (AgNO3) by in situ reduction of PANI were used as catalyst to initiate electroless silver plating. Hence, this composite material was prepared by conductive polymer combined with electroless plating. The silver layer on PET fabric surface was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX) as well as X-ray photoelectron spectroscopy (XPS). The results showed that the silver layer was plated uniformly and compactly with surface resistance about 0.1 Ω/sq on average. The shielding effectiveness (SE) of silver-plated PET fabric was around 50-90 dB, which was considered to have potential applications in electromagnetic shielding materials. Thermogravimetric (TG) analysis was carried out to study thermal stability. The antibacterial tests demonstrated that the silver-plated fabric exhibited excellent antibacterial activity against Staphylococcus aureus and Escherichia coli both with 100%.

  2. Photoluminescent and Thermoluminescent Studies of Dy3+ and Eu3+ Doped Y2O3 Phosphors.

    PubMed

    Verma, Tarkeshwari; Agrawal, Sadhana

    2018-01-01

    Eu 3+ doped and Dy 3+ codoped yttrium oxide (Y 2 O 3 ) phosphors have been prepared using solid-state reaction technique (SSR). The prepared phosphors were characterized by X-ray diffractometer (XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR) techniques. Photoluminescence (PL) and Thermoluminescence (TL) properties were studied in detail. PL emission spectra were recorded for prepared phosphors under excitation wavelength 254 nm, which show a high intense peak at 613 nm for Y 2 O 3 :Dy 3+ , Eu 3+ (1:1.5 mol %) phosphor. The correlated color temperature (CCT) and CIE analysis have been performed for the synthesized phosphors. TL glow curves were recorded for Eu 3+ doped and Dy 3+ codoped phosphors to study the heating rate effect and dose response. The kinetic parameters were calculated using peak shape method for UV and γ exposures through computerized glow curve deconvolution (CGCD) technique. The phosphors show second order kinetics and activation energies varying from 5.823 × 10 - 1 to 18.608 × 10 - 1  eV.

  3. Revision of Hopewellian trading patterns in Midwestern North America based on mineralogical sourcing

    USGS Publications Warehouse

    Hughes, R.E.; Berres, T.E.; Moore, D.M.; Farnsworth, K.B.

    1998-01-01

    Traditional exchange models purport that all Hopewell-style platform pipes of flint clay were quarried and crafted in southern Ohio by Native Americans from a local kaolinitic flint clay, and that those found in the Havana Hopewell region of western Illinois were transported from southern Ohio along an Ohio River trade network. However, the results of this study show that berthierine-rich flint clay from northwestern Illinois was the only source for pipestone artifacts of the Havana Hopewell region. We base this on (1) X-ray diffraction analysis of quickly made smears, (2) spatiotemporal distribution of artifacts in the Sterling-Rock Falls, Illinois area, and (3) petrographic, X-ray fluorescence, Mo??ssbauer, and SEM/EDX analyses. This understanding of the source of this material made it possible to visually identify the source of large numbers of curated artifacts as having been made of material from the Sterling-Rock Falls area. This discovery has implications for understanding cultural and material exchange among Hopewellian societies. Also, it is the first report of berthierine flint clay and of flint clay that formed before the evolution of terrestrial plants. ?? 1998 John Wiley & Sons, Inc.

  4. Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bearing apatite.

    PubMed

    El Hayek, Eliane; El Samrani, Antoine; Lartiges, Bruno; Kazpard, Veronique; Aigouy, Thierry

    2017-01-01

    The contamination of edible leafy vegetables by atmospheric heavy metal-bearing particles is a major issue in environmental toxicology. In this study, the uptake of lead by cladodes of Opuntia ficus-indica (Ofi), traditionally used in Mexican cuisine and in livestock fodder, is investigated after a 4-months exposure of either cladodes or roots to synthetic Pb-fluorapatite particles. Atomic Absorption Spectroscopy (AAS) for the quantitative analysis of Pb levels, Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) for the examination of the cladode surface and fate of particles, and Micro-X-ray fluorescence (μXRF) measurements for elemental mapping of Pb in cladodes, were used. The results evidence that foliar contamination may be a major pathway for the transfer of Pb within Ofi cladodes. The stomata, areoles, and cuticle of cladode surface, play an obvious role in the retention and the incorporation of lead-bearing apatite, thus revealing the hazard of eating contaminated cladodes. The possibility of using series of successive cladodes for biomonitoring the atmospheric pollution in arid and semi-arid regions is also rapidly discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Synthesis of Gold Nanoparticles Using Leaf Extract of Ziziphus zizyphus and their Antimicrobial Activity

    PubMed Central

    Akkam, Yazan; Al-Batayneh, Khalid M.; Abo Alrob, Osama; Alkilany, Alaaldin M.; Benamara, Mourad

    2018-01-01

    (1) Background: There is a growing need for the development of new methods for the synthesis of nanoparticles. The interest in such particles has raised concerns about the environmental safety of their production methods; (2) Objectives: The current methods of nanoparticle production are often expensive and employ chemicals that are potentially harmful to the environment, which calls for the development of “greener” protocols. Herein we describe the synthesis of gold nanoparticles (AuNPs) using plant extracts, which offers an alternative, efficient, inexpensive, and environmentally friendly method to produce well-defined geometries of nanoparticles; (3) Methods: The phytochemicals present in the aqueous leaf extract acted as an effective reducing agent. The generated AuNPs were characterized by Transmission electron microscopy (TEM), Scanning electron microscope (SEM), and Atomic Force microscopy (AFM), X-ray diffraction (XRD), UV-visible spectroscopy, energy dispersive X-ray (EDX), and thermogravimetric analyses (TGA); (4) Results and Conclusions: The prepared nanoparticles were found to be biocompatible and exhibited no antimicrobial or antifungal effect, deeming the particles safe for various applications in nanomedicine. TGA analysis revealed that biomolecules, which were present in the plant extract, capped the nanoparticles and acted as stabilizing agents. PMID:29562669

  6. Three-Dimensional Bi₂Te₃ Networks of Interconnected Nanowires: Synthesis and Optimization.

    PubMed

    Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martín-González, Marisol

    2018-05-18

    Self-standing Bi₂Te₃ networks of interconnected nanowires were fabricated in three-dimensional porous anodic alumina templates (3D⁻AAO) with a porous structure spreading in all three spatial dimensions. Pulsed electrodeposition parameters were optimized to grow highly oriented Bi₂Te₃ interconnected nanowires with stoichiometric composition inside those 3D⁻AAO templates. The nanowire networks were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and Raman spectroscopy. The results are compared to those obtained in films and 1D nanowires grown under similar conditions. The crystalline structure and composition of the 3D Bi⁻Te nanowire network are finely tuned by controlling the applied voltage and the relaxation time off at zero current density during the deposition. With this fabrication method, and controlling the electrodeposition parameters, stoichiometric Bi₂Te₃ networks of interconnected nanowires have been obtained, with a preferential orientation along [1 1 0], which makes them optimal candidates for out-of-plane thermoelectric applications. Moreover, the templates in which they are grown can be dissolved and the network of interconnected nanowires is self-standing without affecting its composition and orientation properties.

  7. Structural studies on Demospongiae sponges from Gökçeada Island in the Northern Aegean Sea

    NASA Astrophysics Data System (ADS)

    Bayari, Sevgi Haman; Şen, Elif Hilal; Ide, Semra; Topaloglu, Bülent

    2018-03-01

    The Demospongiae is the largest Class in the phylum Porifera (sponges). Most sponge species in the Class Demospongiae have a skeleton of siliceous spicules and/or protein spongin or both. The first aim of this study was to perform the morphological and structural characterization of the siliceous spicules of four species belonging to Class Demospongiae (Suberites domuncula, Axinella polypoides, Axinella damicornis and Agelas oroides) collected around Gökçeada Island-Turkey (Northern Aegean Sea). The characterizations were carried out using a combination of Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM/EDX), Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Small Angle X-ray Scattering (SAXS) techniques. The sponge Chondrosia reniformis (Porifera, Demospongiae) lacks a structural skeleton of spicules or the spongin. It consists mainly of a collagenous tissue. The collagen with sponge origin is an important source in biomedical and pharmaceutical applications. The second aim of this study was to provide more information on the molecular structure of collagen of outer (ectosome) and inner (choanosome) regions of the Chondrosia reniformis using ATR-FTIR spectroscopy. Hierarchical clustering analysis (HCA) was also used for the discrimination of ATR-FTIR spectra of species.

  8. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.

    PubMed

    Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E

    2010-05-15

    A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  9. Optimisation of growth of epitaxial Tl 2Ba 2Ca 1Cu 2O 8 superconducting thin films for electronic device applications

    NASA Astrophysics Data System (ADS)

    Michael, Peter C.; Johansson, L.-G.; Bengtsson, L.; Claeson, T.; Ivanov, Z. G.; Olsson, E.; Berastegui, P.; Stepantsov, E.

    1994-12-01

    Epitaxial thin films of Tl 2Ba 2Ca 1Cu 2O 8 (Tl-2212) superconductor have been grown on single crystal (100) lanthanum aluminate (LaAlO 3) substrates by a two stage process: laser ablation of a BaCaCuO (0212) sintered target and post-deposition anneal ex-situ in a thallium environment. The films are c-axis oriented with in-plane epitaxy as determined by x-ray diffraction (XRD θ-2θ and φ-scans). Superconducting transition temperatures as high as 105.5K have been obtained both from four-probe resistance and a.c. magnetic susceptibility measurements. Film morphology and chemical composition have been assessed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDX). Sensitivity of the precursor film to environmental exposure has proven to be a determining factor in the reproducibility of film growth characteristics. The effect of oxygen partial pressure and substrate temperature used in the precursor film synthesis, as well as the thallium annealing temperature and duration, on the growth of Tl-2212 thin films is reported.

  10. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities

    NASA Astrophysics Data System (ADS)

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-01

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2- and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities.

  11. Characterisation and sintering of nanophase hydroxyapatite synthesised by a species of Serratia

    NASA Astrophysics Data System (ADS)

    LSammons, R.; Thackray, A. C.; Medina Ledo, H.; Marquis, P. M.; Jones, I. P.; Yong, P.; Macaskie, L. E.

    2007-12-01

    The bacterium Serratia sp. NCIMB40259, which grows as a biofilm on polymeric, glass and metal substrates, produces extracellular crystals of hydroxyapatite (HA) by enzymatic cleavage of β-glycerophosphate in the presence of calcium chloride. Following growth on polyurethane foam, biomineralisation and subsequent sintering, an HA scaffold is formed whose three-dimensional architecture replicates that of the foam and the biofilm. Serratia HA was characterised using X-ray diffraction (XRD), Fourier Transform Infra-Red Spectroscopy (FTIR), energy dispersive X-ray analysis (EDX) scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED). The nascent, unsintered material consisted mainly of calcium-deficient HA (CDHA) with a Ca/P ratio of 1.61+/- 0.06 and crystal size (TEM) of 50 +/- 10nm length. ED of unsintered crystals and crystals sintered at 600° C showed resolvable ring (unsintered) or dot (600° C) patterns ascribed to (0002), (1122) and (0006) planes of crystalline HA. Material sintered at 1200° C consisted of needle-like crystals of length range 54-111nm (XRD) with lattice parameters of a = 9.441 Å and c = 6.875 Å, consistent with HA.

  12. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties.

    PubMed

    Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi

    2012-12-01

    In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.

  13. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens

    PubMed Central

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-01-01

    Background: Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. Objective: This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. Materials and Methods: AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Results: The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375–480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3–6 nm, 3–22 nm, and 3–18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Conclusion: Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. SUMMARY The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne groups were revealed as the capping agents for the nanoparticlesThe silver nanoparticles were confirmed to be crystalline with characteristic face centred cubic natureThe antibacterial and antioxidant activities of the AgNPs confirmed the therapeutic potential of the AgNPs. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl. PMID:28808381

  14. Characterization, Antibacterial and Antioxidant Properties of Silver Nanoparticles Synthesized from Aqueous Extracts of Allium sativum, Zingiber officinale, and Capsicum frutescens.

    PubMed

    Otunola, Gloria Aderonke; Afolayan, Anthony Jide; Ajayi, Emmanuel Olusegun; Odeyemi, Samuel Wale

    2017-07-01

    Herbal drug delivery is limited by poor solubility and bioavailability which can be overcome with suitable nanomaterials that will enhance their pharmacokinetics and performance. This study aimed to analyze the synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from three spices. AgNPs were prepared using 0.1 M silver nitrate and aqueous extracts of Allium sativum L. (garlic), Zingiber officinale Rosc. (ginger), and Capsicum frutescens L. (cayenne pepper). The AgNPs were characterized using ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. The AgNPs were formed within an hour of the reaction and showed maximum UV-Vis absorption in the 375-480 nm range. SEM and TEM revealed well-dispersed spherical particles with little agglomeration, average sizes of 3-6 nm, 3-22 nm, and 3-18 nm for garlic, ginger, and cayenne pepper, respectively. FTIR showed that amine, protein, phenolic, aromatic, and alkynes groups contributed to AgNP synthesis and XRD confirmed their crystalline and face-centered cubic nature. Antibacterial action of the AgNPs was in the following order: ginger (minimum inhibitory concentration [MIC] <25 μg/mL) > garlic> cayenne pepper (MIC 125 μg/mL). Antioxidant action showed cayenne pepper > ginger > garlic (inhibitory concentration 50% [IC50]: 40, 240, and 250 μg/mL, respectively) against 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) and garlic > cayenne pepper > ginger (IC50: <31.25, 40, and 120 μg/mL, respectively) against 1,1-diphenyl-2-picrylhydrazyl. Optimization of this green synthesis would support the production of AgNPs with great therapeutic potentials. The synthesis, characterization, and biological activities of silver nanoparticles (AgNPs) from garlic, ginger and cayenne pepper were evaluatedThe AgNPs formed were characterized using UV-Vis spectroscopy, SEM and TEM microscopy, as well as EDX, XRD and FTIR spectroscopy AgNPs were well dispersed with spherical shapes and average sizes of 3-6nm, 3-22nm and 3-18 nm for garlic, ginger and cayenne pepper respectivelyAmine, protein, phenolic and alkyne groups were revealed as the capping agents for the nanoparticlesThe silver nanoparticles were confirmed to be crystalline with characteristic face centred cubic natureThe antibacterial and antioxidant activities of the AgNPs confirmed the therapeutic potential of the AgNPs. Abbreviations used: AgNPs: Silver nanoparticles; UV-Vis: ultraviolet-visible; SEM: Scanning electron microscopy; TEM: Transmission electron microscopy; EDX: Energy dispersive X-ray; XRD: X-ray diffraction; FTIR: Fourier transform infrared; GaNPs: Garlic nanoparticles; GiNPs: Ginger nanoparticles; C.PeNPs: Cayenne pepper nanoparticles; FCC: Face centred cubic; SPR: Surface Plasmon resonance; ABTS-2: 2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid); DPPH-1: 1-diphenyl-2-picrylhydrazyl.

  15. Physico-chemical characteristics and antimicrobial studies of silver doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Predoi, D.; Predoi, M. V.; Kettani, Moncef Ech Cherif El; Leduc, Damien; Iconaru, S. L.; Ciobanu, C. S.; Buton, N.; Petre, C. C.; Prodan, A. M.

    2018-02-01

    The present research is focused on the synthesis, structural and morphological characterization and antimicrobial evaluation of silver doped hydroxyapatite (AgHAp) in water. The preliminary ultrasonic characterizations of the AgHAp in water synthesized by an adapted co-precipitation method are also presented. X-ray diffraction result showed that silver ions were substituted in the hydroxyapatite structure. The lattice parameters increased when the silver substitution increased. The morphology of AgHAp were evaluated by Scanning Electron Microscopy (SEM). By EDX analysis the constituents elements of hydroxyapatite were detected in all analyzed samples. The silver was also found in the samples with xAg = 0.5 and 0.2. The colloidal properties of the resulted AgHAp (xAg = 0.0, 0.05 and 0.2) in water were analyzed by Dynamic Light Scattering (DLS) and zeta potential. On the other hand, the novelty of our research consists of preliminary ultrasonic measurements (US) conducted on AgHAp in water. Furthermore, the antimicrobial activity of AgHAp was evaluated and a decrease in the number of surviving cells was established.

  16. Biosorption of lead by citrobacter freundii immobilized on hazelnut shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bueyuekguengoer, H.; Wilk, M.; Schubert, H.

    1996-12-31

    Biosorption of lead from aqueous solutions by living and immobilized cell of C. freundii was examined as a function of metal concentration in a batch laboratory bioreactor. Lead concentrations were analyzed using Atomic Absorption Spectrophotometer (AAS). X-ray Energy Dispersion (EDX) analyses were made in order to determine the accumulation of lead on the cells and shell surfaces. Before and after the experiments the biomaterials and adsorbents were examined by Scanning Electron Microscopy (SEM). Biosorption was detected over a range of initial lead concentrations from 25{times}10{sup -3} to 200{times}10{sup -3} kg/m{sup 3}. 15 refs., 4 figs.

  17. Calcination temperature effect on the microstructure and dielectric properties of M-type strontium hexagonal ferrites

    NASA Astrophysics Data System (ADS)

    Mohammed, J.; Sharma, Jyoti; Kumar, Sachin; Trudel, T. T. Carol; Srivastava, A. K.

    2017-07-01

    M-type hexagonal ferrites have found wide application in electronics industry due to the possibility of tuning properties such as dielectric properties. An improved dielectric property is useful in high frequency application. In this paper, we studied the effect of calcination temperature on structural and dielectric properties of Al-Mn substituted M-type strontium hexagonal ferrites with chemical composition Sr1-xAlxFe12-yMnyO19 (x=0.3 and y=0.6) synthesized by sol-gel auto-combustion method. The prepared sample was sintered at four different temperatures (T=750°C, 850°C, 950°C and 1050°C) for 5 hours. Characterisations of the synthesized samples were carried out using X-ray diffraction (XRD), impedance analyser, field emission electron microscope (FE-SEM) and energy dispersive X-ray (EDX) spectroscopy. The dielectric properties were explained on the basis of Koop's phenomenological theory and Maxwell Wagner theory. The sample calcinated at 750°C shows the highest value of dielectric constant and AC conductivity whereas that calcinated at 1050°C exhibit the lowest dielectric losses.

  18. SEM and AFM studies of dip-coated CuO nanofilms.

    PubMed

    Dhanasekaran, V; Mahalingam, T; Ganesan, V

    2013-01-01

    Cupric oxide (CuO) semiconducting thin films were prepared at various copper sulfate concentrations by dip coating. The copper sulfate concentration was varied to yield films of thicknesses in the range of 445-685 nm by surface profilometer. X-ray diffraction patterns revealed that the deposited films were polycrystalline in nature with monoclinic structure of (-111) plane. The surface morphology and topography of monoclinic-phase CuO thin films were examined using scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively. Surface roughness profile was plotted using WSxM software and the estimated surface roughness was about ∼19.4 nm at 30 mM molar concentration. The nanosheets shaped grains were observed by SEM and AFM studies. The stoichiometric compound formation was observed at 30 mM copper sulfate concentration prepared film by EDX. The indirect band gap energy of CuO films was increased from 1.08 to 1.20 eV with the increase of copper sulfate concentrations. Copyright © 2012 Wiley Periodicals, Inc.

  19. Type 1 diabetes mellitus effects on dental enamel formation revealed by microscopy and microanalysis.

    PubMed

    Silva, Bruna Larissa Lago; Medeiros, Danila Lima; Soares, Ana Prates; Line, Sérgio Roberto Peres; Pinto, Maria das Graças Farias; Soares, Telma de Jesus; do Espírito Santo, Alexandre Ribeiro

    2018-03-01

    Type 1 diabetes mellitus (T1DM) largely affects children, occurring therefore at the same period of deciduous and permanent teeth development. The aim of this work was to investigate birefringence and morphology of the secretory stage enamel organic extracellular matrix (EOECM), and structural and mechanical features of mature enamel from T1DM rats. Adult Wistar rats were maintained alive for a period of 56 days after the induction of experimental T1DM with a single dose of streptozotocin (60 mg/kg). After proper euthanasia of the animals, fixed upper incisors were accurately processed, and secretory stage EOECM and mature enamel were analyzed by transmitted polarizing and bright field light microscopies (TPLM and BFLM), energy-dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and microhardness testing. Bright field light microscopies and transmitted polarizing light microscopies showed slight morphological changes in the secretory stage EOECM from diabetic rats, which also did not exhibit statistically significant alterations in birefringence brightness when compared to control animals (P > .05). EDX analysis showed that T1DM induced statistically significant little increases in the amount of calcium and phosphorus in outer mature enamel (P < .01) with preservation of calcium/phosphorus ratio in that structure (P > .05). T1DM also caused important ultrastructural alterations in mature enamel as revealed by SEM and induced a statistically significant reduction of about 13.67% in its microhardness at 80 μm from dentin-enamel junction (P < .01). This study shows that T1DM may disturb enamel development, leading to alterations in mature enamel ultrastructure and in its mechanical features. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    PubMed

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  1. Kinetic study on removal of heavy metal ions from aqueous solution by using soil.

    PubMed

    Lim, Soh-Fong; Lee, Agnes Yung Weng

    2015-07-01

    In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.

  2. Investigation of Antibacterial and Fouling Resistance of Silver and Multi-Walled Carbon Nanotubes Doped Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Composite Membrane

    PubMed Central

    Macevele, Lutendo E.; Moganedi, Kgabo L. M.; Magadzu, Takalani

    2017-01-01

    Composite membranes were successfully prepared using a phase-inversion method. The X-ray powder diffraction (XRD) and energy dispersive X-ray (EDX) profiles has confirmed formation of 4.8 wt % Ag/poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP), 3 wt % Ag-MWCNTs/PVDF-HFP (EDX surface composition of Ag nanoparticles) and 1.5 wt % MWCNTs/PVDF-HFP composite membranes. The MWCNTs crystallites are mainly encapsulated by a layer of PVDF-HFP, as evidenced by disappearance of graphitic peak. The scanning electron microscopy (SEM) images have depicted the formation of microporous structure, with few MWCNTs on the surface and strongly interacting with PVDF-HFP as demonstrated by thermogravimetric analysis (TGA), XRD and Fourier transform infrared (FTIR) data. The data indicated an increase in porosity, swellability and water content of the PVDF-HFP membrane with the addition of MWCNTs and/or Ag nanoparticles, showing an improved hydrophilicity. The 1.5 wt % MWCNTs/PVDF-HFP composite membrane showed good desalination and fouling resistance rates, which correlates with a low water contact angle. The combined effects of Ag nanoparticles and MWCNTs do not promote fouling resistance of PVDF-HFP membranes, as shown during NaCl microfiltration (this is linked with high water contact angle as compared to that of MWCNTs/PVDF-HFP composite). Both 1.5 wt % MWCNTs/PVDF-HFP and 3 wt % Ag-MWCNTs/PVDF-HFP composite membranes prevented the bacteria passing through the membrane (100% bacterial load reduction). The surface of 3 wt % Ag-MWCNTs/PVDF-HFP showed good bactericidal and non-leaching properties of the dopant materials (MWCNTs and Ag), as evidenced by bacterial growth on the edges of the membranes. PMID:28703740

  3. Electron Microscopy and Image Analysis for Selected Materials

    NASA Technical Reports Server (NTRS)

    Williams, George

    1999-01-01

    This particular project was completed in collaboration with the metallurgical diagnostics facility. The objective of this research had four major components. First, we required training in the operation of the environmental scanning electron microscope (ESEM) for imaging of selected materials including biological specimens. The types of materials range from cyanobacteria and diatoms to cloth, metals, sand, composites and other materials. Second, to obtain training in surface elemental analysis technology using energy dispersive x-ray (EDX) analysis, and in the preparation of x-ray maps of these same materials. Third, to provide training for the staff of the metallurgical diagnostics and failure analysis team in the area of image processing and image analysis technology using NIH Image software. Finally, we were to assist in the sample preparation, observing, imaging, and elemental analysis for Mr. Richard Hoover, one of NASA MSFC's solar physicists and Marshall's principal scientist for the agency-wide virtual Astrobiology Institute. These materials have been collected from various places around the world including the Fox Tunnel in Alaska, Siberia, Antarctica, ice core samples from near Lake Vostoc, thermal vents in the ocean floor, hot springs and many others. We were successful in our efforts to obtain high quality, high resolution images of various materials including selected biological ones. Surface analyses (EDX) and x-ray maps were easily prepared with this technology. We also discovered and used some applications for NIH Image software in the metallurgical diagnostics facility.

  4. Investigations of direct methanol fuel cell (DMFC) fading mechanisms

    NASA Astrophysics Data System (ADS)

    Sarma, Loka Subramanyam; Chen, Ching-Hsiang; Wang, Guo-Rung; Hsueh, Kan-Lin; Huang, Chiou-Ping; Sheu, Hwo-Shuenn; Liu, Ding-Goa; Lee, Jyh-Fu; Hwang, Bing-Joe

    In this report, we present the microscopic investigations on various fading mechanisms of a direct methanol fuel cell (DMFC). High energy X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopic analysis were applied to a membrane-electrode-assembly (MEA) before and after fuel cell operation to figure out the various factors causing its fading. High energy XRD analysis of the fresh and faded MEA revealed that the agglomeration of the catalyst particles in the cathode layer of the faded MEA was more significant than in the anode layer of the faded MEA. The XAS analysis demonstrated that the alloying extent of Pt (J Pt) and Ru (J Ru) in the anode catalyst was increased and decreased, respectively, from the fresh to the faded MEA, indicating that the Ru environment in the anode catalyst was significantly changed after the fuel cell operation. Based on the X-ray absorption edge jump measurements at the Ru K-edge on the anode catalyst of the fresh and the faded MEA it was found that Ru was dissolved from the Pt-Ru catalyst after the fuel cell operation. Both the Ru K-edge XAS and EDX analysis on the cathode catalyst layer of the faded MEA confirms the presence of Ru environment in the cathode catalyst due to the Ru crossover from the anode to the cathode side. The changes in the membrane and the gas diffusion layer (GDL) after the fuel cell operation were observed from the Raman spectroscopy analysis.

  5. Synthesis of geopolymer from rice husk ash for biodiesel production of Calophyllum inophyllum seed oil

    NASA Astrophysics Data System (ADS)

    Saputra, E.; Nugraha, M. W.; Helwani, Z.; Olivia, M.; Wang, S.

    2018-04-01

    In this work, geopolymer was prepared from rice husk ash (RHA) made into sodium silicate then synthesized by reacting metakaolin, NaOH, and water. The catalyst was characterized using Scanning Electron Microscopy (SEM), Energy-dispersive X-Ray analysis (EDX), Brunaeur Emmet Teller (BET), and basic strength. Then, the catalyst used for transesterification of Calophyllum inophyllum seed oil in order to produce biodiesel. The variation of process variables conducted to assess the effect on the yield of biodiesel. The highest yield obtained 87.68% biodiesel with alkyl ester content 99.29%, density 866 kg/m3, viscosity 4.13 mm2/s, the acid number of 0.42 mg-KOH/g biodiesel and the flash point 140 °C. Generally, variations of %w/w catalyst provides a dominant influence on the yield response of biodiesel. The physicochemical properties of the produced biodiesel comply with ASTM standard specifications.

  6. Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens.

    PubMed

    Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel

    2017-12-01

    Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1 H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

  7. Effect of nitric acid treatment on activated carbon derived from oil palm shell

    NASA Astrophysics Data System (ADS)

    Allwar, Allwar; Hartati, Retno; Fatimah, Is

    2017-03-01

    The primary object of this work is to study the effect of nitric acid on the porous and morphology structure of activated carbon. Production of activated carbon from oil palm shell was prepared with pyrolysis process at temperature 900°C and by introduction of 10 M nitric acid. Determination of surface area, pore volume and pore size distribution of activated carbon was conducted by the N2 adsorption-desorption isotherm at 77 K. Morphology structure and elemental micro-analysis of activated carbon were estimated by Scanning Electron Microscopy (SEM) and energy dispersive X-ray (EDX), respectively. The result shows that activated carbon after treating with nitric acid proved an increasing porous characteristics involving surface area, pore volume and pore size distribution. It also could remove the contaminants including metals and exhibit an increasing of pores and crevices all over the surface.

  8. Development of high performance electroless Ni-P-HNT composite coatings

    NASA Astrophysics Data System (ADS)

    Ranganatha, S.; Venkatesha, T. V.; Vathsala, K.

    2012-12-01

    Halloysite nanotubes (HNTs) of the dimension 50 nm × 1-3 μm (diameter × length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings.

  9. A New Green Ionic Liquid-Based Corrosion Inhibitor for Steel in Acidic Environments.

    PubMed

    Atta, Ayman M; El-Mahdy, Gamal A; Al-Lohedan, Hamad A; Ezzat, Abdel Rahman O

    2015-06-17

    This work examines the use of new hydrophobic ionic liquid derivatives, namely octadecylammonium tosylate (ODA-TS) and oleylammonium tosylate (OA-TS) for corrosion protection of steel in 1 M hydrochloric acid solution. Their chemical structures were determined from NMR analyses. The surface activity characteristics of the prepared ODA-TS and OA-TS were evaluated from conductance, surface tension and contact angle measurements. The data indicate the presence of a double bond in the chemical structure of OA-TS modified its surface activity parameters. Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) measurements, scanning electron microscope (SEM), Energy dispersive X-rays (EDX) analysis and contact angle measurements were utilized to investigate the corrosion protection performance of ODA-TS and OA-TS on steel in acidic solution. The OA-TS and ODA-TS compounds showed good protection performance in acidic chloride solution due to formation of an inhibitive film on the steel surface.

  10. Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens

    NASA Astrophysics Data System (ADS)

    Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel

    2017-02-01

    Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from 20 to 180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.

  11. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialization using chaîne opératoire.

    PubMed

    López-Montalvo, Esther; Roldán, Clodoaldo; Badal, Ernestina; Murcia-Mascarós, Sonia; Villaverde, Valentín

    2017-01-01

    We present a new multi-analytical approach to the characterization of black pigments in Spanish Levantine rock art. This new protocol seeks to identify the raw materials that were used, as well as reconstruct the different technical gestures and decision-making processes involved in the obtaining of these black pigments. For the first of these goals, the pictorial matter of the black figurative motifs documented at the Les Dogues rock art shelter (Ares del Maestre, Castellón, Spain) was characterized through the combination of physicochemical and archeobotanical analyses. During the first stage of our research protocol, in situ and non-destructive analyses were carried out by means of portable Energy Dispersive X-Ray Fluorescence spectrometry (EDXRF); during the second stage, samples were analyzed by Optical Microscopy (OM), Raman spectroscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX). Two major conclusions have been drawn from these analyses: first, charred plant matter has been identified as a main component of these prehistoric black pigments; and second, angiosperm and conifer charcoal was a primary raw material for pigment production, identified by means of the archaeobotanical study of plant cells. For the second goal, black charcoal pigments were replicated in the laboratory by using different raw materials and binders and by reproducing two main chaînes opératoires. The comparative study of the structure and preservation of plant tissues of both prehistoric and experimental pigments by means of SEM-EDX underlines both a complex preparation process and the use of likely pigment recipes, mixing raw material with fatty or oily binders. Finally, the formal and stylistic analysis of the motifs portrayed at Les Dogues allowed us to explore the relationship between identified stylistic phases and black charcoal pigment use, raising new archaeological questions concerning the acquisition of know-how and the transfer of traditionally learned chaînes opératoires in Spanish Levantine rock art.

  12. Identification of plant cells in black pigments of prehistoric Spanish Levantine rock art by means of a multi-analytical approach. A new method for social identity materialization using chaîne opératoire

    PubMed Central

    Roldán, Clodoaldo; Badal, Ernestina; Murcia-Mascarós, Sonia; Villaverde, Valentín

    2017-01-01

    We present a new multi-analytical approach to the characterization of black pigments in Spanish Levantine rock art. This new protocol seeks to identify the raw materials that were used, as well as reconstruct the different technical gestures and decision-making processes involved in the obtaining of these black pigments. For the first of these goals, the pictorial matter of the black figurative motifs documented at the Les Dogues rock art shelter (Ares del Maestre, Castellón, Spain) was characterized through the combination of physicochemical and archeobotanical analyses. During the first stage of our research protocol, in situ and non-destructive analyses were carried out by means of portable Energy Dispersive X-Ray Fluorescence spectrometry (EDXRF); during the second stage, samples were analyzed by Optical Microscopy (OM), Raman spectroscopy, and Scanning Electron Microscopy coupled with Energy Dispersive X-ray spectroscopy (SEM-EDX). Two major conclusions have been drawn from these analyses: first, charred plant matter has been identified as a main component of these prehistoric black pigments; and second, angiosperm and conifer charcoal was a primary raw material for pigment production, identified by means of the archaeobotanical study of plant cells. For the second goal, black charcoal pigments were replicated in the laboratory by using different raw materials and binders and by reproducing two main chaînes opératoires. The comparative study of the structure and preservation of plant tissues of both prehistoric and experimental pigments by means of SEM-EDX underlines both a complex preparation process and the use of likely pigment recipes, mixing raw material with fatty or oily binders. Finally, the formal and stylistic analysis of the motifs portrayed at Les Dogues allowed us to explore the relationship between identified stylistic phases and black charcoal pigment use, raising new archaeological questions concerning the acquisition of know-how and the transfer of traditionally learned chaînes opératoires in Spanish Levantine rock art. PMID:28207835

  13. A simple method for detection of gunshot residue particles from hands, hair, face, and clothing using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX).

    PubMed

    Kage, S; Kudo, K; Kaizoji, A; Ryumoto, J; Ikeda, H; Ikeda, N

    2001-07-01

    We devised a simple and rapid method for detection of gunshot residue (GSR) particles, using scanning electron microscopy/wavelength dispersive X-ray (SEM/WDX) analysis. Experiments were done on samples containing GSR particles obtained from hands, hair, face, and clothing, using double-sided adhesive coated aluminum stubs (tape-lift method). SEM/WDX analyses for GSR were carried out in three steps: the first step was map analysis for barium (Ba) to search for GSR particles from lead styphnate primed ammunition, or tin (Sn) to search for GSR particles from mercury fulminate primed ammunition. The second step was determination of the location of GSR particles by X-ray imaging of Ba or Sn at a magnification of x 1000-2000 in the SEM, using data of map analysis, and the third step was identification of GSR particles, using WDX spectrometers. Analysis of samples from each primer of a stub took about 3 h. Practical applications were shown for utility of this method.

  14. Foulant Analysis of Three RO Membranes Used in Treating Simulated Brackish Water of the Iraqi Marshes

    PubMed Central

    Sachit, Dawood Eisa; Veenstra, John N.

    2017-01-01

    In this work, three different types of Reverse Osmosis (RO) (Thin-Film Composite (SE), Cellulose Acetate (CE), and Polyamide (AD)) were used to perform foulant analysis (autopsy) study on the deposited materials from three different simulated brackish surface feed waters. The brackish surface water qualities represented the water quality in Iraqi marshes. The main foulants from the simulated feed waters were characterized by using Scanning Electron Microscope (SEM) images and Energy-Dispersive X-ray Spectroscopy (EDXS) spectra. The effect of feed water temperatures (37 °C and 11 °C) on the formation of the fouled material deposited on the membrane surface was examined in this study. Also, pretreatment by a 0.1 micron microfiltration (MF) membrane of the simulated feed water in advance of the RO membrane on the precipitated material on the membrane surface was investigated. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis was used to identify the functional groups of the organic matter deposited on the RO membrane surfaces. The SEM images and EDSX spectra suggested that the fouled material was mainly organic matter, and the major crystal deposited on the RO membrane was calcium carbonate (CaCO3). The FTIR spectra of the fouled RO membranes suggested that the constituents of the fouled material included aliphatic and aromatic compounds. PMID:28406468

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Missert, Nancy; Kotula, Paul G.; Rye, Michael

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  16. Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.).

    PubMed

    Xu, Dongyu; Chen, Zhifan; Sun, Ke; Yan, Dong; Kang, Mingjie; Zhao, Ye

    2013-11-01

    The pollution of agricultural soils with cadmium (Cd) has become a serious problem worldwide. The potato (Solanum tuberosum L.) was used to investigate how different concentrations of Cd (1, 5, and 25mgkg(-1)) affected the physiological parameters and the subcellular distribution of Cd in the potato. The analyses were conducted using scanning electron microscopy coupled with energy dispersive X-ray (SEM-EDX). The results suggest that the leaf is the organ with the highest accumulation of Cd. The malondialdehyde (MDA) content increased and the chlorophyll content decreased in response to high level of Cd. The SEM-EDX microanalysis revealed that Cd was primarily deposited in the spongy and palisade tissues of the leaf. Furthermore, Cd was also detected in the cortex and the adjacent phloem and was observed inside the intercellular space, the interior surface of the plasma membrane, and on the surface of the elliptical starch granules in the tubers of the potato. Although low concentrations of Cd migrated from the root to the tuber, the accumulation of Cd in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be seriously evaluated because Cd-containing potatoes might present high health risk to humans. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Monitoring of biofilm aging in a Sphingomonas sp. strain from public drinking water sites through changes in capacitance.

    PubMed

    Gulati, Parul; Singh, Pawandeep; Chatterjee, Arun Kumar; Ghosh, Moushumi

    2017-09-01

    This study reports the applicability of a capacitance-based technique for evaluating the biofilm progression of Sphingomonas sp. One hundred and forty isolates of Sphingomonas were screened from public drinking water sites, and one potential strain with biofilm-forming ability was used for the study. The biofilm production by this strain was established in microtiter plates and aluminum coupons. The standard biofilm-forming strain Sphingomonas terrae MTCC 7766 was used for comparison. Changes in biofilm were analyzed by energy-dispersive X-ray spectroscopy (EDX) and scanning electron microscope (SEM). Capacitance values were measured at 1, 100 and 200 kHz frequency; however, 1 kHz was selected since resulted in reproducible values, which could be correlated to biofilm age measured as dry weight over a time of 96 h (4 days) depicting the biofilm growth/progression over time. The EDX, SEM and capacitance values obtained in parallel indicated the related physiological profile usually displayed by biofilms upon growth, suggesting authenticity to the observed capacitance profile. The results of this study demonstrated the feasibility of a capacitance-based method for analyzing biofilm development/progression by Sphingomonas sp. and suggested a simple approach for developing an online system to detect biofilms by this opportunistic pathogen of concern in drinking water.

  18. Physicochemical characterizations of nano-palm oil fuel ash

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajak, Mohd Azrul Abdul, E-mail: azrulrajak88@gmail.com; Preparatory Centre of Science and Technology, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my

    2015-07-22

    Palm Oil Fuel Ash (POFA) is known as a good supplementary cementing material due to its siliceous-rich content. The application of nanotechnology in the pozzolanic materials could invent new functions in the efficiency of physical and chemical properties of materials. Thus, the present study aims to generate nano-sized POFA and characterize the physicochemical properties of nano-palm oil fuel ash (nPOFA). The nPOFA was prepared by mechanically grinding micro POFA using a high intensity ball milling for 6 hours. The physicochemical properties of nPOFA were characterized via X-Ray Fluoresence (XRF), Scanning Emission microscopy- Energy Dispersive X-Ray (SEM-EDX), Transmission Electron Microscope (TEM)more » and X-Ray Diffraction (XRD). The particle size of nPOFA acquired from TEM analysis was in the range of 20 nm to 90 nm, while the average crystallite size calculated from XRD diffractogram was 61.5 nm. The resulting nPOFA has a BET surface area of 145.35 m{sup 2}/g, which is more than 85% increment in surface area compared to micro-sized POFA. The morphology and elemental studies showed the presence of spherical as well as irregularly shaped and fine nPOFA particles contains with high silicon content. The presence of α-quartz as the major phase of the nPOFA was identified through XRD analysis. The study concludes that nPOFA has the potential as a supplementary cementing material due to the high silica content, high surface area and the unique behaviors of nano-structured particles.« less

  19. Treated and untreated rock dust: Quartz content and physical characterization.

    PubMed

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  20. Oral astringent stimuli alter the enamel pellicle's ultrastructure as revealed by electron microscopy.

    PubMed

    Rehage, Melanie; Delius, Judith; Hofmann, Thomas; Hannig, Matthias

    2017-08-01

    This electron microscopic study aimed at investigating effects of oral astringent stimuli on the enamel pellicle's morphology. Pellicles were formed in situ within 30min on bovine enamel slabs, fixed to individuals' upper jaw splints. The pellicle-coated specimens were immersed in vitro in seven diverse astringent solutions and subsequently analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, as well as transmission electron microscopy (TEM). Four biocompatible astringents, namely the polyphenol epigallocatechin gallate, the metal salt iron(III) sulfate, the basic protein lysozyme, and the aminopolysaccharide chitosan, were additionally applied in situ. After rinsing the oral cavity with these compounds, the pellicle's ultrastructure was imaged by SEM and TEM, respectively. Untreated pellicle samples served as controls. Exposure to polyphenols and lysozyme induced particularly thicker and electron-denser pellicles in comparison to the control pellicle with similar characteristics in vitro and in situ. In contrast, acidic chitosan and metal salt solutions, respectively, revealed minor pellicle alterations. The incorporation of Fe and Al into the pellicles treated with the corresponding inorganic salts was verified by EDX analysis. Astringent-induced pellicle modifications were for the first time visualized by TEM. The ultrastructural alterations of the dental pellicle may partly explain the tooth-roughening effect caused by oral astringent stimuli. Astringents might modify the pellicle's protective properties against dental erosion, attrition, as well as bacterial adhesion, and by this means may influence tooth health. The findings may thus be particularly relevant for preventive dentistry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Astaxanthin modulates osteopontin and transforming growth factor β1 expression levels in a rat model of nephrolithiasis: a comparison with citrate administration.

    PubMed

    Alex, Manju; Sauganth Paul, M V; Abhilash, M; Mathews, Varghese V; Anilkumar, T V; Nair, R Harikumaran

    2014-09-01

    To evaluate the effect of astaxanthin on renal angiotensin-I converting enzyme (ACE) levels, osteopontin (OPN) and transforming growth factor β1 (TGF-β1) expressions and the extent of crystal deposition in experimentally induced calcium oxalate kidney stone disease in a male Wistar rat model. To compare the efficacy of astaxanthin treatment with a currently used treatment strategy (citrate administration) for kidney stones. The expression of OPN was assessed by immunohistochemistry. One step reverse transcriptase polymerase chain reaction followed by densitometry was used to assess renal OPN and TGF-β1 levels. Renal ACE levels were quantified by an enzyme-linked immunosorbent assay method. Crystal deposition in kidney was analysed by scanning electron microscopic (SEM)-energy-dispersive X-ray (EDX). The renal ACE levels and the expression of OPN and TGF-β1 were upregulated in the nephrolithiasis-induced rats. Astaxanthin treatment reduced renal ACE levels and the expression OPN and TGF-β1. SEM-EDX analysis showed that crystal deposition was reduced in the astaxanthin-treated nephrolithiatic group. Astaxanthin treatment was more effective than citrate administration in the regulation of renal ACE levels, OPN and TGF-β1 expressions. Astaxanthin administration reduced renal calcium oxalate crystal deposition possibly by modulating the renal renin-angiotensin system (RAS), which reduced the expression of OPN and TGF-β1 levels. Astaxanthin administration was more effective than citrate treatment in reducing crystal deposition and down-regulating the expression of OPN and TGF-β1. © 2013 The Authors. BJU International © 2013 BJU International.

  2. Green biosynthesis of silver nanoparticles using leaves extract of Artemisia vulgaris and their potential biomedical applications.

    PubMed

    Rasheed, Tahir; Bilal, Muhammad; Iqbal, Hafiz M N; Li, Chuanlong

    2017-10-01

    Biosynthesis of nanoparticles from plant extracts is receiving enormous interest due to their abundant availability and a broad spectrum of bioactive reducing metabolites. In this study, the reducing potential of Artemisia vulgaris leaves extract (AVLE) was investigated for synthesizing silver nanoparticles without the addition of any external reducing or capping agent. The appearance of blackish brown color evidenced the complete synthesis of nanoparticles. The synthesized silver nanoparticles were characterized by UV-vis spectroscopy, scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscope (TEM), atomic force microscopy (AFM) and Fourier transforms infrared spectroscopy (FT-IR) analysis. UV-vis absorption profile of the bio-reduced sample elucidated the main peak around 420nm, which correspond to the surface plasmon resonance of silver nanoparticles. SEM and AFM analyses confirmed the morphology of the synthesized nanoparticles. Similarly, particles with a distinctive peak of silver were examined with EDX. The average diameter of silver nanoparticles was about 25nm from Transmission Electron Microscopy (TEM). FTIR spectroscopy scrutinized the involvement of various functional groups during nanoparticle synthesis. The green synthesized nanoparticles presented effective antibacterial activity against pathogenic bacteria than AVLE alone. In-vitro antioxidant assays revealed that silver nanoparticles (AV-AgNPs) exhibited promising antioxidant properties. The nanoparticles also displayed a potent cytotoxic effect against HeLa and MCF-7 cell lines. In conclusion, the results supported the advantages of employing a bio-green approach for developing silver nanoparticles with antimicrobial, antioxidant, and antiproliferative activities in a simple and cost- competitive manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour

    NASA Astrophysics Data System (ADS)

    Sriramulu, Mohana; Sumathi, Shanmugam

    2018-06-01

    In this article, we have discussed the biosynthesis of palladium nanoparticles (PdNPs) using aqueous Saccharomyces cerevisiae extract and its photocatalytic application. The biosynthesised PdNPs were characterised by UV-Vis spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Atomic force microscopy (AFM). The formation of PdNPs was confirmed from the disappearance of the peak at 405 nm in the UV-Vis spectrum. Agglomerated and hexagonal shaped PdNPs were noted by SEM. FTIR was performed to identify the biomolecules responsible for the synthesis of PdNPs. Bioactive compounds in the yeast extract acted as secondary metabolites which facilitated the formation of PdNPs. The yeast synthesised PdNPs degraded 98% of direct blue 71 dye photochemically within 60 min under UV light.

  4. Efficacy of Modified Bioactive Glass for Dentin Remineralization and Obstruction of Dentinal Tubules

    PubMed Central

    Saffarpour, Mahshid; Tahriri, Mohammadreza; Zakerzadeh, Azadeh

    2017-01-01

    Objectives: This study assessed the efficacy of modified bioactive glass (MBG) for dentin remineralization and obstruction of dentinal tubules. Materials and Methods: Thirty-six dentin discs were made from 20 third molars and were stored in 12% lactic acid solution for two weeks to induce demineralization. The samples were divided into three groups (n=12): 1- BG, 2- BG modified with 5% strontium (Sr) and 3- BG modified with 10% Sr. After applying the BG, the samples were stored in artificial saliva for 7, 14 and 21 days. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Diffraction (XRD) analysis, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) analysis were used to assess remineralization. Also, 6 dentin discs were divided into three groups of BG, BG modified with 5% Sr and BG modified with 10% Sr, to examine tubular occlusion. The discs were etched using 0.5M of EDTA for two minutes and were stored in artificial saliva for 7 days. Changes in dentin surface morphology were evaluated under SEM. Results: Group 3 showed high rates of remineralization at days 7 and 14, although the rate decreased at day 21. Group 2 exhibited high rates of remineralization at days 7, 14 and 21. Dentinal tubules were partially occluded by BG and BG modified with 5% Sr, while they were almost completely obstructed after the use of BG modified with 10% Sr. Conclusions: Strontium increases remineralization. Addition of 10% Sr to BG enhances apatite formation; however, the apatite dissolves over time. Addition of 5% Sr to BG stabilizes the apatite lattice and increases the remineralization. PMID:29285031

  5. Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities

    NASA Astrophysics Data System (ADS)

    Suresh, Joghee; Pradheesh, Ganeshan; Alexramani, Vincent; Sundrarajan, Mahalingam; Hong, Sun Ig

    2018-03-01

    In this work we aim to synthesize biocompatible ZnO nanoparticles from the zinc nitrate via green process using leaf extracts of the Costus pictus D. Don medicinal plant. FTIR studies confirm the presence of biomolecules and metal oxides. X-ray diffraction (XRD) structural analysis reveals the formation of pure hexagonal phase structures of ZnO nanoparticles. The surface morphologies of ZnO nanoparticles observed under a scanning electron microscope (SEM) suggest that most ZnO crystallites are hexagonal. EDX analysis confirms the presence of primarily zinc and oxygen. TEM images show that biosynthesized zinc oxide nanoparticles are hexagonal and spherical. The plausible formation mechanisms of zinc oxide nanoparticles are also predicted. The biosynthesized zinc oxide nanoparticles exhibit strong antimicrobial behavior against bacterial and fungal species when employing the agar diffusion method. Synthesized ZnO nanoparticles exhibit anticancer activity against Daltons lymphoma ascites (DLA) cells as well as antimicrobial activity against some bacterial and fungal strains.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nieroda, Pawel; Zybala, Rafal; Wojciechowski, Krzysztof T.

    The aim of the study was to develop a fast and simple method for preparation of polycrystalline Mg{sub 2}Si. For this purpose a Spark Plasma Sintering (SPS) method was used and synthesis conditions were adjusted in such a manner that no excess Mg was required. Materials were synthesized by the direct reaction of Mg and Si raw powders. To determine the phase and chemical composition, the fabricated samples were studied by X-ray diffraction and SEM microscopy coupled with EDX chemical analysis. Thermoelectric properties of samples (thermal conductivity, electrical conductivity and Seebeck coefficient) were measured all over temperature range of 300-650more » K. The analysis by the scanning thermoelectric microprobe (STM) shows that samples have uniform distribution of Seebeck coefficient with mean value of about -405 {mu}VK{sup -1} and standard deviation of 94 {mu}VK{sup -1}. Prepared materials have intrinsic band gap of 0.45 eV and thermal conductivity {lambda}= 7.5 Wm{sup -1}K{sup -1} at room temperature.« less

  7. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Astrophysics Data System (ADS)

    Anz-Meador, P. D.; Liou, J.-C.; Ross, D.; Robinson, G. A.; Opiela, J. N.; Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R. P.; Griffin, T. J.; Reed, B. B.; Gerlach, L.

    2013-08-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 μ m and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  8. Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Grime, G. W.; Colaux, J. L.; Jeynes, C.; Palitsin, V. V.; Webb, R, P.; Griffin, T. J.; Reed, B. B.; Anz-Meador, P. D.; Kou, J.-C.; hide

    2013-01-01

    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC).

  9. Detection of mercury in the 411-year-old beard hairs of the astronomer Tycho Brahe by elemental analysis in electron microscopy.

    PubMed

    Jonas, Ludwig; Jaksch, Heiner; Zellmann, Erhard; Klemm, Kerstin I; Andersen, Peter Hvilshøj

    2012-10-01

    Hairs more than 400 years old of the famous astronomer Tycho Brahe were studied by electron microscopy to evaluate the hypothesis that Johannes Kepler murdered his teacher Brahe by mercury intoxication. The beard hairs showed a well-preserved ultrastructure with typical hair scales and melanosomes. The authors detected an accumulation of electron-dense granules of about 10 nm inside the outer hair scales, but not in the hair shaft and roots. At the places of these heavy-metal-containing granules they detected mercury besides other elements by energy dispersive X-ray analysis (EDX, Oxford, UK) in a field cathode scanning electron microscope (SEM, Gemini, Zeiss). The mercury-containing granules were found over the whole length of hairs, but only in the outer hair scales. Nevertheless, surface coatings of hairs were free of mercury. This distribution of mercury does not support the murder hypothesis, but could be related to precipitation of mercury dust from the air during long-term alchemistic activities.

  10. Assembly of porous hierarchical copolymers/resin proppants: New approaches to smart proppant immobilization via molecular anchors.

    PubMed

    Alexander, Shirin; Dunnill, Charles W; Barron, Andrew R

    2016-03-15

    The assembly of temperature/pH sensitive complex microparticle structures through chemisorption and physisorption provides a responsive system that offers application as routes to immobilization of proppants in-situ. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) along with energy dispersive X-ray analysis (EDX) have been used to characterize a series of bi-functionalized monolayers and/or multilayers grown on alumina microparticles and investigate the reactive nature of both temperature sensitive cross-linker (epoxy resin) with the layers and pH-responsive bridging layer (polyetheramine). The bifunctional acids, behaving as molecular anchors, allow for a controlled reaction with a cross-linker (resin or polymer) with the formation of networks, which is either irreversible or reversible based on the nature of the cross-linker. The networks results in formation of porous hierarchical particles that offer a potential route to the creation of immobile proppant pack. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.

  12. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  13. Improving Signal-to-Noise Ratio in Scanning Transmission Electron Microscopy Energy-Dispersive X-Ray (STEM-EDX) Spectrum Images Using Single-Atomic-Column Cross-Correlation Averaging.

    PubMed

    Jeong, Jong Seok; Mkhoyan, K Andre

    2016-06-01

    Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.

  14. Analysis of Multilayer Devices for Superconducting Electronics by High-Resolution Scanning Transmission Electron Microscopy and Energy Dispersive Spectroscopy

    DOE PAGES

    Missert, Nancy; Kotula, Paul G.; Rye, Michael; ...

    2017-02-15

    We used a focused ion beam to obtain cross-sectional specimens from both magnetic multilayer and Nb/Al-AlOx/Nb Josephson junction devices for characterization by scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDX). An automated multivariate statistical analysis of the EDX spectral images produced chemically unique component images of individual layers within the multilayer structures. STEM imaging elucidated distinct variations in film morphology, interface quality, and/or etch artifacts that could be correlated to magnetic and/or electrical properties measured on the same devices.

  15. Ultrasonic irradiation-assisted synthesis of Bi2S3 nanoparticles in aqueous ionic liquid at ambient condition.

    PubMed

    de la Parra-Arciniega, Salomé M; Garcia-Gomez, Nora A; Garza-Tovar, Lorena L; García-Gutiérrez, Domingo I; Sánchez, Eduardo M

    2017-05-01

    In this work, an easy, fast and environmentally friendly method to obtain Bi 2 S 3 nanostructures with sphere-like morphology is introduced. The promising material was successfully synthesized by a sonochemical route in 20% 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] ionic liquid solution (IL). Morphological studies by electron microscopy (SEM and TEM) show that the use of IL in the synthesis of Bi 2 S 3 favors the formation of nanocrystals non-agglomerated. Micro Raman and energy dispersive X-ray spectroscopy (EDXS) were used to determine the composition and purity of the synthesized material. X-ray powder diffraction (XRD) and selective area electron diffraction (SAED) revealed that ultrasonic radiation accelerated the crystallization of Bi 2 S 3 into orthorhombic bismuthinite structure. The band gap calculated from the diffuse reflectance spectra (DRS) was found to be 1.5eV. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Investigation of electrical studies of spinel FeCo2O4 synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Lobo, Laurel Simon; Kalainathan, S.; Kumar, A. Ruban

    2015-12-01

    In this work, spinel FeCo2O4 is synthesized by sol-gel method using succinic acid as a chelating agent at 900 °C. The structural, spectroscopic and morphological characterization was carried out by using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy equipped with Energy Dispersive X-ray spectrometer (SEM-EDX). The M-H loop at room temperature confirms the ferromagnetic property of the sample. The frequency and temperature dependence of dielectric constant (εʹ) and dielectric loss (tan δ) shows the presence of Maxwell-Wagner relaxation in the sample due to the presence of oxygen vacancy. Nyquist plot for frequency and temperature domain signifies the presence of grain effect, grain boundary effect and electrode interface in the conduction process. Electric modulus under suppression of electrode polarization shows the grain and grain boundary effects. The electrode polarization is observed in the lower frequency range of the conductivity graph.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang Yazhuo; Hu Jun; Liu Honglai, E-mail: yazhuoshang@ecust.edu.c

    Novel large-scale hollow ZnO spherical shells were synthesized by ionic liquids assisted hydrothermal oxidization of pure zinc powder without any catalyst at a relatively low temperature of 160 deg. C. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) patterns show that the shells are composed of ZnO and the structure of the shells is very unique. Textured flower-like ZnO consisting of ZnO rods is grown on the outer surfaces of shells forming a triple assembly. Room-temperature photoluminescence spectra of the oxidized material show a sharp peak at 379 nm and a wider broad peak centeredmore » at 498 nm. The possible growth mechanism of the triple assembly of ZnO is discussed in detail. - Graphical abstract: A proposed growth mechanism of large scale hollow ZnO. Bubbles provide the aggregation center for ionic liquids that leads to the formation of hollow Zn particle-dotted shells, buoyancy promotes shells to go upward, the breach occurs when shells are subjected to overpressure.« less

  18. Photocatalytic application of Pd-ZnO-exfoliated graphite nanocomposite for the enhanced removal of acid orange 7 dye in water

    NASA Astrophysics Data System (ADS)

    Umukoro, Eseoghene H.; Madyibi, Siposetu S.; Peleyeju, Moses G.; Tshwenya, Luthando; Viljoen, Elvera H.; Ngila, Jane C.; Arotiba, Omotayo A.

    2017-12-01

    In this work, a nanocomposite photocatalyst which consists of palladium (Pd), zinc oxide (ZnO) as well as exfoliated graphite (EG) was synthesised, characterised and applied to the removal of acid orange 7 dye as a model organic pollutant. The Pd-ZnO-EG nanocomposite was synthesised by a one-pot hydrothermal technique in a Teflon-lined stainless steel autoclave at 160 °C for a period of 12 h, cooled, washed and dried. The nanocomposite was characterised by X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electronic microscopy (SEM) as well as energy dispersive X-ray spectrometry (EDX). The as-prepared materials were further applied for the degradation of acid orange 7 dye photocatalytically. Results obtained showed that Pd-ZnO-EG composite displayed a better photocatalytic performance, giving better removal efficiency of 87% in comparison with ZnO and Pd-ZnO which gave 3 and 25% percentage removal respectively.

  19. Formation of Porous Germanium Layers by Silver-Ion Implantation

    NASA Astrophysics Data System (ADS)

    Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.

    2018-04-01

    We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.

  20. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  1. Experimental and computational assessment of mycosynthesized CdO nanoparticles towards biomedical applications.

    PubMed

    S, Gowri; K, Gopinath; A, Arumugam

    2018-03-01

    The present study reports the biogenic synthesis of Cadmium Oxide Nanoparticles (CdO NPs) using plant pathogenic fungus Nigrospora oryzae culture filtrate. Further, the effect of the NPs on the cancer cell line (HeLa) is explored. The sample was characterized using Thermogravimetric/Differential Thermal (TG/DTA), Powder X-ray Diffraction (XRD), X-ray Photoelectron spectroscopy (XPS), UV-Visible Diffuse Reflectance Spectroscopy (UV-DRS), Field Emission Transmission Electron Microscopy (FE-SEM) with Energy Dispersive X-ray Spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED) analysis. Antibacterial activity was evaluated against both Gram positive and Gram negative bacterial strains and it showed maximum activity against Proteus vulgaris. The larvicidal activity was performed to evaluate the maximum ability of synthesized CdO NPs against Anopheles stephensi. Subsequently, MTT assay also depicted the dose-dependent anticancer activity of CdO NPs against cancer cell line (HeLa). Additionally, the inhibitory effect of CdO NPs was analyzed through extensive docking with cancerous protein agent. Results enlighten that Transketolase protein exhibited high docking score of -4.8 k/mol with H-bond interactions found with Lys75 and Asn185 amino acid residues. DFT study was performed on CdO to understand the charge transfer reaction for the inhibitory mechanism. Convincingly, this study explores the understanding of CdO NPs against HeLa cells. Copyright © 2018. Published by Elsevier B.V.

  2. Various types of semiconductor photocatalysts modified by CdTe QDs and Pt NPs for toluene photooxidation in the gas phase under visible light

    NASA Astrophysics Data System (ADS)

    Marchelek, M.; Grabowska, E.; Klimczuk, T.; Lisowski, W.; Zaleska-Medynska, A.

    2017-01-01

    A novel synthesis process was used to prepare TiO2 microspheres, TiO2 P-25, SrTiO3 and KTaO3 decorated by CdTe QDs and/or Pt NPs. The effect of semiconductor matrix, presence of CdTe QDs and/or Pt NPs on the semiconductor surface as well as deposition technique of Pt NPs (photodeposition or radiolysis) on the photocatalytic activity were investigated. The as-prepared samples were characterized by X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) with energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), photoluminescence spectrometry (PL), Fourier transform infrared (FT-IR) and Raman spectra, diffuse reflectance spectroscopy (DRS) and BET surface area analysis. The photocatalytic decomposition of toluene in gas phase, activated by light-emitting diodes (LEDs), with the CdTe/Pt nanoparticles-modified TiO2 microspheres, P25, SrTiO3 and KTaO3 semiconductors was investigated under UV-vis and visible irradiation.The results showed that the photoactivity depends on semiconductor matrix. The highest photoactivity under Vis light was observed for KTaO3/CdTe-Pt(R) sample (56% of toluene was decompose after 30 min of irradiation). The efficiency of the most active sample was 3 times higher than result for P25 and two times higher than for unmodified KTaO3.

  3. Electrochemical performance of 2D polyaniline anchored CuS/Graphene nano-active composite as anode material for lithium-ion battery.

    PubMed

    Iqbal, Shahid; Bahadur, Ali; Saeed, Aamer; Zhou, Kebin; Shoaib, Muhammad; Waqas, Muhammad

    2017-09-15

    Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg -1 , a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag -1 , low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC. Copyright © 2017. Published by Elsevier Inc.

  4. Development of a novel biomaterial with an important osteoinductive capacity for hard tissue engineering.

    PubMed

    Simu, Meda-Romana; Pall, Emoke; Radu, Teodora; Miclaus, Maria; Culic, Bogdan; Mesaros, Anca-Stefania; Muntean, Alexandrina; Filip, Gabriela Adriana

    2018-06-01

    In this study we designed a composite biomaterial based on a high viscosity soft propolis extract (70% propolis) and shell clam, with antiseptic and osteoinductive qualities, that can be used in dentistry, orthopedics and other areas where hard tissue regeneration is needed. We assessed it in interaction with stabilized human cells isolated from dental papilla of wisdom teeth (D1MSCs). We performed detailed characterization of the obtained material by Scanning Electronic Microscopy (SEM), X-Ray Diffraction (XRD), Energy Dispersive X-Ray Spectroscopy (EDX), Fourier Transform Infrared Spectroscopy (FTIR) techniques. SEM investigation revealed the roughness and porosity of the shell, which acted like a scaffold, as it allowed cells to penetrate the pores, proliferate on the surface, spread and grow in the depressions provided by the substrate. in vitro cell viability, proliferation and differentiation assays showed that the newly obtain biomaterial presented low toxicity on D1MSCs and determined the development of numerous osteogenic nodules that were in a higher number even than in the specific induction medium. Our results demonstrated that the shell-propolis based biomaterial promoted and sustained human stem cells attachment, proliferation and differentiation, presenting an important osteoinductive effect essential for mineralized tissue reparation process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Novel Organically Modified Core-Shell Clay for Epoxy Composites-"SOBM Filler 1".

    PubMed

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm(-1) and 1435 cm(-1), respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties.

  6. Novel Organically Modified Core-Shell Clay for Epoxy Composites—“SOBM Filler 1”

    PubMed Central

    Iheaturu, Nnamdi Chibuike; Madufor, Innocent Chimezie

    2014-01-01

    Preparation of a novel organically modified clay from spent oil base drilling mud (SOBM) that could serve as core-shell clay filler for polymers is herein reported. Due to the hydrophilic nature of clay, its compatibility with polymer matrix was made possible through modification of the surface of the core clay sample with 3-aminopropyltriethoxysilane (3-APTES) compound prior to its use. Fourier transform infrared (FT-IR) spectroscopy was used to characterize clay surface modification. Electron dispersive X-ray diffraction (EDX) and scanning electron microscopy (SEM) were used to expose filler chemical composition and morphology, while electrophoresis measurement was used to examine level of filler dispersion. Results show an agglomerated core clay powder after high temperature treatment, while EDX analysis shows that the organically modified clay is composed of chemical inhomogeneities, wherein elemental compositions in weight percent vary from one point to the other in a probe of two points. Micrographs of the 3-APTES coupled SOBM core-shell clay filler clearly show cloudy appearance, while FT-IR indicates 25% and 5% increases in fundamental vibrations band at 1014 cm−1 and 1435 cm−1, respectively. Furthermore, 3-APTES coupled core-shell clay was used to prepare epoxy composites and tested for mechanical properties. PMID:27355022

  7. Fabrication and characterization of nanostructured Mg-doped CdS/AAO nanoporous membrane for sensing applications

    NASA Astrophysics Data System (ADS)

    Shaban, Mohamed; Mustafa, Mona; Hamdy, Hany

    2016-04-01

    In this study, Mg-doped CdS nanostructure was deposited onto anodic aluminum oxide (AAO) membrane substrate using sol-gel spin coating method. The AAO membrane was prepared by a two-step anodization process combined with pore widening process. The morphology, chemical composition, and structure of the spin- coated CdS nanostructure have been studied. The morphology of the fabricated AAO membrane and the deposited Mg-doped CdS nanostructure was investigated using scanning electron microscopy (SEM). The SEM of AAO illustrates a typical hexagonal and smooth nanoporous alumina membrane with interpore distance of ~ 100 nm, the pore diameter of ~ 60 nm. SEM of Mgdoped CdS shows porous nanostructured film of CdS nanoparticles. This film well adherents and covers the AAO substrate. The energy dispersive X-ray (EDX) pattern exhibits the signals of Al, O from AAO membrane and Mg, Cd, and S from the deposited CdS. This indicates the high purity of the fabricated membrane and the deposited Mg-doped CdS nanostructure. Using X-ray diffraction (XRD) pattern, Scherrer equation was used to calculate the average crystallite size. Additionally, the texture coefficients and density of dislocations were calculated. The fabricated CdS/AAO was applied to detect glucose of different concentrations. The proposed method has some advantages such as simple technology, low cost of processing, and high throughput. All of these factors facilitate the use of the prepared films in sensing applications.

  8. Mineralogical variation in the size fractions of a Ranong kaolin, southern Thailand

    NASA Astrophysics Data System (ADS)

    Pisutha-Arnond, Visut; Phuvichit, Suraphol; Leepowpanth, Quanchai

    A representative crude Ranong kaolin from the Thungkla-Ranong mine was separated into > 2 mm (granule), 2-1 mm (very coarse sand), 1-0.5 mm (coarse sand), 0.5-0.25 mm (medium sand), 0.25-0.125 mm (fine sand), 0.125-0.062 mm (very fine sand) and 62-28, 28-14, 17-7, 7-4, 4-2, 2-1 and < 1 μ m size fractions. Those size fractions were analyzed by X-ray powder diffractometry (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with attached energy dispersive X-ray spectrometer (EDX). Kaolin group minerals were differentiated by using XRD in combination with various chemical and heat treatments together with TEM, SEM and DTA. The Ranong kaolin consists predominantly of tubular halloysite, poorly crystallized kaolinite and quartz with minor amounts of mica and K-feldspars. Other trace constituents include gibbsite, tourmaline, zircon and colored impurities (i.e. extractable iron hydroxide coating on clay mineral surface). The kaolin minerals are found in all size fractions by which their contents and halloysite/kaolinite ratios increase as the particle sizes become finer. Quartz and mica are also detected in almost all size fractions. They are, however, more abundant with coarsening particle size. Gibbsite, K-feldspar and tourmaline are mainly concentrated in the fine sand to silt size fractions. Crystallinity of kaolin minerals as measured by XRD varied moderately with size. Relatively pure kaolin minerals, predominantly halloysite and kaolinite, can be obtained in the particle size below 1 or 2 μm.

  9. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  10. Electrochemical Deposition of Niobium onto the Surface of Copper Using a Novel Choline Chloride-Based Ionic Liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wixtroma, Alex I.; Buhlera, Jessica E.; Reece, Charles E.

    2013-06-01

    Recent research has shown that choline chloride-based solutions can be used to replace acid-based electrochemical polishing solutions. In this study niobium metal was successfully deposited on the surface of copper substrate via electrochemical deposition using a novel choline chloride-based ionic liquid. The niobium metal used for deposition on the Cu had been dissolved in the solution from electrochemical polishing of a solid niobium piece prior to the deposition. The visible coating on the surface of the Cu was analyzed using scanning electron microscopy (SEM) and electron dispersive x-ray spectroscopy (EDX). This deposition method effectively recycles previously dissolved niobium from electrochemicalmore » polishing.« less

  11. Fabrication and characterization of spiral interdigitated electrodes based biosensor for salivary glucose detection

    NASA Astrophysics Data System (ADS)

    Adelyn, P. Y. P.; Hashim, U.; Arshad, M. K. Md; Voon, C. H.; Liu, Wei-Wen; Kahar, S. M.; Huda, A. R. N.; Lee, H. Cheun

    2017-03-01

    This work introduces the non-invasive glucose monitoring technique by using the Complementary Metal Oxide Semiconductor (CMOS) technologically fabricated spiral Interdigitated Electrodes (IDE) based biosensor. Scanning Electron Microscopy (SEM) image explores the morphology of spiral IDE while Energy Dispersive X-Ray (EDX) determines the elements induced in spiral IDE. Oral saliva of two patients are collected and tested on the spiral IDE sensor with electrical characterization as glucose detection results. However, both patients exhibit their glucose level characteristics inconsistently. Therefore, this work could be extended and enhanced by adding Glutaraldehyde in between 3-Aminoproply)triethoxysilane (APTES) modified and glucose oxidase (GOD) enzyme immobilized layer with FTIR validation for bonding attachment.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Zaheruddin, K., E-mail: zaheruddin@unimap.edu.my; Rahmat, A., E-mail: azmirahmat@unimap.edu.my; Shamsul, J. B., E-mail: sbaharin@unimap.edu.my

    Cobalt-hydroxyapatite (Co-HA) composites was successfully prepared by simple electroless deposition process of Co on the surface of hydroxyapatite (HA) particles. Co deposition was carried out in an alkaline bath with sodium hypophosphite as a reducing agent. The electroless process was carried out without sensitization and activation steps. The deposition of Co onto HA was characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The Co-HA composite powder was compacted and sintered at 1250°C. The Co particles were homogeneously dispersed in the HA matrix after sintering and the mechanical properties of composites was enhanced to 100 % with 3more » % wt Co and gradually decreased at higher Co content.« less

  13. Technological study of ancient ceramics produced in Casteldurante (central Italy) during the Renaissance

    NASA Astrophysics Data System (ADS)

    Padeletti, G.; Fermo, P.; Gilardoni, S.; Galli, A.

    In order to recover the ancient tradition concerning the materials used for the decoration, majolica shards produced during the Renaissance period in Casteldurante, a famous centre for ceramic production in Italy (Marche), have been examined. In the present study, pigments used for the decorations have been investigated by means of inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) and diffuse-reflectance UV-Vis spectroscopy. Ochre, lead antimonate yellow, copper-based pigment and smalt have been used as colourants to obtain respectively yellow-orange, yellow, green and blue decorations in accordance with what is reported by the ancient recipes.

  14. Corrosion and Microstructure Correlation in Molten LiCl-KCl Medium

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Mathiya, S.; Thyagarajan, K.; Kamachi Mudali, U.

    2010-07-01

    Pyrochemical reprocessing in molten chloride salt medium has been considered as one of the best options for the reprocessing of spent metallic fuels of future fast breeder reactors. The unit operations such as salt preparation, electrorefining, and cathode processing involve the presence of molten LiCl-KCl eutectic salt from 673 to 1373 K (400 to 1100 °C). The present work discusses the corrosion behavior of electroformed nickel (EF Ni) without and with nickel-tungsten (Ni-W) coating, 316L SS, and INCONEL 625 alloy in molten LiCl-KCl eutectic salt at 673 K, 773 K, and 873 K (400 °C, 500 °C, and 600 °C) in the presence of air. The weight percent loss of the exposed samples was determined by the weight loss method and surface morphology of the salt exposed, and product layers were examined by scanning electron microscopy (SEM). X-ray diffraction (XRD) and energy-dispersive X-ray (EDX) analysis were also carried out on the exposed and corrosion product layers to understand the phases present and the corrosion mechanism involved. The results of the present study indicated that INCONEL 625 alloy showed superior corrosion resistance compared to electroformed nickel (EF Ni), EF Ni with nickel-tungsten (Ni-W) coating (EF Ni-W), and 316L SS. The EF Ni with Ni-W coating exhibits better corrosion resistance than EF Ni without tungsten coating. Based on the surface morphology, XRD, and EDX analysis of corrosion product layers, the mechanism of corrosion of INCONEL 625 and 316L involves formation of chromium-rich compound at the surface and subsequent spallation. For the EF Ni, the porous thick NiO corrosion product allows the penetration of salt, thus accelerating the corrosion. Improved corrosion resistance of EF Ni-W was attributed to the W-rich NiO layer, while for INCONEL 625, the adherent and protective NiO layer improved the corrosion resistance. The article highlights the results of the present investigation.

  15. Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7

    NASA Astrophysics Data System (ADS)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.

  16. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    PubMed

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  17. Assessment and forensic application of laser-induced breakdown spectroscopy (LIBS) for the discrimination of Australian window glass.

    PubMed

    El-Deftar, Moteaa M; Speers, Naomi; Eggins, Stephen; Foster, Simon; Robertson, James; Lennard, Chris

    2014-08-01

    A commercially available laser-induced breakdown spectroscopy (LIBS) instrument was evaluated for the determination of elemental composition of twenty Australian window glass samples, consisting of 14 laminated samples and 6 non-laminated samples (or not otherwise specified) collected from broken windows at crime scenes. In this study, the LIBS figures of merit were assessed in terms of accuracy, limits of detection and precision using three standard reference materials (NIST 610, 612, and 1831). The discrimination potential of LIBS was compared to that obtained using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), X-ray microfluorescence spectroscopy (μXRF) and scanning electron microscopy energy dispersive X-ray spectrometry (SEM-EDX) for the analysis of architectural window glass samples collected from crime scenes in the Canberra region, Australia. Pairwise comparisons were performed using a three-sigma rule, two-way ANOVA and Tukey's HSD test at 95% confidence limit in order to investigate the discrimination power for window glass analysis. The results show that the elemental analysis of glass by LIBS provides a discrimination power greater than 97% (>98% when combined with refractive index data), which was comparable to the discrimination powers obtained by LA-ICP-MS and μXRF. These results indicate that LIBS is a feasible alternative to the more expensive LA-ICP-MS and μXRF options for the routine forensic analysis of window glass samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Cu(II), Co(II) and Ni(II) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.

    2013-04-01

    Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.

  19. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    NASA Astrophysics Data System (ADS)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  20. Influence of the chemical composition of rapidly quenched amorphous alloys (Ni, Fe, Cr)-B-Si on its crystallization process

    NASA Astrophysics Data System (ADS)

    Elmanov, G.; Dzhumaev, P.; Ivanitskaya, E.; Skrytnyi, V.; Ruslanov, A.

    2016-04-01

    This paper presents results of research of the structure and phase transformations during the multistage crystallization of the metallic glasses with the compositions Ni71,5Cr6,8Fe2,7B11,9Si7,1 and Ni63,4Cr7,4Fe4,3Mn0,8B15,6Si8,5 labeled as AWS BNi-2 according to American Welding Society. Differential scanning calorimetry (DSC), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX) were used as experimental research methods. The influence of the alloys chemical composition (boron, manganese and iron) on the temperatures and the exothermic heat effects of phase transformations, as well as on the phase composition of alloys at three stages of crystallization was analyzed. We present a thermodynamic explanation of the observed heat effects. It has been shown that manganese has the main influence on the phase transformations temperatures and heat effects in these two alloys. It is also assumed that at the final crystallization stage simultaneously with the formation of phases Ni3B and β1-Ni3Si should occur the nucleation of borides of CrB type with high Cr and low Si content.

  1. Attached β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane to graphene oxide and its application in copper removal.

    PubMed

    Yu, Zongxue; Chen, Qi; Lv, Liang; Pan, Yang; Zeng, Guangyong; He, Yi

    2017-05-01

    The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu 2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu 2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu 2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.

  2. Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness

    NASA Astrophysics Data System (ADS)

    Surya, Subramanian; Thangamuthu, Rangasamy; Senthil Kumar, Sakkarapalayam Murugesan; Murugadoss, Govindhasamy

    2017-02-01

    Dye-sensitized solar cells (DSSCs) have gained widespread attention in recent years because of their low production costs, ease of fabrication process and tuneable optical properties, such as colour and transparency. In this work, we explored a strategy wherein nanoparticles of pure TiO2, TiO2sbnd SnO2 nanocomposite, Sn (10%) doped TiO2 and SnO2 synthesized by the simple chemical precipitation method were employed as photoelectrodes to enhance the photovoltaic conversion efficiency of solar cells. The nanoparticles were characterized by different characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM with EDX), transmission electron microscopy (TEM), high resolution electron microscopy (HR-TEM), UV-Visible absorbance (UV-vis), photoluminescence (PL), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) measurements. Moreover, we also demonstrated the effect of thin compact layer in DSSCs by architecture with various precursor materials of different concentrations. We found that the optimized compact layer material TDIP (titanium diisopropoxide) with a concentration of 0.3 M % is produced the highest efficiency of 2.25% for Sn (10%) doped TiO2 electron transport material (ETM) and 4.38% was achieved for pure TiO2 ETM using SnCl2 compact layer with 0.1 M concentrations.

  3. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  4. Solid State Reaction Synthesis of Si-HA as Potential Biomedical Material: An Endeavor to Enhance the Added Value of Indonesian Mineral Resources

    NASA Astrophysics Data System (ADS)

    Hartatiek; Yudyanto; Ratnasari, S. D.; Windari, R. Y.; Hidayat, N.

    2017-05-01

    In recent years, one of the most prominently investigated materials is hydroxyapatite (HA). It is because of its excellent properties for medical applications, essentially related to orthopedic. Also, the introduction of other materials to HA becomes another research focus of many leading scientists. In this present study, silicon with various concentrations was introduced, by means of solid state reaction route, to HA forming Si-HA. The crystal structure properties of the as-prepared samples were evaluated by X-ray diffractometer (XRD). Fourier Transform Infra Red (FTIR) spectroscopy data collection and analysis were done to investigate the functional groups within the samples. The microstructural characteristics as well as elemental mapping of the samples were captured by scanning electron microscopy and energy dispersive x-ray spectroscopy (SEM-EDX). Vickers hardness test was also conducted to investigate the hardness properties of the samples. Furthermore, in vitro characterization-based bio resorbability of the samples in a simulated body fluid were also described. This study revealed that Indonesian limestone can be utilized as the raw material for synthesizing HA. The silicon has been successfully incorporated into phosphate site of the HA crystal. Conclusively, the Si-HA reported in this study shows good bioresorbability characteristic.

  5. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    NASA Astrophysics Data System (ADS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  6. Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties.

    PubMed

    Duman, Fatih; Ocsoy, Ismail; Kup, Fatma Ozturk

    2016-03-01

    In this study, we report the synthesis of copper oxide nanoparticles (CuO NPs) using a medicinal plant (Matricaria chamomilla) flower extract as both reducing and capping agent and investigate their antioxidant activity and interaction with plasmid DNA (pBR322).The CuO NPs were characterized using Uv-Vis spectroscopy, FT-IR (Fourier transform infrared spectroscopy), DLS (dynamic light scattering), XRD (X-ray diffraction), EDX (energy-dispersive X-ray) spectroscopy and SEM (scanning electron microscopy). The CuO NPs exhibited nearly mono-distributed and spherical shapes with diameters of 140 nm size. UV-Vis absorption spectrum of CuO NPs gave a broad peak around 285 and 320 nm. The existence of functional groups on the surface of CuO NPs was characterized with FT-IR analysis. XRD pattern showed that the NPs are in the form of a face-centered cubic crystal. Zeta potential value was measured as -20 mV due to the presence of negatively charged functional groups in plant extract. Additionally, we demonstrated concentration-dependent antioxidant activity of CuO NPs and their interaction with plasmid DNA. We assumed that the CuO NPs both cleave and break DNA double helix structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Biosynthesis of silver nanoparticles using Bacillus subtilis EWP-46 cell-free extract and evaluation of its antibacterial activity.

    PubMed

    Velmurugan, Palanivel; Iydroose, Mahudunan; Mohideen, Mohmed Hanifa Abdul Kader; Mohan, Thankiah Selva; Cho, Min; Oh, Byung-Taek

    2014-08-01

    This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag(+) ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag(+) ion and 720 min. The UV-Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM-EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.

  8. Green synthesis and characterisation of silver nanoparticles and their effects on antimicrobial efficacy and biochemical profiling in Citrus reticulata.

    PubMed

    Hussain, Mubashir; Raja, Naveed Iqbal; Mashwani, Zia-Ur-Rehman; Naz, Farah; Iqbal, Muhammad; Aslam, Sumaira

    2018-06-01

    The synthesis of nanoparticles by utilising plant extract has revolutionised the field of nanotechnology. In the present study, AgNPs were synthesised by utilising the leaves of Moringa oleifera as reducing and stabilising agent. UV-visible spectroscopy showed characteristic surface plasmon band in the range of 413-420 nm. Scanning electron microscopy (SEM) elucidated rectangular segments fused together. X-ray diffraction (XRD) analysis confirmed the crystalline nature of AgNPs and presence of metallic silver ions was confirmed by energy dispersive X-ray (EDX). The different concentrations (10, 20, 30 and 40 ppm) of AgNPs were exogenously applied on Citrus reticulata to record the disease incidence at different day intervals. The disease intensity was progressively increased in all the applied treatments with the passage of time. The 30 ppm concentration of AgNPs was found to be most suitable concentration for creating the resistance against brown spot disease. Moreover, the effects of AgNPs were also assessed for biochemical profiling in C. reticulata . The enhanced production of endogenous enzymes and non-enzymatic components was observed in response to 30 ppm concentration of AgNPs. The present work highlighted that green synthesised AgNPs can be as used as biological control of citrus diseases and the enhanced production of secondary metabolites antioxidants.

  9. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte.

    PubMed

    Taşaltın, Nevin; Oztürk, Sadullah; Kılınç, Necmettin; Yüzer, Hayrettin; Oztürk, Zaferziya

    2010-05-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current-time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm-2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.

  10. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    PubMed Central

    2010-01-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417

  11. Biosynthesis of silver nanoparticles using ethanolic petals extract of Rosa indica and characterization of its antibacterial, anticancer and anti-inflammatory activities.

    PubMed

    Manikandan, Ramar; Manikandan, Beulaja; Raman, Thiagarajan; Arunagirinathan, Koodalingam; Prabhu, Narayanan Marimuthu; Jothi Basu, Muthuramalingam; Perumal, Muthulakshmi; Palanisamy, Subramanian; Munusamy, Arumugam

    2015-03-05

    The present study was aimed at biosynthesis of silver nanoparticles (AgNPs) using ethanolic extract of rose (Rosa indica) petals and testing their potential antibacterial activity using selective human pathogenic microbes, anticancer activity using human colon adenocarcinoma cancer cell line HCT 15 as well as anti-inflammatory activity using rat peritoneal macrophages in vitro. The biologically synthesized AgNPs were also characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The characterized AgNPs showed an effective antibacterial activity against Gram negative (Escherichia coli, Klebsiella pneumoniae) than Gram positive (Streptococcus mutans, Enterococcus faecalis) bacteria. MTT assay, analysis of nuclear morphology, mRNA expression of Bcl-2, Bax and protein expression of caspase 3 as well as 9, indicated potential anticancer activity. In addition, green synthesized AgNPs also attenuated cytotoxicity, nuclear morphology and free radical generation (O2(-) and NO) by rat peritoneal macrophages in vitro. The results of our study show the potential green synthesis of silver nanoparticles in mitigating their toxicity while retaining their antibacterial activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Adsorption of Pb2+ ions on novel ternary nanocomposite of tin, iron and titania

    NASA Astrophysics Data System (ADS)

    Rehman, Mahfooz ur; Rehman, Wajid; Waseem, Muhammad; Haq, Sirajul; Hussain Shah, Khizar; Kang, Peng

    2018-02-01

    In this study, ternary nanocomposite (TNC) was synthesized by microemulsion method by taking Sn, Ti and Fe in (1:1:1) molar ratio. The BET surface area and pore size were measured by nitrogen adsorption method. The morphological features of TNC like particle size, elemental percentage and crystallite size were studied by scanning electron microscopy (SEM), energy dispersive x-rays (EDX) and x-rays diffraction (XRD) respectively, whereas the surface functional groups were detected by Fourier Transform Infrared (FTIR) spectroscopy. The crystallite size was found to be 11 nm, calculated from FWHM of diffraction peak with relative intensity 100%. For the thermal stability of TNC, thermogravimetric analysis (TGA) was performed. Batch adsorption tests were used for the removal of Pb2+ ions from aqueous solutions. The maximum adsorption capacity in this study was found to be 79.56 mg g-1 at 40 °C which is promising than the values reported in the literature. Based on the regression coefficient (r 2), the adsorption data was found well fitted to the Langmuir as compared to Freundlich model. The exchange of a single proton with every Pb2+ ion was calculated. Thermodynamic parameters were indicative for the sorption process to be endothermic and spontaneous.

  13. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    NASA Astrophysics Data System (ADS)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  14. Synthesis and characterization of mangenese(III) porphyrin supported on imidazole modified chloromethylated MIL-101(Cr): A heterogeneous and reusable catalyst for oxidation of hydrocarbons with sodium periodate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zadehahmadi, Farnaz; Tangestaninejad, Shahram, E-mail: stanges@sci.ui.ac.ir; Moghadam, Majid, E-mail: moghadamm@sci.ui.ac.ir

    2014-10-15

    In the present work, chloromethylated MIL-101(Cr) modified with imidazole, Im-MIL-101, was applied as a support for immobilizing of tetraphenylporphyrinatomangenese(III) chloride. The imidazole-bound MIL-101, Im-MIL-101, not only used as support for immobilization of manganese porphyrin but also applied as a heterogeneous axial base. The Mn(TPP)Cl@Im-MIL-101 catalyst was characterized by UV–vis, FT-IR, X-ray diffraction (XRD), N{sub 2} adsorption, field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), elemental analysis and inductively coupled plasma (ICP) methods. The catalytic activity of this new catalytic system was investigated in the alkene epoxidation and alkane hydroxylation using NaIO{sub 4} as an oxidant in CH{sub 3}CN/H{submore » 2}O at room temperature. This heterogeneous catalyst is highly efficient, stable and reusable in the oxidation of hydrocarbons. - Highlights: • MIL-101 was modified by covalent post synthetic modification. • Mn(TPP)Cl was anchored to imidazole modified MIL-101 by covalent attachment. • A heterogeneous catalyst was prepared. • The catalyst was used for epoxidation of alkenes and hydroxylation of alkanes. • The catalyst was reusable.« less

  15. CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor

    PubMed Central

    Xia, Lei; Xu, Lin; Song, Jian; Xu, Ru; Liu, Dali; Dong, Biao; Song, Hongwei

    2015-01-01

    The CuO inverse opal photonic crystals (IOPCs) were synthesized by the sol-gel method and modified with CdS quantum dots by successive ionic layer adsorption and reaction (SILAR). CdS QDs modified CuO IOPCs FTO electrodes of different SILAR cycles were fabricated and their electrochemical properties were studied by cyclic voltammetry (CV) and chronoamperometry (I–t). Structure and morphology of the samples were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), high-resolution TEM (HRTEM), Energy-dispersive X-ray analysis (EDX) and X-ray diffraction pattern (XRD). The result indicated that the structure of IOPCs and loading of CdS QDs could greatly improve the electrochemical properties. Three SILAR cycles of CdS QDs sensitization was the optimum condition for preparing electrodes, it exhibited a sensitivity of 4345 μA mM-1 cm-2 to glucose with a 0.15 μM detection limit (S/N= 3) and a linear range from 0.15 μM to 0.5 mM under a working potential of +0.7 V. It also showed strong stability, good reproducibility, excellent selectivity and fast amperometric response. This work provides a promising approach for realizing excellent photoelectrochemical nonenzymatic glucose biosensor of similar composite structure. PMID:26042520

  16. Electrodeposition of Zn-Co-Mo Alloy on the Steel Substrate from Citrate Bath and Its Corrosion Behavior in the Chloride Media

    NASA Astrophysics Data System (ADS)

    Keyvani, A.; Yeganeh, M.; Rezaeyan, H.

    2017-04-01

    In this study, Zn-Co-Mo coatings were deposited on the steel substrate from a citrate bath after adjusting pH, concentration, and current density. The morphology, the content of alloying elements, and the thickness of deposits were studied. Deposition behavior of these ternary coatings was examined by cathodic polarization and cyclic voltammetry (CV) techniques. The synthesized deposits were investigated by scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) analysis, x-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization methods. The results showed that the deposition potential of Zn-Co-Mo alloy was feasible in negative potentials higher than about -1.25 V versus Ag/AgCl. Moreover, the corrosion behavior of these coatings was found to be related to the extent of Mo as well as the local anodes and cathodes. The amount of molybdenum in the Zn-Co-Mo coating varied from 2.6 to 14 wt.% as a result of changing the pH. Based on the experimental findings, a narrow range of pH values between 5 and 5.5 could contribute to the high quality of coating in conjunction with the corrosion resistant alloy. Besides, the coatings with Mo element could show a passive-like behavior in the anodic region.

  17. Effect of cobalt doping on structural and dielectric properties of nanocrystalline LaCrO3

    NASA Astrophysics Data System (ADS)

    Zarrin, Naima; Husain, Shahid

    2018-05-01

    Pure and Co doped Lanthanum chromite (LaCrO3) nanoparticles, LaCr1-xCoxO3 (0≤x≤0.3), have been synthesized through sol-gel process and their structural, morphological and dielectric properties have been studied. X ray diffraction patterns reveal that the samples are in single phase having orthorhombic structure with Pnma space group. Structural parameters are refined by Rietveld refinement using Fullprof software. Lattice parameters and unit cell volume are found to decrease with increase in Co doping. Crystallite size is calculated using Scherrer equation and is also found to decrease with increase in Co concentration. Surface morphology is examined using SEM-EDX analysis, which confirms the formation of regular and homogeneous samples without any impurities. The value of dielectric constant (ɛ') decreases with the increase in frequency while it enhances with the increase in Co concentration. The log (ɛ'×f) versus log (f) graphs have been plotted to verify the universal dielectric response (UDR) model. All the samples follow UDR model in the low frequency range.

  18. Characterisation of calcium phosphate crystals on calcified human aortic vascular smooth muscle cells and potential role of magnesium.

    PubMed

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A

    2015-01-01

    Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE-SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role.

  19. Characterisation of Calcium Phosphate Crystals on Calcified Human Aortic Vascular Smooth Muscle Cells and Potential Role of Magnesium

    PubMed Central

    Louvet, Loïc; Bazin, Dominique; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Massy, Ziad A.

    2015-01-01

    Background Cardiovascular disease including vascular calcification (VC) remains the leading cause of death in patients suffering from chronic kidney disease (CKD). The process of VC seems likely to be a tightly regulated process where vascular smooth muscle cells are playing a key role rather than just a mere passive precipitation of calcium phosphate. Characterisation of the chemical and crystalline structure of VC was mainly led in patients or animal models with CKD. Likewise, Mg2+ was found to be protective in living cells although a potential role for Mg2+ could not be excluded on crystal formation and precipitation. In this study, the crystal formation and the role of Mg2+ were investigated in an in vitro model of primary human aortic vascular smooth muscle cells (HAVSMC) with physical techniques. Methodology/Principal Findings In HAVSMC incubated with increased Ca x Pi medium, only calcium phosphate apatite crystals (CPA) were detected by Micro-Fourier Transform InfraRed spectroscopy (µFTIR) and Field Effect Scanning Electron Microscope (FE — SEM) and Energy Dispersive X-ray spectrometry (EDX) at the cell layer level. Supplementation with Mg2+ did not alter the crystal composition or structure. The crystal deposition was preferentially positioned near or directly on cells as pictured by FE — SEM observations and EDX measurements. Large µFTIR maps revealed spots of CPA crystals that were associated to the cellular layout. This qualitative analysis suggests a potential beneficial effect of Mg2+ at 5 mM in noticeably reducing the number and intensities of CPA µFTIR spots. Conclusions/Significance For the first time in a model of HAVSMC, induced calcification led to the formation of the sole CPA crystals. Our data seems to exclude a physicochemical role of Mg2+ in altering the CPA crystal growth, composition or structure. Furthermore, Mg2+ beneficial role in attenuating VC should be linked to an active cellular role. PMID:25607936

  20. Instrumentation and Metrology for Nanotechnology

    DTIC Science & Technology

    2004-01-29

    dimension measurements of 3D structures, overlay, defect detection, and analysis . Critical dimension ( CD ) measurement must account for sidewall shape and...critical dimension measurements of 3D structures, overlay, defect detection, and analysis . CD measurement must account for sidewall shape and line...energy dispersive X-ray (EDX) analysis on films containing as-prepared FePt nanoparticles revealed a distribution of particle compositions. Although

  1. Benefits from bremsstrahlung distribution evaluation to get unknown information from specimen in SEM and TEM

    NASA Astrophysics Data System (ADS)

    Eggert, F.; Camus, P. P.; Schleifer, M.; Reinauer, F.

    2018-01-01

    The energy-dispersive X-ray spectrometer (EDS or EDX) is a commonly used device to characterise the composition of investigated material in scanning and transmission electron microscopes (SEM and TEM). One major benefit compared to wavelength-dispersive X-ray spectrometers (WDS) is that EDS systems collect the entire spectrum simultaneously. Therefore, not only are all emitted characteristic X-ray lines in the spectrum, but also the complete bremsstrahlung distribution is included. It is possible to get information about the specimen even from this radiation, which is usually perceived more as a disturbing background. This is possible by using theoretical model knowledge about bremsstrahlung excitation and absorption in the specimen in comparison to the actual measured spectrum. The core aim of this investigation is to present a method for better bremsstrahlung fitting in unknown geometry cases by variation of the geometry parameters and to utilise this knowledge also for characteristic radiation evaluation. A method is described, which allows the parameterisation of the true X-ray absorption conditions during spectrum acquisition. An ‘effective tilt’ angle parameter is determined by evaluation of the bremsstrahlung shape of the measured SEM spectra. It is useful for bremsstrahlung background approximation, with exact calculations of the absorption edges below the characteristic peaks, required for P/B-ZAF model based quantification methods. It can even be used for ZAF based quantification models as a variable input parameter. The analytical results are then much more reliable for the different absorption effects from irregular specimen surfaces because the unknown absorption dependency is considered. Finally, the method is also applied for evaluation of TEM spectra. In this case, the real physical parameter optimisation is with sample thickness (mass thickness), which is influencing the emitted and measured spectrum due to different absorption with TEM measurements. The effects are in the very low energy part of the spectrum, and are much more visible with most recent windowless TEM detectors. The thickness of the sample can be determined in this way from the measured bremsstrahlung spectrum shape.

  2. Is scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) quantitative?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2013-01-01

    Scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the "k-ratio" (unknown/standard) measurement protocol development for electron-excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X-ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high-throughput silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X-ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. © Wiley Periodicals, Inc.

  3. Porous carbon materials synthesized using IRMOF-3 and furfuryl alcohol as precursor

    NASA Astrophysics Data System (ADS)

    Deka, Pemta Tia; Ediati, Ratna

    2016-03-01

    IRMOF-3 crystals have been synthesized using solvothermal method by adding zinc nitrate hexahydrate with 2-amino-1,4-benzenedicarboxylic acid in N'N-dimethylformamide (DMF) at 100°C for 24 (note as IR-24) and 72 h (note as IR-72). The obtained crystals were characterized using X-ray Diffraction (XRD), SEM (Scanning Electron Microscopy) and Scanning Electron Microscopy-Energy Dispersive X-ray (SEM-EDX), FTIR and Isothermal adsorption-desorption N2. The diffractogram solids synthesized show characteristic peak at 2θ 6.8, 9.6 and 13.7°. SEM micrograph show cubic shape of IRMOF-3 crystal. Based on FTIR characterization, IRMOF-3 appear at wavelength (1691,46; 1425,3; 1238,21; 1319,22 dan 3504,42)cm-1. The Isotherm of crystal IRMOF-3 at heating time 24 h and 72 h are type IV. The surface area of IR-24 and IR-72 are respectively 24,758 m2/g and 29,139 m2/g with its dominant mesopores. Carbonaceous materials has been successfully synthesized using IR-24, IR-72 and furfuryl alcohol (FA) as second carbon precursor with variation of carbonation temperature 550, 700 and 850°C. The XRD result from both carbonaceous materials show formation of amorphous carbon and caharacteristic peak of ZnO oxide. Micrograph SEM show that carbonaceous materials have cubic shape as IRMOF-3 and SEM-EDX result indicate Zn and nitrogen content of these materials has decrease until temperature 850°C. Porous carbon using IR-24 and FA (notes as C-24) has increased surface area with higher carbonation temperature. The highest surface area is 1495,023 m2/g. Total pore volume and pore size of C-24 from low to high temperature respectively as (0,338; 0,539 and 1,598) cc/g; (0,107; 0,152 and 0,610) cc/g. Porous carbon using IR-72 and FA (notes as C-72) has smaller surface area than C-24 but its also increased during higher carbonation heating. The highest surface area is 1029,668 m2/g.The total pore volume and pore size of these carbon materials from low to high temperature respectively as (0,390; 0,727 and 1,345) cc/g and (0,065; 0,157 and 0,381) cc/g. Carbonaceous materials with high porosity and nitrogen content will be expected increase mechanical properties and hydrogen storage from these materials.

  4. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1more » surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less

  6. Structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Satyavathi, K.; Subba Rao, M.; Nagabhaskararao, Y.; Cole, Sandhya

    2018-01-01

    Pure and tungsten doped Zn3(PO4)2ZnO nanopowders (NPs) are prepared using sol-gel method. It has the longest track record of used in dentistry. It is used for cementation of inlays, crowns and orthodontic appliances. The systematic investigations like X-ray Diffraction (XRD), Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscope, Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Optical absorption, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques are carried out for the prepared NPs. XRD pattern reveals that the prepared samples are in crystalline nature in which Zn3(PO4)2 corresponding to monoclinic phase and ZnO corresponding to hexagonal wurtzite phase, the average crystallite size of prepared nanopowders is in the range of 20-30 nm. The lattice strain, lattice cell parameters, unit cell volume and dislocation density of the prepared NPs are also calculated. The morphology of the prepared NPs is analyzed with SEM and TEM images. The distribution of Zn, P, O and W species in the prepared samples are identified by the chemical composition mapping through EDX. IR spectra of prepared samples exhibit the characteristic sharp absorption band peaks. The sharp absorption bands observed in the region 1200-900 cm-1 are due to complex stretching of characteristic PO43- groups. The absorption spectra exhibit a broad band around 696 nm is recognized due to 2B2g → 2B1g (dxy → dx2- y2) transition of tungsten ions. The PL spectra exhibit four emission peaks in the visible region indicating the quantum-confinement-induced photoluminescence. The CIE chromaticity diagram suggests that the prepared NPs have good color purity. The EPR spectra indicate that the W5+ ions occupy octahedral site symmetry in the host lattice.

  7. Synthesis of titanium oxycarbonitride by carbothermal reduction and nitridation of ilmenite with recycling of polyethylene terephthalate (PET)

    NASA Astrophysics Data System (ADS)

    Ahmadi, Eltefat; Fauzi, Ahmad; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Rezan, Sheikh Abdul

    2017-04-01

    An innovative and sustainable carbothermal reduction and nitridation (CTRN) process of ilmenite (FeTiO3) using a mixture of polyethylene terephthalate (PET) and coal as the primary reductant under an H2-N2 atmosphere was proposed. The use of PET as an alternative source of carbon not only enhances the porosity of the pellets but also results in the separation of Fe from titanium oxycarbonitride (TiO x C y N z ) particles because of the differences in surface tension. The experiments were carried out at 1250°C for 3 h using four different PET contents ranging from 25wt% to 100wt% in the reductant. X-ray diffraction (XRD), scanning electron microscopy (SEM) in conjunction with energy-dispersive X-ray spectroscopy (EDX), and LECO elemental analysis were used to study the phases and microstructures of the reduced samples. In the case of 75wt% PET, iron distinctly separated from the synthesized TiO x C y N z phase. With increasing PET content in the sample, the reduction and nitridation rates substantially increased. The synthesis of an oxycarbonitride with stoichiometry of TiO0.02C0.13N0.85 with minimal intermediate titanium sub-oxides was achieved. The results also showed that the iron particles formed from CTRN of FeTiO3 exhibited a spherical morphology, which is conducive for Fe removal via the Becher process.

  8. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    PubMed

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride-releasing materials studied did not promote further benefits against caries lesion development around brackets and presented inferior demineralization inhibition than the resin-modified glass ionomer material.

  9. A potentiometric biosensor for the detection of notch 3 using functionalized ZnO nanorods.

    PubMed

    Ibupoto, Z H; Khun, K; Liu, X; Willander, M

    2014-09-01

    The notch signalling plays a vital and radical role for the activity of cellular proliferation, differentiation and apoptosis. In this study, for the first time a particular biosensor is developed for the detection of notch 3. ZnO nanorods were fabricated on the gold coated glass substrate by hydrothermal method and afterwards were decorated with the gold nanoparticles by electrodepositing technique. Scanning electron microscopy (SEM) has shown the perpendicular to the substrate growth pattern of ZnO nanorods. X-ray diffraction (XRD) studies showed the c-axis oriented growth direction with wurtzite crystal structure of ZnO nanorods. X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray (EDX) techniques have shown the presence of Zn, O and Au atoms in the prepared functional material. Furthermore, the anti-notch 3 was physically adsorbed on the gold nanoparticles functionalized ZnO nanorods. The developed potentiometric immunosensor has shown response to the wide range of notch 3 molecules. The detected range included 1.00 x 10(-5)-1.50 x 10(0 ) μg/mL with a sensitivity of 23.15 ± 0.31 mV/decade. The analytical parameters including reproducibility, stability, and selectivity were also investigated and the observed results indicate the acceptable performance of the notch 3 biosensor. Moreover, the proposed notch 3 biosensor exhibited a fast response time of 10 s.

  10. A Natural Experiment on the Condition-Dependence of Achromatic Plumage Reflectance in Black-Capped Chickadees

    PubMed Central

    D'Alba, Liliana; Van Hemert, Caroline; Handel, Colleen M.; Shawkey, Matthew D.

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association. PMID:21991378

  11. A natural experiment on the condition-dependence of achromatic plumage reflectance in black-capped chickadees.

    PubMed

    D'Alba, Liliana; Van Hemert, Caroline; Handel, Colleen M; Shawkey, Matthew D

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association.

  12. Characterization and evaluation of antibacterial activity of plant mediated calcium oxide (CaO) nanoparticles by employing Mentha pipertia extract

    NASA Astrophysics Data System (ADS)

    Ijaz, Umber; Bhatti, Ijaz Ahmed; Mirza, Saima; Ashar, Ambreen

    2017-10-01

    The antibacterial activity of green synthesized calcium oxide nanoparticles was investigated using leaf extract of Mentha piperita in this study. The synthesized nanomaterial was subjected to characterization using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and energy dispersive x-ray spectroscopy (EDX). The SEM images showed agglomeration of disc shaped nanoparticles, and FTIR and EDX spectroscopy indicated intensive peaks for calcium ions and oxygen. Subsequently, the potential of nanoscale CaO was also evaluated for antimicrobial index against E. coli using the well diffusion method. A maximum zone of inhibition up to 42 mm was observed when 100 µg ml-1 material was loaded with inoculum size 50 µl of E. coli in sunlight exposure of 5 h. The experimental conditions were optimized using a central composite design using a response surface methodology. The maximum antimicrobial index of the CaO nanoparticle was 6 mm as a result of the optimized response. Furthermore, the minimum inhibitory concentration of the CaO nanoparticle showed 25 µg ml-1, an effective initial concentration for E.coli removal. The results revealed that the CaO nanocomposite synthesized via a green route was a promising candidate for the removal of E. coli present in drinking water, which is an important fecal indicator.

  13. A natural experiment on the condition-dependence of achromatic plumage reflectance in black-capped chickadees

    USGS Publications Warehouse

    D'Alba, L.; Van Hemert, C.; Handel, Colleen M.; Shawkey, M.D.

    2011-01-01

    Honest advertisement models posit that only individuals in good health can produce and/or maintain ornamental traits. Even though disease has profound effects on condition, few studies have experimentally tested its effects on trait expression and even fewer have identified a mechanistic basis for these effects. Recent evidence suggests that black and white, but not grey, plumage colors of black-capped chickadees (Poecile atricapillus) are sexually selected. We therefore hypothesized that birds afflicted with avian keratin disorder, a condition that affects the beak and other keratinized tissues, would show reduced expression of black and white, but not grey, color. UV-vis spectrometry of black-capped chickadees affected and unaffected by avian keratin disorder revealed spectral differences between them consistent with this hypothesis. To elucidate the mechanistic bases of these differences, we used scanning electron microscopy (SEM), electron-dispersive x-ray spectroscopy (EDX) and a feather cleaning experiment. SEM showed extreme feather soiling in affected birds, and EDX revealed that this was most likely from external sources. Experimentally cleaning the feathers increased color expression of ornamental feathers of affected, but not unaffected, birds. These data provide strong evidence that black and white color is an honest indicator in chickadees, and that variation in feather dirtiness, likely due to differences in preening behavior is a mechanism for this association.

  14. Magnesium prevents phosphate-induced vascular calcification via TRPM7 and Pit-1 in an aortic tissue culture model.

    PubMed

    Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Masumoto, Asuka; Nakashima, Yuri; Ito, Teppei; Mima, Toru; Negi, Shigeo; Kimura-Suda, Hiromi; Shigematsu, Takashi

    2017-06-01

    Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mm magnesium. The FTIR images and SEM-EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was increased in tissues cultured in HP medium and was gradually-and dose dependently-decreased by magnesium. We conclude that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.

  15. High temperature Oxidation of ODS alloy with zirconia dispersions synthesized using Arc Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Bandriyana; Sujatno, A.; Salam, R.; Sugeng, B.; Dimyati, A.

    2017-02-01

    Microstructure formation and oxidation behaviour of the Oxide Dispersion Strengthened (ODS) steels for application as structure material in Nuclear Power Plant was investigated. A mixture composed of Fe and 12 wt. % Cr powder with addition of 0.5 and 1 wt.% ZrO2 particles was milled and isostatic pressed to form a sample coin. The coin was then consolidated in the Arc Plasma Sintering (APS) for 4 minutes. The samples were subjected to the high temperature oxidation test in the Magnetic Suspension Balance (MSB). The oxidation test was carried out at 700°C for 6 hours to evaluate the oxide growth in the early stage of it formation by extraction the mass gain curve. The Scanning Electron Microscope (SEM) imaging and X-ray Diffraction Spectroscopy (EDX) elemental mapping were performed to study the microstructure change and compositional distribution. SEM and EDX observation revealed the time dependent development of the Fe-Cr-phases during consolidation. The oxidation rate behaviour of the samples followed the parabolic rate characteristic for inward oxidation process driven by oxygen inward diffusion through the oxide scale with the maximum weight gain around of 60 g/m2. The oxidation resistance was strongly affected by the formation of the oxide protective layer on the surface. In so far, addition of zirconia particles has played no significant role to the oxidation behaviour.

  16. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images.

    PubMed

    Hapca, Simona; Baveye, Philippe C; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution.

  17. Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images

    PubMed Central

    Hapca, Simona; Baveye, Philippe C.; Wilson, Clare; Lark, Richard Murray; Otten, Wilfred

    2015-01-01

    There is currently a significant need to improve our understanding of the factors that control a number of critical soil processes by integrating physical, chemical and biological measurements on soils at microscopic scales to help produce 3D maps of the related properties. Because of technological limitations, most chemical and biological measurements can be carried out only on exposed soil surfaces or 2-dimensional cuts through soil samples. Methods need to be developed to produce 3D maps of soil properties based on spatial sequences of 2D maps. In this general context, the objective of the research described here was to develop a method to generate 3D maps of soil chemical properties at the microscale by combining 2D SEM-EDX data with 3D X-ray computed tomography images. A statistical approach using the regression tree method and ordinary kriging applied to the residuals was developed and applied to predict the 3D spatial distribution of carbon, silicon, iron, and oxygen at the microscale. The spatial correlation between the X-ray grayscale intensities and the chemical maps made it possible to use a regression-tree model as an initial step to predict the 3D chemical composition. For chemical elements, e.g., iron, that are sparsely distributed in a soil sample, the regression-tree model provides a good prediction, explaining as much as 90% of the variability in some of the data. However, for chemical elements that are more homogenously distributed, such as carbon, silicon, or oxygen, the additional kriging of the regression tree residuals improved significantly the prediction with an increase in the R2 value from 0.221 to 0.324 for carbon, 0.312 to 0.423 for silicon, and 0.218 to 0.374 for oxygen, respectively. The present research develops for the first time an integrated experimental and theoretical framework, which combines geostatistical methods with imaging techniques to unveil the 3-D chemical structure of soil at very fine scales. The methodology presented in this study can be easily adapted and applied to other types of data such as bacterial or fungal population densities for the 3D characterization of microbial distribution. PMID:26372473

  18. Effect of T6 heat treatment on the microstructural and mechanical properties of Al-Si-Cu-Mg alloys

    NASA Astrophysics Data System (ADS)

    Patel, Dhruv; Davda, Chintan; Solanki, P. S.; Keshvani, M. J.

    2016-05-01

    In this communication, it is aimed to optimize the conditions for T6 heat treatment of permanent die cast Al-Si-Cu-Mg alloys. Various solutionizing temperatures, aging treatments and soaking times were used to improve / modify the mechanical properties of presently studied alloys. Formation mechanism of the particles was understood by carrying out optical microscopy and energy dispersive X-ray (EDX) spectroscopy measurements. Spherical particles of alloys were studied for their microstructural properties using scanning electron microscopy (SEM). Microhardness test was performed to investigate their mechanical properties. Dependence of cluster formation and microhardness of the alloys on the adequate solutionizing temperature, aging treatment and soaking time has been discussed in detail.

  19. Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahdan, Dalila; Ahmad, Sahrim Hj.; Flaifel, Moayad Husein

    2013-11-27

    The influence of sonication treatment time on the morphological and mechanical properties of LNR/PLA composite impregnated with different filler loadings of NiZn ferrite nanoparticles was investigated. The nanocomposite was prepared using melt blending method with assistance of ultrasonic treatment of 0, 1 and 2 hrs. Structural characterization of the nanocomposites was examined using scanning electron microscopy (SEM) with their elemental composition being confirmed by energy dispersive X-ray spectroscopy (EDX). The tensile properties of LNR/PLA composite treated with different ultrasonication times have improved with increasing magnetic nanofiller signature in the nanocomposite. Further, the optimum sonication time of 1 hr was foundmore » to produce nanocomposite with maximum tensile properties.« less

  20. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  1. Rapid photo-degradation of 2-chlorophenol under visible light irradiation using cobalt oxide-loaded TiO2/reduced graphene oxide nanocomposite from aqueous media.

    PubMed

    Sharma, Ajit; Lee, Byeong-Kyu

    2016-01-01

    The photocatalytic removal of 2-chlorophenol (2-CP) from water environment was investigated by TiO2-RGO-CoO. Cobalt oxide-loaded TiO2 (TiO2-CoO) supported with reduced graphene oxide (RGO) was synthesized using a sol-gel method and then annealed at 500 °C for 5 min. The material characteristics were analyzed by UV-Vis analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. Incorporation of cobalt oxide and RGO into the TiO2 system (TiO2-RGO-CoO) lowered the band gap energy to 2.83 eV, which greatly enhanced the visible light absorption. The TiO2-RGO-CoO photocatalyst showed complete removal of 20 mg/L 2-CP within 8 h with the addition of 0.01% H2O2 under 100 W visible light irradiation. The photo-degradation efficiency of 2-CP (10 mg/L) was 35.2, 48.9, 58.9 and 98.2% for TiO2, TiO2-RGO, TiO2-CoO and TiO2-RGO-CoO, respectively, in the presence of visible light irradiation at solution pH of 6.0. The TiO2-RGO-CoO photocatalyst retained its high removal efficiency even after five photocatalytic cycles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Carbonate scale deactivating the biocathode in a microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Santini, M.; Marzorati, S.; Fest-Santini, S.; Trasatti, S.; Cristiani, P.

    2017-07-01

    The development and the following inactivation of a carbon-based biocathode in single chamber and membraneless MFCs was investigated in this work. The electrochemical behavior of the biocathode has been analyzed over time during the MFC life. X-Ray Micro-Computed Tomographies (microCTs) have been carried out at progressive stages, documenting the building over time of a layer of scale deposition becoming thicker and thicker up to the cathode inactivation. The technique provides cross-sectional (tomographic) grayscale images and 3D reconstruction of volumes. Lighter color indicates lower X-ray attenuation (i.e., lower atomic density) thus allowing distinguishing biofilm from inorganic fouling on the basis of the average atomic number Z of each voxel (3D pixel). MicroCT was combined with Scanning Electron Microscopy (SEM) and Energy-Dispersive X-Ray Spectroscopy (EDX) in order to qualitatively recognize chemical species in each different layer of the cathode's section. Results correlated the presence of biofilm and calcium carbonate deposits, prevalently in the inner part of the cathode, with the produced electric current over time. A specific microCT-related software quantified the time-dependent carbonate scale deposition, identifying a correlation between the decreasing performances of the device and the increasing quantity of scale deposition that penetrates the cathode cross section in time.

  3. The use of small angle X-ray scattering (SAXS) for the characterisation of lustre surfaces in Renaissance majolica

    NASA Astrophysics Data System (ADS)

    Fermo, P.; Cariati, F.; Cipriani, C.; Canetti, M.; Padeletti, G.; Brunetti, B.; Sgamellotti, A.

    2002-01-01

    In this work some Renaissance lustre decorated ceramics have been examined. Our attention was directed to lustre which is a thin decorative metallic film applied on the surfaces of previously glazed ancient pottery. Some 16th century lustre ceramics shards from Deruta, Umbria (Italy) have been analysed by small angle X-ray scattering (SAXS) in order to characterise the dimension of the metal nanocrystals forming the thin lustre layer. This technique appeared to be a powerful tool to characterise lustre films nanostructure and may be successfully used for this purpose together with transmission electron microscopy (TEM). Furthermore, SAXS measurements are extremely suitable for the determination of polydispersity and average interparticle distance. The lustre surfaces have been also analysed by scanning electron microscopy plus X-ray energy dispersive spectrometry (SEM-EDX) in order to identify the metals present (silver, copper or both of them) and to establish copper/silver ratios. From the comparison between SAXS results and compositional data, it was possible to conclude that copper particles are smaller than the silver ones. We have evidenced how the microtexture as well as the chemical composition of the lustre layers are responsible for the gold or red colour typical of the lustre films.

  4. Photocatalytic degradation of methylene blue dye and magneto-optical studies of magnetically recyclable spinel NixMn1-xFe2O4 (x = 0.0-1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mathubala, G.; Manikandan, A.; Arul Antony, S.; Ramar, P.

    2016-06-01

    Nickel doped spinel manganese ferrite (NixMn1-xFe2O4: x = 0.0-1.0) nanoparticles were prepared successfully by a superficial microwave irradiation technique using urea as the fuel. Powder X-ray diffraction (XRD) analysis was recognized the configuration of single phase spinel structure of NixMn1-xFe2O4. Debye Sherrer's formula was used to calculate the average crystallite size of the samples, which were found in the range of 15-20 nm. High resolution scanning electron microscopy (HR-SEM) was used to analyze the surface morphology of the samples, which showed the particle like-morphology with smaller agglomeration, and it was also confirmed by high resolution transmission electron microscopy (HR-TEM). Energy dispersive X-ray (EDX) analysis confirmed the elemental composition, which also evidence for the formation of single pure phase. Microwave heating method produced well crystalline nature of the products, which was confirmed by selected area electron diffraction (SAED) analysis. UV-Visible diffuse reflectance spectra (DRS) were used to calculate the energy band gap and the observed values are increased slightly from 2.05 eV to 2.44 eV with increasing the Ni-dapant. Magnetic characterization of the samples were analyzed by room temperature vibrating sample magnetometer (VSM) technique and the observed magnetization (Ms) values are decreased with increasing Ni content, due to the different magnetic moments of Mn2+ and Ni2+ cations. Photocatalytic degradation (PCD) of methylene blue dye was carried out by self designed photo-catalytic reactor. It was observed that PCD efficiency is increased with increase in concentration of Ni and the sample Ni0.6Mn0.4Fe2O4 shows better photocatalytic activity (96.73%) than other samples.

  5. Microscale reconstruction of biogeochemical substrates using multimode X-ray tomography and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.

    2012-12-01

    X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.

  6. Quantitative determination of occupation sites of trace Co substituted for multiple Fe sites in M-type hexagonal ferrite using statistical beam-rocking TEM-EDXS analysis.

    PubMed

    Ohtsuka, Masahiro; Muto, Shunsuke; Tatsumi, Kazuyoshi; Kobayashi, Yoshinori; Kawata, Tsunehiro

    2016-04-01

    The occupation sites and the occupancies of trace dopants in La/Co co-doped Sr-M-type ferrite, SrFe12O19, were quantitatively and precisely determined by beam-rocking energy-dispersive X-ray spectroscopy (EDXS) on the basis of electron-channeling effects. Because the Co atoms, in particular, should be partially substituted for the five crystallographically inequivalent sites, which could be key parameters in improving the magneto-crystalline anisotropy, it is difficult yet intriguing to discover their occupation sites and occupancies without using the methods of large-scale facilities, such as neutron diffraction and synchrotron radiation. In the present study, we tackled this problem by applying an extended statistical atom location by channeling enhanced microanalysis method, using conventional transmission electron microscopy, EDXS and dynamical electron elastic/inelastic scattering theories. The results show that the key occupation sites of Co were the 2a, 4f1 and 12k sites. The quantified occupancies of Co were consistent with those of the previous study, which involved a combination of neutron diffraction and extended X-ray absorption fine structure analysis, as well as energetics considerations based on by first-principles calculations. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Arsenic scavenging by aluminum-substituted ferrihydrites in a circumneutral pH river impacted by acid mine drainage.

    PubMed

    Adra, Areej; Morin, Guillaume; Ona-Nguema, Georges; Menguy, Nicolas; Maillot, Fabien; Casiot, Corinne; Bruneel, Odile; Lebrun, Sophie; Juillot, Farid; Brest, Jessica

    2013-11-19

    Ferrihydrite (Fh) is a nanocrystalline ferric oxyhydroxide involved in the retention of pollutants in natural systems and in water-treatment processes. The status and properties of major chemical impurities in natural Fh is however still scarcely documented. Here we investigated the structure of aluminum-rich Fh, and their role in arsenic scavenging in river-bed sediments from a circumneutral river (pH 6-7) impacted by an arsenic-rich acid mine drainage (AMD). Extended X-ray absorption fine structure (EXAFS) spectroscopy at the Fe K-edge shows that Fh is the predominant mineral phase forming after neutralization of the AMD, in association with minor amount of schwertmannite transported from the AMD. TEM-EDXS elemental mapping and SEM-EDXS analyses combined with EXAFS analysis indicates that Al(3+) substitutes for Fe(3+) ions into the Fh structure in the natural sediment samples, with local aluminum concentration within the 25-30 ± 10 mol %Al range. Synthetic aluminous Fh prepared in the present study are found to be less Al-substituted (14-20 ± 5 mol %Al). Finally, EXAFS analysis at the arsenic K-edge indicates that As(V) form similar inner-sphere surface complexes on the natural and synthetic Al-substituted Fh studied. Our results provide direct evidence for the scavenging of arsenic by natural Al-Fh, which emphasize the possible implication of such material for scavenging pollutants in natural or engineered systems.

  8. Control of surface topography in biomimetic calcium phosphate coatings.

    PubMed

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alammar, Tarek; Cybinska, Joanna; Campbell, Paul S.

    In this study, sonication of Ln(CH 3COO) 3·H 2O, Eu(CH 3COO) 3·H 2O and NaOH dissolved in the ionic liquid-butyl-3-methylimidazolium bis(trifluoromethane)sulfonylamide lead to Ln(OH) 3:Eu (Ln: Gd, La, Y) nanoparticles. Subsequent calcination at 800 °C for 3 h allowed to obtain Ln 2O 3:Eu nanopowders. Gd 2O 3 and Y 2O 3 were obtained in the C-type lanthanide sequioxide structure, whereas La 2O 3 crystallized in the A-type. Structure, morphology, and luminescent properties of the nano-oxides were investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), dispersive X-ray (EDX), and photoluminescence (PL). SEM studies revealed that the synthesized Gdmore » 2O 3:Eu, La 2O 3:Eu, and Y 2O 3:Eu formed nano-spindle, -sheets, and -rods in shape, respectively. The nanoscale materials show very efficient red emission due to the intraconfigurational f–f transitions of Eu 3+. The quantum yields for Ln 2O 3:Eu (5%) were determined to be 4.2% for Ln=Gd, 13.8% for Ln=Y and 5.2% for Ln=La. The asymmetric ratio I 02/I 01 of Eu 3+ varies from 5.3 for Gd 2O 3, to 5.6 for Y 2O 3 to 6.5 for La 2O 3, which increased the color chromaticity.« less

  10. Nano-photo active cellulosic fabric through in situ phytosynthesis of star-like Ag/ZnO nanocomposites: Investigation and optimization of attributes associated with photocatalytic activity.

    PubMed

    Aladpoosh, Razieh; Montazer, Majid

    2016-05-05

    In this study, nano-photo active cellulosic fabric was prepared through in situ phytosynthesis of star-like Ag/ZnO nanocomposites using the ashes of Seidlitzia rosmarinus plants so-called Keliab. This is provided alkali media as a vital condition for synthesis of nanocomposites, further increasing the reduce-ability of cellulosic chains by activation of hydroxyl groups. The intermolecular dehydrolysis of intermediates ions under thermal and alkaline conditions leads to formation of Ag/ZnO heterostructure. Various analytical techniques were employed to confirm Ag/ZnO nanocomposites on the cotton fabric. The surface morphology, crystal phase and chemical structure of the treated fabrics were characterized by field emission and scanning electron microscopy (FE-SEM and SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDX). Moreover, influence of precursors: silver nitrate, zinc acetate and Keliab solution on attributes associated with photocatalytic activities including self-cleaning, whiteness and wettability was investigated via central composite design (CCD). The treated cotton samples exhibited self-cleaning activities through methylene blue degradation under day-light exposure along with improved wettability and whiteness. The prepared sample in optimized conditions showed good antibacterial activities against Staphylococcus aureus and Escherichia coli with enhanced fabric tensile strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Facile Synthesis of Efficient Antibacterial Agent as CoFe₂O₄/Ag Composite Material Against Both Gram-Negative Escherichia coli and Gram-Positive Bacillus subtilis Bacteria.

    PubMed

    Gankhuyag, Sukhbayar; Lee, Kyoung; Bae, Dong Sik

    2018-09-01

    We have suggested that a facile synthesis of CoFe2O4/Ag composite material as an antibacterial agent for substitution of a chlorination agent for microbial infected wastewater treatment. The CoFe2O4/Ag was synthesized by an impregnation method in assistance with trisodium citrate as a reducing agent. The as-prepared uncalcined CoFe2O4 (CFG), calcined CoFe2O4 (CFG600), and calcined CoFe2O4/Ag (CFG600/Ag) composites were characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and Energy Dispersive X-ray (EDX) techniques. Antibacterial activities were also determined in liquid culture by measuring the minimum inhibitory concentrations (MIC) against Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) bacteria in vitro. Results showed that CFG600/Ag composites had an excellent antibacterial activity in comparison with CFG and CFG600 composites. The CFG600/Ag composites have completely inhibited the growth of both E. coli and B. subtilis bacteria from concentrations of more than 0.25 mg/ml. Furthermore, the FE-SEM study demonstrated the physical damage of bacteria when treated with CFG600/Ag composite material at a concentration of 0.10 mg/ml.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gholipur, Reza, E-mail: gholipur.reza@gmail.com; Bahari, Ali, E-mail: a.bahari@umz.ac.ir

    Highlights: • Glassy Ce{sub x}La{sub 1−x}O{sub y} nanostructure films were grown on Si(1 0 0) substrate using the sol–gel method. • G{sub p} = ωϵ{sub 0}ϵ′ tan(δ) was calculated at different temperatures. • Electrical and structural the Ce{sub x}La{sub 1−x}O{sub y} samples were studied. • The conductivity-temperature study shows that the compound obeys the Arrhenius law. - Abstract: The Ce{sub x}La{sub 1−x}O{sub y} samples are synthesized, characterized and their electrical properties are reported at different molar ratios in the frequency range of 10{sup −1}–10{sup +5} Hz. Ac conductivity and permittivity data are analyzed by using conductivity formalism. The values ofmore » capacitance and tan(δ) were recorded with respect to different frequencies and temperatures. X-ray diffraction (XRD) patterns of the films show that the films posses crystalline phases. Surface morphology of the films is analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) analyses reveal that elemental composition is in right stoichiometry. Electrical characterizations of the Ce{sub x}La{sub 1−x}O{sub y} samples were done by capacitance–voltage (C–V) and current density–voltage (J–V) measurements of MOS structures. Investigation showed high value of k = 44.80 and low leakage current (∼1 × 10{sup −5} A/cm{sup 2}) of the Ce{sub 0.4}La{sub 0.6}O{sub y} film.« less

  13. Deletion of epithelial cell-specific Cdc42 leads to enamel hypermaturation in a conditional knockout mouse model.

    PubMed

    Tian, Zhihui; Lv, Xiaolin; Zhang, Min; Wang, Xueer; Chen, Yinghua; Tang, Pei; Xu, Pengcheng; Zhang, Lu; Wu, Buling; Zhang, Lin

    2018-04-21

    Recent evidence suggests that GTPases Rho family plays an important role in tooth development; however, the role of Cdc42 in tooth development remains unclear. We aimed to investigate the function of Cdc42 in tooth development and amelogenesis. We generated an epithelial cell-specific K5-Cdc42 knockout (KO) mouse to evaluate post-eruption dental phenotypes using a K5-Cre driver line. This model overcomes the previously reported perinatal lethality. Tooth phenotypes were analyzed by micro X-ray, micro-computed tomography (CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), wear rate, shear strength, and a microhardness test. Enamel matrix protein expression was determined by immunohistochemistry. KO mice displayed a hypomaturation phenotype, including incisors that lacked yellow pigmentation and were abnormally white, rapid attrition of molars following eruption, and decreased micro-hardness and shearing strength. Micro-CT data revealed that of incisor and molar enamel volumes were smaller in the KO than in wild-type (WT) mice. SEM analysis showed that the enamel prism structure was disordered. In addition, HE staining indicated a remarkable difference in the ameloblast morphology and function between KO and WT mice, and immunohistochemistry showed increased expression of amelogenin, ameloblastin, matrix metallopeptidase 20, kallikrein-related peptidase 4 and amelotin in the KO mice teeth. Our results suggest epithelium cell-specific Cdc42 deletion leads to tooth hypomaturation and transformation of the enamel prism structure that is likely due to altered ameloblast morphology and the secretion of enamel matrix proteins and proteases. This is the first in vivo evidence suggesting that Cdc42 is essential for proper tooth development and amelogenesis. Copyright © 2018. Published by Elsevier B.V.

  14. TEM analysis of irradiation-induced interaction layers in coated UMo/X/Al trilayer systems (X= Ti, Nb, Zr, and Mo)

    NASA Astrophysics Data System (ADS)

    Chiang, H.-Y.; Wiss, T.; Park, S.-H.; Dieste-Blanco, O.; Petry, W.

    2018-02-01

    Uranium-molybdenum (UMo) alloy powder embedded in an Al matrix is considered as a promising candidate for fuel conversion of research reactors. A modified system with a diffusion barrier X as coating, UMo/X/Al trilayer (X = Ti, Zr, Nb, and Mo), has been investigated to suppress interdiffusion between UMo and the Al matrix. The trilayer systems were tested by swift heavy ion irradiation, the thereby created interaction zone has been analyzed by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX). Detailed structural characterization are presented and compared to earlier μ-XRD analysis.

  15. Rocking-beam spectrum images and ALCHEMI of Ni{sub 50}Al{sub 40}Fe{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.; Bentley, J.

    1997-04-01

    A rocking-beam energy-dispersive X-ray (EDX) spectrum image was acquired near the [035] zone axis of a B2-ordered alloy of composition Ni{sub 50}Al{sub 40}Fe{sub 10}. Images comparable to those acquired by Rossouw et al. were formed a posteriori by integrating the X-ray intensities in windows enclosing the Al-K, Fe-K{sub {alpha}}, and Ni-K{sub {alpha}} characteristic X-ray peaks for each pixel of the spectrum image. These images are shown along with a bright-field transmission channeling pattern (TCP), which records the signal from the bright-field STEM detector as the incident beam direction is varied with the beam-tilt coils, and an EDX spectrum from onemore » pixel of the image. The range of orientations from which the spectrum image was acquired is indicated by the square superimposed on the TCP. ALCHEMI (atom-location by channeling-enhanced microanalysis) was performed on a subset of the spectrum image using standard methods. Spectra from a series of {approximately}30 pixels along lines parallel to the (200) band were summed at each of 31 orientations relative to the band in the range 0 {le} {theta}/{theta}{sub 200} {le} 2.3. Characteristic X-ray intensities of the K-shell X-rays of Ni, Fe, and Al were extracted from the 31 summed spectra with the simplex fitting procedure of the DTSA spectral analysis software. The fraction of Fe on the `Ni`-site from this analysis, p{sub Fe`Ni`} = 23.8 {+-} 2.1%, is in excellent agreement with p{sub Fe`Ni`} = 23.7 {+-} 0.9%, which was determined by an analysis of a series of ten spectra acquired at orientations of the crystal carefully chosen so that the contributions of nonsystematic reflections are negligible.« less

  16. Effect of Processing Parameters on Thermal Cycling Behavior of Al2O3-Al2O3 Brazed Joints

    NASA Astrophysics Data System (ADS)

    Dandapat, Nandadulal; Ghosh, Sumana; Guha, Bichitra Kumar; Datta, Someswar; Balla, Vamsi Krishna

    2016-10-01

    In the present study, alumina ceramics were active metal brazed at different temperatures ranging from 1163 K to 1183 K (890 °C to 910 °C) using TICUSIL (68.8Ag-26.7Cu-4.5Ti in wt pct) foil as filler alloy of different thicknesses. The brazed joints were subjected to thermal cycling for 100 cycles between 323 K and 873 K (50 °C and 600 °C). The microstructural and elemental composition analysis of the brazed joints were performed by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) before and after thermal cycling. Helium (He) leak test and brazing strength measurement were also conducted after thermal cycling for 100 cycles. The joint could withstand up to 1 × 10-9 Torr pressure and brazing strength was higher than 20 MPa. The experimental results demonstrated that joints brazed at the higher temperature with thinner filler alloy produced strong Al2O3-Al2O3 joints.

  17. Investigation of white pigments used as make-up during the Greco-Roman period

    NASA Astrophysics Data System (ADS)

    Welcomme, E.; Walter, P.; van Elslande, E.; Tsoucaris, G.

    2006-06-01

    Different white pigments were used during antiquity to prepare white make-up for women faces. Combining observations and elemental analysis with structural information, we were able to determine the mineralogical composition of cosmetics, the trace element content and the microstructure of the crystals. SEM/EDX analyses enabled us to describe the choice of materials and their preparation by grinding or chemical synthesis to obtain white pigments. For the Hellenistic period, we have mainly found lead white, which required an elaborated synthesis process. Quantitative X-ray diffraction allowed us to establish different ratios of hydrocerussite 2PbCO3·Pb(OH)2 and cerussite PbCO3. These data can be linked to the chemical conditions of preparation described by ancient authors. On the other hand, analyses of Roman cosmetics from Pompeii, Gaul and Germany show the use of materials commonly found in nature like gypsum or calcite. We will discuss the material properties in relation with the make-up uses.

  18. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy

    PubMed Central

    Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang

    2016-01-01

    An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition. PMID:28774103

  19. Fabrication of cellulose-based aerogels from waste newspaper without any pretreatment and their use for absorbents.

    PubMed

    Jin, Chunde; Han, Shenjie; Li, Jingpeng; Sun, Qingfeng

    2015-06-05

    Cellulose-based aerogel (CBA) was prepared from waste newspaper (WNP) without any pretreatment using 1-allyl-3-methyimidazolium chloride (AmImCl) as a solvent via regeneration and an environmentally friendly freeze-drying method. After being treated with trimethylchlorosilane (TMCS) via a simple thermal chemical vapor deposition process, the resulting CBAs were rendered both hydrophobic and oleophilic. Successful silanization on the surface of the porous CBA was verified by a variety of techniques including scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), and water contact angle (WCA) measurements. As a result, the silane-coated, interconnected CBAs not only exhibited good absorption performance for oils (e.g., waste engine oil), but also showed absorption capacity for organic solvents such as chloroform (with a representative weight gain ranging from 11 to 22 times of their own dry weight), making them diversified absorbents for potential applications including sewage purification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy.

    PubMed

    Wang, Jun; Xu, Hong; Su, Tiexiong; Zhang, Yi; Guo, Zhen; Mao, Huping; Zhang, Yangang

    2016-12-05

    An investigation was carried out in order to study the fretting fatigue behavior of an AlSi9Cu2Mg aluminum alloy. The fretting fatigue tests of AlSi9Cu2Mg were performed using a specially designed testing machine. The failure mechanism of fretting fatigue was explored by studying the fracture surfaces, fretting scars, fretting debris, and micro-hardness of fretting fatigue specimens using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and micro Vickers hardness test techniques. The experimental results show that the fretting fatigue limit (42 MPa) is significantly reduced to approximately 47% of the plain fatigue limit (89 MPa) under 62.5 MPa contact pressure. Furthermore, the fretting fatigue life decreases with increasing alternating stress and increasing contact pressure. The examination results suggest that the stress concentrates induced by oxidation-assisted wear on the contact interface led to the earlier initiation and propagation of crack under the fretting condition.

  1. Laboratory simulations of atmospheric entry of micrometeoroids: ablation of magnesium

    NASA Astrophysics Data System (ADS)

    Bones, David; Gomez Martin, Juan Carlos; Diego Carrillo Sanchez, Juan; Dobson, Alexander; Plane, John

    2017-04-01

    We address the uncertainty in the cosmic dust input into the Earth's atmosphere by simulating the atmospheric entry of micrometeoroids in a custom built chamber, capable of heating particles to 3000 K in 2 s and able to precisely reproduce representative heating profiles. In lieu of interplanetary cosmic dust, we use a range of ground-up recovered meteorites and mineral analogues. We measure the ablation of two metals simultaneously with laser induced fluorescence (LIF). The resulting ablation profiles can be compared with the composition of the remaining, unablated particle, as determined from scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analysis. Building on earlier studies of Na, Fe and Ca, here we present Mg profiles and compare them with results from our chemical ablation model (CABMOD). In general, Mg behaves as predicted, beginning to ablate steadily as one broad ablation peak once temperatures reach 2000 K. In contrast Fe, which should behave similarly to Mg, typically has two ablation peaks due to being present in two distinct phases.

  2. First Description of Sulphur-Oxidizing Bacterial Symbiosis in a Cnidarian (Medusozoa) Living in Sulphidic Shallow-Water Environments.

    PubMed

    Abouna, Sylvie; Gonzalez-Rizzo, Silvina; Grimonprez, Adrien; Gros, Olivier

    2015-01-01

    Since the discovery of thioautotrophic bacterial symbiosis in the giant tubeworm Riftia pachyptila, there has been great impetus to investigate such partnerships in other invertebrates. In this study, we present the occurrence of a sulphur-oxidizing symbiosis in a metazoan belonging to the phylum Cnidaria in which this event has never been described previously. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) observations and Energy-dispersive X-ray spectroscopy (EDXs) analysis, were employed to unveil the presence of prokaryotes population bearing elemental sulphur granules, growing on the body surface of the metazoan. Phylogenetic assessments were also undertaken to identify this invertebrate and microorganisms in thiotrophic symbiosis. Our results showed the occurrence of a thiotrophic symbiosis in a cnidarian identified as Cladonema sp. This is the first report describing the occurrence of a sulphur-oxidizing symbiosis in a cnidarian. Furthermore, of the two adult morphologies, the polyp and medusa, this mutualistic association was found restricted to the polyp form of Cladonema sp.

  3. Antimicrobial cellulosic hydrogel from olive oil industrial residue.

    PubMed

    Dacrory, Sawsan; Abou-Yousef, Hussein; Abouzeid, Ragab E; Kamel, Samir; Abdel-Aziz, Mohamed S; El-Badry, Mohamed

    2018-05-25

    The cellulose-based antimicrobial hydrogel was prepared from seed and husk cellulosic fibers of olive industry residues by load silver nanoparticles (AgNPs) onto grafted acrylamide monomer (Am) cellulosic fibers. The grafting approach was the free radical mechanism by utilizing ceric ammonium nitrate (CAN) as initiator in aqueous medium and N,N methylene bisacrylamide (MBAm) as a cross linker. The effect of different grafting conditions on the properties of produced hydrogels has been studied by determining the grafting parameters, i.e. concentration of Am, MBAm, grafting time and temperature to optimize grafting yield (G %), grafting efficiency (GE %), and swelling %. Characterizations of the obtained hydrogels were performed through monitoring swelling behavior, FTIR spectroscopy, SEM, and EDX. AgNPs were grown into the prepared hydrogel. Hydrogel/AgNPs were characterized by FT-IR spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The hydrogel loaded AgNPs exhibit high efficient antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. Copyright © 2018. Published by Elsevier B.V.

  4. [Effects of laser welding on bond of porcelain fused cast pure titanium].

    PubMed

    Zhu, Juan-fang; He, Hui-ming; Gao, Bo; Wang, Zhong-yi

    2006-04-01

    To investigate the influence of the laser welding on bond of porcelain fused to cast pure titanium. Twenty cast titanium plates were divided into two groups: laser welded group and control group. The low-fusing porcelain was fused to the laser welded cast pure titanium plates at fusion zone. The bond strength of the porcelain to laser welded cast pure titanium was measured by the three-point bending test. The interface of titanium and porcelain was investigated by scanning electron microscopy (SEM) and energy depressive X-ray detector (EDX). The non-welded titanium plates were used as comparison. No significant difference of the bond strength was found between laser-welded samples [(46.85 +/- 0.76) MPa] and the controls [(41.71 +/- 0.55) MPa] (P > 0.05). The SEM displayed the interface presented similar irregularities with a predominance. The titanium diffused to low-fusing porcelain, while silicon and aluminum diffused to titanium basement. Laser welding does not affect low-fusing porcelain fused to pure titanium.

  5. Study of water-oil emulsion combustion in large pilot power plants for fine particle matter emission reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allouis, C.; Beretta, F.; L'Insalata, A.

    2007-04-15

    The combustion of heavy fuel oil for power generation is a great source of carbonaceous and inorganic particle emissions, even though the combustion technologies and their efficiency are improving. The information about the size distribution function of the particles originated by trace metals present into the fuels is not adequate. In this paper, we focused our attention the influence of emulsion oil-water on the larger distribution mode of both the carbonaceous and metallic particles. Isokinetic sampling was performed at the exhausts of flames of a low-sulphur content heavy oil and its emulsion with water produced in two large pilot plants.more » The samples were size-segregated by mean of an 8-stages Andersen impactor. Further investigation performed on the samples using electronic microscopy (SEM) coupled with X-ray analysis (EDX) evidenced the presence of solid spherical particles, plerosphere, with typical dimensions ranging between 200 nm and 2-3 {mu}m, whose atomic composition contains a large amount of the trace metals present in the parent oils (Fe, V, Ni, etc.). EDX analyses revealed that the metal concentration increases as the plerosphere dimension decreases. We also observed that the use of emulsion slightly reduce the emission of fine particles (D{sub 50} < 8 {mu}m) in the large scale plant. (author)« less

  6. Data Fitting to Study Ablated Hard Dental Tissues by Nanosecond Laser Irradiation.

    PubMed

    Al-Hadeethi, Y; Al-Jedani, S; Razvi, M A N; Saeed, A; Abdel-Daiem, A M; Ansari, M Shahnawaze; Babkair, Saeed S; Salah, Numan A; Al-Mujtaba, A

    2016-01-01

    Laser ablation of dental hard tissues is one of the most important laser applications in dentistry. Many works have reported the interaction of laser radiations with tooth material to optimize laser parameters such as wavelength, energy density, etc. This work has focused on determining the relationship between energy density and ablation thresholds using pulsed, 5 nanosecond, neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12 (Nd:YAG) laser at 1064 nanometer. For enamel and dentin tissues, the ablations have been performed using laser-induced breakdown spectroscopy (LIBS) technique. The ablation thresholds and relationship between energy densities and peak areas of calcium lines, which appeared in LIBS, were determined using data fitting. Furthermore, the morphological changes were studied using Scanning Electron Microscope (SEM). Moreover, the chemical stability of the tooth material after ablation has been studied using Energy-Dispersive X-Ray Spectroscopy (EDX). The differences between carbon atomic % of non-irradiated and irradiated samples were tested using statistical t-test. Results revealed that the best fitting between energy densities and peak areas of calcium lines were exponential and linear for enamel and dentin, respectively. In addition, the ablation threshold of Nd:YAG lasers in enamel was higher than that of dentin. The morphology of the surrounded ablated region of enamel showed thermal damages. For enamel, the EDX quantitative analysis showed that the atomic % of carbon increased significantly when laser energy density increased.

  7. Effect of Ti(+4) on in vitro bioactivity and antibacterial activity of silicate glass-ceramics.

    PubMed

    Riaz, Madeeha; Zia, Rehana; Saleemi, Farhat; Hussain, Tousif; Bashir, Farooq; Ikhram, Hafeez

    2016-12-01

    A novel glass-ceramic series in (48-x) SiO2-36 CaO-4 P2O5-12 Na2O-xTiO2 (where x=0, 3.5, 7, 10.5 and 14mol %) system was synthesized by crystallization of glass powders, obtained by melt quenching technique. The differential scanning calorimetric analysis (DSC) was used to study the non-isothermal crystallization kinetics of the as prepared glasses. The crystallization behaviour of glasses was analyzed under non-isothermal conditions, and qualitative phase analysis of glass-ceramics was made by X-ray diffraction. The in vitro bioactivity of synthesized glass-ceramics was studied in stimulated body fluid at 37°C under static condition for 24days. The formation of hydroxyl-carbonated apatite layer; evident of bioactivity of the material, was elucidated by XRD, FTIR, AAS, SEM and EDX analysis. The result showed that partial substitution of TiO2 with SiO2 negatively influenced bioactivity; it decreased with increase in concentration of TiO2. As Ti(+4) having stronger field strength as compared to Si(+4) so its replacement became the cause for reduction in degradation that in turn improved the chemical stability. The compressive strength was also enhanced with progress addition of TiO2 in the system. The antibacterial properties were examined against Staphylococcus Epidermidis. Strong antibacterial efficacy was observed with the addition of TiO2 in the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis of magnetic biocomposite for efficient adsorption of azo dye from aqueous solution.

    PubMed

    Sivashankar, R; Sathya, A B; Krishnakumar, Uma; Sivasubramanian, V

    2015-11-01

    A novel magnetic biocomposite was synthesized using metal chlorides and aquatic macrophytes by co-precipitation method. The resulting product, magnetic biocomposite was characterized by Fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). The adsorption performance of the magnetic biocomposite was tested with removal of Metanil Yellow dye from aqueous solution. The effect of influencing parameters such as initial dye concentration, solution pH and agitation were investigated. The equilibrium isotherm was well described by the Langmuir model with the with maximum adsorption capacity of 90.91mg/g. Adsorption kinetics experiments were carried out and the data were well fitted by a pseudo-second-order equation. The results revealed that the magnetic biocomposite could efficiently adsorb the azo dyes from aqueous solution, and the spent adsorbents could be recovered completely by magnetic separation process. Therefore, the prepared magnetic biocomposite could thus be used as promising adsorbent for the removal of azo dyes from polluted water. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nanomesh of Cu fabricated by combining nanosphere lithography and high power pulsed magnetron sputtering and a preliminary study about its function

    NASA Astrophysics Data System (ADS)

    Xie, Wanchuan; Chen, Jiang; Jiang, Lang; Yang, Ping; Sun, Hong; Huang, Nan

    2013-10-01

    The Cu nanomesh was obtained by a combination of nanosphere lithography (NSL) and high power pulsed magnetron sputtering (HiPPMS). A deposition mask was formed on TiO2 substrates by the self-assembly of polystyrene latex spheres with a diameter of 1 μm, then Cu nanomesh structure was produced on the substrate using sputtering. The structures were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results show the increase of temperature of the polystyrene mask caused by the thermal radiation from the target and the bombardment of sputtering particles would affect the quality of the final nanopattern. The tests of photocatalytic degradation, platelet adhesion and human umbilical artery smooth muscle cells (HUASMCs) culture show Cu deposition could promote the photocatalytic efficiency of TiO2, affect platelet adhesion and inhibit smooth muscle cell adhesion and proliferation. It is highlighted that these findings may serve as a guide for the research of multifunctional surface structure.

  10. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-04-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  11. Synthesis of magnetic activated carbon/α-Fe2O3 nanocomposite and its application in the removal of acid yellow 17 dye from water.

    PubMed

    Ranjithkumar, V; Sangeetha, S; Vairam, S

    2014-05-30

    The adsorption of acid yellow 17 dye on activated carbon/α-Fe2O3 nanocomposite prepared by simple pyrolytic method using iron(II) gluconate was investigated by batch technique. The composite was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The size of iron oxide nanoparticles formed from iron(II) gluconate precursor is in the range 5-17nm. The saturation magnetization (Ms), remanence (Mr) and coercivity (Hc) of the magnetic carbon nanocomposite is 5.6emu/g, 1.14emu/g and 448Oe, respectively. The adsorption data are found to fit well with Langmuir and, fairly well with Freundlich and Tempkin isotherms at higher concentration of dye (40-100mg/L). Kinetics data indicate that the adsorption of dye follows pseudo-second order kinetics model. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electrodeposition and Characterization of Hydroxyapatite on TiN/316LSS.

    PubMed

    Nam, Pham Thi; Lam, Tran Dai; Huong, Ho Thu; Phuong, Nguyen Thu; Trang, Nguyen Thi Thu; Hoang, Thai; Huong, Nguyen Thi Thanh; Thang, Le Ba; Drouet, Christophe; Grossin, David; Kergourlay, Emmanuelle; Bertrand, Ghislaine; Devilliers, Didier; Thanh, Dinh Thi Mai

    2015-12-01

    The deposition of TiN on stainless steel substrates may improve the stability and compatibility of this material with bone, which may be advantageously exploited for the elaboration of advanced pros- thetic devices. In this work, TiN-coated 316LSS (by way of DC magnetron sputtering) was used as a starting material for investigating the electrochemical post-deposition of hydroxyapatite (HAp) which has a composition close to that of bone. Electrodeposition was carried out starting from an aqueous medium containing solubilized Ca(NO3)2 and NH4H2PO4 in the presence of H2O2. We report the influence of experimental conditions on the morphology of the obtained HAp coating on TiN/316LSS. The effect of applied potential, temperature, H2O2 concentration, pH and duration of reaction were thoroughly discussed on the basis of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy and Energy Dispersive X-ray Spectroscopy (EDX) results. This method appears advantageous for producing HAp-coated implant materials.

  13. Synthesis and characterization of mangan oxide coated sand from Capkala kaolin

    NASA Astrophysics Data System (ADS)

    Destiarti, Lia; Wahyuni, Nelly; Prawatya, Yopa Eka; Sasri, Risya

    2017-03-01

    Synthesis and characterization of mangan oxide coated sand from quartz sand fraction of Capkala kaolin has been conducted. There were two methods on synthesis of Mangan Oxide Coated Sand (MOCS) from Capkala Kaolin compared in this research. Characterization of MOCS was done by using Scanning Electron Microscope/Energy Dispersive X-Ray Spectrometer (SEM/EDX) and X-Ray Diffraction (XRD). The MOCS was tested to reduce phosphate in laundry waste. The result showed that the natural sand had bigger agregates and a relatively uniform structural orientation while both MOCS had heterogen structural orientation and manganese oxide formed in cluster. Manganese in first and second methods were 1,93% and 2,63%, respectively. The XRD spectrum showed clear reflections at 22,80°, 36,04°, 37,60° and a broad band at 26,62° (SiO2). Based on XRD spectrum, it can be concluded that mineral constituents of MOCS was verified corresponding to pyrolusite (MnO2). The former MOCS could reduce almost 60% while the later could reduce 70% phosphate in laundry waste.

  14. Microbial-assisted synthesis and evaluation the cytotoxic effect of tellurium nanorods.

    PubMed

    Forootanfar, Hamid; Amirpour-Rostami, Sahar; Jafari, Mandana; Forootanfar, Amir; Yousefizadeh, Zahra; Shakibaie, Mojtaba

    2015-04-01

    The present study was designed to isolate bacterial strain capable of tellurium nanorods' (Te NRs) production followed by purification and evaluation of the cytotoxic effect of Te NRs. Among 25 environmental samples collected for screening of Te NR-producer bacterial strains one bacterial colony (isolated from hot spring and identified as Pseudomonas pseudoalcaligenes strain Te) was selected and applied for biosynthesis of Te NRs. Thereafter, an organic-aqueous partitioning system was applied for the purification of the biogenic Te NRs and the purified Te NRs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction spectroscopy (XRD), UV-visible spectroscopy, and Fourier transform infrared spectroscopy (FTIR) techniques. The cytotoxic effect of biologically synthesized Te NRs and potassium tellurite on four cell lines of MCF-7, HT1080, HepG2 and A549 was then determined using the MTT assay method. The obtained results revealed lower toxicity for the rod-shaped biogenic tellurium nanostructures (~22nm diameter by 185nm length) compared to K2TeO3. Copyright © 2014. Published by Elsevier B.V.

  15. Reutilization of the expired tetracycline for lithium ion battery anode.

    PubMed

    Hou, Hongying; Dai, Zhipeng; Liu, Xianxi; Yao, Yuan; Liao, Qishu; Yu, Chengyi; Li, Dongdong

    2018-07-15

    Waste antibiotics into the natural environment are the large challenges to the environmental protection and the human health, and the unreasonable disposal of the expired antibiotics is a major pollution source. Herein, to achieve the innocent treatment and the resource recovery, the expired tetracycline was tried to be reutilized as the electrode active material in lithium ion battery (LIB) for the first time. The micro-structure and element component of the expired tetracycline were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Furthermore, the corresponding electrochemical performances were also investigated by galvanostatic charge/discharge and cyclic voltammetry (CV). To be satisfactory, the expired-tetracycline-based electrode delivered the initial specific discharge capacity of 371.6mAh/g and the reversible specific capacity of 304.1mAh/g after 200cycles. The decent results will not only offer an effective strategy to recycle the expired tetracycline, but also shed a new light on the cyclic economy and the sustainable development. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation.

    PubMed

    Agarwal, Shilpi; Tyagi, Inderjeet; Gupta, Vinod Kumar; Sohrabi, Maryam; Mohammadi, Sanaz; Golikand, Ahmad Nozad; Fakhri, Ali

    2017-01-01

    Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO 2 /Co 3 O 4 nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV-Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15min, pH6 and 0.1g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO 2 /Co 3 O 4 nanocomposites Fe doped SnO 2 /Co 3 O 4 nanocomposites possess greater photocatalytic efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Influence of Carbonaceous Matrices and Electrocatalytic MnO₂ Nanopowders on Lithium-Air Battery Performances.

    PubMed

    Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto

    2016-01-06

    Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO₂ nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO₂ (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g -1 . Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO₂ nanoparticles.

  18. The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances

    PubMed Central

    Minguzzi, Alessandro; Longoni, Gianluca; Cappelletti, Giuseppe; Pargoletti, Eleonora; Di Bari, Chiara; Locatelli, Cristina; Marelli, Marcello; Rondinini, Sandra; Vertova, Alberto

    2016-01-01

    Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to  1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles. PMID:28344267

  19. Electrodeposition of amorphous Ni P coatings onto Nd Fe B permanent magnet substrates

    NASA Astrophysics Data System (ADS)

    Ma, C. B.; Cao, F. H.; Zhang, Z.; Zhang, J. Q.

    2006-12-01

    Decorative and protective Ni-P amorphous coatings were electroplated onto NdFeB permanent magnet from an ortho-phosphorous acid contained bath. The influences of the main electroplating technological parameters including current density, bath pH, bath temperature and H3PO3 on the structure and chemical composition of Ni-P coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques in conjunction with X-ray diffraction (XRD), scanning transmission electron microscopy (SEM) and X-ray energy-dispersive spectrometry (EDX). The optimized amorphous Ni-P coated NdFeB can stand for ca. 180 h against neutral 3.0 wt.% NaCl salt spray without any pitting corrosion. Meanwhile, the results also showed that large phosphorous content is the precondition for Ni-P coatings to possess the amorphous structure, but too much high phosphorous content can damage the amorphous structure due to the separation of superfluous P from Ni2P/Ni3P and the resultant formation of multi-phase coatings (such as Ni2P-P).

  20. Synthesis and characterization of fluorapatite-titania (FAp-TiO 2) nanocomposite via mechanochemical process

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Kahrizsangi, Reza; Nasiri-Tabrizi, Bahman; Chami, Akbar

    2010-09-01

    In this paper, synthesis of bionanocomposite of fluorapatite-titania (FAp-TiO 2) was studied by using one step mechanochemical process. Characterization of the products was accomplished by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Based on XRD patterns and FT-IR spectroscopy, correlation between the structural features of the nanostructured FAp-TiO 2 and the process conditions was discussed. Variations in crystallite size, lattice strain, and volume fraction of grain boundary were investigated during milling and the following heat treatment. Crystallization of the nanocomposite occurred after thermal treatment at 650 °C. Morphological features of powders were influenced by the milling time. The resulting FAp-20 wt.%TiO 2 nanocomposite powder exhibited an average particle size of 15 nm after 20 h of milling. The results show that the one step mechanosynthesis technique is an effective route to prepare FAp-based nanocomposites with excellent morphological and structural features.

Top