Sample records for x-ray spectrum produced

  1. Hard X-ray spectrum of Cygnus X-1

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Gruber, D. E.; Knight, F. K.; Matteson, J. L.; Rothschild, R. E.; Marshall, F. E.; Levine, A. M.; Primini, F. A.

    1981-01-01

    Long-term measurements of the hard X-ray spectrum from 3 keV to 8 MeV of the black-hole candidate Cygnus X-1 in its low state are reported. Observations were made from October 26 to November 18, 1977 with the A2 (Cosmic X-ray) and A4 (Hard X-ray and Low-Energy Gamma-Ray) experiments on board HEAO 1 in the spacecraft's scanning mode. The measured spectrum below 200 keV is found to agree well with previous spectra which have been fit by a model of the Compton scattering of optical or UV photons in a very hot plasma of electron temperature 32.4 keV and optical depth 3.9 or 1.6 for spherical or disk geometry, respectively. At energies above 300 keV, however, flux excess is observed which may be accounted for by a distribution of electron temperatures from 15 to about 100 keV.

  2. Much NICER Monitoring of the X-ray Spectrum of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael Francis; Hamaguchi, Kenji; Drake, Stephen; Pasham, Dheeraj; Gendreau, Keith C.; Arzoumanian, Zaven

    2018-01-01

    Eta Carinae is the most massive and luminous stellar system within 3 kpc. It is a known binary system with an orbital period of 5.52 years in which bright, thermal, X-ray emission is produced by a strong shock driven by the collisions of the wind of the visible primary star with the thin, fast wind of an otherwise unseen companion. Variations of the X-ray spectrum are produced by intrinsic changes in the density of the hot shocked gas and by intervening changes in wind absorption as the two stars revolve in a long-period, highly eccentric orbit. Previous X-ray monitoring studies since 1996 have detailed these variations, but have been either restricted to the E>3 keV band or have been affected by optical loading which limited measurement of X-ray absorption changes which can be used to determine the overlying density profile of the primary's wind around the orbit. The Neutron Star Interior Composition Explorer (NICER) is an excellent general-purpose observatory for X-ray astronomy, and in particular, its soft response and large effective area facilitate monitoring of X-ray spectral variations for bright sources like Eta Car without any bias due to photon pileup. We present the first observations of the X-ray spectrum of Eta Car obtained by NICER, and discuss limits on changes in column density, emission measure and temperature we derive from the NICER spectra.

  3. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  4. Signatures of Synchrotron: Low-cutoff X-ray emission and the hard X-ray spectrum of Cas A

    NASA Astrophysics Data System (ADS)

    Stage, Michael D.; Fedor, Emily Elizabeth; Martina-Hood, Hyourin

    2018-06-01

    In soft X-rays, bright, young Galactic remnants (Cas A, Kepler, Tycho, etc.) present thermal line emission and bremsstrahlung from ejecta, and synchrotron radiation from the shocks. Their hard X-ray spectra tend to be dominated by power-law sources. However, it can be non-trivial to discriminate between contributions from processes such as synchrotron and bremsstrahlung from nonthermally accelerated electrons, even though the energies of the electrons producing this radiation may be very different. Spatially-resolved spectroscopic analysis of 0.5-10 keV observations with, e.g., Chandracan provide leverage in identifying the processes and their locations. Previously, Stage & Allen (2006), Allen & Stage (2007) and Stage & Allen (2011) identified regions characterized by high-cutoff synchrotron radiation. Extrapolating synchrotron model fits to the emission in the Chandra band, they estimated the synchrotron contribution to the hard X-ray spectrum at about one-third the observed flux, fitting the balance with nonthermal bremsstrahlung emission produced by nonthermal electrons in the ejecta. Although it is unlikely this analysis missed regions of the highest-cutoff synchrotron emission, which supplies the bulk of the synchrotron above 15 keV, it may have missed regions of lower-cutoff emission, especially if they are near bright ejecta and the reverse shock. These regions cannot explain the emission at the highest energies (~50 keV), but may make significant contributions to the hard spectrum at lower energies (~10 keV). Using the technique described in Fedor, Martina-Hood & Stage (this meeting), we revisit the analysis to include regions that may be dominated by low-cutoff synchrotron, located in the interior of the remnant, and/or correlated with the reverse shock. Identifying X-ray emission from accelerated electrons associated with the reverse-shock would have important implications for synchrotron and non-thermal bremsstrahlung radiation above the 10 keV.

  5. Producing X-rays at the APS

    ScienceCinema

    None

    2017-12-09

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  6. Surface modification of platinum by laser-produced X-rays

    NASA Astrophysics Data System (ADS)

    Latif, Hamid; Shahid Rafique, M.; Khaleeq-ur-Rahaman, M.; Sattar, Abdul; Anjum, S.; Usman, A.; Zaheer, S.; Rawat, R. S.

    2014-11-01

    Laser-induced plasma is used as an X-ray source for the growth of hillocks like nanostructures on platinum surface. To generate X-rays, plasma is produced by Nd:YAG laser, which is operated at second harmonics (λ = 532 nm, E = 400 mJ). Analytical grade 5 N pure Al, Cu and W are used as laser targets for X-rays production. X-rays produced from Al, Cu and W plasmas are used to irradiate three analytical grade (5 N pure) platinum substrates, respectively, under the vacuum ∼10-4 torr. XRD analysis shows considerable structural changes in the exposed platinum. The decrement in reflection intensities, increment in dislocation line density, change in d-spacing and disturbance in the periodicity of planes evidently prove these structural changes. Atomic force microscope AFM topographic analysis of the platinum exposed to X-rays emitted from Al, Cu and W targets showed that nanometer-size hillocks are produced on the platinum surface irrespective of the source. It has also been observed that due to these hillocks, the roughness of the surface has increased. Conductivity of hillocks produced from X-rays produced by Al, Cu and W targets is compared and it is shown that the hillocks produced by Al target X-rays have better conductivity compared to the hillocks produced by X-rays from Cu and W targets.

  7. X-ray Reflection

    NASA Astrophysics Data System (ADS)

    Fabian, A. C.; Ross, R. R.

    2010-12-01

    Material irradiated by X-rays produces backscattered radiation which is commonly known as the Reflection Spectrum. It consists of a structured continuum, due at high energies to the competition between photoelectric absorption and electron scattering enhanced at low energies by emission from the material itself, together with a complex line spectrum. We briefly review the history of X-ray reflection in astronomy and discuss various methods for computing the reflection spectrum from cold and ionized gas, illustrated with results from our own work reflionx. We discuss how the reflection spectrum can be used to obtain the geometry of the accretion flow, particularly the inner regions around black holes and neutron stars.

  8. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  9. Segmented-spectrum detection mechanism for medical x-ray in CdTe

    NASA Astrophysics Data System (ADS)

    Shi, Zaifeng; Meng, Qingzhen; Cao, Qingjie; Yao, Suying

    2016-01-01

    This paper presents a segmented X-ray spectrum detection method based on a layered X-ray detector in Cadmium Telluride (CdTe) substrate. We describe the three-dimensional structure of proposed detector pixel and investigate the matched spectrum-resolving method. Polychromatic X-ray beam enter the CdTe substrate edge on and will be absorbed completely in different thickness varying with photon energy. Discrete potential wells are formed under external controlling voltage to collect the photo-electrons generated in different layers, and segmented X-ray spectrum can be deduced from the quantity of photo-electrons. In this work, we verify the feasibility of the segmented-spectrum detection mechanism by simulating the absorption of monochromatic X-ray in a CdTe substrate. Experiments in simulation show that the number of photo-electrons grow exponentially with the increase of incident thickness, and photons with different energy will be absorbed in various thickness. The charges generated in different layers are collected into adjacent potential wells, and collection efficiency is estimated to be about 87% for different incident intensity under the 40000V/cm electric field. Errors caused by charge sharing between neighboring layers are also analyzed, and it can be considered negligible by setting appropriate size of electrodes.

  10. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  11. The BL LAC phenomenon: X-ray observations of transition objects and determination of the x-ray spectrum of a complete sample of flat-spectrum radio sources

    NASA Technical Reports Server (NTRS)

    Worrall, Diana M.

    1994-01-01

    This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.

  12. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; hide

    2015-01-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-04-01

    This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)

  14. X-ray source for mammography

    DOEpatents

    Logan, C.M.

    1994-12-20

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  15. The X-Ray Time Variability and Spectrum of Gamma-Cassiopeiae X:0053+604

    NASA Astrophysics Data System (ADS)

    Parmar, A. N.; Israel, G. L.; Stella, L.; White, N. E.

    1993-08-01

    A 30 h duration EXOSAT observation made in 1985 December is used to examine the X-ray time variability and spectrum of the Be star γ Cassiopeiae (X 0053+604). We find that the X-ray lightcurve is dominated by irregular energy-independent flaring on time-scales ≳ 100 s. This flaring markedly decreases the sensitivity to any periodic signals. We find no evidence for the 6000 5 oscillations reported by Frontera et al. (1987) from an earlier EXOSAT observation. We suggest that these arise from statistical fluctuations in the red noise power. The X-ray spectrum of γ Cas can either be modeled by thermal emission from an optically thin plasma with a temperature of 12 keV, or by a cut-off power-law model with a narrow iron line at an energy of 6.67 keV. The origin of the X-ray emission in this system remains open since its spectral and temporal properties are consistent with both an acereting neutron star and a white dwarf while its high temperature argues against a coronal mechanism.

  16. Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Netzer, Hagai

    1993-01-01

    Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.

  17. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  18. A COORDINATED X-RAY AND OPTICAL CAMPAIGN OF THE NEAREST MASSIVE ECLIPSING BINARY, δ ORIONIS Aa. I. OVERVIEW OF THE X-RAY SPECTRUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corcoran, M. F.; Hamaguchi, K.; Nichols, J. S.

    2015-08-20

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, andmore » wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3−0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.« less

  19. Monte Carlo simulations for 20 MV X-ray spectrum reconstruction of a linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Li, Qin; Jiang, Xiao-Guo

    2012-09-01

    To study the spectrum reconstruction of the 20 MV X-ray generated by the Dragon-I linear induction accelerator, the Monte Carlo method is applied to simulate the attenuations of the X-ray in the attenuators of different thicknesses and thus provide the transmission data. As is known, the spectrum estimation from transmission data is an ill-conditioned problem. The method based on iterative perturbations is employed to derive the X-ray spectra, where initial guesses are used to start the process. This algorithm takes into account not only the minimization of the differences between the measured and the calculated transmissions but also the smoothness feature of the spectrum function. In this work, various filter materials are put to use as the attenuator, and the condition for an accurate and robust solution of the X-ray spectrum calculation is demonstrated. The influences of the scattering photons within different intervals of emergence angle on the X-ray spectrum reconstruction are also analyzed.

  20. Eigenvector decomposition of full-spectrum x-ray computed tomography.

    PubMed

    Gonzales, Brian J; Lalush, David S

    2012-03-07

    Energy-discriminated x-ray computed tomography (CT) data were projected onto a set of basis functions to suppress the noise in filtered back-projection (FBP) reconstructions. The x-ray CT data were acquired using a novel x-ray system which incorporated a single-pixel photon-counting x-ray detector to measure the x-ray spectrum for each projection ray. A matrix of the spectral response of different materials was decomposed using eigenvalue decomposition to form the basis functions. Projection of FBP onto basis functions created a de facto image segmentation of multiple contrast agents. Final reconstructions showed significant noise suppression while preserving important energy-axis data. The noise suppression was demonstrated by a marked improvement in the signal-to-noise ratio (SNR) along the energy axis for multiple regions of interest in the reconstructed images. Basis functions used on a more coarsely sampled energy axis still showed an improved SNR. We conclude that the noise-resolution trade off along the energy axis was significantly improved using the eigenvalue decomposition basis functions.

  1. The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.; hide

    2001-01-01

    Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  3. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  4. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  5. Chandra X-Ray Observatory Image of Black Hole

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)

  6. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  7. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Michael T.; Wood, Kent S.; Becker, Peter A.

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters inmore » the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.« less

  8. When will Low-Contrast Features be Visible in a STEM X-Ray Spectrum Image?

    PubMed

    Parish, Chad M

    2015-06-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y2Ti2O7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis. Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. Future applications, such as spallation proton-neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.

  9. When will low-contrast features be visible in a STEM X-ray spectrum image?

    DOE PAGES

    Parish, Chad M.

    2015-04-01

    When will a small or low-contrast feature, such as an embedded second-phase particle, be visible in a scanning transmission electron microscopy (STEM) X-ray map? This work illustrates a computationally inexpensive method to simulate X-ray maps and spectrum images (SIs), based upon the equations of X-ray generation and detection. To particularize the general procedure, an example of nanostructured ferritic alloy (NFA) containing nm-sized Y 2Ti 2O 7 embedded precipitates in ferritic stainless steel matrix is chosen. The proposed model produces physically appearing simulated SI data sets, which can either be reduced to X-ray dot maps or analyzed via multivariate statistical analysis.more » Comparison to NFA X-ray maps acquired using three different STEM instruments match the generated simulations quite well, despite the large number of simplifying assumptions used. A figure of merit of electron dose multiplied by X-ray collection solid angle is proposed to compare feature detectability from one data set (simulated or experimental) to another. The proposed method can scope experiments that are feasible under specific analysis conditions on a given microscope. As a result, future applications, such as spallation proton–neutron irradiations, core-shell nanoparticles, or dopants in polycrystalline photovoltaic solar cells, are proposed.« less

  10. Spread spectrum phase modulation for coherent X-ray diffraction imaging.

    PubMed

    Zhang, Xuesong; Jiang, Jing; Xiangli, Bin; Arce, Gonzalo R

    2015-09-21

    High dynamic range, phase ambiguity and radiation limited resolution are three challenging issues in coherent X-ray diffraction imaging (CXDI), which limit the achievable imaging resolution. This paper proposes a spread spectrum phase modulation (SSPM) method to address the aforementioned problems in a single strobe. The requirements on phase modulator parameters are presented, and a practical implementation of SSPM is discussed via ray optics analysis. Numerical experiments demonstrate the performance of SSPM under the constraint of available X-ray optics fabrication accuracy, showing its potential to real CXDI applications.

  11. Laboratory simulation of charge exchange-produced X-ray emission from comets.

    PubMed

    Beiersdorfer, P; Boyce, K R; Brown, G V; Chen, H; Kahn, S M; Kelley, R L; May, M; Olson, R E; Porter, F S; Stahle, C K; Tillotson, W A

    2003-06-06

    In laboratory experiments using the engineering spare microcalorimeter detector from the ASTRO-E satellite mission, we recorded the x-ray emission of highly charged ions of carbon, nitrogen, and oxygen, which simulates charge exchange reactions between heavy ions in the solar wind and neutral gases in cometary comae. The spectra are complex and do not readily match predictions. We developed a charge exchange emission model that successfully reproduces the soft x-ray spectrum of comet Linear C/1999 S4, observed with the Chandra X-ray Observatory.

  12. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  13. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  14. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  15. Imaging local electric fields produced upon synchrotron X-ray exposure

    DOE PAGES

    Dettmar, Christopher M.; Newman, Justin A.; Toth, Scott J.; ...

    2014-12-31

    Electron–hole separation following hard X-ray absorption during diffraction analysis of soft materials under cryogenic conditions produces substantial local electric fields visualizable by second harmonic generation (SHG) microscopy. Monte Carlo simulations of X-ray photoelectron trajectories suggest the formation of substantial local electric fields in the regions adjacent to those exposed to X-rays, indicating a possible electric-field–induced SHG (EFISH) mechanism for generating the observed signal. In studies of amorphous vitreous solvents, analysis of the SHG spatial profiles following X-ray microbeam exposure was consistent with an EFISH mechanism. Within protein crystals, exposure to 12-keV (1.033-Å) X-rays resulted in increased SHG in the regionmore » extending ~3 μm beyond the borders of the X-ray beam. Moderate X-ray exposures typical of those used for crystal centering by raster scanning through an X-ray beam were sufficient to produce static electric fields easily detectable by SHG. The X-ray–induced SHG activity was observed with no measurable loss for longer than 2 wk while maintained under cryogenic conditions, but disappeared if annealed to room temperature for a few seconds. In conclusion, these results provide direct experimental observables capable of validating simulations of X-ray–induced damage within soft materials. Additionally, X-ray–induced local fields may potentially impact diffraction resolution through localized piezoelectric distortions of the lattice.« less

  16. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    NASA Astrophysics Data System (ADS)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  17. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  18. Soft x-ray contact imaging of biological specimens using a laser-produced plasma as an x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, P.C.

    The use of a laser-produced plasma as an x-ray source provides significant advantages over other types of sources for x-ray microradiography of, particularly, living biological specimens. The pulsed nature of the x-rays enables imaging of the specimen in a living state, and the small source size minimizes penumbral blurring. This makes it possible to make an exposure close to the source, thereby increasing the x-ray intensity. In this article, we will demonstrate the applications of x-ray contact microradiography in structural and developmental botany such as the localization of silica deposition and the floral morphologenesis of maize.

  19. Laboratory-Produced X-Ray Photoionized Plasmas for Astrophysics Exploration

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Le Pape, Sebastien; Liedahl, Duane; Ma, Tammy; Berzak-Hopkins, Laura; Reverdin, Charles; Rousseaux, Christophe; Renaudin, Patrick; Blancard, Christophe; Nottet, Edouard; Bidault, Niels; Mancini, Roberto; Koenig, Michel

    2015-11-01

    X-ray photoionized plasmas are rare in the laboratory, but of broad importance in astrophysical objects such as active galactic nuclei, x-ray binaries. Indeed, existing models are not yet able to accurately describe these plasmas where ionization is driven by radiation rather than electron collisions. Here, we describe an experiment on the LULI2000 facility whose versatility allows for measuring the X-ray absorption of the plasma while independently probing its electron density and temperature. The bright X-ray source is created by the two main beams focused inside a gold hohlraum and is used to photoionise a Neon gas jet. Then, a thin gold foil serves as a source of backlit photons for absorption spectroscopy. The transmitted spectrum through the plasma is collected by a crystal spectrometer. We will present the experimental setup used to characterize both plasma conditions and X-ray emission. Then we will show the transmitted spectra through the plasma to observe the transition from collision dominated to radiation dominated ionization and compare it to model predictions. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore Natl Lab under Contract No. DE-AC52-07NA27344.

  20. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  1. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  2. AE AURIGAE: FIRST DETECTION OF NON-THERMAL X-RAY EMISSION FROM A BOW SHOCK PRODUCED BY A RUNAWAY STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Santiago, J.; Pereira, V.; De Castro, E.

    2012-09-20

    Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter ofmore » two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30'' northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.« less

  3. A high resolution spectrum of the diffuse soft X-ray background

    NASA Astrophysics Data System (ADS)

    Crowder, S. Gwynne

    Galactic contributions to the diffuse X-ray background were believed to largely come from thermal emission of hot gas and models of the Galactic neighborhood within ˜ 100 pc reflected this belief. However, recent observations led to the realization that emission from charge exchange within the Solar System might produce comparable intensities to that of thermal emission. A high resolution spectrum of the diffuse X-ray background from 0.1 to 1 keV was obtained for a ˜ 1 sr region of the sky centered at l = 90°, b = +60° in May 2008 using a 36 pixel array of microcalorimeters flown on a sounding rocket. With an energy resolution of 11 eV FWHM below 1 keV, the spectrum can be used to separate charge exchange contributions originating within the heliosphere from thermal emission of hot gas in the interstellar medium. The X-ray sensitivity below 1 keV was reduced about a factor of four by contamination that occurred early in the flight, limiting the significance of the results. The observed ratio of helium-like O VII forbidden plus intercombination to resonance lines is 1.2 +/- 1.2 at 90% confidence. This indicates that at least 67% of the emission is thermal. On the other hand, the observed ratio of C VI Lygamma to Lyalpha is 0.3+0.3-0.2 , requiring at least a 33% contribution from charge exchange. In addition to these astrophysical results, I present experimental improvements from the addition of a gold coating to the detector array substrate which greatly reduces extraneous signals and from the use of silicon support meshes which improves blocking filter robustness. I also detail a new optimal filtering analysis technique that preserves spectral resolution and live time in the presence of pulse overlap.

  4. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    PubMed

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  5. HIGH ENERGY, HIGH BRIGHTNESS X-RAYS PRODUCED BY COMPTON BACKSCATTERING AT THE LIVERMORE PLEIADES FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, A M; Anderson, S G; Betts, S

    2005-05-19

    PLEIADES (Picosecond Laser Electron Interaction for the Dynamic Evaluation of Structures) produces tunable 30-140 keV x-rays with 0.3-5 ps pulse lengths and up to 10{sup 7} photons/pulse by colliding a high brightness electron beam with a high power laser. The electron beam is created by an rf photo-injector system, accelerated by a 120 MeV linac, and focused to 20 {micro}m with novel permanent magnet quadrupoles. To produce Compton back scattered x-rays, the electron bunch is overlapped with a Ti:Sapphire laser that delivers 500 mJ, 100 fs, pulses to the interaction point. K-edge radiography at 115 keV on Uranium has verifiedmore » the angle correlated energy spectrum inherent in Compton scattering and high-energy tunability of the Livermore source. Current upgrades to the facility will allow laser pumping of targets synchronized to the x-ray source enabling dynamic diffraction and time-resolved studies of high Z materials. Near future plans include extending the radiation energies to >400 keV, allowing for nuclear fluorescence studies of materials.« less

  6. Soft X-ray spectrum of BL Lacertae object AO 0235+164 as a tracer of elemental abundances at z approximately 0.5

    NASA Technical Reports Server (NTRS)

    Madejski, Greg

    1994-01-01

    We report the soft X-ray spectrum of BL Lac object AO 0235+164, observed with the Einstein Observatory Imaging Proportional Counter (IPC). This object (z = 0.94) has an intervening galaxy (or a protogalactic disk) at z = 0.524 present in the line of sight, producing both radio and optical absorption lines in the background BL Lac continuum. The X-ray spectrum exhibits a substantial soft X-ray cutoff, corresponding to several times that expected from our own Galaxy; we interpret that excess cutoff as due to the intervening galaxy. The comparison of the hydrogen column density inferred from the 21 cm radio data and the X-ray absorption allows, in principle, the determination of the elemental abundances in the intervening galaxy. However, the uncertainties in both the H I spin temperature and X-ray spectral parameters only loosely restrict these abundances to be 2 +/- 1 solar, which even at the lower limit appears higher than that inferred from studies of samples of optical absoprtion-line systems.

  7. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: A Monte Carlo study

    PubMed Central

    Manohar, Nivedh; Jones, Bernard L.; Cho, Sang Hyun

    2014-01-01

    Purpose: To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). Methods: A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Results: Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the

  8. Improving x-ray fluorescence signal for benchtop polychromatic cone-beam x-ray fluorescence computed tomography by incident x-ray spectrum optimization: a Monte Carlo study.

    PubMed

    Manohar, Nivedh; Jones, Bernard L; Cho, Sang Hyun

    2014-10-01

    To develop an accurate and comprehensive Monte Carlo (MC) model of an experimental benchtop polychromatic cone-beam x-ray fluorescence computed tomography (XFCT) setup and apply this MC model to optimize incident x-ray spectrum for improving production/detection of x-ray fluorescence photons from gold nanoparticles (GNPs). A detailed MC model, based on an experimental XFCT system, was created using the Monte Carlo N-Particle (MCNP) transport code. The model was validated by comparing MC results including x-ray fluorescence (XRF) and scatter photon spectra with measured data obtained under identical conditions using 105 kVp cone-beam x-rays filtered by either 1 mm of lead (Pb) or 0.9 mm of tin (Sn). After validation, the model was used to investigate the effects of additional filtration of the incident beam with Pb and Sn. Supplementary incident x-ray spectra, representing heavier filtration (Pb: 2 and 3 mm; Sn: 1, 2, and 3 mm) were computationally generated and used with the model to obtain XRF/scatter spectra. Quasimonochromatic incident x-ray spectra (81, 85, 90, 95, and 100 keV with 10 keV full width at half maximum) were also investigated to determine the ideal energy for distinguishing gold XRF signal from the scatter background. Fluorescence signal-to-dose ratio (FSDR) and fluorescence-normalized scan time (FNST) were used as metrics to assess results. Calculated XRF/scatter spectra for 1-mm Pb and 0.9-mm Sn filters matched (r ≥ 0.996) experimental measurements. Calculated spectra representing additional filtration for both filter materials showed that the spectral hardening improved the FSDR at the expense of requiring a much longer FNST. In general, using Sn instead of Pb, at a given filter thickness, allowed an increase of up to 20% in FSDR, more prominent gold XRF peaks, and up to an order of magnitude decrease in FNST. Simulations using quasimonochromatic spectra suggested that increasing source x-ray energy, in the investigated range of 81-100 ke

  9. Explosives detection using photoneutrons produced by X-rays

    NASA Astrophysics Data System (ADS)

    Yang, Yigang; Li, Yuanjing; Wang, Haidong; Li, Tiezhu; Wu, Bin

    2007-08-01

    The detection of explosives has become a critical issue after recent terrorist attacks. This paper describes research on explosives detection using photoneutrons from a photoneutron convertor that consists of 20 kg heavy water in an aluminum container whose shape was optimized to most effectively convert X-rays to photoneutrons. The X-rays were produced by a 9 MeV electron accelerator with an average electron current of 100 μA, resulted in a photoneutron yield of >10 11 n/s. Monte-Carlo simulations show that the radiation field is composed of X-ray pulses, fast neutron pulses and thermal neutrons. Both the X-ray and fast neutron pulses are 5 μs wide with a 300 Hz repetition frequency. The thermal neutron flux, which is higher than 10 4 n/cm 2/s, is essentially time invariant. A time shielding circuit was developed for the spectrometry system to halt the sampling process during the intense X-ray pulses. Paraffin, boron carbide and lead were used to protect the detector from interference from the X-rays, fast neutrons, thermal neutrons and background γ-rays coming from the system materials induced by photoneutrons. 5″×5″ NaI (Tl) scintillators were chosen as the detectors to detect the photoneutrons induced γ-rays from the inspected explosive simulant. Nitrogen (6.01 cps) 10.828 MeV γ-rays were detected with one detector from a 50 kg carbamide block placed 60 cm in front of the detector. A collimator was used to reduce the number of background 10.828 MeV γ-rays coming from the nitrogen in the air to improve the signal to background ratio from 0.136 to 1.81. A detector array of seven 5″×5″ NaI (Tl) detectors was used to measure the 2-D distributions of N and H in the sample. The combination of photoneutron analysis and X-ray imaging shows promise for enhancing explosives detection capabilities.

  10. Models of the hard X-ray spectrum of AM Herculis and implications for the accretion rate

    NASA Technical Reports Server (NTRS)

    Swank, J. H.; Fabian, A. C.; Ross, R. R.

    1983-01-01

    Phenomenological fits to the hard X-ray spectrum of AM Herculis left unexplained the high equivalent width (0.8 + or - 0.1 keV) of Fe K alpha emission. A purely thermal origin implies a much steeper spectrum than was observed. With Monte Carlo calculations, scattering and fluorescent line production in a cold or partially ionized accretion column of hard X-rays emitted at the base were investigated. The strength of the iron emission and the flat spectral continuum can be explained by the effects of fluorescence and absorption within the accretion column and the surface of the white dwarf on a thermal X-ray spectrum. Thomson optical depths across the column in the range 0.2 to 0.7 are acceptable. The accretion rate and gravitational power can be deduced from the optical depth across the column, if the column size is known, and, together with the observed hard X-ray and polarized light luminosities, imply a lower limit for the luminosity in the UV to soft X-ray range, for which the observations give model-dependent values. Estimates of the column size differ by a factor of 40. Small spot sizes and low luminosities would be consistent with the soft component being the expected reprocessed bremsstrahlung and cyclotron radiation, although the constraint of matching the spectrum confines one to solutions with fluxes exceeding 20% the Eddington limits.

  11. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Clark, III, Benton C. (Inventor); Thornton, Michael G. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  12. Line focus x-ray tubes—a new concept to produce high brilliance x-rays

    NASA Astrophysics Data System (ADS)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-11-01

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3rd generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy s-1 can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  13. Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device

    NASA Astrophysics Data System (ADS)

    Farzin, M. Aghamir; Reza, A. Behbahani

    2014-06-01

    The multi-radiation of X-rays was investigated with special attention to their energy spectrum in a Mather-type plasma focus device (operated with argon gas). The analysis is based on the effect of anomalous resistances. To study the energy spectrum, a four-channel diode X-ray spectrometer was used along with a special set of filters. The filters were suitable for detection of medium range X-rays as well as hard X-rays with energy exceeding 30 keV. The results indicate that the anomalous resistivity effect during the post pinch phase may cause multi-radiation of X-rays with a total duration of 300 ± 50 ns. The significant contribution of Cu—Kα was due to the medium range X-rays, nonetheless, hard X-rays with energies greater than 15 keV also participate in the process. The total emitted X-ray energy in the forms of Cu—Kα and Cu—Kβ was around 0.14 ± 0.02 (J/Sr) and 0.04 ± 0.01 (J/Sr), respectively. The total energy of the emitted hard X-ray (> 15 keV) was around 0.12 ± 0.02 (J/Sr).

  14. A new transient pulsar in the Small Magellanic Cloud with an unusual x-ray spectrum

    NASA Technical Reports Server (NTRS)

    Hughes, John P.

    1994-01-01

    This article reports the discovery of a luminous (3.5 x 10(exp 37) ergs/sec over the 0.2 to 2 keV band) transient X-ray pulsar in the Small Magellanic Cloud (SMC) with an extremely soft component to its X-ray spectrum. This is the first time that a spectrum of this type has been seen in this class of X-ray source. The pulse period is 2.7632 s, and the pulse modulation appears to vary with energy from nearly unpulsed in the low-energy band of the ROSAT Position Sensitive Proportional Counter (PSPC) (0.07 to 0.4 keV) to about 50% in the high-energy band (1.0 to 2.4 keV). The object, RX J0059.2-7138, also shows flickering variability in its X-ray emission on timescales of 50 to 100s. The pulse-phase-averaged PSPC X-ray spectrum can be well described by a two-component source model seen through an absorbing column density of approximately 10(exp 21) atoms cm(exp -2). One spectral component is a power law with photon index 2.4. The other component is significantly softer and can be described by either a steeply falling power law or a blackbody with a temperature KT(sub BB) approximately 35 eV. Ths component is transient, but evidently upulsed, and, for the blackbody model fits, requires a large bolometric luminosity: near, or even several times greater than, the Eddington luminosity for a 1.4 solar mass object. When these characteristics of its soft emission are considered, RX J0059.2-7138 appears quite similar to other X-ray sources in the magellanic Clouds, such as CAL 83, CAL 87, and RX J0527.8-6954, which show only extreme ultrasoft (EUS) X-ray spectra. The discovery of RX J0059.2-7138, a probably high-mass X-ray binary, clearly indicates that EUS spectra may arise from accretion-powered neutron-star X-ray sources. This result lends support to the idea that some of the 'pure' EUS sources may be shrouded low-mass X-ray binaries rather than accreting white dwarfs.

  15. X-ray High-resolution Spectroscopy for Laser-produced Plasma

    NASA Astrophysics Data System (ADS)

    Barbato, F.; Scarpellini, D.; Malizia, A.; Gaudio, P.; Richetta, M.; Antonelli, L.

    The study of the emission spectrum gives information about the material generating the spectrum itself and the condition in which this is generated. The wavelength spectra lines are linked to the specific element and plasma conditions (electron temperature, density), while their shape is influenced by several physical effects like Stark and Doppler ones. In this work we study the X-ray emission spectra of a copper laser-produced plasma by using a spherical bent crystal spectrometer to measure the electron temperature. The facility used is the laser TVLPS, at the Tor Vergata University in Rome. It consists of a Nd:Glass source (in first harmonic - 1064 nm) whose pulse parameters are: 8 J in energy, time duration of 15 ns and a focal spot diameter of 200 μm. The adopted spectrometer is based on a spherical bent crystal of muscovite. The device combines the focusing property of a spherical mirror with the Bragg's law. This allows to obtain a great power resolution but a limited range of analysis. In our case the resolution is on average 80 eV. As it is well-known, the position of the detector on the Rowland's circle is linked to the specific spectral range which has been studied. To select the area to be investigated, we acquired spectra by means of a flat spectrometer. The selected area is centered on 8.88 Å. To calibrate the spectrum we wrote a ray-tracing MATLAB code, which calculates the detector alignment parameters and calibration curve. We used the method of line ratio to measure the electron temperature. This is possible because we assumed the plasma to be in LTE condition. The temperature value was obtained comparing the experimental one, given by the line ratio, with the theoretical one, preceded by FLYCHK simulations.

  16. The X-Ray Reflection Spectrum of the Radio-Loud Quasar 4C 74.26

    NASA Technical Reports Server (NTRS)

    Lohfink, Ann M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; Garcia, Javier; Hailey, C. J.; hide

    2017-01-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of -183+3551 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of Rin4180 Rg. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

  17. The X-Ray Reflection Spectrum of the Radio-loud Quasar 4C 74.26

    NASA Astrophysics Data System (ADS)

    Lohfink, Anne M.; Fabian, Andrew C.; Ballantyne, David R.; Boggs, S. E.; Boorman, Peter; Christensen, F. E.; Craig, W. W.; Farrah, Duncan; García, Javier; Hailey, C. J.; Harrison, F. A.; Ricci, Claudio; Stern, Daniel; Zhang, W. W.

    2017-06-01

    The relativistic jets created by some active galactic nuclei are important agents of AGN feedback. In spite of this, our understanding of what produces these jets is still incomplete. X-ray observations, which can probe the processes operating in the central regions in the immediate vicinity of the supermassive black hole, the presumed jet launching point, are potentially particularly valuable in illuminating the jet formation process. Here, we present the hard X-ray NuSTAR observations of the radio-loud quasar 4C 74.26 in a joint analysis with quasi-simultaneous, soft X-ray Swift observations. Our spectral analysis reveals a high-energy cutoff of {183}-35+51 keV and confirms the presence of ionized reflection in the source. From the average spectrum we detect that the accretion disk is mildly recessed, with an inner radius of R in = 4-180 R g. However, no significant evolution of the inner radius is seen during the three months covered by our NuSTAR campaign. This lack of variation could mean that the jet formation in this radio-loud quasar differs from what is observed in broad-line radio galaxies.

  18. The X-Ray Counterpart to LAT PSR J2021+4026 and Its Interesting Spectrum

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Becker, W.; Carraminana, A.; De Luca, A.; Dormandy, M.; Harding, A.; Kanbach, G.; O'Dell, S. L.; Parkinson, P. Saz; Ray, P.; hide

    2011-01-01

    We report on the likely identification of the X-ray counterpart to LAT PSR J2021+4026, using the Chandra X-Ray Observatory ACIS-S3 and timing analysis of Large Area telescope (LAT) data from the Fermi satellite. The X-ray source that lies closest (10 arcsec) to the position determined from the Fermi-LAT timing solution has no cataloged infrared-to-visible counterpart and we have set an upper limit to its optical I and R band emission. The source exhibits a X-ray spectrum which is different when compared to Geminga and CTA 1, and this may have implications for the evolutionary track of radio-quiet gamma-ray pulsars.

  19. Application of X-ray imaging techniques to auroral monitoring

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Burstein, P.

    1981-01-01

    The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.

  20. X-rays from supernova 1987A

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Sutherland, Peter; Mccray, Richard; Ross, Randy R.

    1988-01-01

    Detailed calculations of the development of the X-ray spectrum of 1987A are presented using more realistic models for the supernova composition and density structure provided by Woosley. It is shown how the emergence of the X-ray spectrum depends on the parameters of the model and the nature of its central energy source. It is shown that the soft X-ray spectrum should be dominated by a 6.4 keV Fe K(alpha) emission line that could be observed by a sensitive X-ray telescope.

  1. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  2. Overview of the Chandra X-Ray Observatory Facility

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The Chandra X-Ray Observatory (originally called the Advanced X-Ray Astrophysics Facility - AXAF) is the X-Ray component of NASA's "Great Observatory" Program. Chandra is a NASA facility that provides scientific data to the international astronomical community in response to scientific proposals for its use. The Observatory is the product of the efforts of many organizations in the United States and Europe. The Great Observatories also include the Hubble Space Telescope for space-based observations of astronomical objects primarily in the visible portion of the electromagnetic spectrum, the now defunct Compton Gamma- Ray Observatory that was designed to observe gamma-ray emission from astronomical objects, and the soon-to-be-launched Space Infrared Telescope Facility (SIRTF). The Chandra X-Ray Observatory (hereafter CXO) is sensitive to X-rays in the energy range from below 0.1 to above 10.0 keV corresponding to wavelengths from 12 to 0.12 nanometers. The relationship among the various parts of the electromagnetic spectrum, sorted by characteristic temperature and the corresponding wavelength, is illustrated. The German physicist Wilhelm Roentgen discovered what he thought was a new form of radiation in 1895. He called it X-radiation to summarize its properties. The radiation had the ability to pass through many materials that easily absorb visible light and to free electrons from atoms. We now know that X-rays are nothing more than light (electromagnetic radiation) but at high energies. Light has been given many names: radio waves, microwaves, infrared, visible, ultraviolet, X-ray and gamma radiation are all different forms. Radio waves are composed of low energy particles of light (photons). Optical photons - the only photons perceived by the human eye - are a million times more energetic than the typical radio photon, whereas the energies of X-ray photons range from hundreds to thousands of times higher than that of optical photons. Very low temperature systems

  3. X-ray Monitoring of eta Carinae: Variations on a Theme

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.

    2004-01-01

    We present monitoring observations by the Rossi X-ray Timing Explorer of the 2-10 keV X-ray emission from the supermassive star eta Carinae from 1996 through late 2003. These data cover more than one of the stellar variability cycles in temporal detail and include especially detailed monitoring through two X-ray minima. We compare the current X-ray minimum which began on June 29, 2003 to the previous X-ray minimum which began on December 15, 1997, and refine the X-ray period to 2024 days. We examine the variations in the X-ray spectrum with phase and with time, and also refine our understanding of the X-ray peaks which have a quasi-period of 84 days, with significant variation. Cycle-to-cycle differences are seen in the level of X-ray intensity and in the detailed variations of the X-ray flux on the rise to maximum just prior to the X-ray minimum. Despite these differences the similarities between the decline to minimum, the duration of the minimum, and correlated variations of the X-ray flux and other measures throughout the electromagnetic spectrum leave little doubt that that the X-ray variation is strictly periodic and produced by orbital motion as the wind from eta Carinae collides with the wind of an otherwise unseen companion.

  4. Improved spatial resolution and lower-dose pediatric CT imaging: a feasibility study to evaluate narrowing the X-ray photon energy spectrum.

    PubMed

    Benz, Mark G; Benz, Matthew W; Birnbaum, Steven B; Chason, Eric; Sheldon, Brian W; McGuire, Dale

    2014-08-01

    This feasibility study has shown that improved spatial resolution and reduced radiation dose can be achieved in pediatric CT by narrowing the X-ray photon energy spectrum. This is done by placing a hafnium filter between the X-ray generator and a pediatric abdominal phantom. A CT system manufactured in 1999 that was in the process of being remanufactured was used as the platform for this study. This system had the advantage of easy access to the X-ray generator for modifications to change the X-ray photon energy spectrum; it also had the disadvantage of not employing the latest post-imaging noise reduction iterative reconstruction technology. Because we observed improvements after changing the X-ray photon energy spectrum, we recommend a future study combining this change with an optimized iterative reconstruction noise reduction technique.

  5. Method and apparatus for producing durationally short ultraviolet or x-ray laser pulses

    DOEpatents

    MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.

    1987-05-05

    A method and apparatus is disclosed for producing ultraviolet or x- ray laser pulses of short duration. An ultraviolet or x-ray laser pulse of long duration is progressively refracted, across the surface of an opaque barrier, by a streaming plasma that is produced by illuminating a solid target with a pulse of conventional line focused high power laser radiation. The short pulse of ultraviolet or x-ray laser radiation, which may be amplified to high power, is separated out by passage through a slit aperture in the opaque barrier.

  6. Performance summary on a high power dense plasma focus x-ray lithography point source producing 70 nm line features in AlGaAs microcircuits

    NASA Astrophysics Data System (ADS)

    Petr, Rodney; Bykanov, Alexander; Freshman, Jay; Reilly, Dennis; Mangano, Joseph; Roche, Maureen; Dickenson, Jason; Burte, Mitchell; Heaton, John

    2004-08-01

    A high average power dense plasma focus (DPF), x-ray point source has been used to produce ˜70 nm line features in AlGaAs-based monolithic millimeter-wave integrated circuits (MMICs). The DPF source has produced up to 12 J per pulse of x-ray energy into 4π steradians at ˜1 keV effective wavelength in ˜2 Torr neon at pulse repetition rates up to 60 Hz, with an effective x-ray yield efficiency of ˜0.8%. Plasma temperature and electron concentration are estimated from the x-ray spectrum to be ˜170 eV and ˜5.1019 cm-3, respectively. The x-ray point source utilizes solid-state pulse power technology to extend the operating lifetime of electrodes and insulators in the DPF discharge. By eliminating current reversals in the DPF head, an anode electrode has demonstrated a lifetime of more than 5 million shots. The x-ray point source has also been operated continuously for 8 h run times at 27 Hz average pulse recurrent frequency. Measurements of shock waves produced by the plasma discharge indicate that overpressure pulses must be attenuated before a collimator can be integrated with the DPF point source.

  7. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clustersmore » to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.« less

  8. The Hadronic Origin of the Hard Gamma-Ray Spectrum from Blazar 1ES 1101-232

    NASA Astrophysics Data System (ADS)

    Cao, Gang; Wang, Jiancheng

    2014-03-01

    The very hard γ-ray spectrum from distant blazars challenges the traditional synchrotron self-Compton (SSC) model, which may indicate that there is a contribution from an additional high-energy component beyond the SSC emission. In this paper, we study the possible origin of the hard γ-ray spectrum from distant blazars. We develop a model to explain the hard γ-ray spectrum from blazar 1ES 1101-232. In the model, the optical and X-ray radiation would come from the synchrotron radiation of primary electrons and secondary pairs and the GeV emission would be produced by the SSC process, however, the hard γ-ray spectrum would originate from the decay of neutral pion produced through proton-photon interactions with the synchrotron radiation photons within the jet. Our model can explain the observed spectral energy distribution of 1ES 1101-232 well, especially the very hard γ-ray spectrum. However, our model requires a very large proton power to efficiently produce the γ-ray through proton-photon interactions.

  9. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  10. HST spectrum and timing of the ultracompact X-ray binary candidate 47 Tuc X9

    NASA Astrophysics Data System (ADS)

    Tudor, V.; Miller-Jones, J. C. A.; Knigge, C.; Maccarone, T. J.; Tauris, T. M.; Bahramian, A.; Chomiuk, L.; Heinke, C. O.; Sivakoff, G. R.; Strader, J.; Plotkin, R. M.; Soria, R.; Albrow, M. D.; Anderson, G. E.; van den Berg, M.; Bernardini, F.; Bogdanov, S.; Britt, C. T.; Russell, D. M.; Zurek, D. R.

    2018-05-01

    To confirm the nature of the donor star in the ultracompact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3000-10 000 Å) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place 3σ upper limits on the H α and He II λ4686 emission line equivalent widths - EWH α ≲ 14 Å and -EW_{He {II}} ≲ 9 Å, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for L_2-10 keV ≈ 10^{33}-10^{34} erg s-1 is typically - EWH α ˜ 50 Å). This supports our previous suggestion, by Bahramian et al., of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, V- and I-band data to search for periodicities. In the optical bands, we recover the 7-d superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet, we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole/ He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.

  11. Modeling of X-ray Images and Energy Spectra Produced by Stepping Lightning Leaders

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Marshall, Robert A.; Celestin, Sebastien; Pasko, Victor P.

    2017-11-01

    Recent ground-based measurements at the International Center for Lightning Research and Testing (ICLRT) have greatly improved our knowledge of the energetics, fluence, and evolution of X-ray emissions during natural cloud-to-ground (CG) and rocket-triggered lightning flashes. In this paper, using Monte Carlo simulations and the response matrix of unshielded detectors in the Thunderstorm Energetic Radiation Array (TERA), we calculate the energy spectra of X-rays as would be detected by TERA and directly compare with the observational data during event MSE 10-01. The good agreement obtained between TERA measurements and theoretical calculations supports the mechanism of X-ray production by thermal runaway electrons during the negative corona flash stage of stepping lightning leaders. Modeling results also suggest that measurements of X-ray bursts can be used to estimate the approximate range of potential drop of lightning leaders. Moreover, the X-ray images produced during the leader stepping process in natural negative CG discharges, including both the evolution and morphological features, are theoretically quantified. We show that the compact emission pattern as recently observed in X-ray images is likely produced by X-rays originating from the source region, and the diffuse emission pattern can be explained by the Compton scattering effects.

  12. The High Resolution Chandra X-Ray Spectrum of 3C273

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)

    2000-01-01

    The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.

  13. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  14. Method and apparatus for producing durationally short ultraviolet or X-ray laser pulses

    DOEpatents

    MacGowan, Brian J.; Matthews, Dennis L.; Trebes, James E.

    1988-01-01

    A method and apparatus is disclosed for producing ultraviolet or X-ray laser pulses of short duration (32). An ultraviolet or X-ray laser pulse of long duration (12) is progressively refracted, across the surface of an opaque barrier (28), by a streaming plasma (22) that is produced by illuminating a solid target (16, 18) with a pulse of conventional line focused high power laser radiation (20). The short pulse of ultraviolet or X-ray laser radiation (32), which may be amplified to high power (40, 42), is separated out by passage through a slit aperture (30) in the opaque barrier (28).

  15. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  16. UCSD OSO-7 observations of the hard X-ray spectrum and variability of Centaurus A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Baity, W. A.; Wheaton, W. A.; Peterson, L. E.

    1976-01-01

    Results are reported for four X-ray scans of the region containing Cen A. It is found that the X-ray source had a hard number spectrum (spectral index of -1.2) during these observations and that the intensity in the range from 10 to 100 keV apparently increased by 230% with no detectable change in spectral shape between two observations 210 days apart. Either a Compton-synchrotron mechanism or thermal bremsstrahlung at any temperature greater than 200 keV is suggested as the source of the X-rays. It is noted that the present observations, together with a similar detection of another galaxy, may establish a distinct class of extragalactic X-ray objects with flat and highly absorbed spectra.

  17. X-ray nova MAXI J1828-249. Evolution of the broadband spectrum during its 2013-2014 outburst

    NASA Astrophysics Data System (ADS)

    Grebenev, S. A.; Prosvetov, A. V.; Burenin, R. A.; Krivonos, R. A.; Mescheryakov, A. V.

    2016-02-01

    Based on data from the SWIFT, INTEGRAL, MAXI/ISS orbital observatories, and the ground-based RTT-150 telescope, we have investigated the broadband (from the optical to the hard X-ray bands) spectrum of the X-ray nova MAXI J1828-249 and its evolution during the outburst of the source in 2013-2014. The optical and infrared emissions from the nova are shown to be largely determined by the extension of the power-law component responsible for the hard X-ray emission. The contribution from the outer cold regions of the accretion disk, even if the X-ray heating of its surface is taken into account, turns out to be moderate during the source's "high" state (when a soft blackbody emission component is observed in the X-ray spectrum) and is virtually absent during its "low" ("hard") state. This result suggests that much of the optical and infrared emissions from such systems originates in the same region of main energy release where their hard X-ray emission is formed. This can be the Compton or synchro-Compton radiation from a high-temperature plasma in the central accretion disk region puffed up by instabilities, the synchrotron radiation from a hot corona above the disk, or the synchrotron radiation from its relativistic jets.

  18. Constraining the particle spectrum in blazar jets: importance of the hard X-ray spectrum

    NASA Astrophysics Data System (ADS)

    Sinha, Atreyee; Sahayanathan, Sunder; Chitnis, Varsha

    2016-07-01

    Measurement of the spectral curvature in blazar jets can throw light on the underlying particle spectral distribution, and hence, the acceleration and diffusion processes at play. With the advent of NuSTAR and ASTROSAT, and the upcoming ASTRO-H, this curvature can now be measured accurately across the broadband X-ray energies. We will discuss results from our recent works on two HBLs, Mkn421 (Sinha et al, A&A 2015) and 1ES1011+496 (Sinha et al, ApJ submitted), and show how simultaneous measurement at hard and soft X-ray energies can be crucial in understanding the underlying particle spectrum. Detection of lognormality in blazars is beginning to hint at strong disk-jet connections. India's recently launched multiwavelength satellite, the ASTROSAT will provide simultaneous time resolved data between 0.2-80keV, along with measurements at Optical-UV energies. We will discuss prospects from ASTROSAT for studying jet triggering mechanisms in blazars.

  19. Inflow Generated X-ray Corona Around Supermassive Black Holes and Unified Model for X-ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-01-01

    Three-dimensional hydrodynamic simulations, covering the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass 108 M⊙, with detailed radiative cooling processes, are performed. Generically found is the existence of a significant amount of shock heated, high temperature (≥108 K) coronal gas in the inner (≤104 rsch) region. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures are in reasonable agreement with the overall ensemble spectrum of AGNs and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shape, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  20. Searching for Exoplanet Effects on the X-ray Spectrum of τ Boo

    NASA Astrophysics Data System (ADS)

    Wood, Brian; Laming, J. Martin

    2018-01-01

    We study the X-ray spectrum of the exoplanet host star τ Boo A (F7 V), in order to explore the possibility that its very close-in, massive exoplanet (Porb=3.31 days, m sin i=3.9 MJ) may be affecting the coronal emissions of this star. The star was observed recently by Chandra/LETGS for 92 ksec in three pieces between 2017 February 27 and 2017 March 5; and was previously observed by XMM for 65 ksec in 2003 June 24. The new Chandra observations allow us to resolve τ Boo A from its stellar companion, τ Boo B (M2 V), for the first time. The companion accounts for 21% of the system's total X-ray emission at the time of the Chandra observation. Nevertheless, our measurements of τ Boo A emission measures and coronal abundances from Chandra are reasonably consistent with previous measurements from XMM by Maggio et al. (2011, A&A, 527, A144), in which τ Boo A and B are not resolved. Covering planetary orbital phases 0.21-0.31, 0.44-0.49, and 0.69-0.86, the Chandra data show that τ Boo A's coronal X-ray spectrum does not vary significantly with planetary orbital phase. However, our analysis suggests that coronal abundances for τ Boo A are somewhat anomalous, with a significantly weaker "FIP effect" compared to similar stars without close-in exoplanets, particularly π3 Ori (F6 V).

  1. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  2. Standoff detection of hidden objects using backscattered ultra-intense laser-produced x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwabara, H.; Mori, Y.; Kitagawa, Y.

    2013-08-28

    Ultra-intense laser-produced sub-ps X-ray pulses can detect backscattered signals from objects hidden in aluminium containers. Coincident measurements using primary X-rays enable differentiation among acrylic, copper, and lead blocks inside the container. Backscattering reveals the shapes of the objects, while their material composition can be identified from the modification methods of the energy spectra of backscattered X-ray beams. This achievement is an important step toward more effective homeland security.

  3. The high energy X-ray spectrum of 4U 1700-37 observed from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.

    1980-01-01

    The most intense hard X-ray source in the confused region in Scorpius has been identified as 4U 1700-37 (=HD 153919). Observations extending over three binary periods in 1978 September were carried out with the high-energy X-ray spectrometer on OSO 8. The 3.4 day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photonumber spectrum from 20 to 150 keV is well represented by a single power law with a photonumber spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 (+15, -7)keV. The counting rate above 20 keV outside of eclipse shows no evidence for the 96.8 minute X-ray modulation previously reported at lower energies. Despite the difficulties that exist in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with our currently accepted theories of the evolution and physical properties of neutron stars, the observed properties of 4U 1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  4. On the X-ray spectrum of the volume emissivity arising from Abell clusters

    NASA Technical Reports Server (NTRS)

    Stottlemyer, A. R.; Boldt, E. A.

    1984-01-01

    HEAO 1 A-2 X-ray spectra (2-15 keV) for an optically selected sample of Abell clusters of galaxies with z less than 0.1 have been analyzed to determine the energy dependence of the cosmological X-ray volume emissivity arising from such clusters. This spectrum is well fitted by an isothermal-bremsstrahlung model with kT = 7.4 + or - 1.5 KeV. This result is a test of the isothermal-volume-emissivity spectrum to be inferred from the conjecture that all contributing clusters may be characterized by kT = 7 keV, as assumed by McKee et al. (1980) in estimating the underlying luminosity function for the same sample. Although satisfied at the statistical level indicated, the analysis of a low-luminosity subsample suggests that this assumption of identical isothermal spectra would lead to a systematic error for a more statistically precise determination of the luminosity function's form.

  5. Microwave and hard X-ray emissions during the impulsive phase of solar flares: Nonthermal electron spectrum and time delay

    NASA Technical Reports Server (NTRS)

    Gu, Ye-Ming; Li, Chung-Sheng

    1986-01-01

    On the basis of the summing-up and analysis of the observations and theories about the impulsive microwave and hard X-ray bursts, the correlations between these two kinds of emissions were investigated. It is shown that it is only possible to explain the optically-thin microwave spectrum and its relations with the hard X-ray spectrum by means of the nonthermal source model. A simple nonthermal trap model in the mildly-relativistic case can consistently explain the main characteristics of the spectrum and the relative time delays.

  6. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, V., E-mail: arora@rrcat.gov.in; Chakera, J. A.; Naik, P. A.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available formore » time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.« less

  7. X-ray frequency combs from optically controlled resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Cavaletto, Stefano M.; Harman, Zoltán; Buth, Christian; Keitel, Christoph H.

    2013-12-01

    An x-ray pulse-shaping scheme is put forward for imprinting an optical frequency comb onto the radiation emitted on a driven x-ray transition, thus producing an x-ray frequency comb. A four-level system is used to describe the level structure of N ions driven by narrow-bandwidth x rays, an optical auxiliary laser, and an optical frequency comb. By including many-particle enhancement of the emitted resonance fluorescence, a spectrum is predicted consisting of equally spaced narrow lines which are centered on an x-ray transition energy and separated by the same tooth spacing as the driving optical frequency comb. Given an x-ray reference frequency, our comb could be employed to determine an unknown x-ray frequency. While relying on the quality of the light fields used to drive the ensemble of ions, the model has validity at energies from the 100 eV to the keV range.

  8. NuSTAR and XMM-Newton Observations of the Hard X- Ray Spectrum of Centaurus A

    NASA Technical Reports Server (NTRS)

    Furst, F.; Muller, C.; Madsen, K. K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Balokovic, M.; Beuchert, T.; Zhang, W.

    2016-01-01

    We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Gamma = 1.8150 +/- 0.005 and a fluorescent Fe Kaline in good agreement with literature values. The spectrum is greater than 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between approximately 100-300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R is less than 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.

  9. Advances in X-ray Mapping for Characterization of Microstructures: Silicon Drift Detectors, Microcalorimeters, X-ray Spectrum Imaging, and Data Mining

    NASA Astrophysics Data System (ADS)

    Newbury, D. E.

    2006-05-01

    X-ray mapping, performed with the electron probe microanalyzer (EPMA) or scanning electron microscope/energy dispersive x-ray spectrometer (SEM/EDS), is one of the most popular modes of studying chemically heterogeneous microstructures [1]. Despite the maturity of the technique, now in its 50th anniversary year [2], recent remarkable advances in instrumentation and software will provide microanalysts with an even more effective and efficient microstructural characterization tool: (1) Increased x-ray mapping speed: The silicon drift detector (SDD) [3] is a new form of the familiar silicon EDS that uses the same detection physics but with a radically different design that outperforms the classic Si-EDS in nearly every way [4]: (1) the SDD operates requires only Peltier cooling to -20 oC to - 50 oC; (2) for a given detector active area, the SDD has superior resolution; (3) the SDD achieves the same resolution but with a peaking time that is 5 to 8 times faster; and (4) maximum output count rate (OCR) ranges from about 14 kHz at optimum resolution (134 eV at MnKa for a 50 mm2 area) to 500 kHz (217 eV). This OCR performance enables rapid x-ray mapping collection in the x-ray spectrum image (XSI) mode, in which a complete EDS spectrum (2048 10eV-channels) is captured at each pixel (e.g., 10 ms dwell with 1.3 ms overhead per pixel, or 185 seconds for a 128x128 pixel map). XSI collection captures all possible spectral information within the limits imposed by the spectrometer and the primary beam dose. (2) EDS with WDS resolution: The microcalorimeter EDS measures the temperature rise when a single x-ray photon is absorbed in a metal target [5]. Demonstrated resolution is 4.5 eV at Mn Ka for a broad energy range (0.2 - 10 keV) spectrometer and 2 eV (AlKa) for a low photon energy range (0.2 - 2.0 keV) version. The low energy spectrometer is sensitive to peak shape and position changes associated with chemical bonding, opening the possibility of EDS chemical-state mapping. (3

  10. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    determined from RHESSI. We discuss the possible implications for X-ray-producing physical processes in the quiescent, active-region-free corona. The X123 spectrum could potentially serve as a reference for ~0.5-4 keV quiet Sun emission, to help improve solar spectral models such as CHIANTI and XPS Level 4. Our comparisons indicate that XPS Level 4 likely requires significant revisions in the SXR range, which may have downstream implications for the Earth ionosphere models that have used XPS Level 4 as their solar input.

  11. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Woods, Thomas N.; Stone, Jordan

    2013-03-01

    determined from RHESSI. We discuss the possible implications for X-ray-producing physical processes in the quiescent, active-region-free corona. The X123 spectrum could potentially serve as a reference for 0.5-4 keV quiet Sun emission, to help improve solar spectral models such as CHIANTI and XPS Level 4. Our comparisons indicate that XPS Level 4 likely requires significant revisions in the SXR range, which may have downstream implications for the Earth ionosphere models that have used XPS Level 4 as their solar input.

  12. The High Energy X-ray Spectrum of 4U1700-37 Observed from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Maurer, G. S.; Orwig, L. E.

    1979-01-01

    The most intense hard X-ray source in the confused region in Scorpius is identified as 4U1700-37. The 3.4-day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photon-number spectrum from 20 to 150 keV is well represented by a single power law with a photo-number spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 96.8-min X-ray modulation previously reported at lower energies. Despite the difficulties in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with theories of the evolution and physical properties of neutron stars, the observed properties of 4U1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  13. Nonthermal electron-positron pairs and the break in the hard X-ray spectrum of NGC 4151

    NASA Technical Reports Server (NTRS)

    Coppi, Paolo S.; Zdziarski, Andrzej A.

    1992-01-01

    The recent observation by the detectors on board Granat of a spectral steepening above about 50 keV imposes a constraint on possible emission models for NGC 4151. This steepening, for example, is not well fitted by an exponential rollover characteristic of a purely thermal model, or by a Compton-downscattered power law. We find that this spectral behavior is consistent with that produced by a photon-starved nonthermal pair plasma with high compactness. This is the first quantitative test of the nonthermal pair plasma model against broad-band X-ray/gamma-ray observations. Above 200 keV or so, the nonthermal pair plasma model predicts an upturn in the spectrum, and a thermal annihilation feature around 511 keV. Such spectral behavior should be looked for with GRO.

  14. Contrast-enhanced dual-energy subtraction imaging using electronic spectrum-splitting and multi-prism x-ray lenses

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Cederström, Björn; Lundqvist, Mats; Ribbing, Carolina; Åslund, Magnus; Diekmann, Felix; Nishikawa, Robert; Danielsson, Mats

    2008-03-01

    Dual-energy subtraction imaging (DES) is a method to improve the detectability of contrast agents over a lumpy background. Two images, acquired at x-ray energies above and below an absorption edge of the agent material, are logarithmically subtracted, resulting in suppression of the signal from the tissue background and a relative enhancement of the signal from the agent. Although promising, DES is still not widely used in clinical practice. One reason may be the need for two distinctly separated x-ray spectra that are still close to the absorption edge, realized through dual exposures which may introduce motion unsharpness. In this study, electronic spectrum-splitting with a silicon-strip detector is theoretically and experimentally investigated for a mammography model with iodinated contrast agent. Comparisons are made to absorption imaging and a near-ideal detector using a signal-to-noise ratio that includes both statistical and structural noise. Similar to previous studies, heavy absorption filtration was needed to narrow the spectra at the expense of a large reduction in x-ray flux. Therefore, potential improvements using a chromatic multi-prism x-ray lens (MPL) for filtering were evaluated theoretically. The MPL offers a narrow tunable spectrum, and we show that the image quality can be improved compared to conventional filtering methods.

  15. A new, high-precision measurement of the X-ray Cu K α spectrum

    NASA Astrophysics Data System (ADS)

    Mendenhall, Marcus H.; Cline, James P.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald

    2016-03-01

    One of the primary measurement issues addressed with NIST Standard Reference Materials (SRMs) for powder diffraction is that of line position. SRMs for this purpose are certified with respect to lattice parameter, traceable to the SI through precise measurement of the emission spectrum of the X-ray source. Therefore, accurate characterization of the emission spectrum is critical to a minimization of the error bounds on the certified parameters. The presently accepted sources for the SI traceable characterization of the Cu K α emission spectrum are those of Härtwig, Hölzer et al., published in the 1990s. The structure of the X-ray emission lines of the Cu K α complex has been remeasured on a newly commissioned double-crystal instrument, with six-bounce Si (440) optics, in a manner directly traceable to the SI definition of the meter. In this measurement, the entire region from 8020 eV to 8100 eV has been covered with a highly precise angular scale and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement is in modest disagreement with reference values for the wavelength of the Kα1 line, and strong disagreement for the wavelength of the Kα2 line.

  16. Spectral formation in a radiative shock: application to anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Kylafis, N. D.; Trümper, J. E.; Ertan, Ü.

    2014-02-01

    Context. In the fallback disk model for the persistent emission of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), the hard X-ray emission arises from bulk- and thermal Comptonization of bremsstrahlung photons, which are generated in the accretion column. The relatively low X-ray luminosity of these sources implies a moderate transverse optical depth to electron scattering, with photons executing a small number of shock crossings before escaping sideways. Aims: We explore the range of spectral shapes that can be obtained with this model and characterize the most important parameter dependencies. Methods: We use a Monte Carlo code to study the crisscrossing of photons in a radiative shock in an accretion column and compute the resulting spectrum. Results: As expected, high-energy power-law X-ray spectra are produced in radiative shocks with photon-number spectral index Γ ≳ 0.5. We find that the required transverse optical depth is 1 ≲ τ⊥ ≲ 7. Such spectra are observed in low-luminosity X-ray pulsars. Conclusions: We demonstrate here with a simple model that Compton upscattering in the radiative shock in the accretion column can produce hard X-ray spectra similar to those seen in the persistent and transient emission of AXPs and SGRs. In particular, one can obtain a high-energy power-law spectrum, with photon-number spectral-index Γ ~ 1 and a cutoff at 100 - 200 keV, with a transverse Thomson optical depth of ~5, which is shown to be typical in AXPs/SGRs.

  17. The broad band X-ray spectrum of SN 1978k and two other luminous X-ray sources in the spiral galaxy NGC 1313

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Okada, Kyoko; Mihara, Tatehiro; Makishima, Kazuo; Colbert, Edward J. M.

    1994-01-01

    We present preliminary results of our analysis of the Advanced Satellite for Cosmology and Astrophysics (ASCA) PV phase observation of the nearby spiral galaxy NGC 1313. ASCA cleanly resolves the three previously known luminous sources, one of which is the very luminous supernova, SN 1978k. The spectrum of SN 1978k is described by either a power law with a photon index gamma approximately 2.2 or a thermal model with temperature kT approximately 3.0 keV and abundances Z approximately 0.2 Z(sun). There is no evidence for strong line emission from it or from the other two sources. The spectrum of SN 1978k arises either in shocked gas in extreme departure from ionization equilibrium or from synchrotron processes associated with a newborn pulsar. A second source, near the galactic center, is well-fit by a power-law with a photon index of approximately 1.8. It is possibly an active nucleus-like source, but physically displaced from the optical nucleus of the galaxy. The spectrum of the third source, located 8 kpc south of the nucleus, along with the absence of an optical counterpart, suggests that it is a low mass X-ray binary; but its high X-ray luminosity clouds this interpretation. This observation demonstrates the ability of ASCA to perform effective broad band spectroscopic measurements of sources at a 2-10 keV flux level of 5 x 10(exp -13) erg cm(exp -2) s(exp -1).

  18. X-Ray Reprocessing in Active Galactic Nuclei

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.

    2004-01-01

    This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.

  19. Interrelation of soft and hard X-ray emissions during solar flares. I - Observations

    NASA Technical Reports Server (NTRS)

    Winglee, R. M.; Kiplinger, A. L.; Zarro, D. M.; Dulk, G. A.; Lemen, J. R.

    1991-01-01

    The interrelation between the acceleration and heating of electrons and ions during impulsive solar flares is determined on the basis of simulataneous observations of hard and soft X-ray emission from the Solar Maximum Mission at high time resolution (6 s). For all the flares, the hard X-rays are found to have a power-law spectrum which breaks down during the rise phase and beginning of the decay phase. After that, the spectrum changes to either a single power law or a power law that breaks up at high energies. The characteristics of the soft X-ray are found to depend on the flare position. It is suggested that small-scale quasi-static electric fields are important for determining the acceleration of the X-ray-producing electrons and the outflowing chromospheric ions.

  20. X-ray scanning of overhead aurorae from rockets

    NASA Technical Reports Server (NTRS)

    Barcus, J. R.; Goldberg, R. A.; Gesell, L. H.

    1981-01-01

    Two Nike Tomahawk rocket payloads were launched into energetic auroral events in September, 1976 to investigate the structure of these events, as well as their effects on the atmosphere. X-ray scintillation detectors with energy discrimination in four ranges were used to measure the deposition of bremsstrahlung produced X-rays within the stratosphere and mesosphere. Iterative computer techniques were used to reconstruct X-ray source maps at 100 km, taking atmospheric absorption effects into account. Payload 18.178 was launched on September 21st into an aurora having two distinct azimuthal regions of optical brightness. The X-ray scanner detected the same features, and overlays of the X-ray source maps on all-sky photographs showed spatial coincidence of the X-ray with optical features at the lower energies (below 40 keV). Payload 18.179 was launched September 23rd into an aurora with a more diffuse character. The optical structure did not coincide as well with the measured X-ray structure. There was also an indication of a two-component spectrum for each event, with the hard component originating in the more diffuse, optically faint regions.

  1. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  2. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vink, Jacco

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and {gamma}-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power lawmore » up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.« less

  3. X-Ray Spectroscopy of the Nearby, Classical T Tauri Star TW Hydrae

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Huenemoerder, David P.; Schulz, Norbert S.; Weintraub, David A.

    1999-11-01

    We present ASCA and ROSAT X-ray observations of the classical T Tauri star TW Hya, the namesake of a small association that, at a distance of ~50 pc, represents the nearest known region of recent star formation. Analysis of ASCA and ROSAT spectra indicates characteristic temperatures of ~1.7 and ~9.7 MK for the X-ray-emitting region(s) of TW Hya, with emission lines of highly ionized Fe dominating the spectrum at energies of ~1 keV. The X-ray data show variations in X-ray flux on timescales of <~1 hr as well as indications of changes in the X-ray-absorbing column on timescales of several years, suggesting that flares and variable obscuration are responsible for the large-amplitude optical variability of TW Hya on short and long timescales, respectively. Comparison with model calculations suggests that TW Hya produces sufficient hard X-ray flux to produce significant ionization of molecular gas within its circumstellar disk; such X-ray ionization may regulate both protoplanetary accretion and protoplanetary chemistry.

  4. Interpretation of the silver L X-ray spectrum

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1977-01-01

    Silver L X-ray energies were calculated using theoretical binding energies from relaxed orbital relativistic Hartree-Fock-Slater calculations. Theoretical X-ray energies are compared with experimental results.

  5. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  6. Inflow Generated X-Ray Corona around Supermassive Black Holes and a Unified Model for X-Ray Emission

    NASA Astrophysics Data System (ADS)

    Wang, Lile; Cen, Renyue

    2016-02-01

    Three-dimensional hydrodynamic simulations are performed, which cover the spatial domain from hundreds of Schwarzschild radii to 2 pc around the central supermassive black hole of mass {10}8{M}⊙ , with detailed radiative cooling processes. The existence of a significant amount of shock heated, high temperature (≥slant {10}8 {{K}}) coronal gas in the inner (≤slant {10}4{r}{sch}) region is generally found. It is shown that the composite bremsstrahlung emission spectrum due to coronal gas of various temperatures is in reasonable agreement with the overall ensemble spectrum of active galactic nuclei (AGNs) and hard X-ray background. Taking into account inverse Compton processes, in the context of the simulation-produced coronal gas, our model can readily account for the wide variety of AGN spectral shapes, which can now be understood physically. The distinguishing feature of our model is that X-ray coronal gas is, for the first time, an integral part of the inflow gas and its observable characteristics are physically coupled to the concomitant inflow gas. One natural prediction of our model is the anti-correlation between accretion disk luminosity and spectral hardness: as the luminosity of SMBH accretion disk decreases, the hard X-ray luminosity increases relative to the UV/optical luminosity.

  7. Palus Somni - Anomalies in the correlation of Al/Si X-ray fluorescence intensity ratios and broad-spectrum visible albedos. [lunar surface mineralogy

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.

    1976-01-01

    The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.

  8. Scanning electron microscopy/energy dispersive spectrometry fixedbeam or overscan x-ray microanalysis of particles can miss the real structure: x-ray spectrum image mapping reveals the true nature

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2013-05-01

    The typical strategy for analysis of a microscopic particle by scanning electron microscopy/energy dispersive spectrometry x-ray microanalysis (SEM/EDS) is to use a fixed beam placed at the particle center or to continuously overscan to gather an "averaged" x-ray spectrum. While useful, such strategies inevitably concede any possibility of recognizing microstructure within the particle, and such fine scale structure is often critical for understanding the origins, behavior, and fate of particles. Elemental imaging by x-ray mapping has been a mainstay of SEM/EDS analytical practice for many years, but the time penalty associated with mapping with older EDS technology has discouraged its general use and reserved it more for detailed studies that justified the time investment. The emergence of the high throughput, high peak stability silicon drift detector (SDD-EDS) has enabled a more effective particle mapping strategy: "flash" x-ray spectrum image maps can now be recorded in seconds that capture the spatial distribution of major (concentration, C > 0.1 mass fraction) and minor (0.01 <= C <= 0.1) constituents. New SEM/SDD-EDS instrument configurations feature multiple SDDs that view the specimen from widely spaced azimuthal angles. Multiple, simultaneous measurements from different angles enable x-ray spectrometry and mapping that can minimize the strong geometric effects of particles. The NIST DTSA-II software engine is a powerful aid for quantitatively analyzing EDS spectra measured individually as well as for mapping information (available free for Java platforms at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  9. High-resolution multi-MeV x-ray radiography using relativistic laser-solid interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtois, C.; Compant La Fontaine, A.; Barbotin, M.

    2011-02-15

    When high intensity ({>=}10{sup 19} W cm{sup -2}) laser light interacts with matter, multi-MeV electrons are produced. These electrons can be utilized to generate a MeV bremsstrahlung x-ray emission spectrum as they propagate into a high-Z solid target positioned behind the interaction area. The short duration (<10 ps) and the small diameter (<500 {mu}m) of the x-ray pulse combined with the MeV x-ray spectrum offers an interesting alternative to conventional bremsstrahlung x-ray sources based on an electron accelerator used to radiograph dense, rapidly moving objects. In experiments at the Omega EP laser, a multi-MeV x-ray source is characterized consistently withmore » number of independent diagnostics. An unfiltered x-ray dose of approximately 2 rad in air at 1 m and a source diameter of less than 350 {mu}m are inferred. Radiography of a complex and high area density (up to 61 g/cm{sup 2}) object is then performed with few hundred microns spatial resolution.« less

  10. Impulsive solar X-ray bursts. 4: Polarization, directivity and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1976-01-01

    A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.

  11. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  12. Can isolated single black holes produce X-ray novae?

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tatsuya; Teraki, Yuto; Ioka, Kunihito

    2018-03-01

    Almost all black holes (BHs) and BH candidates in our Galaxy have been discovered as soft X-ray transients, so-called X-ray novae. X-ray novae are usually considered to arise from binary systems. Here, we propose that X-ray novae are also caused by isolated single BHs. We calculate the distribution of the accretion rate from interstellar matter to isolated BHs, and find that BHs in molecular clouds satisfy the condition of the hydrogen-ionization disc instability, which results in X-ray novae. The estimated event rate is consistent with the observed one. We also check an X-ray novae catalogue (Corral-Santana et al.) and find that 16/59 ˜ 0.27 of the observed X-ray novae are potentially powered by isolated BHs. The possible candidates include IGR J17454-2919, XTE J1908-094, and SAX J1711.6-3808. Near-infrared photometric and spectroscopic follow-ups can exclude companion stars for a BH census in our Galaxy.

  13. Suzaku Observation of Diffuse X-ray Emission from the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Petre, Robert; Matsumoti, Hironori; Tsujimoto, Masahiro; Holt, Stephan S.; Ezoe, Yuichiro; Ozawa, Hideki; Tsuboi, Yohko; Soong, Yang; Kitamoto, Shunji; hide

    2007-01-01

    We studied extended X-ray emission from the Carina Nebula taken with the Suzaku CCD camera XIS on 2005 Aug. 29. The X-ray morphology, plasma temperature and absorption to the plasma are consistent with the earlier Einstein results. The Suzaku spectra newly revealed emission lines from various spices including oxygen, but not from nitrogen. This result restricts the N/O ratio significantly low, compared with evolved massive stellar winds, suggesting that the diffuse emission is originated in an old supernova remnant or a super shell produced by multiple supernova remnants. The X-ray spectra from the north and south of eta Car showed distinct differences between 0.3-2 keV. The south spectrum shows strong L-shell lines of iron ions and K-shell lines of silicon ions, while the north spectrum shows them weak in intensity. This means that silicon and iron abundances are a factor of 2-4 higher in the south region than in the north region. The abundance variation may be produced by an SNR ejecta, or relate to the dust formation around the star forming core.

  14. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  15. Semiconductor and thermoluminescent dosimetry of pulsed soft X ray plasma sources.

    PubMed

    Krása, J; Cejnarová, A; Juha, L; Ryć, L; Scholz, M; Kubes, P

    2002-01-01

    A multichannel detection system having a dynamic range of approximately 1 x 10(-9) Gy --20 Gy was developed with the use of commercially produced Si-photodiodes and TLDs for accurate measurement of X ray energy emitted from plasma-focus facility and from laser-produced plasmas. The proof of linearity of the employed detectors accomplished by a comparison of their responses to a broad band spectrum of X rays emitted from plasmas, is reported. It is demonstrated that TLDs irradiated with no protective filter show an incorrect response due to overloading in the sub-keV range and repopulation of dosimetric peaks induced by the UV radiation. The measurement of the power of undesirable secondary X ray sources driven by the primary plasma inside the interaction chamber was performed on the basis of analysis of space dependence of X ray intensity with respect to the assumed r(-2) decrease in the intensity far away from the plasma.

  16. HEAO 1 high-energy X-ray observations of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Howe, S. K.; Primini, F. A.; Bautz, M. W.; Lang, F. L.; Levine, A. M.; Lewin, W. H. G.

    1983-01-01

    Pulsations of 4.8 sec were detected up to energies above 38 keV by the present High Energy X-ray and Low Energy Gamma-Ray HEAO 1 satellite experiment observations of Cen X-3, and an analysis of the X-ray spectrum as a function of pulse phase indicates that the spectrum hardens during an interval of about 1.2 sec which lags the pulse peak by about 0.6 sec. The results of correlated observations of pulse period and X-ray intensity include (1) the detection of a high intensity state during which the pulse period is on the average increasing, (2) the measurement of comparable high intensities during episodes of both period increase and decrease, (3) the detection of X-ray pulsations at a much reduced level during a period of low intensity, and (4) the detection of a transition between spin-down, and spin-up episodes that coincides with a rapid decrease in X-ray intensity.

  17. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  18. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    PubMed

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  19. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    PubMed Central

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.

    2015-01-01

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992

  20. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  1. X-ray-binary spectra in the lamp post model

    NASA Astrophysics Data System (ADS)

    Vincent, F. H.; Różańska, A.; Zdziarski, A. A.; Madej, J.

    2016-05-01

    Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole rotation axis and emitting X-rays. The observed spectrum is made of three major components: the direct spectrum traveling from the lamp directly to the observer; the thermal bump at the equilibrium temperature of the accretion disk heated by the lamp; and the reflected spectrum essentially made of the Compton hump and the iron-line complex. Aims: We aim to accurately compute the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. We are particularly interested in investigating the possibility to use the iron-line complex as a probe to constrain the black hole spin. Methods: We computed in full general relativity the illumination of a thin accretion disk by a fixed X-ray lamp along the rotation axis. We used the ATM21 radiative transfer code to compute the local, energy-dependent spectrum emitted along the disk as a function of radius, emission angle and black hole spin. We then ray traced this local spectrum to determine the final reprocessed spectrum as received by a distant observer. We consider two extreme values of the black hole spin (a = 0 and a = 0.98) and discuss the dependence of the local and ray-traced spectra on the emission angle and black hole spin. Results: We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission is fully taken into account. The disk flux, together with the X-ray flux from the lamp, determines the temperature and ionization structure of the atmosphere. High black hole spin implies high temperature in the inner disk regions, therefore, the emitted thermal disk spectrum fully covers the iron-line complex. As a

  2. [Experimental investigation of laser plasma soft X-ray source with gas target].

    PubMed

    Ni, Qi-liang; Gong, Yan; Lin, Jing-quan; Chen, Bo; Cao, Jian-lin

    2003-02-01

    This paper describes a debris-free laser plasma soft X-ray source with a gas target, which has high operating frequency and can produce strong soft X-ray radiation. The valve of this light source is drived by a piezoelectrical ceramic whose operating frequency is up to 400 Hz. In comparison with laser plasma soft X-ray sources using metal target, the light source is debris-free. And it has higher operating frequency than gas target soft X-ray sources whose nozzle is controlled by a solenoid valve. A channel electron multiplier (CEM) operating in analog mode is used to detect the soft X-ray generated by the laser plasma source, and the CEM's output is fed to to a charge-sensitive preamplifier for further amplification purpose. Output charges from the CEM are proportional to the amplitude of the preamplifier's output voltage. Spectra of CO2, Xe and Kr at 8-14 nm wavelength which can be used for soft X-ray projection lithography are measured. The spectrum for CO2 consists of separate spectral lines originate mainly from the transitions in Li-like and Be-like ions. The Xe spectrum originating mainly from 4d-5f, 4d-4f, 4d-6p and 4d-5p transitions in multiply charged xenon ions. The spectrum for Kr consists of separate spectral lines and continuous broad spectra originating mainly from the transitions in Cu-, Ni-, Co- and Fe-like ions.

  3. γ Cassiopeiae: an X-ray Be star with personality

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Smith, M. A.; Motch, C.

    2010-03-01

    An exciting unsolved problem in the study of high energy processes of early type stars concerns the physical mechanism for producing X-rays near the Be star γ Cassiopeiae. By now we know that this source and several “γ Cas analogs” exhibit an unusual hard thermal X-ray spectrum, compared both to normal massive stars and the non-thermal emission of known Be/X-ray binaries. Also, its light curve is variable on almost all conceivable timescales. In this study we reanalyze a high dispersion spectrum obtained by Chandra in 2001 and combine it with the analysis of a new (2004) spectrum and light curve obtained by XMM-Newton. We find that both spectra can be fit well with 3-4 optically thin, thermal components consisting of a hot component having a temperature kTQ ˜ 12-14 keV, perhaps one with a value of ~2.4 keV, and two with well defined values near 0.6 keV and 0.11 keV. We argue that these components arise in discrete (almost monothermal) plasmas. Moreover, they cannot be produced within an integral gas structure or by the cooling of a dominant hot process. Consistent with earlier findings, we also find that the Fe abundance arising from K-shell ions is significantly subsolar and less than the Fe abundance from L-shell ions. We also find novel properties not present in the earlier Chandra spectrum, including a dramatic decrease in the local photoelectric absorption of soft X-rays, a decrease in the strength of the Fe and possibly of the Si K fluorescence features, underpredicted lines in two ions each of Ne and N (suggesting abundances that are ~1.5-3× and ~4× solar, respectively), and broadening of the strong Ne X Lyα and O VIII Lyα lines. In addition, we note certain traits in the γ Cas spectrum that are different from those of the fairly well studied analog HD 110432 - in this sense the stars have different “personalities.” In particular, for γ Cas the hot X-ray component remains nearly constant in temperature, and the photoelectric absorption of

  4. Origin of X-Ray and Gamma-Ray Emission from the Galactic Central Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernyshov, D. O.; Dogiel, V. A.; Cheng, K.-S.

    We study a possible connection between different non-thermal emissions from the inner few parsecs of the Galaxy. We analyze the origin of the gamma-ray source 2FGL J1745.6−2858 (or 3FGL J1745.6−2859c) in the Galactic Center (GC) and the diffuse hard X-ray component recently found by the Nuclear Spectroscopic Telescope Array , as well as the radio emission and processes of hydrogen ionization from this area. We assume that a source in the GC injected energetic particles with power-law spectrum into the surrounding medium in the past or continues to inject until now. The energetic particles may be protons, electrons, or amore » combination of both. These particles diffuse to the surrounding medium and interact with gas, magnetic field, and background photons to produce non-thermal emissions. We study the spectral and spatial features of the hard X-ray emission and gamma-ray emission by the particles from the central source. Our goal is to examine whether the hard X-ray and gamma-ray emissions have a common origin. Our estimations show that, in the case of pure hadronic models, the expected flux of hard X-ray emission is too low. Despite the fact that protons can produce a non-zero contribution in gamma-ray emission, it is unlikely that they and their secondary electrons can make a significant contribution in hard X-ray flux. In the case of pure leptonic models, it is possible to reproduce both X-ray and gamma-ray emissions for both transient and continuous supply models. However, in the case of the continuous supply model, the ionization rate of molecular hydrogen may significantly exceed the observed value.« less

  5. X-ray flares from runaway pair production in active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kirk, J. G.; Mastichiadis, A.

    1992-01-01

    The hard X-ray spectrum of AGNs is nonthermal, probably arising from an electron-positron pair cascade, with some emission reflected off relatively cold matter. There has been interest in models on which protons are accelerated and create relativistic electrons on interaction with a local radiation field. It is shown here that a sufficient column density of protons can lead to runaway pair production: photons generated by the relativistic pairs are the targets for the protons to produce more pairs. This can produce X-ray fluxes with the characteristics observed in AGN. The model predicts the maximum ratio of luminosity to source size as well as their spectrum in the early phases. The same mechanism may also be able to create the knots of synchrotron-radiating pair plasma seen in sources such as 3C273.

  6. A new detection of an UFO in the X-ray spectrum of a lensed QSO

    NASA Astrophysics Data System (ADS)

    Dadina, M.

    2017-10-01

    The discovery of the "M_{SMBH}-σ relation" indicated that a connection between the central black-hole and the hosting galaxies acted during the cosmic time. With the discovery in X-rays of the ultra-fast outflows in nearby AGN, we have most probably probed one of the ingredients that are needed to build-up this mechanism. At high-z, however, such measurements were possible only in an handful of objects and this was possible mainly for the presence of gravitational lenses that magnified otherwise X-ray weak QSO. Following this, we proposed a program to use XMM-Newton and gravitational lenses as telescopes to point bright, lensed and distant QSO to characterize in detail their X-ray spectrum and to detect blushifted absorption lines at E˜7-10 keV (rest frame). Here we present the preliminary results obtained for the z=2.64 QSO MG J0414+0534.

  7. Measurement of the noise power spectrum in digital x-ray detectors

    NASA Astrophysics Data System (ADS)

    Aufrichtig, Richard; Su, Yu; Cheng, Yu; Granfors, Paul R.

    2001-06-01

    The noise power spectrum, NPS, is a key imaging property of a detector and one of the principle quantities needed to compute the detective quantum efficiency. NPS is measured by computing the Fourier transform of flat field images. Different measurement methods are investigated and evaluated with images obtained from an amorphous silicon flat panel x-ray imaging detector. First, the influence of fixed pattern structures is minimized by appropriate background corrections. For a given data set the effect of using different types of windowing functions is studied. Also different window sizes and amounts of overlap between windows are evaluated and compared to theoretical predictions. Results indicate that measurement error is minimized when applying overlapping Hanning windows on the raw data. Finally it is shown that radial averaging is a useful method of reducing the two-dimensional noise power spectrum to one dimension.

  8. X-ray Studies of Unidentified Galactic TeV Gamma-ray Sources

    NASA Astrophysics Data System (ADS)

    Pühlhofer, Gerd

    2009-05-01

    Many of the recently discovered Galactic TeV sources remain unidentified to date. A large fraction of the sources is possibly associated with relic pulsar wind nebula (PWN) systems. One key question here is the maximum energy (beyond TeV) attained in the compact PWNe. Hard X-ray emission can trace those particles, but current non-focussing X-ray instruments above 10 keV have difficulties to deconvolve the hard pulsar spectrum from its surrounding nebula. Some of the new TeV sources are also expected to originate from middle-aged and possibly even from old supernova remnants (SNR). But no compelling case for such an identification has been found yet. In established young TeV-emitting SNRs, X-ray imaging above 10 keV could help to disentangle the leptonic from the hadronic emission component in the TeV shells, if secondary electrons produced in hadronic collisions can be effectively detected. As SNRs get older, the high energy electron component is expected to fade away. This may allow to verify the picture through X-ray spectral evolution of the source population. Starting from the lessons we have learned so far from X-ray follow-up observations of unidentified TeV sources, prospects for Simbol-X to resolve open questions in this field will be discussed.

  9. Discovery of X-ray pulsations in the Be/X-ray binary IGR J06074+2205

    NASA Astrophysics Data System (ADS)

    Reig, P.; Zezas, A.

    2018-05-01

    Context. IGR J06074+2205 is a poorly studied X-ray source with a Be star companion. It has been proposed to belong to the group of Be/X-ray binaries (BeXBs). In BeXBs, accretion onto the neutron star occurs via the transfer of material from the Be star's circumstellar disk. Thus, in the absence of the disk, no X-ray should be detected. Aims: The main goal of this work is to study the quiescent X-ray emission of IGR J06074+2205 during a disk-loss episode. Methods: We obtained light curves at different energy bands and a spectrum covering the energy range 0.4-12 keV. We used Fourier analysis to study the aperiodic variability and epoch folding methods to study the periodic variability. Model fitting to the energy spectrum allowed us to identify the possible physical processes that generated the X-rays. Results: We show that at the time of the XMM-Newton observation, the decretion disk around the Be star had vanished. Still, accretion appears as the source of energy that powers the high-energy radiation in IGR J06074+2205. We report the discovery of X-ray pulsations with a pulse period of 373.2 s and a pulse fraction of 50%. The 0.4-12 keV spectrum is well described by an absorbed power law and blackbody components with the best fitting parameters: NH = (6.2 ± 0.5) × 1021 cm-2, kTbb = 1.16 ± 0.03 keV, and Γ = 1.5 ± 0.1. The absorbed X-ray luminosity is LX = 1.4 × 1034 erg s-1 assuming a distance of 4.5 kpc. Conclusions: The detection of X-ray pulsations confirms the nature of IGR J06074+2205 as a BeXB. We discuss various scenarios to explain the quiescent X-ray emission of this pulsar. We rule out cooling of the neutron star surface and magnetospheric emission and conclude that accretion is the most likely scenario. The origin of the accreted material remains an open question.

  10. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for

  11. Simulation of energy spectrum of GEM detector from an x-ray quantum

    NASA Astrophysics Data System (ADS)

    Malinowski, K.; Chernyshova, M.; Czarski, T.; Kowalska-Strzęciwilk, E.; Linczuk, P.; Wojeński, A.; Krawczyk, R.; Gąska, M.

    2018-01-01

    This paper presents the results of the energy resolution simulation for the triple GEM-based detector for x-ray quantum of 5.9 keV . Photons of this energy are emitted by 55Fe source, which is a standard calibration marker for this type of detectors. The calculations were made in Garfield++ in two stages. In the first stage, the distribution of the amount of primary electrons generated in the drift volume by the x-ray quantum was simulated using the Heed program. Secondly, the primary electrons of the resulting quantitative distribution were treated as a source of electron avalanches propagated through the whole volume of the triple GEM-based detector. The distribution of the obtained signals created a spectrum corresponding to the peak at 5.9 keV, which allowed us to determine the theoretical energy resolution of the detector. Its knowledge allows observing and improving the eventual experimental deterioration of the energy resolution, inevitably accompanying processes of registration and processing of the signals.

  12. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  13. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism

    DOE PAGES

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...

    2015-11-03

    Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less

  14. Soft X-ray Absorption Edges in LMXBs

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The XMM observation of LMC X-2 is part of our program to study X-ray absorption in the interstellar medium (ISM). This program includes a variety of bright X-ray binaries in the Galaxy as well as the Magellanic Clouds (LMC and SMC). LMC X-2 is located near the heart of the LMC. Its very soft X-ray spectrum is used to determine abundance and ionization fractions of neutral and lowly ionized oxygen of the ISM in the LMC. The RGS spectrum so far allowed us to determine the O-edge value to be for atomic O, the EW of O-I in the ls-2p resonance absorption line, and the same for O-II. The current study is still ongoing in conjunction with other low absorption sources like Sco X-1 and the recently observed X-ray binary 4U 1957+11.

  15. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  16. The X-Ray Spectrum of the Supernova Remnant 1E 0102-72.3

    NASA Technical Reports Server (NTRS)

    Rasmussen, Andrew P.; Behar, Ehud; Kahn, Steven M.; denHerder, Jan Willem; vanderHeyden, Kurt

    1997-01-01

    In this letter we present the soft X-ray (5-35A) spectrum of the supernova remnant (SNR) IE 0102-72.3 in the Small Magellanic Cloud, acquired by the reflection grating spectrometer (RGS) aboard ESA's XMM-Newton Observatory. This extended-source X-ray spectrum of unprecedented spectral resolution (lambda/Delta(lambda) approx. 300) permits, for the first time, unabiguous identification and measurement of isolated emission lines and line complexes alike. The diagnostic power of performing spectroscopy using groups of emission lines from single ions is exemplified. In particular, the bright Lyman and helium series lines for light elements (C VI, O VII, O VIII, Ne IX, Ne X and possibly Mg XI & Mg XII) show peculiar ratios, where the values [1s - np] / [1s - (n + l)p] are systematically weaker than expected for electron impact excitation. These measured ratios resemble signatures of recombining or charge exchanging plasmas. We argue that charge exchange, given its large cross section and evidence for inhomogeneous media within the SNR, is a likely mechanism for the observed emission. Also. the well known temperature diagnostics G(T(sub e)) = (i + f)/r of helium- like triplets (O VII & Ne IX) indicate high temperatures, well above the maximum emission temperature T(sub m) for each ion, and consistent with a purely ionizing plasma. The density diagnostics R(n(sub e)) = f / i meanwhile, are consistent with the low density limit, as expected.

  17. X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy of tetragonal Mn72Ge28 epitaxial thin film

    NASA Astrophysics Data System (ADS)

    Kim, Jinhyeok; Mizuguchi, Masaki; Inami, Nobuhito; Ueno, Tetsuro; Ueda, Shigenori; Takanashi, Koki

    2018-04-01

    An epitaxially grown Mn72Ge28 film with a tetragonal crystal structure was fabricated. It was clarified that the film had a perpendicular magnetization and a high perpendicular magnetic anisotropy energy of 14.3 Merg/cm3. The electronic structure was investigated by X-ray magnetic circular dichroism and hard X-ray photoelectron spectroscopy. The obtained X-ray magnetic circular dichroism spectrum revealed that the Mn orbital magnetic moment governed the magnetocrystalline anisotropy of the Mn72Ge28 film. A doublet structure was observed for the Mn 2p3/2 peak of hard X-ray photoelectron spectrum, indicating the spin exchange interaction between the 2p core-hole and 3d valence electrons.

  18. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  19. The high-energy pulsed X-ray spectrum of Hercules X-1 as observed with OSO 8

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Cutler, E. P.

    1979-01-01

    Hercules X-1 was observed from August 30 to September 10, 1977, by using the high-energy X-ray scintillation spectrometer on board the OSO 8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed-flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. Only weak evidence was found for temporal variation in the pulsed flux between 33 and 98 keV. The pulsed spectrum has been fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed Gaussian centered at 55 keV. The latter fit has the smallest value of chi-square per degree of freedom, and the resulting integrated line intensity is approximately 0.0015 photon/sec per sq cm for a width of 3.1 (+9.1, -2.6) keV. This result, while of low statistical significance, agrees with the value observed by Truemper (1978) during the same ON-state.

  20. ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    NASA Technical Reports Server (NTRS)

    Arefiev, V.; Pavlinsky, M.; Lapshov, I.; Thachenko, A.; Sazonov, S.; Revnivtsev, M.; Semena, N.; Buntov,M.; Vikhlinin, A.; Gubarev, M.; hide

    2008-01-01

    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs.

  1. X-ray dense cellular inclusions in the cells of the green alga Chlamydomonas reinhardtii as seen by soft-x-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stead, A.D.; Ford, T.W.; Page, A.M.

    1997-04-01

    Soft x-rays, having a greater ability to penetrate biological material than electrons, have the potential for producing images of intact, living cells. In addition, by using the so-called {open_quotes}water window{close_quotes} area of the soft x-ray spectrum, a degree of natural contrast is introduced into the image due to differential absorption of the wavelengths by compounds with a high carbon content compared to those with a greater oxygen content. The variation in carbon concentration throughout a cell therefore generates an image which is dependent upon the carbon density within the specimen. Using soft x-ray contact microscopy the authors have previously examinedmore » the green alga Chlamydomonas reinhardtii, and the most prominent feature of the cells are the numerous x-ray absorbing spheres, But they were not seen by conventional transmission electron microscopy. Similar structures have also been reported by the Goettingen group using their cryo transmission x-ray microscope at BESSY. Despite the fact that these spheres appear to occupy up to 20% or more of the cell volume when seen by x-ray microscopy, they are not visible by transmission electron microscopy. Given the difficulties and criticisms associated with soft x-ray contact microscopy, the present study was aimed at confirming the existence of these cellular inclusions and learning more of their possible chemical composition.« less

  2. Continuing data analysis of the AS/E grazing incidence X-ray telescope experiment on the OSO-4 satellite

    NASA Technical Reports Server (NTRS)

    Vaiana, G.; Haggerty, R.; Kahler, S.; Krieger, A.; Landini, M.; Timothy, A.; Webb, D.

    1973-01-01

    The work to correct and extend the calculation of the theoretical solar X-ray spectrum produced during earlier OSO-4 data analysis is reported along with the work to formulate models of active regions, and compare these models with the experimental values. An atlas of solar X-ray photographs is included, and solar X-ray observations are correlated with the solar wind.

  3. Impulsive solar X-ray bursts. III - Polarization, directivity, and spectrum of the reflected and total bremsstrahlung radiation from a beam of electrons directed toward the photosphere

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Petrosian, V.

    1977-01-01

    The paper presents the spectrum, directivity, and state of polarization of the bremsstrahlung radiation expected from a beam of high-energy electrons spiraling along radial magnetic field lines toward the photosphere. A Monte Carlo method is then described for evaluation of the spectrum, directivity, and polarization of X-rays diffusely reflected from stellar photospheres. The accuracy of the technique is evaluated through comparison with analytic results. The calculated characteristics of the incident X-rays are used to evaluate the spectrum, directivity, and polarization of the reflected and total X-ray fluxes. The results are compared with observations.

  4. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  5. Efficient Production of 4-KeV X Rays from Laser-Heated Xe Gas = Confined Within a Hohlraum

    NASA Astrophysics Data System (ADS)

    Grun, Jacob; Suter, Larry J.; Back, Christina A.; Decker, Chris; Kauffman, Robert L.; Davis, John F.

    1996-11-01

    Clean (debris-free) and efficient multi-kilovolt x-ray sources are needed for irradiating large military test objects and for use as backlighters in future Inertial Confinement Fusion experiments. Laser-plasma x-ray sources are particularly attractive for these uses since their spectrum can be controlled by proper choice of plasma material and laser intensity; and because many laser-plasma sources can be designed to produce little or no particulate debris. We report on an experiment in which we measured the production-efficiency, spectrum, and time history of 1-4 KeV x-rays from beryllium hohlraums which were filled with 1 and 2 atm of Xe gas and then irradiated by a 2-nsec pulse from the NOVA laser. It is predicted that 17be converted into > 4KeV x rays and 30history of >4KeV part of the spectrum is predicted to exhibit a dip in intensity whose depth and location vary with fill pressure and hohlraum size.. We also measured the debris produced by these sources. Work supported by the Defense Special Weapons Agency and the U.S. Department of Energy at LLNL under W-7405-ENG-48.

  6. Symbiotic Stars in X-rays. II. Faint Sources Detected with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Nunez, N. E.; Luna, G. J. M.; Pillitteri, I.; Mukai, K.

    2014-01-01

    We report the detection from four symbiotic stars that were not known to be X-ray sources. These four object show a ß-type X-ray spectrum, that is, their spectra can be modeled with an absorbed optically thin thermal emission with temperatures of a few million degrees. Photometric series obtained with the Optical Monitor on board XMM-Newton from V2416 Sgr and NSV 25735 support the proposed scenario where the X-ray emission is produced in a shock-heated region inside the symbiotic nebulae.

  7. The U.S. Spectrum X Gamma Coordination Facility

    NASA Astrophysics Data System (ADS)

    Forman, William R.

    1999-08-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  8. The U.S. Spectrum X Gamma Coordination Facility

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.

  9. Distance and spectrum of the Apollo gamma-ray burst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilman, D.; Metzger, A.E.; Parker, R.H.

    1980-03-15

    The ..gamma..-ray spectrometer on Apollo 16 obtained spectral information with good energy resolution from more than 2500 burst photons in the energy range 0.06--5.16 MeV. The spectrum from 2 keV to 2 MeV, observed at X-ray energies by the Apollo X-ray spectrometer, is fitted by a thermal bremsstrahlung spectrum with kT=500 keV. The success of the fit implies that the source is optically thin, and it follows that it must be closer than 50 pc. Absence of spectral variability suggests that the burst results from isothermal changes in emission measure.

  10. The Hard X-ray Emission from Scorpius X-1 as Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Shrader, C. R.; Weidenspointner, G.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have concentrated on investigating the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component of the spectrum and its possible correlations with the location of the source on the X-ray color-color diagram. We find that Sco X-1 has two distinct spectral when the 20-40 keV count rate is greater than 140 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows no evidence for a powerlaw tail whatsoever. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram.

  11. The high-energy X-ray spectrum of black hole candidate GX 339-4 during a transition

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Orwig, L. E.

    1987-01-01

    The X-ray emitting system GX 339-4 contains one of the prime candidates for a stellar mass-sized black hole. Determining the observational similarities and differences between the members of this group is of value in specifying which characteristics can be used to identify systems containing a black hole, especially those for which no mass determination can be made. The first observations of the E greater than 20 keV spectrum of GX 339-4 during a transition between luminosity states are reported here. The hard spectral state is the lower luminosity state of the system. GX 339-4 has a power-low spectrum above 20 keV which pivots during transitions between distinct luminosity states. The only other X-ray sources known to exhibit this behavior, Cyg XR-1 and (probably) A0620-00, are leading candidates for systems containing a black hole component based on their measured spectrocopic mass function.

  12. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  13. The X-ray spectrum and spectral energy distribution of FIRST J155633.8+351758: a LoBAL quasar with a probable polar outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, Michael S.; Gallagher, Sarah C.; Ganguly, Rajib; Shang, Zhaohui; DiPompeo, Michael; Chatterjee, Ritaban; Lacy, Mark; Gregg, Michael D.; Hall, Patrick B.; Laurent-Muehleisen, S. A.

    2013-12-01

    We report the results of a new 60 ks Chandra X-ray Observatory Advanced CCD Imaging Spectrometer S-array (ACIS-S) observation of the reddened, radio-selected, highly polarized `FeLoBAL' quasar FIRST J1556+3517. We investigated a number of models of varied sophistication to fit the 531-photon spectrum. These models ranged from simple power laws to power laws absorbed by hydrogen gas in differing ionization states and degrees of partial covering. Preferred fits indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity, i.e. an intrinsic, dereddened and unabsorbed optical to X-ray spectral index of -1.7. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter at a >99 per cent confidence for a neutral hydrogen absorber model). Absorption is present, with a column density a few times 1023 cm-2, with both partially ionized models and partially covering neutral hydrogen models providing good fits. We present several lines of argument that suggest the fraction of X-ray emissions associated with the radio jet is not large. We combine our Chandra data with observations from the literature to construct the spectral energy distribution of FIRST J1556+3517 from radio to X-ray energies. We make corrections for Doppler beaming for the pole-on radio jet, optical dust reddening and X-ray absorption, in order to recover a probable intrinsic spectrum. The quasar FIRST J1556+3517 seems to be an intrinsically normal radio-quiet quasar with a reddened optical/UV spectrum, a Doppler-boosted but intrinsically weak radio jet and an X-ray absorber not dissimilar from that of other broad absorption line quasars.

  14. The Effects of Low- and High-Energy Cutoffs on Solar Flare Microwave and Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, G. D.; Oegerle, William (Technical Monitor)

    2002-01-01

    Microwave and hard x-ray spectra provide crucial information about energetic electrons and their environment in solar flares. These spectra are becoming better determined with the Owens Valley Solar Array (OVSA) and the recent launch of the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The proposed Frequency Agile Solar Radiotelescope (FASR) promises even greater advances in radio observations of solar flares. Both microwave and hard x-ray spectra are sensitive to cutoffs in the electron distribution function. The determination of the high-energy cutoff from these spectra establishes the highest electron energies produced by the acceleration mechanism, while determination of the low-energy cutoff is crucial to establishing the total energy in accelerated electrons. This paper will show computations of the effects of both high- and low-energy cutoffs on microwave and hard x-ray spectra. The optically thick portion of a microwave spectrum is enhanced and smoothed by a low-energy cutoff, while a hard x-ray spectrum is flattened below the cutoff energy. A high-energy cutoff steepens the microwave spectrum and increases the wavelength at which the spectrum peaks, while the hard x-ray spectrum begins to steepen at photon energies roughly an order of magnitude below the electron cutoff energy. This work discusses how flare microwave and hard x-ray spectra can be analyzed together to determine these electron cutoff energies. This work is supported in part by the NASA Sun-Earth Connection Program.

  15. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zi; Zhang, Shen; Kang, Wei

    2016-05-15

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N{sub 2} molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electronmore » density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.« less

  16. Proton Induced X-Ray Emission (PIXE): Determining the Concentration of Samples

    NASA Astrophysics Data System (ADS)

    McCarthy, Mallory; Rodriguez Manso, Alis; Pajouhafsar, Yasmin; J Yennello, Sherry

    2017-09-01

    We used Proton Induced X-ray Emission (PIXE) as an analysis technique to determine the composition of samples, in particular, the elemental constituents and the concentrations. Each of the samples are bombarded with protons, which in result displaces a lower level electron and causes a higher level electron to fall into its place. This displacement produces characteristic x-rays that are `fingerprints' for each element. The protons supplied for the bombardment are produced and accelerated by the K150 proton beam in the Cyclotron Institute at Texas A&M University. The products are detected by three x-ray detectors: XR-100CR Si-PIN, XR-100SDD, and XR-100T CdTe. The peaks of the spectrum are analyzed using a software analysis tool, GUPIXWIN, to determine the concentration of the known elements of each particular sample. The goals of this work are to test run the Proton Induced X-Ray Emission experimental set up at Texas A&M University (TAMU) and to determine the concentration of thin films containing KBr given by the TAMU Chemical Engineering Department.

  17. The X-ray Spectrum of the North Polar Spur

    NASA Technical Reports Server (NTRS)

    Willingale, Richard; Hands, A. D. P.; Warwick, R. S.; Snowden, S. L.; Burrows, David N.

    2003-01-01

    An analysis is presented of the soft X-ray background spectrum measured by the EPIC MOS cameras on XMM-Newton in three observations targeted on the North Polar Spur (NPS). Three distinct Galactic plasma components are identified, a cool Local Hot Bubble (LHB) component, T(sub lo) approx. 0.1 keV, a cool Galactic Halo component at a similar temperature and a hotter component, T(sub hi) approx. 0.26 keV, associated with the NPS itself. Using the new data in combination with the Rosat All-Sky Survey count rates measured in the 0.1-0.4 keV band, we estimate the emission measure of the LHB material to be 0.0040-0.0052 cm(exp -6) pc, which implies an electron density of 0.008-0.011 cm(exp -3) and pressure of approx. 22000 cm(exp -3) K. The halo and NPS components lie behind at least 50% of the line-of-sight cold gas for which the total Galactic column density is in the range (2 - 8) x 10(exp 20) cm(exp -2). Modelling the X-ray emitting superbubble as a sphere at distance 210 pc, radius 140 pc and center l(sub II) = 352 deg, b(sub II) = 15 deg, the implied electron density in the NPS is approx. 0.03 cm(exp -3) with pressure approx. 150000 cm(exp -3) K. The observed spectral line complexes from OVII, OVIII, FeXVII, NeIX, NeX and MgXI provide constraints on the composition of the plasma. The hot component in the NPS is depleted in oxygen, neon and, to some extent, magnesium and iron. Assuming the effective line of sight across the halo emission is 1 kpc, the electron density in the halo is 0.007-0.011 cm(exp -3) and the pressure is approx. 16500 cm(exp -3) K, conditions very similar to those in the LHB.

  18. Effect of X-ray flux on polytetrafluoroethylene in X-ray photoelectron spectroscopy

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Pepper, S. V.

    1982-01-01

    The effect of the X-ray flux in X-ray photoelectron spectroscopy (STAT) on the constitution of the polytetrafluoroethylene (PTFE) surface has been examined. The radiation dose rate for our specimen was about 10 to the 7th rad/s. The structure, magnitude and binding energy of the C(1s) and F(1s) features of the XPS spectrum and the mass spectrum of gaseous species evolved during irradiation are observed. The strong time dependence of these signals over a period of several hours indicated that the surface constitution of PTFE is greatly affected by this level of radiation dose. The results are consistent with the development of a heavily cross-linked or branched structure in the PTFE surface region and the evolution of short chain fragments into the gas phase.

  19. HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Gayley, K. G.

    We present the first high-resolution X-ray spectrum of a putatively single Wolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, 'cool' stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line atmore » Almost-Equal-To 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow 'sticky clumps' that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds.« less

  20. Can X-ray spectrum imaging replace backscattered electrons for compositional contrast in the scanning electron microscope?

    PubMed

    Newbury, Dale E; Ritchie, Nicholas W M

    2011-01-01

    The high throughput of the silicon drift detector energy dispersive X-ray spectrometer (SDD-EDS) enables X-ray spectrum imaging (XSI) in the scanning electron microscope to be performed in frame times of 10-100 s, the typical time needed to record a high-quality backscattered electron (BSE) image. These short-duration XSIs can reveal all elements, except H, He, and Li, present as major constituents, defined as 0.1 mass fraction (10 wt%) or higher, as well as minor constituents in the range 0.01-0.1 mass fraction, depending on the particular composition and possible interferences. Although BSEs have a greater abundance by a factor of 100 compared with characteristic X-rays, the strong compositional contrast in element-specific X-ray maps enables XSI mapping to compete with BSE imaging to reveal compositional features. Differences in the fraction of the interaction volume sampled by the BSE and X-ray signals lead to more delocalization of the X-ray signal at abrupt compositional boundaries, resulting in poorer spatial resolution. Improved resolution in X-ray elemental maps occurs for the case of a small feature composed of intermediate to high atomic number elements embedded in a matrix of lower atomic number elements. XSI imaging strongly complements BSE imaging, and the SDD-EDS technology enables an efficient combined BSE-XSI measurement strategy that maximizes the compositional information. If 10 s or more are available for the measurement of an area of interest, the analyst should always record the combined BSE-XSI information to gain the advantages of both measures of compositional contrast. Copyright © 2011 Wiley Periodicals, Inc.

  1. Spectral Interferences Manganese (Mn) - Europium (Eu) Lines in X-Ray Fluorescence Spectrometry Spectrum

    NASA Astrophysics Data System (ADS)

    Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa

    2016-04-01

    X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.

  2. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    NASA Technical Reports Server (NTRS)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  3. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos

    2014-06-15

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: Themore » proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to

  4. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  5. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  6. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  7. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  8. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  9. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  10. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  11. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  12. Development of polycapillary x-ray optics for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Attenkofer, Klaus; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; O'Mahony, Aileen; Minot, Michael J.; Popecki, Mark A.

    2016-09-01

    Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.

  13. Design of a nondestructive two-in-one instrument for measuring the polarization and energy spectrum at an X-ray FEL facility

    NASA Astrophysics Data System (ADS)

    Zhang, Qingmin; Deng, Bangjie; Chen, Yuanmiaoliang; Liu, Bochao; Chen, Shaofei; Fan, Jinquan; Feng, Lie; Deng, Haixiao; Liu, Bo; Wang, Dong

    2017-10-01

    The free electron laser (FEL), as a next-generation light source, is an attractive tool in scientific frontier research because of its advantages of full coherence, ultra-short pulse duration, and controllable polarization. Owing to the demand of real-time bunch diagnosis during FEL experiments, precise nondestructive measurements of the polarization and X-ray energy spectrum using one instrument are preferred. In this paper, such an instrument based on the electron time-of-flight technique is proposed. By considering the complexity and nonlinearity, a numerical model in the framework of Geant4 has been developed for optimization. Taking the Shanghai Soft X-ray FEL user facility as an example, its measurement performances' dependence on the critical parameters was studied systematically, and, finally, an optimal design was obtained, achieving resolutions of 0.5% for the polarization degree and 0.3 eV for the X-ray energy spectrum.

  14. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  15. Radio and X-ray variability of the nucleus of Centaurus A (NGC 5128)

    NASA Technical Reports Server (NTRS)

    Beall, J. H.; Rose, W. K.; Graf, W.; Price, K. M.; Dent, W. A.; Hobbs, R. W.; Conklin, E. K.; Ulich, B. L.; Dennis, B. R.; Crannell, C. J.

    1977-01-01

    Centaurus A was observed at radio frequencies of 10.7, 31.4, 85.2, and 89 GHz and at X-ray energies greater than 20 keV. The source exhibits significant variability in all the observed radio frequencies. The observed radio and X-ray intensities show some concurrent variations but do not track one another throughout the observations. A model of the source in which X-rays are produced by inverse Compton scattering of blackbody photons by relativistic electrons is proposed to explain these observations. The observed variations in the electromagnetic spectrum are consistent with adiabatic expansion of a trapped plasma in conjunction with turbulent accelerations of the relativistic electrons.

  16. Properties of laser-produced GaAs plasmas measured from highly resolved X-ray line shapes and ratios

    NASA Astrophysics Data System (ADS)

    Seely, J. F.; Fein, J.; Manuel, M.; Keiter, P.; Drake, P.; Kuranz, C.; Belancourt, Patrick; Ralchenko, Yu.; Hudson, L.; Feldman, U.

    2018-03-01

    The properties of hot, dense plasmas generated by the irradiation of GaAs targets by the Titan laser at Lawrence Livermore National Laboratory were determined by the analysis of high resolution K shell spectra in the 9 keV to 11 keV range. The laser parameters, such as relatively long pulse duration and large focal spot, were chosen to produce a steady-state plasma with minimal edge gradients, and the time-integrated spectra were compared to non-LTE steady state spectrum simulations using the FLYCHK and NOMAD codes. The bulk plasma streaming velocity was measured from the energy shifts of the Ga He-like transitions and Li-like dielectronic satellites. The electron density and the electron energy distribution, both the thermal and the hot non-thermal components, were determined from the spectral line ratios. After accounting for the spectral line broadening contributions, the plasma turbulent motion was measured from the residual line widths. The ionization balance was determined from the ratios of the He-like through F-like spectral features. The detailed comparison of the experimental Ga spectrum and the spectrum simulated by the FLYCHK code indicates two significant discrepancies, the transition energy of a Li-like dielectronic satellite (designated t) and the calculated intensity of a He-like line (x), that should lead to improvements in the kinetics codes used to simulate the X-ray spectra from highly-charged ions.

  17. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  18. The imprint of Gould's belt on the local cosmic ray electron spectrum

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Perrot, C.; Grenier, I.

    2001-08-01

    In a recent paper Pohl and Esposito (1998) demonstrated that if the sources of cosmic-rays are discrete, as are Supernova Remnants (SNR), then the spectra of cosmic-ray electrons largely vary with location and time and the locally measured electron spectrum may not be representative of the electron spectra elsewhere in the Galaxy, which could be substantially harder than the local one. They have shown that the observed excess of γ-ray emission above 1 GeV can in fact be partially explained as a correspondingly hard inverse Compton component, provided the bulk of cosmic-ray electrons is produced in SNR. As part of a program to model the Galactic γ-ray foreground we have continued the earlier studies by investigating the impact of the star forming region Gould's Belt on the local electron spectrum. If the electron sources in Gould's Belt were continous, the local electron spectrum would be slightly hardened. If the electron sources are discrete, which is the more probable case, the variation in the local electron spectrum found by Pohl & Esposito persists. 1 The local cosmic-ray electron spectrum The recent detections of non-thermal X-ray synchrotron radiation from the supernova remnants SN1006 (Koyama et al., 1995), RX J1713.7-3946 (Koyama et al., 1997), IC443 (Keohane et al., 1997; Slane et al., 1999), Cas A (Allen et al., 1997), and RCW86 (Borkowski et al., 2001) and the subsequent detections of SN1006 (Tanimori et al., 1998), RX J1713.7-3946 (Muraishi et al., 2000), and Cas A (Aharonian et al., 2001) at TeV energies support the hypothesis that at least Galactic cosmic-ray electrons are accelerated predominantly in SNR. The Galactic distribution and spectrum of cosmic-ray electrons are intimately linked to the distribution and nature of their sources. Supernovae and hence their remnants are tran-

  19. Research of X-ray curved crystals analyzer

    NASA Astrophysics Data System (ADS)

    Xiao, Shali; Xong, Xian-cai; Qian, Jia-yu; Zhong, Xian-xin; Yan, Guo-hong; Liu, Zhong-li; Ding, Yong-kun

    2005-08-01

    X-ray spectrograph has long been used as a means of diagnosing conditions of laser-produced plasmas, as information concerning both the temperature and density can be extracted from the emitted radiation. For the measurement of X-ray lines in the energy range of 0.6-6 keV, A curved crystal X-ray spectrometer of reflection type elliptical geometry is required. In order to obtain both high resolution and collection efficiency the elliptical geometry is more advantageous than the flat configurations. Elliptical curved crystals spectrograph with a relatively wide spectral range are of particular use for deducing electron temperatures by measurement of the ratios of lines associated with different charge states. Curved crystals analyzer was designed and manufactured for use on an experiment to investigate the properties of laser produced plasmas. The spectrograph has 1350mm focal length and for these measurements, utilized PET, LIF, KAP and MICA crystal bent onto an elliptical substrate. This crystal analyzer covers the Bragg angel range from 30 to 67.5. The analyzer based on elliptically geometrical principle, which has self-focusing characteristics. The experiment was carried out on Shanghai Shengguang-II Facility and aimed to investigate the characteristics of a high density plasma. Experimental results using Curved crystal analyzer are described which show spectrum of Ti, Au laser-plasma. The focusing crystal analyzer clearly gave an increase in sensitivity over a flat crystal. Spectra showing the main resonance line were recorded with X-ray CCD and with laser energies 150J laser wavelength 350nm. The calculated wavelength resolution is about 500-1000.

  20. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.

    2016-01-01

    Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O II

  1. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  2. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  3. Resolving the Origin of the Diffuse Soft X-ray Background

    NASA Technical Reports Server (NTRS)

    Smith, Randall K.; Foster, Adam R.; Edgar, Ricard J.; Brickhouse, Nancy S.; Sanders, Wilton T.

    2012-01-01

    In January 1993, the Diffuse X-ray Spectrometer (DXS) measured the first high-resolution spectrum of the diffuse soft X-ray background between 44-80A. A line-dominated spectrum characteristic of a 10(exp 6)K collisionally ionized plasma' was expected but while the observed spectrum was clearly line-dominated, no model would fit. Then in 2003 the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) launched and observed the diffuse extreme-ultraviolet (EUV) spectrum between 90- 265A. Although many emission lines were again expected; only Fe IX at 171.1A was detected. The discovery of X-rays from comets led to the realization that heavy ions (Z=6-28) in the solar wind will emit soft X-rays as the ions interact via charge exchange with neutral atoms in the heliosphere and geocorona. Using a new model for solar wind charge exchange (SWCX) emission, we show that the diffuse soft X-ray background can be understood as a combination of emission from charge exchange onto the slow and fast solar wind together with a more distant and diffuse hot (10(exp 6)K) plasma.

  4. Extended X-ray emission in PKS 1718-649

    NASA Astrophysics Data System (ADS)

    Beuchert, T.; Rodríguez-Ardila, A.; Moss, V. A.; Schulz, R.; Kadler, M.; Wilms, J.; Angioni, R.; Callingham, J. R.; Gräfe, C.; Krauß, F.; Kreikenbohm, A.; Langejahn, M.; Leiter, K.; Maccagni, F. M.; Müller, C.; Ojha, R.; Ros, E.; Tingay, S. J.

    2018-04-01

    PKS 1718-649 is one of the closest and most comprehensively studied candidates of a young active galactic nucleus (AGN) that is still embedded in its optical host galaxy. The compact radio structure, with a maximal extent of a few parsecs, makes it a member of the group of compact symmetric objects (CSO). Its environment imposes a turnover of the radio synchrotron spectrum towards lower frequencies, also classifying PKS 1718-649 as gigahertz-peaked radio spectrum (GPS) source. Its close proximity has allowed the first detection of extended X-ray emission in a GPS/CSO source with Chandra that is for the most part unrelated to nuclear feedback. However, not much is known about the nature of this emission. By co-adding all archival Chandra data and complementing these datasets with the large effective area of XMM-Newton, we are able to study the detailed physics of the environment of PKS 1718-649. Not only can we confirm that the bulk of the ≲kiloparsec-scale environment emits in the soft X-rays, but we also identify the emitting gas to form a hot, collisionally ionized medium. While the feedback of the central AGN still seems to be constrained to the inner few parsecs, we argue that supernovae are capable of producing the observed large-scale X-ray emission at a rate inferred from its estimated star formation rate.

  5. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  6. X-Ray Spectral Diagnostics of Gamma-Ray Burst Environments.

    PubMed

    Paerels; Kuulkers; Heise; Liedahl

    2000-05-20

    Recently, detection of discrete features in the X-ray afterglow spectra of GRB 970508 and GRB 970828 was reported. The most natural interpretation of these features is that they are redshifted Fe K emission complexes. The identification of the line emission mechanism has drastic implications for the inferred mass of radiating material and hence the nature of the burst site. X-ray spectroscopy provides a direct observational constraint on these properties of gamma-ray bursters. We briefly discuss how these constraints arise in the context of an application to the spectrum of GRB 970508.

  7. PSR J2124-3358: A Bow Shock Nebula with an X-ray Tail

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Gaensler, B. M.; Vigelius, M.; Cordes, J. M.; Arzoumanian, Z.; Stappers, B.; Ghavamian, P.; Melatos, A.

    2005-12-01

    As neutron stars move supersonically through the interstellar medium, their relativistic winds are confined by the ram pressure of the interstellar medium. The outer shocked layers may emit in Hα , producing a visible bow shock nebula, while the confined relativistic wind may produce radio or X-ray emission. The Hα bow shock nebula powered by the recycled pulsar J2124-3358 is asymmetric about the velocity vector and shows a marked kink. In recent observations with the Chandra X-ray Observatory, we have detected a long, curved X-ray tail associated with the pulsar. The tail is not aligned with the pulsar velocity, but is confined within the optical bow shock. The X-ray spectrum of the tail is well-fit by a power law, consistent with synchrotron emission from the wind termination shock and the post-shock flow. The presence of Hα and X-ray emission allows us to trace both the external ambient medium and the confined wind. In magnetohydrodynamic simulations, we verify that a bulk flow and non-uniformities in the ambient medium can produce the observed shape of the nebula, possibly in combination with an anisotropic pulsar wind. Support for this work was provided by the National Aeronautics and Space Administration through Chandra Award Number GO5-6075X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060.

  8. EX56a study of extended X-ray emission around isolated galaxies EX56b identification and spectra of bright X-ray sources at high galactic latitude

    NASA Technical Reports Server (NTRS)

    Schwartz, Daniel A.

    1987-01-01

    The EXOSAT observations confirmed the identification and extended nature of PKS 2345-35. It gave a good 2 to 10 keV X-ray spectrum and a detailed spatial profile indicating asymmetry of the structure. In the high galactic latitidue investigation, the BL Lac object identified with the HEAO-1 source 1430+423 was detected, and the first X-ray spectrum was obtained. Several simulataneous observations of H0323+022 were obtained over a broad range of electromagnetic spectrum. Studies of luminous active galactic nuclei have given significant information on the spectrum of the quasar PKS 0558-504. In a study of Southern sky cataclysmic variables, the EXOSAT was used to determine the X-ray spectrum and search for periodicities in two objects. Studies of complete identifications have revealed that X-ray sources in two high galactic latitude fields are stars, and therefore are to be excluded from the Piccinotti extragalactic sample. Only one Piccinotti source remains to be identified.

  9. A NuSTAR Observation of the Reflection Spectrum of the Low-Mass X-Ray Binary 4U 1728-34

    NASA Technical Reports Server (NTRS)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.; Miller, Jon M.; Boggs, Steven E.; Bachetti, Matteo; Barret, Didier; Chenevez, Jerome; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with kT=1.5 keV and a cutoff power law with Lambda = 1.5, and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K(alpha) line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of R(sub in) < or = 2R(sub ISCO). Consequently, we find that R(sub NS) < or = 23 km, assuming M = 1.4 Stellar Mass and a = 0.15. We also find an upper limit on the magnetic field of B < or =2 x 10(exp 8) G.

  10. [Neutron Dosimetry System Using CR-39 for High-energy X-ray Radiation Therapy].

    PubMed

    Yabuta, Kazutoshi; Monzen, Hajime; Tamura, Masaya; Tsuruta, Takao; Itou, Tetsuo; Nohtomi, Akihiro; Nishimura, Yasumasa

    2014-01-01

    Neutrons are produced during radiation treatment by megavolt X-ray energies. However, it is difficult to measure neutron dose especially just during the irradiation. Therefore, we have developed a system for measuring neutrons with the solid state track detector CR-39, which is free from the influence of the X-ray beams. The energy spectrum of the neutrons was estimated by a Monte Carlo simulation method, and the estimated neutron dose was corrected by the contribution ratio of each energy. Pit formation rates of CR-39 ranged from 2.3 x 10(-3) to 8.2 x 10(-3) for each detector studied. According to the estimated neutron energy spectrum, the energy values for calibration were 144 keV and 515keV, and the contribution ratios were approximately 40:60 for 10 MV photons and 20:70 for photons over 15 MV. Neutron doses measured in the center of a high-energy X-ray field were 0.045 mSv/Gy for a 10 MV linear accelerator and 0.85 mSv/Gy for a 20 MV linear accelerator. We successfully developed the new neutron dose measurement system using the solid track detector, CR-39. This on-time neutron measurement system allows users to measure neutron doses produced in the radiation treatment room more easily.

  11. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-11-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering.

  12. Heating the Primordial Soup: X-raying the Circumstellar Disk of RY Lupi

    NASA Astrophysics Data System (ADS)

    Principe, David

    2015-09-01

    X-ray irradiation of circumstellar disks plays a vital role in their chemical evolution yet few high resolution X-ray observations exist characterizing both the disk-illuminating radiation field and the soft energy spectrum absorbed by the disk. We propose HETG spectroscopic observations of RY Lupi, a rare example of a nearly edge-on, actively accreting star-disk system within 150 pc. We aim to take advantage of its unique viewing geometry with the goals of (a) determining the intrinsic X-ray spectrum of the central pre-MS star so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.

  13. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat

  14. Analysis of the Central X-ray Source in DG Tau

    NASA Astrophysics Data System (ADS)

    Schneider, P. Christian; Schmitt, Jürgen H. M. M.

    As a stellar X-ray source DG Tau shows two rather unusual features: A resolved X-ray jet [2] and an X-ray spectrum best described by two thermal components with different absorbing column densities, a so called "two-absorber X-ray (TAX)" morphology [1, 2]. In an effort to understand the properties of the central X-ray source in DG Tau a detailed position analysis was carried out.

  15. X-ray spectrum of the entire Cygnus Loop.

    NASA Technical Reports Server (NTRS)

    Stevens, J. C.; Riegler, G. R.; Garmire, G. P.

    1973-01-01

    The spectrum of the entire Cygnus Loop has been obtained using gas-filled proportional counters and filters flown on a Nike-Aerobee rocket. The results indicate an average spectral temperature of (2.8 plus or minus 0.2) x 1,000,000 K and the presence of excess emission in the energy range from 0.530 to 0.693 keV. If the excess emission originates in a single line at 0.658 keV, the intensity at the earth corresponds to 1.8 plus or minus 0.7 photons per sq cm per sec, or about 10% of the total energy received from the Loop. The spectrum of the entire Loop is found to be attenuated by an average of (4.8 plus or minus 0.2) x 10 to the 20th hydrogen atoms per sq cm.

  16. The average X-ray/gamma-ray spectra of Seyfert galaxies from Ginga and OSSE and the origin of the cosmic X-ray background

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Johnson, W. Neil; Done, Chris; Smith, David; Mcnaron-Brown, Kellie

    1995-01-01

    We have obtained the first average 2-500 keV spectra of Seyfert galaxies, using the data from Ginga and Compton Gamma-Ray Observatory's (CGRO) Oriented Scintillation Spectrometer Experiment (OSSE). Our sample contains three classes of objects with markedly different spectra: radio-quiet Seyfert 1's and 2's, and radio-loud Seyfert 1's. The average radio-quiet Seyfert 1 spectrum is well-fitted by a power law continuum with the energy spectral index alpha approximately equals 0.9, a Compton reflection component corresponding to a approximately 2 pi covering solid angle, and ionized absorption. There is a high-energy cutoff in the incident power law continuum: the e-folding energy is E(sub c) approximately equals 0.6(sup +0.8 sub -0.3) MeV. The simplest model that describes this spectrum is Comptonization in a relativistic optically-thin thermal corona above the surface of an accretion disk. Radio-quiet Seyfert 2's show strong netural absorption, and there is an indication that their X-ray power laws are intrinsically harder. Finally, the radio-loud Seyfert spectrum has alpha approximately equals 0.7, moderate neutral absorption E(sub C) = 0.4(sup +0.7 sub -0.2) MeV, and no or little Compton reflection. This is incompatible with the radio-quiet Seyfert 1 spectrum, and probably indicating that the X-rays are beamed away from the accretion disk in these objects. The average spectra of Seyferts integrated over redshift with a power-law evolution can explain the hard X-ray spectrum of the cosmic background.

  17. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  18. Thermal and non-thermal X-rays from the Galactic supernova remnant G348.5+0.1

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Minami, Sari; Ota, Naomi; Koyama, Katsuji

    2014-02-01

    We report on Suzaku results of the two distinct regions in the Galactic supernova remnant G348.5+0.1: extended thermal X-rays ("soft diffuse") at the north-east region and non-thermal X-rays (CXOU J171419.8-383023) at the north-west region. The X-ray spectrum of the soft diffuse X-rays can be fitted with neither an ionization equilibrium nor a non-equilibrium (ionizing) plasma model, leaving saw- tooth residuals in the 1.5-3 keV energy band. The residual structures can be produced when free electrons are recombined to the K-shells of highly ionized Mg and Si ions. In fact, the X-ray spectrum is nicely fitted with a recombination-dominant plasma model. We propose a scenario whereby the plasma in a nearly fully ionized state at high temperature quickly changed to a recombining phase due to selective cooling of electrons to a lower temperature of ˜ 0.5 keV. The spectrum of CXOU J171419.8-383023 is well explained by a simple power-law model with a photon index of 1.9, nearly equal to the typical value for pulsar wind nebulae. Since the distance is estimated to be the same as that of the soft diffuse radiation, we infer that both the soft diffuse X-rays and CXOU J171419.8-383023 are associated with the same object, SNR G348.5+0.1.

  19. Self-modulated laser wakefield accelerators as x-ray sources

    DOE PAGES

    Lemos, N.; Martins, J. L.; Tsung, F. S.; ...

    2016-02-17

    The development of a directional, small-divergence, and short-duration picosecond x-ray probe beam with an energy greater than 50 keV is desirable for high energy density science experiments. We therefore explore through particle-in-cell (PIC) computer simulations the possibility of using x-rays radiated by betatron-like motion of electrons from a self-modulated laser wakefield accelerator as a possible candidate to meet this need. Two OSIRIS 2D PIC simulations with mobile ions are presented, one with a normalized vector potential a 0 = 1.5 and the other with an a 0 = 3. We find that in both cases direct laser acceleration (DLA) ismore » an important additional acceleration mechanism in addition to the longitudinal electric field of the plasma wave. Together these mechanisms produce electrons with a continuous energy spectrum with a maximum energy of 300 MeV for a 0 = 3 case and 180 MeV in the a 0 = 1.5 case. Forward-directed x-ray radiation with a photon energy up to 100 keV was calculated for the a 0 = 3 case and up to 12 keV for the a 0 = 1.5 case. The x-ray spectrum can be fitted with a sum of two synchrotron spectra with critical photon energies of 13 and 45 keV for the a 0 of 3 and critical photon energies of 0.3 and 1.4 keV for a 0 of 1.5 in the plane of polarization of the laser. As a result, the full width at half maximum divergence angle of the x-rays was 62 × 1.9 mrad for a 0 = 3 and 77 × 3.8 mrad for a 0 = 1.5.« less

  20. X-Ray and UV Orbital Phase Dependence in LMC X-3

    NASA Technical Reports Server (NTRS)

    Dolan, Joseph F.; Boyd, P. T.; Smale, A. P.

    2001-01-01

    The black-hole binary LMC X-3 is known to be variable on time scales of days to years. We investigated X-ray and ultraviolet variability in the system as a function of the 1.7 d binary orbit using a 6.4 day observation with the Rossi X-ray Timing Explorer (RXTE) in 1998 December. An abrupt 14 % flux decrease lasting nearly an entire orbit was followed by a return to previous flux levels. This behavior occurred twice at nearly the same binary phase, but is not present in consecutive orbits. When the X-ray flux is at lower intensity, a periodic amplitude modulation of 7 % is evident in data folded modulo the orbital period. The higher intensity data show weaker correlation with phase. This is the first report of X-ray variability at the orbital period of LMC X-3. Archival RXTE observations of LMC X-3 during a high flux state in 1996 December show similar phase dependence. An ultraviolet light curve obtained with the High Speed Photometer (HSP) on the Hubble Space Telescope (HST) shows a phase dependent variability consistent with that observed in the visible, ascribed to the ellipsoidal variation of the visible star. The X-ray spectrum of LMC X-3 is acceptably represented by a phenomenological disk black-body plus a power law. Changes in the spectrum of LMX X-3 during our observations are compatible with earlier observations during which variations in the 2-10 keV flux are closely correlated with the disk geometry spectral model parameter.

  1. Correcting X-ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.

    1993-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.

  2. Correcting x ray spectra obtained from the AXAF VETA-I mirror calibration for pileup, continuum, background and deadtime

    NASA Technical Reports Server (NTRS)

    Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.

    1992-01-01

    The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.

  3. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  4. Multi-epoch analysis of the X-ray spectrum of the active galactic nucleus in NGC 5506

    NASA Astrophysics Data System (ADS)

    Sun, Shangyu; Guainazzi, Matteo; Ni, Qingling; Wang, Jingchun; Qian, Chenyang; Shi, Fangzheng; Wang, Yu; Bambi, Cosimo

    2018-05-01

    We present a multi-epoch X-ray spectroscopy analysis of the nearby narrow-line Seyfert I galaxy NGC 5506. For the first time, spectra taken by Chandra, XMM-Newton, Suzaku, and NuSTAR - covering the 2000-2014 time span - are analyzed simultaneously, using state-of-the-art models to describe reprocessing of the primary continuum by optical thick matter in the AGN environment. The main goal of our study is determining the spin of the supermassive black hole (SMBH). The nuclear X-ray spectrum is photoelectrically absorbed by matter with column density ≃ 3 × 1022 cm-2. A soft excess is present at energies lower than the photoelectric cut-off. Both photo-ionized and collisionally ionized components are required to fit it. This component is constant over the time-scales probed by our data. The spectrum at energies higher than 2 keV is variable. We propose that its evolution could be driven by flux-dependent changes in the geometry of the innermost regions of the accretion disk. The black hole spin in NGC ,5506 is constrained to be 0.93± _{ 0.04 }^{0.04} at 90% confidence level for one interesting parameter.

  5. The cosmic X-ray background. [heao observations

    NASA Technical Reports Server (NTRS)

    Boldt, E. A.

    1980-01-01

    The cosmic X-ray experiment carried out with the A2 Instrument on HEAO-1 made systematics-free measurements of the extra-galactic X-ray sky and yielded the broadband spectral characteristics for two extreme aspects of this radiation. For the apparently isotropic radiation of cosmological origin that dominates the extragalactic X-ray flux ( 3 keV), the spectrum over the energy band of maximum intensity is remarkably well described by a thermal model with a temperature of a half-billion degrees. At the other extreme, broadband observations of individual extragalactic X-ray sources with HEAO-1 are restricted to objects within the present epoch. While the non-thermal hard spectral components associated with unevolved X-ray emitting active galaxies could account for most of the gamma-ray background, the contribution of such sources to the X-ray background must be relatively small. In contrast, the 'deep-space' sources detected in soft X-rays with the HEAO-2 telescope probably represent a major portion of the extragalactic soft X-ray ( 3 keV) background.

  6. X-ray spectrum and variability of the quasar PG 1211+143

    NASA Technical Reports Server (NTRS)

    Yaqoob, Tahir; Serlemitsos, Peter; Mushotzky, Richard; Madejski, Greg; Turner, T. Jane; Kunieda, Hideyo

    1994-01-01

    We present preliminary results of an ASCA observation of the classic soft-excess quasar PG 1211+143. The overall ASCA spectrum can be characterized by a blackbody with a temperature of approximately 125 eV (quasar frame) and a power law with photon index of approximately 2. Simultaneous ROSAT data are suggestive of further steepening of the spectrum just below the ASCA band. Comparison with previous observations shows that the soft flux in the 0.1-2 keV band varies by at least a factor of approximately 16, scaling roughly as the square of the hard flux in the 2-10 keV band over a timescale of approximately 13.5 yr. We also find evidence of short-term amplitude variability of up to a factor of approximately 2 on a timescale of approximately 2 x 10(exp 4) sec, in both the soft and hard flux so that the soft and hard photons are likely to originate from the same, compact, region. The data rule out variable absorption (cold or ionized) as the origin of the soft excess, favoring an intrinsic emission component. However, we argue against optically thin emission for the 'blue bump' in PG 1211+143. The large amplitude soft X-ray variability may be indicative of variations in the effective temperature, or peak, of the soft component. There is only marginal evidence for Fe K line emission between 6-7 keV in the quasar frame.

  7. A semiempirical linear model of indirect, flat-panel x-ray detectors.

    PubMed

    Huang, Shih-Ying; Yang, Kai; Abbey, Craig K; Boone, John M

    2012-04-01

    It is important to understand signal and noise transfer in the indirect, flat-panel x-ray detector when developing and optimizing imaging systems. For optimization where simulating images is necessary, this study introduces a semiempirical model to simulate projection images with user-defined x-ray fluence interaction. The signal and noise transfer in the indirect, flat-panel x-ray detectors is characterized by statistics consistent with energy-integration of x-ray photons. For an incident x-ray spectrum, x-ray photons are attenuated and absorbed in the x-ray scintillator to produce light photons, which are coupled to photodiodes for signal readout. The signal mean and variance are linearly related to the energy-integrated x-ray spectrum by empirically determined factors. With the known first- and second-order statistics, images can be simulated by incorporating multipixel signal statistics and the modulation transfer function of the imaging system. To estimate the semiempirical input to this model, 500 projection images (using an indirect, flat-panel x-ray detector in the breast CT system) were acquired with 50-100 kilovolt (kV) x-ray spectra filtered with 0.1-mm tin (Sn), 0.2-mm copper (Cu), 1.5-mm aluminum (Al), or 0.05-mm silver (Ag). The signal mean and variance of each detector element and the noise power spectra (NPS) were calculated and incorporated into this model for accuracy. Additionally, the modulation transfer function of the detector system was physically measured and incorporated in the image simulation steps. For validation purposes, simulated and measured projection images of air scans were compared using 40 kV∕0.1-mm Sn, 65 kV∕0.2-mm Cu, 85 kV∕1.5-mm Al, and 95 kV∕0.05-mm Ag. The linear relationship between the measured signal statistics and the energy-integrated x-ray spectrum was confirmed and incorporated into the model. The signal mean and variance factors were linearly related to kV for each filter material (r(2) of signal mean to k

  8. The X-ray Absorber in the X-ray Transient NLS1 WPVS 007

    NASA Astrophysics Data System (ADS)

    Grupe, Dirk

    This proposal is for a funding request for an approved XMM-Newton observations of the X-ray transient Narrow-Line Seyfert 1 galaxy WPVS 007. The request is for 4 month of salary for the PI for one year in order to do the data analysis, publish the results, and attend an international AGN meeting. XMM will observe WPVS 007 in June 2010 simultaneously with HST, Chandra, and Swift. The goal is to establish a tight connection between the UV broad absorption line troughs found in FUSE observations and the strong partial covering absorber feature found by Swift. WPVS 007 showed a dramatic transformation into a Broad Absorption line QSO like AGN between a 1996 HST observation and a 2003 FUSE observation. Several Swift monitoring observations have suggested that the absorber may have started to disappear. Therefore it is crucial for our HST COS UV spectroscopy to know what the status of the X-ray absorber is. The XMM observation will provide a well-exposed X-ray spectrum even if WPVS 007 will be in a low flux state. This spectrum will enable us to put constraints on the absorption column density and covering fraction of the partial covering absorber.

  9. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  10. Evidence for variability of the hard X-ray feature in the Hercules X-1 energy spectrum

    NASA Technical Reports Server (NTRS)

    Tueller, J.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Boclet, D.; Durochoux, P.; Hameury, J. M.; Prantzos, N.; Haymes, R. C.

    1983-01-01

    The hard X-ray spectrum of HER X-1 was measured for the first time with a high resolution (1.4 keV FWHM) germanium spectrometer. The observation was performed near the peak of the on-state in the 35 day cycle and the 1.24 pulsations were observed between the energies of 20 keV and 70 keV. The feature corresponds to an excess of 7.5 sigma over the low energy continuum. Smooth continuum models are poor fits to the entire energy range (chance probabilities of 2 percent or less). The best fit energies are 35 keV for an absorption line and 39 keV for an emission line. These are significantly lower energies than those derived from previous experiments. A direct comparison of our data with the results of the MPI/AIT group shows statistically significant variations which strongly suggest variability in the source.

  11. Theoretical investigations of X-ray bursts

    NASA Technical Reports Server (NTRS)

    Taam, Ronald E.

    1987-01-01

    Current theoretical understanding of the X-ray burst phenomenon is reviewed, providing a framework in which the burst radiation can be used as a diagnostic of the fundamental properties of the underlying neutron star. The typical Type I X-ray burst is detected as a rapid increase in emission to a level about a factor of 10 above that seen during the quiescent state and recurs on time scales which range from several hours to several days. The thermonuclear flash model has successfully reproduced the basic features of the X-ray burst phenomenon and thereby provided strong theoretical evidence that neutron stars are involved. Topics covered include: theory of the emission spectrum; oscillation modes and prospects for diagnosing the thermal state of neutron stars through experiments on board the X-Ray Timing Explorer or the Advanced X-Ray Astrophysics Facility; applications to the mass and radius of a neutron star.

  12. X-ray observations of two short but intense solar flares

    NASA Technical Reports Server (NTRS)

    Nitta, Nariaki; Dennis, Brian R.; Kiplinger, Alan L.

    1990-01-01

    This paper presents continuum X-ray spectra of impulsive emission in two short but intense solar flares which have relatively weak soft X-ray emissions, combining data obtained with soft X-ray and hard X-ray spectrometers on board two satellites, the SMM and Hinotori. In both flares, photon spectra of the impulsive component are found to flatten toward low energies, suggesting that a low-energy cutoff of the electron spectrum could be greater than about 50 keV and that the total energy contained in the electrons is significantly less than that usually quoted for a cutoff energy of about 20 keV. Different shapes of the X-ray spectrum at energies below 50 keV in other flares can be attributed to the variety in the relative strength of gradual and impulsive emissions. In one of the two flares, observations with the imager on Hinotori suggest that hard X-ray emission is likely to be associated with loop footpoints. It is argued that contamination by the gradual soft X-ray emission and/or the asymmetry of loops could explain the detection of single sources in the majority of flares that have been imaged in hard X-rays.

  13. Searching for outflows in ultraluminous X-ray sources through high-resolution X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosec, P.; Pinto, C.; Fabian, A. C.; Walton, D. J.

    2018-02-01

    Ultraluminous X-ray sources (ULXs) are non-nuclear point sources exceeding the Eddington luminosity of a 10 M⊙ black hole. Modern consensus for a majority of the ULX population is that they are powered by stellar-mass black holes or neutron stars accreting well above the Eddington limit. Theoretical models of super-Eddington accretion predict existence of powerful outflows of moderately ionized gas at mildly relativistic velocities. So far, these winds have been found in three systems: NGC 1313 X-1, NGC 5408 X-1 and NGC 55 ULX. In this work, we create a sample of all ULXs with usable archival high-resolution X-ray data, with 10 sources in total, in which we aim to find more signatures of outflows. We perform Gaussian line scans to find any narrow spectral signatures, and physical wind model scans where possible. We tentatively identify an outflow in NGC 5204 X-1, blueshifted to 0.34c, which produces emission features with a total significance of at least 3σ. Next we compare ULXs with similar hardness ratios. Holmberg IX X-1 shows absorption features that could be associated with a photoionized outflowing absorber, similar to that seen in NGC 1313 X-1. The spectrum of Holmberg II X-1 possesses features similar to NGC 5408 X-1 and NGC 6946 X-1 shows O VIII rest-frame emission. All other sources from the sample also show tentative evidence of spectral features in their high-resolution spectra. Further observations with the XMM-Newton and Chandra gratings will place stronger constraints. Future missions like XARM and Athena will be able to detect them at larger distances and increase our sample.

  14. Soft X-ray observations of Centaurus X-3 from Copernicus

    NASA Technical Reports Server (NTRS)

    Margon, B.; Mason, K. O.; Hawkins, F. J.; Sanford, P. W.

    1975-01-01

    We have detected soft X-ray emission from Centaurus X-3 in the 0.6-1.9 keV band, using the focusing telescope aboard OAO Copernicus. The flux is compatible with an extrapolation of the harder X-ray spectrum, attenuated by (3-4) times 10 to the 22nd atoms per sq cm of interstellar and/or circumstellar matter. The data are consistent with the distance estimate of 5-10 kpc derived from the spectroscopic modulus of the optical component, and obviate the need to postulate the primary to be an anomalously subluminous hot star. There is currently no compelling evidence that such models must be invoked to explain any of the observed compact X-ray sources.

  15. The X-ray and ultraviolet absorbing outflow in 3C 351

    NASA Astrophysics Data System (ADS)

    Mathur, Smita; Wilkes, Belinda; Elvis, Martin; Fiore, Fabrizio

    1994-10-01

    3C 351 (z = 0.371), and X-ray-'quiet' quasar, is one of the few quasars showing signs of a 'warm absorber' in its X-ray spectrum; i.e., partially ionized absorbing material in the line of sight whose opacity depends on its ionization structure. The main feature in the X-ray spectrum is a K-edge due to O VII or O VIII. 3C 351 also shows unusually strong, blueshifted, associated, absorption lines in the ultraviolet (Bahcall et al. 1993) including O VI (lambda lambda 1031, 1037). This high ionization state strongly suggests an identification with the X-ray absorber and a site within the active nucleus. In this paper we demonstrate that the X-ray and UV absorption is due to the same material. This is the first confirmed UV/X-ray absorber. Physical conditions of the absorber are determined through the combination of constraints derived from both the X-ray and UV analysis. This highly ionized, outflowing, low-density, high-column density absorber situated outside the broad emission line region (BELR) is a previously unknown component of nuclear material. We rule out the identification of the absorber with a BELR cloud as the physical conditions in the two regions are inconsistent with one another. The effect of the X-ray quietness and IR upturn in the 3C 351 continuum on the BELR is also investigated. The strengths of the high-ionization lines of C IV lambda-1549 and O VI lambda-1034 with respect to Lyman-alpha are systematically lower (up to a factor of 10) in the material ionized by the 3C 351 continuum as compared to those produced by the 'standard' quasar continuum, the strongest effect being on the strength of O VI lambda-1034. We find that for a 3C 351-like continuum, C III) lambda-1909 ceases to be a density indicator.

  16. X-ray obscured AGN in the GOODS-N

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, M.

    2010-07-01

    We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ/fR>1000. This population has been proposed to contain a significan fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is fla with Γ = 1+/-0.1 very similar to the stacked spectrum of the undetected DOGs (Γ = 0.8+/-0.2). However, many of our X-ray detected DOGs present only moderate absorption with column densities 1022

  17. X-ray Emission From Eta Carinae near Periastron in 2009 I: A Two State Solution

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Russell, Christopher; Pollock, Andrew M. T.; Gull, Theodore R.; Teodoro, Mairan; Madura, Thomas I.; Damineli, Augusto; Pittard, Julian M.

    2014-01-01

    X-ray emission from the supermassive binary system Eta Carinae declines sharply around periastron. This X-ray minimum has two distinct phases the lowest flux phase in the first 3 weeks and a brighter phase thereafter. In 2009, the Chandra X-ray Observatory monitored the first phase five times and found the lowest observed flux at 1.91012 ergs/sq cm/s (38 keV). The spectral shape changed such that the hard band above 4 keV dropped quickly at the beginning and the soft band flux gradually decreased to its lowest observed value in 2 weeks. The hard band spectrum had begun to recover by that time. This spectral variation suggests that the shocked gas producing the hottest X-ray gas near the apex of the wind-wind collision (WWC) is blocked behind the dense inner wind of the primary star, which later occults slightly cooler gas down-stream. Shocked gas previously produced by the system at earlier orbital phases is suggested to produce the faint residual X-ray emission seen when the emission near the apex is completely blocked by the primary wind. The brighter phase is probably caused by the re-appearance of the WWC plasma, whose emissivity significantly declined during the occultation. We interpret this to mean that the X-ray minimum is produced by a hybrid mechanism of an occultation and a decline in emissivity of the WWC shock. We constrain timings of superior conjunction and periastron based on these results.

  18. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) ×more » 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.« less

  19. No signatures of black hole spin in the X-ray spectrum of the Seyfert 1 galaxy Fairall 9

    NASA Astrophysics Data System (ADS)

    Yaqoob, T.; Turner, T. J.; Tatum, M. M.; Trevor, M.; Scholtes, A.

    2016-11-01

    Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe Kα emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe Kα line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only non-relativistic and mundane physics provides an excellent fit to the data. The Fe Kα line emission and Compton-reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of ˜ 1024 cm- 2 is inferred. In this scenario, neither the Fe Kα line nor the Compton-reflection continuum provides any information on the black hole spin. Whereas previous analyses have assumed an infinite column density for the distant-matter reprocessor, the shape of the reflection spectrum from matter with a finite column density eliminates the need for a relativistically broadened Fe Kα line. We find a 90 per cent confidence range in the Fe Kα line full width at half-maximum of 1895-6205 km s- 1, corresponding to a distance of ˜3100 to 33 380 gravitational radii from the black hole, or 0.015-0.49 pc for a black hole mass of ˜1-3 × 108 M⊙.

  20. X-ray induced dimerization of cinnamic acid: Time-resolved inelastic X-ray scattering study

    PubMed Central

    Inkinen, Juho; Niskanen, Johannes; Talka, Tuomas; Sahle, Christoph J.; Müller, Harald; Khriachtchev, Leonid; Hashemi, Javad; Akbari, Ali; Hakala, Mikko; Huotari, Simo

    2015-01-01

    A classic example of solid-state topochemical reactions is the ultraviolet-light induced photodimerization of α-trans-cinnamic acid (CA). Here, we report the first observation of an X-ray-induced dimerization of CA and monitor it in situ using nonresonant inelastic X-ray scattering spectroscopy (NRIXS). The time-evolution of the carbon core-electron excitation spectra shows the effects of two X-ray induced reactions: dimerization on a short time-scale and disintegration on a long time-scale. We used spectrum simulations of CA and its dimerization product, α-truxillic acid (TA), to gain insight into the dimerization effects. From the time-resolved spectra, we extracted component spectra and time-dependent weights corresponding to CA and TA. The results suggest that the X-ray induced dimerization proceeds homogeneously in contrast to the dimerization induced by ultraviolet light. We also utilized the ability of NRIXS for direct tomography with chemical-bond contrast to image the spatial progress of the reactions in the sample crystal. Our work paves the way for other time-resolved studies on chemical reactions using inelastic X-ray scattering. PMID:26568420

  1. X-ray spectroscopy of the SSME plume

    NASA Technical Reports Server (NTRS)

    Olive, Dan F.

    1988-01-01

    In order to examine the potential of using SSME exhaust plume radiation in the soft X-ray spectrum as an early warning system of imminent engine failure, a low cost, low risk experiment was devised. An approach was established, equipment was leased, the system was installed and checked out, and data were successfully acquired demonstrating the proof-of-concept. One spectrum measurement of the SSME plume was acquired during a 300 second burn on the A-1 Test Stand. This spectrum showed a prominent, line emission feature at about 34.5 KeV, a result which was not expected, nor can it be explained at this time. If X-ray spectra are to be useful as a means of monitoring nominal engine operation, it will be necessary to explore this region of the EM spectrum in greater detail. The presence of structure in the spectrum indicates that this technology may prove to be useful as an engine health monitoring system.

  2. Optically stimulated luminescence in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass

    NASA Astrophysics Data System (ADS)

    Nanto, H.; Nakagawa, R.; Takei, Y.; Hirasawa, K.; Miyamoto, Y.; Masai, H.; Kurobori, T.; Yanagida, T.; Fujimoto, Y.

    2015-06-01

    An intense optically stimulated luminescence (OSL) was observed, for the first time, in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass. It was found that the peak wavelength of OSL emission spectrum and its stimulation spectrum is about 400 nm and 600 nm, respectively. The OSL intensity is depended on the SnO contents (x=0.05-1.5) and the most intense OSL was observed in 1.0 mol% SnO doped glass. It was found that the OSL intensity is increased with increasing x-ray absorbed dose. Fairly good fading characteristics were observed in the x-ray irradiated glass, showing that this glass is useful as a candidate for OSL sensor materials for ionizing radiation monitoring.

  3. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  4. Hercules X-1: Spectral Variability of an X-Ray Pulsar in a Stellar Binary System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.

    1976-01-01

    A cosmic X-ray spectroscopy experiment onboard the Orbiting Solar Observatory 8 (OSO-8), observed Her x-1 continuously for approximately 8 days. Spectral-temporal correlations of the X-ray emission were obtained. The major results concern observations of: (1) iron band emission, (2) spectral hardening (increase in effective x-ray temperature) within the X-ray pulse, and (3) a transition from an X-ray low state to a high state. The spectrum obtained prior to the high state can be interpreted as reflected emission from a hot coronal gas surrounding an accretion disk, which itself shields the primary X-ray source from the line of sight during the low state. The spectral hardening within the X-ray pulse was indicative of the beaming mechanism at the neutron star surface. The hardest spectrum by pulse phase was identified with the line of sight close to the Her x-1 magnetic dipole axis, and the X-ray pencil beam become harder with decreasing angle between the line of sight and the dipole axis.

  5. Aurora and Non-Auroral X-ray Emissions from Jupiter: A Comparative View

    NASA Technical Reports Server (NTRS)

    Bhardwal, Anil; Elsner, Ron; Gladstone, Randy; Waite, Hunter, Jr.; Lugaz, Noe; Cravens, Tom; Branduardi-Raymont, Graziella; Ramsay, Gavin; Soria, Rob; Ford, Peter

    2004-01-01

    Jovian X-rays can be broadly classified into two categories: (1) auroral emission, which is confined to high-latitudes (approximately greater than 60 deg.) at both polar regions, and (2) dayglow emission, which originates from the sunlit low-latitude (approximately less than 50 deg.) regions of the disk (hereafter called disk emissions). Recent X-ray observations of Jupiter by chandra and XMM-Newton have shown that these two types of X-ray emission from Jupiter have different morphological, temporal, and spectral characteristics. In particular: 1) contrary to the auroral X-rays, which are concentrated in a spot in the north and in a band that runs half-way across the planet in the south, the low-latitude X-ray disk is almost uniform; 2) unlike the approximately 40 plus or minus 20-min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations; 3) the disk emission is harder and extends to higher energies than the auroral spectrum; and 4) the disk X-ray emission show time variability similar to that seen in solar X-rays. These differences and features imply that the processes producing X-rays are different at these two latitude regions on Jupiter. We will present the details of these and other features that suggest the differences between these two classes of X-ray emissions from Jupiter, and discuss the current scenario of the production mechanism of them.

  6. Contribution of parsec-scale material onto the polarized X-ray spectrum of type-1 Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Marin, F.; Dovčiak, M.; Kammoun, E. S.

    2018-04-01

    Type-1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have traveled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type-1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material onto the polarized X-ray spectrum of type-1 Seyfert galaxies using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disk-corona system. For unpolarized and parallelly polarized photons (parallel to the disk), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or over-estimating the X-ray polarization by 0.1 - 1 percentage points.

  7. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  8. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  9. X-ray Obscured AGN in the GOODS-N

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, E.

    2010-07-01

    We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ / fR > 1000. This population has been proposed to contain a significant fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is flat with Γ=1±0.1 very similar to the stacked spectrum of the undetected DOGs (Γ=0.8±0.2). However, most of our X-ray detected DOGs present only moderate absorption with column densities 1022 < NH < 1024 cm-2. Only three sources (20%) present very flat spectra and are probably associated with reflection dominated Compton-thick sources. Our finding is rather at odds with papers which claim that the vast majority of DOGs are associated with Compton-thick sources. In any case, such sources at high redshift (z > 2) present limited interest for the X-ray background: the population synthesis models predict a contribution, for the z > 2 Compton-thick AGN, to the X-ray background flux at 30 keV, of less than 1 percent.

  10. Uncooled spectrometer for x-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Urban, Martin; Nentvich, Ondrej; Stehlikova, Veronika; Sieger, Ladislav

    2017-05-01

    In the field of X-ray detection for Astrophysics there are mainly two objectives; first is to create 2D images as a result of sensing radiation by detectors consisting of a pixels matrix and the second is a spectral analysis of the incident radiation. For spectral analysis, the basis is usually the principle of diffraction. This paper describes the new design of X-ray spectrometer based on Timepix detector with optics positioned in front of it. The advantage of this setup is the ability to get the image and spectrum from the same devices. With other modifications is possible to shift detection threshold into areas of soft X-ray radiation.

  11. X-ray astronomy in the laboratory with a miniature compact object produced by laser-driven implosion

    NASA Astrophysics Data System (ADS)

    Fujioka, Shinsuke; Takabe, Hideaki; Yamamoto, Norimasa; Salzmann, David; Wang, Feilu; Nishimura, Hiroaki; Li, Yutong; Dong, Quanli; Wang, Shoujun; Zhang, Yi; Rhee, Yong-Joo; Lee, Yong-Woo; Han, Jae-Min; Tanabe, Minoru; Fujiwara, Takashi; Nakabayashi, Yuto; Zhao, Gang; Zhang, Jie; Mima, Kunioki

    2009-11-01

    X-ray spectroscopy is an important tool for understanding the extreme photoionization processes that drive the behaviour of non-thermal equilibrium plasmas in compact astrophysical objects such as black holes. Even so, the distance of these objects from the Earth and the inability to control or accurately ascertain the conditions that govern their behaviour makes it difficult to interpret the origin of the features in astronomical X-ray measurements. Here, we describe an experiment that uses the implosion driven by a 3TW, 4kJ laser system to produce a 0.5keV blackbody radiator that mimics the conditions that exist in the neighbourhood of a black hole. The X-ray spectra emitted from photoionized silicon plasmas resemble those observed from the binary stars Cygnus X-3 (refs 7, 8) and Vela X-1 (refs 9, 10 11) with the Chandra X-ray satellite. As well as demonstrating the ability to create extreme radiation fields in a laboratory plasma, our theoretical interpretation of these laboratory spectra contrasts starkly with the generally accepted explanation for the origin of similar features in astronomical observations. Our experimental approach offers a powerful means to test and validate the computer codes used in X-ray astronomy.

  12. X-ray spectrum of Cassiopeia A measured with the Einstein SSS. [Solid State Spectrometer

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Smith, B. W.; White, N. E.; Holt, S. S.; Boldt, E. A.; Mushotzky, R. F.; Serlemitsos, P. J.

    1979-01-01

    The solid state spectrometer (SSS) on the Einstein Observatory observed the X-ray spectrum of Cas A between 0.8 and 4.5 keV with a FWHM energy resolution of 160 eV. Line emission consistent with transitions of helium-like ions of Si, S, and Ar was well defined. Comparison between the data and the emission expected from a gas containing two distinct thermal components requires additional line emission from Mg, Al, Ca, and Fe. These results are discussed in the context of both equilibrium and nonequilibrium situations.

  13. A US Coordination Facility for the Spectrum-X-Gamma Observatory

    NASA Technical Reports Server (NTRS)

    Forman, William R.

    1999-01-01

    Spectrum-X Gamma (SXG) is a world-class, orbiting astronomical observatory, with capabilities for all-sky monitoring, polarimetry, and high resolution spectroscopy, and wavelength coverage extending from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray (SPIN) regimes. SXG is a multi-national mission developed under the sponsorship of the Russian Academy of Sciences, with participation from several European countries and the U.S. The U.S. involvement in SXG includes both instrumentation and data rights. The U.S. Spectrum X Gamma Coordination Facility (SXGCF) supports U.S. observers in proposing for SXG SODART observations, analyzing SXG data, and conducting archival research. The SXGCF also has the responsibility for organizing the U.S. archive of SXG data, which will eventually include approximately half of the data from most SXG instruments. This report summarizes the activities of the SXGCF scientific and technical staff during the period from Feb. 1 through July 31, 1999.

  14. Observations of low luminosity X-ray sources in Vela-Puppis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Erlemitsos, P. J.; Swank, J. H.

    1978-01-01

    Results of a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg are presented. This region contains at least six low luminosity X-ray sources within approximately 10 deg. of PSRO833-45, which is near the center of the Gum Nebula. The X-ray source associated with the Vela pulsar, 4U0833-45, is observed at twice its 4U catalogue intensity. The lack of X-ray pulsations at the pulsar period, the non thermal power law spectrum, and models of the X-ray come from an extended source approximately 1 deg in radius. The observation of a high temperature spectrum in a field of view containing only Puppis A among known sources has led to the discovery of a new OSO-8 source, OSO752-39. Other spectra from this region are discussed.

  15. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  16. Quantum Monte Carlo for the x-ray absorption spectrum of pyrrole at the nitrogen K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zubarev, Dmitry Yu.; Austin, Brian M.; Lester, William A. Jr.

    Fixed-node diffusion Monte Carlo (FNDMC) is used to simulate the x-ray absorption spectrum of a gas-phase pyrrole molecule at the nitrogen K-edge. Trial wave functions for core-excited states are constructed from ground-state Kohn-Sham determinants substituted with singly occupied natural orbitals from configuration interaction with single excitations calculations of the five lowest valence-excited triplet states. The FNDMC ionization potential (IP) is found to lie within 0.3 eV of the experimental value of 406.1 {+-} 0.1 eV. The transition energies to anti-bonding virtual orbitals match the experimental spectrum after alignment of IP values and agree with the existing assignments.

  17. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2001-07-04

    Giving scientists their first look, Chandra observed x-rays produced by fluorescent radiation from oxygen atoms of the Sun in the sparse upper atmosphere of Mars, about 120 kilometers (75 miles) above its surface. The x-ray power detected from the Martian atmosphere is very small, amounting to only 4 megawatts, comparable to the x-ray power of about ten thousand medical x-ray machines. At the time of the Chandra observation, a huge dust storm developed on Mars that covered about one hemisphere, later to cover the entire planet. This hemisphere rotated out of view over the 9-hour observation, but no change was observed in the x-ray intensity indicating that the dust storm did not affect the upper atmosphere. Scientists also observed a halo of x-rays extending out to 7,000 kilometers above the surface of Mars believed to be produced by collisions of ions racing away from the Sun (the solar wind).

  18. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE PAGES

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...

    2017-02-17

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  19. Ultrafast time-resolved X-ray absorption spectroscopy of ferrioxalate photolysis with a laser plasma X-ray source and microcalorimeter array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il

    The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less

  20. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  1. Suzaku Observation of Two Ultraluminous X-ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Mushotzky, R.F.; hide

    2007-01-01

    TA study was made of two ultraluminous X-ray sources (ULXs) in the nearby faceon, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The o.4-10keV X-ray luminosity was measured. For X-1, the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.00 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. The spectrum of X-2 in fainter phase is presented by a multicolor disk blackbody model.

  2. Determination of coal ash content by the combined x-ray fluorescence and scattering spectrum

    NASA Astrophysics Data System (ADS)

    Mikhailov, I. F.; Baturin, A. A.; Mikhailov, A. I.; Borisova, S. S.; Fomina, L. P.

    2018-02-01

    An alternative method is proposed for the determination of the inorganic constituent mass fraction (ash) in solid fuel by the ratio of Compton and Rayleigh X-ray scattering peaks IC/IR subject to the iron fluorescence intensity. An original X-ray optical scheme with a Ti/Mo (or Sc/Cu) double-layer secondary radiator allows registration of the combined fluorescence-and-scattering spectrum at the specified scattering angle. An algorithm for linear calibration of the Compton-to-Rayleigh IC/IR ratio is proposed which uses standard samples with two certified characteristics: mass fractions of ash (Ad) and iron oxide (WFe2O3). Ash mass fractions have been determined for coals of different deposits in the wide range of Ad from 9.4% to 52.7% mass and WFe2O3 from 0.3% to 4.95% mass. Due to the high penetrability of the probing radiation with energy E > 17 keV, the sample preparation procedure is rather simplified in comparison with the traditional method of Ad determination by the sum of fluorescence intensities of all constituent elements.

  3. Spectral state transitions of the Ultraluminous X-ray Source IC 342 X-1

    NASA Astrophysics Data System (ADS)

    Marlowe, H.; Kaaret, P.; Lang, C.; Feng, H.; Grisé, F.; Miller, N.; Cseh, D.; Corbel, S.; Mushotzky, R. F.

    2014-10-01

    We observed the Ultraluminous X-ray Source (ULX) IC 342 X-1 simultaneously in X-ray and radio with Chandra and the JVLA to investigate previously reported unresolved radio emission coincident with the ULX. The Chandra data reveal a spectrum that is much softer than observed previously and is well modelled by a thermal accretion disc spectrum. No significant radio emission above the rms noise level was observed within the region of the ULX, consistent with the interpretation as a thermal state though other states cannot be entirely ruled out with the current data. We estimate the mass of the black hole using the modelled inner disc temperature to be 30 M_{⊙} ≲ M√{cosi}≲ 200 M_{⊙} based on a Shakura-Sunyaev disc model. Through a study of the hardness and high-energy curvature of available X-ray observations, we find that the accretion state of X-1 is not determined by luminosity alone.

  4. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    NASA Astrophysics Data System (ADS)

    Py, J.; Groetz, J.-E.; Hubinois, J.-C.; Cardona, D.

    2015-04-01

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1-20 g L-1 is given.

  5. Detection of Nitrogen and Neon in the X-ray Spectrum of GP Com with XMM/Newton

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.

    2004-01-01

    We report on X-ray spectroscopic observations with XMM/Newton of the ultra-compact, double white dwarf binary, GP Com. With the Reflection Grating Spectrometers (RGS) we detect the L(alpha) and L(beta) lines of hydrogen-like nitrogen (N VII) and neon (Ne X), as well as the helium-like triplets (N VI and Ne IX) of these same elements. All the emission lines are unresolved. These are the first detections of X-ray emission lines from a double-degenerate, AM CVn system. We detect the resonance (r) and intercombination (i) lines of the N VI triplet, but not the forbidden (f) line. The implied line ratios for N VI, R = f/i less than 0.3, and G = (f + i ) / r approx. = 1, combined with the strong resonance line are consistent with a dense, collision-dominated plasma. Both the RGS and EPIC/MOS spectra are well fit by emission horn an optically thin thermal plasma with an emission measure (EM) is a member of (kT/6.5 keV)(sup 0.8) (model cevmkl in XSPEC). Helium, nitrogen, oxygen and neon are required to adequately model the spectrum, however, the inclusion of sulphur and iron further improves the fit, suggesting these elements may also be present at low abundance. We confirm in the X-rays the under- abundance of both carbon and oxygen relative to nitrogen, first deduced from optical spectroscopy by Marsh et al. The average X-ray luminosity of approx. = 3 x 10(exp 30) ergs/s implies a mass accretion rate dot-m approx. = 9 x 10(exp -13) solar mass/yr. The implied temperature and density of the emitting plasma, combined with the presence of narrow emission lines and the low dot-m value, are consistent with production of the X-ray emission in an optically thin boundary layer just above the surface of the white dwarf.

  6. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  7. Observations of low-luminosity X-ray sources in Vela-Puppis

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Becker, R. H.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    Results are presented for a study of the X-ray emission from a small portion of the galactic plane near galactic longitude 260 deg. This region contains at least six low-luminosity X-ray sources within about 10 deg of PSR 0833-45, which is near the center of the Gum nebula. The X-ray source 4U 0833-45, associated with the Vela pulsar, is observed at twice its 4U catalog intensity. The lack of X-ray pulsations at the pulsar period (greater than 99% nonpulsed), the nonthermal power-law spectrum, and models of the X-ray source distribution in this region suggest that a large fraction of the X-rays come from an extended source about 1 deg of arc in radius. The observation of a high-temperature (effective temperature at least 100 million K) spectrum in a field of view containing only Puppis A among known sources has led to the discovery of new OSO 8 source, OS 0752-39. Other spectra from this region are discussed.

  8. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  9. Element Specific Imaging Using Muonic X-rays

    NASA Astrophysics Data System (ADS)

    Hillier, Adrian; Ishida, Katsu; Seller, Paul; Veale, Matthew C.; Wilson, Matthew D.

    The RIKEN-RAL facility provides a source of negative muons that can be used to non-destructively determine the elemental composition of bulk samples. A negative muon can replace an electron in an atom and subsequently transition to lower orbital positions. As with conventional X-ray fluorescence, an X-ray photon is emitted with a characteristic energy to enable the transition between orbitals of an atom. As the mass of a negative muon is much greater than that of an electron, a higher energy X-ray photon is emitted when the negative muon transitions between orbitals compared to conventional X-ray fluorescence. The higher energy muonic X-rays are able to escape large samples even when they are emitted from lower Z atoms, making muonic X-rays fluorescence a unique method to characterize the elemental content of a sample. In a typical experiment a section of a sample will be probed with negative muons with the muon momentum tuned to interact at a desired depth in the sample. A small number of single element high purity Ge detectors are positioned to capture up to one photon each from each of the forty muon pulses per second at the RIKEN-RAL facility. This can provide a high resolution and high dynamic range X-ray energy spectrum when collected for several hours but can only provide a spatial average or single point elemental distribution per collection. Here, an STFC developed CdTe detector with 80 × 80 energy resolving channels has been used to demonstrate the ability to image the elemental distribution of a test sample. A test sample of C, Al, and Fe2O3 was positioned close to the detector surface and each of the 250 µm pitch pixels recorded a muonic X-ray energy spectrum. Results are presented to show the principal of this new technique and potential improvements to provide higher resolution and larger area elemental imaging using muonic X-rays are discussed.

  10. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  11. X-ray short-time lags in the Fe-K energy band produced by scattering clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Done, Chris; Hagino, Kouichi; Ebisawa, Ken; Tsujimoto, Masahiro; Odaka, Hirokazu

    2018-07-01

    X-rays illuminating the accretion disc in active galactic nuclei give rise to an iron K line and its associated reflection spectrum that are lagged behind the continuum variability by the light-travel time from the source to the disc. The measured lag time-scales in the iron band can be as short as ˜Rg/c, where Rg is the gravitational radius, which is often interpreted as evidence for a very small continuum source close to the event horizon of a rapidly spinning black hole. However, the short lags can also be produced by reflection from more distant material, because the primary photons with no time-delay dilute the time-lags caused by the reprocessed photons. We perform a Monte Carlo simulation to calculate the dilution effect in the X-ray reverberation lags from a half-shell of neutral material placed at 100 Rg from the central source. This gives lags of ˜2 Rg/c, but the iron line is a distinctly narrow feature in the lag-energy plot, whereas the data often show a broader line. We show that both the short lag and the line broadening can be reproduced, if the scattering material is outflowing at ˜0.1c. The velocity structure in the wind can also give shifts in the line profile in the lag-energy plot calculated at different frequencies. Hence we propose that the observed broad iron reverberation lags and shifts in profile as a function of frequency of variability can arise from a disc wind at fairly large distances from the X-ray source.

  12. X-ray short-time lags in the Fe-K energy band produced by scattering clouds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Done, Chris; Hagino, Kouichi; Ebisawa, Ken; Tsujimoto, Masahiro; Odaka, Hirokazu

    2018-05-01

    X-rays illuminating the accretion disc in active galactic nuclei give rise to an iron K line and its associated reflection spectrum which are lagged behind the continuum variability by the light-travel time from the source to the disc. The measured lag timescales in the iron band can be as short as ˜Rg/c, where Rg is the gravitational radius, which is often interpreted as evidence for a very small continuum source close to the event horizon of a rapidly spinning black hole. However, the short lags can also be produced by reflection from more distant material, because the primary photons with no time-delay dilute the time-lags caused by the reprocessed photons. We perform a Monte-Carlo simulation to calculate the dilution effect in the X-ray reverberation lags from a half-shell of neutral material placed at 100 Rg from the central source. This gives lags of ˜2 Rg/c, but the iron line is a distinctly narrow feature in the lag-energy plot, whereas the data often show a broader line. We show that both the short lag and the line broadening can be reproduced if the scattering material is outflowing at ˜0.1c. The velocity structure in the wind can also give shifts in the line profile in the lag-energy plot calculated at different frequencies. Hence we propose that the observed broad iron reverberation lags and shifts in profile as a function of frequency of variability can arise from a disc wind at fairly large distances from the X-ray source.

  13. Soft X-ray results from the Wisconsin experiment on OSO-8

    NASA Technical Reports Server (NTRS)

    Bunner, A. N.

    1978-01-01

    Design features and capabilities of a soft X-ray instrument aboard OSO 8 are discussed, and results are presented for observations of AM Her, Her X-1, and Eta Car. The observations of AM Her indicate that: (1) the spectrum is composite, with a very steep or very-low-temperature component plus a rather flat or very-high-temperature component; (2) the relative phase of soft X-ray minimum and optical V-band primary minimum has remained stable over the interval between 1975 'high-state' observations and 1976 'low-state' observations; and (3) the times of soft X-ray minima and hard X-ray maxima coincide, to within the accuracy of the observations. For Her X-1, soft X-ray turn-on is found to lag behind hard X-ray turn-on by no more than 3 hr. It is suggested that little or no absorption of the soft X-ray component occurs during the on state by cool gas within the Her X-1 system. A strong source with a spectrum peaked between 0.4 and 1.5 keV has been detected which is consistent with a point source at the position of Eta Car.

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  15. X-ray phase-contrast tomosynthesis of a human ex vivo breast slice with an inverse Compton x-ray source

    NASA Astrophysics Data System (ADS)

    Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Grandl, S.; Sztrókay, A.; Hellerhoff, K.; Mayr, D.; Loewen, R.; Ruth, R. D.; Reiser, M. F.; Pfeiffer, F.

    2016-12-01

    While the performance of conventional x-ray tube sources often suffers from the broad polychromatic spectrum, synchrotrons that could provide highly brilliant x-rays are restricted to large research facilities and impose high investment and maintenance costs. Lately, a new type of compact synchrotron sources has been investigated. These compact light sources (CLS) based on inverse Compton scattering provide quasi-monochromatic hard x-rays. The flux and brilliance yielded by a CLS currently lie between x-ray tube sources and third-generation synchrotrons. The relatively large partially coherent x-ray beam is well suited for the investigation of preclinical applications of grating-based phase-contrast and dark-field imaging. Here we present the first grating-based multimodal tomosynthesis images of a human breast slice acquired at a CLS to investigate the possibilities of improved breast cancer diagnostics.

  16. Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16

    NASA Astrophysics Data System (ADS)

    Roberts, T. P.; Colbert, E. J. M.

    2003-06-01

    We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.

  17. Recent observations with phase-contrast x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-09-01

    Recent development in phase-contrast X-ray computed tomography using an X-ray interferometer is reported. To observe larger samples than is possible with our previous X-ray interferometer, a large monolithic X-ray interferometer and a separated-type X-ray interferometer were studied. At the present time, 2.5 cm X 1.5 cm interference patterns have been generated with the X-ray interferometers using synchrotron X-rays. The large monolithic X-ray interferometer has produced interference fringes with 80% visibility, and has been used to measure various tissues. To produce images with higher spatial resolution, we fabricated another X-ray interferometer whose wafer was partially thinned by chemical etching. A preliminary test suggested that the spatial resolution has been improved.

  18. X-ray diagnostic development for measurement of electron deposition to the SABRE anode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lash, J.S.; Derzon, M.S.; Cuneo, M.E.

    Extraction applied-B ion diodes are under development on the SABRE (6 MV, 250 kA) accelerator at Sandia. The authors are assessing this technology for the production of high brightness lithium ion beams for inertial confinement fusion. Electron loss physics is a focus of effort since electron sheath physics affects ion beam divergence, ion beam purity, and diode impedance. An x-ray slit-imaging diagnostic is under development for detection of x-rays produced during electron deposition to the anode. This diagnostic will aid in the correlation of electron deposition to ion production to better understand the ion diode physics. The x-ray detector consistsmore » of a filter pack, scintillator and optical fiber array that is streaked onto a CCD camera. Current orientation of the diagnostic provides spatial information across the anode radius at three different azimuths or at three different x-ray energy cuts. The observed x-ray emission spectrum can then be compared to current modeling efforts examining electron deposition to the anode.« less

  19. Start of Eta Car's X-ray Minimum

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.; Liburd, Jamar; Hamaguchi, Kenji; Gull, Theodore; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony; Richardson, Noel; Russell, Chris; Pollock, Andrew; hide

    2014-01-01

    Analysis of Eta Car's X-ray spectrum in the 2-10 keV band using quicklook data from the XRay Telescope on Swift shows that the flux on July 30, 2014 was 4.9 plus or minus 2.0×10(exp-12) ergs s(exp-1)cm(exp-2). This flux is nearly equal to the X-ray minimum flux seen by RXTE in 2009, 2003.5, and 1998, and indicates that Eta Car has reached its X-ray minimum, as expected based on the 2024-day period derived from previous 2-10 keV observations with RXTE.

  20. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  1. Solar flare hard and soft x ray relationship determined from SMM HXRBS and BCS data

    NASA Technical Reports Server (NTRS)

    Toot, G. David

    1989-01-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  2. Solar flare hard and soft X ray relationship determined from SMM HXRBS and BCS data

    NASA Astrophysics Data System (ADS)

    Toot, G. David

    1989-09-01

    The exact nature of the solar flare process is still somewhat a mystery. A key element to understanding flares if the relationship between the hard x rays emitted by the most energetic portions of the flare and the soft x rays from other areas and times. This relationship was studied by comparing hard x ray light curved from the Hard X-Ray Burst Spectrometer (HXRBS) with the soft x ray light curve and its derivation from the Bent Crystal Spectrometer (BCS) which is part of the X-Ray Polychrometer (XRP), these instruments being on the Solar Maximum Mission spacecraft (SMM). Data sample was taken from flares observed with the above instruments during 1980, the peak of the previous maximum of solar activity. Flares were chosen based on complete coverage of the event by several instruments. The HXRBS data covers the x ray spectrum from about 25 keV to about 440 keV in 15 spectral channels, while the BCS data used covers a region of the Spectrum around 3 angstroms including emission from the Ca XIX ion. Both sets of data were summed over their spectral ranges and plotted against time at a maximum time resolution of around 3 seconds. The most popular theory of flares holds that a beam of electrons produces the hard x rays by bremsstrahlung while the soft x rays are the thermal response to this energy deposition. The question is whether the rate of change of soft x ray emission might reflect the variability of the electron beam and hence the variability of the hard x rays. To address this, we took the time derivative of the soft x ray light curve and compared it to the hard flares, 12 of them showed very closed agreement between the soft x ray derivative and the hard x ray light curve. The other five did not show this behavior but were similar to each other in general soft x ray behavior. Efforts to determine basic differences between the two kinds of flares continue. In addition the behavior of soft x ray temperature of flares was examined.

  3. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermalmore » component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.« less

  4. Search for Nonthermal X-Rays from Supernova Remnant Shells

    NASA Astrophysics Data System (ADS)

    Petre, R.; Keohane, J.; Hwang, U.; Allen, G.; Gotthelf, E.

    The demonstration by ASCA that the nonthermal X-ray emission from the rim of SN1006 is synchrotron emission from TeV electrons, produced in the same environment responsible for cosmic ray protons and nuclei (Koyama et al. 1995, Nature 378, 255), has stimulated a search for nonthermal X-rays from other remnants. Nonthermal emission has subsequently been found to arise in the shells of at least two other remnants, Cas A and IC 443. In Cas A, a hard tail is detected using ASCA, XTE, and OSSE to energies exceeding 100 keV; the shape of the spectrum rules out all mechanisms except synchrotron radiation. In IC 443, the previously known hard emission has been shown using ASCA to be isolated to a small region along the rim of the remnant, where the shock is interacting most strongly with a molecular cloud. Nonthermal X-ray emission is thought to arise here by enhanced cosmic ray production associated with the shock/cloud interaction (Keohane et al. 1997, ApJ in press). We describe the properties of the nonthermal emission in SN1006, Cas A, and IC 443, and discuss the status of our search for nonthermal emission associated with the shocks of other Galactic and LMC SNR's.

  5. X-Ray Emission from the Wolf-Rayet Bubble S 308

    NASA Technical Reports Server (NTRS)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  6. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  7. Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays

    DOE PAGES

    Marrs, R. E.; Widmann, K.; Brown, G. V.; ...

    2015-10-29

    Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less

  8. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy.

    PubMed

    Mantouvalou, Ioanna; Witte, Katharina; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Jung, Robert; Stiel, Holger; Kanngiesser, Birgit; Sandner, Wolfgang

    2015-03-01

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  9. Analysis of monochromatic and quasi-monochromatic X-ray sources in imaging and therapy

    NASA Astrophysics Data System (ADS)

    Westphal, Maximillian; Lim, Sara; Nahar, Sultana; Orban, Christopher; Pradhan, Anil

    2017-04-01

    We studied biomedical imaging and therapeutic applications of recently developed quasi-monochromatic and monochromatic X-ray sources. Using the Monte Carlo code GEANT4, we found that the quasi-monochromatic 65 keV Gaussian X-ray spectrum created by inverse Compton scattering with relatavistic electron beams were capable of producing better image contrast with less radiation compared to conventional 120 kV broadband CT scans. We also explored possible experimental detection of theoretically predicted K α resonance fluorescence in high-Z elements using the European Synchrotron Research Facility with a tungsten (Z = 74) target. In addition, we studied a newly developed quasi-monochromatic source generated by converting broadband X-rays to monochromatic K α and β X-rays with a zirconium target (Z = 40). We will further study how these K α and K β dominated spectra can be implemented in conjunction with nanoparticles for targeted therapy. Acknowledgement: Ohio Supercomputer Center, Columbus, OH.

  10. An introduction to the water recovery x-ray rocket

    NASA Astrophysics Data System (ADS)

    Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria

    2017-08-01

    The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.

  11. The high-energy pulsed X-ray spectrum of HER X-1 as observed with OSO-8. Ph.D. Thesis - Catholic Univ. of America

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Cutler, E. P.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.

    1978-01-01

    Her X-1 was observed from 1977 August 30 to September 10 using the High-Energy X-Ray Scintillation Spectrometer on board the OSO-8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. The pulsed spectrum was fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed gaussian centered at 55 keV. The latter fit has the smallest value of chi - squared per degree of freedom, and the resulting integrated line intensity is 1.5 superscript + 4.1 subscript - 1.4 x .001 photons s superscript-1 cm superscript-2 for a width of 3.1 superscript + 9.1 subscript -2.6 keV. This result, while of low statistical significance, agrees with the value observed by Trumper (1978) during the same On-state.

  12. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  13. Spectrum and variation of gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Riegler, G. R.; Ling, J. C.; Mahoney, W. A.; Wheaton, W. A.; Jacobson, A. S.

    1982-01-01

    Continuum emission at 60-300 keV from the galactic center region was observed to decrease in intensity by 45 percent and to show a spectrum steepening between fall 1979 and spring 1980. At the same time 511 keV positron annihilation radiation decreased by a comparable fraction. No variations over shorter time scales were detected. The observations are consistent with a model where positrons and hard X-rays are produced in an electromagnetic cascade near a massive black hole.

  14. The X-ray spectrum and time variability of narrow emission line galaxies

    NASA Technical Reports Server (NTRS)

    Mushotzky, R.

    1981-01-01

    X-ray spectral and temporal observations are reported for six narrow emission line galaxies (NELGs), all of which are fitted by power-law X-ray spectra of energy slope 0.8 and have column densities in the line of sight greater than 1 x 10 to the 22nd atoms/sq cm. Three of the objects, NGC 526a, NGC 2110 and MCG-5-23-16 are variable in their X-ray flux, and the latter two, along with NGC 5506 and NGC 7582, showed detectable variability in at least one observation. The measured X-ray properties of these NELGs, which also included NGC 2992, strongly resemble those of previously-measured type 1 Seyferts of the same X-ray luminosity and lead to the conclusion of great similarity between the NELGs and low-luminosity type 1 Seyferts. The implications of these observations for the optical line-emitting region structure of these galaxies are discussed.

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  16. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  17. Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Murdin, P.

    2002-10-01

    Launched on 23 July 1999 on board the SpaceShuttle Columbia from Cape Canaveral, the ChandraX-ray Observatory is the first x-ray astronomytelescope to match the 1/2 arcsecond imagingpower and the 0.1% spectral resolving power ofoptical telescopes. Chandra is named afterSubramanian Chandrasekhar, known as Chandra, andauthor of the Chandrasekhar limit. Chandra hasbeen extremely successful and produc...

  18. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  19. XMM-Newton reveals a Seyfert-like X-ray spectrum in the z = 3.6 QSO B1422+231

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; De Marco, B.; Chartas, G.; Giustini, M.

    2016-08-01

    Context. Matter flows from the central regions of quasi-stellar objects (QSOs) during their active phases are probably responsible for the properties of the super-massive black holes and those of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts, when QSO activity is at its peak. Aims: We aim to use X-ray data to probe the matter inflow at the very center of a QSO at z = 3.62. While complex absorption, the iron K emission line, reflection hump, and high-energy cutoff are known to be almost ubiquitous in nearby active galactic nuclei (AGN), only a few distant objects are known to exhibit some of them. Methods: The few high-quality spectra of distant QSO were collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability and/or microlensing. To avoid such problems, we decided to collect a single-epoch and high-quality X-ray spectrum of a distant AGN. We thus picked up the z = 3.62 QSO B1422+231, whose flux, enhanced by gravitationally lensing, is proven to be among the brightest lensed QSOs in X-rays (F2-10 keV ~ 10-12 erg s-1 cm-2). Results: The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is clearly detected (NH ~ 5 × 1021 cm-2 at the redshift of the source), while a strong absorption edge is measured at E ~ 7.5 keV with an optical depth of τ ~ 0.14. We also find hints of the FeKα line in emission at E ~ 6.4 keV line (EW ≲ 70 eV), and a hump is detected in the E ~ 15 - 20 keV energy band (rest frame) in excess of what is predicted by a simple absorbed power-law. Conclusions: The spectrum can best be modeled with two rather complex models; one assumes ionized and partially covering matter along the line of sight, the other is characterized by a

  20. Decimetric type III radio bursts and associated hard X-ray spikes

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Benz, A. O.; Ranieri, M.; Simnett, G. M.

    1984-01-01

    For a relatively weak solar flare on August 6, 1981, at 10:32 UT, a detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts. The hard X-ray observations are made at energies above 30 keV, and the radio data are obtained in the frequency range from 100 to 1000 MHz. The time resolution for all the data sets is approximately 0.1 s or better. The dynamic radio spectrum exhibits many fast drift type III radio bursts with both normal and reverse slope, whereas the X-ray time profile contains many well resolved short spikes with durations less than or equal to 1 s. Some of the X-ray spikes are seen to be associated in time with reverse-slope bursts, indicating either that the electron beams producing the radio burst contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can induce the acceleration of additional electrons or occur in coincidence with this acceleration. A case is presented in which a normal slope radio burst at approximately 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s.

  1. Contribution of parsec-scale material on to the polarized X-ray spectrum of type 1 Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Marin, F.; Dovčiak, M.; Kammoun, E. S.

    2018-07-01

    Type 1 radio-quiet active galactic nuclei (AGN) are seen from the polar direction and offer a direct view of their central X-ray engine. If most of X-ray photons have travelled from the primary source to the observer with minimum light-matter interaction, a fraction of radiation is emitted at different directions and is reprocessed by the parsec-scale equatorial circumnuclear region or the polar outflows. It is still unclear how much the polarization expected from type 1 AGN is affected by radiation that have scattered on the distant AGN components. In this paper, we examine the contribution of remote material on to the polarized X-ray spectrum of type 1 Seyfert galaxies (Seyfert-1s) using radiative transfer Monte Carlo codes. We find that the observed X-ray polarization strongly depends on the initial polarization emerging from the disc-corona system. For unpolarized and parallelly polarized photons (parallel to the disc), the contribution is negligible below 3 keV and tends to increase the polarization degree by up to one percentage points at higher energies, smoothing out the energy-dependent variations of the polarization angle. For perpendicularly polarized corona photons, the addition of the circumnuclear scattered (parallel) component adds to the polarization above 10 keV, decreases polarization below 10 keV and shifts the expected 90° rotation of the polarization angle to lower energies. In conclusion, we found that simulations of Seyfert-1s that do not account for reprocessing on the parsec-scale equatorial and polar material are under- or overestimating the X-ray polarization by 0.1-1 percentage points.

  2. An analytical model of the effects of pulse pileup on the energy spectrum recorded by energy resolved photon counting x-ray detectors

    PubMed Central

    Taguchi, Katsuyuki; Frey, Eric C.; Wang, Xiaolan; Iwanczyk, Jan S.; Barber, William C.

    2010-01-01

    Purpose: Recently, novel CdTe photon counting x-ray detectors (PCXDs) with energy discrimination capabilities have been developed. When such detectors are operated under a high x-ray flux, however, coincident pulses distort the recorded energy spectrum. These distortions are called pulse pileup effects. It is essential to compensate for these effects on the recorded energy spectrum in order to take full advantage of spectral information PCXDs provide. Such compensation can be achieved by incorporating a pileup model into the image reconstruction process for computed tomography, that is, as a part of the forward imaging process, and iteratively estimating either the imaged object or the line integrals using, e.g., a maximum likelihood approach. The aim of this study was to develop a new analytical pulse pileup model for both peak and tail pileup effects for nonparalyzable detectors. Methods: The model takes into account the following factors: The bipolar shape of the pulse, the distribution function of time intervals between random events, and the input probability density function of photon energies. The authors used Monte Carlo simulations to evaluate the model. Results: The recorded spectra estimated by the model were in an excellent agreement with those obtained by Monte Carlo simulations for various levels of pulse pileup effects. The coefficients of variation (i.e., the root mean square difference divided by the mean of measurements) were 5.3%–10.0% for deadtime losses of 1%–50% with a polychromatic incident x-ray spectrum. Conclusions: The proposed pulse pileup model can predict recorded spectrum with relatively good accuracy. PMID:20879558

  3. Production of hard X rays in a plasma focus

    NASA Technical Reports Server (NTRS)

    Newman, C. E.; Petrosian, V.

    1975-01-01

    A model of a plasma focus is examined wherein large axial electric fields are produced by an imploding current sheet during the final nanoseconds of the collapse phase and where the fields provide a mechanism for creating a beam of electrons of highly suprathermal energies. The expected bremsstrahlung radiation above 100 keV is calculated for such a beam, which has a power-law spectrum, both from electron-deuteron collisions in the focused plasma and when the beam reaches the wall of the device. It is concluded that, since the experimental results indicate little or no radiation above 100 keV originating in the walls, that the electrons in the beam must be decelerated after leaving the plasma and before reaching the wall. Comparisons with the results and the total energy of the device yield qualitative agreement with the expected angular distribution of hard X-rays and reasonable agreement with the total energy in accelerated electrons required to produce the observed total energy in hard X-rays by this mechanism.

  4. X-Ray Emission for the Saturnian System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.

  5. Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu

    2014-01-06

    We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90° Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of themore » scattered radiation.« less

  6. INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission

    NASA Astrophysics Data System (ADS)

    Türler, M.; Chernyakova, M.; Courvoisier, T. J.-L.; Lubiński, P.; Neronov, A.; Produit, N.; Walter, R.

    2010-03-01

    Aims: We derive the spectra of the cosmic X-ray background (CXB) and of the Galactic ridge X-ray emission (GRXE) in the ~20-200 keV range from the data of the IBIS instrument aboard the INTEGRAL satellite obtained during the four dedicated Earth-occultation observations in early 2006. Methods: We analyze the modulation of the IBIS/ISGRI detector counts induced by the passage of the Earth through the field of view of the instrument. Unlike previous studies, we do not fix the spectral shape of the various contributions, but model instead their spatial distribution and derive for each of them the expected modulation of the detector counts. The spectra of the diffuse emission components are obtained by fitting the normalizations of the model lightcurves to the observed modulation in different energy bins. Because of degeneracy, we guide the fits with a realistic choice of the input parameters and a constraint for spectral smoothness. Results: The obtained CXB spectrum is consistent with the historic HEAO-1 results and falls slightly below the spectrum derived with Swift/BAT. A 10% higher normalization of the CXB cannot be completely excluded, but it would imply an unrealistically high albedo of the Earth. The derived spectrum of the GRXE confirms the presence of a minimum around 80 keV with improved statistics and yields an estimate of ~0.6 M⊙ for the average mass of white dwarfs in the Galaxy. The analysis also provides updated normalizations for the spectra of the Earth's albedo and the cosmic-ray induced atmospheric emission. Conclusions: This study demonstrates the potential of INTEGRAL Earth-occultation observations to derive the hard X-ray spectra of three fundamental components: the CXB, the GRXE and the Earth emission. Further observations would be extremely valuable to confirm our results with improved statistics.

  7. Technical Note: spektr 3.0-A computational tool for x-ray spectrum modeling and analysis.

    PubMed

    Punnoose, J; Xu, J; Sisniega, A; Zbijewski, W; Siewerdsen, J H

    2016-08-01

    A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. The spektr code generates x-ray spectra (photons/mm(2)/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20-150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30-140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available.

  8. X-ray counterpart candidates for six new γ-ray pulsars

    NASA Astrophysics Data System (ADS)

    Zyuzin, Dmitry A.; Karpova, Anna V.; Shibanov, Yuriy A.

    2018-05-01

    Using archival X-ray data, we have found point-like X-ray counterpart candidates positionally coincident with six γ-ray pulsars discovered recently in the Fermi Gamma-ray Space Telescope data by the Einstein@Home project. The candidates for PSRs J0002+6216, J0554+3107, J1844-0346, and J1105-6037 are detected with Swift, and those for PSRs J0359+5414 and J2017+3625 are detected with Chandra. Despite a low count statistics for some candidates, assuming plausible constraints on the absorbing column density towards the pulsars, we show that X-ray spectral properties for all of them are consistent with those observed for other pulsars. J0359+5414 is the most reliably identified object. We detect a nebula around it, whose spectrum and extent suggest that this is a pulsar wind nebula powered by the pulsar. Associations of J0002+6216 and J1844-0346 with supernova remnants CTB 1 and G28.6-0.1 are proposed.

  9. The X-ray Spectral Evolution of eta Carinae as Seen by ASCA

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Fredericks, A. C.; Petre, R.; Swank, J. H.; Drake, S. A.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Using data from the ASCA X-ray observatory, we examine the variations in the X-ray spectrum of the supermassive star nu Carinae with an unprecedented combination of spatial and spectral resolution. We include data taken during the recent X-ray eclipse in 1997-1998, after recovery from the eclipse, and during and after an X-ray flare. We show that the eclipse variation in the X-ray spectrum is apparently confined to a decrease in the emission measure of the source. We compare our results with a simple colliding wind binary model and find that the observed spectral variations are only consistent, with the binary model if there is significant high-temperature emission far from the star and/or a substantial change in the temperature distribution of the hot plasma. If contamination in the 2-10 keV band is important, the observed eclipse spectrum requires an absorbing column in excess of 10(exp 24)/sq cm for consistency with the binary model, which may indicate an increase in the first derivative of M from nu Carinae near the time of periastron passage. The flare spectra are consistent with the variability seen in nearly simultaneous RXTE observations and thus confirm that nu Carinae itself is the source of the flare emission. The variation in the spectrum during the flare seems confined to a change in the source emission measure. By comparing 2 observations obtained at the same phase in different X-ray cycles, we find that the current, X-ray brightness of the source is slightly higher than the brightness of the source during the last cycle perhaps indicative of a long-term increase in the first derivative of M, not associated with the X-ray cycle.

  10. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garanin, S. G.; Ivanovskiy, A. V., E-mail: ivanovsky@elph.vniief.ru

    2015-12-15

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  11. Thermonuclear ignition by Z-pinch X-ray radiation produced by current of an explosive magnetic generator

    NASA Astrophysics Data System (ADS)

    Garanin, S. G.; Ivanovskiy, A. V.

    2015-12-01

    The scheme of a device based a superpower disk-type magnetic explosion generator to produce a pulse of X-ray radiation with the energy exceeding the target ignition threshold is described and validated.

  12. The 5 Hour Pulse Period and Broadband Spectrum of the Symbiotic X-Ray Binary 3A 1954+319

    NASA Technical Reports Server (NTRS)

    Marcu, Diana M.; Fuerst, Felix; Pottschmidt, Katja; Grinberg, Victoria; Miller, Sebstian; Wilms, Joern; Postnov, Konstantin A.; Corbet, Robin H. D.; Markwardt, Craig B.; Cadolle Bel, Marion

    2011-01-01

    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries, Le" systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of approximately 5.3 h is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and not significantly energy dependent. During the outburst a strong spin-up of -1.8 x 10(exp -4) h h(exp -1) occurred. Between 2005 and 2008 a long term spin-down trend of 2.1 x 10(exp -5) h h(exp -1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for symbiotic X-ray binaries.

  13. Systems and methods for detecting x-rays

    DOEpatents

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  14. Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele

    2012-10-01

    The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult withmore » traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.« less

  15. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  16. The Hard X-Ray Emission from Scorpius X-1 Seen by INTEGRAL

    NASA Technical Reports Server (NTRS)

    Sturner, Steve; Shrader, C. R.

    2008-01-01

    We present the results of our hard X-ray and gamma-ray study of the LMXB Sco X-1 utilizing INTEGRAL data as well as contemporaneous RXTE PCA data. We have investigated the hard X-ray spectral properties of Sco X-1 including the nature of the high-energy, nonthermal component and its possible correlations with the location of the source on the soft X-ray color-color diagram. We find that Sco X-1 follows two distinct spectral tracks when the 20-40 keV count rate is greater than 130 counts/second. One state is a hard state which exhibits a significant high-energy, powerlaw tail to the lower energy thermal spectrum. The other state shows a much less significant high-energy component. We found suggestive evidence for a correlation of these hard and soft high-energy states with the position of Sco X-1 on the low-energy X-ray color-color diagram. We have searched for similar behavior in 2 other Z sources: GX 17+2 and GX 5-1 with negative results.

  17. An X-ray image of the Seyfert galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Wilson, A. S.; Elvis, M.; Lawrence, A.; Bland-Hawthorn, J.

    1992-01-01

    An image of NGC 1068 with 4-5 arcsec obtained with the High Resolution Imager on the Rosat X-ray Observatory in the energy band 0.1-2.4 keV is presented and discussed. The map reveals an unresolved nuclear source, extended (about 1.5 kpc) emission around the nucleus, and extended (about 13 kpc) emission from the starburst disk. The extended circumnuclear emission aligns toward the NE, the same direction as found for the resolved emission of the active nucleus in several other wavebands. Thermal emission from a hot wind is argued to be the source of the steep-spectrum, nuclear, and circumnuclear emission. The disk of NGC 1068 has ratios of soft X-ray to B band and soft X-ray to 60-micron luminosities which are similar to those found for other starburst systems. The X-ray spectrum of the starburst disk is harder than that of the nuclear emission. By adopting a plausible spectrum and extrapolating the present measured flux, it is concluded that the starburst disk contributes most of the hard component seen in the 2-10 keV band.

  18. The Early X-ray Emission From V382 Velorum (=Nove Vel 1999): An Internal Shock Model

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Ishida, Manabu

    2000-01-01

    We present the results of ASCA and RXTE observations of the early X-ray emission from the classical nova V382 Velorum. Its ASCA spectrum was hard (kT approximately 10 KeV) with a strong (10(exp 13)/sq cm) intrinsic absorption. In the subsequent RXTE data, the spectra became softer both due to a declining temperature and a diminishing column. We argue that this places the X-ray emission interior to the outermost ejecta produced by V382 Vel in 1999, and therefore must have been the result of a shock internal to the nova ejecta. The weakness of the Fe K.alpha lines probably indicates that the X-ray emitting plasmas are not in ionization equilibrium.

  19. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  20. The X-ray emitting galaxy Cen-A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Sercemitsos, P. J.; Becker, R. H.; Boldt, E. A.; Holt, S. S.

    1977-01-01

    OSO-8 X-ray observations of Cen-A in 1975 and 1976 are reported. The source spectrum is well fit in both years by a power law of number index 1.62 and absorption due to 1.3 x 10 to the 23rd power at/sq cm. The total flux varied by a factor 2 between 1975 and 1976. In 1976 there were approximately 40% flux variations on a time scale of days. The 6.4 keV Fe fluorescent line and the 7.1 keV absorption edge were measured implying Fe/H approximately equals .000016. Simultaneous radio measurements show variation in phase with X-ray variability. Models considering radio, milimeter, IR and X-ray data show that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H(2) cloud.

  1. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuba, J; Anderson, S G; Barty, C J

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV),more » high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.« less

  2. X-Ray Fluorescence Imaging of Ancient Artifacts

    NASA Astrophysics Data System (ADS)

    Thorne, Robert; Geil, Ethan; Hudson, Kathryn; Crowther, Charles

    2011-03-01

    Many archaeological artifacts feature inscribed and/or painted text or figures which, through erosion and aging, have become difficult or impossible to read with conventional methods. Often, however, the pigments in paints contain metallic elements, and traces may remain even after visible markings are gone. A promising non-destructive technique for revealing these remnants is X-ray fluorescence (XRF) imaging, in which a tightly focused beam of monochromatic synchrotron radiation is raster scanned across a sample. At each pixel, an energy-dispersive detector records a fluorescence spectrum, which is then analyzed to determine element concentrations. In this way, a map of various elements is made across a region of interest. We have succesfully XRF imaged ancient Greek, Roman, and Mayan artifacts, and in many cases, the element maps have revealed significant new information, including previously invisible painted lines and traces of iron from tools used to carve stone tablets. X-ray imaging can be used to determine an object's provenance, including the region where it was produced and whether it is authentic or a copy.

  3. Comparison between X-rays spectra and their effective energies in small animal CT tomographic imaging and dosimetry.

    PubMed

    Hamdi, Mahdjoub; Mimi, Malika; Bentourkia, M'hamed

    2017-03-01

    Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively -2.9, -0.2, 11.2 and -4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: -11.3, -20.2, -4.2 and -13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to

  4. Laboratory Data for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.

    2000-01-01

    Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).

  5. X-ray echo spectroscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  6. The X-ray spectrum of QSO 0241+622. [OSO-8 observations

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1980-01-01

    Proportional counters on the OsO-8 spacecraft measured the X-ray spectrum of QSR 0241+622 in the range 2-50 keV. The best power law fit has a proton spectral index and 90 percent errors gamma = 1.93 (+0.5, -0.3) and low energy absorption consistent with reported gas column densities, but a thermal bremsstrahlung form with temperature 13.1 keV cannot be excluded. No indication of spectral variability is found in three observations of the source with HEAO-A2, although a possible 15-30 percent intensity change over a period of 6 months was observed. The quasar is similar to 3C 273 in the proportion of energy emitted in various bands, excluding the radio, if reported radiation above 50 keV from its direction is indeed associated with QSO 0241+622. The two quasars are compared and possible energy generation scenarios are discussed. Implications concerning quasar contributions to the diffuse background are discussed.

  7. Hard X-ray Observation of Cygnus X-1 By the Marshall Imaging X-ray Experiment (MIXE2)

    NASA Technical Reports Server (NTRS)

    Minamitani, Takahisa; Apple, J. A.; Austin, R. A.; Dietz, K. L.; Koloziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.

    1998-01-01

    The second generation of the Marshall Imaging X-ray Experiment (MIXE2) was flown from Fort Sumner, New Mexico on May 7-8, 1997. The experiment consists of coded-aperture telescope with a field of view of 1.8 degrees (FWHM) and an angular resolution of 6.9 arcminutes. The detector is a large (7.84x10(exp 4) sq cm) effective area microstrip proportional counter filled with 2.0x10(exp5) Pascals of xenon with 2% isobutylene. We present MIXE2 observation of the 20-80keV spectrum and timing variability of Cygnus X-1 made during balloon flight.

  8. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  9. Expression, purification, crystallization, and preliminary X-ray crystallographic analysis of OXA-17, an extended-spectrum β-lactamase conferring severe antibiotic resistance

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Sohn, S. G.; Jung, H. I.; An, Y. J.; Lee, S. H.

    2013-07-01

    OXA-17, an extended-spectrum β-lactamase (ESBL) conferring severe antibiotic resistance, hydrolytically inactivates β-lactam antibiotics, inducing a lack of eradication of pathogenic bacteria by oxyimino β-lactams and not helping hospital infection control. Thus, the enzyme is a potential target for developing antimicrobial agents against pathogens producing ESBLs. OXA-17 was purified and crystallized at 298 K. X-ray diffraction data from OXA-17 crystal have been collected to 1.85 Å resolution using synchrotron radiation. The crystal of OXA-17 belongs to space group P212121, with unit-cell parameters a = 48.37, b = 101.12, and c = 126.07 Å. Analysis of the packing density shows that the asymmetric unit probably contains two molecules with a solvent content of 54.6%.

  10. A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Qiao, Erlin; Liu, B. F.

    2015-04-01

    The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.

  11. Correlative analysis of hard and soft x ray observations of solar flares

    NASA Technical Reports Server (NTRS)

    Zarro, Dominic M.

    1994-01-01

    We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.

  12. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  13. Method for beam hardening correction in quantitative computed X-ray tomography

    NASA Technical Reports Server (NTRS)

    Yan, Chye Hwang (Inventor); Whalen, Robert T. (Inventor); Napel, Sandy (Inventor)

    2001-01-01

    Each voxel is assumed to contain exactly two distinct materials, with the volume fraction of each material being iteratively calculated. According to the method, the spectrum of the X-ray beam must be known, and the attenuation spectra of the materials in the object must be known, and be monotonically decreasing with increasing X-ray photon energy. Then, a volume fraction is estimated for the voxel, and the spectrum is iteratively calculated.

  14. X-ray scattering study

    NASA Technical Reports Server (NTRS)

    Wriston, R. S.; Froechtenigt, J. F.

    1972-01-01

    A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.

  15. REDSoX: Monte-Carlo ray-tracing for a soft x-ray spectroscopy polarimeter

    NASA Astrophysics Data System (ADS)

    Günther, Hans M.; Egan, Mark; Heilmann, Ralf K.; Heine, Sarah N. T.; Hellickson, Tim; Frost, Jason; Marshall, Herman L.; Schulz, Norbert S.; Theriault-Shay, Adam

    2017-08-01

    X-ray polarimetry offers a new window into the high-energy universe, yet there has been no instrument so far that could measure the polarization of soft X-rays (about 17-80 Å) from astrophysical sources. The Rocket Experiment Demonstration of a Soft X-ray Polarimeter (REDSoX Polarimeter) is a proposed sounding rocket experiment that uses a focusing optic and splits the beam into three channels. Each channel has a set of criticalangle transmission (CAT) gratings that disperse the x-rays onto a laterally graded multilayer (LGML) mirror, which preferentially reflects photons with a specific polarization angle. The three channels are oriented at 120 deg to each other and thus measure the three Stokes parameters: I, Q, and U. The period of the LGML changes with position. The main design challenge is to arrange the gratings so that they disperse the spectrum in such a way that all rays are dispersed onto the position on the multi-layer mirror where they satisfy the local Bragg condition despite arriving on the mirror at different angles due to the converging beam from the focusing optics. We present a polarimeteric Monte-Carlo ray-trace of this design to assess non-ideal effects from e.g. mirror scattering or the finite size of the grating facets. With mirror properties both simulated and measured in the lab for LGML mirrors of 80-200 layers we show that the reflectivity and the width of the Bragg-peak are sufficient to make this design work when non-ideal effects are included in the simulation. Our simulations give us an effective area curve, the modulation factor and the figure of merit for the REDSoX polarimeter. As an example, we simulate an observation of Mk 421 and show that we could easily detect a 20% linear polarization.

  16. An extended galactic population of low-luminosity x-ray sources (CVs?) and the diffuse x-ray background

    NASA Technical Reports Server (NTRS)

    Maoz, Eyal; Grindlay, Jonathan E.

    1995-01-01

    The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the

  17. X-ray microscopy of live biological micro-organisms

    NASA Astrophysics Data System (ADS)

    Raja Al-Ani, Ma'an Nassar

    Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.

  18. Pushing the Boundaries of Suborbital Soft X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    McEntaffer, Randall

    optics are planned for every future large X-ray mission and flight-proving the design is extremely important. The gratings will be radially grooved and blazed to reduce grating aberrations and to focus the spectrum to one side of zero-order. Gratings of this type have been well developed by the IXO Off- Plane X-ray Grating Spectrometer concept study, but have not been flight proven. The spectrum will be focused onto high spatial resolution CCD detectors. OGRE will draw heavily from the heritage gained from OGRESS. OGRE will observe Capella. Due to its high flux and spectral line density, Capella is an ideal target for showcasing the resolution capabilities of our instrument. As an important calibration target, our improved resolution measurements will be extremely helpful for many future X-ray observations. OGRESS has already provided three thesis projects for past graduate students. The upgrades and flights proposed here will produce at least two more PhD theses. This program in hands-on training of young scientists in the techniques of instrumental X-ray astronomy has proven very successful over nearly three decades, leading to high rates of launch, publication, graduation, and flight qualification of instrumental PI's. It will also provide full experiment cycle experience - design, fabrication, tolerancing, assembly, flight-qualification, calibration, integration, launch, and data analysis - with reflection gratings, GEM and CCD detectors, and other technologies suitable for adaptation to NASA's major missions. The University of Iowa and University of Colorado programs in suborbital X-ray astronomy represent an exciting mix of compelling science, cutting- edge technology development, and training of young scientists.

  19. Forward directed x-ray from source produced by relativistic electrons from a Self-Modulated Laser Wakefield Accelerator

    NASA Astrophysics Data System (ADS)

    Lemos, Nuno; Albert, Felicie; Shaw, Jessica; King, Paul; Milder, Avi; Marsh, Ken; Pak, Arthur; Joshi, Chan

    2017-10-01

    Plasma-based particle accelerators are now able to provide the scientific community with novel light sources. Their applications span many disciplines, including high-energy density sciences, where they can be used as probes to explore the physics of dense plasmas and warm dense matter. A recent advance is in the experimental and theoretical characterization of x-ray emission from electrons in the self-modulated laser wakefield regime (SMLWFA) where little is known about the x-ray properties. A series of experiments at the LLNL Jupiter Laser Facility, using the 1 ps 150 J Titan laser, have demonstrated low divergence electron beams with energies up to 300 MeV and 6 nCs of charge, and betatron x-rays with critical energies up to 20 keV. This work identifies two other mechanisms which produce high energy broadband x-rays and gamma-rays from the SMLWFA: Bremsstrahlung and inverse Compton scattering. We demonstrate the use of Compton scattering and bremsstrahlung to generate x/Gamma-rays from 3 keV up to 1.5 MeV with a source size of 50um and a divergence of 100 mrad. This work is an important step towards developing this x-ray light source on large-scale international laser facilities, and also opens up the prospect of using them for applications. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under the contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  20. X-ray stars observed in LAMOST spectral survey

    NASA Astrophysics Data System (ADS)

    Lu, Hong-peng; Zhang, Li-yun; Han, Xianming L.; Shi, Jianrong

    2018-05-01

    X-ray stars have been studied since the beginning of X-ray astronomy. Investigating and studying the chromospheric activity from X-ray stellar optical spectra is highly significant in providing insights into stellar magnetic activity. The big data of LAMOST survey provides an opportunity for researching stellar optical spectroscopic properties of X-ray stars. We inferred the physical properties of X-ray stellar sources from the analysis of LAMOST spectra. First, we cross-matched the X-ray stellar catalogue (12254 X-ray stars) from ARXA with LAMOST data release 3 (DR3), and obtained 984 good spectra from 713 X-ray sources. We then visually inspected and assigned spectral type to each spectrum and calculated the equivalent width (EW) of Hα line using the Hammer spectral typing facility. Based on the EW of Hα line, we found 203 spectra of 145 X-ray sources with Hα emission above the continuum. For these spectra we also measured the EWs of Hβ, Hγ, Hδ and Ca ii IRT lines of these spectra. After removing novae, planetary nebulae and OB-type stars, we found there are 127 X-ray late-type stars with Hα line emission. By using our spectra and results from the literature, we found 53 X-ray stars showing Hα variability; these objects are Classical T Tauri stars (CTTs), cataclysmic variables (CVs) or chromospheric activity stars. We also found 18 X-ray stars showing obvious emissions in the Ca ii IRT lines. Of the 18 X-ray stars, 16 are CTTs and 2 are CVs. Finally, we discussed the relationships between the EW of Hα line and X-ray flux.

  1. Flight programs and X-ray optics development at MSFC

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HEROES balloon payload. Our current orbital program is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG). A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.

  2. Yet another UFO in the X-ray spectrum of a high-z lensed QSO

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; Torresi, E.; De Marco, B.; Chartas, G.; Giustini, M.

    2018-02-01

    Aim. Ultra-fast outflows (UFO) appear to be common in local active galactic nuclei (AGN) and may be powerful enough (Ėkin ≥ 1% of Lbol) to effectively quench the star formation in their host galaxies. To test feedback models based on AGN outflows, it is mandatory to investigate UFOs near the peak of AGN activity, that is, at high-z where only a few studies are available to date. Methods: UFOs produce Fe resonant absorption lines measured above ≈7 keV. The most critical problem in detecting such features in distant objects is the difficulty in obtaining X-ray data with sufficient signal-to-noise. We therefore selected a distant QSO that gravitational lensing made bright enough for these purposes, the z = 2.64 QSO MG J0414+0534, and observed it with XMM-Newton for ≈78 ks. Results: The X-ray spectrum of MG J0414+0534 is complex and shows signatures of cold absorption (NH ≈ 4 × 1022 cm-2) and of the presence of an iron emission line (E ≈ 6.4 keV, EW = 95 ± 53 eV) consistent with it originating in the cold absorber. Our main result, however, is the robust detection (more than 5σ) of an absorption line at Eint ≈ 9.2 keV (Eobs ≈ 2.5 keV observer frame). If interpreted as due to FeXXVI, it implies gas outflowing at vout ≈ 0.3c. To our knowledge, this is the first detection of an UFO in a radio-loud quasar at z ≥ 1.5. We estimated that the UFO mechanical output is Ėkin ≈ 2.5Lbol with ṗout/ṗrad ≈ 17 indicating that it is capable of installing significant feedback between the super-massive black hole and the bulge of the host galaxy. We argue that this also suggests a magnetic driving origin of the UFO.

  3. X-Ray Detector Simulations - Oral Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they mustmore » first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.« less

  4. STATISTICAL STUDY of HARD X-RAY SPECTRAL CHARACTERISTICS OF SOLAR FLARES

    NASA Astrophysics Data System (ADS)

    Alaoui, M.; Krucker, S.; Saint-Hilaire, P.; Lin, R. P.

    2009-12-01

    We investigate the spectral characteristics of 75 solar flares at the hard X-ray peak time observed by RHESSI (Ramaty High Energy Solar Spectroscopic Imager) in the energy range 12-150keV. At energies above 40keV, the Hard X-ray emission is mostly produced by bremsstrahlung of suprathermal electrons as they interact with the ambient plasma in the chromosphere. The observed photon spectra therefore provide diagnostics of electron acceleration processes in Solar flares. We will present statistical results of spectral fitting using two models: a broken power law plus a thermal component which is a direct fit of the photon spectrum and a thick target model plus a thermal component which is a fit of the photon spectra with assumptions on the electrons emitting bremsstrahlung in the thick target approximation.

  5. Diffuse Hard X-Ray Emission in Starburst Galaxies as Synchrotron from Very High Energy Electrons

    NASA Astrophysics Data System (ADS)

    Lacki, Brian C.; Thompson, Todd A.

    2013-01-01

    The origin of the diffuse hard X-ray (2-10 keV) emission from starburst galaxies is a long-standing problem. We suggest that synchrotron emission of 10-100 TeV electrons and positrons (e ±) can contribute to this emission, because starbursts have strong magnetic fields. We consider three sources of e ± at these energies: (1) primary electrons directly accelerated by supernova remnants, (2) pionic secondary e ± created by inelastic collisions between cosmic ray (CR) protons and gas nuclei in the dense interstellar medium of starbursts, and (3) pair e ± produced between the interactions between 10 and 100 TeV γ-rays and the intense far-infrared (FIR) radiation fields of starbursts. We create one-zone steady-state models of the CR population in the Galactic center (R <= 112 pc), NGC 253, M82, and Arp 220's nuclei, assuming a power-law injection spectrum for electrons and protons. We consider different injection spectral slopes, magnetic field strengths, CR acceleration efficiencies, and diffusive escape times, and include advective escape, radiative cooling processes, and secondary and pair e ±. We compare these models to extant radio and GeV and TeV γ-ray data for these starbursts, and calculate the diffuse synchrotron X-ray and inverse Compton (IC) luminosities of these starbursts in the models which satisfy multiwavelength constraints. If the primary electron spectrum extends to ~PeV energies and has a proton/electron injection ratio similar to the Galactic value, we find that synchrotron emission contributes 2%-20% of their unresolved, diffuse hard X-ray emission. However, there is great uncertainty in this conclusion because of the limited information on the CR electron spectrum at these high energies. IC emission is likewise a minority of the unresolved X-ray emission in these starbursts, from 0.1% in the Galactic center to 10% in Arp 220's nuclei, with the main uncertainty being the starbursts' magnetic field. We also model generic starbursts, including

  6. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers

    PubMed Central

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A.; Becker, Andreas; Murnane, Margaret M.; Kapteyn, Henry C.; Popmintchev, Tenio

    2014-01-01

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10−18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum. PMID:24850866

  7. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.

    PubMed

    Chen, Ming-Chang; Mancuso, Christopher; Hernández-García, Carlos; Dollar, Franklin; Galloway, Ben; Popmintchev, Dimitar; Huang, Pei-Chi; Walker, Barry; Plaja, Luis; Jaroń-Becker, Agnieszka A; Becker, Andreas; Murnane, Margaret M; Kapteyn, Henry C; Popmintchev, Tenio

    2014-06-10

    High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10(-18) s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-µm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum.

  8. Soft X-ray emission lines of NiXVIII in the solar spectrum

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Mathioudakis, M.; Pinfield, D. J.; Brown, W. A.; Bruner, M. E.

    1999-04-01

    R-matrix calculations of electron impact excitation rates in Nixviii are used to derive theoretical electron-temperature-sensitive emission line ratios involving 3s-4p,3p-4d,3p -4s, and 3d-4f transitions in the 41-53Å wavelength range. A comparison of these with solar flare observations from a rocket-borne X-ray spectrograph (XSST) reveals generally excellent agreement between theory and experiment (within the experimental and theoretical uncertainties), which provides support for the atomic data adopted in the analysis. However the 3s2S-4p2P1/2 line of Nixviii at 41.22Å appears to be blended with the Fexix 13.74Å feature observed by XSST in third order. In addition, the measured Nixviii intensity ratio I(3p2P3/2- 4s2S)/I(3p2P1/2-4s2S)=I(51.02Å)/I(50.26Å)=0.56, a factor of ~3.8 smaller than the theoretical (temperature and density-insensitive) value of 2.1. The reason for this discrepancy is currently unexplained, but is unlikely to be due to blending of the 50.26Å line, as the intensity of this feature is consistent with that expected from the other Nixviii lines in the XSST spectrum. Future observations of the Nixviii lines by the Advanced X-ray Astrophysics Facility (AXAF) should allow this problem to be resolved, and may also permit the use of the lines as electron-temperature diagnostics.

  9. Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232

    NASA Astrophysics Data System (ADS)

    Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.

    2017-11-01

    Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.

  10. X-ray Spectroscopy of a TDE

    NASA Astrophysics Data System (ADS)

    Kochanek, Christopher

    2017-09-01

    Tidal disruption events (TDE), where supermassive black holes destroy stars to produce accretion flares, are of great current observational and theoretical interest. Here we propose a four epoch HRC/LETG X-ray spectroscopic ``movie'' of a TDE spread over the first 40 days of an X-ray bright TDE, including any discovered by our ASAS-SN survey, supported and extended by higher cadence Swift XRT/UVOT observations over the first 100 days. For this next X-ray bright TDE, we will measure the evolution of the X-ray emission (luminosity/temperature) from the hot accretion disk, the emission reprocessed by the debris into UV/optical, and use X-ray absorption (or emission) features to look at the abundances and the evolution of the kinematics and ionization parameter.

  11. Flight Programs and X-ray Optics Development at MSFC

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, Martin

    2012-01-01

    The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented.

  12. The Water Recovery X-ray Rocket (WRX-R)

    NASA Astrophysics Data System (ADS)

    Miles, Drew

    2017-08-01

    The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.

  13. Technical Note: spektr 3.0—A computational tool for x-ray spectrum modeling and analysis

    PubMed Central

    Punnoose, J.; Xu, J.; Sisniega, A.; Zbijewski, W.; Siewerdsen, J. H.

    2016-01-01

    Purpose: A computational toolkit (spektr 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a matlab (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. Methods: The spektr code generates x-ray spectra (photons/mm2/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins over beam energies 20–150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. Results: The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30–140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. Conclusions: The computational toolkit, spektr, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the spektr function library, UI, and optimization tool are available. PMID:27487888

  14. Technical Note: SPEKTR 3.0—A computational tool for x-ray spectrum modeling and analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punnoose, J.; Xu, J.; Sisniega, A.

    2016-08-15

    Purpose: A computational toolkit (SPEKTR 3.0) has been developed to calculate x-ray spectra based on the tungsten anode spectral model using interpolating cubic splines (TASMICS) algorithm, updating previous work based on the tungsten anode spectral model using interpolating polynomials (TASMIP) spectral model. The toolkit includes a MATLAB (The Mathworks, Natick, MA) function library and improved user interface (UI) along with an optimization algorithm to match calculated beam quality with measurements. Methods: The SPEKTR code generates x-ray spectra (photons/mm{sup 2}/mAs at 100 cm from the source) using TASMICS as default (with TASMIP as an option) in 1 keV energy bins overmore » beam energies 20–150 kV, extensible to 640 kV using the TASMICS spectra. An optimization tool was implemented to compute the added filtration (Al and W) that provides a best match between calculated and measured x-ray tube output (mGy/mAs or mR/mAs) for individual x-ray tubes that may differ from that assumed in TASMICS or TASMIP and to account for factors such as anode angle. Results: The median percent difference in photon counts for a TASMICS and TASMIP spectrum was 4.15% for tube potentials in the range 30–140 kV with the largest percentage difference arising in the low and high energy bins due to measurement errors in the empirically based TASMIP model and inaccurate polynomial fitting. The optimization tool reported a close agreement between measured and calculated spectra with a Pearson coefficient of 0.98. Conclusions: The computational toolkit, SPEKTR, has been updated to version 3.0, validated against measurements and existing models, and made available as open source code. Video tutorials for the SPEKTR function library, UI, and optimization tool are available.« less

  15. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  16. First-Principles Estimation of Electronic Temperature from X-Ray Thomson Scattering Spectrum of Isochorically Heated Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Mo, Chongjie; Fu, Zhenguo; Kang, Wei; Zhang, Ping; He, X. T.

    2018-05-01

    Through the perturbation formula of time-dependent density functional theory broadly employed in the calculation of solids, we provide a first-principles calculation of x-ray Thomson scattering spectrum of isochorically heated aluminum foil, as considered in the experiments of Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015), 10.1103/PhysRevLett.115.115001], where ions were constrained near their lattice positions. From the calculated spectra, we find that the electronic temperature cannot exceed 2 eV, much smaller than the previous estimation of 6 eV via the detailed balance relation. Our results may well be an indication of unique electronic properties of warm dense matter, which can be further illustrated by future experiments. The lower electronic temperature predicted partially relieves the concern on the heating of x-ray free electron laser to the sample when used in structure measurement.

  17. Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.

    1994-01-01

    We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.

  18. X-ray probe of GaN thin films grown on InGaN compliant substrates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoqing; Li, Yang; Liu, Jianming; Wei, Hongyuan; Liu, Xianglin; Yang, Shaoyan; Wang, Zhanguo; Wang, Huanhua

    2013-04-01

    GaN thin films grown on InGaN compliant substrates were characterized by several X-ray technologies: X-ray reciprocal space mapping (RSM), grazing incidence X-ray diffraction (GIXRD), and X-ray photoemission spectrum (XPS). Narrow Lorentz broadening and stress free state were observed for GaN grown on InGaN compliant substrate, while mosaic structure and large tensile stress were observed at the presence of residual indium atoms. RSM disclosed the mosaicity, and the GIXRD was conducted to investigate the depth dependences of crystal quality and strain states. XPS depth profile of indium contents indicated that residual indium atoms deteriorated the crystal quality of GaN not only by producing lattice mismatch at the interface of InGaN and GaN but also by diffusing into GaN overlayers. Accordingly, two solutions were proposed to improve the efficiency of self-patterned lateral epitaxial overgrowth method. This research goes a further step in resolving the urgent substrate problem in GaN fabrication.

  19. Measuring Quasar Spin via X-ray Continuum Fitting

    NASA Astrophysics Data System (ADS)

    Jenkins, Matthew; Pooley, David; Rappaport, Saul; Steiner, Jack

    2018-01-01

    We have identified several quasars whose X-ray spectra appear very soft. When fit with power-law models, the best-fit indices are greater than 3. This is very suggestive of thermal disk emission, indicating that the X-ray spectrum is dominated by the disk component. Galactic black hole binaries in such states have been successfully fit with disk-blackbody models to constrain the inner radius, which also constrains the spin of the black hole. We have fit those models to XMM-Newton spectra of several of our identified soft X-ray quasars to place constraints on the spins of the supermassive black holes.

  20. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  1. Method and apparatus for molecular imaging using x-rays at resonance wavelengths

    DOEpatents

    Chapline, G.F. Jr.

    Holographic x-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent x-rays upon the object to produce scattering of the x-rays by the object, producing interference on a recording medium between the scattered x-rays from the object and unscattered coherent x-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent x-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent x-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  2. Method and apparatus for molecular imaging using X-rays at resonance wavelengths

    DOEpatents

    Chapline, Jr., George F.

    1985-01-01

    Holographic X-ray images are produced representing the molecular structure of a microscopic object, such as a living cell, by directing a beam of coherent X-rays upon the object to produce scattering of the X-rays by the object, producing interference on a recording medium between the scattered X-rays from the object and unscattered coherent X-rays and thereby producing holograms on the recording surface, and establishing the wavelength of the coherent X-rays to correspond with a molecular resonance of a constituent of such object and thereby greatly improving the contrast, sensitivity and resolution of the holograms as representations of molecular structures involving such constituent. For example, the coherent X-rays may be adjusted to the molecular resonant absorption line of nitrogen at about 401.3 eV to produce holographic images featuring molecular structures involving nitrogen.

  3. Topics in Astrophysical X-Ray and Gamma Ray Spectroscopy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Bussard, R. W.

    1978-01-01

    A number of topics relating to astrophysical observations that have already been made or are currently planned of spectral features, mostly emission lines, in the X-ray and gamma ray region of the electromagnetic spectrum are investigated. These topics include: the production of characteristic X-ray and gamma ray lines by nonthermal ions, spectral features induced by processes occurring in strong magnetic fields, and the positron annihilation line at 0.5 MeV. The rate of X-ray production at 6.8 keV by the 2p to 1s transition in fast hydrogen- and helium-like iron ions, following both electron capture to excited levels and collisional excitation is calculated. The cross section for electron-ion Coulomb collisions in strong fields is also calculated.

  4. Imaging proportional counters for the stellar X-ray polarimeter. [on Soviet Spectrum X-Gamma mission

    NASA Technical Reports Server (NTRS)

    Watkins, R. B., Jr.; Kaaret, P.

    1990-01-01

    The xenon-filled IPCs being developed for the Stellar X-ray Polarimeter are described. The requirements placed on the IPCs by the design of the polarimeter are discussed and results on the performance of prototype counters are presented. The design of a prototype of the IPCs is described. Finally, the performance of the prototype is reported. Due to the extremely low count rates encountered in X-ray polarimetry, efficient background rejection is the most critical parameter of the IPCs. Using a background rejection scheme employing anticoincidence and pulse shape discrimination, a rejection efficiency of 99 percent has been achieved for Co-60-induced events over an energy range of 2 to 15 keV while retaining more than 80 percent of the X-ray efficiency.

  5. A systematic search for new X-ray pulsators in ROSAT fields

    NASA Astrophysics Data System (ADS)

    Israel, G. L.

    1996-10-01

    powered neutron stars, some of which were observed in the X-ray band, can show highly coherent signals as well. Photospheric oscillations due to opacity instability in a layer close to the surface of an isolated hot white dwarf or pre-white dwarf star can be also observed in the very soft X-ray band. Light curves with increased statistical quality, time resolution and duration have become available in recent years for a variety of astronomical objects and over different bands of the electromagnetic spectrum. Power spectrum analysis is probably the single most important technique that is applied to time series, in order to detect periodicities and quasi-periodicities by the presence of significant power spectrum peaks. Applications to time series of high energy astronomical data have been especially numerous and successful over the last decade, as a consequence of the pronounced variability (often both periodic and non-periodic in character) detected in many sources. ROSAT, an acronym for the German word Rontgensatellit, is an X-ray satellite launched in June 1990. Its X-ray telescope covers the soft X-ray band from 0.05 keV to 2.4 keV. The main aim of the mission was to perform the first all-sky survey (RASS) with imaging telescopes, possessing an X-ray sensitivity of about a factor 1000 higher than that of UHURU. The survey took the first 6 months of the operations of ROSAT. After that the satellite has been used to carry out pointed observations of selected targets. These observations cover a much smaller portion of the sky than the RASS, but afford a factor 10-1000 higher sensitivity. A systematic exploitation of the public domain ROSAT pointed observations with the Position Sensitive Proportional Counter (PSPC; about 10% of the sky and about 5300 fields until May 1996) was carried out by several groups. NASA-HEASARC and MPE have produced catalogues containing about 60000 serendipitous sources (WGA by White, Giommi & Angelini 1994; ROSATSRC by Zimmermann 1994). This

  6. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  7. Can the cosmic x ray and gamma ray background be due to reflection of a steep power law spectrum and Compton scattering by relativistic electrons?

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland

    1991-01-01

    We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.

  8. The X-ray emitting galaxy Centaurus A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Serlemitsos, P. J.; Boldt, E. A.; Holt, S. S.; Becker, R. H.

    1978-01-01

    OSO-8 X-ray observations of Cen A in 1975 and 1976 are reported. The source spectrum can be well fitted in both years by a power law of number index 1.66 and absorption due to 1.3 by 10 to the 23rd power atoms/sq cm. The total flux varied by a factor of 2 between 1975 and 1976. In 1976 there were flux variations of approximately 40% on a time scale of days. Measurements of the 6.4-keV Fe fluorescent line and the 7.1-keV absorption edge imply Fe/H of approximately 0.000016. Simultaneous radio measurements show variation in phase with X-ray variability. Consideration of radio, millimeter, infrared, and X-ray data shows that all the data can be accounted for by a model in which the X-rays are due to a synchrotron self-Compton source embedded in a cold H2 cloud.

  9. Rise time measurement for ultrafast X-ray pulses

    DOEpatents

    Celliers, Peter M [Berkeley, CA; Weber, Franz A [Oakland, CA; Moon, Stephen J [Tracy, CA

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  10. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOEpatents

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  11. Invited Review Article: The Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Schwartz, Daniel A.

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  12. Invited review article: The Chandra X-ray Observatory.

    PubMed

    Schwartz, Daniel A

    2014-06-01

    The Chandra X-ray Observatory is an orbiting x-ray telescope facility. It is one of the National Aeronautics and Space Administration's four "Great Observatories" that collectively have carried out astronomical observations covering the infrared through gamma-ray portion of the electromagnetic spectrum. Chandra is used by astronomers world-wide to acquire imaging and spectroscopic data over a nominal 0.1-10 keV (124-1.24 Å) range. We describe the three major parts of the observatory: the telescope, the spacecraft systems, and the science instruments. This article will emphasize features of the design and development driven by some of the experimental considerations unique to x-ray astronomy. We will update the on-orbit performance and present examples of the scientific highlights.

  13. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  14. Investigation of the hard x-ray background in backlit pinhole imagers.

    PubMed

    Fein, J R; Peebles, J L; Keiter, P A; Holloway, J P; Klein, S R; Kuranz, C C; Manuel, M J-E; Drake, R P

    2014-11-01

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographic image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.

  15. Investigation of the hard x-ray background in backlit pinhole imagers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fein, J. R., E-mail: jrfein@umich.edu; Holloway, J. P.; Peebles, J. L.

    Hard x-rays from laser-produced hot electrons (>10 keV) in backlit pinhole imagers can give rise to a background signal that decreases signal dynamic range in radiographs. Consequently, significant uncertainties are introduced to the measured optical depth of imaged plasmas. Past experiments have demonstrated that hard x-rays are produced when hot electrons interact with the high-Z pinhole substrate used to collimate the softer He-α x-ray source. Results are presented from recent experiments performed on the OMEGA-60 laser to further study the production of hard x-rays in the pinhole substrate and how these x-rays contribute to the background signal in radiographs. Radiographicmore » image plates measured hard x-rays from pinhole imagers with Mo, Sn, and Ta pinhole substrates. The variation in background signal between pinhole substrates provides evidence that much of this background comes from x-rays produced in the pinhole substrate itself. A Monte Carlo electron transport code was used to model x-ray production from hot electrons interacting in the pinhole substrate, as well as to model measurements of x-rays from the irradiated side of the targets, recorded by a bremsstrahlung x-ray spectrometer. Inconsistencies in inferred hot electron distributions between the different pinhole substrate materials demonstrate that additional sources of hot electrons beyond those modeled may produce hard x-rays in the pinhole substrate.« less

  16. A SUZAKU SEARCH FOR NONTHERMAL EMISSION AT HARD X-RAY ENERGIES IN THE COMA CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wik, Daniel R.; Sarazin, Craig L.; Finoguenov, Alexis

    2009-05-10

    The brightest cluster radio halo known resides in the Coma cluster of galaxies. The relativistic electrons producing this diffuse synchrotron emission should also produce inverse Compton emission that becomes competitive with thermal emission from the intracluster medium (ICM) at hard X-ray energies. Thus far, claimed detections of this emission in Coma are controversial. We present a Suzaku HXD-PIN observation of the Coma cluster in order to nail down its nonthermal hard X-ray content. The contribution of thermal emission to the HXD-PIN spectrum is constrained by simultaneously fitting thermal and nonthermal models to it and a spatially equivalent spectrum derived frommore » an XMM-Newton mosaic of the Coma field. We fail to find statistically significant evidence for nonthermal emission in the spectra which are better described by only a single- or multitemperature model for the ICM. Including systematic uncertainties, we derive a 90% upper limit on the flux of nonthermal emission of 6.0 x 10{sup -12} erg s{sup -1} cm{sup -2} (20-80 keV, for {gamma} = 2.0), which implies a lower limit on the cluster-averaged magnetic field of B>0.15 {mu}G. Our flux upper limit is 2.5 times lower than the detected nonthermal flux from RXTE and BeppoSAX. However, if the nonthermal hard X-ray emission in Coma is more spatially extended than the observed radio halo, the Suzaku HXD-PIN may miss some fraction of the emission. A detailed investigation indicates that {approx}50%-67% of the emission might go undetected, which could make our limit consistent with that of Rephaeli and Gruber and Fusco-Femiano et al. The thermal interpretation of the hard Coma spectrum is consistent with recent analyses of INTEGRAL and Swift data.« less

  17. Super-Eddington Accretion in the Ultraluminous X-Ray Source NGC 1313 X-2: An Ephemeral Feast

    NASA Astrophysics Data System (ADS)

    Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui

    2014-01-01

    We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (~50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ~104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ~100 km s-1 might indicate that it has existed over ~106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ~ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.

  18. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-10-13

    Chandra X-Ray Observatory took this first x-ray picture of the Andromeda Galaxy (M31) on October 13, 1999. The blue dot in the center of the image is a "cool" million-degree x-ray source where a supermassive black hole with the mass of 30-million suns is located. The x-rays are produced by matter furneling toward the black hole. Numerous other hotter x-ray sources are also apparent. Most of these are probably due to x-ray binary systems, in which a neutron star or black hole is in close orbit around a normal star. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other x-ray sources in the Andromeda Galaxy. To be detected by an x-ray telescope, the gas must have a temperature of more than a million degrees. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. (Photo Credit: NASA/CXC/SAO/S. Murray, M. Garcia)

  19. Development of a compact laser-produced plasma soft X-ray source for radiobiology experiments

    NASA Astrophysics Data System (ADS)

    Adjei, Daniel; Ayele, Mesfin Getachew; Wachulak, Przemyslaw; Bartnik, Andrzej; Wegrzynski, Łukasz; Fiedorowicz, Henryk; Vyšín, Luděk; Wiechec, Anna; Lekki, Janusz; Kwiatek, Wojciech M.; Pina, Ladislav; Davídková, Marie; Juha, Libor

    2015-12-01

    A desk-top laser-produced plasma (LPP) source of soft X-rays (SXR) has been developed for radiobiology research. The source is based on a double-stream gas puff target, irradiated with the focused beam of a commercial Nd:YAG laser. The source has been optimized to get a maximum photon emission from LPP in the X-ray "water window" spectral wavelength range from 2.3 nm (i.e., an absorption edge of oxygen) to 4.4 nm (i.e., an absorption edge of carbon) (280-540 eV in photon energy units) by using argon gas-puff target and spectral filtering by free-standing thin foils. The present source delivers nanosecond pulses of soft X-rays at a fluence of about 4.2 × 103 photons/μm2/pulse on a sample placed inside the vacuum chamber. In this paper, the source design, radiation output characterization measurements and initial irradiation experiments are described. The source can be useful in addressing observations related to biomolecular, cellular and organisms' sensitivity to pulsed radiation in the "water window", where carbon atoms absorb X-rays more strongly than the oxygen, mostly present in water. The combination of the SXR source and the radiobiology irradiation layout, reported in this article, make possible a systematic investigation of relationships between direct and indirect action of ionizing radiation, an increase of a local dose in carbon-rich compartments of the cell (e.g., lipid membranes), an experimental estimation of a particular role of the Auger effect (in particular in carbon atoms) in the damage to biological systems, and the study of ionization/excitation-density (LET - Linear Energy Transfer) and dose-rate effects in radiobiology.

  20. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  1. Distribution of lifetimes for coronal soft X-ray bright points

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Vaiana, G. S.

    1976-01-01

    The lifetime 'spectrum' of X-ray bright points (XBPs) is measured for a sample of 300 such features using soft X-ray images obtained with the S-054 X-ray spectrographic telescope aboard Skylab. 'Spectrum' here is defined as a function which gives the relative number of XBPs having a specific lifetime as a function of lifetime. The results indicate that a two-lifetime exponential can be fit to the decay curves of XBPs, that the spectrum is heavily weighted toward short lifetimes, and that the number of features lasting 20 to 30 hr or more is greater than expected. A short-lived component with an average lifetime of about 8 hr and a long-lived 1.5-day component are consistently found along with a few features lasting 50 hr or more. An examination of differences among the components shows that features lasting 2 days or less have a broad heliocentric-latitude distribution while nearly all the longer-lived features are observed within 30 deg of the solar equator.

  2. THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Randall K.; Valencic, Lynne A.; Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov

    Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model asmore » a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.« less

  3. Single- and double-core-hole ion emission spectroscopy of transient neon plasmas produced by ultraintense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2016-02-01

    Single-core-hole (SCH) and double-core-hole (DCH) spectroscopy is investigated systematically for neon gas in the interaction with ultraintense x-ray pulses with photon energy from 937 eV to 2000 eV. A time-dependent rate equation, implemented in detailed level accounting approximation, is utilized to study the dynamical evolution of the level population and emission properties of the laser-produced highly transient plasmas. The plasma-density effects on level populations and charge-state distribution are demonstrated with an x-ray photon energy of 2000 eV. It is shown that atomic number density of relevant experiment is about 1 × 1018 cm-3, which is comparable to a recent experiment. At this density, we systematically investigate the emissivity of the transient neon plasmas. For laser photon energy in the range 937-1360 eV, resonant absorptions (RA) of 1s\\to {np} (n≥slant 2) transitions play important roles in time evolution of the population and DCH emission spectroscopy. The RA effects are illustrated in detail for an x-ray pulse of 944 eV photon energy, which creates the 1s\\to 2p RA from the SCH states (1s2{s}22{p}4, 1s2s2p5, and 1s2p6) of Ne3+. After averaging over the space and time distribution of x-ray pulse, DCH emission spectroscopy is studied at x-ray photon energies of 937, 944, 955, 968, 980, and 990 eV, where there exist 1s\\to 2p resonances from SCH states of Ne2+-Ne7+. The processes with producing DCH states are discussed. For x-ray photon energy larger than 1360 eV, no RA exist and transient plasmas show different features in the DCH spectroscopy.

  4. X-ray spectral signatures of photoionized plasmas. [astrophysics

    NASA Technical Reports Server (NTRS)

    Liedahl, Duane A.; Kahn, Steven M.; Osterheld, Albert L.; Goldstein, William H.

    1990-01-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae. This point is illustrated by comparing model spectra which have been calculated under conditions appropriate to both coronal plasmas and X-ray photoionized plasmas. It is shown that the (3s-2p)/(3d-2p) line ratios in the Fe L-shell spectrum can be used to effectively discriminate between these two cases. This diagnostic will be especially useful for data analysis associated with AXAF and XMM, which will carry spectroscopic instrumentation with sufficient sensitivity and resolution to identify X-ray photoionized nebulae in a wide range of astrophysical environments.

  5. Bright X-ray transient in the LMC

    NASA Astrophysics Data System (ADS)

    Saxton, R.; Read, A. M.; Li, D. Y.

    2018-01-01

    We report a bright X-ray transient in the LMC from an XMM-Newton slew made on 5th January 2018. The source, XMMSL2 J053629.4-675940, had a soft X-ray (0.2-2 keV) count rate in the EPIC-pn detector, medium filter of 1.82+/-0.56 c/s, equivalent to a flux Fx=2.3+/-0.7E-12 ergs/s/cm2 for a nominal spectrum of a power-law of slope 2 absorbed by a column NH=3E20 cm^-2.

  6. Instrument and method for X-ray diffraction, fluorescence, and crystal texture analysis without sample preparation

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)

    2010-01-01

    An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.

  7. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  8. Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings

    NASA Astrophysics Data System (ADS)

    Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long

    2018-05-01

    We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).

  9. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...

  10. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...

  11. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...

  12. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and is...

  13. Infrared x-ray pump-probe spectroscopy of the NO molecule

    NASA Astrophysics Data System (ADS)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  14. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    NASA Technical Reports Server (NTRS)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  15. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which

  16. Serendipitous Detections of XTE J1906+09 with the Rossi X-Ray Timing Explorer

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Gogus, Ersin; Woods, Peter M.; Kouveliotou, Chryssa

    2002-01-01

    The 89 s X-ray pulsar XTE J1906+09 was discovered during Rossi X-Ray Timing Explorer (RXTE) observations of SGR 1900+14 in 1996. Because of monitoring campaigns of SGR 1900+14, XTE J1906+09 was also monitored regularly in 1996 September, 1998 May-June, 1998 August-1999 July, and 2000 March-2001 January. A search for pulsations resulted in detections of only the two previously reported outbursts in 1996 September and 1998 August-September. Pulsed flux upper limits for the rest of the observations show that XTE J1906+09 is a transient X-ray pulsar and likely has a Be star companion. The RXTE all-sky monitor did not reveal XTE J1906+09. Pulse-timing analysis of the second outburst discovered a sinusoidal signature in the pulse frequencies that is likely produced by an orbital periastron passage. Fits to pulse phases using an orbital model and quadratic phase model have chi(exp 2) minima at orbital periods of 26-30 days for fixed mass functions of 5, 10, 15, and 20 solar masses. The pulse shape showed energy- and intensity-dependent variations. Pulse-phase spectroscopy quantified the energy-dependent variations. The phase-averaged spectrum used the pulse minimum spectrum as the background spectrum to eliminate effects from SGR 1900+14 and the Galactic ridge and was well fitted by an absorbed power law with a high-energy cutoff with column density N(sub H) = 6 +/- 1 x 10(exp 22)/sq cm, a photon index of 1.01 +/- 0.08, cutoff energy E(sub cut) = 11 +/- 1 keV, and e-folding energy E(sub fold) = 19 +/- 4 keV. Estimated 2-10 keV peak fluxes, corrected for contributions from the Galactic ridge and SGR 1900+14, are 6 x l0(exp -12) and 1.1 x 10(exp -10) ergs/sq cm/s for the 1996 and 1998 outbursts, respectively. XTE J1906+09 may be part of an unusual class of Be/X-ray binaries that do not lie on the general spin period versus orbital period correlation with the majority of Be/X-ray binaries.

  17. The x ray variability of NGC6814: Power spectra

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Mushotsky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    Simulation techniques are used to obtain the X-ray variability power spectrum of unevenly sampled GINGA data from NGC6814. A simple power law is not an adequate description of the power spectrum, with the residuals showing excess power on timescales consistent with the periodicity seen in EXOSAT observations of this object. However the shape of the folded lightcurve is very different, with 3 main peaks, two of which are separated by an extremely sharp dip instead of the single peak and small harmonic structure observed by EXOSAT. Using the dip as a fiducial mark, a second GINGA observation of this source taken one year later is found to be consistent with being completely periodic and phase coherent with this first GINGA observation. Thus the period is consistent with being constant over a period of 6 years, but phase coherence is only maintained on timescales of approximately 1 year. Over 75 percent of the total source variability is due to the periodic component (r.m.s. amplitude of 36 percent). The residual variability can be described as the more usual 'flicker noise' f(exp -1.1) powerlaw. This shows no apparent high frequency break on timescales greater than 300 seconds. Subtle differences in the shape of the folded light curve with energy, and the very large amount of power in the periodic component suggest occultation as its origin, though amplification of variability from an X-ray emitting 'hot spot' at the disk inner radius through gravitational lensing is also possible. The former suffers from the very arbitrary nature of the periodic timescale, while the latter is unattractive as it cannot simply explain the lack of high frequency break in the residual power. That these models probably fail to provide an adequate explanation may be due to the added complexity of anisotropy of the X-ray emission, suggested by the discrepancy between the lack of soft photons implied by the flat spectrum and the copious source of soft photons available from reprocessing in

  18. X-ray Diffraction Gratings for Astrophysics

    NASA Astrophysics Data System (ADS)

    Paerels, Frits

    2010-12-01

    Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.

  19. X-ray studies of quasars with the Einstein Observatory. IV - X-ray dependence on radio emission

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Tananbaum, H.; Giommi, P.; Zamorani, G.

    1987-01-01

    The X-ray properties of a sample of 114 radio-loud quasars observed with the Einstein Observatory are examined, and the results are compared with those obtained from a large sample of radio-quiet quasars. The results of statistical analysis of the dependence of X-ray luminosity on combined functions of optical and radio luminosity show that the dependence on both luminosities is important. However, statistically significant differences are found between subsamples of flat radio spectra quasars and steep radio spectra quasars with regard to dependence of X-ray luminosity on only radio luminosity. The data are consistent with radio-loud quasars having a physical component, not directly related to the optical luminosity, which produces the core radio luminosity plus 'extra' X-ray emission.

  20. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended for...

  1. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended for...

  2. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended for...

  3. Monochromator for continuous spectrum x-ray radiation

    DOEpatents

    Staudenmann, J.L.; Liedl, G.L.

    1983-12-02

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5/sup 0/ to 86.5/sup 0/, and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive.

  4. Monochromator for continuous spectrum x-ray radiation

    DOEpatents

    Staudenmann, Jean-Louis; Liedl, Gerald L.

    1987-07-07

    A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5.degree. to 86.5.degree., and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive work.

  5. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  6. High energy X-ray observations of the 38-second pulsar

    NASA Technical Reports Server (NTRS)

    Byrne, P. F.; Levine, A. M.; Bautz, M.; Howe, S. K.; Lang, F. L.; Primini, F. A.; Lewin, W. H. G.; Gruber, D. E.; Knight, F. K.; Nolan, P. L.

    1981-01-01

    The results of observations of the 38-second pulsar obtained at high X-ray energies (13-180 keV) with the UCSD/MIT instrument aboard HEAO 1 are reported. The results include a measurement of the source location, measurement of the pulse profile, and determination of the average intensity and spectrum during each of three time intervals spanning a baseline of 1 year. The total intensity of the pulsar is seen to vary on a 6-month time scale. The spectrum is hard but, like other X-ray pulsars, steepens at energies above 20 keV.

  7. DXRaySMCS: a user-friendly interface developed for prediction of diagnostic radiology X-ray spectra produced by Monte Carlo (MCNP-4C) simulation.

    PubMed

    Bahreyni Toossi, M T; Moradi, H; Zare, H

    2008-01-01

    In this work, the general purpose Monte Carlo N-particle radiation transport computer code (MCNP-4C) was used for the simulation of X-ray spectra in diagnostic radiology. The electron's path in the target was followed until its energy was reduced to 10 keV. A user-friendly interface named 'diagnostic X-ray spectra by Monte Carlo simulation (DXRaySMCS)' was developed to facilitate the application of MCNP-4C code for diagnostic radiology spectrum prediction. The program provides a user-friendly interface for: (i) modifying the MCNP input file, (ii) launching the MCNP program to simulate electron and photon transport and (iii) processing the MCNP output file to yield a summary of the results (relative photon number per energy bin). In this article, the development and characteristics of DXRaySMCS are outlined. As part of the validation process, output spectra for 46 diagnostic radiology system settings produced by DXRaySMCS were compared with the corresponding IPEM78. Generally, there is a good agreement between the two sets of spectra. No statistically significant differences have been observed between IPEM78 reported spectra and the simulated spectra generated in this study.

  8. Characterizing X-Ray and Radio Emission in the Black Hole X-Ray Binary V404 Cygni During Quiescence

    NASA Technical Reports Server (NTRS)

    Rana, Vikram; Loh, Alan; Corbel, Stephane; Tomsick, John A.; Chakrabarty, Deepto; Walton, Dominic J.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William; hide

    2016-01-01

    We present results from multi-wavelength simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cyg in quiescence. Our coverage with NuSTAR provides the very first opportunity to study the X-ray spectrum of V404 Cyg at energies above 10 keV. The unabsorbed broadband (0.3-30 keV) quiescent luminosity of the source is 8.9 x 10(exp 32) erg per sec for a distance of 2.4 kpc. The source shows clear variability on short timescales (an hour to a couple of hours) in the radio, soft X-ray, and hard X-ray bands in the form of multiple flares. The broadband X-ray spectra obtained from XMM-Newton and NuSTAR can be characterized with a power-law model having a photon index of gamma = 2.12 +/- 0.07 (90% confidence errors); however, residuals at high energies indicate spectral curvature significant at a 3 sigma confidence level with the e-folding energy of the cutoff as 20(sub -7)(sup +20) keV. Such curvature can be explained using synchrotron emission from the base of a jet outflow. Radio observations using the VLA reveal that the spectral index evolves on very fast timescales (as short as 10 minutes), switching between optically thick and thin synchrotron emission, possibly due to instabilities in the compact jet or stochastic instabilities in the accretion rate. We explore different scenarios to explain this very fast variability.

  9. Heating the Primordial Soup: X-raying the Circumstellar Disk of T Cha

    NASA Astrophysics Data System (ADS)

    Principe, David

    2012-09-01

    T Cha is the only known example of a nearly edge-on actively accreting young star-disk system within 100 pc, and is likely orbited by a very low-mass companion or massive planet that has cleared an inner hole in its disk. We propose to obtain a 150 ks observation of T Cha with Chandra's HETGS with twin goals of (a) determining the intrinsic X-ray spectrum of T Cha so as to establish whether its X-ray emission can be attributed to accretion shocks or coronal emission, and (b) model the spectrum of X-rays absorbed by its gaseous disk. These results will serve as essential input to models of irradiated, planet-forming disks.

  10. New Mission Concept Study: Energetic X-Ray Imaging Survey Telescope (EXIST)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This Report summarizes the activity carried out under the New Mission Concept (NMC) study for a mission to conduct a sensitive all-sky imaging survey in the hard x-ray (HX) band (approximately 10-600 keV). The Energetic X-ray Imaging Survey Telescope (EXIST) mission was originally proposed for this NMC study and was then subsequently proposed for a MIDEX mission as part of this study effort. Development of the EXIST (and related) concepts continues for a future flight proposal. The hard x-ray band (approximately 10-600 keV) is nearly the final band of the astronomical spectrum still without a sensitive imaging all-sky survey. This is despite the enormous potential of this band to address a wide range of fundamental and timely objectives - from the origin and physical mechanisms of cosmological gamma-ray bursts (GRBs) to the processes on strongly magnetic neutron stars that produce soft gamma-repeaters and bursting pulsars; from the study of active galactic nuclei (AGN) and quasars to the origin and evolution of the hard x-ray diffuse background; from the nature and number of black holes and neutron stars and the accretion processes onto them to the extreme non-thermal flares of normal stars; and from searches for expected diffuse (but relatively compact) nuclear line (Ti-44) emission in uncatalogued supernova remnants to diffuse non-thermal inverse Compton emission from galaxy clusters. A high sensitivity all-sky survey mission in the hard x-ray band, with imaging to both address source confusion and time-variable background radiations, is very much needed.

  11. X-ray Free-electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldhaus, J.; /DESY; Arthur, J.

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, andmore » can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.« less

  12. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  13. Einstein X-ray observations of QSO's with absorption-line systems

    NASA Technical Reports Server (NTRS)

    Junkkarinen, V. T.; Marscher, A. P.; Burbidge, E. M.

    1982-01-01

    The detection of X-ray emission from eight QSO's is reported, plus an upper limit to the X-ray flux from one QSO, using the Einstein X-ray Observatory (HEAO-2). Each object in the sample contains at least one absorption-line system that has been identified in its optical spectrum. The present results are combined with those of other investigators to form a sample of 44 absorption-line QSO's (with 2 sub e greater than 1.2) which have been observed in the X-ray. This sample cannot be distinguished, in terms of X-ray properties, from one which consists of QSO's in which no absorption systems have been identified. These results are consistent with extrinsic models for absorption-line clouds, as well as with current versions of intrinsic models.

  14. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  15. A compact and versatile tender X-ray single-shot spectrometer for online XFEL diagnostics.

    PubMed

    Rehanek, Jens; Milne, Christopher J; Szlachetko, Jakub; Czapla-Masztafiak, Joanna; Schneider, Jörg; Huthwelker, Thomas; Borca, Camelia N; Wetter, Reto; Patthey, Luc; Juranić, Pavle

    2018-01-01

    One of the remaining challenges for accurate photon diagnostics at X-ray free-electron lasers (FELs) is the shot-to-shot, non-destructive, high-resolution characterization of the FEL pulse spectrum at photon energies between 2 keV and 4 keV, the so-called tender X-ray range. Here, a spectrometer setup is reported, based on the von Hamos geometry and using elastic scattering as a fingerprint of the FEL-generated spectrum. It is capable of pulse-to-pulse measurement of the spectrum with an energy resolution (ΔE/E) of 10 -4 , within a bandwidth of 2%. The Tender X-ray Single-Shot Spectrometer (TXS) will grant to experimental scientists the freedom to measure the spectrum in a single-shot measurement, keeping the transmitted beam undisturbed. It will enable single-shot reconstructions for easier and faster data analysis.

  16. High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.

    2001-06-01

    The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe

  17. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different

  18. The gamma-ray emitting region of the jet in Cyg X-3

    NASA Astrophysics Data System (ADS)

    Zdziarski, Andrzej A.; Sikora, Marek; Dubus, Guillaume; Yuan, Feng; Cerutti, Benoit; Ogorzałek, Anna

    2012-04-01

    We study models of the γ-ray emission of Cyg X-3 observed by Fermi. We calculate the average X-ray spectrum during the γ-ray active periods. Then, we calculate spectra from Compton scattering of a photon beam into a given direction by isotropic relativistic electrons with a power-law distribution, both based on the Klein-Nishina cross-section and in the Thomson limit. Applying the results to scattering of stellar blackbody radiation in the inner jet of Cyg X-3, we find that a low-energy break in the electron distribution at a Lorentz factor of ˜300-103 is required by the shape of the observed X-ray/γ-ray spectrum in order to avoid overproducing the observed X-ray flux. The electrons giving rise to the observed γ-rays are efficiently cooled by Compton scattering, and the power-law index of the acceleration process is ≃2.5-3. The bulk Lorentz factor of the jet and the kinetic power before the dissipation region depend on the fraction of the dissipation power supplied to the electrons; if it is ≃1/2, the Lorentz factor is ˜2.5, and the kinetic power is ˜1038 erg s-1, which represents a firm lower limit on the jet power, and is comparable to the bolometric luminosity of Cyg X-3. Most of the power supplied to the electrons is radiated. The broad-band spectrum constrains the synchrotron and self-Compton emission from the γ-ray emitting electrons, which requires the magnetic field to be relatively weak, with the magnetic energy density ≲ a few times 10-3 of that in the electrons. The actual value of the magnetic field strength can be inferred from a future simultaneous measurement of the infrared and γ-ray fluxes.

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-12-18

    At a distance of 6,000 light years from Earth, the star cluster RCW 38 is a relatively close star-forming region. This area is about 5 light years across, and contains thousands of hot, very young stars formed less than a million years ago, 190 of which exposed x-rays to Chandra. Enveloping the star cluster, the diffused cloud of x-rays shows an excess of high energy x-rays, which indicates that the x-rays come from trillion-volt electrons moving in a magnetic field. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which are evident in RCW 38. One possible origin for the particles, could be an undetected supernova that occurred in the cluster, possibly thousands of years ago, producing a shock wave that is interacting with the young stars. Regardless of the origin of these energetic electrons, their presence could change the chemistry of the disks that will eventually form planets around the stars in the cluster.

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-04-15

    This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  1. X-ray emitting hot plasma in solar active regions observed by the SphinX spectrometer

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Reale, F.; Gburek, S.; Terzo, S.; Barbera, M.; Collura, A.; Sylwester, J.; Kowalinski, M.; Podgorski, P.; Gryciuk, M.

    2012-08-01

    Aims: The detection of very hot plasma in the quiescent corona is important for diagnosing heating mechanisms. The presence and the amount of such hot plasma is currently debated. The SphinX instrument on-board the CORONAS-PHOTON mission is sensitive to X-ray emission of energies well above 1 keV and provides the opportunity to detect the hot plasma component. Methods: We analysed the X-ray spectra of the solar corona collected by the SphinX spectrometer in May 2009 (when two active regions were present). We modelled the spectrum extracted from the whole Sun over a time window of 17 days in the 1.34-7 keV energy band by adopting the latest release of the APED database. Results: The SphinX broadband spectrum cannot be modelled by a single isothermal component of optically thin plasma and two components are necessary. In particular, the high statistical significance of the count rates and the accurate calibration of the spectrometer allowed us to detect a very hot component at ~7 million K with an emission measure of ~2.7 × 1044 cm-3. The X-ray emission from the hot plasma dominates the solar X-ray spectrum above 4 keV. We checked that this hot component is invariably present in both the high and low emission regimes, i.e. even excluding resolvable microflares. We also present and discuss the possibility of a non-thermal origin (which would be compatible with a weak contribution from thick-target bremsstrahlung) for this hard emission component. Conclusions: Our results support the nanoflare scenario and might confirm that a minor flaring activity is ever-present in the quiescent corona, as also inferred for the coronae of other stars.

  2. X-ray edge singularity in resonant inelastic x-ray scattering (RIXS)

    NASA Astrophysics Data System (ADS)

    Markiewicz, Robert; Rehr, John; Bansil, Arun

    2013-03-01

    We develop a lattice model based on the theory of Mahan, Noziéres, and de Dominicis for x-ray absorption to explore the effect of the core hole on the RIXS cross section. The dominant part of the spectrum can be described in terms of the dynamic structure function S (q , ω) dressed by matrix element effects, but there is also a weak background associated with multi-electron-hole pair excitations. The model reproduces the decomposition of the RIXS spectrum into well- and poorly-screened components. An edge singularity arises at the threshold of both components. Fairly large lattice sizes are required to describe the continuum limit. Supported by DOE Grant DE-FG02-07ER46352 and facilitated by the DOE CMCSN, under grant number DE-SC0007091.

  3. Soft X-Ray Emissions from Planets and Moons

    NASA Technical Reports Server (NTRS)

    Bhardwaj, A.; Gladstone, G. R.; Elsner, R. F.; Waite, J. H., Jr.; Grodent, D.; Lewis, W. S.; Crary, F. J.; Weisskopf, M. C.; Howell, R. R.; Johnson, R. E.; hide

    2002-01-01

    The soft x-ray energy band (less than 4 keV) is an important spectral regime for planetary remote sensing, as a wide variety of solar system objects are now known to shine at these wavelengths. These include Earth, Jupiter, comets, moons, Venus, and the Sun. Earth and Jupiter, as magnetic planets, are observed to emanate strong x-ray emissions from their auroral (polar) regions, thus providing vital information on the nature of precipitating particles and their energization processes in planetary magnetospheres. X rays from low latitudes have also been observed on these planets, resulting largely from atmospheric scattering and fluorescence of solar x-rays. Cometary x-rays are now a well established phenomena, more than a dozen comets have been observed at soft x-ray energies, with the accepted production mechanism being charge-exchange between heavy solar wind ions and cometary neutrals. Also, Lunar x-rays have been observed and are thought to be produced by scattering and fluorescence of solar x-rays from the Moon's surface. With the advent of sophisticated x-ray observatories, e.g., Chandra and XMM-Newton, the field of planetary x-ray astronomy is advancing at a much faster pace. The Chandra X-ray Observatory (CXO) has recently captured soft x-rays from Venus. Venusian x-rays are most likely produced through fluorescence of solar x-rays by C and O atoms in the upper atmosphere. Very recently, using CXO we have discovered soft x-rays from the moons of Jupiter-Io, Europa, and probably Ganymede. The plausible source of the x-rays from the Galilean satellites is bombardment of their surfaces by energetic (greater than 10 KeV) ions from the inner magnetosphere of Jupiter. The Io plasma Torus (IPT) is also discovered by CXO to be a source of soft x-rays by CXO have revealed a mysterious pulsating (period approx. 45 minutes) x-ray hot spot is fixed in magnetic latitude and longitude and is magnetically connected to a region in the outer magnetosphere of Jupiter. These

  4. Identification and properties of the M giant/X-ray system HD 154791 = 2A 1704+241

    NASA Technical Reports Server (NTRS)

    Garcia, M.; Baliunas, S. L.; Elvis, M.; Fabbiano, G.; Patterson, J.; Schwartz, D.; Doxsey, R.; Koenigsberger, G.; Swank, J.; Watson, M. G.

    1983-01-01

    The Aerial V X-ray source 2A 1704+241 (= 4U 1700+24 = 3A 1703+241) is identified with the M3 II star HD 154791. The identification is based on a precise X-ray position determined by the HEAO 1 scanning modulation collimator and the Einstein Observatory imaging proportional counter, together with a spectrum measured by the International Ultraviolet Explorer. The ultraviolet spectrum shows strong emission of C IV 1550 A, N v 1238 A, and Mg II 2800 A, which is very unusual among M giants. This is the first X-ray detection of an M giant which has a completely normal optical spectrum. The X-ray luminosity reaches three orders of magnitude above the mean upper limit for the coronal X-ray flux from M giants. Although there is no direct evidence for a binary system, since radial velocity variations have not been observed, it is shown that a plausible neutron star binary model can be constructed.

  5. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; hide

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  6. High-precision measurement of the X-ray Cu Kα spectrum

    PubMed Central

    Mendenhall, Marcus H.; Henins, Albert; Hudson, Lawrence T.; Szabo, Csilla I.; Windover, Donald; Cline, James P.

    2017-01-01

    The structure of the X-ray emission lines of the Cu Kα complex has been remeasured on a newly commissioned instrument, in a manner directly traceable to the Système Internationale definition of the meter. In this measurement, the region from 8000 eV to 8100 eV has been covered with a highly precise angular scale, and well-defined system efficiency, providing accurate wavelengths and relative intensities. This measurement updates the standard multi-Lorentzian-fit parameters from Härtwig, Hölzer, et al., and is in modest disagreement with their results for the wavelength of the Kα1 line when compared via quadratic fitting of the peak top; the intensity ratio of Kα1 to Kα2 agrees within the combined error bounds. However, the position of the fitted top of Kα1 is very sensitive to the fit parameters, so it is not believed to be a robust value to quote without further qualification. We also provide accurate intensity and wavelength information for the so-called Kα3,4 “satellite” complex. Supplementary data is provided which gives the entire shape of the spectrum in this region, allowing it to be used directly in cases where simplified, multi-Lorentzian fits to it are not sufficiently accurate. PMID:28757682

  7. An Unlikely Radio Halo in the Low X-Ray Luminosity Galaxy Cluster RXCJ1514.9-1523

    NASA Technical Reports Server (NTRS)

    Marketvitch, M.; ZuHone, J. A.; Lee, D.; Giacintucci, S.; Dallacasa, D.; Venturi, T.; Brunetti, G.; Cassano, R.; Markevitch, M.; Athreya, R. M.

    2011-01-01

    Aims: We report the discovery of a giant radio halo in the galaxy cluster RXCJ1514,9-1523 at z=0.22 with a relatively low X-ray luminosity, L(sub X) (0.1-2.4kev) approx. 7 x 10(exp 44) ergs/s. Methods: This faint, diffuse radio source is detected with the Giant Meterwave Radio Telescope at 327 MHz. The source is barely detected at 1.4 GHz in a NVSS pointing that we have reanalyzed. Results: The integrated radio spectrum of the halo is quite steep, with a slope alpha = 1.6 between 327 MHz and 1.4 GHz. While giant radio halos are common in more X-ray luminous cluster mergers, there is a less than 10% probability to detect a halo in systems with L(sub X) < 8 x 10(exp 44) ergs/s. The detection of a new giant halo in this borderline luminosity regime can be particularly useful for discriminating between the competing theories for the origin of ultrarelativistic electrons in clusters. Furthermore, if our steep radio spectral index is confirmed by future deeper radio observations, this cluster would provide another example of the very rare, new class of ultra-steep spectrum radio halos, predicted by the model in which the cluster cosmic ray electrons are produced by turbulent reacceleration.

  8. Research in X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This research grant supported an active sounding rocket program at Penn State University over a period of over 10 years. During this period, the grant supported at least 8 graduate students in Astronomy & Astrophysics for at least a portion of their research. During the same period, our group was involved in seven sounding rocket flights, launched from White Sands, New Mexico, and from Woomera, Australia. Most of these rocket flights, and most of the work supported by this grant, involved the use of X-ray CCD cameras. The first X-ray CCD camera ever flown in space was our sounding rocket observation of SN1987A (flight 36.030 in 1987). Subsequent flights utilized improved CCD detectors, culminating in the'state-of-the-art EEV detector developed for our CUBIC mission, which was flown on 36.093 last May. Data from the last three flights, which observed the diffuse X-ray background with CCDS, include detection of the OVII He(alpha) line in the high latitude diffuse background and detection of the Mg XI He(alpha) line in the North Polar Spur. These results have been reported at meetings of the American Astronomical Society and the SPIE. The analysis of flights 36.092 and 36.106 is part of Jeff Mendenhall's PhD thesis and will be published in the Astrophysical Journal next year. The 36.093 data are currently being analyzed by PhD student Laura Cawley. From 1990 to 1996 this grant supported our development and launch of the CUBIC instrument on the SAC-B satellite, which was designed to measure the spectrum of the soft X-ray diffuse background with moderate energy resolution and high S/N ratio. Unfortunately, this mission terminated shortly after launch due to a failure of the Pegasus XL launch vehicle. This work resulted in publication of 4 papers in the SPIE Proceedings and four others in refereed journals, in addition to several other conference proceedings and contributed papers. In addition to the CCD flights described above, this grant has supported preliminary

  9. Massively parallel X-ray holography

    NASA Astrophysics Data System (ADS)

    Marchesini, Stefano; Boutet, Sébastien; Sakdinawat, Anne E.; Bogan, Michael J.; Bajt, Saša; Barty, Anton; Chapman, Henry N.; Frank, Matthias; Hau-Riege, Stefan P.; Szöke, Abraham; Cui, Congwu; Shapiro, David A.; Howells, Malcolm R.; Spence, John C. H.; Shaevitz, Joshua W.; Lee, Joanna Y.; Hajdu, Janos; Seibert, Marvin M.

    2008-09-01

    Advances in the development of free-electron lasers offer the realistic prospect of nanoscale imaging on the timescale of atomic motions. We identify X-ray Fourier-transform holography as a promising but, so far, inefficient scheme to do this. We show that a uniformly redundant array placed next to the sample, multiplies the efficiency of X-ray Fourier transform holography by more than three orders of magnitude, approaching that of a perfect lens, and provides holographic images with both amplitude- and phase-contrast information. The experiments reported here demonstrate this concept by imaging a nano-fabricated object at a synchrotron source, and a bacterial cell with a soft-X-ray free-electron laser, where illumination by a single 15-fs pulse was successfully used in producing the holographic image. As X-ray lasers move to shorter wavelengths we expect to obtain higher spatial resolution ultrafast movies of transient states of matter.

  10. X-ray variability of Cygnus X-1 in its soft state

    NASA Technical Reports Server (NTRS)

    Cui, W.; Zhang, S. N.; Jahoda, K.; Focke, W.; Swank, J.; Heindl, W. A.; Rothschild, R. E.

    1997-01-01

    Observations from the Rossi X-ray Timing Explorer (RXTE) of Cyg X-1 in the soft state and during the soft to hard transition are examined. The results of this analysis confirm previous conclusions that for this source there is a settling period (following the transition from the hard to soft state during which the low energy spectrum varies significantly, while the high energy portion changes little) during which the source reaches nominal soft state brightness. This behavior can be characterized by a soft low energy spectrum and significant low frequency 1/f noise and white noise on the power density spectrum, which becomes softer upon reaching the true soft state. The low frequency 1/f noise is not observed when Cyg X-1 is in the hard state, and therefore appears to be positively correlated with the disk mass accretion rate. The difference in the observed spectral and timing properties between the hard and soft states is qualitatively consistent with a fluctuating corona model.

  11. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    PubMed

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  12. Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.

    PubMed

    Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu

    2013-01-01

    Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. A novel technique to produce x-rays for XRF, medical, and scientific purposes

    NASA Astrophysics Data System (ADS)

    Camara, Carlos G.; Putterman, Seth J.; Kotowski, Andy

    2015-08-01

    A long-standing mystery in science is the process whereby charge spontaneously exchanges between different materials that are brought into contact. After thousands of years of study there is no ab initio theory of tribocharging. As such it is an area of R&D that is not yet tethered to the first principles of physics and is wide open for new inventions. In 2008, Camara et al at UCLA discovered that tribocharging in a moderate vacuum could be used to take X-ray images. Since then, we have improved the X-ray output by 6 orders of magnitude and controlled the emission for use in a commercial product. Here we present an overview of this technology for use in X-ray fluorescence and X-ray imaging.

  14. Time-dependent Electron Acceleration in Blazar Transients: X-Ray Time Lags and Spectral Formation

    NASA Astrophysics Data System (ADS)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D.

    2016-06-01

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ-ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using BeppoSAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution for the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.

  15. TIME-DEPENDENT ELECTRON ACCELERATION IN BLAZAR TRANSIENTS: X-RAY TIME LAGS AND SPECTRAL FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Tiffany R.; Becker, Peter A.; Finke, Justin D., E-mail: pbecker@gmu.edu, E-mail: tlewis13@gmu.edu, E-mail: justin.finke@nrl.navy.mil

    2016-06-20

    Electromagnetic radiation from blazar jets often displays strong variability, extending from radio to γ -ray frequencies. In a few cases, this variability has been characterized using Fourier time lags, such as those detected in the X-rays from Mrk 421 using Beppo SAX. The lack of a theoretical framework to interpret the data has motivated us to develop a new model for the formation of the X-ray spectrum and the time lags in blazar jets based on a transport equation including terms describing stochastic Fermi acceleration, synchrotron losses, shock acceleration, adiabatic expansion, and spatial diffusion. We derive the exact solution formore » the Fourier transform of the electron distribution and use it to compute the Fourier transform of the synchrotron radiation spectrum and the associated X-ray time lags. The same theoretical framework is also used to compute the peak flare X-ray spectrum, assuming that a steady-state electron distribution is achieved during the peak of the flare. The model parameters are constrained by comparing the theoretical predictions with the observational data for Mrk 421. The resulting integrated model yields, for the first time, a complete first-principles physical explanation for both the formation of the observed time lags and the shape of the peak flare X-ray spectrum. It also yields direct estimates of the strength of the shock and the stochastic magnetohydrodynamical wave acceleration components in the Mrk 421 jet.« less

  16. Is there a UV/X-ray connection in IRAS 13224-3809?

    NASA Astrophysics Data System (ADS)

    Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.

    2018-04-01

    We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.

  17. Observation of pulsed hard X-rays/gamma-rays from PSR 1509-58

    NASA Astrophysics Data System (ADS)

    Gunji, S.; Hirayama, M.; Kamae, T.; Miyazaki, S.; Sekimoto, Y.; Takahashi, T.; Tamura, T.; Tanaka, M.; Yamasaki, N.; Yamagami, T.; Nomachi, M.; Murakami, H.; Braga, J.; Neri, J. A.

    1994-06-01

    We observed a young rotation-powered pulsar, PSR 1509-58, in the hard X-ray/gamma-ray or the soft gamma-ray band with a balloon-borne detector in Brazil on 1991 November 19 (UT). With a timing analysis we detected pulsations in the energy band 94-240 keV at the 150.687 ms period determined from radio observations. The pulsating flux is (7.1 +/- 1.7) x 10-4 per sq cm per sec in this band, and the energy spectrum follows a power law with photon index alpha = 1.64 +/- 0.4. The averaged pulse profile shows a broad single peak with a sharp rise and has a duty cycle around 50% or higher: these features are similar to what have been observed in the X-ray band by the Ginga satellite. Based on the data available now, the fraction of energy transformed from rotational energy loss to pulsed/nonpulsed soft gamma-ray radiation is estimated. If the solid angle swept by the pulsed beam is about the same as for the Crab pulsar (PSR 0531+21) and the Vela pulsar (PSR 0833-45), PSR 1509-58 turn out to be an extremely efficient pulsar, converting a large fraction of its rotational energy loss to radiation, as the outer gap model predicts. The observed pulsed spectrum, however, is strong in the soft gamma-ray band, in a sharp contrast to what has been observed in the Vela pulsar, a pulsar expected to be similar PSR 1509-58 in the outer gap model. The fact that the pulse profile remains broad and single-peaked in the soft gamma-ray band is also new for Crab-like pulsars. In these regards, PSR 1509-58 may require some alteration to the standard outer gap model or even a new model for gamma-ray emission in pulsars.

  18. Composite x-ray pinholes for time-resolved microphotography of laser compressed targets.

    PubMed

    Attwood, D T; Weinstein, B W; Wuerker, R F

    1977-05-01

    Composite x-ray pinholes having dichroic properties are presented. These pinholes permit both x-ray imaging and visible alignment with micron accuracy by presenting different apparent apertures in these widely disparate regions of the spectrum. Their use is mandatory in certain applications in which the x-ray detection consists of a limited number of resolvable elements whose use one wishes to maximize. Mating the pinhole camera with an x-ray streaking camera is described, along with experiments which spatially and temporally resolve the implosion of laser irradiated targets.

  19. Experimental research on the feature of an x-ray Talbot-Lau interferometer versus tube accelerating voltage

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Hao; Margie, P. Olbinado; Atsushi, Momose; Hua-Jie, Han; Hu, Ren-Fang; Wang, Zhi-Li; Gao, Kun; Zhang, Kai; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-06-01

    X-ray Talbot-Lau interferometer has been used most widely to perform x-ray phase-contrast imaging with a conventional low-brilliance x-ray source, and it yields high-sensitivity phase and dark-field images of samples producing low absorption contrast, thus bearing tremendous potential for future clinical diagnosis. In this work, by changing the accelerating voltage of the x-ray tube from 35 kV to 45 kV, x-ray phase-contrast imaging of a test sample is performed at each integer value of the accelerating voltage to investigate the characteristic of an x-ray Talbot-Lau interferometer (located in the Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Japan) versus tube voltage. Experimental results and data analysis show that within a range this x-ray Talbot-Lau interferometer is not sensitive to the accelerating voltage of the tube with a constant fringe visibility of ˜ 44%. This x-ray Talbot-Lau interferometer research demonstrates the feasibility of a new dual energy phase-contrast x-ray imaging strategy and the possibility to collect a refraction spectrum. Project supported by the Major State Basic Research Development Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, China (Grant No. 11321503), the National Natural Science Foundation of China (Grant Nos. 11179004, 10979055, 11205189, and 11205157), and the Japan-Asia Youth Exchange Program in Science (SAKURA Exchange Program in Science) Administered by the Japan Science and Technology Agency.

  20. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    NASA Astrophysics Data System (ADS)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  1. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV.

    PubMed

    Boone, J M; Seibert, J A

    1997-11-01

    A tungsten anode spectral model using interpolating polynomials (TASMIP) was used to compute x-ray spectra at 1 keV intervals over the range from 30 kV to 140 kV. The TASMIP is not semi-empirical and uses no physical assumptions regarding x-ray production, but rather interpolates measured constant potential x-ray spectra published by Fewell et al. [Handbook of Computed Tomography X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1981)]. X-ray output measurements (mR/mAs measured at 1 m) were made on a calibrated constant potential generator in our laboratory from 50 kV to 124 kV, and with 0-5 mm added aluminum filtration. The Fewell spectra were slightly modified (numerically hardened) and normalized based on the attenuation and output characteristics of a constant potential generator and metal-insert x-ray tube in our laboratory. Then, using the modified Fewell spectra of different kVs, the photon fluence phi at each 1 keV energy bin (E) over energies from 10 keV to 140 keV was characterized using polynomial functions of the form phi (E) = a0[E] + a1[E] kV + a2[E] kV2 + ... + a(n)[E] kVn. A total of 131 polynomial functions were used to calculate accurate x-ray spectra, each function requiring between two and four terms. The resulting TASMIP algorithm produced x-ray spectra that match both the quality and quantity characteristics of the x-ray system in our laboratory. For photon fluences above 10% of the peak fluence in the spectrum, the average percent difference (and standard deviation) between the modified Fewell spectra and the TASMIP photon fluence was -1.43% (3.8%) for the 50 kV spectrum, -0.89% (1.37%) for the 70 kV spectrum, and for the 80, 90, 100, 110, 120, 130 and 140 kV spectra, the mean differences between spectra were all less than 0.20% and the standard deviations were less than approximately 1.1%. The model was also extended to include the effects of generator-induced kV ripple. Finally, the x-ray photon fluence in the units of

  2. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  3. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  4. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  5. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  6. A Suzaku X-ray Observation of One Orbit of the Supergiant Fast X-ray Transient IGR J16479-4514

    NASA Technical Reports Server (NTRS)

    Sidoli, L.; Esposito, P.; Sguera, V.; Bodaghee, A.; Tomsick, J. A.; Pottschmidt, K.; Rodriguez, J.; Ramano, P.; Wilms, J.

    2013-01-01

    We report on a 250 ks long X-ray observation of the supergiant fast X-ray transient (SFXT) IGR J16479-4514 performed with Suzaku in 2012 February. During this observation, about 80% of the short orbital period (P(sub orb) approximates 3.32 days) was covered as continuously as possible for the first time. The source light curve displays variability of more than two orders of magnitude, starting with a very low emission state (10(exp -13) erg / sq cm/s; 1-10 keV) lasting the first 46 ks, consistent with being due to the X-ray eclipse by the supergiant companion. The transition to the uneclipsed X-ray emission is energy dependent. Outside the eclipse, the source spends most of the time at a level of 6-7X10)(exp-12) erg/sq. cm/s) punctuated by two structured faint flares with a duration of about 10 and 15 ks, respectively, reaching a peak flux of 3-4X10(exp -11) erg/sq. cm./S, separated by about 0.2 in orbital phase. Remarkably, the first faint flare occurs at a similar orbital phase of the bright flares previously observed in the system. This indicates the presence of a phase-locked large scale structure in the supergiant wind, driving a higher accretion rate onto the compact object. The average X-ray spectrum is hard and highly absorbed, with a column density, NH, of 10*exp 23)/sq cm, clearly in excess of the interstellar absorption. There is no evidence for variability of the absorbing column density, except that during the eclipse, where a less absorbed X-ray spectrum is observed. A narrow Fe K-alpha emission line at 6.4 keV is viewed along the whole orbit, with an intensity which correlates with the continuum emission above 7 keV. The scattered component visible during the X-ray eclipse allowed us to directly probe the wind density at the orbital separation, resulting in rho(sub w)=7X10(exp -14) g/cubic cm. Assuming a spherical geometry for the supergiant wind, the derived wind density translates into a ratio M(sub w)/v(sub infinity) = 7X10(exp -17) Solar M

  7. Discovery of a Hand X-Ray Source, SAX J0635+0533, in the Error Box of the Gamma-Ray Source 2EG J0635+0521

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Piraino, S.; Halpern, Jules P.; Eracleous, M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We have discovered an X-ray source, SAX J0635+0533, with a hard spectrum within the error box of the GeV gamma-ray source in Monoceros, 2EG J0635+0521. The unabsorbed flux from the source is 1.2 x 10(exp -11) ergs /sq cm s in the 2-10 keV band. The X-ray spectrum is consistent with a simple power-law model with absorption. The photon index is 1.50 +/- 0.08, and we detect emission out to 40 keV. Optical observations identify a counterpart with a V magnitude of 12.8. The counterpart has broad emission lines and the colors of an early B-type star. If the identification of the X-ray/optical source with the gamma-ray source is correct, then the source would be a gamma-ray-emitting X-ray binary.

  8. Stellar wind measurements for Colliding Wind Binaries using X-ray observations

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2017-11-01

    We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.

  9. X-Ray Spectroscopy of Photoionized Plasmas

    NASA Technical Reports Server (NTRS)

    Kallman, Tim

    2008-01-01

    Spectroscopy allows study of sources on small spatial scales, and can provide detailed diagnostic information about elemental abundances, temperature, density and gas dynamics. For compact sources such as accreting black holes in active galactic nuclei (AGN) and X-ray binaries X-ray spectra provide truly unique insight. Observations using Chandra and XMM have revealed components of gas in these systems which were previously unknown or poorly studied. Interpretation of these data presents modeling and analysis challenges, and requires an understanding of atomic physics, ionization and spectrum formation in a radiation-dominated environment. In this talk I will discuss examples, and how they have contributed to our understanding of accreting sources and the nearby gas.

  10. ASM observations of X-ray flares from 4U 0115+63 and ASM 1354-64.

    NASA Astrophysics Data System (ADS)

    Tsunemi, H.; Kitamoto, S.

    The authors report two X-ray flares detected with the All Sky Monitor (ASM) on board the GINGA satellite. One is from the recurrent X-ray pulsar 4U 0115+63 and the other is from the probable recurrent X-ray nova named ASM 1354-64. The maximum intensity for 4U 0115+63 was 180 mCrab and its duration was at least 22 days. Its spectrum was hard and resembled those of X-ray pulsars. The maximum intensity of ASM 1354-64 was 300 mCrab. It faded down below the detection limit at the end of August 1987. Its spectrum was soft and was similar to those of black hole candidates.

  11. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1996-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  13. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-12-16

    This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-05-01

    This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  15. A soft X-ray flare in the Seyfert I galaxy Markarian 335

    NASA Technical Reports Server (NTRS)

    Lee, M. G.; Balick, Bruce; Halpern, J. P.; Heckman, T. M.

    1988-01-01

    Strong, erratic, and primarily soft X-ray flux variations observed in Mrk 335 with the Einstein high-resolution imager (HRI) and monitor proportional counter (MPC) are reported. The variability time scales lie from about 6000 s to the period of observation, 60,000 s. The variability consisted of a decrease followed by an increase at X-ray energies below 2-3 keV. The variability is most pronounced at the softest energies. The X-ray spectrum was harder before the flare than afterward, even after the flare had ended. Averaged over the time of the observations, the MPC data are well-fitted by a power-law spectrum with a spectral index of 1.25 + or - 0.19 with no evidence of absorption by foreground neutral hydrogen at energies above 1.2 keV. If the observed value of the Galactic H I column density is assumed, then the HRI observations require the existence of an additional soft and variable X-ray component.

  16. A Multi-Wavelength Study of the X-Ray Sources in the NGC 5018

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah; Saripalli, Lakshmi

    2004-01-01

    The E3 giant elliptical galaxy NGC-5018 was observed with the cxo X-ray Observatory's Advanced CCD Imaging Spectrometer for 30-h on 14 April 2001. Results of analysis of these X-ray data as well as of complementary optical, infrared, and radio data are reported. Seven X-ray point sources, including the nucleus, were detected. If they are intrinsic to NGC-5018, then all six non-nuclear sources have luminosities exceeding 10(exp 39)-ergl in the 0.5-8.0-keV energy band; placing them in the class of Ultra- luminous X-ray sources. Comparison of X-ray source positions to archival Hubble Space Telescope/Wide Field Planetary Camera 2 (hst/WFPC2) images reveal four of the six non-nuclear sources are spatially--coincident with bright, M$(sub V)LA -8.6 mag, objects. These four objects have optical magnitudes and (V-I) colors consistent with globular clusters in NGC-5018. However, one of these objects was observed to vary by siml mag in both V and I between observations taken 28 July 1997 and 04 Feb 1999 indicating this source is a background active galactic nucleus (AGN). The nature of the other three optically-bright objects cannot be determined from the available optical data but all have X-ray-to-optical flux ratios consistent with background AGNs. Strong, unpolarized, radio emission has been detected from another of the optically-bright counterparts. It displays an inverted radio spectrum and is the most absorbed of the seven sources in the X-ray band. It, too, is most readily explained as a background AGN, though alternative explanations cannot be ruled out. Extended X-ray emission is detected within a siml5 arcsec radius of the galaxy center at a luminosity of sim lO(exp 40)-ergl in the X-ray band. Its thermal X-ray spectrum (kT sim0.4-keV) and its spatial coincidence with strong H(alpha) emission are consistent with a hot gas origin. The nucleus itself is a weak X-ray source, LA-5 times 10(exp 39)-ergl, but displays a radio spectrum typical of AGN.

  17. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-04-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 hr) and eclipse fraction (22% ± 0.1%) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35M⊙). By combining the X-ray lightcurve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18, and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  18. Discovery of two eclipsing X-ray binaries in M 51

    NASA Astrophysics Data System (ADS)

    Wang, Song; Soria, Roberto; Urquhart, Ryan; Liu, Jifeng

    2018-07-01

    We discovered eclipses and dips in two luminous (and highly variable) X-ray sources in M 51. One (CXOM51 J132943.3+471135) is an ultraluminous supersoft source, with a thermal spectrum at a temperature of about 0.1 keV and characteristic blackbody radius of about 104 km. The other (CXOM51 J132946.1+471042) has a two-component spectrum with additional thermal-plasma emission; it approached an X-ray luminosity of 1039 erg s-1 during outbursts in 2005 and 2012. From the timing of three eclipses in a series of Chandra observations, we determine the binary period (52.75 ± 0.63 h) and eclipse fraction (22 ± 0.1 per cent) of CXOM51 J132946.1+471042. We also identify a blue optical counterpart in archival Hubble Space Telescope images, consistent with a massive donor star (mass of ˜20-35 M⊙). By combining the X-ray light-curve parameters with the optical constraints on the donor star, we show that the mass ratio in the system must be M_2/M_1 ≳ 18 and therefore the compact object is most likely a neutron star (exceeding its Eddington limit in outburst). The general significance of our result is that we illustrate one method (applicable to high-inclination sources) of identifying luminous neutron star X-ray binaries, in the absence of X-ray pulsations or phase-resolved optical spectroscopy. Finally, we discuss the different X-ray spectral appearance expected from super-Eddington neutron stars and black holes at high viewing angles.

  19. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-12-01

    This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The Chandra image reveals a large population of extremely bright x-ray sources in this area of intense star formation. These x-ray sources, which emit 10 to several hundred times more x-ray power than similar sources in our own galaxy, are believed to be either massive black holes, or black holes that are beaming their energy toward Earth. In this x-ray image, red represents the low energy band, green intermediate, and blue the highest observed energies. The white and yellow sources are those that emit significant amounts of both low and high energy x-rays. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the gala

  20. X-ray irradiation of yeast cells

    NASA Astrophysics Data System (ADS)

    Masini, Alessandra; Batani, Dimitri; Previdi, Fabio; Conti, Aldo; Pisani, Francesca; Botto, Cesare; Bortolotto, Fulvia; Torsiello, Flavia; Turcu, I. C. Edmond; Allott, Ric M.; Lisi, Nicola; Milani, Marziale; Costato, Michele; Pozzi, Achille; Koenig, Michel

    1997-10-01

    Saccharomyces Cerevisiae yeast cells were irradiated using the soft X-ray laser-plasma source at Rutherford Laboratory. The aim was to produce a selective damage of enzyme metabolic activity at the wall and membrane level (responsible for fermentation) without interfering with respiration (taking place in mitochondria) and with nuclear and DNA activity. The source was calibrated by PIN diodes and X-ray spectrometers. Teflon stripes were chosen as targets for the UV laser, emitting X-rays at about 0.9 keV, characterized by a very large decay exponent in biological matter. X-ray doses to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. After irradiation, the selective damage to metabolic activity at the membrane level was measured by monitoring CO2 production with pressure silicon detectors. Preliminary results gave evidence of pressure reduction for irradiated samples and non-linear response to doses. Also metabolic oscillations were evidenced in cell suspensions and it was shown that X-ray irradiation changed the oscillation frequency.

  1. On the Performance of X-ray Imaging Plates in Gamma Radiography employing Reactor-produced Radioisotopes

    NASA Astrophysics Data System (ADS)

    Silvani, Maria Ines; de Almeida, Gevaldo L.; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-08-01

    Gamma-radiography employing radiographic films is a well established technique for non-destructive assays. The advent of X-ray sensitive Imaging Plates opens up new possibilities to apply this technique thanks to the advantages exhibited by this new device. Indeed, besides a sensitivity about 20 times higher then the conventional photographic film, requiring thus a shorter exposure time, it does not require a dark room for a cumbersome and time-consuming chemical processing associated to the development, an can be erased to be reused many times. Moreover, its development carried out by means of a laser beam produces digitalized images which can be promptly stored in a computer. Although its resolution is still poorer than that of the conventional film, those advantages overwhelms this specific parameter when it is not an essential feature for the intended application. This work evaluates the feasibility of employing X-ray Imaging Plates as detector for higher photon energies as those emitted by reactor-produced radioisotopes. Within this frame, radioisotopes such as 198Au and 56Mn, produced at the Argonauta research reactor in the Instituto de Engenharia Nuclear-CNEN have been employed as sources to acquire radiographic images of several pieces of equipment, devices and components. In order to keep the source appearance—with regard to the detector—as punctual as possible, reducing hence the penumbra effect, the mass of the irradiated material had to be limited. Therefore, due to the low neutron flux available at the main port of the reactor, the exposure times have to be extended along several hours or even a couple of days in order to reach an image with adequate contrast. This demand, nevertheless, does not constitute a serious hindrance as the exposure process can be carried out without any intervention or surveillance. Results have shown that in spite of the higher photon energies used, surpassing the X-ray range for which the imaging plates have been

  2. Spatial resolution of a hard x-ray CCD detector.

    PubMed

    Seely, John F; Pereira, Nino R; Weber, Bruce V; Schumer, Joseph W; Apruzese, John P; Hudson, Lawrence T; Szabo, Csilla I; Boyer, Craig N; Skirlo, Scott

    2010-08-10

    The spatial resolution of an x-ray CCD detector was determined from the widths of the tungsten x-ray lines in the spectrum formed by a crystal spectrometer in the 58 to 70 keV energy range. The detector had 20 microm pixel, 1700 by 1200 pixel format, and a CsI x-ray conversion scintillator. The spectral lines from a megavolt x-ray generator were focused on the spectrometer's Rowland circle by a curved transmission crystal. The line shapes were Lorentzian with an average width after removal of the natural and instrumental line widths of 95 microm (4.75 pixels). A high spatial frequency background, primarily resulting from scattered gamma rays, was removed from the spectral image by Fourier analysis. The spectral lines, having low spatial frequency in the direction perpendicular to the dispersion, were enhanced by partially removing the Lorentzian line shape and by fitting Lorentzian curves to broad unresolved spectral features. This demonstrates the ability to improve the spectral resolution of hard x-ray spectra that are recorded by a CCD detector with well-characterized intrinsic spatial resolution.

  3. Film calibration for soft x-ray wavelengths

    NASA Astrophysics Data System (ADS)

    Tallents, Gregory J.; Krishnan, J.; Dwivedi, L.; Neely, David; Turcu, I. C. Edmond

    1997-10-01

    The response of photographic film to X-rays from laser- plasma is of practical interest. Film is often used for the ultimate detection of x-rays in crystal and grating spectrometers and in imaging instruments such as pinhole cameras largely because of its high spatial resolution (approximately 1 - 10 microns). Characteristic curves for wavelengths--3 nm and 23 nm are presented for eight x-ray films (Kodak 101-01, 101-07, 104-02, Kodak Industrex CX, Russian UF-SH4, UF-VR2, Ilford Q plates and Shanghai 5F film). The calibrations were obtained from the emission of laser-produced carbon plasmas and a Ne-like Ge X-ray laser.

  4. Interaction of the 100-year old X-Ray flare produced by a central black hole with diffuse gas in the Galactic center

    NASA Astrophysics Data System (ADS)

    Chernyshov, D.; Cheng, K.; Dogiel, V.; Kong, A.; Ko, C.; Tatischeff, V.; Terrier, R.

    2017-10-01

    We investigate an old X-Ray flare produced by a central black hole which is most likely responsible for the transient X-Ray emission from massive molecular clouds in the Galactic center. This flare should ionize diffuse molecular gas and also excite fluorescence lines e.g. neutral iron line at 6.4 keV. It turns out that the observed diffuse 6.4 keV line can be explained by the same X-Ray flare which illuminates dense molecular clouds. The diffuse emission can also be considered as a tool to limit potential duration and intensity of the primary X-Ray flare. We show that charged particles cannot provide necessary iron ionization rate to reproduce the observed emission. On the other hand ionization of neutral hydrogen cannot be provided by a primary flare and should be done by other mechanisms like for example charged particles. We also claim that recently found afterglow from Swift J1644+57 can be produced by similar event and can be a nice example of a Compton echo observed in a distant galaxy.

  5. X-Ray Absorbed, Broad-Lined, Red AGN and the Cosmic X-Ray Background

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Wilkes, Belinda

    2005-01-01

    We have obtained XMM spectra for five red, 2MASS AGN, selected from a sample observed by Chandra to be X-ray bright and to cover a range of hardness ratios. Our results confirm the presence of substantial absorbing material in three sources which have optical classifications ranging from Type 1 to Type 2, with an intrinsically flat (hard) power law continuum indicated in the other two. The presence of both X-ray absorption and broad optical emission lines with the usual strength suggests either a small (nuclear) absorber or a favored viewing angle so as to cover the X-ray source but not the broad emission line region (BELR). A soft excess is detected in all three Type 1 sources. We speculate that this soft X-ray emission may arise in an extended region of ionized gas, perhaps linked with the polarized (scattered) light which is a feature of these sources. The spectral complexity revealed by XMM emphasizes the limitations of the low S/N Chandra data. Overall, the new XMM results strengthen our conclusions (Wilkes et al. 2002) that the observed X-ray continua of red AGN are unusually hard at energies greater than 2 keV. Whether due to substantial line-of-sight absorption or to an intrinsically hard or reflection-dominated spectrum, these 'red' AGN have an observed spectral form consistent with contributing significantly to the missing had absorbed population of the Cosmic X-ray Background (CXRB). When absorption and or reflection is taken into account, all these AGN have power law slopes typical of broad-line (Type 1) AGN (Gamma approximately 1.9). This appears to resolve the spectral paradox which for so long has existed between the CXRB and the AGN thought to be the dominant contributors. It also suggests two scenarios whereby Type 1 AGN/QSOs may be responsible for a significant fraction of the CXRB at energies above 2 keV: 1) X-ray absorbed AGN/QSOs with visible broad emission lines; 2) AGN/QSOs with complex spectra whose hardness greater than 2 keV is not

  6. Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova

    NASA Technical Reports Server (NTRS)

    Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan

    2012-01-01

    We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.

  7. The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9

    NASA Technical Reports Server (NTRS)

    Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.; hide

    2017-01-01

    47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.

  8. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  9. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  10. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, Andrew M.; Seppala, Lynn G.

    1991-01-01

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  11. X-rays from the colliding wind binary WR 146

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.

    2017-12-01

    The X-ray emission from the massive Wolf-Rayet binary (WR 146 ) is analysed in the framework of the colliding stellar wind (CSW) picture. The theoretical CSW model spectra match well the shape of the observed X-ray spectrum of WR 146, but they overestimate considerably the observed X-ray flux (emission measure). This is valid in the case of both complete temperature equalization and partial electron heating at the shock fronts (different electron and ion temperatures), but there are indications for a better correspondence between model predictions and observations for the latter. To reconcile the model predictions and observations, the mass-loss rate of WR 146 must be reduced by a factor of 8-10 compared to the currently accepted value for this object (the latter already takes clumping into account). No excess X-ray absorption is derived from the CSW modelling.

  12. GEMS X-ray Polarimeter Performance Simulations

    NASA Technical Reports Server (NTRS)

    Baumgartner, Wayne H.; Strohmayer, Tod; Kallman, Tim; Black, J. Kevin; Hill, Joanne; Swank, Jean

    2012-01-01

    The Gravity and Extreme Magnetism Small explorer (GEMS) is an X-ray polarization telescope selected as a NASA small explorer satellite mission. The X-ray Polarimeter on GEMS uses a Time Projection Chamber gas proportional counter to measure the polarization of astrophysical X-rays in the 2-10 keV band by sensing the direction of the track of the primary photoelectron excited by the incident X-ray. We have simulated the expected sensitivity of the polarimeter to polarized X-rays. We use the simulation package Penelope to model the physics of the interaction of the initial photoelectron with the detector gas and to determine the distribution of charge deposited in the detector volume. We then model the charge diffusion in the detector,and produce simulated track images. Within the track reconstruction algorithm we apply cuts on the track shape and focus on the initial photoelectron direction in order to maximize the overall sensitivity of the instrument, using this technique we have predicted instrument modulation factors nu(sub 100) for 100% polarized X-rays ranging from 10% to over 60% across the 2-10 keV X-ray band. We also discuss the simulation program used to develop and model some of the algorithms used for triggering, and energy measurement of events in the polarimeter.

  13. SEXTANT X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Winternitz, Luke B.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolf, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    Millisecond pulsars (MSPs) are rapidly rotating neutron stars that appear to pulsate across the electromagnetic spectrum. Some MSPs have long-term timing stability that rivals that of atomic clocks. Pulse arrival phase can be predicted with great accuracy at any reference point in the Solar System through use of a pulsar timing model on a spacecraft. Comparing observed phase to predictions gives information that may be used in a navigation process. Why X-rays? Some stable MSPs have conveniently detectable X-ray emissions. X-rays are immune to interstellar dispersion effects thought to limit radio pulsar timing models. Highly directional compact detectors possible.

  14. X-ray optic developments at NASA's MSFC

    NASA Astrophysics Data System (ADS)

    Atkins, C.; Ramsey, B.; Kilaru, K.; Gubarev, M.; O'Dell, S.; Elsner, R.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    2013-05-01

    NASA's Marshall Space Flight Center (MSFC) has a successful history of fabricating optics for astronomical x-ray telescopes. In recent years optics have been created using electroforming replication for missions such as the balloon payload HERO (High energy replicated optics) and the rocket payload FOXSI (Focusing Optics x-ray Solar Imager). The same replication process is currently being used in the creation seven x-ray mirror modules (one module comprising of 28 nested shells) for the Russian ART-XC (Astronomical Rontgen Telescope) instrument aboard the Spectrum-Roentgen-Gamma mission and for large-diameter mirror shells for the Micro-X rocket payload. In addition to MSFC's optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASA's MSFC.

  15. Free-Free Radiation Cannot Make the UV/Soft-X-Ray Excess in AGN

    NASA Astrophysics Data System (ADS)

    Kriss, G. A.

    1994-05-01

    Thermal gas always has associated atomic spectral features either in absorption or in emission. In optically thin gas the emission spectrum is dominated by line radiation and recombination continua. An example of radiation from optically thin material in accreting systems is the emission-line-dominated spectrum of a cataclysmic variable in its low state. Barvainis (1993, ApJ, 412, 513) and others have proposed that the UV/soft-X-ray excess prominent in the spectra of many AGN is due to free-free emission from gas at temperatures of 10(5) - 10(6) K. Simple arguments using only atomic data show that the recombination radiation from emission lines would produce UV, optical, and soft X-ray spectral features orders of magnitude stronger than observed. Collisional excitation produces even more line radiation under most physical conditions. As a particular example I take the Astro-1 observations of the Seyfert 1 galaxy Mrk 335 by HUT and BBXRT. Depending on the ionization state of the gas (which may be photoionized by the central source), the emission measure of the free-free radiation necessary to produce the UV continuum (3 times 10(68) cm(-3) at 8.2 times 10(5) K for H_o = 75 km s(-1) Mpc(-1) ) implies line emission from O VI, O VII, or O VIII more than a factor of 10 stronger than any features observed by HUT or BBXRT.

  16. The X-ray Spectrum and Spectral Energy Distribution of FIRST J155633.8+351758: A Beamed Radio-Quiet Quasar with a Polar Outflow

    NASA Astrophysics Data System (ADS)

    Berrington, Robert C.; Brotherton, M. S.; Gallagher, S. C.; Ganguly, R.; Shang, Z.; Lacy, M.; Gregg, M. D.; Hall, P. B.; Laurent-Muehleisen, S. A.

    2007-12-01

    We report the results of a 60 ks Chandra X-ray Observatory ACIS-S observation of the reddened, radio-selected, highly polarized "FeLoBAL" quasar FIRST J155633.8+351758. Our analyses of the 531 photon spectrum indicate that the intrinsic X-ray flux is consistent with that expected for quasars of similarly high luminosity. We cannot tightly constrain the intrinsic X-ray power-law slope, but find indications that it is flat (photon index Γ = 1.7 or flatter). No iron K-α line is detected, and the X-rays appear to be down by only an order of magnitude below their intrinsic unabsorbed levels. Absorption is present with both partially ionized models and neutral hydrogen models with partial covering providing good fits. The level of partial covering in the latter model is consistent with the rest-frame ultraviolet maximum polarization of 13%, in the sense that light scattered by electrons around the X-ray absorber could account for both results. We present the spectral energy distribution (SED) of FIRST J155633.8+351758 from radio through X-ray energies, and make corrections for Doppler beaming for the pole-on radio-quiet jet, optical dust reddening, and X-ray absorption. The corrected SED appears to be that of a luminous radio-quiet quasar deficient in the mid and far-infrared, suggesting that the dust covering fraction of the quasar is not large and that star formation is not excessive. FIRST J155633.8+351758 seems to be an intrinsically normal radio-quiet quasar with an X-ray absorber not dissimilar from that of other broad absorption line quasars studied in detail at X-ray wavelengths. We acknowledge support from Chandra Award No. GO6-7105X, from the US NSF (grant AST 05-07781), from NASA under the grant NNG05GD03G, and from the National Natural Science Foundation of China (grant 10643001). This work was performed under the auspices of the US DOE by the University of California, LLNL (Contract No. W-7405-Eng-48).

  17. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  18. Low- to Mid-Latitude X-Ray Emission from Jupiter

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Waite, J. Hunter, Jr.; Branduardi-Raymont, Graziella; Cravens, Thomas E.; Ford, Peter

    2006-01-01

    The Chandra X-ray Observatory (CXO) observed Jupiter during the period 2003 February 24-26 for approx.40 hours (4 Jupiter rotations), using both the spectroscopy array of the Advanced CCD Imaging Spectrometer (ACIS-S) and the imaging array of the High-Resolution Camera (HRC-I). Two ACIS-S exposures, each approx.8.5 hr long, were separated by an HRC-I exposure of approx.20 hr. The low- to mid-latitude non-auroral disk X-ray emission is much more spatially uniform than the auroral emission. However, the low- to mid-latitude X-ray count rate shows a small but statistically significant hour angle dependence, and is higher in regions of relatively low surface magnetic field strength, confirming ROSAT results. In addition, the spectrum from the low surface field region shows an enhancement in the energy band 1.14- 1.38 keV, perhaps partly due to line emission from that region. Correlation of surface magnetic field strength with count rate is not found for the 2000 December HRC-I data, at a time when solar activity was high. The low- to mid-latitude disk X-ray count rate observed by the HRC-I in the 2003 February observation is about 50% of that observed in 2000 December, roughly consistent with a decrease in the solar activity index (F10.7 cm flux) by a similar amount over the same time period. The low- to mid-latitude X-ray emission does not show any oscillations similar to the -45 minute oscillations sometimes seen from the northern auroral zone. The temporal variation in Jupiter's non-auroral X-ray emission exhibits similarities to variations in solar X-ray flux observed by GOES and TIMED/SEE. The two ACIS-S 0.3-2 keV low- to mid-latitude X-ray spectra are harder than the auroral spectrum, and are different from each other at energies above 0.7 keV, showing variability in Jupiter s non-auroral X-ray emission on a time scale of a day. The 0.3-2.0 keV X-ray power emitted at low- to mid-latitudes is 0.21 GW and 0.39 GW for the first and second ACIS-S exposures

  19. A Comparative View of X-rays from the Solar System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili

    2005-01-01

    With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.

  20. Soft x-ray absorption spectra of ilmenite family.

    PubMed

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  1. Solar Hard X-ray Observations with NuSTAR

    NASA Astrophysics Data System (ADS)

    Marsh, Andrew; Smith, D. M.; Krucker, S.; Hudson, H. S.; Hurford, G. J.; White, S. M.; Mewaldt, R. A.; Harrison, F. A.; Grefenstette, B. W.; Stern, D.

    2012-05-01

    High-sensitivity imaging of coronal hard X-rays allows detection of freshly accelerated nonthermal electrons at the acceleration site. A few such observations have been made with Yohkoh and RHESSI, but a leap in sensitivity could help pin down the time, place, and manner of reconnection. Around the time of this meeting, the Nuclear Spectroscopic Telescope ARray (NuSTAR), a NASA Small Explorer for high energy astrophysics that uses grazing-incidence optics to focus X-rays up to 80 keV, will be launched. Three weeks will be dedicated to solar observing during the baseline two-year mission. NuSTAR will be 200 times more sensitive than RHESSI in the hard X-ray band. This will allow the following new observations, among others: 1) Extrapolation of the micro/nanoflare distribution by two orders of magnitude down in flux; 2) Search for hard X-rays from network nanoflares (soft X-ray bright points) and evaluation of their role in coronal heating; 3) Discovery of hard X-ray bremsstrahlung from the electron beams driving type III radio bursts, and measurement of their electron spectrum; 4) Hard X-ray studies of polar soft X-ray jets and impulsive solar energetic particle events at the edge of coronal holes; 5) Study of coronal bremsstrahlung from particles accelerated by coronal mass ejections as they are first launched; 6) Study of particles at the coronal reconnection site when flare footpoints and loops are occulted; 7) Search for weak high-temperature coronal plasmas in active regions that are not flaring; and 8) Search for hypothetical axion particles created in the solar core via the hard X-ray signal from their conversion to X-rays in the coronal magnetic field. NuSTAR will also serve as a pathfinder for a future dedicated space mission with enhanced capabilities, such as a satellite version of the FOXSI sounding rocket.

  2. Spectacular X-ray Jet Points Toward Cosmic Energy Booster

    NASA Astrophysics Data System (ADS)

    2000-06-01

    NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme

  3. X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Nair, Sunita

    1997-01-01

    PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.

  4. X-rays from the eclipsing pulsar 1957+20

    NASA Technical Reports Server (NTRS)

    Fruchter, A. S.; Bookbinder, J.; Garcia, M. R.; Bailyn, C. D.

    1992-01-01

    The detection of soft X-rays of about 1 keV energy from the eclipsing pulsar PSR1957+20 is reported. This high-energy radiation should be a valuable diagnostic of the wind in this recycled pulsar system. Possible sources of the X-ray emission are the interstellar nebula driven by the pulsar wind, the interaction between the pulsar and its evaporating companion, and the pulsar itself. The small apparent size of the X-ray object argues against the first of these possibilities and suggests that the X-rays are produced within the binary.

  5. Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra

    NASA Astrophysics Data System (ADS)

    Bilalbegović, G.; Maksimović, A.; Valencic, L. A.

    2018-06-01

    It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.

  6. X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association

    NASA Technical Reports Server (NTRS)

    deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.; hide

    2013-01-01

    Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB

  7. Flash X-Ray Apparatus With Spectrum Control Functions For Medical Use And Fuji Computed Radiography

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Sato, E.; Hayasi, Y.; Suzuki, M.; Arima, H.; Hoshino, F.

    1985-02-01

    Flash radiographic bio-medical studies at sub-microsecond intervals were performed by using both a new type of flash X-ray(FX) apparatus with spectrum control functions and Fuji Computed Radiography(FCR). This single flasher tends to have a comparatively long exposure time and the electric pulse width of the FX wave form is about 0.3,usec. The maximum FX dose is about 50mR at 1m per pulse, and the effective focal spot varies according to condenser charging voltage, A-C distance, etc., ranging from 1.0 to 3.0mm in diameter, but in the low dose rate region it can be reduced to less than 1.0mm in diameter. The FX dose is determined by the condenser charging voltage and the A-C distance, while the FX spectrum is determined by the average voltage of the FX tube and filters. Various clear FX images were obtained by controlling the spectrum and dose. FCR is a new storage medium for medical radiography developed by the Fuji Photo Film Co., Ltd. and this apparatus has various image forming functions: low dose radiography, film density control, image contrast control, subtraction management and others. We have used this new apparatus in conjunction with our FX radiography and have obtained some new and interesting biomedical radiograms: the edge enhancement image, the instantaneous enlarged image, and the single exposure energy subtraction image using the FX spectrum distribution.

  8. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  9. X-ray insights into star and planet formation.

    PubMed

    Feigelson, Eric D

    2010-04-20

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA's (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases.

  10. Topics in High-Energy Astrophysics: X-ray Time Lags and Gamma-ray Flares

    NASA Astrophysics Data System (ADS)

    Kroon, John J.

    2016-03-01

    The Universe is host to a wide variety of high-energy processes that convert gravitational potential energy or rest-mass energy into non-thermal radiation such as bremsstrahlung and synchrotron. Prevailing models of X-ray emission from accreting Black Hole Binaries (BHBs) struggle to simultaneously fit the quiescent X-ray spectrum and the transients which result in the phenomenon known as X-ray time lags. And similarly, classical models of diffusive shock acceleration in pulsar wind nebulae fail to explain the extreme particle acceleration in very short timescales as is inferred from recent gamma-ray flares from the Crab nebula. In this dissertation, I develop new exact analytic models to shed light on these intriguing processes. I take a fresh look at the formation of X-ray time lags in compact sources using a new mathematical approach in which I obtain the exact Green's function solution. The resulting Green's function allows one to explore a variety of injection scenarios, including both monochromatic and broadband (bremsstrahlung) seed photon injection. I obtain the exact solution for the dependence of the time lags on the Fourier frequency, for both homogeneous and inhomogeneous clouds. The model can successfully reproduce both the observed time lags and the quiescent X-ray spectrum using a single set of coronal parameters. I show that the implied coronal radii in the new model are significantly smaller than those obtained in the Monte Carlo simulations, hence greatly reducing the coronal heating problem. Recent bright gamma-ray flares from the Crab nebula observed by AGILE and Fermi reaching GeV energies and lasting several days challenge the contemporary model for particle acceleration in pulsar wind nebulae, specifically the diffusive shock acceleration model. Simulations indicate electron/positron pairs in the Crab nebula pulsar wind must be accelerated up to PeV energies in the presence of ambient magnetic fields with strength B ~100 microG. No

  11. Laser driven plasmas based incoherent x-ray sources at PALS and ELI Beamlines (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kozlová, Michaela

    2017-05-01

    We will present data on a various X-ray production schemes from laser driven plasmas at the PALS Research Center and discuss the plan for the ELI Beamlines project. One of the approaches, how to generate ultrashort pulses of incoherent X-ray radiation, is based on interaction of femtosecond laser pulses with solid or liquid targets. So-called K-alpha source depending on used targets emits in hard X-ray region from micrometric source size. The source exhibits sufficient spatial coherence to observe phase contrast. Detailed characterization of various sources including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. Other method, known as laser wakefield electron acceleration (LWFA), can produce up to GeV electron beams emitting radiation in collimated beam with a femtosecnond pulse duration. This approach was theoretically and experimentally examined at the PALS Center. The parameters of the PALS Ti:S laser interaction were studied by extensive particle-in-cell simulations with radiation post-processors in order to evaluate the capabilities of our system in this field. The extensions of those methods at the ELI Beamlines facility will enable to generate either higher X-ray energies or higher repetition rate. The architecture of such sources and their considered applications will be proposed.

  12. The X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.

    1981-01-01

    The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.

  13. The Ophiuchus cluster - A bright X-ray cluster of galaxies at low galactic latitude

    NASA Technical Reports Server (NTRS)

    Johnston, M. D.; Bradt, H. V.; Doxsey, R. E.; Marshall, F. E.; Schwartz, D. A.; Margon, B.

    1981-01-01

    The discovery of an extended X-ray source identified with a cluster of galaxies at low galactic latitude is reported. The source, designated the Ophiuchus cluster, was detected near 4U 1708-23 with the HEAO 1 Scanning Modulation Collimator, and identified with the cluster on the basis of extended X-ray size and positional coincidence on the ESO/SRC (J) plate of the region. An X-ray flux density in the region 2-10 keV of approximately 25 microJ was measured, along with an X-ray luminosity of 1.6 x 10 to the 45th ergs/sec and an X-ray core radius of approximately 4 arcmin (0.2 Mpc) for an assumed isothermal sphere surface brightness distribution. The X-ray spectrum in the range 2-10 keV obtained with the HEAO 1 A-2 instrument is well fit by a thermal bremsstrahlung model with kT = 8 keV and a 6.7-keV iron line of equivalent width 450 eV. The steep-spectrum radio source MSH 17-203 also appears to be associated with the cluster, which is the closest and brightest representative of the class of X-ray clusters with a dominant central galaxy.

  14. Laboratory Measurements Of Charge-exchange Produced X-ray Emission From K-shell Transitions In Hydrogenic And Helium-like Fe

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, P.; Boyce, K. R.; Chen, H.; Gu, M. F.; Kelley, R. L.; Kilbourne, C. A.; Porter, F. S.; Thorn, D.; Wargelin, B.

    2006-09-01

    We have used a microcalorimeter and solid state detectors to measure x-ray emission produced by charge exchange reactions between bare and hydrogenic Fe colliding with neutral helium, hydrogen, and nitrogen gas. We show the measured spectral signature produced by different neutral donors and compare our results to theory where available. We also compare our results to measurements of the Fe K line emission from the Galactic Center measured by the XIS on the Suzaku x-ray observatory. This comparison shows that charge exchange recombination between highly charged ions (either cosmic rays or thermal ions) and neutral gas is probably not the dominant source of diffuse line emission in the Galactic Center. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48, and is also supported by NASA APRA grants to LLNL, GSFC, Harvard-Smithsonian CfA, and Stanford University.

  15. Evidence For Quasi-Periodic X-ray Dips From An Ultraluminous X-ray Source: Implications for the Binary Motion

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    We report results from long-term (approx.1240 days) X-ray (0.3-8.0 keV) monitoring of the ultraluminous X-ray source NGC 5408 X-1 with the Swift/X-Ray Telescope. Here we expand on earlier work by Strohmayer (2009) who used only a part of the present data set. Our primary results are: (1) the discovery of sharp, quasi-periodic, energy-independent dips in the X-ray intensity that recur on average every 243 days, (2) the detection of an energy dependent (variability amplitude decreases with increasing energy), quasi-sinusoidal X-ray modulation with a period of 112.6 +/- 4 days, the amplitude of which weakens during the second half of the light curve, and (3) spectral evidence for an increase in photoelectric absorption during the last continuous segment of the data. We interpret the X-ray modulations within the context of binary motion in analogy to that seen in high-inclination accreting X-ray binaries. If correct, this implies that NGC 5408 X-1 is in a binary with an orbital period of 243 +/- 23 days, in contrast to the 115.5 day quasi-sinusoidal period previously reported by Strohmayer (2009). We discuss the overall X-ray modulation within the framework of accretion via Roche-lobe overflow of the donor star. In addition, if the X-ray modulation is caused by vertically structured obscuring material in the accretion disk, this would imply a high value for the inclination of the orbit. A comparison with estimates from accreting X-ray binaries suggests an inclination > or approx.70deg. We note that, in principle, a precessing accretion disk could also produce the observed X-ray modulations.

  16. Ultrafast X-ray Auger probing of photoexcited molecular dynamics

    DOE PAGES

    McFarland, B. K.; Farrell, J. P.; Miyabe, S.; ...

    2014-06-23

    Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towardsmore » high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.« less

  17. Evaluating Galactic Cosmic Ray Environment Models Using RaD-X Flight Data

    NASA Technical Reports Server (NTRS)

    Norman, R. B.; Mertens, C. J.; Slaba, T. C.

    2016-01-01

    Galactic cosmic rays enter Earth's atmosphere after interacting with the geomagnetic field. The primary galactic cosmic rays spectrum is fundamentally changed as it interacts with Earth's atmosphere through nuclear and atomic interactions. At points deeper in the atmosphere, such as at airline altitudes, the radiation environment is a combination of the primary galactic cosmic rays and the secondary particles produced through nuclear interactions. The RaD-X balloon experiment measured the atmospheric radiation environment above 20 km during 2 days in September 2015. These experimental measurements were used to validate and quantify uncertainty in physics-based models used to calculate exposure levels for commercial aviation. In this paper, the Badhwar-O'Neill 2014, the International Organization for Standardization 15390, and the German Aerospace Company galactic cosmic ray environment models are used as input into the same radiation transport code to predict and compare dosimetric quantities to RaD-X measurements. In general, the various model results match the measured tissue equivalent dose well, with results generated by the German Aerospace Center galactic cosmic ray environment model providing the best comparison. For dose equivalent and dose measured in silicon, however, the models were compared less favorably to the measurements.

  18. Double core-hole emissivity of transient aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse

    NASA Astrophysics Data System (ADS)

    Gao, Cheng; Zeng, Jiaolong; Yuan, Jianmin

    2015-11-01

    Emissivity of single core-hole (SCH) and double core-hole (DCH) states of aluminum plasmas produced in the interaction with ultra-intense x-ray laser pulse interaction are investigated systematically by solving the time-dependent rate equation implemented in the detailed level accounting approximation. We first demonstrated the plasma density effects on level populations and charge state distribution. Compared with recent experiments, it is shown that the plasma density effects play important roles in the evolution dynamics. Then we systematically investigated the emissivity of the transient aluminum plasmas produced by the x-ray laser pulses with a few photon energies above the threshold photon energy to create DCH states. For the laser photon energy where there are resonant absorptions (RA), 1s-np transitions with both full 1s and SCH 1s states play important roles in time evolution of the population and DCH emission spectroscopy. The significant RA effects are illustrated in detail for x-ray pulses, which creates the 1s-2p resonant absorption from the SCH states of Al VII. With the increase of the photon energy, the emissions from lower charge states become larger.

  19. High-resolution interference-monochromator for hard X-rays.

    PubMed

    Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Lee, Kun-Yuan; Liu, Shih-Lun; Chang, Shih-Lin

    2016-12-26

    An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.

  20. Soft x-ray reduction camera for submicron lithography

    DOEpatents

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  1. The Ultraluminous X-Ray Source X-37 Is a Background Quasar in the Antennae Galaxies

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Christopher, M. H.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2005-10-01

    In this Letter we report that a bright, X-ray source in the Antennae galaxies (NGC 4038/9), previously identified as an ultraluminous X-ray source (ULX), is in fact a background quasar. We identify an isolated infrared and optical counterpart within 0.3" +/- 0.5" of the X-ray source X-37. After acquiring an optical spectrum of its counterpart, we use the narrow [O III] and broad Hα emission lines to identify X-37 as a quasar at a redshift of z=0.26. Through a U, V, and Ks photometric analysis, we demonstrate that most of the observable light along this line of sight is from the quasar. We discuss the implications of this discovery and the importance of acquiring spectra for optical and IR counterparts to ULXs.

  2. Radio and X-ray variability of the nucleus of Centaurus A /NGC 5128/

    NASA Technical Reports Server (NTRS)

    Beall, J. H.; Rose, W. K.; Graf, W.; Price, K. M.; Dent, W. A.; Hobbs, R. W.; Dennis, B. R.; Crannell, C. J.; Conklin, E. K.; Ulich, B. L.

    1978-01-01

    Centaurus A (NGC 5128) has been observed at radio frequencies of 10.7, 31.4, 85.2, and 89 GHz and at X-ray energies greater than 20 keV. These observations, together with results reported by other workers, are interpreted in terms of models of the nucleus of this radio galaxy. The radio observations cover the period from 1973 through early 1977. The X-ray observations cover two 10-day intervals, one in July and August (1975) and the other in July and August 1976. The source exhibits significant variability in all the observed radio frequencies. The observed radio and X-ray intensities show some concurrent variations but do not track one another throughout the observations. A model of the source in which X-rays are produced by inverse Compton scattering of blackbody photons by relativistic electrons is proposed to explain these observations. The observed variations in the electromagnetic spectrum are shown to be consistent with adiabatic expansion of a trapped plasma in conjunction with turbulent accelerations of the relativistic electrons. Upper limits obtained with the model indicate that there may be sufficient energy available in the nucleus to form radio lobes with the same total energy as those already present.

  3. Radio emission from an ultraluminous x-ray source.

    PubMed

    Kaaret, Philip; Corbel, Stephane; Prestwich, Andrea H; Zezas, Andreas

    2003-01-17

    The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.

  4. A deep X-ray view of the bare AGN Ark 120. III. X-ray timing analysis and multiwavelength variability

    NASA Astrophysics Data System (ADS)

    Lobban, A. P.; Porquet, D.; Reeves, J. N.; Markowitz, A.; Nardini, E.; Grosso, N.

    2018-03-01

    We present the spectral/timing properties of the bare Seyfert galaxy Ark 120 through a deep ˜420 ks XMM-Newton campaign plus recent NuSTAR observations and a ˜6-month Swift monitoring campaign. We investigate the spectral decomposition through fractional rms, covariance and difference spectra, finding the mid- to long-time-scale (˜day-year) variability to be dominated by a relatively smooth, steep component, peaking in the soft X-ray band. Additionally, we find evidence for variable Fe K emission redward of the Fe Kα core on long time-scales, consistent with previous findings. We detect a clearly defined power spectrum which we model with a power law with a slope of α ˜ 1.9. By extending the power spectrum to lower frequencies through the inclusion of Swift and Rossi X-ray Timing Explorer data, we find tentative evidence of a high-frequency break, consistent with existing scaling relations. We also explore frequency-dependent Fourier time lags, detecting a negative (`soft') lag for the first time in this source with the 0.3-1 keV band lagging behind the 1-4 keV band with a time delay, τ, of ˜900 s. Finally, we analyse the variability in the optical and ultraviolet (UV) bands using the Optical/UV Monitor onboard XMM-Newton and the Ultra-Violet/Optical Telescope onboard Swift and search for time-dependent correlations between the optical/UV/X-ray bands. We find tentative evidence for the U-band emission lagging behind the X-rays with a time delay of τ = 2.4 ± 1.8 d, which we discuss in the context of disc reprocessing.

  5. Lunar elemental analysis obtained from the Apollo gamma-ray and X-ray remote sensing experiment

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Arnold, J. R.; Adler, I.; Metzger, A. E.; Reedy, R. C.

    1974-01-01

    Gamma ray and X-ray spectrometers carried in the service module of the Apollo 15 and 16 spacecraft were employed for compositional mapping of the lunar surface. The measurements involved the observation of the intensity and characteristics energy distribution of gamma rays and X-rays emitted from the lunar surface. A large scale compositional map of over 10 percent of the lunar surface was obtained from an analysis of the observed spectra. The objective of the X-ray experiment was to measure the K spectral lines from Mg, Al, and Si. Spectra were obtained and the data were reduced to Al/Si and Mg/Si intensity ratios and ultimately to chemical ratios. The objective of the gamma-ray experiment was to measure the natural and cosmic ray induced activity emission spectrum. At this time, the elemental abundances for Th, U, K, Fe, Ti, Si, and O have been determined over a number of major lunar regions.

  6. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  7. Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system.

    PubMed

    Gil, Youngmi; Oh, Youngdo; Cho, Moohyun; Namkung, Won

    2011-02-01

    We propose a method to identify materials in the dual energy X-ray (DeX) inspection system. This method identifies materials by combining information on the relative proportions T of high-energy and low-energy X-rays transmitted through the material, and the ratio R of the attenuation coefficient of the material when high-energy are used to that when low energy X-rays are used. In Monte Carlo N-Particle Transport Code (MCNPX) simulations using the same geometry as that of the real container inspection system, this T vs. R method successfully identified tissue-equivalent plastic and several metals. In further simulations, the single-shot mode of operating the accelerator led to better distinguishing of materials than the dual-shot system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Pixel detectors for x-ray imaging spectroscopy in space

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  9. Echo-Enabled X-Ray Vortex Generation

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Marinelli, A.

    2012-11-01

    A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.

  10. Simultaneous Monitoring of X-ray and Radio Variability in Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Haggard, Daryl; Capellupo, Daniel M.; Choux, Nicolas; Baganoff, Frederick K.; Bower, Geoffrey C.; Cotton, William D.; Degenaar, Nathalie; Dexter, Jason; Falcke, Heino; Fragile, P. Christopher Christopher; Heinke, Craig O.; Law, Casey J.; Markoff, Sera; Neilsen, Joseph; Ponti, Gabriele; Rea, Nanda; Yusef-Zadeh, Farhad

    2017-08-01

    We report on joint X-ray/radio campaigns targeting Sagittarius A*, including 9 contemporaneous Chandra and VLA observations. These campaigns are the most extensive of their kind and have allowed us to test whether the black hole’s variations in different parts of the electromagnetic spectrum are due to the same physical processes. We detect significant radio variability peaking >176 minutes after the brightest X-ray flare ever detected from Sgr A*. We also identify other potentially associated X-ray and radio variability, with radio peaks appearing <80 minutes after weaker X-ray flares. These results suggest that stronger X-ray flares lead to longer time lags in the radio. However, we also test the possibility that the variability at X-ray and at radio wavelengths are not temporally correlated, and show that the radio variations occurring around the time of X-ray flaring are not significantly greater than the overall radio flux variations. We also cross-correlate data from mismatched X-ray and radio epochs and obtain comparable correlations to the matched data. Hence, we find no overall statistical evidence that X-ray flares and radio variability are correlated, underscoring a need for more simultaneous, long duration X-ray-radio monitoring of Sgr A*.

  11. High-resolution radio and X-ray observations of the supernova remnant W28

    NASA Technical Reports Server (NTRS)

    Andrews, M. D.; Basart, J. P.; Lamb, R. C.; Becker, R. H.

    1983-01-01

    The present study has the objective to report the first high resolution radio and X-ray observations of the central part of the galactic supernova remnant, W28, taking into account the possible association of the remnant with the unidentified gamma-ray source, 2CG 006-00. This gamma-ray source is approximately two-thirds as bright as the Crab pulsar above 100 MeV, and has a somewhat flatter spectrum. Both the radio and X-ray observations reveal previously unknown aspects of W28 which support the possibility of W28 being a gamma-ray source. The radio data show a flat-spectrum, nonthermal component reminiscent of the Crab Nebula and Vela, both of which are confirmed gamma-ray sources. The X-ray observations reveal a compact source within W28, again suggestive of both the Crab and Vela. If the similarities among W28, the Crab Nebula, and the Vela remnant are valid, the gamma-ray source 2CG 00-00 should be studied for periodicity, the conclusive signature of a compact source of emission.

  12. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-08-12

    NASA’s Chandra X-Ray Observatory (CXO) was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. This image was produced by combining a dozen CXO observations made of a 130 light-year region in the center of the Milky Way over the last 5 years. The colors represent low (red), medium (green) and high (blue) energy x-rays. Thanks to Chandra's unique resolving power, astronomers have now been able to identify thousands of point-like x-ray sources due to neutron stars, black holes, white dwarfs, foreground stars, and background galaxies. What remains is a diffuse x-ray glow extending from the upper left to the lower right, along the direction of the disk of the galaxy. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandra program. (NASA/CXC/UCLA/M. Muno et al.)

  13. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  14. On the modulation of X ray fluxes in thunderstorms

    NASA Technical Reports Server (NTRS)

    Mccarthy, Michael P.; Parks, George K.

    1992-01-01

    The production of X-ray fluxes in thunderstorms has been attributed to bremsstrahlung. Assuming this, another question arises. How can a thunderstorm modulate the number density of electrons which are sufficiently energetic to produce X-rays? As a partial answer to this question, the effects of typical thunderstorm electric fields on a background population of energetic electrons, such as produced by cosmic ray secondaries and their decays or the decay of airborne radionuclides, are considered. The observed variation of X-ray flux is shown to be accounted for by a simple model involving typical electric field strengths. A necessary background electron number density is found from the model and is determined to be more than 2 orders of magnitude higher than that available from radon decay and a factor of 8 higher than that available from cosmic ray secondaries. The ionization enhancement due to energetic electrons and X-rays is discussed.

  15. Toward a fourth-generation x-ray source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monction, D. E.

    1999-05-19

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical workmore » over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.« less

  16. Accurate Modeling of X-ray Extinction by Interstellar Grains

    NASA Astrophysics Data System (ADS)

    Hoffman, John; Draine, B. T.

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  17. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must bemore » taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.« less

  18. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  19. The ever-surprising blazar OJ 287: multi-wavelength study and appearance of a new component in X-rays

    NASA Astrophysics Data System (ADS)

    Kushwaha, Pankaj; Gupta, Alok C.; Wiita, Paul J.; Pal, Main; Gaur, Haritma; de Gouveia Dal Pino, E. M.; Kurtanidze, O. M.; Semkov, E.; Damljanovic, G.; Hu, S. M.; Uemura, M.; Vince, O.; Darriba, A.; Gu, M. F.; Bachev, R.; Chen, Xu; Itoh, R.; Kawabata, M.; Kurtanidze, S. O.; Nakaoka, T.; Nikolashvili, M. G.; Sigua, L. A.; Strigachev, A.; Zhang, Z.

    2018-06-01

    We present a multi-wavelength spectral and temporal investigation of OJ 287 emission during its strong optical-to-X-ray activity between July 2016 - July 2017. The daily γ-ray fluxes from Fermi-LAT are consistent with no variability. The strong optical-to-X-ray variability is accompanied by a change in power-law spectral index of the X-ray spectrum from <2 to >2, with variations often associated with changes in optical polarization properties. Cross-correlations between optical-to-X-ray emission during four continuous segments show simultaneous optical-ultraviolet (UV) variations while the X-ray and UV/optical are simultaneous only during the middle two segments. In the first segment, the results suggest X-rays lag the optical/UV, while in the last segment X-rays lead by ˜ 5-6 days. The last segment also shows a systematic trend with variations appearing first at higher energies followed by lower energy ones. The LAT spectrum before the VHE activity is similar to preceding quiescent state spectrum while it hardens during VHE activity period and is consistent with the extrapolated VHE spectrum during the latter. Overall, the broadband spectral energy distributions (SEDs) during high activity periods are a combination of a typical OJ 287 SED and an HBL SED, and can be explained in a two-zone leptonic model, with the second zone located at parsec scales, beyond the broad line region, being responsible for the HBL-like spectrum. The change of polarization properties from systematic to chaotic and back to systematic, before, during and after the VHE activity, suggest dynamic roles for magnetic fields and turbulence.

  20. The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3

    NASA Technical Reports Server (NTRS)

    Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.

    2014-01-01

    The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.