Sample records for x-ray stacking analyses

  1. Design of a medium size x-ray mirror module based on thin glass foils

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni

    2016-07-01

    The hot slumping glass technology for X-ray mirror is under development and in the last years the results have been improved. Nustar is the first X-ray telescope based on slumped glass foils and it benefit is the low cost compared to the direct polishing of glass. With the slumping technique it is possible to maintain the glass mass to low values with respect to the direct polishing, but in general the angular resolution is worst. A further technique based on glass is the cold shaping of foils. The improved capabilities of manufacturing thin glass foils, pushed by the industrial application for screens, open new possibilities for X-ray mirror. The increase in strength of thin tempered glasses, the reduction of thickness errors and the good roughness of flat foils are potentially great advantages. In this paper a design of a mediumsize X-ray mirror module is analysed. It is based on integration of glass foils, stacked directly on a supporting structure that is part of the X-ray telescope using stiffening ribs as spacer between foils. The alignment of each stack is performed directly into the integration machine avoiding the necessity of the alignment of different stacked modules. A typical module (glass optic and metallic structure) provides an effective area of 10 cm2/kg at 1 keV (with a mass of about 50- 100 kg and a focal length of 10 m).

  2. The Chandra Deep Field-North Survey and the cosmic X-ray background.

    PubMed

    Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E

    2002-09-15

    Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.

  3. X-ray and neutron total scattering analysis of Hy·(Bi0.2Ca0.55Sr0.25)(Ag0.25Na0.75)Nb3O10·xH2O perovskite nanosheet booklets with stacking disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, Peter; Koch, Robert; Cladek, Bernadette

    Ion-exchanged Aurivillius materials form perovskite nanosheet booklets wherein well-defined bi-periodic sheets, with ~11.5 Å thickness, exhibit extensive stacking disorder. The perovskite layer contents were defined initially using combined synchrotron X-ray and neutron Rietveld refinement of the parent Aurivillius structure. The structure of the subsequently ion-exchanged material, which is disordered in its stacking sequence, is analyzed using both pair distribution function (PDF) analysis and recursive method simulations of the scattered intensity. Combined X-ray and neutron PDF refinement of supercell stacking models demonstrates sensitivity of the PDF to both perpendicular and transverse stacking vector components. Further, hierarchical ensembles of stacking models weightedmore » by a standard normal distribution are demonstrated to improve PDF fit over 1–25 Å. Recursive method simulations of the X-ray scattering profile demonstrate agreement between the real space stacking analysis and more conventional reciprocal space methods. The local structure of the perovskite sheet is demonstrated to relax only slightly from the Aurivillius structure after ion exchange.« less

  4. Improvement of density resolution in short-pulse hard x-ray radiographic imaging using detector stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borm, B.; Gärtner, F.; Khaghani, D.

    2016-09-15

    We demonstrate that stacking several imaging plates (IPs) constitutes an easy method to increase hard x-ray detection efficiency. Used to record x-ray radiographic images produced by an intense-laser driven hard x-ray backlighter source, the IP stacks resulted in a significant improvement of the radiograph density resolution. We attribute this to the higher quantum efficiency of the combined detectors, leading to a reduced photon noise. Electron-photon transport simulations of the interaction processes in the detector reproduce the observed contrast improvement. Increasing the detection efficiency to enhance radiographic imaging capabilities is equally effective as increasing the x-ray source yield, e.g., by amore » larger drive laser energy.« less

  5. Application of dual-energy x-ray techniques for automated food container inspection

    NASA Astrophysics Data System (ADS)

    Shashishekhar, N.; Veselitza, D.

    2016-02-01

    Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.

  6. Fresnel zone plate stacking in the intermediate field for high efficiency focusing in the hard X-ray regime

    DOE PAGES

    Gleber, Sophie -Charlotte; Wojcik, Michael; Liu, Jie; ...

    2014-11-05

    Focusing efficiency of Fresnel zone plates (FZPs) for X-rays depends on zone height, while the achievable spatial resolution depends on the width of the finest zones. FZPs with optimal efficiency and sub-100-nm spatial resolution require high aspect ratio structures which are difficult to fabricate with current technology especially for the hard X-ray regime. A possible solution is to stack several zone plates. To increase the number of FZPs within one stack, we first demonstrate intermediate-field stacking and apply this method by stacks of up to five FZPs with adjusted diameters. Approaching the respective optimum zone height, we maximized efficiencies formore » high resolution focusing at three different energies, 10, 11.8, and 25 keV.« less

  7. Trinuclear organooxotin assemblies from solvothermal synthesis reaction: Crystal structure, hydrogen bonding and π π stacking interaction

    NASA Astrophysics Data System (ADS)

    Ma, Chunlin; Sun, Junshan; Zhang, Rufen

    2007-05-01

    Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.

  8. Measuring silicon pore optics

    NASA Astrophysics Data System (ADS)

    Vacanti, Giuseppe; Barrière, Nicolas; Bavdaz, Marcos; Chatbi, Abdelhakim; Collon, Maximilien; Dekker, Daniëlle; Girou, David; Günther, Ramses; van der Hoeven, Roy; Krumrey, Michael; Landgraf, Boris; Müller, Peter; Schreiber, Swenja; Vervest, Mark; Wille, Eric

    2017-09-01

    While predictions based on the metrology (local slope errors and detailed geometrical details) play an essential role in controlling the development of the manufacturing processes, X-ray characterization remains the ultimate indication of the actual performance of Silicon Pore Optics (SPO). For this reason SPO stacks and mirror modules are routinely characterized at PTB's X-ray Pencil Beam Facility at BESSY II. Obtaining standard X-ray results quickly, right after the production of X-ray optics is essential to making sure that X-ray results can inform decisions taken in the lab. We describe the data analysis pipeline in operations at cosine, and how it allows us to go from stack production to full X-ray characterization in 24 hours.

  9. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, andmore » without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.« less

  10. X-Ray Diffuse Scattering Study of the Kinetics of Stacking Fault Growth and Annihilation in Boron-Implanted Silicon.

    NASA Astrophysics Data System (ADS)

    Patel, J. R.

    2002-06-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range 925 - 1025 C.

  11. Hidden Active Galactic Nuclei in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Paggi, Alessandro; Fabbiano, Giuseppina; Civano, Francesca; Pellegrini, Silvia; Elvis, Martin; Kim, Dong-Woo

    2016-06-01

    We present a stacking analysis of the complete sample of early-type galaxies (ETGs) in the Chandra COSMOS (C-COSMOS) survey, to explore the nature of the X-ray luminosity in the redshift and stellar luminosity ranges 0\\lt z\\lt 1.5 and {10}9\\lt {L}K/{L}⊙ \\lt {10}13. Using established scaling relations, we subtract the contribution of X-ray binary populations to estimate the combined emission of hot ISM and active galactic nuclei (AGNs). To discriminate between the relative importance of these two components, we (1) compare our results with the relation observed in the local universe {L}X,{gas}\\propto {L}K4.5 for hot gaseous halos emission in ETGs, and (2) evaluate the spectral signature of each stacked bin. We find two regimes where the non-stellar X-ray emission is hard, consistent with AGN emission. First, there is evidence of hard, absorbed X-ray emission in stacked bins including relatively high z (˜1.2) ETGs with average high X-ray luminosity ({L}X {- {LMXB}}≳ 6× {10}42 {{erg}} {{{s}}}-1). These luminosities are consistent with the presence of highly absorbed “hidden” AGNs in these ETGs, which are not visible in their optical-IR spectra and spectral energy distributions. Second, confirming the early indication from our C-COSMOS study of X-ray detected ETGs, we find significantly enhanced X-ray luminosity in lower stellar mass ETGs ({L}K≲ {10}11{L}⊙ ), relative to the local {L}X,{gas}\\propto {L}K4.5 relation. The stacked spectra of these ETGs also suggest X-ray emission harder than expected from gaseous hot halos. This emission is consistent with inefficient accretion {10}-5-{10}-4{\\dot{M}}{Edd} onto {M}{BH}˜ {10}6-{10}8 {M}⊙ .

  12. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-02

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure.

  13. An MR-based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy

    PubMed Central

    Fischer, Peter; Faranesh, Anthony; Pohl, Thomas; Maier, Andreas; Rogers, Toby; Ratnayaka, Kanishka; Lederman, Robert; Hornegger, Joachim

    2017-01-01

    In X-ray fluoroscopy, static overlays are used to visualize soft tissue. We propose a system for cardiac and respiratory motion compensation of these overlays. It consists of a 3-D motion model created from real-time MR imaging. Multiple sagittal slices are acquired and retrospectively stacked to consistent 3-D volumes. Slice stacking considers cardiac information derived from the ECG and respiratory information extracted from the images. Additionally, temporal smoothness of the stacking is enhanced. Motion is estimated from the MR volumes using deformable 3-D/3-D registration. The motion model itself is a linear direct correspondence model using the same surrogate signals as slice stacking. In X-ray fluoroscopy, only the surrogate signals need to be extracted to apply the motion model and animate the overlay in real time. For evaluation, points are manually annotated in oblique MR slices and in contrast-enhanced X-ray images. The 2-D Euclidean distance of these points is reduced from 3.85 mm to 2.75 mm in MR and from 3.0 mm to 1.8 mm in X-ray compared to the static baseline. Furthermore, the motion-compensated overlays are shown qualitatively as images and videos. PMID:28692969

  14. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    NASA Technical Reports Server (NTRS)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  15. Method to fabricate a tilted logpile photonic crystal

    DOEpatents

    Williams, John D.; Sweatt, William C.

    2010-10-26

    A method to fabricate a tilted logpile photonic crystal requires only two lithographic exposures and does not require mask repositioning between exposures. The mask and photoresist-coated substrate are spaced a fixed and constant distance apart using a spacer and the stack is clamped together. The stack is then tilted at a crystallographic symmetry angle (e.g., 45 degrees) relative to the X-ray beam and rotated about the surface normal until the mask is aligned with the X-ray beam. The stack is then rotated in plane by a small stitching angle and exposed to the X-ray beam to pattern the first half of the structure. The stack is then rotated by 180.degree. about the normal and a second exposure patterns the remaining half of the structure. The method can use commercially available DXRL scanner technology and LIGA processes to fabricate large-area, high-quality tilted logpile photonic crystals.

  16. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, Victor; Goodman, Claude A.

    1996-01-01

    Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.

  17. High resolution, multiple-energy linear sweep detector for x-ray imaging

    DOEpatents

    Perez-Mendez, V.; Goodman, C.A.

    1996-08-20

    Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.

  18. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; hide

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  19. X-ray obscured AGN in the GOODS-N

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, M.

    2010-07-01

    We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ/fR>1000. This population has been proposed to contain a significan fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is fla with Γ = 1+/-0.1 very similar to the stacked spectrum of the undetected DOGs (Γ = 0.8+/-0.2). However, many of our X-ray detected DOGs present only moderate absorption with column densities 1022

  20. Chandra stacking analysis of CANDELS galaxies at z>1.5

    NASA Astrophysics Data System (ADS)

    Civano, Francesca

    2016-09-01

    The goal of this proposal is to study the X-ray emission of non-X-ray detected galaxies at z>1.5, beyond the peak of stellar and nuclear activity, in combination with galaxy global properties, such as stellar mass and star formation activity and their morphological classification. To achieve this goal, we will select galaxies in CANDELS. Making use of the 5 X-ray surveys with different depths (160 ks for COSMOS, 800 ks for AEGIS-XD and X-UDS, 2 Ms for GOODS-N and 4 (8) Ms GOODS-S) available in these famous fields, we will be able to reach X-ray luminosities where stellar emission dominate the nuclear one. This analysis will extend to z>1.5, the results obtained performing stacking analysis solely using the Chandra COSMOS Legacy Survey at lower redshift.

  1. Stacked, filtered multi-channel X-ray diode array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustnessmore » and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.« less

  2. More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Jacobsen, Chris

    Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trouille, L.; Barger, A. J.; Tremonti, C.

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([O III]/H{beta} versus [N II]/H{alpha}, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by active galactic nucleus (AGN) activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [N II]{lambda}6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g - z color, [Ne III]{lambda}3869, and [O II]{lambda}{lambda}3726 + 3729 and can be used for galaxies out to z < 1.4.more » The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray-selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray-selected AGNs as BPT-SF. We use the Great Observatories Origins Deep Survey North and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (({Gamma}{sub eff}) = 1.0{sup +0.4}{sub -0.4}) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime.« less

  4. Reconstitution of SNARE proteins into solid-supported lipid bilayer stacks and X-ray structure analysis.

    PubMed

    Xu, Yihui; Kuhlmann, Jan; Brennich, Martha; Komorowski, Karlo; Jahn, Reinhard; Steinem, Claudia; Salditt, Tim

    2018-02-01

    SNAREs are known as an important family of proteins mediating vesicle fusion. For various biophysical studies, they have been reconstituted into supported single bilayers via proteoliposome adsorption and rupture. In this study we extended this method to the reconstitution of SNAREs into supported multilamellar lipid membranes, i.e. oriented multibilayer stacks, as an ideal model system for X-ray structure analysis (X-ray reflectivity and diffraction). The reconstitution was implemented through a pathway of proteomicelle, proteoliposome and multibilayer. To monitor the structural evolution in each step, we used small-angle X-ray scattering for the proteomicelles and proteoliposomes, followed by X-ray reflectivity and grazing-incidence small-angle scattering for the multibilayers. Results show that SNAREs can be successfully reconstituted into supported multibilayers, with high enough orientational alignment for the application of surface sensitive X-ray characterizations. Based on this protocol, we then investigated the effect of SNAREs on the structure and phase diagram of the lipid membranes. Beyond this application, this reconstitution protocol could also be useful for X-ray analysis of many further membrane proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Accreting Binary Populations in the Earlier Universe

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2010-01-01

    It is now understood that X-ray binaries dominate the hard X-ray emission from normal star-forming galaxies. Thanks to the deepest (2-4 Ms) Chandra surveys, such galaxies are now being studied in X-rays out to z approximates 4. Interesting X-ray stacking results (based on 30+ galaxies per redshift bin) suggest that the mean rest-frame 2-10 keV luminosity from z=3-4 Lyman break galaxies (LBGs), is comparable to the most powerful starburst galaxies in the local Universe. This result possibly indicates a similar production mechanism for accreting binaries over large cosmological timescales. To understand and constrain better the production of X-ray binaries in high-redshift LBGs, we have utilized XMM-Newton observations of a small sample of z approximates 0.1 GALEX-selected Ultraviolet-Luminous Galaxies (UVLGs); local analogs to high-redshift LBGs. Our observations enable us to study the X-ray emission from LBG-like galaxies on an individual basis, thus allowing us to constrain object-to-object variances in this population. We supplement these results with X-ray stacking constraints using the new 3.2 Ms Chandra Deep Field-South (completed spring 2010) and LBG candidates selected from HST, Swift UVOT, and ground-based data. These measurements provide new X-ray constraints that sample well the entire z=0-4 baseline

  6. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  7. Simulating x-ray telescopes with McXtrace: a case study of ATHENA's optics

    NASA Astrophysics Data System (ADS)

    Ferreira, Desiree D. M.; Knudsen, Erik B.; Westergaard, Niels J.; Christensen, Finn E.; Massahi, Sonny; Shortt, Brian; Spiga, Daniele; Solstad, Mathias; Lefmann, Kim

    2016-07-01

    We use the X-ray ray-tracing package McXtrace to simulate the performance of X-ray telescopes based on Silicon Pore Optics (SPO) technologies. We use as reference the design of the optics of the planned X-ray mission Advanced Telescope for High ENergy Astrophysics (ATHENA) which is designed as a single X-ray telescope populated with stacked SPO substrates forming mirror modules to focus X-ray photons. We show that is possible to simulate in detail the SPO pores and qualify the use of McXtrace for in-depth analysis of in-orbit performance and laboratory X-ray test results.

  8. Hydrogen Embrittlement And Stacking-Fault Energies

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  9. Effect of interfacial SiO2- y layer and defect in HfO2- x film on flat-band voltage of HfO2- x /SiO2- y stacks for backside-illuminated CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Na, Heedo; Lee, Jimin; Jeong, Juyoung; Kim, Taeho; Sohn, Hyunchul

    2018-03-01

    In this study, the effect of oxygen gas fraction during deposition of a hafnium oxide (HfO2- x ) film and the influence of the quality of the SiO2- y interlayer on the nature of flat-band voltage ( V fb) in TiN/HfO/SiO2- y /p-Si structures were investigated. X-ray photoemission spectroscopy analysis showed that the non-lattice oxygen peak, indicating an existing oxygen vacancy, increased as the oxygen gas fraction decreased during sputtering. From C- V and J- E analyses, the V fb behavior was significantly affected by the characteristics of the SiO2- y interlayer and the non-lattice oxygen fraction in the HfO2- x films. The HfO2- x /native SiO2- y stack presented a V fb of - 1.01 V for HfO2- x films with an oxygen gas fraction of 5% during sputtering. Additionally, the V fb of the HfO2- x /native SiO2- y stack could be controlled from - 1.01 to - 0.56 V by changing the deposition conditions of the HfO2- x film with the native SiO2- y interlayer. The findings of this study can be useful to fabricate charge-accumulating layers for backside-illuminated image sensor devices.

  10. X-ray diffuse scattering study of the kinetics of stacking fault growth and annihilation in boron-implanted silicon

    NASA Astrophysics Data System (ADS)

    Luebbert, D.; Arthur, J.; Sztucki, M.; Metzger, T. H.; Griffin, P. B.; Patel, J. R.

    2002-10-01

    Stacking faults in boron-implanted silicon give rise to streaks or rods of scattered x-ray intensity normal to the stacking fault plane. We have used the diffuse scattering rods to follow the growth of faults as a function of time when boron-implanted silicon is annealed in the range of 925 to 1025 degC. From the growth kinetics we obtain an activation energy for interstitial migration in silicon: EI=1.98plus-or-minus0.06 eV. Fault intensity and size versus time results indicate that faults do not shrink and disappear, but rather are annihilated by a dislocation reaction mechanism.

  11. X-ray Obscured AGN in the GOODS-N

    NASA Astrophysics Data System (ADS)

    Georgantopoulos, I.; Akylas, A.; Rovilos, E.; Xilouris, E.

    2010-07-01

    We explore the X-ray properties of the Dust Obscured Galaxies (DOGs) i.e. sources with f24μ / fR > 1000. This population has been proposed to contain a significant fraction of Compton-thick sources at high redshift. In particular we study the X-ray spectra of the 14 DOGS detected in the CDFN 2Ms exposure. Their stacked spectrum is flat with Γ=1±0.1 very similar to the stacked spectrum of the undetected DOGs (Γ=0.8±0.2). However, most of our X-ray detected DOGs present only moderate absorption with column densities 1022 < NH < 1024 cm-2. Only three sources (20%) present very flat spectra and are probably associated with reflection dominated Compton-thick sources. Our finding is rather at odds with papers which claim that the vast majority of DOGs are associated with Compton-thick sources. In any case, such sources at high redshift (z > 2) present limited interest for the X-ray background: the population synthesis models predict a contribution, for the z > 2 Compton-thick AGN, to the X-ray background flux at 30 keV, of less than 1 percent.

  12. X-ray versus infrared selection of distant galaxy clusters: A case study using the XMM-LSS and SpARCS cluster samples

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.

    2018-04-01

    We present a comparison of two samples of z > 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray selected XMM-LSS distant cluster survey and 92 clusters from the optical-MIR selected SpARCS cluster survey. Both samples are selected from the same approximately 9 square degree sky area and we examine them using common XMM-Newton, Spitzer-SWIRE and CFHT Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: a) X-ray bright, b) X-ray faint, MIR bright, and c) X-ray faint, MIR faint clusters. We determine that X-ray and MIR selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of BCG-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally-concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.

  13. Revisiting Weak Emission-line Quasars with a Simple Approach to Deduce their Nature and the Tracers of X-ray Weakness

    NASA Astrophysics Data System (ADS)

    Ni, Qingling

    2018-01-01

    We present an X-ray and multi-wavelength study of 17 “bridge” weak emission-line quasars (WLQs) and 16 “extreme” WLQs naturally divided by their C IV rest equivalent widths (REWs), which constitute our clean WLQ sample together. New Chandra 3.1-4.8 ks observations were obtained for 14 objects while the other 19 have archival X-ray observations. 4 of the 17 bridge WLQs appear to be X-ray weak, while 9 of the 16 extreme WLQs appear to be X-ray weak. The X-ray weak fraction in the bridge sample (23.5%) is lower than in the extreme sample(56.3%), indicating the fraction of X-ray weak objects along with rising C IV REWs.X-ray stacking analysis is performed for the X-ray weak WLQs in the clean sample. We measured a relatively hard (Γeff=1.37) effective power-law photon index for a stack of the X-ray weak subsample, suggesting X-ray absorption due to shielding material inside the broad emission-line region (BELR). We proposed a geometrically and optically thick inner accretion disk as the natural shield, which could also explain the behavior of the X-ray weak fraction along with C IV REW.Futhermore, we ran Peto-Prentice tests to assess if the distributions of optical-UV spectral properties are different between X-ray weak WLQs and X-ray normal WLQs. We also examined correlations between △αOX and optical-UV spectral properties. The C IV REW, C IV blueshift, C IV FWHM, REWs of the Si IV, λ1900, Fe II, and Mg II emission features, and the relative SDSS color △(g - i) are examined in our study. △(g - i) turned out to be the most effective tracer of X-ray weakness.

  14. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  15. In Situ Ramp Anneal X-ray Diffraction Study of Atomic Layer Deposited Ultrathin TaN and Ta 1-x Al x N y Films for Cu Diffusion Barrier Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S.; Dey, S.; Yu, K.

    2016-01-01

    Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less

  16. Applications of High Throughput (Combinatorial) Methodologies to Electronic, Magnetic, Optical, and Energy-Related Materials

    DTIC Science & Technology

    2013-06-17

    of the films without having to fabricate capacitors. In addition, the use of X - ray diffraction (XRD) analysis enabled Chikyow et al.40 to identify an...effects of Al doping and annealing on the thermal stabil- ity of the Y2O3/Si gate stack were studied by X - ray photoemission spectroscopy (XPS) and X - ray ...the major diffraction features in the phase distribution. For a given structural phase, the X - ray peak intensity allows one to track the compositional

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu-Peng; Zhang, Shu; Zhang, Shuang-Nan

    We report the discovery of an anti-correlation between the soft and hard X-ray light curves of the X-ray binary Aql X-1 when bursting. This behavior may indicate that the corona is cooled by the soft X-ray shower fed by the type-I X-ray bursts, and that this process happens within a few seconds. Stacking the Aql X-1 light curves of type-I bursts, we find a shortage in the 40-50 keV band, delayed by 4.5 ± 1.4 s with respect to the soft X-rays. The photospheric radius expansion bursts are different in that neither a shortage nor an excess shows up inmore » the hard X-ray light curve.« less

  18. Theoretical and Monte Carlo optimization of a stacked three-layer flat-panel x-ray imager for applications in multi-spectral diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.

    2016-03-01

    We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.

  19. Stacked Fresnel Zone Plates for High Energy X-rays

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Vaughan, Gavin; Di Michiel, Marco; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim

    2007-01-01

    A stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates (FZP) at high energies. Two identical Si chips each of which containing 9 FZPs were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips were bonded together with slow solidification speed epoxy glue. A technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were experimentally tested to focus 15 and 50 keV x rays. The gain in the efficiency by factor 2.5 was demonstrated at 15 keV. The focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing FZPs was discussed.

  20. Hard X-ray focusing by stacked Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    Snigireva, Irina; Snigirev, Anatoly; Kohn, Viktor; Yunkin, Vyacheslav; Grigoriev, Maxim; Kuznetsov, Serguei; Vaughan, Gavin; Di Michiel, Marco

    2007-09-01

    Stacking technique was developed in order to increase focusing efficiency of Fresnel zone plates at high energies. Two identical Si chips each of which containing Fresnel zone plates were used for stacking. Alignment of the chips was achieved by on-line observation of the moiré pattern from the two zone plates. The formation of moiré patterns was studied theoretically and experimentally at different experimental conditions. To provide the desired stability Si-chips with zone plates were bonded together with slow solidification speed epoxy glue. Technique of angular alignment in order to compensate a linear displacement in the process of gluing was proposed. Two sets of stacked FZPs were produced and experimentally tested to focus 15 and 50 keV X-rays. Gain in the efficiency by factor 2.5 was demonstrated at 15 keV. Focal spot of 1.8 μm vertically and 14 μm horizontally with 35% efficiency was measured at 50 keV. Forecast for the stacking of nanofocusing Fresnel zone plates was discussed.

  1. The space density of Compton-thick AGN at z ≈ 0.8 in the zCOSMOS-Bright Survey

    NASA Astrophysics Data System (ADS)

    Vignali, C.; Mignoli, M.; Gilli, R.; Comastri, A.; Iwasawa, K.; Zamorani, G.; Mainieri, V.; Bongiorno, A.

    2014-11-01

    Context. The obscured accretion phase in black hole growth is a crucial ingredient in many models linking the active galactic nuclei (AGN) activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing, although several attempts in this direction have been carried out recently, mostly in the hard X-rays and at mid-infrared wavelengths. Aims: The purpose of this work is to assess whether the [Ne v] emission line at 3426 Å can reliably pick up obscured AGN up to z ≈ 1 by assuming that it is a reliable proxy of the intrinsic AGN luminosity and using moderately deep X-ray data to characterize the amount of obscuration. Methods: A sample of 69 narrow-line (Type 2) AGN at z ≈ 0.65-1.20 were selected from the 20k-zCOSMOS Bright galaxy sample on the basis of the presence of the [Ne v]3426 Å emission. The X-ray properties of these galaxies were then derived using the Chandra-COSMOS coverage of the field; the X-ray-to-[Ne v] flux ratio, coupled with X-ray spectral and stacking analyses, was then used to infer whether Compton-thin or Compton-thick absorption is present in these sources. Then the [Ne v] luminosity function was computed to estimate the space density of Compton-thick AGN at z ≈ 0.8. Results: Twenty-three sources were detected by Chandra, and their properties are consistent with moderate obscuration (on average, ≈a few × 1022 cm-2). The X-ray properties of the remaining 46 X-ray undetected Type 2 AGN (among which we expect to find the most heavily obscured objects) were derived using X-ray stacking analysis. Current data, supported by Monte Carlo simulations, indicate that a fraction as high as ≈40% of the present sample is likely to be Compton thick. The space density of Compton-thick AGN with logL2-10 keV> 43.5 at z = 0.83 is ΦThick = (9.1 ± 2.1) × 10-6 Mpc-3, in good agreement with both X-ray background model expectations and the previously measured space density for objects in a similar redshift and luminosity range. We regard our selection technique for Compton-thick AGN as clean but not complete, since even a mild extinction in the narrow-line region can suppress [Ne v] emission. Therefore, our estimate of their space density should be considered as a lower limit.

  2. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  3. High-redshift Extremely Red Quasars in X-Rays

    NASA Astrophysics Data System (ADS)

    Goulding, Andy D.; Zakamska, Nadia L.; Alexandroff, Rachael M.; Assef, Roberto J.; Banerji, Manda; Hamann, Fred; Wylezalek, Dominika; Brandt, William N.; Greene, Jenny E.; Lansbury, George B.; Pâris, Isabelle; Richards, Gordon; Stern, Daniel; Strauss, Michael A.

    2018-03-01

    Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ∼ 1047 erg s‑1 at z = 1.5–3.2 with evidence for high-velocity (v ≥slant 1000 km s‑1) [O III] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm‑2, including four Compton-thick candidates (N H ≥slant 1024 cm‑2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ∼ 8 × 1023 cm‑2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s‑1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds.

  4. X-ray analysis of temperature induced defect structures in boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Kegel, I.; Tilke, A.; Rouvière, J. L.; Lübbert, D.; Arthur, J.; Patel, J. R.

    2002-10-01

    We demonstrate the application of surface sensitive diffuse x-ray scattering under the condition of grazing incidence and exit angles to investigate growth and dissolution of near-surface defects after boron implantation in silicon(001) and annealing. Silicon wafers were implanted with a boron dose of 6×1015 ions/cm2 at 32 keV and went through different annealing treatments. From the diffuse intensity close to the (220) surface Bragg peak we reveal the nature and kinetic behavior of the implantation induced defects. Analyzing the q dependence of the diffuse scattering, we are able to distinguish between point defect clusters and extrinsic stacking faults on {111} planes. Characteristic for stacking faults are diffuse x-ray intensity streaks along <111> directions, which allow for the determination of their growth and dissolution kinetics. For the annealing conditions of our crystals, we conclude that the kinetics of growth can be described by an Ostwald ripening model in which smaller faults shrink at the expense of the larger stacking faults. The growth is found to be limited by the self-diffusion of silicon interstitials. After longer rapid thermal annealing the stacking faults disappear almost completely without shrinking, most likely by transformation into perfect loops via a dislocation reaction. This model is confirmed by complementary cross-sectional transmission electron microscopy.

  5. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  6. The X-CLASS-redMaPPer galaxy cluster comparison. I. Identification procedures

    NASA Astrophysics Data System (ADS)

    Sadibekova, T.; Pierre, M.; Clerc, N.; Faccioli, L.; Gastaud, R.; Le Fevre, J.-P.; Rozo, E.; Rykoff, E.

    2014-11-01

    Context. This paper is the first in a series undertaking a comprehensive correlation analysis between optically selected and X-ray-selected cluster catalogues. The rationale of the project is to develop a holistic picture of galaxy clusters utilising optical and X-ray-cluster-selected catalogues with well-understood selection functions. Aims: Unlike most of the X-ray/optical cluster correlations to date, the present paper focuses on the non-matching objects in either waveband. We investigate how the differences observed between the optical and X-ray catalogues may stem from (1) a shortcoming of the detection algorithms; (2) dispersion in the X-ray/optical scaling relations; or (3) substantial intrinsic differences between the cluster populations probed in the X-ray and optical bands. The aim is to inventory and elucidate these effects in order to account for selection biases in the further determination of X-ray/optical cluster scaling relations. Methods: We correlated the X-CLASS serendipitous cluster catalogue extracted from the XMM archive with the redMaPPer optical cluster catalogue derived from the Sloan Digital Sky Survey (DR8). We performed a detailed and, in large part, interactive analysis of the matching output from the correlation. The overlap between the two catalogues has been accurately determined and possible cluster positional errors were manually recovered. The final samples comprise 270 and 355 redMaPPer and X-CLASS clusters, respectively. X-ray cluster matching rates were analysed as a function of optical richness. In the second step, the redMaPPer clusters were correlated with the entire X-ray catalogue, containing point and uncharacterised sources (down to a few 10-15 erg s-1 cm-2 in the [0.5-2] keV band). A stacking analysis was performed for the remaining undetected optical clusters. Results: We find that all rich (λ ≥ 80) clusters are detected in X-rays out to z = 0.6. Below this redshift, the richness threshold for X-ray detection steadily decreases with redshift. Likewise, all X-ray bright clusters are detected by redMaPPer. After correcting for obvious pipeline shortcomings (about 10% of the cases both in optical and X-ray), ~50% of the redMaPPer (down to a richness of 20) are found to coincide with an X-CLASS cluster; when considering X-ray sources of any type, this fraction increases to ~80%; for the remaining objects, the stacking analysis finds a weak signal within 0.5 Mpc around the cluster optical centres. The fraction of clusters totally dominated by AGN-type emission appears to be a few percent. Conversely, ~40% of the X-CLASS clusters are identified with a redMaPPer (down to a richness of 20) - part of the non-matches being due to the X-CLASS sample extending further out than redMaPPer (z< 1.5 vs. z< 0.6), but extending the correlation down to a richness of 5 raises the matching rate to ~65%. Conclusions: This state-of-the-art study involving two well-validated cluster catalogues has shown itself to be complex, and it points to a number of issues inherent to blind cross-matching, owing both to pipeline shortcomings and cluster peculiar properties. These can only been accounted for after a manual check. The combined X-ray and optical scaling relations will be presented in a subsequent article.

  7. Full-aperture x-ray tests of Kirkpatrick-Baez modules: preliminary results

    NASA Astrophysics Data System (ADS)

    Pina, L.; Marsikova, V.; Hudec, R.; Inneman, A.; Marsik, J.; Cash, W.; Shipley, A.; Zeiger, B.

    2011-05-01

    We report on preliminary results of full aperture X-ray optical tests at the X-ray test facility at the University of Colorado (USA) of four test modules of Kirkpatrick-Baez (KB) X-ray optical systems performed in August 2010. Direct experimental comparisons were made between gold-coated optics of two novel substrates: glass foils and silicon wafers. The preliminary results are promising, with full-width half-maxima of full stacks being of order of 30 arcsec in 2D full arrangement. These results justify further efforts to improve KB optics for use in low-cost, high-performance space-borne astronomical imaging instruments for X-ray wavelengths.

  8. X-ray versus infrared selection of distant galaxy clusters: a case study using the XMM-LSS and SpARCS cluster samples

    NASA Astrophysics Data System (ADS)

    Willis, J. P.; Ramos-Ceja, M. E.; Muzzin, A.; Pacaud, F.; Yee, H. K. C.; Wilson, G.

    2018-07-01

    We present a comparison of two samples of z> 0.8 galaxy clusters selected using different wavelength-dependent techniques and examine the physical differences between them. We consider 18 clusters from the X-ray-selected XMM Large Scale Structure (LSS) distant cluster survey and 92 clusters from the optical-mid-infrared (MIR)-selected Spitzer Adaptation of the Red Sequence Cluster survey (SpARCS) cluster survey. Both samples are selected from the same approximately 9 sq deg sky area and we examine them using common XMM-Newton, Spitizer Wide-Area Infrared Extra-galactic (SWIRE) survey, and Canada-France-Hawaii Telescope Legacy Survey data. Clusters from each sample are compared employing aperture measures of X-ray and MIR emission. We divide the SpARCS distant cluster sample into three sub-samples: (i) X-ray bright, (ii) X-ray faint, MIR bright, and (iii) X-ray faint, MIR faint clusters. We determine that X-ray- and MIR-selected clusters display very similar surface brightness distributions of galaxy MIR light. In addition, the average location and amplitude of the galaxy red sequence as measured from stacked colour histograms is very similar in the X-ray- and MIR-selected samples. The sub-sample of X-ray faint, MIR bright clusters displays a distribution of brightest cluster galaxy-barycentre position offsets which extends to higher values than all other samples. This observation indicates that such clusters may exist in a more disturbed state compared to the majority of the distant cluster population sampled by XMM-LSS and SpARCS. This conclusion is supported by stacked X-ray images for the X-ray faint, MIR bright cluster sub-sample that display weak, centrally concentrated X-ray emission, consistent with a population of growing clusters accreting from an extended envelope of material.

  9. Surface-treated self-standing curved crystals as high-efficiency elements for X- and γ-ray optics: theory and experiment.

    PubMed

    Bonnini, Elisa; Buffagni, Elisa; Zappettini, Andrea; Doyle, Stephen; Ferrari, Claudio

    2015-06-01

    The efficiency of a Laue lens for X- and γ-ray focusing in the energy range 60-600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X-ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDPs) are considered for the realization of a focusing system for γ-rays, owing to their high diffraction efficiency in a predetermined angular range. In this work, a comparison of the efficiency of CDP crystals and Cu and Au mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. In order to increase the efficiency of the lens further, a stack of several CDP crystals is proposed as an optical element. CDP crystals were obtained by a surface-damage method, and a stack of two surface-damaged bent Si crystals was prepared and tested. Rocking curves of the stack were performed with synchrotron radiation at 19 keV to check the lattice alignment: they exhibited only one diffraction peak.

  10. The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars

    NASA Astrophysics Data System (ADS)

    Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2018-06-01

    We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

  11. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  12. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Scott, A. E.

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars,more » i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ{sub eff} ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.« less

  13. Stacked, Filtered Multi-Channel X-Ray Diode Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark

    2015-08-01

    This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less

  14. Reversible monolayer-to-crystalline phase transition in amphiphilic silsesquioxane at the air-water interface

    DOE PAGES

    Banerjee, R.; Sanyal, M. K.; Bera, M. K.; ...

    2015-02-17

    We report on the counter intuitive reversible crystallisation of two-dimensional monolayer of Trisilanolisobutyl Polyhedral Oligomeric SilSesquioxane (TBPOSS) on water surface using synchrotron x-ray scattering measurements. Amphiphilic TBPOSS form rugged monolayers and Grazing Incidence X-ray Scattering (GIXS) measurements reveal that the in-plane inter-particle correlation peaks, characteristic of two-dimensional system, observed before transition is replaced by intense localized spots after transition. The measured x-ray scattering data of the non-equilibrium crystalline phase on the air-water interface could be explained with a model that assumes periodic stacking of the TBPOSS dimers. These crystalline stacking relaxes upon decompression and the TBPOSS layer retains its initialmore » monolayer state. The existence of these crystals in compressed phase is confirmed by atomic force microscopy measurements by lifting the materials on a solid substrate.« less

  15. Low Temperature X-Ray Diffraction Study on CaFe2As2

    NASA Astrophysics Data System (ADS)

    Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team

    For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas

  16. Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks and the Effects on Thermal, Electrical, and Mechanical Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagle, Kurtis P.; Koeppel, Brian J.; Sun, Xin

    2007-04-30

    Numerical simulations were performed to determine the effect that varying the percent on-cell steam-methane reformation would have on the thermal, electrical, and mechanical performance of generic, planar solid oxide fuel cell stacks. The study was performed using three-dimensional model geometries for cross-, co-, and counter-flow configuration stacks of 10x10- and 20x20-cm cell sizes. The analysis predicted the stress and temperature difference would be minimized for the 10x10-cm counter- and cross-flow stacks when 40 to 50% of the reformation reaction occurred on the anode. Gross electrical power density was virtually unaffected by the reforming. The co-flow stack benefited most from themore » on-cell reforming and had the lowest anode stresses of the 20x20-cm stacks. The analyses also suggest that airflows associated with 15% air utilization may be required for cooling the larger (20x20-cm) stacks.« less

  17. Low-Q peak in X-ray patterns of choline-phenylalanine and -homophenylalanine: A combined effect of chain and stacking

    NASA Astrophysics Data System (ADS)

    Campetella, Marco; Martino, Delia Chillura; Scarpellini, Eleonora; Gontrani, Lorenzo

    2016-09-01

    In this contribution we report for the first time the X-ray patterns of choline-phenylalanine and choline-homophenylalanine ionic liquids. The presence of a low Q peak in both systems is another evidence that a long alkyl chain is not always needed to establish a nanodomain segregation in the liquid sufficient to be revealed by the diffraction experiment. These new data are compared with the diffraction patterns and the theoretical calculations of other choline-aminoacid ionic liquids recently reported. A significant role might be played by the stacking interactions between aromatic rings.

  18. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    PubMed

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  19. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    PubMed Central

    Antipov, S.; Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059

  20. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S.; Baryshev, Sergey; Butler, J. E.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources formore » secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.« less

  1. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagneticmore » behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.« less

  2. The OPTX Project. V. Identifying Distant Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Trouille, L.; Barger, A. J.; Tremonti, C.

    2011-11-01

    The Baldwin, Phillips, and Terlevich emission-line ratio diagnostic ([O III]/Hβ versus [N II]/Hα, hereafter BPT diagram) efficiently separates galaxies whose signal is dominated by star formation (BPT-SF) from those dominated by active galactic nucleus (AGN) activity (BPT-AGN). Yet this BPT diagram is limited to z < 0.5, the redshift at which [N II]λ6584 leaves the optical spectral window. Using the Sloan Digital Sky Survey (SDSS), we construct a new diagnostic, or TBT diagram, that is based on rest-frame g - z color, [Ne III]λ3869, and [O II]λλ3726 + 3729 and can be used for galaxies out to z < 1.4. The TBT diagram identifies 98.7% of the SDSS BPT-AGN as TBT-AGN and 97% of the SDSS BPT-SF as TBT-SF. Furthermore, it identifies 97% of the OPTX Chandra X-ray-selected AGNs as TBT-AGN. This is in contrast to the BPT diagram, which misidentifies 20% of X-ray-selected AGNs as BPT-SF. We use the Great Observatories Origins Deep Survey North and Lockman Hole galaxy samples, with their accompanying deep Chandra imaging, to perform X-ray and infrared stacking analyses to further validate our TBT-AGN and TBT-SF selections; that is, we verify the dominance of AGN activity in the former and star formation activity in the latter. Finally, we address the inclusion of the majority of the BPT-comp (sources lying between the BPT-SF and BPT-AGN regimes) in our TBT-AGN regime. We find that the stacked BPT-comp source is X-ray hard (langΓeffrang = 1.0+0.4 -0.4) and has a high X-ray luminosity to total infrared luminosity ratio. This suggests that, on average, the X-ray signal in BPT-comp is dominated by obscured or low accretion rate AGN activity rather than by star formation, supporting their inclusion in the TBT-AGN regime. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  3. X-ray Emission Line Spectroscopy of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Wang, Daniel

    What are the origins of the diffuse soft X-ray emission from non-AGN galaxies? Preliminary analysis of XMM-Newton RGS spectra shows that a substantial fraction of the emission cannot arise from optically-thin thermal plasma, as commonly assumed, and may originate in charge exchange at the interface with neutral gas. We request the support for a comprehensive observing, data analysis, and modeling program to spectroscopically determine the origins of the emission. First, we will use our scheduled XMM-Newton AO-10 368 ks observations of the nearest compact elliptical galaxy M32 to obtain the first spectroscopic calibration of the cumulative soft X-ray emission from the old stellar population and will develop a spectral model for the charge exchange, as well as analysis tools to measure the spatial and kinematic properties of the X-ray line- emitting plasma. Second, we will characterize the truly diffuse emission from the hot plasma and/or its interplay with the neutral gas in a sample of galactic spheroids and active star forming/starburst regions in nearby galaxies observed by XMM-Newton. In particular, we will map out the spatial distributions of key emission lines and measure (or tightly constrain) the kinematics of hot plasma outflows for a few X-ray-emitting regions with high-quality RGS data. For galaxies with insufficient counting statistics in individual emission lines, we will conduct a spectral stacking analysis to constrain the average properties of the X-ray-emitting plasma. We will use the results of these X-ray spectroscopic analyses, together with complementary X-ray CCD imaging/spectral data and observations in other wavelength bands, to test the models of the emission. In addition to the charge exchange, alternative scenarios such as resonance scattering and relic AGN photo-ionization will also be examined for suitable regions. These studies are important to the understanding of the relationship between the diffuse soft X-ray emission and various high-energy feedback processes of the galaxies.

  4. Galaxy-scale Bars in Late-type Sloan Digital Sky Survey Galaxies Do Not Influence the Average Accretion Rates of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Goulding, A. D.; Matthaey, E.; Greene, J. E.; Hickox, R. C.; Alexander, D. M.; Forman, W. R.; Jones, C.; Lehmer, B. D.; Griffis, S.; Kanek, S.; Oulmakki, M.

    2017-07-01

    Galaxy-scale bars are expected to provide an effective means for driving material toward the central region in spiral galaxies, and possibly feeding supermassive black holes (BHs). Here we present a statistically complete study of the effect of bars on average BH accretion. From a well-selected sample of 50,794 spiral galaxies (with {M}* ˜ 0.2{--}30× {10}10 {M}⊙ ) extracted from the Sloan Digital Sky Survey Galaxy Zoo 2 project, we separate those sources considered to contain galaxy-scale bars from those that do not. Using archival data taken by the Chandra X-ray Observatory, we identify X-ray luminous ({L}{{X}}≳ {10}41 {erg} {{{s}}}-1) active galactic nuclei and perform an X-ray stacking analysis on the remaining X-ray undetected sources. Through X-ray stacking, we derive a time-averaged look at accretion for galaxies at fixed stellar mass and star-formation rate, finding that the average nuclear accretion rates of galaxies with bar structures are fully consistent with those lacking bars ({\\dot{M}}{acc}≈ 3× {10}-5 {M}⊙ yr-1). Hence, we robustly conclude that large-scale bars have little or no effect on the average growth of BHs in nearby (z< 0.15) galaxies over gigayear timescales.

  5. Studies on complex π-π and T-stacking features of imidazole and phenyl/p-halophenyl units in series of 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides and their carbonitrile derivatives: Role of halogens in tuning of conformation

    NASA Astrophysics Data System (ADS)

    Das, Aniruddha

    2017-11-01

    5-amino-1-(phenyl/p-halophenyl)imidazole-4-carboxamides (N-phenyl AICA) (2a-e) and 5-amino-1-(phenyl/p-halophenyl)imidazole-4-carbonitriles (N-phenyl AICN) (3a-e) had been synthesized. X-ray crystallographic studies of 2a-e and 3a-e had been performed to identify any distinct change in stacking patterns in their crystal lattice. Single crystal X-ray diffraction studies of 2a-e revealed π-π stack formations with both imidazole and phenyl/p-halophenyl units in anti and syn parallel-displaced (PD)-type dispositions. No π-π stacking of imidazole occurred when the halogen substituent is bromo or iodo; π-π stacking in these cases occurred involving phenyl rings only. The presence of an additional T-stacking had been observed in crystal lattices of 3a-e. Vertical π-π stacking distances in anti-parallel PD-type arrangements as well as T-stacking distances had shown stacking distances short enough to impart stabilization whereas syn-parallel stacking arrangements had got much larger π-π stacking distances to belie any syn-parallel stacking stabilization. DFT studies had been pursued for quantifying the π-π stacking and T-stacking stabilization. The plotted curves for anti-parallel and T-stacked moieties had similarities to the 'Morse potential energy curve for diatomic molecule'. The minima of the curves corresponded to the most stable stacking distances and related energy values indicated stacking stabilization. Similar DFT studies on syn-parallel systems of 2b corresponded to no π-π stacking stabilization at all. Halogen-halogen interactions had also been observed to stabilize the compounds 2d, 2e and 3d. Nano-structural behaviour of the series of compounds 2a-e and 3a-e were thoroughly investigated.

  6. Characterizing the X-ray Emission From Stellar Bow Shocks and Their Driving Stars with the Chandra Archive

    NASA Astrophysics Data System (ADS)

    Binder, Breanna

    2017-09-01

    We propose an archival study of 2.8 Msec of ACIS images to search for X-ray emission from stellar-wind bow shocks and to characterize the X-ray properties of their driving stars. Bow shocks, particularly those produced by runaway OB stars, are theorized to up-scatter IR photons via inverse Compton scattering, and may produce a significant fraction of high-energy photons in our Galaxy. However, their low X-ray luminosity makes direct detection difficult. By stacking 106 archival observations containing >100 bow shocks, we will create the deepest X-ray exposure of bow shocks to date. We will perform the first detailed comparison of bow shock driving stars to the general massive star population.

  7. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  8. Fungal Melanins Differ in Planar Stacking Distances

    PubMed Central

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R.; Eisner, Melvin

    2012-01-01

    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments. PMID:22359541

  9. Syntheses, structural characterization, and DPPH radical scavenging activity of cocrystals of caffeine with 1- and 2-naphthoxyacetic acids

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Seethalakshmi, P. G.; Sumathi, D.; Bhuvanesh, N.; Kumaresan, S.

    2013-03-01

    Caffeine:1-naphthoxyacetic acid [(caf)(1-naa)] and caffeine:2-naphthoxyacetic acid [(caf)(2-naa)] cocrystals have been synthesized and single crystals were grown by slow evaporation technique. The structures of the grown crystals were elucidated using single crystal X-ray diffraction analysis. Both the cocrystals belong to the monoclinic crystallographic system with space group P21/c, Z = 4, and α = γ = 90°, whereas β = 111.4244(18)° for [(caf)(1-naa)] and β = 109.281(6)° for [(caf)(2-naa)]. The crystal packing is predominantly stabilized by hydrogen bonding and π-π stacking interactions. The presence of unionized -COOH functional group in both the cocrystals was identified by FTIR spectral analysis. Thermal behavior and stability of both the cocrystals were studied by TGA/DTA analyses. Solvent-free formation of these cocrystals was confirmed by powder X-ray diffraction analyses. The theoretical energy of cocrystals showed that the formers have higher energy than cocrystals 1 and 2. DPPH radical scavenging activity of cocrystals 1 and 2 is slightly greater than the formers.

  10. Synthesis, X-ray crystal structures and thermal analyses of some new antimicrobial zinc complexes: New configurations and nano-size structures.

    PubMed

    Masoudiasl, A; Montazerozohori, M; Naghiha, R; Assoud, A; McArdle, P; Safi Shalamzari, M

    2016-04-01

    Some new five coordinated ZnLX2 complexes, where L is N3-Schiff base ligand obtained by condensation reaction between diethylenetriamine and (E)-3-(2-nitrophenyl)acrylaldehyde and X (Cl(-), Br(-), I(-), N3(-) and NCS(-)), were synthesized and characterized by FT-IR, (1)H and (13)CNMR, UV-visible, ESI-mass spectra and molar conductivity measurements. The structures of zinc iodide and thiocyanate complexes were determined by X-ray crystallographic analysis. The X-ray results showed that the Zn (II) center in these complexes is five-coordinated in a distorted trigonal-bipyramidal configuration. Zinc iodide and thiocyanate complexes crystallize in the monoclinic and triclinic systems with space groups of C2/c and P1- with eight and two molecules per unit cell respectively. The crystal packing of the complexes consists of intermolecular interactions such as C-H(…)O and C-H(…)I, C-H(···)S, N(…)O, together with π-π stacking and some other unexpected interactions. The mentioned interactions cause three-dimensional supramolecular structure in the solid state. Zinc complexes were also prepared in nano-structure by sonochemical method confirmed by XRD, SEM and TEM analyses. Moreover, ZnO nanoparticles were synthesized by direct thermolysis of zinc iodide complex. Furthermore, antimicrobial and thermal properties of the compounds were completely investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The Chandra Source Catalog 2.0: Interfaces

    NASA Astrophysics Data System (ADS)

    D'Abrusco, Raffaele; Zografou, Panagoula; Tibbetts, Michael; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Van Stone, David W.

    2018-01-01

    Easy-to-use, powerful public interfaces to access the wealth of information contained in any modern, complex astronomical catalog are fundamental to encourage its usage. In this poster,I present the public interfaces of the second Chandra Source Catalog (CSC2). CSC2 is the most comprehensive catalog of X-ray sources detected by Chandra, thanks to the inclusion of Chandra observations public through the end of 2014 and to methodological advancements. CSC2 provides measured properties for a large number of sources that sample the X-ray sky at fainter levels than the previous versions of the CSC, thanks to the stacking of single overlapping observations within 1’ before source detection. Sources from stacks are then crossmatched, if multiple stacks cover the same area of the sky, to create a list of unique, optimal CSC2 sources. The properties of sources detected in each single stack and each single observation are also measured. The layered structure of the CSC2 catalog is mirrored in the organization of the CSC2 database, consisting of three tables containing all properties for the unique stacked sources (“Master Source”), single stack sources (“Stack Source”) and sources in any single observation (“Observation Source”). These tables contain estimates of the position, flags, extent, significances, fluxes, spectral properties and variability (and associated errors) for all classes of sources. The CSC2 also includes source region and full-field data products for all master sources, stack sources and observation sources: images, photon event lists, light curves and spectra.CSCview, the main interface to the CSC2 source properties and data products, is a GUI tool that allows to build queries based on the values of all properties contained in CSC2 tables, query the catalog, inspect the returned table of source properties, browse and download the associated data products. I will also introduce the suite of command-line interfaces to CSC2 that can be used in alternative to CSCview, and will present the concept for an additional planned cone-search web-based interface.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  12. The Hard X-ray Imager (HXI) for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Kokubun, Motohide; Nakazawa, Kazuhiro; Enoto, Teruaki; Fukazawa, Yasushi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Kawaharada, Madoka; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shinichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2014-07-01

    The 6th Japanese X-ray satellite, ASTRO-H, is scheduled for launch in 2015. The hard X-ray focusing imaging system will observe astronomical objects with the sensitivity for detecting point sources with a brightness of 1/100,000 times fainter than the Crab nebula at > 10 keV. The Hard X-ray Imager (HXI) is a focal plane detector 12 m below the hard X-ray telescope (HXT) covering the energy range from 5 to 80 keV. The HXI is composed of a stacked Si/CdTe semiconductor detector module and surrounding BGO scintillators. The latter work as active shields for efficient reduction of background events caused by cosmic-ray particles, cosmic X-ray background, and in-orbit radiation activation. In this paper, we describe the detector system, and present current status of flight model development, and performance of HXI using an engineering model of HXI.

  13. Aeroservoelastic Stability Analysis of the X-43A Stack

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi

    2008-01-01

    The first air launch attempt of an X-43A stack, consisting of the booster, adapter and Hyper-X research vehicle, ended in failure shortly after the successful drop from the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) B-52B airplane and ignition of the booster. The stack was observed to begin rolling and yawing violently upon reaching transonic speeds, and the grossly oscillating fins of the booster separated shortly thereafter. The flight then had to be terminated with the stack out of control. Very careful linear flutter and aeroservoelastic analyses were subsequently performed as reported herein to numerically duplicate the observed instability. These analyses properly identified the instability mechanism and demonstrated the importance of including the flight control laws, rigid-body modes, structural flexible modes and control surface flexible modes. In spite of these efforts, however, the predicted instability speed remained more than 25 percent higher than that observed in flight. It is concluded that transonic shock phenomena, which linear analyses cannot take into account, are also important for accurate prediction of this mishap instability.

  14. Better Ceramics Through Chemistry 4. Symposium Held in San Francisco, California on April 16 - 20, 1990. Volume 180

    DTIC Science & Technology

    1990-04-20

    metal alkoxide precursors. For example, we only recently obtained the first X - ray crystallographic data on bismuth alkoxides, Bi(OR)3 (R = C(CH 3)3...OCMe3)6(u.O2CMe)4(J14-O2CMe)2. Complex I was fully characterized by single crystal X - ray crystallography. The six copper atoms are linked by six...hydrolyzed samples of 3 revealed stacks of plate-like particles with sizes up to 20 x 50 microns (Figure 3). X - ray analysis of these plates showed

  15. Disentangling Dominance: Obscured AGN Activity versus Star Formation in BPT-Composites

    NASA Astrophysics Data System (ADS)

    Trouille, Laura

    2011-11-01

    Approximately 20% of SDSS emission-line galaxies (ELG) lie in the BPT-comp regime, between the Kauffmann et al. (2003) empirically determined SF-dominated regime and the Kewley et al. (2001) theoretically predicted AGN-dominated regime. BPT-AGN, on the other hand, make up only 11% of the ELG population. Whether to include the significant number of BPT-comp in samples of AGN or samples of star-forming galaxies is an open question and has important implications for galaxy evolution studies, metallicity studies, etc. Using a large pectroscopic sample of GOODS-N and LH galaxies with deep Chandra imaging, we perform an X-ray stacking analysis of BPT-comp. We find the stacked signal to be X-ray hard. This X-ray hardness can be indicative of obscured AGN activity or the presence of HMXBs associated with ongoing star formation. In order to distinguish between these scenarios, we perform an IR stacking analysis using Spitzer 24 micron data. The stacked BPT-comp lies well above the expected value for L_x/L_IR for pure star-forming galaxies; similarly for the X-ray detected BPT-comp. We also find that the BPT-comp lie in the AGN-dominated regime of our new TBT diagnostic, which uses [NeIII]/[OII] versus rest-frame g-z colour to identify AGN and star forming galaxies out to z=1.4. [NeIII], which has a higher ionisation potential than other commonly used forbidden emission lines, appears to foster a more reliable selection of AGN-dominated galaxies. These findings suggest that both the X-ray and optical signal in BPT-comp are dominated by obscured or low accretion rate AGN activity rather than star formation. This is in contrast to claims by previous optical emission-line studies that the signal in BPT-comp is dominated by star-formation activity. Therefore, we recommend that groups carefully consider the impact of excluding or including BPT-comp on the interpretation of their results. For example, for studies involving determining the bolometric contribution from AGN activity or the role of AGN activity in galaxy evolution, we advise maximal inclusiveness. Since BPT-comp comprise a significant percentage of the overall emission-line galaxy population, inclusion of the BPT-comp would provide a more comprehensive picture of the true impact of AGN activity in these studies.

  16. An integration machine for the assembly of the x-ray optic units based on thin slumped glass foils for the IXO mission

    NASA Astrophysics Data System (ADS)

    Civitani, M. M.; Basso, S.; Bavdaz, M.; Citterio, O.; Conconi, P.; Gallieni, D.; Ghigo, M.; Martelli, F.; Pareschi, G.; Parodi, G.; Proserpio, L.; Sironi, G.; Spiga, D.; Tagliaferri, G.; Tintori, M.; Wille, E.; Zambra, A.

    2011-09-01

    The International X-ray Observatory (IXO) is a joint mission concept studied by the ESA, NASA, and JAXA space agencies. The main goal of the mission design is to achieve a large effective area (>2.5m2 at 1 keV) and a good angular resolution (5 arcsec HEW at 1 keV) at the same time. The Brera Astronomical Observatory - INAF, Italy), under the support of ESA, is developing a method for the realization of the X-Ray Optical Units, based on the use of slumped thin glass segments to form densely packed modules in a Wolter type I optical configuration. In order to reach the very challenging integration requirements, it has been developed an innovative assembly approach for aligning and mounting the IXO mirror segments. The method is based on the use of an integration mould for each foil. In particular the glass segment is forced to adhere to the integration mould in order to maintain the optimal figure without deformations until the integration of the foil in the stack is completed. In this way an active correction for major existing figure errors after slumping is also achieved. Moreover reinforcing ribs are used in order to connect the facets to each-other and to realize a robust monolithic stack of plates. In this paper we present the design, the development and the validation status of a special Integration Machine (IMA) that has been specifically developed to allow the integration of the Plate Pairs into prototypal X-Ray Optical Unit stacks.

  17. An X-ray/SDSS sample. II. AGN-driven outflowing gas plasma properties

    NASA Astrophysics Data System (ADS)

    Perna, M.; Lanzuisi, G.; Brusa, M.; Cresci, G.; Mignoli, M.

    2017-10-01

    Aims: Galaxy-scale outflows are currently observed in many active galactic nuclei (AGNs); however, characterisation of them in terms of their (multi-) phase nature, amount of flowing material, and effects on their host galaxy is still unresolved. In particular, ionised gas mass outflow rate and related energetics are still affected by many sources of uncertainty. In this respect, outflowing gas plasma conditions, being largely unknown, play a crucial role. Methods: We have analysed stacked spectra and sub-samples of sources with high signal-to-noise temperature- and density-sensitive emission lines to derive the plasma properties of the outflowing ionised gas component. We did this by taking advantage of the spectroscopic analysis results we obtained while studying the X-ray/SDSS sample of 563 AGNs at z < 0.8 presented in our companion paper. For these sources, we also studied in detail various diagnostic diagrams to infer information about outflowing gas ionisation mechanisms. Results: We derive, for the first time, median values for electron temperature and density of outflowing gas from medium-size samples ( 30 targets) and stacked spectra of AGNs. Evidence of shock excitation are found for outflowing gas. Conclusions: We measure electron temperatures of the order of 1.7 × 104 K and densities of 1200 cm-3 for faint and moderately luminous AGNs (intrinsic X-ray luminosity 40.5 < log (LX) < 44 in the 2-10 keV band). We note that the electron density that is usually assumed (Ne = 100 cm-3) in ejected material might result in relevant overestimates of flow mass rates and energetics and, as a consequence, of the effects of AGN-driven outflows on the host galaxy.

  18. The x ray properties of a large, uniform QSO sample: Einstein observations of the LBQS

    NASA Technical Reports Server (NTRS)

    Margon, B.; Anderson, S. F.; Xu, X.; Green, P. J.; Foltz, C. B.

    1992-01-01

    Although there are large numbers of Quasi Stellar Objects (QSO's) now observed in X rays, extensive X-ray observations of uniformly selected, 'complete' QSO samples are more rare. The Large Bright QSO Survey (LBQS) consists of about 1000 objects with well understood properties, most brighter than B = 18.8 and thus amenable to X-ray detections in relatively brief exposures. The sample is thought to be highly complete in the range 0.2 less than z less than 3.3, a significantly broader interval than many other surveys. The Einstein IPC observed 150 of these objects, mostly serendipitously, during its lifetime. We report the results of an analysis of these IPC data, considering not only the 20 percent of the objects we find to have positive X-ray detections, but also the ensemble X-ray properties derived by 'image stacking'.

  19. Compact "diode-based" multi-energy soft x-ray diagnostic for NSTX.

    PubMed

    Tritz, K; Clayton, D J; Stutman, D; Finkenthal, M

    2012-10-01

    A novel and compact, diode-based, multi-energy soft x-ray (ME-SXR) diagnostic has been developed for the National Spherical Tokamak Experiment. The new edge ME-SXR system tested on NSTX consists of a set of vertically stacked diode arrays, each viewing the plasma tangentially through independent pinholes and filters providing an overlapping view of the plasma midplane which allows simultaneous SXR measurements with coarse sub-sampling of the x-ray spectrum. Using computed x-ray spectral emission data, combinations of filters can provide fast (>10 kHz) measurements of changes in the electron temperature and density profiles providing a method to "fill-in" the gaps of the multi-point Thomson scattering system.

  20. Crystal structure, spectral property, antimicrobial activity and DFT calculation of N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Song; Zhang, Kong-Yan; Chen, Li-Chuan; Li, Yao-Xin; Chai, Lan-Qin

    2017-10-01

    N-(coumarin-3-yl)-N‧-(2-amino-5-phenyl-1,3,4-thiadiazol-2-yl) urea was synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR, UV-Vis and emission spectroscopy, as well as by single-crystal X-ray diffraction. X-ray crystallographic analyses have indicated that the crystal structure consists of two dimethyl sulfoxide (DMSO) solvent molecules and the structural geometry of DMSO is a trigonal pyramid in shape. In the crystal structure, a self-assembling two-dimensional (2-D) layer supramolecular architecture is formed through intermolecular hydrogen bonds, Cdbnd O···π (thiadiazole ring) and π···π stacking interactions. The geometry of the compound has been optimized by the DFT method and the results are compared with the X-ray diffraction data. The electronic transitions and spectral features of the compound were carried out by using DFT/B3LYP method. In addition, the antimicrobial activity was also studied, and the highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), and HOMO-LUMO gap were also calculated.

  1. Fermi LAT Stacking Analysis of Swift Localized GRBs

    DOE PAGES

    Ackermann, M.; Ajello, M.; Anderson, B.; ...

    2016-05-05

    In this paper, we perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of γ-ray bursts (GRBs) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instrument's field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeVmore » to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst's prompt γ-ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift's X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst's afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. Finally, these results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.« less

  2. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Shigeo S.; Murase, Kohta; Mészáros, Peter

    We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detectionmore » of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.« less

  3. Progress of nanopositioning stages development for hard x-ray nanofocusing and coherence preservation optics at the APS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, Deming

    2015-07-01

    Customized flexure mechanisms and precision thermal expansion compensation are needed for the development of nanopositioning stages for hard x-ray nanofocusing and coherence preservation optics at the APS. Recent progress of such stage development is summarized in this paper, which includes: stages designed for alignment apparatus for K-B mirrors with 20 - 50 nm focal spot; alignment apparatus for six Fresnel zone plates stacking with 20 nm focal spot; stages for switchable multiple nanofocusing system; UHV hard x-ray monochromators for coherence related applications; and four-crystal hard x-ray split-and-delay line with coherence preservation. Preliminary test results for mechanical performance of these nanopositioningmore » stages are also discussed in this paper.« less

  4. Inter-layered clay stacks in Jurassic shales

    NASA Technical Reports Server (NTRS)

    Pye, K.; Krinsley, D. H.

    1983-01-01

    Scanning electron microscopy in the backscattered electron mode is used together with energy-dispersive X-ray microanalysis to show that Lower Jurassic shales from the North Sea Basin contain large numbers of clay mineral stacks up to 150 microns in size. Polished shale sections are examined to determine the size, shape orientation, textural relationships, and internal compositional variations of the clays. Preliminary evidence that the clay stacks are authigenic, and may have formed at shallow burial depths during early diagenesis, is presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Fei; Chen, Jing; Liang, Yongfeng

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1)more » and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.« less

  6. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault energies on deformed microstructures of steels. {yields} Correlations between texture and occurrence of mechanical twinning are discussed. {yields} Evolutions of dislocations and crystallite are analyzed by line profile analysis.« less

  7. A large sample of shear-selected clusters from the Hyper Suprime-Cam Subaru Strategic Program S16A Wide field mass maps

    NASA Astrophysics Data System (ADS)

    Miyazaki, Satoshi; Oguri, Masamune; Hamana, Takashi; Shirasaki, Masato; Koike, Michitaro; Komiyama, Yutaka; Umetsu, Keiichi; Utsumi, Yousuke; Okabe, Nobuhiro; More, Surhud; Medezinski, Elinor; Lin, Yen-Ting; Miyatake, Hironao; Murayama, Hitoshi; Ota, Naomi; Mitsuishi, Ikuyuki

    2018-01-01

    We present the result of searching for clusters of galaxies based on weak gravitational lensing analysis of the ˜160 deg2 area surveyed by Hyper Suprime-Cam (HSC) as a Subaru Strategic Program. HSC is a new prime focus optical imager with a 1.5°-diameter field of view on the 8.2 m Subaru telescope. The superb median seeing on the HSC i-band images of 0.56" allows the reconstruction of high angular resolution mass maps via weak lensing, which is crucial for the weak lensing cluster search. We identify 65 mass map peaks with a signal-to-noise (S/N) ratio larger than 4.7, and carefully examine their properties by cross-matching the clusters with optical and X-ray cluster catalogs. We find that all the 39 peaks with S/N > 5.1 have counterparts in the optical cluster catalogs, and only 2 out of the 65 peaks are probably false positives. The upper limits of X-ray luminosities from the ROSAT All Sky Survey (RASS) imply the existence of an X-ray underluminous cluster population. We show that the X-rays from the shear-selected clusters can be statistically detected by stacking the RASS images. The inferred average X-ray luminosity is about half that of the X-ray-selected clusters of the same mass. The radial profile of the dark matter distribution derived from the stacking analysis is well modeled by the Navarro-Frenk-White profile with a small concentration parameter value of c500 ˜ 2.5, which suggests that the selection bias on the orientation or the internal structure for our shear-selected cluster sample is not strong.

  8. Hirshfeld surface analyses and crystal structures of supramolecular self-assembly thiourea derivatives directed by non-covalent interactions

    NASA Astrophysics Data System (ADS)

    Gumus, Ilkay; Solmaz, Ummuhan; Binzet, Gun; Keskin, Ebru; Arslan, Birdal; Arslan, Hakan

    2018-04-01

    The novel N-(bis(3,5-dimethoxybenzyl)carbamothioyl)-4-R-benzamide (R: H, Cl, CH3 and OCH3) compounds have been synthesized and characterized by FT-IR, 1H NMR and 13C NMR spectroscopy. Their crystal structures were also determined by single-crystal X-ray diffraction studies. Hirshfeld surfaces analysis and their associated two dimensional fingerprint plots of compounds were used as theoretical approach to assess driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of synthesized compounds. The study of X-ray single crystal diffraction and Hirshfeld surfaces analysis of the prepared compounds shows that hydrogen bonding and other weaker interactions such as Nsbnd H⋯S, weak Csbnd H⋯S, Csbnd H⋯O, Csbnd H⋯N and Csbnd H···π intermolecular interactions and π-π stacking, among molecules of synthesized compounds participate in a cooperative way to stabilize the supramolecular structures.

  9. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  10. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    NASA Astrophysics Data System (ADS)

    Dragone, A.; Kenney, C.; Lozinskaya, A.; Tolbanov, O.; Tyazhev, A.; Zarubin, A.; Wang, Zhehui

    2016-11-01

    A multilayer stacked X-ray camera concept is described. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detection [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.

  11. Nanofocusing with aberration-corrected rotationally parabolic refractive X-ray lenses

    DOE PAGES

    Seiboth, Frank; Wittwer, Felix; Scholz, Maria; ...

    2018-01-01

    Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with σ¯ = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without priormore » lens characterization but simply based on the derived lens deformation. As a result, the performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.« less

  12. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstratedmore » for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.« less

  13. High Resolution Energetic X-ray Imager (HREXI)

    NASA Astrophysics Data System (ADS)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a nIR telescope in spece, will enable GRBs to be used as probes of the formation of the first stars and structure in the Universe. HREXI on its own, with broad bandwidth and high spectral and spatial resolution, will extend both Galactic surveys for obscured young supernova remnants (44Ti sources) and for transients, black holes and flaring AGN and TDEs well at greatly increased sensitivity and spatial/spectral resolution than has been done with Swift or INTEGRAL. If the HREXI-1 technology is developed in the first year of this proposed effort, it could be used on the upcoming Brazil-US MIRAX telescope on the Lattes satellite, scheduled for a 2018 launch with imaging detector planes to be provided (under contract) by our group. Finally, the 3D stacking technology development proposed here for imaging detector arrays has broad application to Wide Field soft X-ray imaging, to CMB polarization mode (B mode) imaging detectors with very high detector-pixel count, and to Homeland Security.

  14. A multilayered approach to superconducting tunnel junction x ray detectors

    NASA Technical Reports Server (NTRS)

    Rippert, E. D.; Song, S. N.; Ketterson, J. B.; Maglic, S. R.; Lomatch, S.; Thomas, C.; Cheida, M. A.; Ulmer, M. P.

    1992-01-01

    'First generation' superconducting tunnel junction X-ray detectors (characterized by a single tunnel junction in direct contact with its substrate, with totally external amplification) remain more than an order of magnitude away from their theoretical energy resolutions which are in the order of eV's. The difficulties that first generation devices are encountering are being attacked by a 'second generation' of superconducting X-ray detector designs including quasiparticle trapping configurations and Josephson junction arrays. A second generation design concept, the multilayered superconducting tunnel junction X-ray detector, consisting of tens to hundreds of tunnel junctions stacked on top of one another (a superlattice), is presented. Some of the possibilities of this engineered materials approach include the tuning of phonon transmission characteristics of the material, suppression of parasitic quasiparticle trapping and intrinsic amplification.

  15. Energy determination in industrial X-ray processing facilities

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Gregoire, O.; Stichelbaut, F.; Gomola, I.; Galloway, R. A.; Schlecht, J.

    2005-12-01

    In industrial irradiation facilities, the determination of maximum photon or electron energy is important for regulated processes, such as food irradiation, and for assurance of treatment reproducibility. With electron beam irradiators, this has been done by measuring the depth-dose distribution in a homogeneous material. For X-ray irradiators, an analogous method has not yet been recommended. This paper describes a procedure suitable for typical industrial irradiation processes, which is based on common practice in the field of therapeutic X-ray treatment. It utilizes a measurement of the slope of the exponential attenuation curve of X-rays in a thick stack of polyethylene plates. Monte Carlo simulations and experimental tests have been performed to verify the suitability and accuracy of the method between 3 MeV and 8 MeV.

  16. Large scale structures in liquid crystal/clay colloids

    NASA Astrophysics Data System (ADS)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  17. Perpendicular magnetic anisotropy in CoXPd100-X alloys for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Clark, B. D.; Natarajarathinam, A.; Tadisina, Z. R.; Chen, P. J.; Shull, R. D.; Gupta, S.

    2017-08-01

    CoFeB/MgO-based perpendicular magnetic tunnel junctions (p-MTJ's) with high anisotropy and low damping are critical for spin-torque transfer random access memory (STT-RAM). Most schemes of making the pinned CoFeB fully perpendicular require ferrimagnets with high damping constants, a high temperature-grown L10 alloy, or an overly complex multilayered synthetic antiferromagnet (SyAF). We report a compositional study of perpendicular CoxPd alloy-pinned Co20Fe60B20/MgO based MTJ stacks, grown at moderate temperatures in a planetary deposition system. The perpendicular anisotropy of the CoxPd alloy films can be tuned based on the layer thickness and composition. The films were characterized by alternating gradient magnetometry (AGM), energy-dispersive X-rays (EDX), and X-ray diffraction (XRD). Current-in-plane tunneling (CIPT) measurements have also been performed on the compositionally varied CoxPd MTJ stacks. The CoxPd alloy becomes fully perpendicular at approximately x = 30% (atomic fraction) Co. Full-film MTJ stacks of Si/SiO2/MgO (13)/CoXPd100-x (50)/Ta (0.3)/CoFeB (1)/MgO (1.6)/CoFeB (1)/Ta (5)/Ru (10), with the numbers enclosed in parentheses being the layer thicknesses in nm, were sputtered onto thermally oxidized silicon substrates and in-situ lamp annealed at 400 °C for 5 min. CIPT measurements indicate that the highest TMR is observed for the CoPd composition with the highest perpendicular magnetic anisotropy.

  18. A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    NASA Technical Reports Server (NTRS)

    Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark; hide

    2011-01-01

    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiboth, Frank; Wittwer, Felix; Scholz, Maria

    Wavefront errors of rotationally parabolic refractive X-ray lenses made of beryllium (Be CRLs) have been recovered for various lens sets and X-ray beam configurations. Due to manufacturing via an embossing process, aberrations of individual lenses within the investigated ensemble are very similar. By deriving a mean single-lens deformation for the ensemble, aberrations of any arbitrary lens stack can be predicted from the ensemble with σ¯ = 0.034λ. Using these findings the expected focusing performance of current Be CRLs are modeled for relevant X-ray energies and bandwidths and it is shown that a correction of aberrations can be realised without priormore » lens characterization but simply based on the derived lens deformation. As a result, the performance of aberration-corrected Be CRLs is discussed and the applicability of aberration-correction demonstrated over wide X-ray energy ranges.« less

  20. Development and production of a multilayer-coated x-ray reflecting stack for the Athena mission

    NASA Astrophysics Data System (ADS)

    Massahi, S.; Ferreira, D. D. M.; Christensen, F. E.; Shortt, B.; Girou, D. A.; Collon, M.; Landgraf, B.; Barriere, N.; Krumrey, M.; Cibik, L.; Schreiber, S.

    2016-07-01

    The Advanced Telescope for High-Energy Astrophysics, Athena, selected as the European Space Agency's second large-mission, is based on the novel Silicon Pore Optics X-ray mirror technology. DTU Space has been working for several years on the development of multilayer coatings on the Silicon Pore Optics in an effort to optimize the throughput of the Athena optics. A linearly graded Ir/B4C multilayer has been deposited on the mirrors, via the direct current magnetron sputtering technique, at DTU Space. This specific multilayer, has through simulations, been demonstrated to produce the highest reflectivity at 6 keV, which is a goal for the scientific objectives of the mission. A critical aspect of the coating process concerns the use of photolithography techniques upon which we will present the most recent developments in particular related to the cleanliness of the plates. Experiments regarding the lift-off and stacking of the mirrors have been performed and the results obtained will be presented. Furthermore, characterization of the deposited thin-films was performed with X-ray reflectometry at DTU Space and in the laboratory of the Physikalisch-Technische Bundesanstalt at the synchrotron radiation facility BESSY II.

  1. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data.

    PubMed

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; dos Santos Rolo, Tomy; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer

    2015-03-09

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.

  2. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data

    DOE PAGES

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; ...

    2015-01-01

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration o f in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce themore » number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.« less

  3. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya

    Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less

  4. Multiple wavelength X-ray monochromators

    DOEpatents

    Steinmeyer, P.A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

  5. Feasibility study of a ``4H'' X-ray camera based on GaAs:Cr sensor

    DOE PAGES

    Dragone, Angelo; Kenney, Chris; Lozinskaya, Anastassiya; ...

    2016-11-29

    Here, we describe a multilayer stacked X-ray camera concept. This type of technology is called `4H' X-ray cameras, where 4H stands for high-Z (Z>30) sensor, high-resolution (less than 300 micron pixel pitch), high-speed (above 100 MHz), and high-energy (above 30 keV in photon energy). The components of the technology, similar to the popular two-dimensional (2D) hybrid pixelated array detectors, consists of GaAs:Cr sensors bonded to high-speed ASICs. 4H cameras based on GaAs also use integration mode of X-ray detection. The number of layers, on the order of ten, is smaller than an earlier configuration for single-photon-counting (SPC) mode of detectionmore » [1]. High-speed ASIC based on modification to the ePix family of ASIC is discussed. Applications in X-ray free electron lasers (XFELs), synchrotrons, medicine and non-destructive testing are possible.« less

  6. Multiple wavelength X-ray monochromators

    DOEpatents

    Steinmeyer, Peter A.

    1992-11-17

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focussing the separate first and second output x-ray radiation wavelengths into separate focal points.

  7. A method to determine fault vectors in 4H-SiC from stacking sequences observed on high resolution transmission electron microscopy images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fangzhen; Wang, Huanhuan; Raghothamachar, Balaji

    A new method has been developed to determine the fault vectors associated with stacking faults in 4H-SiC from their stacking sequences observed on high resolution TEM images. This method, analogous to the Burgers circuit technique for determination of dislocation Burgers vector, involves determination of the vectors required in the projection of the perfect lattice to correct the deviated path constructed in the faulted material. Results for several different stacking faults were compared with fault vectors determined from X-ray topographic contrast analysis and were found to be consistent. This technique is expected to applicable to all structures comprising corner shared tetrahedra.

  8. Ram pressure stripping of hot coronal gas from group and cluster galaxies and the detectability of surviving X-ray coronae

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Rukmani; Ricker, Paul M.

    2015-05-01

    Ram pressure stripping can remove hot and cold gas from galaxies in the intracluster medium, as shown by observations of X-ray and H I galaxy wakes in nearby clusters of galaxies. However, ram pressure stripping, including pre-processing in group environments, does not remove all the hot coronal gas from cluster galaxies. Recent high-resolution Chandra observations have shown that ˜1-4 kpc extended, hot galactic coronae are ubiquitous in group and cluster galaxies. To better understand this result, we simulate ram pressure stripping of a cosmologically motivated population of galaxies in isolated group and cluster environments. The galaxies and the host group and cluster are composed of collisionless dark matter and hot gas initially in hydrostatic equilibrium with the galaxy and host potentials. We show that the rate at which gas is lost depends on the galactic and host halo mass. Using synthetic X-ray observations, we evaluate the detectability of stripped galactic coronae in real observations by stacking images on the known galaxy centres. We find that coronal emission should be detected within ˜10 arcsec, or ˜5 kpc up to ˜2.3 Gyr in the lowest (0.1-1.2 keV) energy band. Thus, the presence of observed coronae in cluster galaxies significantly smaller than the hot X-ray haloes of field galaxies indicates that at least some gas removal occurs within cluster environments for recently accreted galaxies. Finally, we evaluate the possibility that existing and future X-ray cluster catalogues can be used in combination with optical galaxy positions to detect galactic coronal emission via stacking analysis. We briefly discuss the effects of additional physical processes on coronal survival, and will address them in detail in future papers in this series.

  9. X-ray mirror prototype based on cold shaping of thin glass foils

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Ghigo, Mauro; Hołyszko, Joanna; Pareschi, Giovanni; Salmaso, Bianca; Vecchi, Gabriele; Burwitz, Vadim; Pelliciari, Carlo; Hartner, Gisela D.; Breunig, Elias

    2017-08-01

    The Slumping Glass Optics technology for the fabrication of astronomical X-ray mirrors has been developed in recent years in USA and Europe. The process has been used for making the mirrors of the Nustar, mission. The process starts with very thin glass foils hot formed to copy the profile of replication moulds. At INAF - Osservatorio Astronomico di Brera a process based on cold shaping is being developed, based on an integration method involving the use of interconnecting ribs for making stacks. Each glass foil in the stack is shaped onto a very precise integration mould and the correct shape is frozen by means of glued ribs that act as spacers between one layer and the next one (the first layers being attached to a thick substrate). Therefore, the increasing availability of flexible glass foils with a thickness of a few tens of microns (driven by electronic market for ultra-thin displays) opens new possibilities for the fabrication of X-ray mirrors. This solution appears interesting especially for the fabrication of mirrors for hard X-rays (with energy > 10 keV) based on multilayer coatings, taking advantage from the intrinsic low roughness of the glass foils that should grant a low scattering level. The stress frozen on the glass due to the cold shaping is not negligible, but it is kept into account in the errors of the X-ray optics design. As an exercise, we have considered the requirements and specs of the FORCE hard Xray mission concept (being studied by JAXA) and we have designed the mirror modules assuming the cold slumping as a fabrication method. In the meantime, a prototype (representative of the FORCE mirror modules) is being design and integrated in order to demonstrate the feasibility and the capacity to reach good angular resolution.

  10. Fabrication Method for LOBSTER-Eye Optics in <110> Silicon

    NASA Technical Reports Server (NTRS)

    Chervenak, James; Collier, Michael; Mateo, Jennette

    2013-01-01

    Soft x-ray optics can use narrow slots to direct x-rays into a desirable pattern on a focal plane. While square-pack, square-pore, slumped optics exist for this purpose, they are costly. Silicon (Si) is being examined as a possible low-cost replacement. A fabrication method was developed for narrow slots in <110> Si demonstrating the feasibility of stacked slot optics to replace micropores. Current micropore optics exist that have 20-micron-square pores on 26-micron pitch in glass with a depth of 1 mm and an extent of several square centimeters. Among several proposals to emulate the square pore optics are stacked slot chips with etched vertical slots. When the slots in the stack are positioned orthogonally to each other, the component will approach the soft x-ray focusing observed in the micropore optics. A specific improvement Si provides is that it can have narrower sidewalls between slots to permit greater throughput of x-rays through the optics. In general, Si can have more variation in slot geometry (width, length). Further, the sidewalls can be coated with high-Z materials to enhance reflection and potentially reduce the surface roughness of the reflecting surface. Narrow, close-packed deep slots in <110> Si have been produced using potassium hydroxide (KOH) etching and a patterned silicon nitride (SiN) mask. The achieved slot geometries have sufficient wall smoothness, as observed through scanning electron microscope (SEM) imaging, to enable evaluation of these slot plates as an optical element for soft x-rays. Etches of different angles to the crystal plane of Si were evaluated to identify a specific range of etch angles that will enable low undercut slots in the Si <110> material. These slots with the narrow sidewalls are demonstrated to several hundred microns in depth, and a technical path to 500-micron deep slots in a precision geometry of narrow, closepacked slots is feasible. Although intrinsic stress in ultrathin wall Si is observed, slots with walls approaching 1.5 microns can be achieved (a significant improvement over the 6-micron walls in micro - pore optics). The major advantages of this technique are the potential for higher x-ray throughout (due to narrow slot walls) and lower cost over the existing slumped micropore glass plates. KOH etching of smooth sidewalls has been demonstrated for many applications, suggesting its feasibility for implementation in x-ray optics. Si cannot be slumped like the micropore optics, so the focusing will be achieved with millimeter-scale slot plates that populate a spherical dome. The possibility for large-scale production exists for Si parts that is more difficult to achieve in micropore parts.

  11. Enhanced Adsorption of p-Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Density Functional Theory Calculations.

    PubMed

    Tian, Chen; Zhao, Jian; Ou, Xinwen; Wan, Jieting; Cai, Yuepeng; Lin, Zhang; Dang, Zhi; Xing, Baoshan

    2018-03-20

    p-Arsanilic acid ( p-ASA) is an emerging organoarsenic pollutant comprising both inorganic and organic moieties. For the efficient removal of p-ASA, adsorbents with high adsorption affinity are urgently needed. Herein, amine-modified UiO-67 (UiO-67-NH 2 ) metal-organic frameworks (MOFs) were synthesized, and their adsorption affinities toward p-ASA were 2 times higher than that of the pristine UiO-67. Extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation results revealed adsorption through a combination of As-O-Zr coordination, hydrogen bonding, and π-π stacking, among which As-O-Zr coordination was the dominant force. Amine groups played a significant role in enhancing the adsorption affinity through strengthening the As-O-Zr coordination and π-π stacking, as well as forming new adsorption sites via hydrogen bonding. UiO-67-NH 2 s could remove p-ASA at low concentrations (<5 mg L -1 ) in simulated natural and wastewaters to an arsenic level lower than that of the drinking water standard of World Health Organization (WHO) and the surface water standard of China, respectively. This work provided an emerging and promising method to increase the adsorption affinity of MOFs toward pollutants containing both organic and inorganic moieties, via modifying functional groups based on the pollutant structure to achieve synergistic adsorption effect.

  12. Optical properties and crystallinity of silver mirrors under a 35 krad cobalt-60 radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Po-Kai, E-mail: pkchiu@itrc.narl.org.tw; Chiang, Donyau; Lee, Chao-Te

    2015-09-15

    This study addresses the effects of thin film optical design and environmental radiation on the optical properties of silver mirrors. Different experimental thin film optical designs are selected, and the film stack is built using Macleod's approach. Mirror elements are exposed to the same dose of radiation and their properties are characterized using a spectrophotometer equipped with an integration sphere and an x-ray diffractometer. Spectrophotometric analyses of mirrors exposed to about 35 krad of {sup 60}Co radiations overall show that the B270 glass substrates coated with titanium oxide (TiO{sub 2}), silicon dioxide (SiO{sub 2}), pure chrome, and pure silver effectivelymore » reduces radiation damage. The absorption spectrum of the TiO{sub 2} film in the visible region decreases after radiation and displays drifting. As thin metal films comparison, the silver thin film exhibits higher radiation resistance than the chrome thin film. The x-ray diffraction analysis on metal film layers reveals that crystallinity slightly increases when the silver thin film is irradiated.« less

  13. A luminescent silver-saccharinato complex with S, S-diphenylsulfimide: Synthesis, spectroscopic, thermal, structural and DFT computational studies

    NASA Astrophysics Data System (ADS)

    Gumus, Sedat; Hamamci, Sevim; Yilmaz, V. T.; Kazak, Canan

    2007-02-01

    A new silver(I)-saccharinato (sac) complex with S, S-diphenylsulfimide, [Ag(sac)(Ph 2SNH)], has been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. X-ray diffraction analyses show that the title complex has a monomeric structure containing linearly coordinated silver(I) ion with an N-Ag-N angle of 173.80(10)°. The individual molecules are linked by strong N-H⋯O hydrogen bonds and aromatic stacking π⋯π interactions and packing of the molecules is further reinforced by C-H⋯π interactions. Ph 2SNH and [Ag(sac)(Ph 2SNH)] in solution at room temperature display intense blue luminescence with emission maxima at 380 and 408 nm, respectively. The photoluminescence properties have been investigated by DFT calculations, showing that the luminescence properties of the Ph 2SNH are due to intraligand transitions, while for the silver(I) complex, the luminescence was originated from several transitions including intraligand transitions and metal-to-ligand charge transfer (MLCT).

  14. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  15. The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif.

    PubMed

    Williams, Leslie K; Zhang, Xiaohua; Caner, Sami; Tysoe, Christina; Nguyen, Nham T; Wicki, Jacqueline; Williams, David E; Coleman, John; McNeill, John H; Yuen, Violet; Andersen, Raymond J; Withers, Stephen G; Brayer, Gary D

    2015-09-01

    The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic acid moieties linked via a disaccharide. X-ray structural analyses of the montbretin A-human α-amylase complex confirmed the importance of this core structure and revealed a novel mode of glycosidase inhibition wherein internal π-stacking interactions between the myricetin and caffeic acid organize their ring hydroxyls for optimal hydrogen bonding to the α-amylase catalytic residues D197 and E233. This novel inhibitory motif can be reproduced in a greatly simplified analog, offering potential for new strategies for glycosidase inhibition and therapeutic development.

  16. Use of an Ultrasonic/Sonic Driller/Corer to Obtain Sample Powder for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Y.; Sarrazin, P.; Blake, D. F.

    2003-01-01

    A miniature CHEMIN XRD/XRF (X-Ray Diffraction/X-Ray Fluourescence) instrument is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed in order to enable XRD analysis on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a 2-dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve if the sample is fine-grained and randomly oriented. An Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL is an effective mechanism of sampling rock to produce cores and powdered cuttings. It requires low axial load (< 5N) and thus offers significant advantages for operation from lightweight platforms and in low gravity environments. The USDC is lightweight (<0.5kg), and can be driven at low power (<5W) using duty cycling. It consists of an actuator with a piezoelectric stack, ultrasonic horn, free-mass, and drill bit. The stack is driven with a 20 kHz AC voltage at resonance. The strain generated by the piezoelectric is amplified by the horn by a factor of up to 10 times the displacement amplitude. The tip impacts the free-mass and drives it into the drill bit in a hammering action. The free-mass rebounds to interact with the horn tip leading to a cyclic rebound at frequencies in the range of 60-1000 Hz. It does not require lubricants, drilling fluid or bit sharpening and it has the potential to operate at high and low temperatures using a suitable choice of piezoelectric material. To assess whether the powder from an ultrasonic drill would be adequate for analyses by an XRD/XRF spectrometer such as CHEMIN, powders obtained from the JPL ultrasonic drill were analyzed and the results were compared to carefully prepared powders obtained using a laboratory bench scale Retsch mill.

  17. CLASH: Weak-lensing shear-and-magnification analysis of 20 galaxy clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetsu, Keiichi; Czakon, Nicole; Medezinski, Elinor

    2014-11-10

    We present a joint shear-and-magnification weak-lensing analysis of a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters at 0.19 ≲ z ≲ 0.69 selected from the Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis uses wide-field multi-color imaging, taken primarily with Suprime-Cam on the Subaru Telescope. From a stacked-shear-only analysis of the X-ray-selected subsample, we detect the ensemble-averaged lensing signal with a total signal-to-noise ratio of ≅ 25 in the radial range of 200-3500 kpc h {sup –1}, providing integrated constraints on the halo profile shape and concentration-mass relation. The stacked tangential-shear signal is well described bymore » a family of standard density profiles predicted for dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro-Frenk-White (NFW), truncated variants of NFW, and Einasto models. For the NFW model, we measure a mean concentration of c{sub 200c}=4.01{sub −0.32}{sup +0.35} at an effective halo mass of M{sub 200c}=1.34{sub −0.09}{sup +0.10}×10{sup 15} M{sub ⊙}. We show that this is in excellent agreement with Λ cold dark matter (ΛCDM) predictions when the CLASH X-ray selection function and projection effects are taken into account. The best-fit Einasto shape parameter is α{sub E}=0.191{sub −0.068}{sup +0.071}, which is consistent with the NFW-equivalent Einasto parameter of ∼0.18. We reconstruct projected mass density profiles of all CLASH clusters from a joint likelihood analysis of shear-and-magnification data and measure cluster masses at several characteristic radii assuming an NFW density profile. We also derive an ensemble-averaged total projected mass profile of the X-ray-selected subsample by stacking their individual mass profiles. The stacked total mass profile, constrained by the shear+magnification data, is shown to be consistent with our shear-based halo-model predictions, including the effects of surrounding large-scale structure as a two-halo term, establishing further consistency in the context of the ΛCDM model.« less

  18. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the Antares neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Müller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing profiles are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.

  19. Characteristics of square pore and low noise microchannel plate stacks. [for x-ray astronomy

    NASA Technical Reports Server (NTRS)

    Siegmund, Oswald H. W.; Marsh, Daniel; Stock, Joseph; Gaines, Geoffrey

    1992-01-01

    An evaluation is conducted of several square-pore microchannel plates (MCPs) with either 25- or 85-micron diameter pores and 80:1 or 50:1 channel length/diameter ratio. Flat field measurements show that the 25-micron-pored MCPs, unlike those with 85-micron pores, exhibit periodic modulation; this may be due to the MCP stacking configurations. Attention is given to the relative quantum detection efficiency advantages of the two MCPs.

  20. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    NASA Astrophysics Data System (ADS)

    Christensen, F. E.; Craig, W. W.; Windt, D. L.; Jimenez-Garate, M. A.; Hailey, C. J.; Harrison, F. A.; Mao, P. H.; Chakan, J. M.; Ziegler, E.; Honkimaki, V.

    2000-09-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10<~E<~80keV) band. In this paper, we present measurements of the reflectance in the 18-170 keV energy range of a cylindrical prototype nested optic taken at the European Synchrotron Radiation Facility (ESRF). The mirror segments, mounted in a single bounce stack, are coated with depth-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution of the bilayer thicknesses, and that the coatings are uniform at the 5% level over the mirror surface. Finally, we apply the measurements to predict effective areas achievable for HEFT and Con-X HXT using these W/Si designs.

  1. Stacking faults and mechanisms strain-induced transformations of hcp metals (Ti, Mg) during mechanical activation in liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Lubnin, A. N.; Dorofeev, G. A.; Nikonova, R. M.; Mukhgalin, V. V.; Lad'yanov, V. I.

    2017-11-01

    The evolution of the structure and substructure of metals Ti and Mg with hexagonal close-packed (hcp) lattice is studied during their mechanical activation in a planetary ball mill in liquid hydrocarbons (toluene, n-heptane) and with additions of carbon materials (graphite, fullerite, nanotubes) by X-ray diffraction, scanning electron microscopy, and chemical analysis. The temperature behavior and hydrogen-accumulating properties of mechanocomposites are studied. During mechanical activation of Ti and Mg, liquid hydrocarbons decay, metastable nanocrystalline titanium carbohydride Ti(C,H) x and magnesium hydride β-MgH2 are formed, respectively. The Ti(C,H) x and MgH2 formation mechanisms during mechanical activation are deformation ones and are associated with stacking faults accumulation, and the formation of face-centered cubic (fcc) packing of atoms. Metastable Ti(C,H)x decays at a temperature of 550°C, the partial reverse transformation fcc → hcp occurs. The crystalline defect accumulation (nanograin boundaries, stacking faults), hydrocarbon destruction, and mechanocomposite formation leads to the enhancement of subsequent magnesium hydrogenation in the Sieverts reactor.

  2. Fabricating High-Resolution X-Ray Collimators

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill

    2008-01-01

    A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.

  3. On the molecular and supramolecular properties of N,N‧-disubstituted iminoisoindolines: Synthesis, spectroscopy, X-ray structure and Hirshfeld surface analyses, and DFT calculations of two (E)-N,N‧-bis(aryl)iminoisoindolines (aryl = 2-tert-butylphenyl or perfluorophenyl)

    NASA Astrophysics Data System (ADS)

    Bitzer, Rodrigo S.; Visentin, Lorenzo C.; Hörner, Manfredo; Nascimento, Marco A. C.; Filgueiras, Carlos A. L.

    2017-02-01

    Supramolecular studies of iminoisoindoline-derived compounds have been prompted by their biological and photophysical properties. In this article, we report the synthesis, spectroscopy, X-ray structural characterization, and DFT study of two N,N‧-(aryl)-disubstituted 1-iminoisoindolines, namely (E)-N,N‧-bis(2-tert-butylphenyl)iminoisoindoline (2-t-BuPhimiso) and (E)-N,N‧-bis(perfluorophenyl)iminoisoindoline (F5Phimiso). Our X-ray structural analyses have shown that the isoindoline N2 atom of 2-t-BuPhimiso is slightly pyramidalized whereas the respective atom of F5Phimiso displays the expected trigonal planar geometry. The supramolecular arrangement of 2-t-BuPhimiso comprises one-dimensional chains along the [101] direction formed by Csbnd H···πarene interactions, in which the isoindoline ring behaves as a hydrogen-bond donor. For 2-t-BuPhimiso, DFT calculations at the B97-D3/6-311G** level have shown that the dimer formed by this Csbnd H···πarene contact displays a binding energy of -12.83 kcal mol-1. Product F5Phimiso assembles in the crystal state through type-I F3 synthons in addition to Csbnd H⋯F, C-Fδ-···πF+, and πarene/F-πarene/F stacking interactions. Accordingly, our DFT-D3 calculations have confirmed that these interactions synergistically play a dominating role in the crystal packing of F5Phimiso. Finally, the relative stability of the (Z) and (E) isomers of each product has been evaluated at the DFT level of theory. Our calculations have shown that the (E) forms are the most stable ones.

  4. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    PubMed Central

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  5. Arcsecond and Sub-arcsedond Imaging with X-ray Multi-Image Interferometer and Imager for (very) small sattelites

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.

    2017-10-01

    The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.

  6. Measurement of the natHf(d,x)177Ta cross section and impact of erroneous gamma-ray intensities

    NASA Astrophysics Data System (ADS)

    Simonelli, F.; Abbas, K.; Bulgheroni, A.; Pommé, S.; Altzitzoglou, T.; Suliman, G.

    2012-08-01

    In this work, excitation functions for deuteron-induced reactions on natural hafnium have been measured in the energy range 7-17 MeV, using the stacked-foil technique. Particular attention has been paid to the reaction natHf(d,x)177Ta, because reported γ-ray intensities have been found to be in disagreement with previously published data. This discrepancy is due to an error in the 2003 ENSDF absolute γ-ray intensities of 177Hf following the decay of 177Ta, which are about a factor of three higher compared to other available data. As a consquence, some peer reviewed papers reporting on natHf(d,x)177Ta, and also on natHf(p,x) 177Ta and natW(p,x) 177Ta, need to be reviewed. An upcoming re-evaluation of the 177Ta decay data shows new significant changes in the absolute γ-ray intensities, which in turn will affect again the 177Ta producing cross sections.

  7. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  8. Influence of Selenization Time on Microstructural, Optical, and Electrical Properties of Cu2ZnGeSe4 Films

    NASA Astrophysics Data System (ADS)

    Swapna Mary, G.; Hema Chandra, G.; Anantha Sunil, M.; Gupta, Mukul

    2018-01-01

    We have studied the effects of selenization time on the microstructural, optical, and electrical properties of stacked (Cu/Se/ZnSe/Se/Ge/Se) × 4 layers to demonstrate growth of Cu2ZnGeSe4 (CZGSe) thin films. Electron beam evaporation was used to deposit CZGSe films on glass substrates for selenization in high vacuum at 450°C for different times (15 min, 30 min, 45 min, and 60 min). The incomplete reaction of the precursor layers necessitates selenization at higher temperature for different durations to achieve desirable microstructural and optoelectronic properties. Energy-dispersive spectroscopic measurements revealed that the stacked layers selenized at 450°C for 30 min were nearly stoichiometric with atomic ratios of Cu/(Zn + Ge) = 0.88, Zn/Ge = 1.11, and Se/(Cu + Zn + Ge) = 1.03. X-ray diffraction analysis revealed that the stacks selenized at 450°C for 30 min crystallized in tetragonal stannite structure. Selenization-time-dependent Raman measurements of the selenized stacks are systematically presented to understand the growth of CZGSe. The elemental distribution through depth as a function of selenization time was investigated using secondary-ion mass spectroscopy. The ionic valency of the constituent elements in CZGSe films selenized at 450°C for 30 min was examined using high-resolution x-ray photoelectron spectroscopy. Significant changes were observed in the surface morphology of the stacked layers with increase in selenization time. The effects of defects on the electrical properties and of binary phases on the optical properties are discussed.

  9. TV-based conjugate gradient method and discrete L-curve for few-view CT reconstruction of X-ray in vivo data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin

    2015-01-01

    High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the numbermore » of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation. (C) 2015 Optical Society of America« less

  10. Stacking fault density and bond orientational order of fcc ruthenium nanoparticles

    NASA Astrophysics Data System (ADS)

    Seo, Okkyun; Sakata, Osami; Kim, Jae Myung; Hiroi, Satoshi; Song, Chulho; Kumara, Loku Singgappulige Rosantha; Ohara, Koji; Dekura, Shun; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi

    2017-12-01

    We investigated crystal structure deviations of catalytic nanoparticles (NPs) using synchrotron powder X-ray diffraction. The samples were fcc ruthenium (Ru) NPs with diameters of 2.4, 3.5, 3.9, and 5.4 nm. We analyzed average crystal structures by applying the line profile method to a stacking fault model and local crystal structures using bond orientational order (BOO) parameters. The reflection peaks shifted depending on rules that apply to each stacking fault. We evaluated the quantitative stacking faults densities for fcc Ru NPs, and the stacking fault per number of layers was 2-4, which is quite large. Our analysis shows that the fcc Ru 2.4 nm-diameter NPs have a considerably high stacking fault density. The B factor tends to increase with the increasing stacking fault density. A structural parameter that we define from the BOO parameters exhibits a significant difference from the ideal value of the fcc structure. This indicates that the fcc Ru NPs are highly disordered.

  11. Material characteristics and equivalent circuit models of stacked graphene oxide for capacitive humidity sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Kook In; Lee, In Gyu; Hwang, Wan Sik, E-mail: mhshin@kau.ac.kr, E-mail: whwang@kau.ac.kr

    The oxidation properties of graphene oxide (GO) are systematically correlated with their chemical sensing properties. Based on an impedance analysis, the equivalent circuit models of the capacitive sensors are established, and it is demonstrated that capacitive operations are related to the degree of oxidation. This is also confirmed by X-ray diffraction and Raman analysis. Finally, highly sensitive stacked GO sensors are shown to detect humidity in capacitive mode, which can be useful in various applications requiring low power consumption.

  12. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.

    PubMed

    Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe

    2007-09-01

    In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic stacking, and electronic structure to construct many other types of bimetallic systems for interesting applications.

  13. X-Ray Properties of K-Selected Galaxies at 0.5 Less than z Less than 2.0: Investigating Trends with Stellar Mass, Redshift and Spectral Type

    NASA Technical Reports Server (NTRS)

    Jones, Therese M.; Kriek, Mariska; vanDokkum, Peter G.; Brammer, Gabriel; Franx, Marijn; Greene, Jenny E.; Labbe, Ivo; Whitaker, Katherine E.

    2014-01-01

    We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of approximately 3500 galaxies at 0.5 < z < 2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000 angstrom breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low- and high-mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000 angstrom breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.

  14. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation

    NASA Astrophysics Data System (ADS)

    Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander

    2018-02-01

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.

  15. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.

    PubMed

    Borowiec, Joanna; Gillin, William P; Willis, Maureen A C; Boi, Filippo S; He, Y; Wen, J Q; Wang, S L; Schulz, Leander

    2018-01-11

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH 4 ReO 4 ) leading to a synthesis of rhenium disulfide (ReS 2 ) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS 2 . The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS 2 with a low degree of layer stacking.

  16. Identification of an organic semiconductor superlattice structure of pentacene and perfluoro-pentacene through resonant and non-resonant X-ray scattering

    DOE PAGES

    Kowarik, S.; Hinderhofer, A.; Wang, C.; ...

    2015-11-30

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ~ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less

  17. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  18. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  19. Stacking Orientation Mediation of Pentacene and Derivatives for High Open-Circuit Voltage Organic Solar Cells.

    PubMed

    Chou, Chi-Ta; Lin, Chien-Hung; Tai, Yian; Liu, Chin-Hsin J; Chen, Li-Chyong; Chen, Kuei-Hsien

    2012-05-03

    In this Letter, we investigated the effect of the molecular stacking orientation on the open circuit voltage (VOC) of pentacene-based organic solar cells. Two functionalized pentacenes, namely, 6,13-diphenyl-pentacene (DP-penta) and 6,13-dibiphenyl-4-yl-pentacene (DB-penta), were utilized. Different molecular stacking orientations of the pentacene derivatives from the pristine pentacene were identified by angle-dependent near-edge X-ray absorption fine structure measurements. It is concluded that pentacene molecules stand up on the substrate surface, while both functionalized pentacenes lie down. A significant increase of the VOC from 0.28 to 0.83 V can be achieved upon the utilization of functionalized pentacene, owing to the modulation of molecular stacking orientation, which induced a vacuum-level shift.

  20. Evaluation of a CFD Method for Aerodynamic Database Development using the Hyper-X Stack Configuration

    NASA Technical Reports Server (NTRS)

    Parikh, Paresh; Engelund, Walter; Armand, Sasan; Bittner, Robert

    2004-01-01

    A computational fluid dynamic (CFD) study is performed on the Hyper-X (X-43A) Launch Vehicle stack configuration in support of the aerodynamic database generation in the transonic to hypersonic flow regime. The main aim of the study is the evaluation of a CFD method that can be used to support aerodynamic database development for similar future configurations. The CFD method uses the NASA Langley Research Center developed TetrUSS software, which is based on tetrahedral, unstructured grids. The Navier-Stokes computational method is first evaluated against a set of wind tunnel test data to gain confidence in the code s application to hypersonic Mach number flows. The evaluation includes comparison of the longitudinal stability derivatives on the complete stack configuration (which includes the X-43A/Hyper-X Research Vehicle, the launch vehicle and an adapter connecting the two), detailed surface pressure distributions at selected locations on the stack body and component (rudder, elevons) forces and moments. The CFD method is further used to predict the stack aerodynamic performance at flow conditions where no experimental data is available as well as for component loads for mechanical design and aero-elastic analyses. An excellent match between the computed and the test data over a range of flow conditions provides a computational tool that may be used for future similar hypersonic configurations with confidence.

  1. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction.

    PubMed

    Davtyan, Arman; Lehmann, Sebastian; Kriegner, Dominik; Zamani, Reza R; Dick, Kimberly A; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J; Pietsch, Ullrich; Holý, Václav

    2017-09-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the [000\\bar{1}] direction in the vicinity of the wurtzite 00\\bar{1}\\bar{5} Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire.

  2. Characterization of individual stacking faults in a wurtzite GaAs nanowire by nanobeam X-ray diffraction

    PubMed Central

    Davtyan, Arman; Lehmann, Sebastian; Zamani, Reza R.; Dick, Kimberly A.; Bahrami, Danial; Al-Hassan, Ali; Leake, Steven J.; Pietsch, Ullrich; Holý, Václav

    2017-01-01

    Coherent X-ray diffraction was used to measure the type, quantity and the relative distances between stacking faults along the growth direction of two individual wurtzite GaAs nanowires grown by metalorganic vapour epitaxy. The presented approach is based on the general property of the Patterson function, which is the autocorrelation of the electron density as well as the Fourier transformation of the diffracted intensity distribution of an object. Partial Patterson functions were extracted from the diffracted intensity measured along the direction in the vicinity of the wurtzite Bragg peak. The maxima of the Patterson function encode both the distances between the fault planes and the type of the fault planes with the sensitivity of a single atomic bilayer. The positions of the fault planes are deduced from the positions and shapes of the maxima of the Patterson function and they are in excellent agreement with the positions found with transmission electron microscopy of the same nanowire. PMID:28862620

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  4. How Cubic Can Ice Be?

    DOE PAGES

    Amaya, Andrew J.; Pathak, Harshad; Modak, Viraj P.; ...

    2017-06-28

    Using an X-ray laser, we investigated the crystal structure of ice formed by homogeneous ice nucleation in deeply supercooled water nanodrops (r ≈ 10 nm) at ~225 K. The nanodrops were formed by condensation of vapor in a supersonic nozzle, and the ice was probed within 100 μs of freezing using femtosecond wide-angle X-ray scattering at the Linac Coherent Light Source free-electron X-ray laser. The X-ray diffraction spectra indicate that this ice has a metastable, predominantly cubic structure; the shape of the first ice diffraction peak suggests stacking-disordered ice with a cubicity value, χ, in the range of 0.78 ±more » 0.05. The cubicity value determined here is higher than those determined in experiments with micron-sized drops but comparable to those found in molecular dynamics simulations. Lastly, the high cubicity is most likely caused by the extremely low freezing temperatures and by the rapid freezing, which occurs on a ~1 μs time scale in single nanodroplets.« less

  5. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE PAGES

    Zhang, Lihua; Su, Dong; Kisslinger, Kim; ...

    2014-12-04

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  6. Characterization of V-shaped defects in 4H-SiC homoepitaxial layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lihua; Su, Dong; Kisslinger, Kim

    Synchrotron white beam x-ray topography images show that faint needle-like surface morphological features observed on the Si-face of 4H-SiC homoepitaxial layers using Nomarski optical microscopy are associated with V shaped stacking faults in the epilayer. KOH etching of the V shaped defect reveals small oval pits connected by a shallow line which corresponding to the surface intersections of two partial dislocations and the stacking fault connecting them. Transmission electron microscopy (TEM) specimens from regions containing the V shaped defects were prepared using focused ion beam milling, and stacking sequences of (85), (50) and (63) are observed at the faulted regionmore » with high resolution TEM. In order to study the formation mechanism of V shaped defect, low dislocation density 4H-SiC substrates were chosen for epitaxial growth, and the corresponding regions before and after epitaxy growth are compared in SWBXT images. It is found that no defects in the substrate are directly associated with the formation of the V shaped defect. Simulation results of the contrast from the two partial dislocations associated with V shaped defect in synchrotron monochromatic beam x-ray topography reveals the opposite sign nature of their Burgers vectors. Therefore, a mechanism of 2D nucleation during epitaxy growth is postulated for the formation of the V shaped defect, which requires elimination of non-sequential 1/4[0001] bilayers from the original structure to create the observed faulted stacking sequence.« less

  7. The Chandra Deepest Fields in the Infrared: Making the Connection between Normal Galaxies and AGN

    NASA Astrophysics Data System (ADS)

    Grogin, N. A.; Ferguson, H. C.; Dickinson, M. E.; Giavalisco, M.; Mobasher, B.; Padovani, P.; Williams, R. E.; Chary, R.; Gilli, R.; Heckman, T. M.; Stern, D.; Winge, C.

    2001-12-01

    Within each of the two Chandra Deepest Fields (CDFs), there are ~10'x15' regions targeted for non-proprietary, deep SIRTF 3.6--24μ m imaging as part of the Great Observatories Origins Deep Survey (GOODS) Legacy program. In advance of the SIRTF observations, the GOODS team has recently begun obtaining non-proprietary, deep ground-based optical and near-IR imaging and spectroscopy over these regions, which contain virtually all of the current ≈1 Msec CXO coverage in the CDF North and much of the ≈1 Msec coverage in the CDF South. In particular, the planned depth of the near-IR imaging (JAB ~ 25.3; HAB ~ 24.8; KAB ~ 24.4) combined with the deep Chandra data can allow us to trace the evolutionary connection between normal galaxies, starbursts, and AGN out to z ~ 1 and beyond. We describe our CDF Archival program, which is integrating these GOODS-supporting observations together with the CDF archival data and other publicly-available datasets in these regions to create a multi-wavelength deep imaging and spectroscpic database available to the entire community. We highlight progress toward near-term science goals of this program, including: (a) pushing constraints on the redshift distribution and spectral-energy distributions of the faintest X-ray sources to the deepest possible levels via photometric redshifts; and (b) better characterizing the heavily-obscured and the high-redshift populations via both a near-IR search for optically-undetected CDF X-ray sources and also X-ray stacking analyses on the CXO-undetected EROs in these fields.

  8. Suppressing Thermal Energy Drift in the LLNL Flash X-Ray Accelerator Using Linear Disk Resistor Stacks

    DTIC Science & Technology

    2011-06-01

    induction accelerator with a voltage output of 18MeV at a current of 3kA. The electron beam is focused onto a tantalum target to produce X-rays. The... capacitors in each bank, half of which are charged in parallel positively, and the other half are negatively charged in parallel. The charge voltage can...be varied from ±30kV to ±40kV. The Marx capacitors are fired in series into the Blumleins with up to 400kV 2µS output. Figure 1 FXR Pulsed Power

  9. SARS E protein in phospholipid bilayers: an anomalous X-ray reflectivity study

    NASA Astrophysics Data System (ADS)

    Khattari, Z.; Brotons, G.; Arbely, E.; Arkin, I. T.; Metzger, T. H.; Salditt, T.

    2005-02-01

    We report on an anomalous X-ray reflectivity study to locate a labelled residue of a membrane protein with respect to the lipid bilayer. From such experiments, important constraints on the protein or peptide conformation can be derived. Specifically, our aim is to localize an iodine-labelled phenylalanine in the SARS E protein, incorporated in DMPC phospholipid bilayers, which are deposited in the form of thick multilamellar stacks on silicon surfaces. Here, we discuss the experimental aspects and the difficulties associated with the Fourier synthesis analysis that gives the electron density profile of the membranes.

  10. Direct hot slumping and accurate integration process to manufacture prototypal x-ray optical units made of glass

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.

    2013-09-01

    X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of around 17''.

  11. Determination of the gaseous hydrogen ductile-brittle transition in copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Parr, R. A.; Johnston, M. H.; Davis, J. H.; Oh, T. K.

    1985-01-01

    A series of copper-nickel alloys were fabricated, notched tensile specimens machined for each alloy, and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel. Stacking fault probability and stacking fault energies were determined for each alloy using the x ray diffraction line shift and line profiles technique. Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

  12. Synthesis, crystal structure, spectroscopic characterization, Hirshfeld surface analysis, and DFT calculations of 1,4-dimethyl-2-oxo-pyrimido[1,2-a]benzimidazole hydrate

    NASA Astrophysics Data System (ADS)

    El Bakri, Youness; Anouar, El Hassane; Ramli, Youssef; Essassi, El Mokhtar; Mague, Joel T.

    2018-01-01

    Imidazopyrimidine derivatives are organic synthesized compounds with a pyrimido[1,2-a]benzimidazole as basic skeleton. They are known for their various biological properties and as an important class of compounds in medicinal chemistry. A new 1,4-dimethyl-2-oxo-pyrimido[1,2-a]benzimidazole hydrate derivative of the tilted group has been synthesized and characterized by spectroscopic techniques NMR and FT-IR; and by a single crystal X-ray diffraction. The X-ray results showed that the tricyclic core of the title compound, C12H11N3O·H2O, is almost planar. The molecules stack along the a-axis direction in head-to- tail fashion through π-stacking interactions involving all three rings. The stacks are tied together by direct Csbnd H⋯O hydrogen bonds and by Osbnd H⋯O, Osbnd N⋯N and Csbnd H⋯O hydrogen bonds with the lattice water. DFT calculations at B3LYP/6-311++G(d,p) in gas phase an polarizable continuum model have been carried out to predict the spectral and geometrical data of the tilted compound. The obtained results showed relatively good correlations between the predicted and experimental data with correlation coefficients higher than 98%.

  13. A discrete three-layer stack aggregate of a linear porphyrin tetramer: solution-phase structure elucidation by NMR and X-ray scattering.

    PubMed

    Hutin, Marie; Sprafke, Johannes K; Odell, Barbara; Anderson, Harry L; Claridge, Tim D W

    2013-08-28

    Formation of stacked aggregates can dramatically alter the properties of aromatic π-systems, yet the solution-phase structure elucidation of these aggregates is often impossible because broad distributions of species are formed, giving uninformative spectroscopic data. Here, we show that a butadiyne-linked zinc porphyrin tetramer forms a remarkably well-defined aggregate, consisting of exactly three molecules, in a parallel stacked arrangement (in chloroform at room temperature; concentration 1 mM-0.1 μM). The aggregate has a mass of 14.7 kDa. Unlike most previously reported aggregates, it gives sharp NMR resonances and aggregation is in slow exchange on the NMR time scale. The structure was elucidated using a range of NMR techniques, including diffusion-editing, (1)H-(29)Si HMBC, (1)H-(1)H COSY, TOCSY and NOESY, and (1)H-(13)C edited HSQC spectroscopy. Surprisingly, the (1)H-(1)H COSY spectrum revealed many long-range residual dipolar couplings (RDCs), and detailed analysis of magnetic field-induced (1)H-(13)C RDCs provided further evidence for the structural model. The size and shape of the aggregate is supported by small-angle X-ray scattering (SAXS) data. It adopts a geometry that maximizes van der Waals contact between the porphyrins, while avoiding clashes between side chains. The need for interdigitation of the side chains prevents formation of stacks consisting of more than three layers. Although a detailed analysis has only been carried out for one compound (the tetramer), comparison with the NMR spectra of other oligomers indicates that they form similar three-layer stacks. In all cases, aggregation can be prevented by addition of pyridine, although at low pyridine concentrations, disaggregation takes many hours to reach equilibrium.

  14. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  15. A Robust Open Framework Formed by Decavanadate Clusters and Copper(II) Complexes of Macrocyclic Polyamines: Permanent Microporosity and Catalytic Oxidation of Cycloalkanes.

    PubMed

    Martín-Caballero, Jagoba; San José Wéry, Ana; Reinoso, Santiago; Artetxe, Beñat; San Felices, Leire; El Bakkali, Bouchra; Trautwein, Guido; Alcañiz-Monge, Juan; Vilas, José Luis; Gutiérrez-Zorrilla, Juan M

    2016-05-16

    The first decavanadate-based microporous hybrid, namely, [Cu(cyclam)][{Cu(cyclam)}2(V10O28)]·10H2O (1, cyclam = 1,4,8,11-tetraazacyclotetradecane) was prepared by reaction of (VO3)(-) anions and {Cu(cyclam)}(2+) complexes in NaCl (aq) at pH 4.6-4.7 and characterized by elemental analyses, thermogravimetry, and X-ray diffraction (powder, single-crystal) techniques. Compound 1 exhibits a POMOF-like supramolecular open-framework built of covalent decavanadate/metalorganic layers with square-like voids, the stacking of which is aided by interlamellar cementing complexes and generates water-filled channels with approximate cross sections of 10.4 × 8.8 Å(2). The framework is robust enough to remain virtually unaltered upon thermal evacuation of all water molecules of hydration, as demonstrated through single-crystal X-ray diffraction studies on the anhydrous phase 1a. This permanent microporosity renders interesting functionality to 1, such as selective adsorption of CO2 over N2 and remarkable activity as heterogeneous catalyst toward the H2O2-based oxidation of the highly-stable, tricyclic alkane adamantane.

  16. Flight Results of the Chandra X-ray Observatory Inertial Upper Stage Space Mission

    NASA Technical Reports Server (NTRS)

    Tillotson, R.; Walter, R.

    2000-01-01

    Under contract to NASA, a specially configured version of the Boeing developed Inertial Upper Stage (IUS) booster was provided by Boeing to deliver NASA's 1.5 billion dollar Chandra X-Ray Observatory satellite into a highly elliptical transfer orbit from a Shuttle provided circular park orbit. Subsequently, the final orbit of the Chandra satellite was to be achieved using the Chandra Integral Propulsion System (IPS) through a series of IPS burns. On 23 July 1999 the Shuttle Columbia (STS-93) was launched with the IUS/Chandra stack in the Shuttle payload bay. Unfortunately, the Shuttle Orbiter was unexpectantly inserted into an off-nominal park orbit due to a Shuttle propulsion anomaly occurring during ascent. Following the IUS/Chandra on-orbit deployment from the Shuttle, at seven hours from liftoff, the flight proven IUS GN&C system successfully injected Chandra into the targeted transfer orbit, in spite of the off-nominal park orbit. This paper describes the IUS GN&C system, discusses the specific IUS GN&C mission data load development, analyses and testing for the Chandra mission, and concludes with a summary of flight results for the IUS part of the Chandra mission.

  17. Experimental verification of the model for formation of double Shockley stacking faults in highly doped regions of PVT-grown 4H–SiC wafers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yu; Guo, Jianqiu; Goue, Ouloide

    Recently, we reported on the formation of overlapping rhombus-shaped stacking faults from scratches left over by the chemical mechanical polishing during high temperature annealing of PVT-grown 4H–SiC wafer. These stacking faults are restricted to regions with high N-doped areas of the wafer. The type of these stacking faults were determined to be Shockley stacking faults by analyzing the behavior of their area contrast using synchrotron white beam X-ray topography studies. A model was proposed to explain the formation mechanism of the rhombus shaped stacking faults based on double Shockley fault nucleation and propagation. In this paper, we have experimentally verifiedmore » this model by characterizing the configuration of the bounding partials of the stacking faults on both surfaces using synchrotron topography in back reflection geometry. As predicted by the model, on both the Si and C faces, the leading partials bounding the rhombus-shaped stacking faults are 30° Si-core and the trailing partials are 30° C-core. Finally, using high resolution transmission electron microscopy, we have verified that the enclosed stacking fault is a double Shockley type.« less

  18. Synthesis of MAX Phases in the Hf-Al-C System.

    PubMed

    Lapauw, Thomas; Tunca, Bensu; Cabioc'h, Thierry; Lu, Jun; Persson, Per O Å; Lambrinou, Konstantina; Vleugels, Jozef

    2016-11-07

    For the first time, MAX phases in the Hf-Al-C system were experimentally synthesized using reactive hot pressing. HfC was observed as the main competing phase. The lattice parameters of Hf 2 AlC and Hf 3 AlC 2 were determined by Rietveld refinement based on the X-ray diffraction data. The atomic stacking sequence was revealed by high-resolution scanning transmission electron microscopy. Mixtures of 211 and 312 stacking were observed within the same grain, including 523 layers. This transition in atomic structure is discussed.

  19. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS.

    PubMed

    Suturin, S M; Fedorov, V V; Korovin, A M; Valkovskiy, G A; Konnikov, S G; Tabuchi, M; Sokolov, N S

    2013-08-01

    In this work epitaxial growth of cobalt on CaF 2 (111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF 2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.

  20. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS

    PubMed Central

    Suturin, S. M.; Fedorov, V. V.; Korovin, A. M.; Valkovskiy, G. A.; Konnikov, S. G.; Tabuchi, M.; Sokolov, N. S.

    2013-01-01

    In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles. PMID:24046491

  1. Measuring Three-Dimensional Strain and Structural Defects in a Single InGaAs Nanowire Using Coherent X-ray Multiangle Bragg Projection Ptychography

    DOE PAGES

    Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc; ...

    2018-01-08

    III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less

  2. Measuring Three-Dimensional Strain and Structural Defects in a Single InGaAs Nanowire Using Coherent X-ray Multiangle Bragg Projection Ptychography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Megan O.; Calvo-Almazan, Irene; Allain, Marc

    III - As nanowires are candidates for near-infrared light emitters and detectors that can be directly integrated onto silicon. However, nanoscale to microscale variations in structure, composition, and strain within a given nanowire, as well as variations between nanowires, pose challenges to correlating microstructure with device performance. In this work, we utilize coherent nanofocused X-rays to characterize stacking defects and strain in a single InGaAs nanowire supported on Si. By reconstructing diffraction patterns from the 2110 Bragg peak, we show that the lattice orientation varies along the length of the wire, while the strain field along the cross-section is largelymore » unaffected, leaving the band structure unperturbed. Diffraction patterns from the 0110 Bragg peak are reproducibly reconstructed to create three-dimensional images of stacking defects and associated lattice strains, revealing sharp planar boundaries between different crystal phases of wurtzite (WZ) structure that contribute to charge carrier scattering. Phase retrieval is made possible by developing multiangle Bragg projection ptychography (maBPP) to accommodate coherent nanodiffraction patterns measured at arbitrary overlapping positions at multiple angles about a Bragg peak, eliminating the need for scan registration at different angles. The penetrating nature of X-ray radiation, together with the relaxed constraints of maBPP, will enable the in operando imaging of nanowire devices.« less

  3. Characterization of short-pulse laser-produced x-rays for diagnosing magnetically driven cylindrical isentropic compression

    NASA Astrophysics Data System (ADS)

    Sawada, Hiroshi; Daykin, Tyler; Bauer, Bruno; Beg, Farhat

    2017-10-01

    We have developed an experimental platform to study material properties of magnetically compressed cylinder using a 1 MA pulsed power generator Zebra and a 50 TW subpicosecond short-pulse laser Leopard at the UNR's Nevada Terawatt Facility. According to a MHD simulation, strong magnetic fields generated by 100 ns rise time Zebra current can quasi-isentropically compress a material to the strongly coupled plasma regime. Taking advantage of the cylindrical geometry, a metal rod can be brought to higher pressures than that in the planar geometry. To diagnose the compressed rod with high precision x-ray measurements, an initial laser-only experiment was carried out to characterize laser-produced x-rays. Interaction of a high-intensity, short-pulse laser with solids produces broadband and monochromatic x-rays with photon energies high enough to probe dense metal rods. Bremsstrahlung was measured with Imaging plate-based filter stack spectrometers and monochromatic 8.0 keV Cu K-alpha was recorded with an absolutely calibrated Bragg crystal spectrometer. The broadband x-ray source was applied to radiography of thick metal objects and different filter materials were tested. The experimental results and a design of a coupled experiment will be presented.

  4. High spatial resolution correlated investigation of Zn segregation to stacking faults in ZnTe/CdSe nanostructures

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Grenier, Adeline; Gerard, Lionel; Jouneau, Pierre-Henri; André, Regis; Blavette, Didier; Bougerol, Catherine

    2018-02-01

    The correlative use of atom probe tomography (APT) and energy dispersive x-ray spectroscopy in scanning transmission electron microscopy (STEM) allows us to characterize the structure of ZnTe/CdSe superlattices at the nanometre scale. Both techniques reveal the segregation of zinc along [111] stacking faults in CdSe layers, which is interpreted as a manifestation of the Suzuki effect. Quantitative measurements reveal a zinc enrichment around 9 at. % correlated with a depletion of cadmium in the stacking faults. Raw concentration data were corrected so as to account for the limited spatial resolution of both STEM and APT techniques. A simple calculation reveals that the stacking faults are almost saturated in Zn atoms (˜66 at. % of Zn) at the expense of Cd that is depleted.

  5. Morphology Dependence of Stellar Age in Quenched Galaxies at Redshift ˜1.2: Massive Compact Galaxies Are Older than More Extended Ones

    NASA Astrophysics Data System (ADS)

    Williams, Christina C.; Giavalisco, Mauro; Bezanson, Rachel; Cappelluti, Nico; Cassata, Paolo; Liu, Teng; Lee, Bomee; Tundo, Elena; Vanzella, Eros

    2017-04-01

    We report the detection of morphology-dependent stellar age in massive quenched galaxies (QGs) at z ˜ 1.2. The sense of the dependence is that compact QGs are 0.5-2 Gyr older than normal-sized ones. The evidence comes from three different age indicators—{D}n4000, {{{H}}}δ , and fits to spectral synthesis models—applied to their stacked optical spectra. All age indicators consistently show that the stellar populations of compact QGs are older than those of their normal-sized counterparts. We detect weak [O II] emission in a fraction of QGs, and the strength of the line, when present, is similar between the two samples; however, compact galaxies exhibit a significantly lower frequency of [O II] emission than normal ones. Fractions of both samples are individually detected in 7 Ms Chandra X-ray images (luminosities ˜1040-1041 erg s-1). The 7 Ms stacks of nondetected galaxies show similarly low luminosities in the soft band only, consistent with a hot gas origin for the X-ray emission. While both [O II] emitters and nonemitters are also X-ray sources among normal galaxies, no compact galaxy with [O II] emission is an X-ray source, arguing against an active galactic nucleus (AGN) powering the line in compact galaxies. We interpret the [O II] properties as further evidence that compact galaxies are older and further along in the process of quenching star formation and suppressing gas accretion. Finally, we argue that the older age of compact QGs is evidence of progenitor bias: compact QGs simply reflect the smaller sizes of galaxies at their earlier quenching epoch, with stellar density most likely having nothing directly to do with cessation of star formation.

  6. Using synchrotron X-ray phase-contrast micro-computed tomography to study tissue damage by laser irradiation.

    PubMed

    Robinson, Alan M; Stock, Stuart R; Soriano, Carmen; Xiao, Xianghui; Richter, Claus-Peter

    2016-11-01

    The aim of this study was to determine if X-ray micro-computed tomography could be used to locate and characterize tissue damage caused by laser irradiation and to describe its advantages over classical histology for this application. A surgical CO 2 laser, operated in single pulse mode (100 milliseconds) at different power settings, was used to ablate different types of cadaveric animal tissues. Tissue samples were then harvested and imaged with synchrotron X-ray phase-contrast and micro-computed tomography to generate stacks of virtual sections of the tissues. Subsequently, Fiji (ImageJ) software was used to locate tissue damage, then to quantify volumes of laser ablation cones and thermal coagulation damage from 3D renderings of tissue image stacks. Visual comparisons of tissue structures in X-ray images with those visible by classic light microscopy histology were made. We demonstrated that micro-computed tomography could be used to rapidly identify areas of surgical laser ablation, vacuolization, carbonization, and thermally coagulated tissue. Quantification and comparison of the ablation crater, which represents the volume of ablated tissue, and the thermal coagulation zone volumes were performed faster than we could by classical histology. We demonstrated that these procedures can be performed on fresh hydrated and non-sectioned plastic embedded tissue. We demonstrated that the application of non-destructive micro-computed tomography to the visualization and analysis of laser induced tissue damage without tissue sectioning is possible. This will improve evaluation of new surgical lasers and their corresponding effect on tissues. Lasers Surg. Med. 48:866-877, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.; hide

    2012-01-01

    The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.

  8. Crystal structure of the new A2SnTa6X18 (A = K, Rb, Cs; X = Cl, Br) cluster compounds

    NASA Astrophysics Data System (ADS)

    Lemoine, P.; Wilmet, M.; Malaman, B.; Paofai, S.; Dumait, N.; Cordier, S.

    2018-01-01

    The crystal structure of the new cluster compounds A2SnTa6X18 (with A = K, Rb, Cs, and X = Cl, Br) was determined by using single-crystal and powder X-ray diffraction, and 119Sn Mössbauer spectroscopy. Those compounds crystallize in the Cs2EuNb6Br18-type structure of space group R 3 ̅. This type of structure is built up on discrete edge-bridged [M6Xi12Xa6]4- cluster units arranged according to a pseudo face-centered cubic stacking, where the octahedral and tetrahedral vacancies are fully occupied by divalent tin cations and monovalent alkaline cations, respectively. The tin cations influence on the halogen matrix and the electronic effects on the cluster units in the Cs2EuNb6Br18-type structure are discussed by comparison with isotype compounds. From those analyses, the ionic radius of Sn2+ in coordination number VI is estimated to be 1.14(1) Å. Finally, K2SnTa6Br18 might be considered as a new example of compound containing a quite bare stannous ion (5 s2 configuration).

  9. Important role of the non-uniform Fe distribution for the ferromagnetism in group-IV-based ferromagnetic semiconductor GeFe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakabayashi, Yuki K.; Ohya, Shinobu; Ban, Yoshisuke

    2014-11-07

    We investigate the growth-temperature dependence of the properties of the group-IV-based ferromagnetic semiconductor Ge{sub 1−x}Fe{sub x} films (x = 6.5% and 10.5%), and reveal the correlation of the magnetic properties with the lattice constant, Curie temperature (T{sub C}), non-uniformity of Fe atoms, stacking-fault defects, and Fe-atom locations. While T{sub C} strongly depends on the growth temperature, we find a universal relationship between T{sub C} and the lattice constant, which does not depend on the Fe content x. By using the spatially resolved transmission-electron diffractions combined with the energy-dispersive X-ray spectroscopy, we find that the density of the stacking-fault defects and the non-uniformitymore » of the Fe concentration are correlated with T{sub C}. Meanwhile, by using the channeling Rutherford backscattering and particle-induced X-ray emission measurements, we clarify that about 15% of the Fe atoms exist on the tetrahedral interstitial sites in the Ge{sub 0.935}Fe{sub 0.065} lattice and that the substitutional Fe concentration is not correlated with T{sub C}. Considering these results, we conclude that the non-uniformity of the Fe concentration plays an important role in determining the ferromagnetic properties of GeFe.« less

  10. Local structure and lattice dynamics study of low dimensional materials using atomic pair distribution function and high energy resolution inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Shi, Chenyang

    Structure and dynamics lie at the heart of the materials science. A detailed knowledge of both subjects would be foundational in understanding the materials' properties and predicting their potential applications. However, the task becomes increasingly dicult as the particle size is reduced to the nanometer scale. For nanostructured materials their laboratory x-ray scattering patterns are overlapped and broadened, making structure determination impossible. Atomic pair distribution function technique based on either synchrotron x-ray or neutron scattering data is known as the tool of choice for probing local structures. However, to solve the "structure problem" in low-dimensional materials with PDF is still challenging. For example for 2D materials of interest in this thesis the crystallographic modeling approach often yields unphysical thermal factors along stacking direction where new chemical intuitions about their actual structures and new modeling methodology/program are needed. Beyond this, lattice dynamical investigations on nanosized particles are extremely dicult. Laboratory tools such as Raman and infra-red only probe phonons at Brillouin zone center. Although in literature there are a great number of theoretical studies of their vibrational properties based on either empirical force elds or density functional theory, various approximations made in theories make the theoretical predictions less reliable. Also, there lacks the direct experiment result to validate the theory against. In this thesis, we studied the structure and dynamics of a wide variety of technologically relevant low-dimensional materials through synchrotron based x-ray PDF and high energy resolution inelastic x-ray scattering (HERIX) techniques. By collecting PDF data and employing advanced modeling program such as DiPy-CMI, we successfully determined the atomic structures of (i) emerging Ti3C2, Nb4C3 MXenes (transition metal carbides and/or nitrides) that are promising for energy storage applications, and of (ii) zirconium phenylphosphonate ion exchange materials that are proposed to separate lanthanide ions from actinide ions in nuclear waste. Both material systems have two-dimensional layered nanocrystalline structure where we observed that the stacking of layers are not in good registry, also known as turbostratic" disorder. Consequently the signals from a single layer of atoms dominate the experimental PDF{thus building up a single slab model and simulating PDF using Debye function analysis was sucient to capture the main structural features in the measured PDF data. The information on correlation length of layers along the stacking direction, however, is contained in low-Q diraction peaks in either laboratory x-ray or synchrotron x-ray scattering patterns. On the lattice dynamics side, we rst investigated the trend of atomic bonding strength in size dependent platinum nanoparticles based on temperature dependent PDF data and measured Debye temperatures. An anomalous bond softening was observed at a particle size less than 2 nm. Since Debye model gives a simple quadratic phonon density of states (PDOS) curve, which is a simplified version of real lattice dynamics, we are motivated to measure full PDOS curves on three CdSe nanoclusters by using non-resonant inelastic x-ray scattering technique. We observed an overall blue-shift of PDOS curves with decreased sizes. Our current exemplary studies will open the door to a large number of future structural and lattice dynamical studies on a much broader range of low-dimensional material systems.

  11. Studies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides

    NASA Astrophysics Data System (ADS)

    Ray, Sibdas; Das, Aniruddha

    2015-06-01

    Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.

  12. Formation of silicides in annealed periodic multilayers

    NASA Astrophysics Data System (ADS)

    Maury, H.; Jonnard, P.; Le Guen, K.; André, J.-M.

    2009-05-01

    Periodic multilayers of nanometric period are widely used as optical components for the X-ray and extreme UV (EUV) ranges, in X-ray space telescopes, X-ray microscopes, EUV photolithography or synchrotron beamlines for example. Their optical performances depend on the quality of the interfaces between the various layers: chemical interdiffusion or mechanical roughness shifts the application wavelength and can drastically decrease the reflectance. Since under high thermal charge interdiffusion is known to get enhanced, the study of the thermal stability of such structures is essential to understand how interfacial compounds develop. We have characterized X-ray and EUV siliconcontaining multilayers (Mo/Si, Sc/Si and Mg/SiC) as a function of the annealing temperature (up to 600°C) using two non-destructive methods. X-ray emission from the silicon atoms, describing the Si valence states, is used to determine the chemical nature of the compounds present in the interphases while X-ray reflectivity in the hard and soft X-ray ranges can be related to the optical properties. In the three cases, interfacial metallic (Mo, Sc, Mg) silicides are evidenced and the thickness of the interphase increases with the annealing temperature. For Mo/Si and Sc/Si multilayers, silicides are even present in the as-prepared multilayers. Characteristic parameters of the stacks are determined: composition of the interphases, thickness and roughness of the layers and interphases if any. Finally, we have evidenced the maximum temperature of application of these multilayers to minimize interdiffusion.

  13. A whole-system approach to x-ray spectroscopy in cargo inspection systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter

    The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniquesmore » require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.« less

  14. In-situ observation of stacking fault evolution in vacuum-deposited C60

    NASA Astrophysics Data System (ADS)

    Hardigree, J. F. M.; Ramirez, I. R.; Mazzotta, G.; Nicklin, C.; Riede, M.

    2017-12-01

    We report an in-situ study of stacking fault evolution in C60 thin films using grazing-incidence x-ray scattering. A Williamson-Hall analysis of the main scattering features during growth of a 15 nm film on glass indicates lattice strain as high as 6% in the first 5 nm of the film, with a decrease to 2% beyond 8 nm thickness. Deformation stacking faults along the {220} plane are found to occur with 68% probability and closely linked to the formation of a nanocrystalline powder-like film. Our findings, which capture monolayer-resolution growth, are consistent with previous work on crystalline and powder C60 films, and provide a crystallographic context for the real-time study of organic semiconductor thin films.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowarik, S.; Hinderhofer, A.; Wang, C.

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ~ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less

  16. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  17. Verwey transition in a magnetite ultrathin film by resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Grenier, S.; Bailly, A.; Ramos, A. Y.; De Santis, M.; Joly, Y.; Lorenzo, J. E.; Garaudée, S.; Frericks, M.; Arnaud, S.; Blanc, N.; Boudet, N.

    2018-03-01

    We report a detailed study of the Verwey transition in a magnetite ultrathin film (UTF) grown on Ag(001) using resonant x-ray scattering (RXS). RXS was measured at the Fe K-edge on the crystal truncation rod of the substrate, increasing the sensitivity to the film thanks to the cross-interference, thereby obtaining an x-ray phase-shift reference and a polarization analyzer. The spectra were interpreted with ad hoc calculations based on density functional theory within a surface-scattering formalism. We observed that the UTF has a relatively sharp transition temperature TV=120 K and is remarkably close to the bulk temperature for such thickness. We determined the specific Fe stacking at the interface with the substrate below TV, and detected a spectroscopic signal evolving with temperature from TV up to at least TV+80 K, hinting that the RT crystallographic structure does not set at TV in the UTF.

  18. XIMPOL: a new x-ray polarimetry observation-simulation and analysis framework

    NASA Astrophysics Data System (ADS)

    Omodei, Nicola; Baldini, Luca; Pesce-Rollins, Melissa; di Lalla, Niccolò

    2017-08-01

    We present a new simulation framework, XIMPOL, based on the python programming language and the Scipy stack, specifically developed for X-ray polarimetric applications. XIMPOL is not tied to any specific mission or instrument design and is meant to produce fast and yet realistic observation-simulations, given as basic inputs: (i) an arbitrary source model including morphological, temporal, spectral and polarimetric information, and (ii) the response functions of the detector under study, i.e., the effective area, the energy dispersion, the point-spread function and the modulation factor. The format of the response files is OGIP compliant, and the framework has the capability of producing output files that can be directly fed into the standard visualization and analysis tools used by the X-ray community, including XSPEC which make it a useful tool not only for simulating physical systems, but also to develop and test end-to-end analysis chains.

  19. 3D coherent X-ray diffractive imaging of an Individual colloidal crystal grain

    NASA Astrophysics Data System (ADS)

    Shabalin, A.; Meijer, J.-M.; Sprung, M.; Petukhov, A. V.; Vartanyants, I. A.

    Self-assembled colloidal crystals represent an important model system to study nucleation phenomena and solid-solid phase transitions. They are attractive for applications in photonics and sensorics. We present results of a coherent x-ray diffractive imaging experiment performed on a single colloidal crystal grain. The full three-dimensional (3D) reciprocal space map measured by an azimuthal rotational scan contained several orders of Bragg reflections together with the coherent interference signal between them. Applying the iterative phase retrieval approach, the 3D structure of the crystal grain was reconstructed and positions of individual colloidal particles were resolved. We identified an exact stacking sequence of hexagonal close-packed layers including planar and linear defects. Our results open up a breakthrough in applications of coherent x-ray diffraction for visualization of the inner 3D structure of different mesoscopic materials, such as photonic crystals. Present address: University of California - San Diego, USA.

  20. A new catalogue of ultraluminous X-ray sources (and more!)

    NASA Astrophysics Data System (ADS)

    Roberts, T.; Earnshaw, H.; Walton, D.; Middleton, M.; Mateos, S.

    2017-10-01

    Many of the critical issues of ultraluminous X-ray source (ULX) science - for example the prevalence of IMBH and/or ULX pulsar candidates within the wider ULX population - can only be addressed by studying statistical samples of ULXs. Similarly, characterising the range of properties displayed by ULXs, and so understanding their accretion physics, requires large samples of objects. To this end, we introduce a new catalogue of 376 ultraluminous X-ray sources and 1092 less luminous point X-ray sources associated with nearby galaxies, derived from the 3XMM-DR4 catalogue. We highlight applications of this catalogue, for example the identification of new IMBH candidates from the most luminous ULXs; and examining the physics of objects at the Eddington threshold, where their luminosities of ˜ 10^{39} erg s^{-1} indicate their accretion rates are ˜ Eddington. We also show how the catalogue can be used to start to examine a wider range of lower luminosity (sub-ULX) point sources in star forming galaxies than previously accessible through spectral stacking, and argue why this is important for galaxy formation in the high redshift Universe.

  1. Slumped glass optics with interfacing ribs for high angular resolution x-ray astronomy: a progress report

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Brizzolari, C.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Vecchi, G.; Breunig, E.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2015-09-01

    The Slumped Glass Optics technology, developed at INAF/OAB since a few years, is becoming a competitive solution for the realization of the future X-ray telescopes with a very large collecting area, as e.g. the proposed Athena, with more than 2 m2 effective area at 1 keV and with a high angular resolution (5'' HEW). The developed technique is based on modular elements, named X-ray Optical Units (XOUs), made of several layers of thin foils of glass, previously formed by direct hot slumping in cylindrical configuration, and then stacked in a Wolter-I configuration, through interfacing ribs. The achievable global angular resolution of the optics relies on the surface shape accuracy of the slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments achieved with a dedicated Integration Machine (IMA). In this paper we provide an update of the project development, reporting on the last results achieved. In particular, we will present the results obtained with full illumination X-ray tests for the last developed prototypes.

  2. Computer Simulations to Study Diffraction Effects of Stacking Faults in Beta-SiC: II. Experimental Verification. 2; Experimental Verification

    NASA Technical Reports Server (NTRS)

    Pujar, Vijay V.; Cawley, James D.; Levine, S. (Technical Monitor)

    2000-01-01

    Earlier results from computer simulation studies suggest a correlation between the spatial distribution of stacking errors in the Beta-SiC structure and features observed in X-ray diffraction patterns of the material. Reported here are experimental results obtained from two types of nominally Beta-SiC specimens, which yield distinct XRD data. These samples were analyzed using high resolution transmission electron microscopy (HRTEM) and the stacking error distribution was directly determined. The HRTEM results compare well to those deduced by matching the XRD data with simulated spectra, confirming the hypothesis that the XRD data is indicative not only of the presence and density of stacking errors, but also that it can yield information regarding their distribution. In addition, the stacking error population in both specimens is related to their synthesis conditions and it appears that it is similar to the relation developed by others to explain the formation of the corresponding polytypes.

  3. Structural and quantum chemical analysis of exciton coupling in homo- and heteroaggregate stacks of merocyanines

    NASA Astrophysics Data System (ADS)

    Bialas, David; Zitzler-Kunkel, André; Kirchner, Eva; Schmidt, David; Würthner, Frank

    2016-09-01

    Exciton coupling is of fundamental importance and determines functional properties of organic dyes in (opto-)electronic and photovoltaic devices. Here we show that strong exciton coupling is not limited to the situation of equal chromophores as often assumed. Quadruple dye stacks were obtained from two bis(merocyanine) dyes with same or different chromophores, respectively, which dimerize in less-polar solvents resulting in the respective homo- and heteroaggregates. The structures of the quadruple dye stacks were assigned by NMR techniques and unambiguously confirmed by single-crystal X-ray analysis. The heteroaggregate stack formed from the bis(merocyanine) bearing two different chromophores exhibits remarkably different ultraviolet/vis absorption bands compared with those of the homoaggregate of the bis(merocyanine) comprising two identical chromophores. Quantum chemical analysis based on an extension of Kasha's exciton theory appropriately describes the absorption properties of both types of stacks revealing strong exciton coupling also between different chromophores within the heteroaggregate.

  4. The STS-93 external tank and booster stack sits at the Mobile Launcher Platform park site

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The STS-93 stack of solid rocket boosters and external tank sits at the Mobile Launcher Platform park site waiting for lightning shield wires to be installed on the Vehicle Assembly Building (VAB) in the background. The stack is being temporarily stored outside the VAB while Space Shuttle Discovery undergoes repair to hail damage in High Bay 1. Discovery was rolled back from Pad 39B to the VAB for repairs because access to all of the damaged areas was not possible at the pad. The STS-93 stack will be moved under the wires at the VAB for protection until Discovery returns to the pad, later this week. The scheduled date for launch of mission STS-96 is no earlier than May 27. STS-93 is targeted for launch on July 22, carrying the Chandra X-ray Observatory.

  5. Intracluster age gradients in numerous young stellar clusters

    NASA Astrophysics Data System (ADS)

    Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Bate, M. R.; Broos, P. S.; Garmire, G. P.

    2018-05-01

    The pace and pattern of star formation leading to rich young stellar clusters is quite uncertain. In this context, we analyse the spatial distribution of ages within 19 young (median t ≲ 3 Myr on the Siess et al. time-scale), morphologically simple, isolated, and relatively rich stellar clusters. Our analysis is based on young stellar object (YSO) samples from the Massive Young Star-Forming Complex Study in Infrared and X-ray and Star Formation in Nearby Clouds surveys, and a new estimator of pre-main sequence (PMS) stellar ages, AgeJX, derived from X-ray and near-infrared photometric data. Median cluster ages are computed within four annular subregions of the clusters. We confirm and extend the earlier result of Getman et al. (2014): 80 per cent of the clusters show age trends where stars in cluster cores are younger than in outer regions. Our cluster stacking analyses establish the existence of an age gradient to high statistical significance in several ways. Time-scales vary with the choice of PMS evolutionary model; the inferred median age gradient across the studied clusters ranges from 0.75 to 1.5 Myr pc-1. The empirical finding reported in the present study - late or continuing formation of stars in the cores of star clusters with older stars dispersed in the outer regions - has a strong foundation with other observational studies and with the astrophysical models like the global hierarchical collapse model of Vázquez-Semadeni et al.

  6. A facile approach to prepare porous cup-stacked carbon nanotube with high performance in adsorption of methylene blue.

    PubMed

    Gong, Jiang; Liu, Jie; Jiang, Zhiwei; Wen, Xin; Mijowska, Ewa; Tang, Tao; Chen, Xuecheng

    2015-05-01

    Novel porous cup-stacked carbon nanotube (P-CSCNT) with special stacked morphology consisting of many truncated conical graphene layers was synthesized by KOH activating CSCNT from polypropylene. The morphology, microstructure, textural property, phase structure, surface element composition and thermal stability of P-CSCNT were investigated by field-emission scanning electron microscope, transmission electron microscope (TEM), high-resolution TEM, N2 sorption, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and thermal gravimetric analysis. A part of oblique graphitic layers were etched by KOH, and many holes with a diameter of several to a doze of nanometers connecting inner tube with outside were formed, which endowed P-CSCNT with high specific surface area (558.7 m(2)/g), large pore volume (1.993 cm(3)/g) and abundant surface functional groups. Subsequently, P-CSCNT was used for adsorption of methylene blue (MB) from wastewater. Langmuir model closely fitted the adsorption results, and the maximum adsorption capacity of P-CSCNT was as high as 319.1mg/g. This was ascribed to multiple adsorption mechanisms including pore filling, hydrogen bonding, π-π and electrostatic interactions. Pseudo second-order kinetic model was more valid to describe the adsorption behavior. Besides, P-CSCNT showed good recyclablity and reusability. These results demonstrated that P-CSCNT had potential application in wastewater treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study.

    PubMed

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-06-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.

  8. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study1

    PubMed Central

    Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc

    2015-01-01

    Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755

  9. A Eu/Tb mixed lanthanide coordination polymer with rare 2D thick layers: Synthesis, characterization and ratiometric temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanyuan; Xia, Tifeng; Zhang, Qi; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2018-03-01

    A series of lanthanide coordination polymers LnBTPTA (Ln = Eu, Tb, EuxTb1-x), was synthesized using a tricarbocylic ligand 4,4‧,4‧‧-(benzene-1,3,5-triyltris(1H-pyrazole-3,1-diyl))tribenzoic acid (H3BTPTA). X-ray single crystal analyses reveal that the asymmetric unit cell contains seven crystallographically independent metal ions and seven crystallographically independent ligands which is quite unusual. The 3D framework is comprised of 2D thick layers stacked through van der Waals force, π-π interactions and hydrogen bonding interactions. Eu0.0316Tb0.9684BTPTA presents a dual-emission of Tb3+ at 543 nm and Eu3+ at 617 nm, and the intensity ratio shows an excellent linear relationship with the temperature changing in 25-225 K. The relative sensitivity 0.45-5.12% K-1 is much higher than those have been reported in the same detection range.

  10. Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS

    DOE PAGES

    Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine; ...

    2018-04-17

    Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less

  11. Study of the Au-Cr bilayer system using X-ray reflectivity, GDOES, and ToF-SIMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonnard, Philippe; Modi, Mohammed H.; Le Guen, Karine

    Here, we study a Au (25 nm)/Cr (10 nm) bilayer system as a model of mirror for the soft X–ray energy range. The Au and Cr thin films are a few nanometer thick and are deposited on a float glass substrate. The sample is characterized by using 3 complementary techniques: soft X–ray reflectivity, glow discharge optical emission spectrometry (GDOES), and time–of–flight secondary ion mass spectroscopy (ToF–SIMS). Soft X–ray reflectivity provides information about the thickness and roughness of the different layers, while GDOES is used to obtain the elemental depth profile of the stack and ToF–SIMS to obtain the elemental andmore » chemical depth profiles. GDOES and ToF–SIMS have both a nanometer depth resolution. A coherent description of the bilayer stack is obtained through the combination of these techniques. It consists in 5 layers namely a surface contamination layer, a principal gold layer, a Au–Cr mixed layer, a Cr layer, and another contamination layer at the top of the substrate.« less

  12. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Asahara, Ryohei

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures withmore » the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.« less

  13. A hard X-ray view of the soft excess in AGN

    NASA Astrophysics Data System (ADS)

    Boissay, R.; Ricci, C.; Paltani, S.

    2017-10-01

    A soft X-ray emission in excess of the extrapolation of the hard X-ray continuum is detected in many Seyfert 1 galaxies below 1 keV. To understand the uncertain nature of this soft excess, which could be due to warm Comptonization or to blurred ionized reflection, we consider the different behaviors of these models above 10 keV. We present the results of a study done on 102 Seyfert 1s from the Swift BAT 70-Month Hard X-ray Survey catalog. We have performed the joint spectral analysis of Swift/BAT and XMM-Newton data in order to get a hard X-ray view of the soft excess. We discuss the links between the soft-excess strength and the reflection at high energy, the slope of the continuum and the Eddington ratio. We compare our results to simulations of blurred ionized-reflection models and show that they are in contradiction. Indeed, we do not find the expected correlation between the reflection and the soft-excess strengths, neither in individual, nor in stacked spectra. We also present our current project of broadband fitting, using different models explaining the soft excess, to simultaneous XMM-Newton and NuSTAR observations of about ten objects of our sample.

  14. Identifying Luminous AGN in Deep Surveys: Revised IRAC Selection Criteria

    NASA Astrophysics Data System (ADS)

    Donley, Jennifer; Koekemoer, A. M.; Brusa, M.; Capak, P.; Cardamone, C. N.; Civano, F.; Ilbert, O.; Impey, C. D.; Kartaltepe, J.; Miyaji, T.; Salvato, M.; Sanders, D. B.; Trump, J. R.; Zamorani, G.

    2012-01-01

    Spitzer IRAC selection is a powerful tool for identifying luminous AGN. The AGN selection wedges currently in use, however, are heavily contaminated by star-forming galaxies, especially at high redshift. Using the large samples of luminous AGN and high-redshift star-forming galaxies in COSMOS, we redefine the AGN selection criteria for use in deep IRAC surveys. The new IRAC criteria are designed to be both highly complete and reliable, and incorporate the best aspects of the current AGN selection wedges and of infrared power-law selection while excluding high redshift star-forming galaxies selected via the BzK, DRG, LBG, and SMG criteria. At QSO-luminosities of log L(2-10 keV)>44, the new IRAC criteria recover 75% of the hard X-ray and IRAC-detected XMM-COSMOS sample, yet only 37% of the IRAC AGN candidates have X-ray counterparts, a fraction that rises to 51% in regions with Chandra exposures of 50-160 ks. X-ray stacking of the individually X-ray non-detected AGN candidates leads to a hard X-ray signal indicative of heavily obscured to mildly Compton-thick obscuration (log NH >= 23.7). While IRAC selection recovers a substantial fraction of luminous unobscured and obscured AGN, it is incomplete to low-luminosity and host-dominated AGN.

  15. TEM studies of plasma nitrided austenitic stainless steel.

    PubMed

    Stróz, D; Psoda, M

    2010-03-01

    Cross-sectional transmission electron microscopy and X-ray phase analysis were used to study the structure of a layer formed during nitriding the AISI 316L stainless steel at temperature 440 degrees C. It was found that the applied treatment led to the formation of 6-microm-thick layer of the S-phase. There is no evidence of CrN precipitation. The X-ray diffraction experiments proved that the occurred austenite lattice expansion - due to nitrogen atoms - depended on the crystallographic direction. The cross-sectional transmission electron microscopy studies showed that the layer consisted of a single cubic phase that contained a lot of defects such as dislocations, stacking faults, slip bands and twins. The high-resolution electron microscopy observations were applied to study the defect formation due to the nitriding process. It was shown that the presence of great number of stacking faults leads to formation of nanotwins. Weak, forbidden {100} reflections were still another characteristic feature of the S-phase. These were not detected in the X-ray spectra of the phase. Basing on the high-resolution electron microscopy studies it can be suggested that the short-range ordering of the nitrogen atoms in the octahedral sites inside the f.c.c. matrix lattice takes place and gives rise to appearance of these spots. It is suggested that the cubic lattice undergoes not only expansion but also slight rombohedral distortion that explains differences in the lattice expansion for different crystallographic directions.

  16. Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy.

    PubMed

    Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming

    2015-06-01

    This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.

  17. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Ptak, A.; Strickland, D.

    2001-12-01

    In the years of the Einstein and ASCA satellites, it was known that the total hard X-ray luminosity from non-AGN galaxies was fairly well correlated with the total blue luminosity. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Now, for the first time, we know from Chandra images that a significant amount of the total hard X-ray emission comes from individual X-ray point sources. We present here spatial and spectral analyses of Chandra data for X-ray point sources in a sample of ~40 galaxies, including both spiral galaxies (starbursts and non-starbursts) and elliptical galaxies. We shall discuss the relationship between the X-ray point source population and the properties of the host galaxies. We show that the slopes of the point-source X-ray luminosity functions are different for different host galaxy types and discuss possible reasons why. We also present detailed X-ray spectral analyses of several of the most luminous X-ray point sources (i.e., IXOs, a.k.a. ULXs), and discuss various scenarios for the origin of the X-ray point sources.

  18. Structure of ice crystallized from supercooled water

    PubMed Central

    Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

    2012-01-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

  19. Structure of ice crystallized from supercooled water.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Brukhno, Andrey V; Anwar, Jamshed; Salzmann, Christoph G

    2012-01-24

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples.

  20. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 ( z = 0.902)

    DOE PAGES

    Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.; ...

    2018-03-05

    Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.

  1. XMM-Newton X-ray and HST weak gravitational lensing study of the extremely X-ray luminous galaxy cluster Cl J120958.9+495352 ( z = 0.902)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tholken, Sophia; Schrabback, Tim; Reiprich, Thomas H.

    Here, observations of relaxed, massive, and distant clusters can provide important tests of standard cosmological models, for example by using the gas mass fraction. To perform this test, the dynamical state of the cluster and its gas properties have to be investigated. X-ray analyses provide one of the best opportunities to access this information and to determine important properties such as temperature profiles, gas mass, and the total X-ray hydrostatic mass. For the last of these, weak gravitational lensing analyses are complementary independent probes that are essential in order to test whether X-ray masses could be biased.

  2. 3D Tomography of Accretionary Lapilli From The Island of Stromboli (Aeolian Archipelago, Italy): Spatial Arrangement, Internal Structure, Grain Size Distribution and Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.

    2015-12-01

    The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.

  3. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    NASA Technical Reports Server (NTRS)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  4. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantlymore » absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.« less

  5. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    NASA Technical Reports Server (NTRS)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions. Contrast extinction analysis of these dislocation lines reveals they are edge type basal plane dislocations that track the growth direction. Polytype phase transition and stacking faults were observed by high-resolution TEM (HRTEM), in agreement with SWBXT and Raman scattering.

  6. Stacked competitive networks for noise reduction in low-dose CT

    PubMed Central

    Du, Wenchao; Chen, Hu; Wu, Zhihong; Sun, Huaiqiang; Liao, Peixi

    2017-01-01

    Since absorption of X-ray radiation has the possibility of inducing cancerous, genetic and other diseases to patients, researches usually attempt to reduce the radiation dose. However, reduction of the radiation dose associated with CT scans will unavoidably increase the severity of noise and artifacts, which can seriously affect diagnostic confidence. Due to the outstanding performance of deep neural networks in image processing, in this paper, we proposed a Stacked Competitive Network (SCN) approach to noise reduction, which stacks several successive Competitive Blocks (CB). The carefully handcrafted design of the competitive blocks was inspired by the idea of multi-scale processing and improvement the network’s capacity. Qualitative and quantitative evaluations demonstrate the competitive performance of the proposed method in noise suppression, structural preservation, and lesion detection. PMID:29267360

  7. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external check on the UV estimates of the star formation rates, and on the use of X-ray luminosities to infer these rates in rapidly starforming galaxies at high redshift.

  8. Multislice imaging of integrated circuits by precession X-ray ptychography.

    PubMed

    Shimomura, Kei; Hirose, Makoto; Takahashi, Yukio

    2018-01-01

    A method for nondestructively visualizing multisection nanostructures of integrated circuits by X-ray ptychography with a multislice approach is proposed. In this study, tilt-series ptychographic diffraction data sets of a two-layered circuit with a ∼1.4 µm gap at nine incident angles are collected in a wide Q range and then artifact-reduced phase images of each layer are successfully reconstructed at ∼10 nm resolution. The present method has great potential for the three-dimensional observation of flat specimens with thickness on the order of 100 µm, such as three-dimensional stacked integrated circuits based on through-silicon vias, without laborious sample preparation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowarik, S.; Weber, C.; Hinderhofer, A.

    Highly crystalline and stable molecular superlattices are grown with the smallest possible stacking period using monolayers (MLs) of the organic semiconductors pentacene (PEN) and perfluoro-pentacene (PFP). Superlattice reflections in X-ray reflectivity and their energy dependence in resonant soft X-ray reflectivity measurements show that PFP and PEN MLs indeed alternate even though the coherent ordering is lost after ∼ 4 ML. The observed lattice spacing of 15.9 Å in the superlattice is larger than in pure PEN and PFP films, presumably because of more upright standing molecules and lack of interdigitation between the incommensurate crystalline PEN and PFP layers. The findingsmore » are important for the development of novel organic quantum optoelectronic devices.« less

  10. Structural Properties, Order–Disorder Phenomena, and Phase Stability of Orotic Acid Crystal Forms

    PubMed Central

    2016-01-01

    Orotic acid (OTA) is reported to exist in the anhydrous (AH), monohydrate (Hy1), and dimethyl sulfoxide monosolvate (SDMSO) forms. In this study we investigate the (de)hydration/desolvation behavior, aiming at an understanding of the elusive structural features of anhydrous OTA by a combination of experimental and computational techniques, namely, thermal analytical methods, gravimetric moisture (de)sorption studies, water activity measurements, X-ray powder diffraction, spectroscopy (vibrational, solid-state NMR), crystal energy landscape, and chemical shift calculations. The Hy1 is a highly stable hydrate, which dissociates above 135 °C and loses only a small part of the water when stored over desiccants (25 °C) for more than one year. In Hy1, orotic acid and water molecules are linked by strong hydrogen bonds in nearly perfectly planar arranged stacked layers. The layers are spaced by 3.1 Å and not linked via hydrogen bonds. Upon dehydration the X-ray powder diffraction and solid-state NMR peaks become broader, indicating some disorder in the anhydrous form. The Hy1 stacking reflection (122) is maintained, suggesting that the OTA molecules are still arranged in stacked layers in the dehydration product. Desolvation of SDMSO, a nonlayer structure, results in the same AH phase as observed upon dehydrating Hy1. Depending on the desolvation conditions, different levels of order–disorder of layers present in anhydrous OTA are observed, which is also suggested by the computed low energy crystal structures. These structures provide models for stacking faults as intergrowth of different layers is possible. The variability in anhydrate crystals is of practical concern as it affects the moisture dependent stability of AH with respect to hydration. PMID:26741914

  11. Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.

    2017-04-01

    Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.

  12. Research in Solar Physics: Analysis of Skylab/ATM S-056 X-Ray Data

    NASA Technical Reports Server (NTRS)

    Henze, W., Jr.

    1977-01-01

    Data obtained by the X-ray event analyzer are described as well as methods used for film calibration. Topics discussed include analyses of the 15 June 1973 flare, oscillations in the solar soft X-ray flux, and deconvolution of X-ray images of the 5 September 1973 flare.

  13. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE PAGES

    Acciarri, R.; Adams, C.; An, R.; ...

    2017-12-01

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  14. Measurement of cosmic-ray reconstruction efficiencies in the MicroBooNE LArTPC using a small external cosmic-ray counter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; et al.

    2017-07-31

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  15. Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei

    2015-09-01

    Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.

  16. A portable X-ray diffraction apparatus for in situ analyses of masters' paintings

    NASA Astrophysics Data System (ADS)

    Eveno, Myriam; Duran, Adrian; Castaing, Jacques

    2010-09-01

    It is rare that the analyses of materials in paintings can be carried out by taking micro-samples. Valuable works of art are best studied in situ by non-invasive techniques. For that purpose, a portable X-ray diffraction and fluorescence apparatus has been designed and constructed at the C2RMF. This apparatus has been used for paintings of Rembrandt, Leonardo da Vinci, Van Gogh, Mantegna, etc. Results are given to illustrate the performance of X-ray diffraction, especially when X-ray fluorescence does not bring sufficient information to conclude.

  17. Atomic and electronic structure of Mo6S9-xIx nanowires

    NASA Astrophysics Data System (ADS)

    Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.

    2005-09-01

    Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578

  18. Synthesis and properties of electrically conductive, ductile, extremely long (~50 μm) nanosheets of K(x)CoO2·yH2O.

    PubMed

    Aksit, Mahmut; Hoselton, Benjamin C; Kim, Ha Jun; Ha, Don-Hyung; Robinson, Richard D

    2013-09-25

    Extremely long, electrically conductive, ductile, free-standing nanosheets of water-stabilized KxCoO2·yH2O are synthesized using the sol-gel and electric-field induced kinetic-demixing (SGKD) process. Room temperature in-plane resistivity of the KxCoO2·yH2O nanosheets is less than ~4.7 mΩ·cm, which corresponds to one of the lowest resistivity values reported for metal oxide nanosheets. The synthesis produces tens of thousands of very high aspect ratio (50,000:50,000:1 = length/width/thickness), millimeter length nanosheets stacked into a macro-scale pellet. Free-standing nanosheets up to ~50 μm long are readily delaminated from the stacked nanosheets. High-resolution transmission electron microscopy (HR-TEM) studies of the free-standing nanosheets indicate that the delaminated pieces consist of individual nanosheet crystals that are turbostratically stacked. X-ray diffraction (XRD) studies confirm that the nanosheets are stacked in perfect registry along their c-axis. Scanning electron microscopy (SEM) based statistical analysis show that the average thickness of the nanosheets is ~13 nm. The nanosheets show ductility with a bending radius as small as ~5 nm.

  19. Preparation and characterization of polymer layer systems for validation of 3D Micro X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Schaumann, Ina; Malzer, Wolfgang; Mantouvalou, Ioanna; Lühl, Lars; Kanngießer, Birgit; Dargel, Rainer; Giese, Ulrich; Vogt, Carla

    2009-04-01

    For the validation of the quantification of the newly-developed method of 3D Micro X-ray fluorescence spectroscopy (3D Micro-XRF) samples with a low average Z matrix and minor high Z elements are best suited. In a light matrix the interferences by matrix effects are minimized so that organic polymers are appropriate as basis for analytes which are more easily detected by X-ray fluorescence spectroscopy. Polymer layer systems were assembled from single layers of ethylene-propylene-diene rubber (EPDM) filled with changing concentrations of silica and zinc oxide as inorganic additives. Layer thicknesses were in the range of 30-150 μm. Before the analysis with 3D Micro-XRF all layers have been characterized by scanning micro-XRF with regard to filler dispersion, by infrared microscopy and light microscopy in order to determine the layer thicknesses and by ICP-OES to verify the concentration of the X-ray sensitive elements in the layers. With the results obtained for stacked polymer systems the validity of the analytical quantification model for the determination of stratified materials by 3D Micro-XRF could be demonstrated.

  20. Cheetah: software for high-throughput reduction and analysis of serial femtosecond X-ray diffraction data

    PubMed Central

    Barty, Anton; Kirian, Richard A.; Maia, Filipe R. N. C.; Hantke, Max; Yoon, Chun Hong; White, Thomas A.; Chapman, Henry

    2014-01-01

    The emerging technique of serial X-ray diffraction, in which diffraction data are collected from samples flowing across a pulsed X-ray source at repetition rates of 100 Hz or higher, has necessitated the development of new software in order to handle the large data volumes produced. Sorting of data according to different criteria and rapid filtering of events to retain only diffraction patterns of interest results in significant reductions in data volume, thereby simplifying subsequent data analysis and management tasks. Meanwhile the generation of reduced data in the form of virtual powder patterns, radial stacks, histograms and other meta data creates data set summaries for analysis and overall experiment evaluation. Rapid data reduction early in the analysis pipeline is proving to be an essential first step in serial imaging experiments, prompting the authors to make the tool described in this article available to the general community. Originally developed for experiments at X-ray free-electron lasers, the software is based on a modular facility-independent library to promote portability between different experiments and is available under version 3 or later of the GNU General Public License. PMID:24904246

  1. A Chandra Study of the Stellar X-Ray Emissivity of Globular Clusters in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-jie; Li, Zhiyuan

    2018-03-01

    The X-ray emissivity (i.e., luminosity per unit stellar mass) of globular clusters (GCs) is an important indicator of their dynamical evolution history. Based on deep archival Chandra observations, we report a stacking analysis of 44 GCs with 0.5–8 keV luminosities L X ≲ 1035 erg s‑1 in the M31 bulge, which are supposed to be dominated by cataclysmic variables (CVs) and coronally active binaries (ABs). We obtain a significant detection at the 5σ level in 0.5–8 keV band. The average X-ray luminosity per GC and the average X-ray emissivity are determined to be 5.3 ± 1.6 × 1033 erg s‑1 and 13.2 ± 4.3 × 1027 erg s‑1 {M}ȯ -1, respectively. Both of these values are consistent with those of Milky Way GCs. Moreover, the measured emissivity of M31 GCs is also consistent with that of the Milky Way field stars. Massive GCs have X-ray luminosities that are marginally higher than those of less massive ones. Massive GCs also show a lower emissivity (5.0+/- 2.5× {10}27 {erg} {{{s}}}-1 {M}ȯ -1) than less massive ones (26.5+/- 14.3× {10}27 {erg} {{{s}}}-1 {M}ȯ -1), which is consistent with the scenario that the (progenitors of) CVs and ABs were more efficiently destroyed via stellar encounters in the more massive GCs. No dependence of the X-ray emissivity on GC color or on the projected galactocentric distance of GCs is found.

  2. Preparation of novel layer-stack hexagonal CdO micro-rods by a pre-oxidation and subsequent evaporation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Kun, E-mail: kpeng@hnu.edu.cn; Hunan Province Key Laboratory for Spray Deposition Technology and Application, Hunan University, Changsha 410082; Jiang, Pan

    2014-12-15

    Graphical abstract: Layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared. - Highlights: • Novel hexagonal layer-stack structure CdO micro-rods were synthesized by a thermal evaporation method. • The pre-oxidation, vapor pressure and substrate nature play a key role on the formation of CdO rods. • The formation mechanism of CdO micro-rods was explained. - Abstract: Novel layer-stack hexagonal cadmium oxide (CdO) micro-rods were prepared by pre-oxidizing Cd granules and subsequent thermal oxidation under normal atmospheric pressure. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed to characterize the phase structure and microstructure. The pre-oxidation process, vapor pressure and substratemore » nature were the key factors for the formation of CdO micro-rods. The diameter of micro-rod and surface rough increased with increasing of thermal evaporation temperature, the length of micro-rod increased with the increasing of evaporation time. The formation of hexagonal layer-stack structure was explained by a vapor–solid mechanism.« less

  3. Dual-energy micro-CT with a dual-layer, dual-color, single-crystal scintillator.

    PubMed

    Maier, Daniel Simon; Schock, Jonathan; Pfeiffer, Franz

    2017-03-20

    A wide range of X-ray imaging applications demand micrometer spatial resolution. In material science and biology especially, there is a great interest in material determination and material separation methods. Here we present a new detector design that allows the recording of a low- and a high-energy radiography image simultaneously with micrometer spatial resolution. The detector system is composed of a layered scintillator stack, two CCDs and an optical system to image the scintillator responses onto the CCDs. We used the detector system with a standard laboratory microfocus X-ray tube to prove the working principle of the system and derive important design characteristics. With the recorded and registered dual-energy data set, the material separation and determination could be shown at an X-ray tube peak energy of up to 160 keV with a spatial resolution of 12 μm. The detector design shows a great potential for further development and a wide range of possible applications.

  4. Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry

    NASA Technical Reports Server (NTRS)

    Grove, David; Betcher, Jacob; Hagen, Mark

    2012-01-01

    New and improved blocking filters (see figure) have been developed for microcalorimeters on several mission payloads, made of high-transmission polyimide support mesh, that can replace the nickel mesh used in previous blocking filter flight designs. To realize the resolution and signal sensitivity of today s x-ray microcalorimeters, significant improvements in the blocking filter stack are needed. Using high-transmission polyimide support mesh, it is possible to improve overall throughput on a typical microcalorimeter such as Suzaku s X-ray Spectrometer by 11%, compared to previous flight designs. Using polyimide to replace standard metal mesh means the mesh will be transparent to energies 3 keV and higher. Incorporating polyimide s advantageous strength-to-weight ratio, thermal stability, and transmission characteristics permits thinner filter materials, significantly enhancing through - put. A prototype contamination blocking filter for ASTRO-H has passed QT-level acoustic testing. Resistive traces can also be incorporated to provide decontamination capability to actively restore filter performance in orbit.

  5. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE PAGES

    Popp, David; Loh, N. Duane; Zorgati, Habiba; ...

    2017-06-02

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  6. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popp, David; Loh, N. Duane; Zorgati, Habiba

    A major goal for X-ray free-electron laser (XFEL) based science is to elucidate structures of biological molecules without the need for crystals. Filament systems may provide some of the first single macromolecular structures elucidated by XFEL radiation, since they contain one-dimensional translational symmetry and thereby occupy the diffraction intensity region between the extremes of crystals and single molecules. Here, we demonstrate flow alignment of as few as 100 filaments ( Escherichia coli pili, F-actin, and amyloid fibrils), which when intersected by femtosecond X-ray pulses result in diffraction patterns similar to those obtained from classical fiber diffraction studies. We also determinemore » that F-actin can be flow-aligned to a disorientation of approximately 5 degrees. Using this XFEL-based technique, we determine that gelsolin amyloids are comprised of stacked β-strands running perpendicular to the filament axis, and that a range of order from fibrillar to crystalline is discernable for individual α-synuclein amyloids.« less

  7. MANTiS: a program for the analysis of X-ray spectromicroscopy data.

    PubMed

    Lerotic, Mirna; Mak, Rachel; Wirick, Sue; Meirer, Florian; Jacobsen, Chris

    2014-09-01

    Spectromicroscopy combines spectral data with microscopy, where typical datasets consist of a stack of images taken across a range of energies over a microscopic region of the sample. Manual analysis of these complex datasets can be time-consuming, and can miss the important traits in the data. With this in mind we have developed MANTiS, an open-source tool developed in Python for spectromicroscopy data analysis. The backbone of the package involves principal component analysis and cluster analysis, classifying pixels according to spectral similarity. Our goal is to provide a data analysis tool which is comprehensive, yet intuitive and easy to use. MANTiS is designed to lead the user through the analysis using story boards that describe each step in detail so that both experienced users and beginners are able to analyze their own data independently. These capabilities are illustrated through analysis of hard X-ray imaging of iron in Roman ceramics, and soft X-ray imaging of a malaria-infected red blood cell.

  8. Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.

    2013-12-15

    Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less

  9. Tracing the Far-Infrared Roles of AGN in Dusty Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Brown, Arianna; Nayyeri, Hooshang; Cooray, Asantha R.; Mitchell-Wynne, Ketron

    2017-01-01

    Active galactic nuclei (AGNs) are suggested to play an important role in quenching their host galaxy’s star formation rate (SFR) by heating up and/or consuming the cool gas necessary to create stars. This mechanism is theorized as a critical step in AGN evolutionary models. The efforts to study this effect suffer in part from low-number statistics at high x-ray luminosities (LXR > 1044 ergs/s) for AGNs at z≈1-3, and a lack of separately estimated SFRs for AGN in dusty, star-forming galaxies (DSFGs). In this work, we extend our analysis to build a more complete picture using the variety of available multi-wavelength data in the XBoötes region. The Chandra XBoötes Survey is a 5-ks X-ray survey of the 9.3 square degree Boötes Field of the NOAO Deep Wide-Field Survey, a survey imaged from the optical to the near-IR. We estimate AGN spectral energy distributions and SFRs for ~400 x-ray sources using available data in all four Spitzer IRAC bands, the Spitzer MIPS 24µm band, all five Herschel SPIRE and PACS bands, along with NEWFIRM optical bands. Preliminary results show an exponential correlation between x-ray luminosity and star formation. As a comparison, we will use a stacking technique for the ~500 x-ray sources that were not detected at submillimeter wavelengths, where sources are binned by x-ray luminosity. We will compare these two samples and expect to see a difference in slope. Using these techniques, we hope to place tighter constraints on the mean SFRs of high-luminosity AGNs inside DSFGs, and determine if x-ray luminosities are independent of average SFRs for our sample in the Boötes field.

  10. Effect of Na presence during CuInSe{sub 2} growth on stacking fault annihilation and electronic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stange, H., E-mail: helena.stange@helmholtz-berlin.de; Brunken, S.; Hempel, H.

    While presence of Na is essential for the performance of high-efficiency Cu(In,Ga)Se{sub 2} thin film solar cells, the reasons why addition of Na by post-deposition treatment is superior to pre-deposition Na supply—particularly at low growth temperatures—are not yet fully understood. Here, we show by X-ray diffraction and electron microscopy that Na impedes annihilation of stacking faults during the Cu-poor/Cu-rich transition of low temperature 3-stage co-evaporation and prevents Cu homogeneity on a microscopic level. Lower charge carrier mobilities are found by optical pump terahertz probe spectroscopy for samples with remaining high stacking fault density, indicating a detrimental effect on electronic propertiesmore » if Na is present during growth.« less

  11. Indium diffusion through high-k dielectrics in high-k/InP stacks

    NASA Astrophysics Data System (ADS)

    Dong, H.; Cabrera, W.; Galatage, R. V.; Santosh KC, Brennan, B.; Qin, X.; McDonnell, S.; Zhernokletov, D.; Hinkle, C. L.; Cho, K.; Chabal, Y. J.; Wallace, R. M.

    2013-08-01

    Evidence of indium diffusion through high-k dielectric (Al2O3 and HfO2) films grown on InP (100) by atomic layer deposition is observed by angle resolved X-ray photoelectron spectroscopy and low energy ion scattering spectroscopy. The analysis establishes that In-out diffusion occurs and results in the formation of a POx rich interface.

  12. Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods.

    PubMed

    Demortière, Arnaud; Leonard, Donovan N; Petkov, Valeri; Chapman, Karena; Chattopadhyay, Soma; She, Chunxing; Cullen, David A; Shibata, Tomohiro; Pelton, Matthew; Shevchenko, Elena V

    2018-04-19

    Colloidal semiconductor nanocrystals are commonly grown with a shell of a second semiconductor material to obtain desired physical properties, such as increased photoluminescence quantum yield. However, the growth of a lattice-mismatched shell results in strain within the nanocrystal, and this strain has the potential to produce crystalline defects. Here, we study CdSe/CdS core/shell nanorods as a model system to investigate the influence of core size and shape on the formation of stacking faults in the nanocrystal. Using a combination of high-angle annular dark-field scanning transmission electron microscopy and pair-distribution-function analysis of synchrotron X-ray scattering, we show that growth of the CdS shell on smaller, spherical CdSe cores results in relatively small strain and few stacking faults. By contrast, growth of the shell on larger, prolate spheroidal cores leads to significant strain in the CdS lattice, resulting in a high density of stacking faults.

  13. Construction of Discrete Pentanuclear Platinum(II) Stacks with Extended Metal-Metal Interactions by Using Phosphorescent Platinum(II) Tweezers.

    PubMed

    Kong, Fred Ka-Wai; Chan, Alan Kwun-Wa; Ng, Maggie; Low, Kam-Hung; Yam, Vivian Wing-Wah

    2017-11-20

    Discrete pentanuclear Pt II stacks were prepared by the host-guest adduct formation between multinuclear tweezer-type Pt II complexes. The formation of the Pt II stacks in solution was accompanied by color changes and the turning on of near-infrared emission resulting from Pt⋅⋅⋅Pt and π-π interactions. The X-ray crystal structure revealed the formation of a discrete 1:1 adduct, in which a linear stack of five Pt II centers with extended Pt⋅⋅⋅Pt interactions was observed. Additional binding affinity and stability have been achieved through a multinuclear host-guest system. The binding behaviors can be fine-tuned by varying the spacer between the two Pt II moieties in the guests. This work provides important insights for the construction of discrete higher-order supramolecular metal-ligand aggregates using a tweezer-directed approach. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix.

    PubMed Central

    Olson, W K

    1975-01-01

    Approximate details of the spatial configuration of the ordered single-stranded poly(rA) molecule in dilute solution have been obtained in a combined theoretical analysis of base stacking and chain flexibility. Only those regularly repeating structures which fulfill the criterion of conformational flexibility (based upon all available experimental and theoretical evidence of preferred bond rotations) and which also exhibit the right-handed base stacking pattern observed in nmr investigations of poly(rA) are deemed suitable single-stranded helices. In addition, the helical geometry of the stacked structures is required to be consistent with the experimentally observed dimensions of both completely ordered and partially ordered poly(rA) chains. Only a single category of poly(rA) helices (very similar in all conformational details to the individual chains of the poly(rA) double-stranded X-ray structure) is thus obtained. Other conformationally feasible polynucleotide helices characterized simply by a parallel and overlapping base stacking arrangement are also discussed. PMID:1052529

  15. Influence of stacking fault energy on defect structures and microhardness of Cu and Cu alloys.

    PubMed

    Tao, Jing-Mei; Li, Dai; Li, Cai-Ju; Zhu, Xin-Kun

    2011-12-01

    Nano-structured Cu, Cu-10 wt%Zn and Cu-2 wt%Al with stacking fault energies (SFE) of 78, 35 and 37 mJ/m2, respectively, were preprared through high energy ball milling. X-ray diffraction and Vickers microharness test were used to investigate the microstructure and microhardness of all the samples after ball milling. X-ray diffraction measurements indicate that lower SFEs lead both to decrease in grain size and increase in microstrain, dislocation and twin densities for Cu-10 wt%Zn and Cu-2 wt%Al after 5 h of ball milling. The microhardnesses of Cu-10 wt%Zn and Cu-2 wt%Al reach to nearly the same values of 2.5 GPa after 5 h of ball milling, which is higher than that of Cu of 2.0 GPa. Two factors are considered to contribute to the finer grian size and higher microhardness of Cu-10 wt%Zn and Cu-2 wt%Al: (1) the effect of solid solution strengthening, which result in the interaction of solute atoms with screw dislocations; (2) the introduction of deformation twins during ball milling process by the decreasing of SFE, which results in the grain refinement.

  16. Fabrication of graphene/titanium carbide nanorod arrays for chemical sensor application.

    PubMed

    Fu, Chong; Li, Mingji; Li, Hongji; Li, Cuiping; Qu, Changqing; Yang, Baohe

    2017-03-01

    Vertically stacked graphene nanosheet/titanium carbide nanorod array/titanium (graphene/TiC nanorod array) wires were fabricated using a direct current arc plasma jet chemical vapor deposition (DC arc plasma jet CVD) method. The graphene/TiC nanorod arrays were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction spectroscopy. The TiO 2 nanotube array was reduced to the TiC nanorod array, and using those TiC nanorods as nucleation sites, the vertical graphene layer was formed on the TiC nanorod surface. The multi-target response mechanisms of the graphene/TiC nanorod array were investigated for ascorbic acid (AA), dopamine (DA), uric acid (UA), and hydrochlorothiazide (HCTZ). The vertically stacked graphene sheets facilitated the electron transfer and reactant transport with a unique porous surface, high surface area, and high electron transport network of CVD graphene sheets. The TiC nanorod array facilitated the electron transfer and firmly held the graphene layer. Thus, the graphene/TiC nanorod arrays could simultaneously respond to trace biomarkers and antihypertensive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 4D strain localisation and fracture propagation in granite: the relative contribution of seismic and aseismic mechanisms to damage evolution during an in-situ triaxial deformation experiment at SOLEIL synchrotron

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, A. L.; Fusseis, F.; Butler, I. B.; Flynn, M.; King, A.

    2017-12-01

    We present 4D x-ray data documenting strain localisation and fracture propagation in a microgranite, collected during a triaxial deformation experiment on the imaging beamline PSICHE at SOLEIL synchrotron. We loaded to failure a 2.97 mm diameter x 9.46 mm long cylindrical sample of Ailsa Craig microgranite, heat treated to 600 °C. The sample was deformed at 15 MPa confining pressure and 3x10-5 s-1 strain rate in a novel, x-ray transparent triaxial deformation apparatus, designed and built at the University of Edinburgh. 21 microtomographic volumes were acquired in intervals of 5-20 MPa (decreasing as failure approached), including one scan at peak differential stress of 200 MPa and three post-failure scans. A constant stress level was maintained during scanning and individual datasets were collected in 10 minutes using a white beam with an energy maximum at 66 keV in a spiral configuration. Reconstructions yielded image stacks of 1700x1700x4102 voxels with a voxel size of 2.7 μm. We analysed strain localisation and fracture propagation in the time series data. Local changes in volumetric and shear strains between time steps were quantified using 3D digital image correlation [1]. Fractures were segmented using a Multiscale Hessian fracture filter [2] and analysed for their orientations, dimensions and spatial distributions, and changes in these between time steps. In combination, these analyses show the extent and evolution of both local aseismic deformation and microcracking and their relative contributions to the overall damage evolution. Our data provides direct evidence of ongoing deformation processes, complementing the seminal results of Lockner et al. [3], who first imaged fault growth using acoustic emissions locations. Our results provide further insight into the aseismic mechanisms that dissipate >90% of the overall strain energy [4], and the interactions between these mechanisms and the developing microcracks. They also provide experimental verification of models for shear fracture formation whereby pre-existing flaws become connected by en-echelon tensile cracks that extend from their edges. [1] Hall, S. et al., 2010, Geotechnique 60, 315-322. [2] Voorn et al., 2015, J. Petroleum Sci. Eng. 127, 270-285. [3] Lockner, D., et al., 1991, Nature 350, 39-42. [4] Byerlee, J., 1993, Geology 21, 303-306.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acciarri, R.; Adams, C.; An, R.

    The MicroBooNE detector is a liquid argon time projection chamber at Fermilab designed to study short-baseline neutrino oscillations and neutrino-argon interaction cross-section. Due to its location near the surface, a good understanding of cosmic muons as a source of backgrounds is of fundamental importance for the experiment. We present a method of using an external 0.5 m (L) x 0.5 m (W) muon counter stack, installed above the main detector, to determine the cosmic-ray reconstruction efficiency in MicroBooNE. Data are acquired with this external muon counter stack placed in three different positions, corresponding to cosmic rays intersecting different parts of the detector. The data reconstruction efficiency of tracks in the detector is found to bemore » $$\\epsilon_{\\mathrm{data}}=(97.1\\pm0.1~(\\mathrm{stat}) \\pm 1.4~(\\mathrm{sys}))\\%$$, in good agreement with the Monte Carlo reconstruction efficiency $$\\epsilon_{\\mathrm{MC}} = (97.4\\pm0.1)\\%$$. This analysis represents a small-scale demonstration of the method that can be used with future data coming from a recently installed cosmic-ray tagger system, which will be able to tag $$\\approx80\\%$$ of the cosmic rays passing through the MicroBooNE detector.« less

  19. Characterisation of traffic-generated particulate matter in Copenhagen

    NASA Astrophysics Data System (ADS)

    Wåhlin, Peter; Berkowicz, Ruwim; Palmgren, Finn

    Fine and coarse fraction PM was simultaneously sampled with Dichotomous Stacked Filter Units at a road site and at an urban background site during both summer and winter periods. The collected mass was determined gravimetrically, and the contents of 26 elements were measured by Proton-Induced X-ray Emission (PIXE). NO x was monitored continuously at both sites. The road increments (road concentrations minus urban background concentrations) of PIXE elements, PM and NO x were analysed using the Constrained Physical Receptor Model (COPREM). Good agreement between the measured data and the model was achieved in both size fractions using four well-separated source profiles representing the emissions from exhaust, road/tyres, brakes and road salt. The analysis showed that the particles created by brake abrasion have aerodynamic diameters in the inhalable size range around 2.8 μm. This particle diameter is common mass median for a long list of heavy metals that are apportioned to the brakes source: Cr, Fe, Cu, Zn, Zr, Mo, Sn, Sb, Ba and Pb. Other significant contributions of Al, Si, K, Ca, Ti, Mn, Fe, Zn and Sr, mostly in the coarse particle fraction, are apportioned to the road/tyres source.

  20. Energy dispersive X-ray analyses of organelles of NaCI-treated maize root cells

    NASA Astrophysics Data System (ADS)

    Stelzer, Ralf

    1984-04-01

    NaCl sensitive plants of Zea mays cv. ADOUR were grown in nutrient solutions with or without NaCl. Frozen, hydrated root-tip tissues were investigated by means of an ETEC scanning electron microscope fitted with a KEVEX energy dispersive X-ray analyser. Morphological details of the gently etched but non-coated surface of the cross fractured specimen were easy to identify and to analyse using an electron beam with a low intensity at 10 kV. X-ray data obtained from cell compartments and organelles as nuclei, nucleoli and mitochondria within individual cells establish typical X-ray spectra. Comparisons of these spectra support the hypothesis that Na + ions are predominantly localized in vacuoles and also to a lesser extent in the cytoplasm, e.g. in small vesicles, but not in other cell organelles. Furthermore the analysed cell compartments show differences in the distribution of Mg, P, S, Cl, K and Ca effected by the addition of NaCl to the growth medium. The X-ray data are discussed in relation to the physiological meaning of a NaCl induced redistribution of elements within individual maize root cells.

  1. Development of a second generation SiLC-based Laue lens

    NASA Astrophysics Data System (ADS)

    Girou, David; Wade, Colin; Barrière, Nicolas; Collon, Maximilien; Günther, Ramses; Hanlon, Lorraine; Tomsick, John; Uliyanov, Alexey; Vacanti, Giuseppe; Zoglauer, Andreas

    2017-09-01

    For more than a decade, cosine has been developing silicon pore optics (SPO), lightweight modular X-ray optics made of stacks of bent and directly bonded silicon mirror plates. This technology, which has been selected by ESA to realize the optics of ATHENA, can also be used to fabricate soft gamma-ray Laue lenses where Bragg diffraction through the bulk silicon is exploited, rather than grazing incidence reflection. Silicon Laue Components (SiLCs) are made of stacks of curved, polished, wedged silicon plates, allowing the concentration of radiation in both radial and azimuthal directions. This greatly increases the focusing properties of a Laue lens since the size of the focal spot is no longer determined by the size of the individual single crystals, but by the accuracy of the applied curvature. After a successful proof of concept in 2013, establishing the huge potential of this technology, a new project has been launched in Spring 2017 at cosine to further develop and test this technique. Here we present the latest advances of the second generation of SiLCs made from even thinner silicon plates stacked by a robot with dedicated tools in a class-100 clean room environment.

  2. X-ray pore optic developments

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Bavdaz, Marcos; Collon, Maximilien; Beijersbergen, Marco; Kraft, Stefan; Fairbend, Ray; Séguy, Julien; Blanquer, Pascal; Graue, Roland; Kampf, Dirk

    2017-11-01

    In support of future x-ray telescopes ESA is developing new optics for the x-ray regime. To date, mass and volume have made x-ray imaging technology prohibitive to planetary remote sensing imaging missions. And although highly successful, the mirror technology used on ESA's XMM-Newton is not sufficient for future, large, x-ray observatories, since physical limits on the mirror packing density mean that aperture size becomes prohibitive. To reduce telescope mass and volume the packing density of mirror shells must be reduced, whilst maintaining alignment and rigidity. Structures can also benefit from a modular optic arrangement. Pore optics are shown to meet these requirements. This paper will discuss two pore optic technologies under development, with examples of results from measurement campaigns on samples. One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology. A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.

  3. X-ray optical units made of glass: achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.; Vecchi, G.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2014-07-01

    Future X-ray telescopes with very large collecting area, like the proposed Athena with more than 2 m2 effective area at 1 keV, need to be realized as assemblies of a large number of X-ray optical units, named X-ray Optical Units (XOUs). The Brera Astronomical Observatory (INAF-OAB) is developing a new technology to manufacture these modular elements, compatible with an angular resolution of 5 arcsec HEW (Half-Energy-Width). This technique consists in stacking in a Wolter-I configuration several layers of thin foils of glass, previously formed by direct hot slumping. The achievable global angular resolution of the optics relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments operated trough a dedicated Integration Machine (IMA). In this paper we provide an overview of the project development, reporting on the very promising results achieved so far, including in-focus full illumination X-ray tests of the prototype (Proof of Concept, POC#2, integrated at the beginning of 2013) for which an HEW of 22.1'' has been measured at Panter/MPE. Moreover we report on the on-going activities, with a new integrated prototype (PoC#3). X-ray test in pencil beam revealed that at least a segment between two external ribs is characterized by an HEW well below 10''. Lastly, the overall process up-grade to go from 20 m to 12m focal length (to be compatible with Athena+ configuration) is presented.

  4. Concurrent Supermassive Black Hole and Galazy Growth: Linking Environment and Nuclear Activity in Zeta Equals 2.23 H Alpha Emitters

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Lucy, A. B.; Alexander, D. M.; Best, P. N.; Geach, J. E.; Harrison, C. M.; Hornschemeier, A. E.; Matsuda, Y.; Mullaney, J. R.; Smail, Ian; hide

    2013-01-01

    We present results from an approximately equal 100 ks Chandra observation of the 2QZ Cluster 1004+00 structure at z = 2.23 (hereafter 2QZ Clus). 2QZ Clus was originally identified as an overdensity of four optically-selected QSOs at z = 2.23 within a 15 × 15 arcmin square region. Narrow-band imaging in the near-IR (within the K band) revealed that the structure contains an additional overdensity of 22 z = 2.23 H alpha-emitting galaxies (HAEs), resulting in 23 unique z = 2.23 HAEs/QSOs (22 within the Chandra field of view). Our Chandra observations reveal that three HAEs in addition to the four QSOs harbor powerfully accreting supermassive black holes (SMBHs), with 2-10 keV luminosities of approximately equal (8-60) × 10(exp 43) erg s(exp-1) and X-ray spectral slopes consistent with unobscured active galactic nucleus (AGN). Using a large comparison sample of 210 z = 2.23 HAEs in the Chandra-COSMOS field (C-COSMOS), we find suggestive evidence that the AGN fraction increases with local HAE galaxy density. The 2QZ Clus HAEs reside in a moderately overdense environment (a factor of approximately equal 2 times over the field), and after excluding optically-selected QSOs, we find that the AGN fraction is a factor of approximately equal 3.5(+3.8/ -2.2) times higher than C-COSMOS HAEs in similar environments. Using stacking analyses of the Chandra data and Herschel SPIRE observations at 250micrometers, we respectively estimate mean SMBH accretion rates ( M(BH)) and star formation rates (SFRs) for the 2QZ Clus and C-COSMOS samples. We find that the mean 2QZ Clus HAE stacked X-ray luminosity is QSO-like (L(2-10 keV) approximately equal [6-10] × 10(exp 43) erg s(exp -1)), and the implied M(BH)/SFR approximately equal (1.6-3.2) × 10(exp -3) is broadly consistent with the local M(BH)/Stellar Mass relation and z approximately equal 2 X-ray selected AGN. In contrast, the C-COSMOS HAEs are on average an order of magnitude less X-ray luminous and have M(BH)/SFR approximately equal (0.2-0.4) × 10(exp -3), somewhat lower than the local MBH/M relation, but comparable to that found for z approximately equal 1-2 star-forming galaxies with similar mean X-ray luminosities. We estimate that a periodic QSO phase with duty cycle approximately 2%-8% would be sufficient to bring star-forming galaxies onto the local M(BH)/Stellar Mass relation. This duty cycle is broadly consistent with the observed C-COSMOS HAE AGN fraction (Approximately equal 0.4%-2.3%) for powerful AGN with LX approximately greater than 10(exp 44) erg s(exp -1). Future observations of 2QZ Clus will be needed to identify key factors responsible for driving the mutual growth of the SMBHs and galaxies.

  5. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  6. Walking Down the Chalcogenic Group of the Periodic Table: From Singlet to Triplet Organic Emitters.

    PubMed

    Kremer, Adrian; Aurisicchio, Claudia; De Leo, Federica; Ventura, Barbara; Wouters, Johan; Armaroli, Nicola; Barbieri, Andrea; Bonifazi, Davide

    2015-10-19

    The synthesis, X-ray crystal structures, ground- and excited-state UV/Vis absorption spectra, and luminescence properties of chalcogen-doped organic emitters equipped on both extremities with benzoxa-, benzothia-, benzoselena- and benzotellurazole (1X and 2X ) moieties have been reported for the first time. The insertion of the four different chalcogen atoms within the same molecular skeleton enables the investigation of only the chalcogenic effect on the organisation and photophysical properties of the material. Detailed crystal-structure analyses provide evidence of similar packing for 2O -2Se , in which the benzoazoles are engaged in π-π stacking and, for the heavier atoms, in secondary X⋅⋅⋅X and X⋅⋅⋅N bonding interactions. Detailed computational analysis shows that the arrangement is essentially governed by the interplay of van der Waals and secondary bonding interactions. Progressive quenching of the fluorescence and concomitant onset of phosphorescence features with gradually shorter lifetimes are detected as the atomic weight of the chalcogen heteroatom increases, with the tellurium-doped derivatives exhibiting only emission from the lowest triplet excited state. Notably, the phosphorescence spectra of the selenium and tellurium derivatives can be recorded even at room temperature; this is a very rare finding for fully organic emitters. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fermi bubbles: high latitude X-ray supersonic shell

    NASA Astrophysics Data System (ADS)

    Keshet, Uri; Gurwich, Ilya

    2018-06-01

    The nature of the bipolar, γ-ray Fermi bubbles (FB) is still unclear, in part because their faint, high-latitude X-ray counterpart has until now eluded a clear detection. We stack ROSAT data at varying distances from the FB edges, thus boosting the signal and identifying an expanding shell behind the southwest, southeast, and northwest edges, albeit not in the dusty northeast sector near Loop I. A Primakoff-like model for the underlying flow is invoked to show that the signals are consistent with halo gas heated by a strong, forward shock to ˜keV temperatures. Assuming ion-electron thermal equilibrium then implies a ˜1056 erg event near the Galactic centre ˜7 Myr ago. However, the reported high absorption-line velocities suggest a preferential shock-heating of ions, and thus more energetic (˜1057 erg), younger (≲ 3 Myr) FBs.

  8. Simulation and modeling of silicon pore optics for the ATHENA x-ray telescope

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Christensen, F. E.; Bavdaz, M.; Civitani, M. M.; Conconi, P.; Della Monica Ferreira, D.; Knudsen, E. B.; Massahi, S.; Pareschi, G.; Salmaso, B.; Shortt, B.; Tayabaly, K.; Westergaard, N. J.; Wille, E.

    2016-07-01

    The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA's optic with more than 1000 mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. Even if the current baseline design fulfills the required effective area of 2 m2 at 1 keV on-axis, alternative design solutions, e.g., privileging the field of view or the off-axis angular resolution, are also possible. Moreover, the stringent requirement of a 5 arcsec HEW angular resolution at 1 keV entails very small profile errors and excellent surface smoothness, as well as a precise alignment of the 1000 mirror modules to avoid imaging degradation and effective area loss. Finally, the stray light issue has to be kept under control. In this paper we show the preliminary results of simulations of optical systems based on SPO for the ATHENA X-ray telescope, from pore to telescope level, carried out at INAF/OAB and DTU Space under ESA contract. We show ray-tracing results, including assessment of the misalignments of mirror modules and the impact of stray light. We also deal with a detailed description of diffractive effects expected in an SPO module from UV light, where the aperture diffraction prevails, to X-rays where the surface diffraction plays a major role. Finally, we analyze the results of X-ray tests performed at the BESSY synchrotron, we compare them with surface finishing measurements, and we estimate the expected HEW degradation caused by the X-ray scattering.

  9. Impact of stacking order on the microstructural properties of Cu2ZnGeSe4 thin film absorber layer

    NASA Astrophysics Data System (ADS)

    Mary, G. Swapna; Chandra, G. Hema; Sunil, M. Anantha; Subbaiah, Y. P. Venkata; Gupta, Mukul; Rao, R. Prasada

    2018-05-01

    Six possible multiple stacks of Cu-ZnSe-Ge with selenium incorporation at a precursor stage were prepared using electron beam evaporation followed by vacuum selenization at 475 °C for 30 min to investigate the role of stacking order on the growth and properties of Cu2ZnGeSe4 films. The X-ray diffraction measurements affirm the existence of various binary and ternary phases (ZnSe, Cu2Se, GeSe2 and Cu2GeSe3) for all the precursor stacks. These phases are completely diminished after selenization at 475 °C except a minor co-existence of ZnSe (111) phase along with dominant Cu2ZnGeSe4 (112) phase for stack A: (Cu/Se/ZnSe/Se/Ge/Se) × 4. The Raman measurements for selenized multiple stack A, revealed two major A3, A1 modes at 206 cm-1 and 176 cm-1 and one minor E5 mode at 270 cm-1 corresponding to CZGSe phase. The surface morphology and the elemental distribution across the thickness found to vary significantly with the change of stacking order. The selenized multiple stacks A films shows densely packed flake and capsule shaped grains. The selenized stack A found to have a direct energy band gap of 1.60 eV, showing p-type conductivity with a Hall mobility of 22 cm2 (Vs)-1.

  10. Analysis of Sunyaev–Zel'dovich effect mass–observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Mohr, J.; Saro, A.

    2015-02-26

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev-Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from similar to 6 deg(2) of the XMM-Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (>= 10(42) erg s(-1)) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y-500 mass relations. The former is inmore » good agreement with an extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8 sigma with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8 sigma significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y-500 signal that is (17 +/- 9) per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass-observable relations.« less

  11. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Mohr, J.; Saro, A.

    2015-02-25

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev–Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg 2 of the XMM–Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥10 42 erg s -1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y_500 mass relations. The former is in good agreement with anmore » extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17 ± 9)per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass–observable relations.« less

  12. Segregation and Phase Transformations Along Superlattice Intrinsic Stacking Faults in Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Esser, B. D.; Good, B.; Hooshmand, M. S.; Viswanathan, G. B.; Rae, C. M. F.; Ghazisaeidi, M.; McComb, D. W.; Mills, M. J.

    2018-06-01

    In this study, local chemical and structural changes along superlattice intrinsic stacking faults combine to represent an atomic-scale phase transformation. In order to elicit stacking fault shear, creep tests of two different single crystal Ni-based superalloys, ME501 and CMSX-4, were performed near 750 °C using stresses of 552 and 750 MPa, respectively. Through high-resolution scanning transmission electron microscopy (STEM) and state-of-the-art energy dispersive X-ray spectroscopy, ordered compositional changes were measured along SISFs in both alloys. For both instances, the elemental segregation and local crystal structure present along the SISFs are consistent with a nanoscale γ' to D019 phase transformation. Other notable observations are prominent γ-rich Cottrell atmospheres and new evidence of more complex reordering processes responsible for the formation of these faults. These findings are further supported using density functional theory calculations and high-angle annular dark-field (HAADF)-STEM image simulations.

  13. Coherent radiation characteristics of modulated electron bunch formed in stack of two plates

    NASA Astrophysics Data System (ADS)

    Gevorgyan, H. L.; Gevorgian, L. A.

    2017-07-01

    The present article is devoted to the radiation from the electron bunch with modulated density passes through the stack consisting of two plates with different thicknesses and electrodynamic properties. The new elegant expression for the frequency-angular distribution of transition radiation is obtained. Using the existence of resonant frequency at which the longitudinal form-factor of bunch not suppresses radiation coherence and choosing parameters for the stack of plates, one can also avoid suppression of the radiation coherence by transverse form-factor of bunch. The radiation from a bunch with modulated density in the process SASE (self-amplified spontaneous emission) FEL can be partially coherent at a resonant frequency. Then the intense sub monochromatic beam of X-ray photons is formed. On the other hand one can define an important parameter of the bunch density modulation depth which is unknown to this day.

  14. Screening charge localization at LiNbO{sub 3} surface with Schottky junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Takahiro, E-mail: NAGATA.Takahiro@nims.go.jp; Chikyow, Toyohiro; Kitamura, Kenji

    2016-04-25

    Screening charge localization was demonstrated by using a Schottky contact with LiNbO{sub 3} (LN). A Cr/LN stack structure with a 2 μm diameter hole array penetrating the Cr layer localized the screening charge of LN in the hole, although the Al/LN stack structure exhibited no surface charge localization behavior. X-ray photoelectron spectroscopy revealed that Cr formed a Schottky contact with LN, which prevents the screening charge from escaping from the hole arrays. The screening charge localization was enhanced by inserting SiO{sub 2} between the metal and LN, which moved the position of the Fermi level to mid gap.

  15. Multiple layer identification label using stacked identification symbols

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F. (Inventor)

    2005-01-01

    An automatic identification system and method are provided which employ a machine readable multiple layer label. The label has a plurality of machine readable marking layers stacked one upon another. Each of the marking layers encodes an identification symbol detectable using one or more sensing technologies. The various marking layers may comprise the same marking material or each marking layer may comprise a different medium having characteristics detectable by a different sensing technology. These sensing technologies include x-ray, radar, capacitance, thermal, magnetic and ultrasonic. A complete symbol may be encoded within each marking layer or a symbol may be segmented into fragments which are then divided within a single marking layer or encoded across multiple marking layers.

  16. Ordered structure of FeGe2 formed during solid-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Jenichen, B.; Hanke, M.; Gaucher, S.; Trampert, A.; Herfort, J.; Kirmse, H.; Haas, B.; Willinger, E.; Huang, X.; Erwin, S. C.

    2018-05-01

    Fe3Si /Ge (Fe ,Si ) /Fe3Si thin-film stacks were grown by a combination of molecular beam epitaxy and solid-phase epitaxy (Ge on Fe3Si ). The stacks were analyzed using electron microscopy, electron diffraction, and synchrotron x-ray diffraction. The Ge(Fe,Si) films crystallize in the well-oriented, layered tetragonal structure FeGe2 with space group P 4 m m . This kind of structure does not exist as a bulk material and is stabilized by the solid-phase epitaxy of Ge on Fe3Si . We interpret this as an ordering phenomenon induced by minimization of the elastic energy of the epitaxial film.

  17. Characterization of double Shockley-type stacking faults formed in lightly doped 4H-SiC epitaxial films

    NASA Astrophysics Data System (ADS)

    Yamashita, T.; Hayashi, S.; Naijo, T.; Momose, K.; Osawa, H.; Senzaki, J.; Kojima, K.; Kato, T.; Okumura, H.

    2018-05-01

    Double Shockley-type stacking faults (2SSFs) formed in 4H-SiC epitaxial films with a dopant concentration of 1.0 × 1016 cm-3 were characterized using grazing incident X-ray topography and high-resolution scanning transmission electron microscopy. The origins of 2SSFs were investigated, and it was found that 2SSFs in the epitaxial layer originated from narrow SFs with a double Shockley structure in the substrate. Partial dislocations formed between 4H-type and 2SSF were also characterized. The shapes of 2SSFs are related with Burgers vectors and core types of the two Shockley partial dislocations.

  18. CONCURRENT SUPERMASSIVE BLACK HOLE AND GALAXY GROWTH: LINKING ENVIRONMENT AND NUCLEAR ACTIVITY IN z = 2.23 H{alpha} EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmer, B. D.; Hornschemeier, A. E.; Lucy, A. B.

    2013-03-10

    We present results from a Almost-Equal-To 100 ks Chandra observation of the 2QZ Cluster 1004+00 structure at z = 2.23 (hereafter 2QZ Clus). 2QZ Clus was originally identified as an overdensity of four optically-selected QSOs at z = 2.23 within a 15 Multiplication-Sign 15 arcmin{sup 2} region. Narrow-band imaging in the near-IR (within the K band) revealed that the structure contains an additional overdensity of 22 z = 2.23 H{alpha}-emitting galaxies (HAEs), resulting in 23 unique z = 2.23 HAEs/QSOs (22 within the Chandra field of view). Our Chandra observations reveal that three HAEs in addition to the four QSOsmore » harbor powerfully accreting supermassive black holes (SMBHs), with 2-10 keV luminosities of Almost-Equal-To (8-60) Multiplication-Sign 10{sup 43} erg s{sup -1} and X-ray spectral slopes consistent with unobscured active galactic nucleus (AGN). Using a large comparison sample of 210 z = 2.23 HAEs in the Chandra-COSMOS field (C-COSMOS), we find suggestive evidence that the AGN fraction increases with local HAE galaxy density. The 2QZ Clus HAEs reside in a moderately overdense environment (a factor of Almost-Equal-To 2 times over the field), and after excluding optically-selected QSOs, we find that the AGN fraction is a factor of Almost-Equal-To 3.5{sup +3.8}{sub -2.2} times higher than C-COSMOS HAEs in similar environments. Using stacking analyses of the Chandra data and Herschel SPIRE observations at 250 {mu}m, we respectively estimate mean SMBH accretion rates ( M-dot{sub BH}) and star formation rates (SFRs) for the 2QZ Clus and C-COSMOS samples. We find that the mean 2QZ Clus HAE stacked X-ray luminosity is QSO-like (L{sub 2-10{sub keV}} Almost-Equal-To [6-10] Multiplication-Sign 10{sup 43} erg s{sup -1}), and the implied M-dot{sub BH}/SFR Almost-Equal-To (1.6-3.2) Multiplication-Sign 10{sup -3} is broadly consistent with the local M{sub BH}/M{sub *} relation and z Almost-Equal-To 2 X-ray selected AGN. In contrast, the C-COSMOS HAEs are on average an order of magnitude less X-ray luminous and have M-dot{sub BH}/SFR Almost-Equal-To (0.2-0.4) Multiplication-Sign 10{sup -3}, somewhat lower than the local M{sub BH}/M{sub *} relation, but comparable to that found for z Almost-Equal-To 1-2 star-forming galaxies with similar mean X-ray luminosities. We estimate that a periodic QSO phase with duty cycle Almost-Equal-To 2%-8% would be sufficient to bring star-forming galaxies onto the local M{sub BH}/M{sub *} relation. This duty cycle is broadly consistent with the observed C-COSMOS HAE AGN fraction ( Almost-Equal-To 0.4%-2.3%) for powerful AGN with L{sub X} {approx}> 10{sup 44} erg s{sup -1}. Future observations of 2QZ Clus will be needed to identify key factors responsible for driving the mutual growth of the SMBHs and galaxies.« less

  19. ROSAT observations of Coma Cluster galaxies

    NASA Technical Reports Server (NTRS)

    Dow, K. L.; White, S. D. M.

    1995-01-01

    The approximately 86 ks ROSAT Position Sensitive Proportional Counter (PSPC) image of the Coma Cluster is deeper than any previous X-ray observation of a galaxy cluster. We search for X-ray emission from 35 individual galaxies in a magnitude-limited sample, all of which lie within 20 arcmins of the optical axis in at least one of the four Coma pointings. We detect seven galaxies in the 0.4-2.4 keV band at a significance level exceeding 3 sigma, and a further four at above 2 sigma. Although we can set only upper limits on the individual flux from each of the other galaxies, we are able to measure their mean flux by stacking the observations. The X-ray luminosities of the seven detections range from 6.2 x 10(exp 40) to 1.5 x 10(exp 42) ergs/s (0.4-2.4 keV for H(sub 0) = 50 km/s/Mpc). For galaxies with a blue absolute magnitude of about -21 we find a mean X-ray luminosity of 1.3 x 10(exp 40) ergs/s. The ratio of X-ray to optical luminosity is substantially smaller for such subjects than for the brightest galaxies in the cluster. The X-ray luminosities of the four brightest galaxies are ill-defined, however, because of ambiguity in distinguishing galaxy emission from cluster emission. Each object appears to be related to significant structure in the diffuse intracluster medium. We also investigate emission in the softer 0.2-0.4 keV band where detections are less significant because of the higher background, and we discuss the properties of a number of interesting individual sources. The X-ray luminosities of the Coma galaxies are similar to those of galaxies in the Virgo Cluster and in other regions with relatively low galaxy density. We conclude that large-scale environmental effects do not significantly enhance or suppress the average X-ray emission from galaxies, but that individual objects vary in luminosity substantially in a way which may depend on the detailed history of their environment.

  20. The Chandra Source Catalog 2.0: Data Processing Pipelines

    NASA Astrophysics Data System (ADS)

    Miller, Joseph; Allen, Christopher E.; Budynkiewicz, Jamie A.; Gibbs, Danny G., II; Paxson, Charles; Chen, Judy C.; Anderson, Craig S.; Burke, Douglas; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula

    2018-01-01

    With the construction of the Second Chandra Source Catalog (CSC2.0), came new requirements and new techniques to create a software system that can process 10,000 observations and identify nearly 320,000 point and compact X-ray sources. A new series of processing pipelines have been developed to allow for deeper more complete exploration of the Chanda observations. In CSC1.0 there were 4 general pipelines, whereas in CSC2.0 there are 20 data processing pipelines that have been organized into 3 distinct phases of operation - detection, master matching and source property characterization.With CSC2.0, observations within one arcminute of each other are stacked before searching for sources. The detection phase of processing combines the data, adjusts for shifts in fine astrometry, detects sources, and assesses the likelihood that sources are real. During the master source phase, detections across stacks of observations are analyzed for coverage of the same source to produce a master source. Finally, in the source property phase, each source is characterized with aperture photometry, spectrometry, variability and other properties at theobservation, stack and master levels over several energy bands.We present how these pipelines were constructed and the challenges we faced in how we processed data ranging from virtually no counts to millions of counts, how pipelines were tuned to work optimally on a computational cluster, and how we ensure the data produced was correct through various quality assurance steps.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  1. Analysis of Al diffusion processes in TiN barrier layers for the application in silicon solar cell metallization

    NASA Astrophysics Data System (ADS)

    Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.

    2016-07-01

    An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.

  2. Study of the specific features of single-crystal boron microstructure

    NASA Astrophysics Data System (ADS)

    Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.

    2017-09-01

    A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.

  3. Density-functional theory molecular dynamics simulations of a-HfO2/Ge(100)(2 × 1) and a-ZrO2/Ge(100)(2 × 1) interface passivation.

    PubMed

    Chagarov, E A; Porter, L; Kummel, A C

    2016-02-28

    The structural properties of a-HfO2/Ge(2 × 1)-(001) and a-ZrO2/Ge(2 × 1)-(001) interfaces were investigated with and without a GeOx interface interlayer using density-functional theory (DFT) molecular dynamics (MD) simulations. Realistic a-HfO2 and a-ZrO2 samples were generated using a hybrid classical-DFT MD "melt-and-quench" approach and tested against experimental properties. The oxide/Ge stacks were annealed at 700 K, cooled to 0 K, and relaxed providing the system with enough freedom to form realistic interfaces. For each high-K/Ge stack type, two systems with single and double interfaces were investigated. All stacks were free of midgap states; however, stacks with a GeO(x) interlayer had band-edge states which decreased the band gaps by 0%-30%. These band-edge states were mainly produced by under-coordinated Ge atoms in GeO(x) layer or its vicinity due to deformation, intermixing, and bond-breaking. The DFT-MD simulations show that electronically passive interfaces can be formed either directly between high-K dielectrics and Ge or with a monolayer of GeO2 if the processing does not create or properly passivate under-coordinated Ge atoms and Ge's with significantly distorted bonding angles. Comparison to the charge states of the interfacial atoms from DFT to experimental x-ray photoelectron spectroscopy results shows that while most studies of gate oxide on Ge(001) have a GeO(x) interfacial layer, it is possible to form an oxide/Ge interface without a GeO(x) interfacial layer. Comparison to experiments is consistent with the dangling bonds in the suboxide being responsible for midgap state formation.

  4. New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4H-SiC(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G., E-mail: kowal@fuw.edu.pl; Tokarczyk, M.; Dąbrowski, P.

    Efficient control of intercalation of epitaxial graphene by specific elements is a way to change properties of the graphene. Results of several experimental techniques, such as X-ray photoelectron spectroscopy, micro-Raman mapping, reflectivity, attenuated total reflection, X-ray diffraction, and X-ray reflectometry, gave a new insight into the intercalation of oxygen in the epitaxial graphene grown on 4H-SiC(0001). These results confirmed that oxygen intercalation decouples the graphene buffer layer from the 4H-SiC surface and converts it into the graphene layer. However, in contrast to the hydrogen intercalation, oxygen does not intercalate between carbon planes (in the case of few layer graphene) andmore » the interlayer spacing stays constant at the level of 3.35–3.32 Å. Moreover, X-ray reflectometry showed the presence of an oxide layer having the thickness of about 0.8 Å underneath the graphene layers. Apart from the formation of the nonuniform thin oxide layer, generation of defects in graphene caused by oxygen was also evidenced. Last but not least, water islands underneath defected graphene regions in both intercalated and non-intercalated samples were most probably revealed. These water islands are formed in the case of all the samples stored under ambient laboratory conditions. Water islands can be removed from underneath the few layer graphene stacks by relevant thermal treatment or by UV illumination.« less

  5. DUMBO - A cosmic-ray astrophysics facility in Canada

    NASA Astrophysics Data System (ADS)

    Hanna, D.

    1986-04-01

    A deep-underground muon-bundle observatory (DUMBO) is proposed for construction at 700 m depth near Sudbury, Ontario, Canada. The DUMBO design calls for two parallel 3.6 x 21.6-m stacks of multiwire proportional chambers in adjacent mine tunnels (synthesizing a larger-area detector) and a 121-station surface EAS array with variable density to accommodate shower energies in the 100-TeV and 10-PeV ranges. The aims of DUMBO include determining the nuclear composition of cosmic rays, ultrahigh-energy gamma-ray astronomy, and characterizing the point sources of muons observed in recent proton-decay experiments; the physics of these processes and the detector capabilities they imply are discussed. Graphs, diagrams, and drawings are provided.

  6. Antimicrobial and SOD activities of novel transition metal ternary complexes of iminodiacetic acid containing alpha-diimine as auxiliary ligand.

    PubMed

    Siddiqi, Zafar A; Shahid, M; Khalid, Mohd; Kumar, S

    2009-06-01

    Ternary complexes containing an alpha-diimine auxiliary ligand have been widely used as models for several mono and polynuclear metal enzymes. The present ternary complexes [M(IDA)(Phen)H(2)O] x xH(2)O (x = 2, 3 or 4) were prepared as novel antimicrobial agents employing reactions of Cu(OAc)(2) or MCl(2) (M = Co, Ni, Cr) with iminodiacetic acid (H(2)IDA) in the presence of 1,10-phenanthroline (Phen), whose chemical structure and bonding were elucidated by IR, FAB-Mass, (1)H, (13)C NMR, EPR spectral and elemental analyses. The antimicrobial activities against Escherichia coli (K-12), Bacillus subtilis (MTCC 121), Staphylococcus aureus (IOA-SA-22), Salmonella typhimurium (MTCC 98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei (isolates from Department of Microbiology, Faculty of Agricultural Science, AMU) were investigated and significant activities were obtained. The superoxide dismutase activity of the Cu(II) complex was assessed by NBT assay. The single crystal X-ray structure for [Cu(IDA)(Phen)H(2)O] x 2 H(2)O indicates a triclinic unit cell in P-1 space group with structural parameters, a = 6.745(5), b = 10.551(5), c = 11.414(5)A, alpha = 95.770(5), beta = 91.396(5), gamma = 92.518(5) degrees and presence of an extensive H-bonding and pi-pi stacking interactions which generate a supramolecular framework.

  7. AGN-enhanced outflows of low-ionization gas in star-forming galaxies at 1.7 < z < 4.6*

    NASA Astrophysics Data System (ADS)

    Talia, M.; Brusa, M.; Cimatti, A.; Lemaux, B. C.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Cucciati, O.; Garilli, B.; Grazian, A.; Guaita, L.; Hathi, N. P.; Koekemoer, A.; Le Fèvre, O.; Maccagni, D.; Nakajima, K.; Pentericci, L.; Pforr, J.; Schaerer, D.; Vanzella, E.; Vergani, D.; Zamorani, G.; Zucca, E.

    2017-11-01

    Fast and energetic winds are invoked by galaxy formation models as essential processes in the evolution of galaxies. These outflows can be powered either by star formation (SF) and/or active galactic nucleus (AGN) activity, but the relative dominance of the two mechanisms is still under debate. We use spectroscopic stacking analysis to study the properties of the low-ionization phase of the outflow in a sample of 1330 star-forming galaxies (SFGs) and 79 X-ray-detected (1042 < LX < 1045 erg s-1) Type 2 AGN at 1.7 < z < 4.6 selected from a compilation of deep optical spectroscopic surveys, mostly zCOSMOS-Deep and VIMOS Ultra Deep Survey (VUDS). We measure mean velocity offsets of ˜- 150 km s-1 in the SFGs, while in the AGN sample the velocity is much higher (˜- 950 km s-1), suggesting that the AGN is boosting the outflow up to velocities that could not be reached only with the SF contribution. The sample of X-ray AGN has on average a lower SF rate than non-AGN SFGs of similar mass: this, combined with the enhanced outflow velocity in AGN hosts, is consistent with AGN feedback in action. We further divide our sample of AGN into two X-ray luminosity bins: we measure the same velocity offsets in both stacked spectra, at odds with results reported for the highly ionized phase in local AGN, suggesting that the two phases of the outflow may be mixed only up to relatively low velocities, while the highest velocities can be reached only by the highly ionized phase.

  8. Real-time observation of rotational twin formation during molecular-beam epitaxial growth of GaAs on Si (111) by x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Hidetoshi, E-mail: hsuzuki@cc.miyazaki-u.ac.jp; Nakata, Yuka; Takahasi, Masamitu

    2016-03-15

    The formation and evolution of rotational twin (TW) domains introduced by a stacking fault during molecular-beam epitaxial growth of GaAs on Si (111) substrates were studied by in situ x-ray diffraction. To modify the volume ratio of TW to total GaAs domains, GaAs was deposited under high and low group V/group III (V/III) flux ratios. For low V/III, there was less nucleation of TW than normal growth (NG) domains, although the NG and TW growth rates were similar. For high V/III, the NG and TW growth rates varied until a few GaAs monolayers were deposited; the mean TW domain sizemore » was smaller for all film thicknesses.« less

  9. Study of Inverse Ni-based Photonic Crystal using the Microradian X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Vasilieva, A. V.; Grigoryeva, N. A.; Mistonov, A. A.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu D.; Petukhov, A. V.; Byelov, D.; Chernyshov, D.; Okorokov, A. I.; Bouwman, W. G.; Grigoriev, S. V.

    2010-10-01

    Inverse photonic nickel-based crystal films formed by electrocrystallization of metal inside the voids of polymer artificial opal have been studied using the microradian X-ray diffraction. Analysis of the diffraction images agrees with an face-centred cubic (FCC) structure with the lattice constant a0 = 650 ± 10 nm and indicates two types of stacking sequences coexisting in the crystal (twins of ABCABC... and ACBACB... ordering motifs), the ratio between them being 4:5 The transverse structural correlation length Ltran is 2.4 ± 0.1 μm, which corresponds to a sample thickness of 6 layers. The in-plane structural correlation length Llong is 3.4 ± 0.2 μm, and the structure mosaic is of order of 10°.

  10. Improved memory characteristics by NH3-nitrided GdO as charge storage layer for nonvolatile memory applications

    NASA Astrophysics Data System (ADS)

    Liu, L.; Xu, J. P.; Ji, F.; Chen, J. X.; Lai, P. T.

    2012-07-01

    Charge-trapping memory capacitor with nitrided gadolinium oxide (GdO) as charge storage layer (CSL) is fabricated, and the influence of post-deposition annealing in NH3 on its memory characteristics is investigated. Transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction are used to analyze the cross-section and interface quality, composition, and crystallinity of the stack gate dielectric, respectively. It is found that nitrogen incorporation can improve the memory window and achieve a good trade-off among the memory properties due to NH3-annealing-induced reasonable distribution profile of a large quantity of deep-level bulk traps created in the nitrided GdO film and reduction of shallow traps near the CSL/SiO2 interface.

  11. Next-generation morphological character discovery and evaluation: an X-ray micro-CT enhanced revision of the ant genus Zasphinctus Wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics.

    PubMed

    Garcia, Francisco Hita; Fischer, Georg; Liu, Cong; Audisio, Tracy L; Economo, Evan P

    2017-01-01

    New technologies for imaging and analysis of morphological characters offer opportunities to enhance revisionary taxonomy and better integrate it with the rest of biology. In this study, we revise the Afrotropical fauna of the ant genus Zasphinctus Wheeler, and use high-resolution X-ray microtomography (micro-CT) to analyse a number of morphological characters of taxonomic and biological interest. We recognise and describe three new species: Z. obamai sp. n. , Z. sarowiwai sp. n. , and Z. wilsoni sp. n. The species delimitations are based on the morphological examination of all physical specimens in combination with 3D scans and volume reconstructions. Based on this approach, we present a new taxonomic discrimination system for the regional fauna that consists of a combination of easily observable morphological characters visible at magnifications of around 80-100 ×, less observable characters that require higher magnifications, as well as characters made visible through virtual dissections that would otherwise require destructive treatment. Zasphinctus are rarely collected ants and the material available to us is comparatively scarce. Consequently, we explore the use of micro-CT as a non-invasive tool for the virtual examination, manipulation, and dissection of such rare material. Furthermore, we delineate the treated species by providing a diagnostic character matrix illustrated by numerous images and supplement that with additional evidence in the form of stacked montage images, 3D PDFs and 3D rotation videos of scans of major body parts and full body (in total we provide 16 stacked montage photographs, 116 images of 3D reconstructions, 15 3D rotation videos, and 13 3D PDFs). In addition to the comparative morphology analyses used for species delimitations, we also apply micro-CT data to examine certain traits, such as mouthparts, cuticle thickness, and thoracic and abdominal muscles in order to assess their taxonomic usefulness or gain insights into the natural history of the genus. The complete datasets comprising the raw micro-CT data, 3D PDFs, 3D rotation videos, still images of 3D models, and coloured montage photos have been made available online as cybertypes (Dryad, http://dx.doi.org/10.5061/dryad.4s3v1).

  12. Next-generation morphological character discovery and evaluation: an X-ray micro-CT enhanced revision of the ant genus Zasphinctus Wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics

    PubMed Central

    Garcia, Francisco Hita; Fischer, Georg; Liu, Cong; Audisio, Tracy L.; Economo, Evan P.

    2017-01-01

    Abstract New technologies for imaging and analysis of morphological characters offer opportunities to enhance revisionary taxonomy and better integrate it with the rest of biology. In this study, we revise the Afrotropical fauna of the ant genus Zasphinctus Wheeler, and use high-resolution X-ray microtomography (micro-CT) to analyse a number of morphological characters of taxonomic and biological interest. We recognise and describe three new species: Z. obamai sp. n., Z. sarowiwai sp. n., and Z. wilsoni sp. n. The species delimitations are based on the morphological examination of all physical specimens in combination with 3D scans and volume reconstructions. Based on this approach, we present a new taxonomic discrimination system for the regional fauna that consists of a combination of easily observable morphological characters visible at magnifications of around 80–100 ×, less observable characters that require higher magnifications, as well as characters made visible through virtual dissections that would otherwise require destructive treatment. Zasphinctus are rarely collected ants and the material available to us is comparatively scarce. Consequently, we explore the use of micro-CT as a non-invasive tool for the virtual examination, manipulation, and dissection of such rare material. Furthermore, we delineate the treated species by providing a diagnostic character matrix illustrated by numerous images and supplement that with additional evidence in the form of stacked montage images, 3D PDFs and 3D rotation videos of scans of major body parts and full body (in total we provide 16 stacked montage photographs, 116 images of 3D reconstructions, 15 3D rotation videos, and 13 3D PDFs). In addition to the comparative morphology analyses used for species delimitations, we also apply micro-CT data to examine certain traits, such as mouthparts, cuticle thickness, and thoracic and abdominal muscles in order to assess their taxonomic usefulness or gain insights into the natural history of the genus. The complete datasets comprising the raw micro-CT data, 3D PDFs, 3D rotation videos, still images of 3D models, and coloured montage photos have been made available online as cybertypes (Dryad, http://dx.doi.org/10.5061/dryad.4s3v1). PMID:29362522

  13. From a structural average to the conformational ensemble of a DNA bulge

    PubMed Central

    Shi, Xuesong; Beauchamp, Kyle A.; Harbury, Pehr B.; Herschlag, Daniel

    2014-01-01

    Direct experimental measurements of conformational ensembles are critical for understanding macromolecular function, but traditional biophysical methods do not directly report the solution ensemble of a macromolecule. Small-angle X-ray scattering interferometry has the potential to overcome this limitation by providing the instantaneous distance distribution between pairs of gold-nanocrystal probes conjugated to a macromolecule in solution. Our X-ray interferometry experiments reveal an increasing bend angle of DNA duplexes with bulges of one, three, and five adenosine residues, consistent with previous FRET measurements, and further reveal an increasingly broad conformational ensemble with increasing bulge length. The distance distributions for the AAA bulge duplex (3A-DNA) with six different Au-Au pairs provide strong evidence against a simple elastic model in which fluctuations occur about a single conformational state. Instead, the measured distance distributions suggest a 3A-DNA ensemble with multiple conformational states predominantly across a region of conformational space with bend angles between 24 and 85 degrees and characteristic bend directions and helical twists and displacements. Additional X-ray interferometry experiments revealed perturbations to the ensemble from changes in ionic conditions and the bulge sequence, effects that can be understood in terms of electrostatic and stacking contributions to the ensemble and that demonstrate the sensitivity of X-ray interferometry. Combining X-ray interferometry ensemble data with molecular dynamics simulations gave atomic-level models of representative conformational states and of the molecular interactions that may shape the ensemble, and fluorescence measurements with 2-aminopurine-substituted 3A-DNA provided initial tests of these atomistic models. More generally, X-ray interferometry will provide powerful benchmarks for testing and developing computational methods. PMID:24706812

  14. Heavy X-ray obscuration in the most luminous galaxies discovered by WISE

    NASA Astrophysics Data System (ADS)

    Vito, F.; Brandt, W. N.; Stern, D.; Assef, R. J.; Chen, C.-T. J.; Brightman, M.; Comastri, A.; Eisenhardt, P.; Garmire, G. P.; Hickox, R.; Lansbury, G.; Tsai, C.-W.; Walton, D. J.; Wu, J. W.

    2018-03-01

    Hot dust-obscured galaxies (DOGs) are hyperluminous (L8-1000 μm > 1013 L⊙) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most luminous (Lbol ≳ 1014 L⊙) known hot DOGs at z = 2-4.6. Five of them are covered by long-exposure (10-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116-0505) is a Compton-thick candidate, with column density NH = (1.0-1.5) × 1024 cm-2 derived from X-ray spectral fitting. The remaining 15 hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 are individually detected; therefore, we applied a stacking analysis to investigate their average emission. From hardness ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be log NH (cm-2) > 23.5 and LX ≳ 1044 erg s-1, which are consistent with results for individually detected sources. We also investigated the LX-L6 μm and LX-Lbol relations, finding hints that hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured quasi-stellar objects are needed to derive solid conclusions.

  15. Ae2Sb2X4F2 (Ae = Sr, Ba): new members of the homologous series Ae2M(1+n)X(3+n)F2 designed from rock salt and fluorite 2D building blocks.

    PubMed

    Kabbour, Houria; Cario, Laurent

    2006-03-20

    We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.

  16. Refraction effects in soft x-ray multilayer blazed gratings.

    PubMed

    Voronov, D L; Salmassi, F; Meyer-Ilse, J; Gullikson, E M; Warwick, T; Padmore, H A

    2016-05-30

    A 2500 lines/mm Multilayer Blazed Grating (MBG) optimized for the soft x-ray wavelength range was fabricated and tested. The grating coated with a W/B4C multilayer demonstrated a record diffraction efficiency in the 2nd blazed diffraction order in the energy range from 500 to 1200 eV. Detailed investigation of the diffraction properties of the grating demonstrated that the diffraction efficiency of high groove density MBGs is not limited by the normal shadowing effects that limits grazing incidence x-ray grating performance. Refraction effects inherent in asymmetrical Bragg diffraction were experimentally confirmed for MBGs. The refraction affects the blazing properties of the MBGs and results in a shift of the resonance wavelength of the gratings and broadening or narrowing of the grating bandwidth depending on diffraction geometry. The true blaze angle of the MBGs is defined by both the real structure of the multilayer stack and by asymmetrical refraction effects. Refraction effects can be used as a powerful tool in providing highly efficient suppression of high order harmonics.

  17. Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.

    PubMed

    Borowiec, Joanna; Gillin, William P; Willis, Maureen; Boi, Filippo; He, Yi; Wen, Jiqiu; Wang, Shanling; Schulz, Leander

    2017-12-29

    In this study, a direct sulfidation reaction of ammonium perrhenate (NH<sub>4</sub>ReO<sub>4</sub>) leading to a synthesis of rhenium disulfide (ReS<sub>2</sub>) is demonstrated. These finding reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS<sub>2</sub>. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scannig calorimetry (DSC). The results indicated the formation of a lower symmetry (1T<sub>d</sub>) ReS<sub>2</sub> with a low degree of layer stacking. © 2017 IOP Publishing Ltd.

  18. The role of hydrogen bonds in the crystals of 2-amino-4-methyl-5-nitropyridinium trifluoroacetate monohydrate and 4-hydroxybenzenesulfonate - X-ray and spectroscopic studies.

    PubMed

    Bryndal, I; Marchewka, M; Wandas, M; Sąsiadek, W; Lorenc, J; Lis, T; Dymińska, L; Kucharska, E; Hanuza, J

    2014-04-05

    Two new organic-organic salts, 2-amino-4-methyl-5-nitropyridinium trifluoroacetate monohydrate (AMNP-TFA), and 2-amino-4-methyl-5-nitropyridinium 4-hydroxybenzenesulfonate (AMNP-HBS), were obtained and characterized by means of FT-IR, FT-Raman and single crystal X-ray crystallography. In the former crystal, the cations, anions and water molecules are linked into layers by three types of hydrogen bonds, NPH⋯O, NAH⋯O and OH⋯O. These layers are connected by weaker CH⋯O hydrogen bonds. In the latter crystal, the cations and anions form one-dimensional structure through a number of hydrogen-bonding interactions involving the OH, NH(+) and NH2 groups as donors. In this case the NPH⋯O and NAH⋯O hydrogen bonds are formed. The combination of interactions between cations and anions results in the formation of columns. Additionally, there are π-π stacking interactions between the columns. The obtained X-ray structural data are related to the vibrational spectra of the studied crystals. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with openingmore » angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.« less

  20. Exploring contribution of intermolecular interactions in supramolecular layered assembly of naphthyridine co-crystals: Insights from Hirshfeld surface analysis of their crystalline states

    NASA Astrophysics Data System (ADS)

    Seth, Saikat Kumar; Das, Nirmal Kumar; Aich, Krishnendu; Sen, Debabrata; Fun, Hoong-Kun; Goswami, Shyamaprasad

    2013-09-01

    Co-crystals of 1a and 1b have been prepared by slow evaporation of the solutions of mixtures of 2,7-dimethyl-1,8-naphthyridine (1), urea (a) and thiourea (b). The structures of the complexes are determined by the single crystal X-ray diffraction and a detailed investigation of the crystal packing and classification of intermolecular interactions is presented by means of Hirshfeld surface analysis which is of considerable current interest in crystal engineering. The X-ray study reveals that the co-crystal formers are envisioned to produce N-H⋯N hydrogen bond as well as N-H⋯O/N-H⋯S pair-wise hydrogen bonds and also the weaker aromatic π⋯π interactions which cooperatively take part in the crystal packing. The recurring feature of the self-assembly in the compounds is the appearance of the molecular ribbon through multiple hydrogen bonding which are further stacked into molecular layers by π⋯π stacking interactions. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing molecular surface contours and 2D Fingerprint plots have been used to examine molecular shapes. Crystal structure analysis supported with the Hirshfeld surface and fingerprint plots enabled the identification of the significant intermolecular interactions.

  1. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers

    NASA Astrophysics Data System (ADS)

    Gago, A. S.; Ansar, S. A.; Saruhan, B.; Schulz, U.; Lettenmeier, P.; Cañas, N. A.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Arnold, J.; Friedrich, K. A.

    2016-03-01

    Proton exchange membrane (PEM) electrolysis is a promising technology for large H2 production from surplus electricity from renewable sources. However, the electrolyser stack is costly due to the manufacture of bipolar plates (BPP). Stainless steel can be used as an alternative, but it must be coated. Herein, dense titanium coatings are produced on stainless steel substrates by vacuum plasma spraying (VPS). Further surface modification of the Ti coating with Pt (8 wt% Pt/Ti) deposited by physical vapour deposition (PVD) magnetron sputtering reduces the interfacial contact resistance (ICR). The Ti and Pt/Ti coatings are characterised by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron microscopy (XPS). Subsequently, the coatings are evaluated in simulated and real PEM electrolyser environments, and they managed to fully protect the stainless steel substrate. In contrast, the absence of the thermally sprayed Ti layer between Pt and stainless steel leads to pitting corrosion. The Pt/Ti coating is tested in a PEM electrolyser cell for almost 200 h, exhibiting an average degradation rate of 26.5 μV h-1. The results reported here demonstrate the possibility of using stainless steel as a base material for the stack of a PEM electrolyser.

  2. The assembly of two isomorphous coordination compounds based on 1,4-cyclohexanedicarboxylic acid and 2,4-diamino-6-phenyl-1,3,5-triazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue-Fei; Wang, Xiao; Lun, Hui-Jie

    The compounds [Co(e,a-cis-1,4-chdc)(phdat)]{sub n} (1) and [Cd(e,a-cis-1,4-chdc)(phdat)]{sub n} (2) have been synthesized under hydrothermal method by using 1,4-cyclohexanedicarboxylic acid (1,4-H{sub 2}chdc), 2,4-diamino-6-phenyl-1,3,5-triazine (phdat) as well as CoCl{sub 2}·6H{sub 2}O, CdCl{sub 2}·2.5H{sub 2}O respectively and characterized by IR spectra, X-ray single-crystal diffraction, powder X-ray single-crystal diffraction (PXRD), elemental analyses and thermogravimetric analyses (TGA). The results show the compounds 1 and 2 are isomorphous and exhibit paddle-wheel dinuclear Co{sub 2}(CO{sub 2}){sub 4}/Cd{sub 2}(CO{sub 2}){sub 4} units, which are further connected to 1D chain structures by μ{sub 4}:η{sup 1}:η{sup 1}:η{sup 1}:η{sup 1} 1,4-chdc{sup 2–} ligands and extended into a 3D structures via differentmore » hydrogen bonding and π…π stacking interactions. Furthermore, compound 1 exhibits antiferromagnetic behavior and compound 2 displays luminescent behavior at solid state. - Graphical abstract: Two isomorphous coordination compounds 1–2 have been synthesized and characterized by XRD, IR spectra and TGA etc. Compound 1 and 2 display antiferromagnetic behavior and luminescent behavior respectively. - Highlights: • Two novel polymers based on 1,4-cyclohexanedicarboxylic acid have been synthesized. • Compounds 1 and 2 feather 1D chain structure built up from paddle-wheel SBUs. • The magnetism of 2 is investigated. • The electrochemical property and luminescent property of 1 are investigated.« less

  3. Radiation damage and annealing in plutonium tetrafluoride

    NASA Astrophysics Data System (ADS)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; Sweet, Lucas; McNamara, Bruce; Delegard, Calvin; Jevremovic, Tatjana

    2017-12-01

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analyses reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. The following commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.

  4. Control Scheme for Quickly Starting X-ray Tube

    NASA Astrophysics Data System (ADS)

    Nakahama, Masayuki; Nakanishi, Toshiki; Ishitobi, Manabu; Ito, Tuyoshi; Hosoda, Kenichi

    A control scheme for quickly starting a portable X-ray generator used in the livestock industry is proposed in this paper. A portable X-ray generator used to take X-ray images of animals such as horses, sheep and dogs should be capable of starting quickly because it is difficult for veterinarians to take X-ray images of animals at their timing. In order to develop a scheme for starting the X-ray tube quickly, it is necessary to analysis the X-ray tube. However, such an analysis has not been discussed until now. First, the states of an X-ray tube are classified into the temperature-limited state and the space-charge-limited state. Furthermore, existence of “mixed state” that comprises both is newly proposed in this paper. From these analyses, a novel scheme for quickly starting an X-ray generator is proposed; this scheme is considered with the characteristics of the X-ray tube. The proposed X-ray system that is capable of starting quickly is evaluated on the basis of experimental results.

  5. RXTE Observations of Cygnus X-3

    NASA Technical Reports Server (NTRS)

    McCollough, M. L.; Robinson, C. R.; Zhang, S. N.; Harmon, B. A.; Paciesas, W. S.; Dieters, S. W.; Hjellming, R. M.; Rupen, M.; Mioduszewski, A. J.; Waltman, E. B.

    1997-01-01

    In the period between May 1997 and August 1997 a series of pointed RXTE observations were made of Cyg X-3. During this period Cyg X-3 made a transition from a quiescent radio state to a flare state (including a major flare) and then returned to a quiescent radio state. Analyses of the observations are made in the context of concurrent observations in the hard X-ray (CGRO/BATSE), soft X-ray (RXTE/ASM) and the radio (Green Bank Interferometer, Ryle Telescope, and RATAN-600). Preliminary analyses of the observations are presented.

  6. Full Field X-Ray Fluorescence Imaging Using Micro Pore Optics for Planetary Surface Exploration

    NASA Technical Reports Server (NTRS)

    Sarrazin, P.; Blake, D. F.; Gailhanou, M.; Walter, P.; Schyns, E.; Marchis, F.; Thompson, K.; Bristow, T.

    2016-01-01

    Many planetary surface processes leave evidence as small features in the sub-millimetre scale. Current planetary X-ray fluorescence spectrometers lack the spatial resolution to analyse such small features as they only provide global analyses of areas greater than 100 mm(exp 2). A micro-XRF spectrometer will be deployed on the NASA Mars 2020 rover to analyse spots as small as 120m. When using its line-scanning capacity combined to perpendicular scanning by the rover arm, elemental maps can be generated. We present a new instrument that provides full-field XRF imaging, alleviating the need for precise positioning and scanning mechanisms. The Mapping X-ray Fluorescence Spectrometer - "Map-X" - will allow elemental imaging with approximately 100µm spatial resolution and simultaneously provide elemental chemistry at the scale where many relict physical, chemical and biological features can be imaged in ancient rocks. The arm-mounted Map-X instrument is placed directly on the surface of an object and held in a fixed position during measurements. A 25x25 mm(exp 2) surface area is uniformly illuminated with X-rays or alpha-particles and gamma-rays. A novel Micro Pore Optic focusses a fraction of the emitted X-ray fluorescence onto a CCD operated at a few frames per second. On board processing allows measuring the energy and coordinates of each X-ray photon collected. Large sets of frames are reduced into 2d histograms used to compute higher level data products such as elemental maps and XRF spectra from selected regions of interest. XRF spectra are processed on the ground to further determine quantitative elemental compositions. The instrument development will be presented with an emphasis on the characterization and modelling of the X-ray focussing Micro Pore Optic. An outlook on possible alternative XRF imaging applications will be discussed.

  7. Finite element analyses of thin film active grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  8. Vitamin K 3 family members - Part II: Single crystal X-ray structures, temperature-induced packing polymorphism, magneto-structural correlations and probable anti-oncogenic candidature

    NASA Astrophysics Data System (ADS)

    Rane, Sandhya; Ahmed, Khursheed; Salunke-Gawali, Sunita; Zaware, Santosh B.; Srinivas, D.; Gonnade, Rajesh; Bhadbhade, Mohan

    2008-12-01

    Temperature-induced packing polymorphism is observed for vitamin K 3 (menadione, 3-methyl-1,4-naphthoquinone, 1). Form 1a crystallizes at 300 K and 1b at 277 K both in the same space group P2 1/ c. Form 1b contains one molecule per asymmetric unit, performing anisotropy in g-factor viz. g z = 2.0082, g y = 2.0055 and g x = 2.0025, whereas form 1a contains two molecules in its asymmetric unit. Vitamin K 3 family members 2, [2-hydroxy vitamin K 3] and 3, [2-hydroxy-1-oximino vitamin K 3] also perform intrinsic neutral active naphthosemiquinone valence tautomers even in dark having spin concentrations due to hydrogen bonding and aromatic stacking interactions which are compared to vitamin K 3. The significant lateral C-H⋯O and O-H⋯π bifurcated or π-π ∗ interactions are discussed for molecular associations and radical formations. X-ray structure of 3 revealed π-π ∗ stack dimers as radicals signatured in EPR as triplet with five hyperfine splits [ Ā( 14N) = 11.9 G]. The centrosymmetric biradicals in 3 show diamagnetism at high temperature but below 10 K it shows paramagnetism with μeff as 0.19 B.M. Vitamin K 3 and its family members inhibit biological activities of acid phosphatase ( APase), which are proportional to their spin concentrations. This may relate to their probable anti-oncogenic candidature in future.

  9. Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Fritze, S.; Drechsel, P.; Stauss, P.; Rode, P.; Markurt, T.; Schulz, T.; Albrecht, M.; Bläsing, J.; Dadgar, A.; Krost, A.

    2012-06-01

    Thin AlGaN interlayers have been grown into a thick GaN stack on Si substrates to compensate tensile thermal stress and significantly improve the structural perfection of the GaN. In particular, thicker interlayers reduce the density in a-type dislocations as concluded from x-ray diffraction (XRD) measurements. Beyond an interlayer thickness of 28 nm plastic substrate deformation occurs. For a thick GaN stack, the first two interlayers serve as strain engineering layers to obtain a crack-free GaN structure, while a third strongly reduces the XRD ω-(0002)-FWHM. The vertical strain and quality profile determined by several XRD methods demonstrates the individual impact of each interlayer.

  10. Exposure to ionizing radiation during dental X-rays is not associated with risk of developing meningioma: a meta-analysis based on seven case-control studies.

    PubMed

    Xu, Ping; Luo, Hong; Huang, Guang-Lei; Yin, Xin-Hai; Luo, Si-Yang; Song, Ju-Kun

    2015-01-01

    Many observational studies have found that exposure to dental X-rays is associated with the risk of development of meningioma. However, these findings are inconsistent. We conducted a meta-analysis to assess the relationship between exposure to dental X-rays and the risk of development of meningioma. The PubMed and EMBASE databases were searched to identify eligible studies. Summary odds ratio (OR) estimates and 95% confidence intervals (95% CIs) were used to compute the risk of meningioma development according to heterogeneity. Subgroup and sensitivity analyses were performed to further explore the potential heterogeneity. Finally, publication bias was assessed. Seven case-control studies involving 6,174 patients and 19,459 controls were included in the meta-analysis. Neither exposure to dental X-rays nor performance of full-mouth panorex X-rays was associated with an increased risk of development of meningioma (overall: OR, 0.97; 95% CI, 0.70-1.32; dental X-rays: OR, 1.05; 95% CI, 0.89-1.25; panorex X-rays: OR, 1.01; 95% CI, 0.76-1.34). However, exposure to bitewing X-rays was associated with a slightly increased risk of development of meningioma (OR, 1.73; 95% CI, 1.28-2.34). Similar results were obtained in the subgroup and sensitivity analyses. Little evidence of publication bias was observed. Based on the currently limited data, there is no association between exposure to dental X-rays and the risk of development of meningioma. However, these results should be cautiously interpreted because of the heterogeneity among studies. Additional large, high-quality clinical trials are needed to evaluate the association between exposure to dental X-rays and the risk of development of meningioma.

  11. Compositional homogeneity and X-ray topographic analyses of CdTe xSe 1-x grown by the vertical Bridgman technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.

    2015-02-01

    We grew CdTe xSe 1-x crystals with nominal Se concentrations of 5%, 7%, and 10% by the vertical Bridgman technique, and evaluated their compositional homogeneity and structural quality at the NSLS’ X-ray fluorescence and white beam X-ray topography beam lines. Both X-ray fluorescence and photoluminescence mapping revealed very high compositional homogeneity of the CdTe xSe 1-x crystals. Here, we noted that those crystals with higher concentrations of Se were more prone to twinning than those with a lower content. The crystals were fairly free from strains and contained low concentrations of sub-grain boundaries and their networks.

  12. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  13. X-ray and optical substructures of the DAFT/FADA survey clusters

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Durret, F.; Adami, C.; Lima Neto, G. B.

    2013-04-01

    We have undertaken the DAFT/FADA survey with the double aim of setting constraints on dark energy based on weak lensing tomography and of obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range 0.4-0.9 for which there were HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. Out of these, a spatial analysis was possible for 30 clusters, but only 23 had deep enough X-ray data for a really robust analysis. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. Altogether, the X-ray sample of 23 clusters and the optical sample of 26 clusters have 14 clusters in common. We present preliminary results on the coupled X-ray and dynamical analyses of these 14 clusters.

  14. EVIDENCE FOR ELEVATED X-RAY EMISSION IN LOCAL LYMAN BREAK GALAXY ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu-Zych, Antara R.; Lehmer, Bret D.; Hornschemeier, Ann E.

    2013-09-10

    Our knowledge of how X-ray emission scales with star formation at the earliest times in the universe relies on studies of very distant Lyman break galaxies (LBGs). In this paper, we study the relationship between the 2-10 keV X-ray luminosity (L{sub X}), assumed to originate from X-ray binaries (XRBs), and star formation rate (SFR) in ultraviolet (UV) selected z < 0.1 Lyman break analogs (LBAs). We present Chandra observations for four new Galaxy Evolution Explorer selected LBAs. Including previously studied LBAs, Haro 11 and VV 114, we find that LBAs demonstrate L{sub X}/SFR ratios that are elevated by {approx}1.5{sigma} comparedmore » to local galaxies, similar to the ratios found for stacked LBGs in the early universe (z > 2). Unlike some of the composite LBAs studied previously, we show that these LBAs are unlikely to harbor active galactic nuclei, based on their optical and X-ray spectra and the spatial distribution of the X-rays in three spatially extended cases. Instead, we expect that high-mass X-ray binaries (HMXBs) dominate the X-ray emission in these galaxies, based on their high specific SFRs (sSFRs {identical_to} SFR/M{sub *} {>=} 10{sup -9} yr{sup -1}), which suggest the prevalence of young stellar populations. Since both UV-selected populations (LBGs and LBAs) have lower dust attenuations and metallicities compared to similar samples of more typical local galaxies, we investigate the effects of dust extinction and metallicity on the L{sub X}/SFR for the broader population of galaxies with high sSFRs (>10{sup -10} yr{sup -1}). The estimated dust extinctions (corresponding to column densities of N{sub H} < 10{sup 22} cm{sup -2}) are expected to have insignificant effects on observed L{sub X}/SFR ratio for the majority of galaxy samples. We find that the observed relationship between L{sub X}/SFR and metallicity appears consistent with theoretical expectations from XRB population synthesis models. Therefore, we conclude that lower metallicities, related to more luminous HMXBs such as ultraluminous X-ray sources, drive the elevated L{sub X}/SFR observed in our sample of z < 0.1 LBAs. The relatively metal-poor, active mode of star formation in LBAs and distant z > 2 LBGs may yield higher total HMXB luminosity than found in typical galaxies in the local universe.« less

  15. Hunting for Intrinsically X-ray Weak Quasars: The Case of PHL 1811 Analogs

    NASA Astrophysics Data System (ADS)

    Brandt, William

    2009-09-01

    A central dogma of X-ray astronomy is that luminous X-ray emission is a universal property of efficiently accreting supermassive black holes. One interesting challenge to this idea has come from the quasar PHL 1811 which appears to be intrinsically X-ray weak and also has distinctive emission-line properties. We propose to observe a sample of eight SDSS quasars, selected to have similar UV emission-line properties to that of PHL 1811, to test if they are also X-ray weak. Our analyses of the currently available X-ray data appear to support this hypothesis but do not provide a proper test. Our results will have implications for the nature of accretion-disk coronae, emission-line formation, and AGN selection.

  16. Damage localisation and fracture propagation in granite: 4D synchrotron x-ray microtomographic observations from an in-situ triaxial deformation experiment at SOLEIL

    NASA Astrophysics Data System (ADS)

    Cartwright-Taylor, Alexis; Fusseis, Florian; Butler, Ian; Flynn, Michael; King, Andrew

    2017-04-01

    To date, most studies of damage localisation and failure have utilised indirect techniques to visualise the pathway to failure. The advent of synchrotron tomography and x-ray transparent experimental cells provides for the first time the opportunity to image localisation and fracture propagation in-situ, in real time with spatial resolutions of a few microns. We present 4D x-ray microtomographic data collected during a triaxial deformation experiment carried out at the imaging beamline PSICHE at the French Synchrotron SOLEIL. The data document damage localisation and fracture propagation in a microgranite. The sample was deformed at 15 MPa confining pressure and 3x10-5 s-1 strain rate, in a novel, miniature, x-ray transparent, triaxial deformation apparatus, designed and built at the University of Edinburgh. We used a 2.97 mm diameter x 9.46 mm long cylindrical sample of Ailsa Craig microgranite, heat treated to 600 ˚ C to introduce flaws in the form of pervasive crack damage. As the sample was loaded to failure, 21 microtomographic volumes were acquired in intervals of 5-20 MPa (decreasing as failure approached), including one scan at peak differential stress of 200 MPa (1.4 kN end load) and three post-failure scans. The scan at peak stress contained the incipient fault, and the sample failed immediately when loading continued afterwards. During scanning, a constant stress level was maintained. Individual datasets were collected in ˜10 minutes using a white beam with an energy maximum at 66 keV in a spiral configuration. Reconstructions yielded image stacks with a dimension of 1700x1700x4102 voxels with a voxel size of 2.7 μm. We analysed damage localisation and fracture propagation in the time series data. Fractures were segmented from the image data using a Multiscale Hessian fracture filter [1] and analysed for their orientations, dimensions and spatial distributions and changes in these properties during loading. Local changes in volumetric and shear strains between time steps were quantified using 3D digital image correlation [2]. In combination, these analyses show the extent and evolution of local aseismic deformation and that related to microcracking. Our results provide direct evidence of ongoing deformation processes such as micro-fracture nucleation at pre-existing flaws, in the form of cracks, grain boundaries and pores, and coalescence of en-echelon tensile micro-fractures along a shear fault in response to changes in the local stress field. These direct 4D observations of damage evolution and strain localisation complement the seminal results of Lockner et al. [3], who first imaged the process of fault growth using acoustic emissions locations. Our data provide further insight into the aseismic mechanisms that dissipate 99% of the total accumulated strain energy [4] and the interactions between these mechanisms and the developing microcracks. Our results also provide experimental verification of models for shear fracture formation whereby pre-existing flaws become connected by en-echelon tensile cracks that extend from their edges. _________________________________________ [1] Voorn et al., 2015, J. Petroleum Sci. Eng. 127, 270-285. [2] Hall, S. et al., 2010, Geotechnique 60, 315-322. [3] Lockner, D., et al., 1991, Nature 350, 39-42. [4] Byerlee, J., 1993, Geology 21, 303-306.

  17. Excitation function of alpha-particle-induced reactions on natNi from threshold to 44 MeV

    NASA Astrophysics Data System (ADS)

    Uddin, M. S.; Kim, K. S.; Nadeem, M.; Sudár, S.; Kim, G. N.

    2017-05-01

    Excitation functions of the natNi(α,x)62,63,65Zn, natNi(α,x)56,57Ni and natNi(α,x)56,57,58m+gCo reactions were measured from the respective thresholds to 44MeV using the stacked-foil activation technique. The tests for the beam characterization are described. The radioactivity was measured using HPGe γ-ray detectors. Theoretical calculations on α-particles-induced reactions on natNi were performed using the nuclear model code TALYS-1.8. A few results are new, the others strengthen the database. Our experimental data were compared with results of nuclear model calculations and described the reaction mechanism.

  18. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  19. CLASH: Joint analysis of strong-lensing, weak-lensing shear, and magnification data for 20 galaxy clusters*

    DOE PAGES

    Umetsu, Keiichi; Zitrin, Adi; Gruen, Daniel; ...

    2016-04-20

    Here, we present a comprehensive analysis of strong-lensing, weak-lensing shear and magnification data for a sample of 16 X-ray-regular and 4 high-magnification galaxy clusters atmore » $$0.19\\lesssim z\\lesssim 0.69$$ selected from Cluster Lensing And Supernova survey with Hubble (CLASH). Our analysis combines constraints from 16-band Hubble Space Telescope observations and wide-field multi-color imaging taken primarily with Suprime-Cam on the Subaru Telescope, spanning a wide range of cluster radii (10''–16'). We reconstruct surface mass density profiles of individual clusters from a joint analysis of the full lensing constraints, and determine masses and concentrations for all of the clusters. We find the internal consistency of the ensemble mass calibration to be ≤5% ± 6% in the one-halo regime (200–2000 kpc h –1) compared to the CLASH weak-lensing-only measurements of Umetsu et al. For the X-ray-selected subsample of 16 clusters, we examine the concentration–mass (c–M) relation and its intrinsic scatter using a Bayesian regression approach. Our model yields a mean concentration of $$c{| }_{z=0.34}=3.95\\pm 0.35$$ at M200c sime 14 × 1014 M⊙ and an intrinsic scatter of $$\\sigma (\\mathrm{ln}{c}_{200{\\rm{c}}})=0.13\\pm 0.06$$, which is in excellent agreement with Λ cold dark matter predictions when the CLASH selection function based on X-ray morphological regularity and the projection effects are taken into account. We also derive an ensemble-averaged surface mass density profile for the X-ray-selected subsample by stacking their individual profiles. The stacked lensing signal is detected at 33σ significance over the entire radial range ≤4000 kpc h –1, accounting for the effects of intrinsic profile variations and uncorrelated large-scale structure along the line of sight. The stacked mass profile is well described by a family of density profiles predicted for cuspy dark-matter-dominated halos in gravitational equilibrium, namely, the Navarro–Frenk–White (NFW), Einasto, and DARKexp models, whereas the single power-law, cored isothermal and Burkert density profiles are disfavored by the data. We show that cuspy halo models that include the large-scale two-halo term provide improved agreement with the data. For the NFW halo model, we measure a mean concentration of $${c}_{200{\\rm{c}}}={3.79}_{-0.28}^{+0.30}$$ at $${M}_{200{\\rm{c}}}={14.1}_{-1.0}^{+1.0}\\times {10}^{14}\\;{M}_{\\odot }$$, demonstrating consistency between the complementary analysis methods.« less

  20. Image stack alignment in full-field X-ray absorption spectroscopy using SIFT_PyOCL.

    PubMed

    Paleo, Pierre; Pouyet, Emeline; Kieffer, Jérôme

    2014-03-01

    Full-field X-ray absorption spectroscopy experiments allow the acquisition of millions of spectra within minutes. However, the construction of the hyperspectral image requires an image alignment procedure with sub-pixel precision. While the image correlation algorithm has originally been used for image re-alignment using translations, the Scale Invariant Feature Transform (SIFT) algorithm (which is by design robust versus rotation, illumination change, translation and scaling) presents an additional advantage: the alignment can be limited to a region of interest of any arbitrary shape. In this context, a Python module, named SIFT_PyOCL, has been developed. It implements a parallel version of the SIFT algorithm in OpenCL, providing high-speed image registration and alignment both on processors and graphics cards. The performance of the algorithm allows online processing of large datasets.

  1. PVA/NaCl/MgO nanocomposites-microstructural analysis by whole pattern fitting method

    NASA Astrophysics Data System (ADS)

    Prashanth, K. S.; Mahesh, S. S.; Prakash, M. B. Nanda; Somashekar, R.; Nagabhushana, B. M.

    2018-04-01

    The nanofillers in the macromolecular matrix have displayed noteworthy changes in the structure and reactivity of the polymer nanocomposites. Novel functional materials usually consist of defects and are largely disordered. The intriguing properties of these materials are often attributed to defects. X-ray line profiles from powder diffraction reveal the quantitative information about size distribution and shape of diffracting domains which governs the contribution from small conventional X-ray diffraction (XRD) techniques to enumerate the microstructural information. In this study the MgO nanoparticles were prepared by solution combustion method and PVA/NaCl/MgO nanocomposite films were synthesized by the solvent cast method. Microstructural parameters viz crystal defects like stacking faults and twin faults, compositional inhomogeneity, crystallite size and lattice strain (g in %), were extracted using whole pattern fitting method.

  2. Monolayer-by-monolayer compositional analysis of InAs/InAsSb superlattices with cross-sectional STM

    DOE PAGES

    Wood, M. R.; Kanedy, K.; Lopez, F.; ...

    2015-02-23

    In this paper, we use cross-sectional scanning tunneling microscopy (STM) to reconstruct the monolayer-by-monolayer composition profile across a representative subset of MBE-grown InAs/InAsSb superlattice layers and find that antimony segregation frustrates the intended compositional discontinuities across both antimonide-on-arsenide and arsenide-on-antimonide heterojunctions. Graded, rather than abrupt, interfaces are formed in either case. We likewise find that the incorporated antimony per superlattice period varies measurably from beginning to end of the multilayer stack. Finally, although the intended antimony discontinuities predict significant discrepancies with respect to the experimentally observed high-resolution x-ray diffraction spectrum, dynamical simulations based on the STM-derived profiles provide an excellentmore » quantitative match to all important aspects of the x-ray data.« less

  3. Mechanisms Determining the Structure of Gold-Catalyzed GaAs Nanowires Studied by in Situ X-ray Diffraction

    DOE PAGES

    Takahasi, Masamitu; Kozu, Miwa; Sasaki, Takuo; ...

    2015-09-02

    The evolution of polytypism during GaAs nanowire growth was investigated with in situ X-ray diffraction. The growth of nanowires was found to start with the formation of zincblende structure, followed by the growth of wurtzite structure. The growth process was well reproduced by a simulation based on a layer-by-layer nucleation model. The good agreement between the measured and simulated results confirms that nucleation costs higher energy for the stackings changing the crystal structure than for those conserving the preceding structure. The transition in prevalent structure can be accounted for by the change of local growth conditions related to the shapemore » of triple phase line rather than by the change in supersaturation level, which quickly reaches steady state after starting growth.« less

  4. Scalable, large area compound array refractive lens for hard X-rays

    NASA Astrophysics Data System (ADS)

    Reich, Stefan; dos Santos Rolo, Tomy; Letzel, Alexander; Baumbach, Tilo; Plech, Anton

    2018-04-01

    We demonstrate the fabrication of a 2D Compound Array Refractive Lens (CARL) for multi-contrast X-ray imaging. The CARL consists of six stacked polyimide foils with each displaying a 2D array of lenses with a 65 μm pitch aiming for a sensitivity on sub-micrometer structures with a (few-)micrometer resolution in sensing through phase and scattering contrast at multiple keV. The parabolic lenses are formed by indents in the foils by a paraboloid needle. The ability for fast single-exposure multi-contrast imaging is demonstrated by filming the kinetics of pulsed laser ablation in liquid. The three contrast channels, absorption, differential phase, and scattering, are imaged with a time resolution of 25 μs. By changing the sample-detector distance, it is possible to distinguish between nanoparticles and microbubbles.

  5. Differential effects of Phe19 and Phe20 on fibril formation by amyloidogenic peptide A beta 16-22 (Ac-KLVFFAE-NH2).

    PubMed

    Inouye, Hideyo; Gleason, Katherine A; Zhang, Dong; Decatur, Sean M; Kirschner, Daniel A

    2010-08-01

    The sequence KLVFFAE (A beta 16-22) in Alzheimer's beta-amyloid is thought to be a core beta-structure that could act as a template for folding other parts of the polypeptide or molecules into fibrillar assemblies rich in beta-sheet. To elucidate the mechanism of the initial folding process, we undertook combined X-ray fiber/powder diffraction and infrared (IR) spectroscopy to analyze lyophilized A beta 16-22 and solubilized/dried peptide containing nitrile probes at F19 and/or F20. Solubilized/dried wild-type (WT) A beta 16-22 and the peptide containing cyanophenylalanine at F19 (19CN) or at F20 (20CN) gave fiber patterns consistent with slab-like beta-crystallites that were cylindrically averaged around the axis parallel to the polypeptide chain direction. The WT and 19CN assemblies showed 30-A period arrays arising from the stacking of the slabs along the peptide chain direction, whereas the 20CN assemblies lacked any such stacking. The electron density projection along the peptide chain direction indicated similar side-chain dispositions for WT and 20CN, but not for 19CN. These X-ray results and modeling imply that in the assembly of WT A beta 16-22 the F19 side chain is localized within the intersheet space and is involved in hydrophobic contact with amino acids across the intersheet space, whereas the F20 side chain localized near the slab surface is less important for the intersheet interaction, but involved in slab stacking. IR observations for the same peptides in dilute solution showed a greater degree of hydrogen bonding for the nitrile groups in 20CN than in 19CN, supporting this interpretation. (c) 2010 Wiley-Liss, Inc.

  6. Analysis of Al diffusion processes in TiN barrier layers for the application in silicon solar cell metallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumm, J.; Samadi, H.; Chacko, R. V.

    An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less

  7. Synthesis and ab initioStructure Determination from Powder X-Ray Diffraction Data of a New Metallic Mixed-Valence Platinum-Lead Oxide PbPt 2O 4

    NASA Astrophysics Data System (ADS)

    Tancret, N.; Obbade, S.; Bettahar, N.; Abraham, F.

    1996-07-01

    The mixed-valence PbPt2O4compound was synthesized both by solid state reaction between stoichiometric amounts of PbO and Pt heated at 650-750°C for 1 week and by chemical attack of Pb2PtO4. It decomposes to PbO and Pt at 750°C. The crystal structure was completely solved from direct methods and difference Fourier maps from powder X-ray diffraction data. The unit cell is triclinic (space groupP1,Z= 2) witha= 6.1161(2) Å,b= 6.6504(2) Å,c= 5.5502(2) Å, α = 97.178(2)°, β = 108.803(2)°, and γ = 115.241(2)°. The structural model was refined using the Rietveld profile technique and led to the reliability factorsRwp= 0.118,Rp= 0.086,RBragg= 0.029,RF= 0.018, and χ2= 1.51. The structure of PbPt2O4appears to be a unique one involving both Pt4+in octahedral coordination and Pt2+or partially oxidized platinum in square-planar coordination. The PbPt2O4structure consists of columnar-stacked PtO4groups extending along thecaxis of the unit cell. These columnar stacks are held by other planar PtO4groups to constitute Pt3O8sheets. These sheets are linked together by PtO6octahedra to form a three-dimensional framework. Lead atoms are surrounded by six oxygens forming a distorted octahedron. Metallic conductivity in PbPt2O4is consistent with short Pt-Pt bonds in the columnar stacks of PtO4groups along thecaxis direction (dPt-Pt= 2.78 Å).

  8. CODEX weak lensing: concentration of galaxy clusters at z ~ 0.5

    DOE PAGES

    Cibirka, N.; Cypriano, E. S.; Brimioulle, F.; ...

    2017-03-04

    Here, we present a stacked weak-lensing analysis of 27 richness selected galaxy clusters at 0.40 ≤ z ≤ 0.62 in the COnstrain Dark Energy with X-ray galaxy clusters (CODEX) survey. The fields were observed in five bands with the Canada–France–Hawaii Telescope (CFHT). We measure the stacked surface mass density profile with a 14σ significance in the radial range 0.1 < RMpch -1 < 2.5. The profile is well described by the halo model, with the main halo term following a Navarro–Frenk–White profile (NFW) profile and including the off-centring effect. We select the background sample using a conservative colour–magnitude method to reduce the potential systematic errors and contamination by cluster member galaxies. We perform a Bayesian analysis for the stacked profile and constrain the best-fitting NFW parameters M 200c=6.6more » $$+1.0\\atop{-0.8}$$×10 14h -1 M⊙ and c 200c=3.7$$+0.7\\atop{-0.6}$$. The off-centring effect was modelled based on previous observational results found for redMaPPer Sloan Digital Sky Survey clusters. Our constraints on M200c and c200c allow us to investigate the consistency with numerical predictions and select a concentration–mass relation to describe the high richness CODEX sample. Comparing our best-fitting values for M200c and c200c with other observational surveys at different redshifts, we find no evidence for evolution in the concentration–mass relation, though it could be mitigated by particular selection functions. Similar to previous studies investigating the X-ray luminosity–mass relation, our data suggest a lower evolution than expected from self-similarity.« less

  9. Preparation of γ-LiV2O5 from polyoxovanadate cluster Li7[V15O36(CO3)] as a high-performance cathode material and its reaction mechanism revealed by operando XAFS

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi

    2017-08-01

    γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.

  10. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Cummings, J. R.; Mcneeley, J. B.; Barnett, Allen M.

    1990-01-01

    Free-standing, transparent, tunable bandgap AlxGa1-xAs top solar cells have been fabricated for mechanical attachment in a four terminal tandem stack solar cell. Evaluation of the device results has demonstrated 1.80 eV top solar cells with efficiencies of 18 percent (100 X, and AM0) which would yield stack efficiencies of 31 percent (100 X, AM0) with a silicon bottom cell. When fully developed, the AlxGa1-xAs/Si mechanically-stacked two-junction solar cell concentrator system can provide efficiencies of 36 percent (AM0, 100 X). AlxGa1-xAs top solar cells with bandgaps from 1.66 eV to 2.08 eV have been fabricated. Liquid phase epitaxy (LPE) growth techniques have been used and LPE has been found to yield superior AlxGa1-xAs material when compared to molecular beam epitaxy and metal-organic chemical vapor deposition. It is projected that stack assembly technology will be readily applicable to any mechanically stacked multijunction (MSMJ) system. Development of a wide bandgap top solar cell is the only feasible method for obtaining stack efficiencies greater than 40 percent at AM0. System efficiencies of greater than 40 percent can be realized when the AlGaAs top solar cell is used in a three solar cell mechanical stack.

  11. The Compton-thick AGN fraction from the deepest X-ray spectroscopy in the CDF-S

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Akylas, A.; Ranalli, P.

    2017-10-01

    Highly obscured AGN, especially Compton-thick (CT) AGN, likely play a key role in the galaxy-AGN co-evolution scenario. They would comprise the early stages of AGN activity, preceding the AGN-feedback/star-formation quenching phase, during which most of both the SMBH and galaxy growth take place. However, the actual CT fraction among the AGN population is still largely unconstrained. The most reliable way of confirming the obscured nature of an AGN by X-ray spectroscopy, but very deep observations are needed to extend local analyses to larger distances. We will present the X-ray spectral analysis of the deepest X-ray data obtained to date, the almost 7Ms observation of the Chandra Deep Field South. The unprecedented depth of this survey allow us to carry out reliable spectral analyses down to a flux limit of 10^{-16} erg cm^{-2} s^{-1} in the hard 2-8 keV band. Besides the new deeper X-ray data, our approach also includes the implementation of Bayesian inference in the determination of the CT fraction. Our results favor X-ray background synthesis models which postulate a moderate fraction (25%) of CT objects among the obscured AGN population.

  12. Radiation damage and annealing in plutonium tetrafluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey

    Plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an off-normal color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, Thermogravimetric/Differential Thermal Analysis and X-ray Diffraction evaluations were conducted to determine the plutonium’s crystal structure, oxide content, and moisture content; these analyses reported that themore » plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. During the initial Thermogravimetric/Differential Thermal analyses, it was discovered that an exothermic event occurred within the material near 414°C. X-ray Diffraction analyses were conducted on the annealed tetrafluoride. The X-ray Diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414°C event. The following commentary describes the series of Thermogravimetric/Differential Thermal and X-ray Diffraction analyses that were conducted as part of this investigation at PNNL, in collaboration with the University of Utah Nuclear Engineering Program.« less

  13. Influence of Trp flipping on carbohydrate binding in lectins. An example on Aleuria aurantia lectin AAL.

    PubMed

    Houser, Josef; Kozmon, Stanislav; Mishra, Deepti; Mishra, Sushil K; Romano, Patrick R; Wimmerová, Michaela; Koča, Jaroslav

    2017-01-01

    Protein-carbohydrate interactions are very often mediated by the stacking CH-π interactions involving the side chains of aromatic amino acids such as tryptophan (Trp), tyrosine (Tyr) or phenylalanine (Phe). Especially suitable for stacking is the Trp residue. Analysis of the PDB database shows Trp stacking for 265 carbohydrate or carbohydrate like ligands in 5 208 Trp containing motives. An appropriate model system to study such an interaction is the AAL lectin family where the stacking interactions play a crucial role and are thought to be a driving force for carbohydrate binding. In this study we present data showing a novel finding in the stacking interaction of the AAL Trp side chain with the carbohydrate. High resolution X-ray structure of the AAL lectin from Aleuria aurantia with α-methyl-l-fucoside ligand shows two possible Trp side chain conformations with the same occupation in electron density. The in silico data shows that the conformation of the Trp side chain does not influence the interaction energy despite the fact that each conformation creates interactions with different carbohydrate CH groups. Moreover, the PDB data search shows that the conformations are almost equally distributed across all Trp-carbohydrate complexes, which would suggest no substantial preference for one conformation over another.

  14. Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2014-03-01

    Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.

  15. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in (Na ,Bi ) Ti O3-x BaTi O3 single crystals near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier

    2017-11-01

    Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.

  16. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in ( Na , Bi ) Ti O 3 - x BaTi O 3 single crystals near the morphotropic phase boundary

    DOE PAGES

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; ...

    2017-11-10

    Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less

  17. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in ( Na , Bi ) Ti O 3 - x BaTi O 3 single crystals near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang

    Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less

  18. Atomic study on the ordered structure in Al melts induced by liquid/substrate interface with Ti solute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H. L.; Han, Y. F., E-mail: yfhan@sjtu.edu.cn, E-mail: bdsun@sjtu.edu.cn; Zhou, W.

    2015-01-26

    Atomic ordering in Al melts induced by liquid/substrate interface with Ti solute was investigated by ab initio molecular dynamics simulations and in-situ synchrotron X-ray diffraction. It is predicted that deformed nanoscale ordering Al layers with a rhombohedral-centered hexagonal structure (R3{sup ¯}m space group) instead of the intrinsic fcc structure (Fm3{sup ¯}m space group) form on substrate at temperature above Al liquids. With Al atoms stacking away from the interface, the ordering structure reaches a critical thickness, which inhibits the consecutive stacking of Al atoms on substrates. The locally stacking reconstruction induced by Ti atom relieves the accumulated elastic strain energymore » in ordered Al layers, facilitating fully heterogeneous nucleation on substrate beyond the deformed ordering Al layer around the melting point. The roles of liquid/substrate interface with Ti solute in the physical behavior of heterogeneous nucleation on substrate were discussed.« less

  19. Combining a multi deposition multi annealing technique with a scavenging (Ti) to improve the high-k/metal gate stack performance for a gate-last process

    NASA Astrophysics Data System (ADS)

    ShuXiang, Zhang; Hong, Yang; Bo, Tang; Zhaoyun, Tang; Yefeng, Xu; Jing, Xu; Jiang, Yan

    2014-10-01

    ALD HfO2 films fabricated by a novel multi deposition multi annealing (MDMA) technique are investigated, we have included samples both with and without a Ti scavenging layer. As compared to the reference gate stack treated by conventional one-time deposition and annealing (D&A), devices receiving MDMA show a significant reduction in leakage current. Meanwhile, EOT growth is effectively controlled by the Ti scavenging layer. This improvement strongly correlates with the cycle number of D&A (while keeping the total annealing time and total dielectrics thickness the same). Transmission electron microscope and energy-dispersive X-ray spectroscopy analysis suggests that oxygen incorporation into both the high-k film and the interfacial layer is likely to be responsible for the improvement of the device. This novel MDMA is promising for the development of gate stack technology in a gate last integration scheme.

  20. Effect of spacer layer thickness on structural and optical properties of multi-stack InAs/GaAsSb quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeongho; Ban, Keun-Yong, E-mail: kban1@asu.edu; Honsberg, Christiana B.

    2015-10-26

    The structural and optical properties of ten-stack InAs/GaAsSb quantum dots (QDs) with different spacer layer thicknesses (d{sub s} = 2, 5, 10, and 15 nm) are reported. X-ray diffraction analysis reveals that the strain relaxation of the GaAsSb spacers increases linearly from 0% to 67% with larger d{sub s} due to higher elastic stress between the spacer and GaAs matrix. In addition, the dislocation density in the spacers with d{sub s} = 10 nm is lowest as a result of reduced residual strain. The photoluminescence peak energy from the QDs does not change monotonically with increasing d{sub s} due to the competing effects of decreased compressivemore » strain and weak electronic coupling of stacked QD layers. The QD structure with d{sub s} = 10 nm is demonstrated to have improved luminescence properties and higher carrier thermal stability.« less

  1. Impacts of Annealing Conditions on the Flat Band Voltage of Alternate La2O3/Al2O3 Multilayer Stack Structures.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2016-12-01

    The mechanism of flat band voltage (VFB) shift for alternate La2O3/Al2O3 multilayer stack structures in different annealing condition is investigated. The samples were prepared for alternate multilayer structures, which were annealed in different conditions. The capacitance-voltage (C-V) measuring results indicate that the VFB of samples shift negatively for thinner bottom Al2O3 layer, increasing annealing temperature or longer annealing duration. Simultaneously, the diffusion of high-k material to interfaces in different multilayer structures and annealing conditions is observed by X-ray photoelectron spectroscopy (XPS). Based on the dipole theory, a correlation between the diffusion effect of La towards bottom Al2O3/Si interface and VFB shift is found. Without changing the dielectric constant k of films, VFB shift can be manipulated by controlling the single-layer cycles and annealing conditions of alternate high-k multilayer stack.

  2. The effect of aluminium on mechanical properties and deformation mechanisms of hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Zakharova, E. G.; Kireeva, I. V.; Chumlyakov, Y. I.; Shul'Mina, A. A.; Sehitoglu, H.; Karaman, I.

    2004-06-01

    On single crystals of Hadfield steel (Fe-13Mn-1.3C, Fe-13Mn-2.7Al-1.3C, wt.%) the systematical investigations of deformation mechanisms - slip and twinning, stages of plastic flow, strain hardening coefficient depending on orientation of tensile axis have been carried out by methods of optical and electron microscopy, x-ray analysis. Is has been shown that the combination of low stacking fault energy (γ{SF}=0.03J/m^2) with high concentration of carbon atoms in aluminium-free steel results in development of the mechanical twinning at room temperature in all crystal orientations. The new type of twinning with formation of extrinsic stacking fault has been found out in [001] single crystals. Experimentally it has been established that alloying with aluminium leads to increase of stacking fault energy of Hadfield steel and suppresses twinning in all orientations of crystals at preservation of high values of strain-hardening coefficients θ.

  3. Slumping technique for the manufacturing of a representative x-ray grazing incidence mirror module for future space missions

    NASA Astrophysics Data System (ADS)

    Ghigo, Mauro; Proserpio, Laura; Basso, Stefano; Citterio, Oberto; Civitani, Marta M.; Pareschi, Giovanni; Salmaso, Bianca; Sironi, Giorgia; Spiga, Daniele; Tagliaferri, Giampiero; Vecchi, Gabriele; Zambra, Alberto; Parodi, Giancarlo; Martelli, Francesco; Gallieni, Daniele; Tintori, Matteo; Bavdaz, Marcos; Wille, Eric; Ferrario, Ivan; Burwitz, Vadim

    2013-09-01

    The Astronomical Observatory of Brera (INAF-OAB, Italy), with the financing support of the European Space Agency (ESA), has concluded a study regarding a glass shaping technology for the production of grazing incidence segmented x-ray optics. This technique uses a hot slumping phase, in which pressure is actively applied on thin glass foils being shaped, to form a cylindrical approximation of Wolter I x-ray segments, and a subsequent cold slumping phase, in which the final Wolter I profile is then freeze into the glass segments during their integration in elemental X-ray Optical Units. The final goal of this study was the manufacturing of a prototype containing a number of slumped pair plates (meaning parabola and hyperbola couples) having representative dimensions to be tested both in UV light and in x-rays at the Panter facility (Germany). In this paper, the INAF-OAB slumping technique, comprising a shaping step and an integration step is described, together with the results obtained on the manufactured prototype modules: the first prototype was aimed to test the ad-hoc designed and built semi-automatic Integration MAchine (IMA) and debug its control software. The most complete module comprises 40 slumped segments of Schott D263 glass type of dimension 200 mm x 200 mm and thickness of 0.4 mm, slumped on Zerodur K20 mould and stacked together through glued BK7 glass structural ribs to form the first entire x-ray optical module ever built totally composed by glass. A last prototype was aimed at demonstrate the use of Schott glass AF32 type instead of D263. In particular, a new hot slumping experimental set-up is described whose advantage is to permit a better contact between mould and glass during the shaping process. The integration procedure of the slumped segments into the elemental module is also reviewed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Abhinandan; Jana, Swapan Kumar; Datta, Sayanti

    The synthesis of two new lead(II) coordination polymers, [Pb{sub 2}(mpic){sub 4}(H{sub 2}O)]·0.5H{sub 2}O (1) and [Pb{sub 2}(phen){sub 2}(cit)(mes)]·2H{sub 2}O (2) has been reported, where mpic=3-methyl picolinate, phen=o-phenanthroline, H{sub 2}cit=citraconic acid, H{sub 2}mes mesaconic acid. X-ray single crystal diffraction analyses showed that the complexes comprise topologically different 1D polymeric chains stabilized by weak interactions and both containing tetranuclear Pb{sub 4} units connected by carboxylate groups. In compound 1 3-methylpicolinic acid is formed in situ from 3-methyl piconitrile, and mesaconate and citraconate anions were surprisingly formed from itaconic acid during the synthesis of 2. The photoluminescence and thermal properties of the complexesmore » have been studied. - Graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by X-ray analysis. The luminescence and thermal properties have been studied. Display Omitted - Highlights: • Both the complexes, made up of different ligands, forms topologycally different 1D polymeric chains containing Pb{sub 4} clusters. • The final structures are stabilized by weak interactions (H-bond, π∙∙∙π stacking). • In complex 1, the 3-methylpicolinic acid is generated in situ from 3-methyl piconitrile. • Mesaconate and citraconate anions are surprisingly formed in situ from itaconic acid during the synthesis of complex 2, indicating an exceptional transformation.« less

  5. Quantitative X-ray diffraction and fluorescence analysis of paint pigment systems : final report.

    DOT National Transportation Integrated Search

    1978-01-01

    This study attempted to correlate measured X-ray intensities with concentrations of each member of paint pigment systems, thereby establishing calibration curves for the quantitative analyses of such systems.

  6. The structure of ice crystallized from supercooled water

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin

    2013-03-01

    The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. Traditionally ice was thought to exist in two well-crystalline forms: stable hexagonal ice and metastable cubic ice. It has recently been shown, using X-ray diffraction data, that ice which crystallizes homogeneously and heterogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd) . This result is consistent with a number of computational studies of the crystallization of water. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder, which raises the question of whether cubic ice exists. New data will be presented which shows significant stacking disorder (or stacking faults on the order of 1 in every 100 layers of ice Ih) in droplets which froze heterogeneously as warm as 257 K. The identification of stacking-disordered ice from heterogeneous ice nucleation supports the hypothesis that the structure of ice that initially crystallises from supercooled water is stacking-disordered ice I, independent of nucleation mechanism, but this ice can relax to the stable hexagonal phase subject to the kinetics of recrystallization. The formation and persistence of stacking disordered ice in the Earth's atmosphere will also be discussed. Funded by the European Research Council (FP7, 240449 ICE)

  7. Effect of atomic-arrangement matching on La{sub 2}O{sub 3}/Ge heterostructures for epitaxial high-k-gate-stacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanashima, T., E-mail: kanashima@ee.es.osaka-u.ac.jp; Zenitaka, M.; Kajihara, Y.

    2015-12-14

    We demonstrate a high-quality La{sub 2}O{sub 3} layer on germanium (Ge) as an epitaxial high-k-gate-insulator, where there is an atomic-arrangement matching condition between La{sub 2}O{sub 3}(001) and Ge(111). Structural analyses reveal that (001)-oriented La{sub 2}O{sub 3} layers were grown epitaxially only when we used Ge(111) despite low growth temperatures less than 300 °C. The permittivity (k) of the La{sub 2}O{sub 3} layer is roughly estimated to be ∼19 from capacitance-voltage (C-V) analyses in Au/La{sub 2}O{sub 3}/Ge structures after post-metallization-annealing treatments, although the C-V curve indicates the presence of carrier traps near the interface. By using X-ray photoelectron spectroscopy analyses, we findmore » that only Ge–O–La bonds are formed at the interface, and the thickness of the equivalent interfacial Ge oxide layer is much smaller than that of GeO{sub 2} monolayer. We discuss a model of the interfacial structure between La{sub 2}O{sub 3} and Ge(111) and comment on the C-V characteristics.« less

  8. Airborne gamma-ray spectrometer and magnetometer survey: Durango Quadrangle (Colorado). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    Results from the airborne gamma-ray spectrometer and magnetometer survey of Durango Quadrangle in Colorado are presented in the form of radiometric multiple-parameter stacked profiles, histograms, flight path map, and magnetic and ancillary stacked profile data.

  9. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x10 20 cm -2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based onmore » the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  10. A study on the effect of surface topography on the actuation performance of stacked-rolled dielectric electro active polymer actuator

    NASA Astrophysics Data System (ADS)

    Sait, Usha; Muthuswamy, Sreekumar

    2016-05-01

    Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.

  11. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  12. Publications - GMC 58 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    DGGS GMC 58 Publication Details Title: X-ray diffraction and scanning electron microscopy mineral , Michael, and Core Laboratories, 1985, X-ray diffraction and scanning electron microscopy mineral analyses

  13. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Fischer, Peter; ...

    2015-07-03

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  14. Retrieving spin textures on curved magnetic thin films with full-field soft X-ray microscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Fischer, Peter

    X-ray tomography is a well-established technique to characterize 3D structures in material sciences and biology; its magnetic analogue—magnetic X-ray tomography—is yet to be developed. We demonstrate the visualization and reconstruction of magnetic domain structures in a 3D curved magnetic thin films with tubular shape by means of full-field soft X-ray microscopies. In the 3D arrangement of the magnetization is retrieved from a set of 2D projections by analysing the evolution of the magnetic contrast with varying projection angle. By using reconstruction algorithms to analyse the angular evolution of 2D projections provides quantitative information about domain patterns and magnetic coupling phenomenamore » between windings of azimuthally and radially magnetized tubular objects. In conclusion, the present approach represents a first milestone towards visualizing magnetization textures of 3D curved thin films with virtually arbitrary shape.« less

  15. Singlet Fission and Excimer Formation in Disordered Solids of Alkyl-Substituted 1,3-Diphenylisobenzofurans

    DOE PAGES

    Dron, Paul I.; Michl, Josef; Johnson, Justin C.

    2017-10-16

    Here, we describe the preparation and excited state dynamics of three alkyl derivatives of 1,3-diphenylisobenzofuran (1) in both solutions and thin films. The substitutions are intended to disrupt the slip-stacked packing observed in crystals of 1 while maintaining the favorable energies of singlet and triplet for singlet fission (SF). All substitutions result in films that are largely amorphous as judged by the absence of strong X-ray diffraction peaks.

  16. Au-free ohmic Ti/Al/TiN contacts to UID n-GaN fabricated by sputter deposition

    NASA Astrophysics Data System (ADS)

    Garbe, V.; Weise, J.; Motylenko, M.; Münchgesang, W.; Schmid, A.; Rafaja, D.; Abendroth, B.; Meyer, D. C.

    2017-02-01

    The fabrication and characterization of an Au-free Ti/Al/TiN (20/100/100 nm) contact stack to unintentionally doped n-GaN with TiN serving as the diffusion barrier is presented. Sputter deposition and lift-off in combination with post deposition annealing at 850 °C are used for contact formation. After annealing, contact shows ohmic behavior to n-GaN and a specific contact resistivity of 1.60 × 10-3 Ω cm2. To understand the contact formation on the microscopic scale, the contact was characterized by current-voltage measurements, linear transmission line method, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show the formation of Ti-N bonds at the GaN/Ti interface in the as-deposited stack. Annealing leads to diffusion of Ti, Al, Ga, and N, and the remaining metallic Ti is fully consumed by the formation of the intermetallic tetragonal Al3Ti phase. Native oxide from the GaN surface is trapped during annealing and accumulated in the Al interlayer. The TiN capping layer, however, was chemically stable during annealing. It prevented oxidation of the Ti/Al contact bilayer successfully and thus proved to be a well suitable diffusion barrier with ideal compatibility to the Ti/Al contact metallization.

  17. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test

    PubMed Central

    Song, Wenwen; Bleck, Wolfgang

    2017-01-01

    The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692

  18. Investigation of the Microstructure Evolution in a Fe-17Mn-1.5Al-0.3C Steel via In Situ Synchrotron X-ray Diffraction during a Tensile Test.

    PubMed

    Ma, Yan; Song, Wenwen; Bleck, Wolfgang

    2017-09-25

    The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.

  19. Biluminescence via Fluorescence and Persistent Phosphorescence in Amorphous Organic Donor(D4)-Acceptor(A) Conjugates, and Application in Data Security Protection.

    PubMed

    Bhatia, Harsh; Bhattacharjee, Indranil; Ray, Debdas

    2018-06-25

    Purely organic biluminescent materials are of great interest due to the involvement of both singlet and long-lived triplet emissions, which have been used in bio-imaging and organic light-emitting diodes. We show two molecules 3,4,5,6-tetraphenyloxy-phthlonitrile (POP) and 3,4,5,6-tetrakis-p-tolyloxy-phthalonitrile (TOP), in which POP was found to exhibit fluorescence and persistent room-temperature green phosphorescence (pRTGP) in the amorphous and crystal states. Both POP and TOP show aggregation induced emission in tetrahydrofuran-water mixture. We found in single crystal X-ray analysis that intra-and inter molecular lp(O)•••π interactions along with (π(C=C)•••π(C≡N), hydrogen bond (H-B), and C-H•••π interactions induce head-to-tail slipped-stacked arrangement in POP. In addition, X-ray structure of TOP with slipped-stack arrangement induced by only (π(C=C)•••π(C≡N) and H-B interactions, shows dim afterglow only in crystals. These indicate that more number of non-covalent interactions may reinforce relatively efficient inter system crossing that leads to pRTGP even in the amorphous state of POP. Given the unique green afterglow feature in amorphous state of POP, document security protection application is achievable.

  20. Evidence of a reduction reaction of oxidized iron/cobalt by boron atoms diffused toward naturally oxidized surface of CoFeB layer during annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Soshi, E-mail: sato.soshi@cies.tohoku.ac.jp; Honjo, Hiroaki; Niwa, Masaaki

    2015-04-06

    We have investigated the redox reaction on the surface of Ta/CoFeB/MgO/CoFeB magnetic tunnel junction stack samples after annealing at 300, 350, and 400 °C for 1 h using angle-resolved X-ray photoelectron spectroscopy for precise analysis of the chemical bonding states. At a capping tantalum layer thickness of 1 nm, both the capping tantalum layer and the surface of the underneath CoFeB layer in the as-deposited stack sample were naturally oxidized. By comparison of the Co 2p and Fe 2p spectra among the as-deposited and annealed samples, reduction of the naturally oxidized cobalt and iron atoms occurred on the surface of the CoFeB layer.more » The reduction reaction was more significant at higher annealing temperature. Oxidized cobalt and iron were reduced by boron atoms that diffused toward the surface of the top CoFeB layer. A single CoFeB layer was prepared on SiO{sub 2}, and a confirmatory evidence of the redox reaction with boron diffusion was obtained by angle-resolved X-ray photoelectron spectroscopy analysis of the naturally oxidized surface of the CoFeB single layer after annealing. The redox reaction is theoretically reasonable based on the Ellingham diagram.« less

  1. Al{sub 2}O{sub 3}/GeO{sub x} gate stack on germanium substrate fabricated by in situ cycling ozone oxidation method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xu; Zeng, Zhen-Hua; Microwave Device and IC Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029

    2014-09-01

    Al{sub 2}O{sub 3}/GeO{sub x}/Ge gate stack fabricated by an in situ cycling ozone oxidation (COO) method in the atomic layer deposition (ALD) system at low temperature is systematically investigated. Excellent electrical characteristics such as minimum interface trap density as low as 1.9 × 10{sup 11 }cm{sup −2 }eV{sup −1} have been obtained by COO treatment. The impact of COO treatment against the band alignment of Al{sub 2}O{sub 3} with respect to Ge is studied by x-ray photoelectron spectroscopy (XPS) and spectroscopic ellipsometry (SE). Based on both XPS and SE studies, the origin of gate leakage in the ALD-Al{sub 2}O{sub 3} is attributed to themore » sub-gap states, which may be correlated to the OH-related groups in Al{sub 2}O{sub 3} network. It is demonstrated that the COO method is effective in repairing the OH-related defects in high-k dielectrics as well as forming superior high-k/Ge interface for high performance Ge MOS devices.« less

  2. Randomly Detected Genetically Modified (GM) Maize (Zea mays L.) near a Transport Route Revealed a Fragile 45S rDNA Phenotype

    PubMed Central

    Waminal, Nomar Espinosa; Ryu, Ki Hyun; Choi, Sun-Hee; Kim, Hyun Hee

    2013-01-01

    Monitoring of genetically modified (GM) crops has been emphasized to prevent their potential effects on the environment and human health. Monitoring of the inadvertent dispersal of transgenic maize in several fields and transport routes in Korea was carried out by qualitative multiplex PCR, and molecular analyses were conducted to identify the events of the collected GM maize. Cytogenetic investigations through fluorescence in situ hybridization (FISH) of the GM maize were performed to check for possible changes in the 45S rDNA cluster because this cluster was reported to be sensitive to replication and transcription stress. Three GM maize kernels were collected from a transport route near Incheon port, Korea, and each was found to contain NK603, stacked MON863 x NK603, and stacked NK603 x MON810 inserts, respectively. Cytogenetic analysis of the GM maize containing the stacked NK603 x MON810 insert revealed two normal compact 5S rDNA signals, but the 45S rDNA showed a fragile phenotype, demonstrating a “beads-on-a-string” fragmentation pattern, which seems to be a consequence of genetic modification. Implications of the 45S rDNA cluster fragility in GM maize are also discussed. PMID:24040165

  3. Chalcogen analogues of nicotine lactam studied by NMR, FTIR, DFT and X-ray methods

    NASA Astrophysics Data System (ADS)

    Jasiewicz, Beata; Malczewska-Jaskóła, Karolina; Kowalczyk, Iwona; Warżajtis, Beata; Rychlewska, Urszula

    2014-07-01

    The selenoanalogue of nicotine has been synthesized and characterized by spectroscopic and X-ray diffraction methods. The crystals of selenonicotine are isomorphic with the thionicotine homologue and consist of molecules engaged in columnar π⋯π stacking interactions between antiparallely arranged pyridine moieties. These interactions, absent in other crystals containing nicotine fragments, seem to be induced by the presence of a lactam group. The molecular structures in the vacuum of the oxo-, thio- and selenonicotine homologues have been calculated by the DFT method and compared with the available X-ray data. The delocalized structure of thionicotine is stabilized by intramolecular Csbnd H⋯S hydrogen bond, which becomes weaker in the partial zwitterionic resonance structure of selenonicotine in favor of multiple Csbnd H⋯Se intermolecular hydrogen-bonds. The calculated data allow a complete assignment of vibration modes in the solid state FTIR spectra. The 1H and 13C NMR chemical shifts were calculated by the GIAO method with B3LYP/6-311G(3df) level. A comparison between experimental and calculated theoretical results indicates that the density functional B3LYP method provided satisfactory results for predicting FTIR, 1H, 13C NMR spectra properties.

  4. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 revealmore » a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.« less

  5. X-ray phase contrast imaging at MAMI

    NASA Astrophysics Data System (ADS)

    El-Ghazaly, M.; Backe, H.; Lauth, W.; Kube, G.; Kunz, P.; Sharafutdinov, A.; Weber, T.

    2006-05-01

    Experiments have been performed to explore the potential of the low emittance 855MeV electron beam of the Mainz Microtron MAMI for imaging with coherent X-rays. Transition radiation from a micro-focused electron beam traversing a foil stack served as X-ray source with good transverse coherence. Refraction contrast radiographs of low absorbing materials, in particular polymer strings with diameters between 30 and 450μm, were taken with a polychromatic transition radiation X-ray source with a spectral distribution in the energy range between 8 and about 40keV. The electron beam spot size had standard deviation σh = (8.6±0.1)μm in the horizontal and σv = (7.5±0.1)μm in the vertical direction. X-ray films were used as detectors. The source-to-detector distance amounted to 11.4m. The objects were placed in a distance of up to 6m from the X-ray film. Holograms of strings were taken with a beam spot size σv = (0.50±0.05)μm in vertical direction, and a monochromatic X-ray beam of 6keV energy. A good longitudinal coherence has been obtained by the (111) reflection of a flat silicon single crystal in Bragg geometry. It has been demonstrated that a direct exposure CCD chip with a pixel size of 13×13μm^2 provides a highly efficient on-line detector. Contrast images can easily be generated with a complete elimination of all parasitic background. The on-line capability allows a minimization of the beam spot size by observing the smallest visible interference fringe spacings or the number of visible fringes. It has been demonstrated that X-ray films are also very useful detectors. The main advantage in comparison with the direct exposure CCD chip is the resolution. For the Structurix D3 (Agfa) X-ray film the standard deviation of the resolution was measured to be σf = (1.2±0.4)μm, which is about a factor of 6 better than for the direct exposure CCD chip. With the small effective X-ray spot size in vertical direction of σv = (1.2±0.3)μm and a geometrical magnification of up to 7.4 high-quality holograms of tiny transparent strings were taken in which the holographic information is contained in up to 18 interference fringes.

  6. Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)

    DTIC Science & Technology

    2012-05-14

    on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m

  7. Phase stability tuning in the NbxZr1-xN thin-film system for large stacking fault density and enhanced mechanical strength

    NASA Astrophysics Data System (ADS)

    Joelsson, T.; Hultman, L.; Hugosson, H. W.; Molina-Aldareguia, J. M.

    2005-03-01

    The phase stability of hexagonal WC-structure and cubic NaCl-structure 4d transition metal nitrides was calculated using first-principles density functional theory. It is predicted that there is a multiphase or polytypic region for the 4d transition metal nitrides with a valence electron concentration around 9.5 to 9.7 per formula unit. For verification, epitaxial NbxZr1-xN (0⩽x⩽1) was grown by reactive magnetron sputter deposition on MgO(001) substrates and analyzed with transmission electron microscopy (TEM) and x-ray diffraction. The defects observed in the films were threading dislocations due to nucleation and growth on the lattice-mismatched substrate and planar defects (stacking faults) parallel to the substrate surface. The highest defect density was found at the x =0.5 composition. The nanoindentation hardness of the films varied between 21GPa for the binary nitrides, and 26GPa for Nb0.5Zr0.5N. Unlike the cubic binary nitrides, no slip on the preferred ⟨11¯0⟩{110} slip system was observed. The increase in hardness is attributed to the increase in defect density at x =0.5, as the defects act as obstacles for dislocation glide during deformation. The findings present routes for the design of wear-resistant nitride coatings by phase stability tuning.

  8. Identification of differentially expressed genes associated with the enhancement of X-ray susceptibility by RITA in a hypopharyngeal squamous cell carcinoma cell line (FaDu).

    PubMed

    Luan, Jinwei; Li, Xianglan; Guo, Rutao; Liu, Shanshan; Luo, Hongyu; You, Qingshan

    2016-06-01

    Next generation sequencing and bio-informatic analyses were conducted to investigate the mechanism of reactivation of p53 and induction of tumor cell apoptosis (RITA)-enhancing X-ray susceptibility in FaDu cells. The cDNA was isolated from FaDu cells treated with 0 X-ray, 8 Gy X-ray, or 8 Gy X-ray + RITA. Then, cDNA libraries were created and sequenced using next generation sequencing, and each assay was repeated twice. Subsequently, differentially expressed genes (DEGs) were identified using Cuffdiff in Cufflinks and their functions were predicted by pathway enrichment analyses. Genes that were constantly up- or down-regulated in 8 Gy X-ray-treated FaDu cells and 8 Gy X-ray + RITA-treated FaDu cells were obtained as RITA genes. Afterward, the protein-protein interaction (PPI) relationships were obtained from the STRING database and a PPI network was constructed using Cytoscape. Furthermore, ClueGO was used for pathway enrichment analysis of genes in the PPI network. Total 2,040 and 297 DEGs were identified in FaDu cells treated with 8 Gy X-ray or 8 Gy X-ray + RITA, respectively. PARP3 and NEIL1 were enriched in base excision repair, and CDK1 was enriched in p53 signaling pathway. RFC2 and EZH2 were identified as RITA genes. In the PPI network, many interaction relationships were identified (e.g., RFC2-CDK1, EZH2-CDK1 and PARP3-EZH2). ClueGO analysis showed that RFC2 and EZH2 were related to cell cycle. RFC2, EZH2, CDK1, PARP3 and NEIL1 may be associated, and together enhance the susceptibility of FaDu cells treated with RITA to the deleterious effects of X-ray.

  9. Alignment and Distortion-Free Integration of Lightweight Mirrors into Meta-Shells for High-Resolution Astronomical X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Schofield, Mark J.; Numata, Ai; Mazzarella, James R.; Saha, Timo T.; Biskach, Michael P.; McCelland, Ryan S.; Niemeyer, Jason; Sharpe, Marton V.; hide

    2016-01-01

    High-resolution, high throughput optics for x-ray astronomy requires fabrication of well-formed mirror segments and their integration with arc-second level precision. Recently, advances of fabrication of silicon mirrors developed at NASA/Goddard prompted us to develop a new method of mirror integration. The new integration scheme takes advantage of the stiffer, more thermally conductive, and lower-CTE silicon, compared to glass, to build a telescope of much lighter weight. In this paper, we address issues of aligning and bonding mirrors with this method. In this preliminary work, we demonstrated the basic viability of such scheme. Using glass mirrors, we demonstrated that alignment error of 1" and bonding error 2" can be achieved for mirrors in a single shell. We will address the immediate plan to demonstrate the bonding reliability and to develop technology to build up a mirror stack and a whole "meta-shell".

  10. The weak lensing analysis of the CFHTLS and NGVS RedGOLD galaxy clusters

    NASA Astrophysics Data System (ADS)

    Parroni, C.; Mei, S.; Erben, T.; Van Waerbeke, L.; Raichoor, A.; Ford, J.; Licitra, R.; Meneghetti, M.; Hildebrandt, H.; Miller, L.; Côté, P.; Covone, G.; Cuillandre, J.-C.; Duc, P.-A.; Ferrarese, L.; Gwyn, S. D. J.; Puzia, T. H.

    2017-12-01

    An accurate estimation of galaxy cluster masses is essential for their use in cosmological and astrophysical studies. We studied the accuracy of the optical richness obtained by our RedGOLD cluster detection algorithm tep{licitra2016a, licitra2016b} as a mass proxy, using weak lensing and X-ray mass measurements. We measured stacked weak lensing cluster masses for a sample of 1323 galaxy clusters in the Canada-France-Hawaii Telescope Legacy Survey W1 and the Next Generation Virgo Cluster Survey at 0.2

  11. A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents

    PubMed Central

    Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.

    2014-01-01

    Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422

  12. Microstructural changes in CdSe-coated ZnO nanowires evaluated by in situ annealing in transmission electron microscopy and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Majidi, Hasti; Winkler, Christopher R.; Taheri, Mitra L.; Baxter, Jason B.

    2012-07-01

    We report on the crystallite growth and phase change of electrodeposited CdSe coatings on ZnO nanowires during annealing. Both in situ transmission electron microscopy (TEM) and x-ray diffraction (XRD) reveal that the nanocrystal size increases from ˜3 to ˜10 nm upon annealing at 350 °C for 1 h and then to more than 30 nm during another 1 h at 400 °C, exhibiting two distinct growth regimes. Nanocrystal growth occurs together with a structural change from zinc blende to wurtzite. The structural transition begins at 350 °C, which results in the formation of stacking faults. Increased crystallite size, comparable to the coating thickness, can improve charge separation in extremely thin absorber solar cells. We demonstrate a nearly two-fold improvement in power conversion efficiency upon annealing.

  13. Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.

    PubMed

    Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin

    2012-12-14

    GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.

  14. Model based LV-reconstruction in bi-plane x-ray angiography

    NASA Astrophysics Data System (ADS)

    Backfrieder, Werner; Carpella, Martin; Swoboda, Roland; Steinwender, Clemens; Gabriel, Christian; Leisch, Franz

    2005-04-01

    Interventional x-ray angiography is state of the art in diagnosis and therapy of severe diseases of the cardiovascular system. Diagnosis is based on contrast enhanced dynamic projection images of the left ventricle. A new model based algorithm for three dimensional reconstruction of the left ventricle from bi-planar angiograms was developed. Parametric super ellipses are deformed until their projection profiles optimally fit measured ventricular projections. Deformation is controlled by a simplex optimization procedure. A resulting optimized parameter set builds the initial guess for neighboring slices. A three dimensional surface model of the ventricle is built from stacked contours. The accuracy of the algorithm has been tested with mathematical phantom data and clinical data. Results show conformance with provided projection data and high convergence speed makes the algorithm useful for clinical application. Fully three dimensional reconstruction of the left ventricle has a high potential for improvements of clinical findings in interventional cardiology.

  15. Synthesis, crystal structure and electronic structure of the binary phase Rh2Cd5

    NASA Astrophysics Data System (ADS)

    Koley, Biplab; Chatterjee, S.; Jana, Partha P.

    2017-02-01

    A new phase in the Rh-Cd binary system - Rh2Cd5 has been identified and characterized by single crystal X-ray diffraction and Energy dispersive X-ray analysis. The stoichiometric compound Rh2Cd5 crystallizes with a unit cell containing 14 atoms, in the orthorhombic space group Pbam (55). The crystal structure of Rh2Cd5 can be described as a defect form of the In3Pd5 structure with ordered vacancies, formed of two 2D atomic layers with the stacking sequence: ABAB. The A type layers consist of (3.6.3.6)-Kagomé nets of Cd atoms while the B type layers consist of (35) (37)- nets of both Cd and Rh atoms. The stability of this line phase is investigated by first principle electronic structure calculations on the model of ordered Rh2Cd5.

  16. Effect of high-pressure H{sub 2}O treatment on elimination of interfacial GeO{sub X} layer between ZrO{sub 2} and Ge stack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Chen-Shuo; Liu, Po-Tsun

    2011-08-22

    This investigation demonstrates the effect of high-pressure H{sub 2}O treatment on the elimination of the interfacial germanium suboxide (GeO{sub X}) layer between ZrO{sub 2} and Ge. The formation of GeO{sub X} interlayer increases the gate-leakage current and worsen the controllability of the gate during deposition or thermal cycles. X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy reveal that high-pressure H{sub 2}O treatment eliminates the interfacial GeO{sub X} layer. The physical mechanism involves the oxidation of non-oxidized Zr with H{sub 2}O and the reduction of GeO{sub X} by H{sub 2}. Treatment with H{sub 2}O reduces the gate-leakage current of a ZrO{submore » 2}/Ge capacitor by a factor of 1000.« less

  17. X-ray astrophysics: Constraining thermal conductivity in intracluster gas in clusters of galaxies and placing limits on progenitor systems of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Russell, Brock Richard

    X-ray astrophysics provides a great many opportunities to study astronomical structures with large energies or high temperatures. This dissertation will describe two such applications: the use of Swift X-ray Telescope (XRT) data to analyze the interaction between a supernova shock and the circumstellar medium, and the use of a straightforward computer simulation to model the dynamics of intracluster gas in clusters of galaxies and constrain the thermal conduction coefficient. Stars emit stellar wind at varying rates throughout their lifetimes. This wind populates the circumstellar medium (CSM) with gas. When the supernova explodes, the shock wave propogates outward through this CSM and heats it to X-ray emitting temperatures. By analyzing X-ray observations of the immediate post-supernova environment, we are able to determine whether any significant CSM is present. By stacking a large number of Swift observations of SNe Ia, we increase the sensitivity. We find no X-rays, with an upper limit of 1.7 x 1038 erg s-1 and a 3 sigma upper limit on the mass loss rate of progenitor systems 1.1 x 10-6 solar masses per year x (vw)/(10 km s -1). This low upper limit precludes a massive progenitor as the binary companion in the supernova progenitor system, unless that star is in Roche lobe overflow. The hot Intracluster Medium (ICM) is composed of tenuous gas which is gravitationally-bound to the cluster of galaxies. This gas is not initially of uniform temperature, and experiences thermal conduction while maintaining hydrostatic equilibrium. However, magnetic field lines present in the ionized gas inhibit the full thermal conduction. In this dissertation, we present the results of a new one-dimensional simulation that models this conduction (and includes cooling while maintaining hydrostatic equilibrium). By comparing the results of this model with the observed gas temperature profiles and recent accurate constraints on the scatter of the gas fraction, we are able to constrain the thermal conductivity. Our results suggest that conduction factors are not higher than 10% of full Spitzer conduction for hot, relaxed clusters.

  18. Anatomy of the AGN in NGC 5548. VII. Swift study of obscuration and broadband continuum variability

    NASA Astrophysics Data System (ADS)

    Mehdipour, M.; Kaastra, J. S.; Kriss, G. A.; Cappi, M.; Petrucci, P.-O.; De Marco, B.; Ponti, G.; Steenbrugge, K. C.; Behar, E.; Bianchi, S.; Branduardi-Raymont, G.; Costantini, E.; Ebrero, J.; Di Gesu, L.; Matt, G.; Paltani, S.; Peterson, B. M.; Ursini, F.; Whewell, M.

    2016-04-01

    We present our investigation into the long-term variability of the X-ray obscuration and optical-UV-X-ray continuum in the Seyfert 1 galaxy NGC 5548. In 2013 and 2014, the Swift observatory monitored NGC 5548 on average every day or two, with archival observations reaching back to 2005, totalling about 670 ks of observing time. Both broadband spectral modelling and temporal rms variability analysis are applied to the Swift data. We disentangle the variability caused by absorption, due to an obscuring weakly-ionised outflow near the disk, from variability of the intrinsic continuum components (the soft X-ray excess and the power law) originating in the disk and its associated coronae. The spectral model that we apply to this extensive Swift data is the global model that we derived for NGC 5548 from analysis of the stacked spectra from our multi-satellite campaign of 2013 (including XMM-Newton, NuSTAR, and HST). The results of our Swift study show that changes in the covering fraction of the obscurer is the primary and dominant cause of variability in the soft X-ray band on timescales of 10 days to ~5 months. The obscuring covering fraction of the X-ray source is found to range between 0.7 and nearly 1.0. The contribution of the soft excess component to the X-ray variability is often much less than that of the obscurer, but it becomes comparable when the optical-UV continuum flares up. We find that the soft excess is consistent with being the high-energy tail of the optical-UV continuum and can be explained by warm Comptonisation: up-scattering of the disk seed photons in a warm, optically thick corona as part of the inner disk. To this date, the Swift monitoring of NGC 5548 shows that the obscurer has been continuously present in our line of sight for at least 4 years (since at least February 2012).

  19. Partially coherent wavefront propagation simulations: Mirror and monochromator crystal quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegart, L., E-mail: lwiegart@bnl.gov; Fluerasu, A.; Chubar, O.

    2016-07-27

    We have applied fully-and partially-coherent synchrotron radiation wavefront propagation simulations, implemented in the “Synchrotron Radiation Workshop” (SRW) computer code, to analyse the effects of imperfect mirrors and monochromator at the Coherent Hard X-ray beamline. This beamline is designed for X-ray Photon Correlation Spectroscopy, a technique that heavily relies on the partial coherence of the X-ray beam and benefits from a careful preservation of the X-ray wavefront. We present simulations and a comparison with the measured beam profile at the sample position, which show the impact of imperfect optics on the wavefront.

  20. X-ray aspects of the DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Durret, F.; Lima Neto, G. B.; Adami, C.

    2012-12-01

    We have undertaken the DAFT/FADA survey with the aim of applying constraints on dark energy based on weak lensing tomography as well as obtaining homogeneous and high quality data for a sample of 91 massive clusters in the redshift range [0.4,0.9] for which there are HST archive data. We have analysed the XMM-Newton data available for 42 of these clusters to derive their X-ray temperatures and luminosities and search for substructures. This study was coupled with a dynamical analysis for the 26 clusters having at least 30 spectroscopic galaxy redshifts in the cluster range. We present preliminary results on the coupled X-ray and dynamical analyses of these clusters.

  1. Radiation damage and annealing in plutonium tetrafluoride

    DOE PAGES

    McCoy, Kaylyn; Casella, Amanda; Sinkov, Sergey; ...

    2017-08-03

    A sample of plutonium tetrafluoride that was separated prior to 1966 at the Hanford Site in Washington State was analyzed at the Pacific Northwest National Laboratory (PNNL) in 2015 and 2016. The plutonium tetrafluoride, as received, was an unusual color and considering the age of the plutonium, there were questions about the condition of the material. These questions had to be answered in order to determine the suitability of the material for future use or long-term storage. Therefore, thermogravimetric/differential thermal analysis and X-ray diffraction evaluations were conducted to determine the plutonium's crystal structure, oxide content, and moisture content; these analysesmore » reported that the plutonium was predominately amorphous and tetrafluoride, with an oxide content near ten percent. Freshly fluorinated plutonium tetrafluoride is known to be monoclinic. And during the initial thermogravimetric/differential thermal analyses, it was discovered that an exothermic event occurred within the material near 414 °C. X-ray diffraction analyses were conducted on the annealed tetrafluoride. The X-ray diffraction analyses indicated that some degree of recrystallization occurred in conjunction with the 414 °C event. This commentary describes the series of thermogravimetric/differential thermal and X-ray diffraction analyses that were conducted as part of this investigation at PNNL.« less

  2. Testing spatial uniformity of the CR spectrum in the local ISM with γ-ray observations

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Colafrancesco, S.

    2018-05-01

    Gamma-ray observations of nearby radio-line-emitting gas structures in the interstellar medium allow us to probe the spectrum of cosmic rays (CRs). In this paper, we analysed Fermi Large Area Telescope (LAT) γ-ray observations of three such structures located near each other to check if their CR spectra are compatible with that of the CR background or might provide evidence for a population of "fresh" CRs. We found that the shape of the γ-ray spectrum in the Aquarius HI shell is consistent with the previously published stacked γ-ray spectrum of the Gould Belt molecular clouds. We also found that assumptions on the diffuse Galactic γ-ray background affect the spectral shapes of CRs derived in the R Coronae Australis and ρ Ophiuchi molecular clouds in which spectral deviations had previously been suggested. These two facts provide evidence to support the hypothesis of uniformity of the shapes of cosmic ray spectra in the local Galaxy environment.

  3. Volumetric and x-ray investigations of the crystalline and columnar phases of copper (II) soaps under pressure

    NASA Astrophysics Data System (ADS)

    Ibn-Elhaj, M.; Guillon, D.; Skoulios, A.

    1992-12-01

    Binuclear copper (II) carboxylates, Cu2(CnH2n+1O2)4, crystallize at room temperature in layered systems in which planes of polar cores are separated by a double layer of alkyl chains. These compounds are mesomorphic in nature above ca. 100 °C. Pseudopolymeric chains of regularly stacked binuclear cores are located at the nodes of a two-dimensional hexagonal lattice and are surrounded by disordered aliphatic chains. The transition from the crystal to the columnar mesophase is characterized by a change in the repeat distance of the binuclear cores along the pseudopolymeric axis. In the crystalline phase, these cores are all oriented in the same direction with a repeat distance of 5.2 Å in the columnar mesophase, the polar cores are perpendicular to the columnar axis and superposed in a fourfold helicoidal fashion, at least on a local scale, with a repeat distance of 4.7 Å. We present here the effect of pressure on these anisotropic systems in a direction parallel to the columnar axis, and in the plane of the two-dimensional lattice. In a first part, we report the pressure-volume-temperature (P-V-T) relationship of these compounds (n=12, 18, and 24) in the temperature range from 30 to 200 °C, and in the pressure range from 1 to 2000 bars. Isothermal compressibility and isobaric expansion are determined in the crystalline and mesomorphic phases. In the mesophase, pressure-volume isotherms can be described by the Tait equation, as in most liquids or molten polymers. In a second part, we discuss the x-ray-diffraction experiments performed under pressure. In the mesophase, the area of the two-dimensional lattice decreases with increasing pressure and, at sufficiently high pressure, the columnar mesophase transforms into a crystalline lamellar phase. By combining P-V-T and x-ray results, we deduce an increase of the stacking period of the binuclear cores as a function of increasing pressure.

  4. Publications - GMC 420 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    DGGS GMC 420 Publication Details Title: X-Ray fluorescence spectroscopy and 40Ar/39Ar analyses of core more information. Quadrangle(s): Ikpikpuk River; Umiat Bibliographic Reference Shimer, G., 2013, X-Ray

  5. Thermal expansion in UO 2 determined by high-energy X-ray diffraction

    DOE PAGES

    Guthrie, M.; Benmore, C. J.; Skinner, L. B.; ...

    2016-06-24

    In this study, we present crystallographic analyses of high-energy X-ray diffraction data on polycrystalline UO 2 up to the melting temperature. The Rietveld refinements of our X-ray data are in agreement with previous measurements, but are systematically located around the upper bound of their uncertainty, indicating a slightly steeper trend of thermal expansion compared to established values. This observation is consistent with recent first principles calculations.

  6. Syntheses, structures and properties of three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers based on 2,2'-dipyridyl-5,5'-dicarboxylate ligands.

    PubMed

    Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan

    2013-12-01

    Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. X-ray CT core imaging of Oman Drilling Project on D/V CHIKYU

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Okazaki, K.; Leong, J. A. M.; Kelemen, P. B.; Johnson, K. T. M.; Greenberger, R. N.; Manning, C. E.; Harris, M.; de Obeso, J. C.; Abe, N.; Hatakeyama, K.; Ildefonse, B.; Takazawa, E.; Teagle, D. A. H.; Coggon, J. A.

    2017-12-01

    We obtained X-ray computed tomography (X-ray CT) images for all cores (GT1A, GT2A, GT3A and BT1A) in Oman Drilling Project Phase 1 (OmanDP cores), since X-ray CT scanning is a routine measurement of the IODP measurement plan onboard Chikyu, which enables the non-destructive observation of the internal structure of core samples. X-ray CT images provide information about chemical compositions and densities of the cores and is useful for assessing sample locations and the quality of the whole-round samples. The X-ray CT scanner (Discovery CT 750HD, GE Medical Systems) on Chikyu scans and reconstructs the image of a 1.4 m section in 10 minutes and produces a series of scan images, each 0.625 mm thick. The X-ray tube (as an X-ray source) and the X-ray detector are installed inside of the gantry at an opposing position to each other. The core sample is scanned in the gantry with the scanning rate of 20 mm/sec. The distribution of attenuation values mapped to an individual slice comprises the raw data that are used for subsequent image processing. Successive two-dimensional (2-D) slices of 512 x 512 pixels yield a representation of attenuation values in three-dimensional (3-D) voxels of 512 x 512 by 1600 in length. Data generated for each core consist of core-axis-normal planes (XY planes) of X-ray attenuation values with dimensions of 512 × 512 pixels in 9 cm × 9 cm cross-section, meaning at the dimensions of a core section, the resolution is 0.176 mm/pixel. X-ray intensity varies as a function of X-ray path length and the linear attenuation coefficient (LAC) of the target material is a function of the chemical composition and density of the target material. The basic measure of attenuation, or radiodensity, is the CT number given in Hounsfield units (HU). CT numbers of air and water are -1000 and 0, respectively. Our preliminary results show that CT numbers of OmanDP cores are well correlated to gamma ray attenuation density (GRA density) as a function of chemical composition and mineral density, so that their profiles with respect to the core depth provide quick lithological information such as mineral identification and phase boundary etc. Moreover, X-ray CT images can be used for 3-D fabric analyses of the whole core even after core cutting into halves for individual analyses.

  8. Investigating the X-ray and Gamma-ray Properties of the Galactic Supernova Remnants Kes 69, 3C 396, 3C 400.2

    NASA Astrophysics Data System (ADS)

    Ergin, Tülün; Sezer, Aytap; Yamazaki, Ryo

    2016-06-01

    Kes 69, 3C 396, and 3C 400.2 are mixed-morphology (MM) Galactic supernova remnants (SNRs), where Kes 69 and 3C 396 are interacting with molecular clouds (MCs). Previous X-ray studies showed that the emission from these SNRs is thermal. It has been suggested that MM SNRs interacting with MCs are potential candidates for recombining plasma (RP) in X-rays and hadronic gamma-ray emission. Recently, Chandra observations revealed signs of RP in 3C 400.2. Our preliminary analyses show that the X-ray emission of NW and SE region of 3C 400.2 arises from recombining plasma. We detected GeV gamma-ray emission from Kes 69 and 3C 396 above 5σ

  9. ESO imaging survey: optical follow-up of 12 selected XMM-Newton fields

    NASA Astrophysics Data System (ADS)

    Dietrich, J. P.; Miralles, J.-M.; Olsen, L. F.; da Costa, L.; Schwope, A.; Benoist, C.; Hambaryan, V.; Mignano, A.; Motch, C.; Rité, C.; Slijkhuis, R.; Tedds, J.; Vandame, B.; Watson, M. G.; Zaggia, S.

    2006-04-01

    This paper presents the data recently released for the XMM-Newton/WFI survey carried out as part of the ESO Imaging Survey (EIS) project. The aim of this survey is to provide optical imaging follow-up data in BVRI for identification of serendipitously detected X-ray sources in selected XMM-Newton fields. In this paper, fully calibrated individual and stacked images of 12 fields as well as science-grade catalogs for the 8 fields located at high-galactic latitude are presented. These products were created, calibrated and released using the infrastructure provided by the EIS Data Reduction system and its associated EIS/MVM image processing engine, both of which are briefly described here. The data covers an area of ~3 square degrees for each of the four passbands. The median seeing as measured in the final stacked images is 0.94 arcsec, ranging from 0.60 arcsec and 1.51 arcsec. The median limiting magnitudes (AB system, 2´´ aperture, 5σ detection limit) are 25.20, 24.92, 24.66, and 24.39 mag for B-, V-, R-, and I-band, respectively. When only the 8 high-galactic latitude fields are included these become 25.33, 25.05, 25.36, and 24.58 mag, in good agreement with the planned depth of the survey. Visual inspection of images and catalogs, comparison of statistics derived from the present data with those obtained by other authors and model predictions, as well as direct comparison of the results obtained from independent reductions of the same data, demonstrate the science-grade quality of the automatically produced final images and catalogs. These survey products, together with their logs, are available to the community for science exploitation in conjunction with their X-ray counterparts. Preliminary results from the X-ray/optical cross-correlation analysis show that about 61% of the detected X-ray point sources in deep XMM-Newton exposures have at least one optical counterpart within 2´´ radius down to R ≃ 25 mag, 50% of which are so faint as to require VLT observations thereby meeting one of the top requirements of the survey, namely to produce large samples for spectroscopic follow-up with the VLT, whereas only 15% of the objects have counterparts down to the DSS limiting magnitude.

  10. Quantum-dot size and thin-film dielectric constant: precision measurement and disparity with simple models.

    PubMed

    Grinolds, Darcy D W; Brown, Patrick R; Harris, Daniel K; Bulovic, Vladimir; Bawendi, Moungi G

    2015-01-14

    We study the dielectric constant of lead sulfide quantum dot (QD) films as a function of the volume fraction of QDs by varying the QD size and keeping the ligand constant. We create a reliable QD sizing curve using small-angle X-ray scattering (SAXS), thin-film SAXS to extract a pair-distribution function for QD spacing, and a stacked-capacitor geometry to measure the capacitance of the thin film. Our data support a reduced dielectric constant in nanoparticles.

  11. A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF THE MASS-LUMINOSITY RELATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leauthaud, Alexie; Finoguenov, Alexis; Cappelluti, Nico

    2010-01-20

    Measurements of X-ray scaling laws are critical for improving cosmological constraints derived with the halo mass function and for understanding the physical processes that govern the heating and cooling of the intracluster medium. In this paper, we use a sample of 206 X-ray-selected galaxy groups to investigate the scaling relation between X-ray luminosity (L{sub X}) and halo mass (M{sub 200}) where M{sub 200} is derived via stacked weak gravitational lensing. This work draws upon a broad array of multi-wavelength COSMOS observations including 1.64 degrees{sup 2} of contiguous imaging with the Advanced Camera for Surveys to a limiting magnitude of I{submore » F814W} = 26.5 and deep XMM-Newton/Chandra imaging to a limiting flux of 1.0 x 10{sup -15} erg cm{sup -2} s{sup -1} in the 0.5-2 keV band. The combined depth of these two data sets allows us to probe the lensing signals of X-ray-detected structures at both higher redshifts and lower masses than previously explored. Weak lensing profiles and halo masses are derived for nine sub-samples, narrowly binned in luminosity and redshift. The COSMOS data alone are well fit by a power law, M{sub 200} propor to (L{sub X}){sup a}lpha, with a slope of alpha = 0.66 +- 0.14. These results significantly extend the dynamic range for which the halo masses of X-ray-selected structures have been measured with weak gravitational lensing. As a result, tight constraints are obtained for the slope of the M-L{sub X} relation. The combination of our group data with previously published cluster data demonstrates that the M-L{sub X} relation is well described by a single power law, alpha = 0.64 +- 0.03, over two decades in mass, M{sub 200} approx 10{sup 13.5}-10{sup 15.5} h {sup -1}{sub 72} M{sub sun}. These results are inconsistent at the 3.7sigma level with the self-similar prediction of alpha = 0.75. We examine the redshift dependence of the M-L{sub X} relation and find little evidence for evolution beyond the rate predicted by self-similarity from z approx 0.25 to z approx 0.8.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'mina, L. G., E-mail: kuzmina@igic.ras.ru; Vedernikov, A. I.; Sazonov, S. K.

    The crystal packing of a number of styryl dyes of the pyridine series is analyzed. The structures of three dyes and three [2 + 2] photocycloaddition (PCA) products, 1,2,3,4-tetrasubstituted cyclobutanes, obtained in single crystals are determined by X-ray diffraction. Stacks of planar organic cations are characteristic of styryl dye packings. The proceeding of the PCA reaction as a single crystal-to-single crystal transformation in the syn head-to-head stacks is in principle impossible. The syn head-to-tail stacking packings are favorable for the PCA reactions resulting in the centrosymmetric rctt isomers of cyclobutane. The stacking packings, in which molecules are related by themore » twofold axes (the anti arrangement of molecules), are also favorable for PCA in single crystals. In this case, the products are the rtct isomers of cyclobutane. The presence of the I{sup -} counterions in a packing is a factor impeding the PCA reaction, because the secondary I-H-C bonds increase the rigidity of the crystal lattice. The conditions necessary for proceeding the PCA reactions in styryl dyes as single crystal-to-single crystal processes are as follows: (1) the stacks split into pairs of organic cations (dimers) with the d distances within 4.2 A in a dimer and d exceeding 4.2 A between the dimers; and (2) the dimers are surrounded by flexible shells consisting of anions, solvate molecules, or flexible moieties of the organic cations themselves.« less

  13. Mapping of reciprocal space of La{sub 0.30}CoO{sub 2} in 3D: Analysis of superstructure diffractions and intergrowths with Co{sub 3}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brázda, Petr, E-mail: brazda@fzu.cz; Palatinus, Lukáš; Klementová, Mariana

    2015-07-15

    We have used electron diffraction tomography and powder X-ray diffraction to elucidate the structural properties of layered cobaltate γ-La{sub 0.30}CoO{sub 2}. The structure consists of hexagonal sheets of edge-sharing CoO{sub 6} octahedra interleaved by lanthanum monolayers. The La{sup 3+} cations occupy only one third of available P2 sites, forming a 2-dimensional a√3×a√3 superstructure in a–b plane. The results show that there exists no order in the mutual relative shift between the neighbouring La interlayers within the a–b plane. This is manifested in the observed monotonous decrease of the diffracted intensity of the superstructure diffractions along c{sup ⁎} in both X-raymore » and electron diffraction data. The observed lack of stacking order differentiates the La{sub x}CoO{sub 2} from its Ca and Sr analogues where at least a partial stacking order of the cationic interlayers is manifested in experimental data published in literature. - Highlights: • We use electron diffraction tomography for reciprocal space mapping of La{sub 0.30}CoO{sub 2}. • We observed a complete disorder of the stacking of Lanthanum interlayers. • Co{sub 3}O{sub 4} intergrown with La{sub 0.30}CoO{sub 2} crystals brings about fake superstructure diffractions. • Twinning of Co{sub 3}O{sub 4} enhances the problem of fake superstructure diffractions.« less

  14. The XGS instrument on-board THESEUS

    NASA Astrophysics Data System (ADS)

    Fuschino, F.; Campana, R.; Labanti, C.; Marisaldi, M.; Amati, L.; Fiorini, M.; Uslenghi, M.; Baldazzi, G.; Evangelista, Y.; Elmi, I.; Feroci, M.; Frontera, F.; Rachevski, A.; Rignanese, L. P.; Vacchi, A.; Zampa, G.; Zampa, N.; Rashevskaya, I.; Bellutti, P.; Piemonte, C.

    2016-10-01

    Consolidated techniques used for space-borne X-ray and gamma-ray instruments are based on the use of scintillators coupled to Silicon photo-detectors. This technology associated with modern very low noise read-out electronics allows the design of innovative architectures able to reduce drastically the system complexity and power consumption, also with a moderate-to-high number of channels. These detector architectures can be exploited in the design of space instrumentation for gamma-spectroscopy with the benefit of possible smart background rejection strategies. We describe a detector prototype with 3D imaging capabilities to be employed in future gamma-ray and particle space missions in the 0.002-100 MeV energy range. The instrument is based on a stack of scintillating bars read out by Silicon Drift Detectors (SDDs) at both ends. The spatial segmentation and the crystal double-side readout allow a 3D position reconstruction with ∼3 mm accuracy within the full active volume, using a 2D readout along the two external faces of the detector. Furthermore, one of the side of SDDs can be used simultaneously to detect X-rays in the 2-30 keV energy range. The characteristics of this instrument make it suitable in next generation gamma-ray and particle space missions for Earth or outer space observations, and it will be briefly illustrated.

  15. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7-x films and nanocomposites

    NASA Astrophysics Data System (ADS)

    Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.

    2018-07-01

    In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.

  16. Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques

    NASA Astrophysics Data System (ADS)

    Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu

    2007-04-01

    The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.

  17. SOLEIL shining on the solution-state structure of biomacromolecules by synchrotron X-ray footprinting at the Metrology beamline.

    PubMed

    Baud, A; Aymé, L; Gonnet, F; Salard, I; Gohon, Y; Jolivet, P; Brodolin, K; Da Silva, P; Giuliani, A; Sclavi, B; Chardot, T; Mercère, P; Roblin, P; Daniel, R

    2017-05-01

    Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of biomolecules.

  18. X-ray Scattering Combined with Coordinate-Based Analyses for Applications in Natural and Artificial Photosynthesis

    PubMed Central

    Tiede, David M.; Mardis, Kristy L.; Zuo, Xiaobing

    2009-01-01

    Advances in x-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining x-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for x-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution x-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states. PMID:19636808

  19. Enhancing catalytic activity by narrowing local energy gaps--X-ray studies of a manganese water oxidation catalyst.

    PubMed

    Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F

    2015-03-01

    Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Day-Scale Variability of 3C 279 and Searches for Correlations in Gamma-Ray, X-Ray and Optical Bands

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Villata, M.; Balonek, T. J.; Bertsch, D. L.; Bock, H.; Boettcher, M.; Carini, M. T.; Collmar, W.; DeFrancesco, G.; Ferrera, E. C.; hide

    2001-01-01

    Light curves of 3C 279 are presented in optical (R-band), X-rays (RXTE/PCA), and gamma rays (CGRO/EGRET) for 1999 Jan-Feb and 2000 Jan-Mar. During both of those epochs the gamma-ray levels were high, and all three observed bands demonstrated substantial variation, on time scales as short as one day. Correlation analyses provided no consistent pattern, although a rather significant optical/gamma-ray correlation was seen in 1999, with a gamma-ray lag of approximately 2.5 days, and there are other suggestions of correlations in the light curves. For comparison, correlation analysis is also presented for the gamma-ray and X-ray light curves during the large gamma-ray flare in 1996 Feb and the two gamma-bright weeks leading up to it; the correlation at that time was strong, with a gamma-ray/X-ray offset of no more than one day.

  1. Face-to-face stacks of trinuclear gold(I) trihalides with benzene, hexafluorobenzene, and borazine: impact of aromaticity on stacking interactions.

    PubMed

    Tsipis, Athanassios C; Stalikas, Alexandros V

    2013-01-18

    The interplay of electrostatics, charge transfer, and dispersion forces contributing to the interaction energies in 1:1, 1:2, and 2:1 binary stacks of the c-Au(3)(μ(2)-X)(3) (X = F, Cl, Br, I) clusters with benzene, hexafluorobenzene, or borazine were investigated by employing a multitude of electronic structure computational techniques. The molecular and electronic structures, stabilities, bonding features, and magnetotropicity of [c-Au(3)(μ(2)-X)(3)](n)(L)(m) (X = halide; L = C(6)H(6), C(6)F(6), B(3)N(3)H(6); n, m ≤ 2) columnar binary stacks have been investigated by DFT calculations employing the M05-2X functional. The novel binary stacks could be considered as the building blocks of extended columnar supramolecular assemblies formulated as {[c-Au(3)(μ(2)-X)(3)](C(6)H(6))}(∞), {[c-Au(3)(μ(2)-X)(3)](2)(C(6)F(6))}(∞), and {[c-Au(3)(μ(2)-X)(3)](B(3)N(3)H(6))(2)}(∞). In all binary stacks, with a few exceptions, the plane of the alternating c-Au(3)(μ(2)-X)(3) and L (C(6)H(6), C(6)F(6), B(3)N(3)H(6)) stacking participants adopt an almost parallel face-to-face (pff) orientation. The observed trends in the intermolecular distances R in the [c-Au(3)(μ(2)-X)(3)](n)(L)(m) (X = halide; L = C(6)H(6), C(6)F(6), B(3)N(3)H(6); n, m ≤ 2) columnar binary stacks are explained by the diverse intermolecular interactions characterizing the stacks, since the three ligands L and the c-Au(3)(μ(2)-X)(3) cyclic trinuclear clusters (CTCs) exhibit diverse physical properties being important determinants of the intermolecular interactions (consisting of covalent, electrostatic, and dispersion forces). The properties considered are the zz tensor components of quadrupole moment, Q(zz), polarizability, α(zz), nucleus-independent chemical shift, NICS(zz)(1), along with the molecular electrostatic potential, MEP(0), and surface area (S). Energy decomposition analysis (EDA) at the revPBE-D3/TZ2P level revealed that the dominant term in the stacking interactions arises mainly from dispersion and electrostatic forces, while the contribution of covalent interactions are predicted to be small. On the other hand, charge decomposition analysis (CDA) illustrated very small charge transfer from the L stacking participants toward the c-Au(3)(μ(2)-X)(3) clusters. Excellent linear correlations of the interaction energy, ΔE(int), and its components (ΔE(disp), ΔE(elstat), ΔE(orb), and ΔE(Pauli)) with calculated physical properties related to dispersion, covalent, and electrostatic forces have been established. The most important finding is the excellent linear relationship between ΔE(int) and the NICS(zz)(1) magnetic criterion of aromaticity, indicating that ΔE(int) is also affected by the coupling of the induced magnetic fields of the interacting stacking participants. The magnetotropicity of the binary stacks evaluated by the NICS(zz)-scan curves indicated an enhancement of the diatropicity in the space between the interacting inorganic and organic rings, probably due to the superposition of the diamagnetic ring currents of the interacting ring systems. The energy splitting in dimer (ESID) model was employed to estimate the charge transport of electrons and holes between the ligands L and the [c-Au(3)(μ(2)-X)(3)] clusters in [c-Au(3)(μ(2)-X)(3)](L) 1:1 binary stacks.

  2. SAM-Like Evolved Gas Analyses of Phyllosilicate Minerals and Applications to SAM Analyses of the Sheepbed Mudstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    McAdam, A. C.; Franz, H. B.; Mahaffy, P. R.; Eigenbrode, J. L.; Stern, J. C.; Brunner, B.; Sutter, B.; Archer, P. D.; Ming , D. W.; Morris, R. V.; hide

    2014-01-01

    While in Yellowknife Bay, the Mars Science Laboratory Curiosity rover collected two drilled samples, John Klein (hereafter "JK") and Cumberland ("CB"), from the Sheepbed mudstone, as well as a scooped sample from the Rocknest aeolian bedform ("RN"). These samples were sieved by Curiosity's sample processing system and then several subsamples of these materials were delivered to the Sample Analysis at Mars (SAM) instrument suite and the CheMin X-ray diffraction/X-ray fluorescence instrument. CheMin provided the first in situ X-ray diffraction-based evidence of clay minerals on Mars, which are likely trioctahedral smectites (e.g., Fe-saponite) and comprise 20 wt% of the mudstone samples [1]. SAM's evolved gas analysis (EGA) mass spectrometry analyses of JK and CB subsamples, as well as RN subsamples, detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, OCS, CS2 and other trace gases evolved during pyrolysis. The identity of evolved gases and temperature( s) of evolution can augment mineral detection by CheMin and place constraints on trace volatile-bearing phases present below the CheMin detection limit or those phases difficult to characterize with XRD (e.g., X-ray amorphous phases). Here we will focus on the SAM H2O data, in the context of CheMin analyses, and comparisons to laboratory SAM-like analyses of several phyllosilicate minerals including smectites.

  3. Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry.

    PubMed

    Wang, Weijia; Pröller, Stephan; Niedermeier, Martin A; Körstgens, Volker; Philipp, Martine; Su, Bo; Moseguí González, Daniel; Yu, Shun; Roth, Stephan V; Müller-Buschbaum, Peter

    2015-01-14

    Highly efficient poly(3-hexylthiophene-2,5-diyl) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) bulk heterojunction solar cells are achieved by using an inverted geometry. The development of the morphology is investigated as a function of the multilayer stack assembling during the inverted solar cell preparation. Atomic force microscopy is used to reveal the surface morphology of each stack, and the inner structure is probed with grazing incidence small-angle X-ray scattering. It is found that the smallest domain size of P3HT is introduced by replicating the fluorine-doped tin oxide structure underneath. The structure sizes of the P3HT:PCBM active layer are further optimized after thermal annealing. Compared to devices with standard geometry, the P3HT:PCBM layer in the inverted solar cells shows smaller domain sizes, which are much closer to the exciton diffusion length in the polymer. The decrease in domain sizes is identified as the main reason for the improvement of the device performance.

  4. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.

    PubMed

    Mainil, Michaël; Alexandre, Michaël; Monteverde, Fabien; Dubois, Philippe

    2006-02-01

    High density polyethylene (HDPE)/clay nanocomposites have been prepared using three different functionalized polyethylene compatibilizers: an ethylene/vinyl acetate copolymer, a polyethylene grafted with maleic anhydride functions and a (styrene-b-ethylene/butylene-b-styrene) block copolymer. The nanocomposites were prepared via two different routes: (1) the dispersion in HDPE of a masterbatch prepared from the compatibilizer and the clay or (2) the direct melt blending of the three components. For each compatibilizer, essentially intercalated nanocomposites were formed as determined by X-ray diffraction and transmission electron microscopy. With the ethylene/vinyl acetate copolymer, a significant delamination of the intercalated clay in thin stacks was observed. This dispersion of thin intercalated stacks within the polymer matrix allowed increasing significantly the stiffness and the flame resistance of the nanocomposite. A positive effect of shear rate and blending time has also been put into evidence, especially for the process based on the masterbatch preparation, improving both the formation of thin stacks of intercalated clay and the mechanical properties and the flame resistance of the formed nanocomposites.

  5. Chirality of the 1,4-phenylene-silica nanoribbons at the nano and angstrom levels

    NASA Astrophysics Data System (ADS)

    Li, Yi; Wang, Sibing; Xiao, Min; Wang, Mingliang; Huang, Zhibin; Li, Baozong; Yang, Yonggang

    2013-01-01

    We reported the preparation of chiral 1,4-phenylene-silicas, using a sol-gel transcription approach, by self-assembly using low-molecular-weight gelators as templates. The silicas exhibited chirality at both the nano and angstrom levels. However, the relation between the chirality at the nano level and that at the angstrom levels has not been well studied. In this study, chiral 1,4-phenylene-silica nanoribbons were prepared by the self-assemblies of three chiral cationic gelators derived from amino acids as templates. These samples were characterized using field-emission scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and circular dichroism. The results indicated that the handedness of the nanoribbons and the stacking of the aromatic rings were controllable. Although the nanoribbons exhibited left-handedness at the nano level, the stacking of the aromatic rings could exhibit left- or right-handedness. The handedness of the nanoribbons at the nano level was controlled by the organic self-assembly of the gelator. However, the stacking of the aromatic rings seemed to be controlled by the gelator itself.

  6. Physical and electrical characterizations of AlGaN/GaN MOS gate stacks with AlGaN surface oxidation treatment

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Shih, Hong-An; Nakazawa, Satoshi; Anda, Yoshiharu; Ueda, Tetsuzo; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-06-01

    The impacts of inserting ultrathin oxides into insulator/AlGaN interfaces on their electrical properties were investigated to develop advanced AlGaN/GaN metal–oxide–semiconductor (MOS) gate stacks. For this purpose, the initial thermal oxidation of AlGaN surfaces in oxygen ambient was systematically studied by synchrotron radiation X-ray photoelectron spectroscopy (SR-XPS) and atomic force microscopy (AFM). Our physical characterizations revealed that, when compared with GaN surfaces, aluminum addition promotes the initial oxidation of AlGaN surfaces at temperatures of around 400 °C, followed by smaller grain growth above 850 °C. Electrical measurements of AlGaN/GaN MOS capacitors also showed that, although excessive oxidation treatment of AlGaN surfaces over around 700 °C has an adverse effect, interface passivation with the initial oxidation of the AlGaN surfaces at temperatures ranging from 400 to 500 °C was proven to be beneficial for fabricating high-quality AlGaN/GaN MOS gate stacks.

  7. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüoğlu, Güneş Süheyla; Kiraz, Fulya Çetinkaya; Sayın, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  8. Spectral studies of cosmic X-ray sources

    NASA Astrophysics Data System (ADS)

    Blissett, R. J.

    1980-01-01

    The conventional "indirect" method of reduction and data analysis of spectral data from non-dispersive X-ray detectors, by the fitting of assumed spectral models, is examined. The limitations of this procedure are presented, and alternative schemes are considered in which the derived spectra are not biased to an astrophysical source model. A new method is developed in detail to directly restore incident photon spectra from the detected count histograms. This Spectral Restoration Technique allows an increase in resolution, to a degree dependent on the statistical precision of the data. This is illustrated by numerical simulations. Proportional counter data from Ariel 5 are analysed using this technique. The results obtained for the sources Cas A and the Crab Nebula are consistent with previous analyses and show that increases in resolution of up to a factor three are possible in practice. The source Cyg X-3 is closely examined. Complex spectral variability is found, with the continuum and iron-line emission modulated with the 4.8 hour period of the source. The data suggest multi-component emission in the source. Comparing separate Ariel 5 observations and published data from other experiments, a correlation between the spectral shape and source intensity is evident. The source behaviour is discussed with reference to proposed source models. Data acquired by the low-energy detectors on-board HEAO-1 are analysed using the Spectral Restoration Technique. This treatment explicitly demonstrates the existence of oxygen K-absorption edges in the soft X-ray spectra of the Crab Nebula and Sco X-1. These results are considered with reference to current theories of the interstellar medium. The thesis commences with a review of cosmic X-ray sources and the mechanisms responsible for their spectral signatures, and continues with a discussion of the instruments appropriate for spectral studies in X-ray astronomy.

  9. Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution

    NASA Astrophysics Data System (ADS)

    Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.

    2018-02-01

    A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.

  10. The IceCube Neutrino Observatory, the Pierre Auger Observatory and the Telescope Array: Joint Contribution to the 34th International Cosmic Ray Conference (ICRC 2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aartsen, M.G.; et al.

    2015-11-06

    We have conducted three searches for correlations between ultra-high energy cosmic rays detected by the Telescope Array and the Pierre Auger Observatory, and high-energy neutrino candidate events from IceCube. Two cross-correlation analyses with UHECRs are done: one with 39 cascades from the IceCube `high-energy starting events' sample and the other with 16 high-energy `track events'. The angular separation between the arrival directions of neutrinos and UHECRs is scanned over. The same events are also used in a separate search using a maximum likelihood approach, after the neutrino arrival directions are stacked. To estimate the significance we assume UHECR magnetic deflections to be inversely proportional to their energy, with valuesmore » $$3^\\circ$$, $$6^\\circ$$ and $$9^\\circ$$ at 100 EeV to allow for the uncertainties on the magnetic field strength and UHECR charge. A similar analysis is performed on stacked UHECR arrival directions and the IceCube sample of through-going muon track events which were optimized for neutrino point-source searches.« less

  11. Multi-scale 3D characterization of long period stacking ordered structure in Mg-Zn-Gd cast alloys.

    PubMed

    Ishida, Masahiro; Yoshioka, Satoru; Yamamoto, Tomokazu; Yasuda, Kazuhiro; Matsumura, Syo

    2014-11-01

    Magnesium alloys containing rare earth elements are attractive as lightweight structural materials due to their low density, high-specific strength and recycling efficiency. Mg-Zn-Gd system is one of promising systems because of their high creep-resistant property[1]. It is reported that the coherent precipitation formation of the 14H long period stacking ordered structure (LPSO) in Mg-Zn-Gd system at temperatures higher than 623 K[2,3]. In this study, the 14H LPSO phase formed in Mg-Zn-Gd alloys were investigated by multi-scale characterization with X-ray computer tomography (X-CT), focused ion beam (FIB) tomography and aberration-corrected STEM observation for further understanding of the LPSO formation mechanism.The Mg89.5 Zn4.5 Gd6 alloy ingots were cast using high-frequency induction heating in argon atmosphere. The specimens were aged at 753 K for 24 h in air. The aged specimen were cut and polished mechanically for microstructural analysis. The micrometer resolution X-CT observation was performed by conventional scaner (Bruker SKY- SCAN1172) at 80 kV. The FIB tomography and energy dispersive x-ray spectroscopy (EDS) were carried out by a dual beam FIB-SEM system (Hitachi MI-4000L) with silicon drift detector (SDD) (Oxford X-Max(N)). The electron acceleration voltages were used with 3 kV for SEM observation and 10 kV for EDX spectroscopy. The 3D reconstruction from image series was performed by Avizo Fire 8.0 software (FEI). TEM/STEM observations were also performed by transmission electron microscopes (JEOL JEM 2100, JEM-ARM 200F) at the acceleration voltage of 200 keV.The LPSO phase was observed clearly in SEM image of the Mg89.5Zn4.5Gd6 alloy at 753 K for 2h (Fig.1 (a)). The atomic structure of LPSO phase observed as white gray region of SEM image was also confirmed as 14H LPSO structure by using selected electron diffraction patterns and high-resolution STEM observations. The elemental composition of LPSO phase was determined as Mg97Zn1Gd2 by EDS analyses. The 3D representation of the LPSO phase shown in Fig.1 (b) reveals that the shape of LPSO phase was disk-like. The calculated volume fraction of LPSO was about 20%, which is consistent with estimated value from initial composition. The stacked LPSO disks were distributed along 3D network. It is suggested that this 3D structure is concerned with the distribution of Mg3Gd compounds observed in as-cast specimens.jmicro;63/suppl_1/i25-a/DFU068F1F1DFU068F1Fig. 1.(a) SEM image of the Mg89.5Zn4.5Gd6 alloy aged at 753 K for 2h. (b) 3D representation of the tomographic reconstruction from SEM images. The soiled parts of the 3D volume are 14 H LPSO phase. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Ares I-X Flight Test Vehicle: Stack 5 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Danel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA's Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the first modal test that was performed on the top section of the vehicle referred to as Stack 5, which consisted of the spacecraft adapter, service module, crew module and launch abort system simulators. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 5 modal test.

  13. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  14. Large-Scale Synthesis and Comprehensive Structure Study of δ-MnO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jue; Yu, Lei; Hu, Enyuan

    Layered δ-MnO 2 (birnessites) are ubiquitous in nature and have also been reported to work as promising water oxidation catalysts or rechargeable alkali-ion battery cathodes when fabricated under appropriate conditions. Although tremendous effort has been spent on resolving the structure of natural/synthetic layered δ-MnO 2 in the last few decades, no conclusive result has been reached. In this Article, we report an environmentally friendly route to synthesizing homogeneous Cu-rich layered δ-MnO 2 nanoflowers in large scale. The local and average structure of synthetic Cu-rich layered δ-MnO 2 has been successfully resolved from combined Mn/Cu K-edge extended X-ray fine structure spectroscopymore » and X-ray and neutron total scattering analysis. It is found that appreciable amounts (~8%) of Mn vacancies are present in the MnO 2 layer and Cu 2+ occupies the interlayer sites above/below the vacant Mn sites. Effective hydrogen bonding among the interlayer water molecules and adjacent layer O ions has also been observed for the first time. These hydrogen bonds are found to play the key role in maintaining the intermediate and long-range stacking coherence of MnO 2 layers. Quantitative analysis of the turbostratic stacking disorder in this compound was achieved using a supercell approach coupled with anisotropic particle-size-effect modeling. Furthermore, the present method is expected to be generally applicable to the structural study of other technologically important nanomaterials.« less

  15. Fully 3D-Integrated Pixel Detectors for X-Rays

    DOE PAGES

    Deptuch, Grzegorz W.; Gabriella, Carini; Enquist, Paul; ...

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch,more » yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e - rms and a conversion gain of 69.5 μV/e - with 2.6 e - rms and 2.7 μV/e - rms pixel-to-pixel variations, respectively, were measured.« less

  16. Large-Scale Synthesis and Comprehensive Structure Study of δ-MnO 2

    DOE PAGES

    Liu, Jue; Yu, Lei; Hu, Enyuan; ...

    2018-05-30

    Layered δ-MnO 2 (birnessites) are ubiquitous in nature and have also been reported to work as promising water oxidation catalysts or rechargeable alkali-ion battery cathodes when fabricated under appropriate conditions. Although tremendous effort has been spent on resolving the structure of natural/synthetic layered δ-MnO 2 in the last few decades, no conclusive result has been reached. In this Article, we report an environmentally friendly route to synthesizing homogeneous Cu-rich layered δ-MnO 2 nanoflowers in large scale. The local and average structure of synthetic Cu-rich layered δ-MnO 2 has been successfully resolved from combined Mn/Cu K-edge extended X-ray fine structure spectroscopymore » and X-ray and neutron total scattering analysis. It is found that appreciable amounts (~8%) of Mn vacancies are present in the MnO 2 layer and Cu 2+ occupies the interlayer sites above/below the vacant Mn sites. Effective hydrogen bonding among the interlayer water molecules and adjacent layer O ions has also been observed for the first time. These hydrogen bonds are found to play the key role in maintaining the intermediate and long-range stacking coherence of MnO 2 layers. Quantitative analysis of the turbostratic stacking disorder in this compound was achieved using a supercell approach coupled with anisotropic particle-size-effect modeling. Furthermore, the present method is expected to be generally applicable to the structural study of other technologically important nanomaterials.« less

  17. Mono-Schiff-base or di-Schiff-base? Synthesis, spectroscopic, X-ray structural and DFT study of a series of Schiff-bases derived from benzil dihydrazone

    NASA Astrophysics Data System (ADS)

    Tan, Xue-Jie; Hao, Xiu-Qi; Zhao, Qing-Zhe; Cheng, Shuang-Shuang; Xie, Wen-Long; Xing, Dian-Xiang; Liu, Yun; Song, Lai-Zhou

    2015-11-01

    A series of mono- and di-Schiff-bases based on Benzil Dihydrazone (BDH) were designed and synthesized to be set as the model compounds to explain which one should be the advanced product and which parameters will determine the end-product. As the first step of a series of investigations, this article presents the syntheses and characterization of five new Schiff-bases plus one preliminary reported Schiff-base, all derived from BDH. The compounds were characterized by single crystal (or conventional powder) X-ray diffractometry, elemental analysis, m.p., 1H NMR, 13C NMR, IR and UV-Vis. Structural features of the five new Schiff-bases are similar. For instance, all molecules are nonsymmetrical/symmetrical double helix with the torsion angle of two "half-parts" about 72-97°. The Ph-Cdbnd N-Ndbnd C-Ph moiety all exists in planar and anti form, indicating significant conjugation. The crystal structures appear to be stabilized by π-stacking between the aromatic rings, as well as by intermolecular hydrogen bonds and C-H … π stacking interactions. DFT calculations have been performed to explain the trend of the experimentally measured reaction yields. In the case of the studied systems by us, the type of Schiff-bases exhibits a clear dependence on the molar ratio of reactants if the products have similar stabilities. Otherwise the importance of reaction conditions will be weakened and the most stable product will be favored.

  18. Incorporation of Cadmium and Nickel into Ferrite Spinel Solid Solution: X-ray Diffraction and X-ray Absorption Fine Structure Analyses.

    PubMed

    Su, Minhua; Liao, Changzhong; Chan, Tingshan; Shih, Kaimin; Xiao, Tangfu; Chen, Diyun; Kong, Lingjun; Song, Gang

    2018-01-16

    The feasibility of incorporating Cd and Ni in hematite was studied by investigating the interaction mechanism for the formation of Cd x Ni 1-x Fe 2 O 4 solid solutions (CNFs) from CdO, NiO, and α-Fe 2 O 3 . X-ray diffraction results showed that the CNFs crystallized into spinel structures with increasing lattice parameters as the Cd content in the precursors was increased. Cd 2+ ions were found to occupy the tetrahedral sites, as evidenced by Rietveld refinement and extended X-ray absorption fine structure analyses. The incorporation of Cd and Ni into ferrite spinel solid solution strongly relied on the processing parameters. The incorporation of Cd and Ni into the CNFs was greater at high x values (0.7 < x ≤ 1.0) than at low x values (0.0 ≤ x ≤ 0.7). A feasible treatment technique based on the investigated mechanism of CNF formation was developed, involving thermal treatment of waste sludge containing Cd and Ni. Both of these metals in the waste sludge were successfully incorporated into a ferrite spinel solid solution, and the concentrations of leached Cd and Ni from this solid solution were substantially reduced, stabilizing at low levels. This research offers a highly promising approach for treating the Cd and Ni content frequently encountered in electronic waste and its treatment residues.

  19. Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Han, J.; Zolensky, M.

    2016-01-01

    Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure, however, we are able to observe small but consistent rotational orientation across several discs within a plaquette.

  20. Oxidation precursor dependence of atomic layer deposited Al2O3 films in a-Si:H(i)/Al2O3 surface passivation stacks.

    PubMed

    Xiang, Yuren; Zhou, Chunlan; Jia, Endong; Wang, Wenjing

    2015-01-01

    In order to obtain a good passivation of a silicon surface, more and more stack passivation schemes have been used in high-efficiency silicon solar cell fabrication. In this work, we prepared a-Si:H(i)/Al2O3 stacks on KOH solution-polished n-type solar grade mono-silicon(100) wafers. For the Al2O3 film deposition, both thermal atomic layer deposition (T-ALD) and plasma enhanced atomic layer deposition (PE-ALD) were used. Interface trap density spectra were obtained for Si passivation with a-Si films and a-Si:H(i)/Al2O3 stacks by a non-contact corona C-V technique. After the fabrication of a-Si:H(i)/Al2O3 stacks, the minimum interface trap density was reduced from original 3 × 10(12) to 1 × 10(12) cm(-2) eV(-1), the surface total charge density increased by nearly one order of magnitude for PE-ALD samples and about 0.4 × 10(12) cm(-2) for a T-ALD sample, and the carrier lifetimes increased by a factor of three (from about 10 μs to about 30 μs). Combining these results with an X-ray photoelectron spectroscopy analysis, we discussed the influence of an oxidation precursor for ALD Al2O3 deposition on Al2O3 single layers and a-Si:H(i)/Al2O3 stack surface passivation from field-effect passivation and chemical passivation perspectives. In addition, the influence of the stack fabrication process on the a-Si film structure was also discussed in this study.

  1. Packing microstructure and local density variations of experimental and computational pebble beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.

    2012-07-01

    In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less

  2. An XMM Investigation of Non-Thermal Phenomena in the Winds of Early-Type Stars

    NASA Technical Reports Server (NTRS)

    Waldron, Wayne L.; Mushotzky, Richard (Technical Monitor)

    2002-01-01

    The X-ray emission from early-type stars is believed to arise from a stellar wind distribution of shocks. Hence, X-ray analyses of these stars must include the effects of stellar wind X-ray absorption, which, in general dominates the ISM absorption. Although the absorption cross sections for the wind and ISM are essentially identical above 1 keV, there is substantial differences below 1 keV. Typically, if one only uses ISM cross sections to obtain fits to X-ray spectra, the fits usually indicate a model deficiency at energies below 1 keV which is attributed to the large increase in ISM cross sections at these energies. This deficiency can be eliminated by using stellar wind absorption models with a fixed ISM component. Since all early-type stars have substantial X-ray emission below 1 keV, than inclusion of wind absorption has proven to be a critical component in fitting X-ray spectra at low energies, verifying that these X-rays are indeed arising from within the stellar wind.

  3. X-ray and SZ constraints on the properties of hot CGM

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Majumdar, Subhabrata; Nath, Biman B.; Silk, Joseph

    2018-05-01

    We use observations of stacked X-ray luminosity and Sunyaev-Zel'dovich (SZ) signal from a cosmological sample of ˜80, 000 and 104,000 massive galaxies, respectively, with 1012.6 ≲ M500 ≲ 1013M⊙ and mean redshift, z¯ ˜ 0.1 - 0.14 to constrain the hot Circumgalactic Medium (CGM) density and temperature. The X-ray luminosities constrain the density and hot CGM mass, while the SZ signal helps in breaking the density-temperature degeneracy. We consider a simple power-law density distribution (ne∝r-3β) as well as a hydrostatic hot halo model, with the gas assumed to be isothermal in both cases. The datasets are best described by the mean hot CGM profile ∝r-1.2, which is shallower than an NFW profile. For halo virial mass ˜1012 - 1013M⊙, the hot CGM contains ˜ 20 - 30% of galactic baryonic mass for the power-law model and 4 - 11% for the hydrostatic halo model, within the virial radii. For the power-law model, the hot CGM profile broadly agrees with observations of the Milky Way. The mean hot CGM mass is comparable to or larger than the mass contained in other phases of the CGM for L* galaxies.

  4. X-ray computed tomography for virtually unrolling damaged papyri

    NASA Astrophysics Data System (ADS)

    Allegra, Dario; Ciliberto, Enrico; Ciliberto, Paolo; Petrillo, Giuseppe; Stanco, Filippo; Trombatore, Claudia

    2016-03-01

    The regular format for ancient works of literature was the papyrus roll. Recently many efforts to perform virtual restoration of this archeological artifact have been done. In fact the case of ancient rolled papyrus is very intriguing. Old papyruses are the substrates of very important historical information, probably being the use of papyrus dated to the Pre-Dynastic Period. Papyrus degradation is often very hard so that physical unrolling is sometime absolutely impossible. In this paper, authors describe their effort in setting a new virtual restoration methodology based on software manipulation of X-ray tomographic images. A realistic model, obtained by painting a hieroglyph inscription of Thutmosis III on a papyrus substrate made by the original method described by Plinius the Elder and by pigments and binders compatible with the Egyptian use (ochers with natural glue), was made for the X-ray investigation. A GE Optima 660 64 slice was used to obtain a stack of tomographic slices of the rolled model. Each slice appears as spiral. The intensity variations along the cross-sectional result from ink on the papyrus. The files were elaborated with original software, written by the use of MATLAB high-level language, and the final result was quite similar to the radiography of the physically unrolled sheet.

  5. Structural characterization of the RNA chaperone Hfq from the nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1.

    PubMed

    Kadowaki, Marco Antonio Seiki; Iulek, Jorge; Barbosa, João Alexandre Ribeiro Gonçalves; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Chubatsu, Leda Satie; Monteiro, Rose Adele; de Oliveira, Marco Aurélio Schüler; Steffens, Maria Berenice Reynaud

    2012-02-01

    The RNA chaperone Hfq is a homohexamer protein identified as an E. coli host factor involved in phage Qβ replication and it is an important posttranscriptional regulator of several types of RNA, affecting a plethora of bacterial functions. Although twenty Hfq crystal structures have already been reported in the Protein Data Bank (PDB), new insights into these protein structures can still be discussed. In this work, the structure of Hfq from the β-proteobacterium Herbaspirillum seropedicae, a diazotroph associated with economically important agricultural crops, was determined by X-ray crystallography and small-angle X-ray scattering (SAXS). Biochemical assays such as exclusion chromatography and RNA-binding by the electrophoretic shift assay (EMSA) confirmed that the purified protein is homogeneous and active. The crystal structure revealed a conserved Sm topology, composed of one N-terminal α-helix followed by five twisted β-strands, and a novel π-π stacking intra-subunit interaction of two histidine residues, absent in other Hfq proteins. Moreover, the calculated ab initio envelope based on small-angle X-ray scattering (SAXS) data agreed with the Hfq crystal structure, suggesting that the protein has the same folding structure in solution. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Reduction of metal artifacts in x-ray CT images using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbo; Chu, Ying; Yu, Hengyong

    2017-09-01

    Patients usually contain various metallic implants (e.g. dental fillings, prostheses), causing severe artifacts in the x-ray CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past four decades, MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a convolutional neural network (CNN) based MAR framework, which combines the information from the original and corrected images to suppress artifacts. Before the MAR, we generate a group of data and train a CNN. First, we numerically simulate various metal artifacts cases and build a dataset, which includes metal-free images (used as references), metal-inserted images and various MAR methods corrected images. Then, ten thousands patches are extracted from the databased to train the metal artifact reduction CNN. In the MAR stage, the original image and two corrected images are stacked as a three-channel input image for CNN, and a CNN image is generated with less artifacts. The water equivalent regions in the CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal affected projections, followed by the FBP reconstruction. Experimental results demonstrate the superior metal artifact reduction capability of the proposed method to its competitors.

  7. Epitaxial ZnO/LiNbO{sub 3}/ZnO stacked layer waveguide for application to thin-film Pockels sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akazawa, Housei, E-mail: akazawa.housei@lab.ntt.co.jp; Fukuda, Hiroshi

    We produced slab waveguides consisting of a LiNbO{sub 3} (LN) core layer that was sandwiched with Al-doped ZnO cladding layers. The ZnO/LN/ZnO stacked layers were grown on sapphire C-planes by electron cyclotron resonance (ECR) plasma sputtering and were subjected to structural, electrical, and optical characterizations. X-ray diffraction confirmed that the ZnO and LN layers were epitaxial without containing misoriented crystallites. The presence of 60°-rotational variants of ZnO and LN crystalline domains were identified from X-ray pole figures. Cross-sectional transmission electron microscopy images revealed a c-axis orientated columnar texture for LN crystals, which ensured operation as electro-optic sensors based on opticalmore » anisotropy along longitudinal and transversal directions. The interfacial roughness between the LN core and ZnO bottom layers as well as that between the ZnO top and the LN core layers was less than 20 nm, which agreed with surface images observed with atomic force microscopy. Outgrowth of triangular LN crystalline domains produced large roughness at the LN film surface. The RMS roughness of the LN film surface was twice that of the same structure grown on sapphire A-planes. Vertical optical transmittance of the stacked films was higher than 85% within the visible and infrared wavelength range. Following the approach adopted by Teng and Man [Appl. Phys. Lett. 56, 1734 (1990)], ac Pockels coefficients of r{sub 33} = 24-28 pm/V were derived for c-axis oriented LN films grown on low-resistive Si substrates. Light propagation within a ZnO/LN/ZnO slab waveguide as well as within a ZnO single layer waveguide was confirmed. The birefringence of these waveguides was 0.11 for the former and 0.05 for the latter.« less

  8. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.

    2016-01-07

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupledmore » plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.« less

  9. A dilute Cu(Ni) alloy for synthesis of large-area Bernal stacked bilayer graphene using atmospheric pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Madito, M. J.; Bello, A.; Dangbegnon, J. K.; Oliphant, C. J.; Jordaan, W. A.; Momodu, D. Y.; Masikhwa, T. M.; Barzegar, F.; Fabiane, M.; Manyala, N.

    2016-01-01

    A bilayer graphene film obtained on copper (Cu) foil is known to have a significant fraction of non-Bernal (AB) stacking and on copper/nickel (Cu/Ni) thin films is known to grow over a large-area with AB stacking. In this study, annealed Cu foils for graphene growth were doped with small concentrations of Ni to obtain dilute Cu(Ni) alloys in which the hydrocarbon decomposition rate of Cu will be enhanced by Ni during synthesis of large-area AB-stacked bilayer graphene using atmospheric pressure chemical vapour deposition. The Ni doped concentration and the Ni homogeneous distribution in Cu foil were confirmed with inductively coupled plasma optical emission spectrometry and proton-induced X-ray emission. An electron backscatter diffraction map showed that Cu foils have a single (001) surface orientation which leads to a uniform growth rate on Cu surface in early stages of graphene growth and also leads to a uniform Ni surface concentration distribution through segregation kinetics. The increase in Ni surface concentration in foils was investigated with time-of-flight secondary ion mass spectrometry. The quality of graphene, the number of graphene layers, and the layers stacking order in synthesized bilayer graphene films were confirmed by Raman and electron diffraction measurements. A four point probe station was used to measure the sheet resistance of graphene films. As compared to Cu foil, the prepared dilute Cu(Ni) alloy demonstrated the good capability of growing large-area AB-stacked bilayer graphene film by increasing Ni content in Cu surface layer.

  10. Mineralogy by X-ray Diffraction on Mars: The Chemin Instrument on Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Vaniman, D. T.; Bristow, T. F.; Bish, D. L.; Ming, D. W.; Blake, D. F.; Morris, R. V.; Rampe, E. B.; Chipera, S. J.; Treiman, A. H.; Morrison, S. M.; hide

    2014-01-01

    To obtain detailed mineralogy information, the Mars Science Laboratory rover Curiosity carries CheMin, the first X-ray diffraction (XRD) instrument used on a planet other than Earth. CheMin has provided the first in situ XRD analyses of full phase assemblages on another planet.

  11. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  12. Probing the local structure of crystalline NaBiO3·XH2O and its acidified derivatives

    NASA Astrophysics Data System (ADS)

    Kozma, Karoly; Surta, T. Wesley; Molina, Pedro I.; Lyubinetsky, Igor; Stoxen, Wynn; Byrne, Nicole M.; Dolgos, Michelle; Nyman, May

    2018-07-01

    Sodium bismuthate is a commercially available, inexpensive, non-toxic and very potent inorganic oxidant and photocatalyst. It is one of the important reagents for oxidative separation of Am3+ from the chemically similar lanthanide ions, for its recovery or safe disposal from reprocessed nuclear fuel. While the structure of NaBiO3 has been described from powder and neutron diffraction; the structure of NaBiO3·XH2O, the manufactured form of sodium bismuthate, is currently unknown. Herein, we describe the structure of NaBiO3·XH2O (X = 3) using pair distribution function (PDF) analysis of X-ray total scattering data. In our proposed structure model, NaBiO3·3H2O is similar to NaBiO3, but with turbostratic disorder in the stacking direction of the alternating Bi-O and Na-O layers. We propose locations for the lattice water, and its role in creating turbostratic disorder. We also used PDF to describe the structural evolution of sodium bismuthate upon exposure to nitric acid, the conditions employed in for nuclear fuel reprocessing. We supported the proposed model for pristine NaBiO3·3H2O and its acidified derivatives by a variety of techniques including thermogravimetry, powder X-ray diffraction (PXRD), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). By employing both surface and bulk techniques, we hypothesize that the bismuth reduced to Bi3+ upon aqueous acid exposure remains in the lattice, rather than completely dissolving and/or depositing on the surface, as prior suggested. Using pretreated acidified sodium bismuthate samples, we delineated the effects of acid strength vs. bismuthate structure/composition on Ce3+ to Ce4+ oxidation efficacy.

  13. Probing the X-ray Emission from the Massive Star Cluster Westerlund 2

    NASA Astrophysics Data System (ADS)

    Lopez, Laura

    2017-09-01

    We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.

  14. Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch

    NASA Astrophysics Data System (ADS)

    Isquierdo, Fernanda

    Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.

  15. A 45-ns molecular dynamics simulation of hemoglobin in water by vectorizing and parallelizing COSMOS90 on the earth simulator: dynamics of tertiary and quaternary structures.

    PubMed

    Saito, Minoru; Okazaki, Isao

    2007-04-30

    Molecular dynamics (MD) simulations of human adult hemoglobin (HbA) were carried out for 45 ns in water with all degrees of freedom including bond stretching and without any artificial constraints. To perform such large-scale simulations, one of the authors (M.S.) accelerated his own software COSMOS90 on the Earth Simulator by vectorization and parallelization. The dynamical features of HbA were investigated by evaluating root-mean-square deviations from the initial X-ray structure (an oxy T-state hemoglobin with PDB code: 1GZX) and root-mean-square fluctuations around the average structure from the simulation trajectories. The four subunits (alpha(1), alpha(2), beta(1), and beta(2)) of HbA maintained structures close to their respective X-ray structures during the simulations even though no constraints were applied to HbA in the simulations. Dimers alpha(1)beta(1) and alpha(2)beta(2) also maintained structures close to their respective X-ray structures while they moved relative to each other like two stacks of dumbbells. The distance between the two dimers (alpha(1)beta(1) and alpha(2)beta(2)) increased by 2 A (7.4%) in the initial 15 ns and stably fluctuated at the distance with the standard deviation 0.2 A. The relative orientation of the two dimers fluctuated between the initial X-ray angle -100 degrees and about -105 degrees with intervals of a few tens of nanoseconds.

  16. Exploring the origin of a large cavity in Abell 1795 using deep Chandra observations

    NASA Astrophysics Data System (ADS)

    Walker, S. A.; Fabian, A. C.; Kosec, P.

    2014-12-01

    We examine deep stacked Chandra observations of the galaxy cluster Abell 1795 (over 700 ks) to study in depth a large (34 kpc radius) cavity in the X-ray emission. Curiously, despite the large energy required to form this cavity (4PV = 4 × 1060 erg), there is no obvious counterpart to the cavity on the opposite side of the cluster, which would be expected if it has formed due to jets from the central active galactic nucleus (AGN) inflating bubbles. There is also no radio emission associated with the cavity, and no metal enhancement or filaments between it and the brightest cluster galaxy, which are normally found for bubbles inflated by AGN which have risen from the core. One possibility is that this is an old ghost cavity, and that gas sloshing has dominated the distribution of metals around the core. Projection effects, particularly the long X-ray bright filament to the south-east, may prevent us from seeing the companion bubble on the opposite side of the cluster core. We calculate that such a companion bubble would easily have been able to uplift the gas in the southern filament from the core. Interestingly, it has recently been found that inside the cavity is a highly variable X-ray point source coincident with a small dwarf galaxy. Given the remarkable spatial correlation of this point source and the X-ray cavity, we explore the possibility that an outburst from this dwarf galaxy in the past could have led to the formation of the cavity, but find this to be an unlikely scenario.

  17. Dislocation imaging for orthopyroxene using an atom-resolved scanning transmission electron microscopy.

    PubMed

    Kumamoto, Akihito; Kogure, Toshihiro; Raimbourg, Hugues; Ikuhara, Yuichi

    2014-11-01

    Dislocations, one-dimensional lattice defects, appear as a microscopic phenomenon while they are formed in silicate minerals by macroscopic dynamics of the earth crust such as shear stress. To understand ductile deformation mechanisms of silicates, atomic structures of the dislocations have been examined using transmission electron microscopy (TEM). Among them, it has been proposed that {100}<001> primary slip system of orthopyroxene (Opx) is dissociated into partial dislocations, and a stacking fault with the clinopyroxene (Cpx) structure is formed between the dislocations. This model, however, has not been determined completely due to the complex structures of silicates. Scanning transmission electron microscopy (STEM) has a potential to determine the structure of dislocations with single-atomic column sensitivity, particularly by using high-angle annular dark field (HAADF) and annular bright field (ABF) imaging with a probing aberration corrector.[1] Furthermore, successive analyses from light microscopy to atom-resolved STEM have been achieved by focused ion beam (FIB) sampling techniques.[2] In this study, we examined dislocation arrays at a low-angle grain boundary of ∼1° rotation about the b-axis in natural deformed Opx using a simultaneous acquisition of HAADF/ABF (JEM-ARM200F, JEOL) equipped with 100 mm2 silicon drift detector (SDD) for energy dispersive X-ray spectroscopy (EDS). Figure 1 shows averaged STEM images viewed along the b- axis of Opx extracted from repeating units. HAADF provides the cation-site arrangement, and ABF distinguishes the difference of slightly rotated SiO4 tetrahedron around the a- axis. This is useful to distinguish the change of stacking sequence between the partial dislocations. Two types of stacking faults with Cpx and protopyroxene (Ppx) structures were identified between three partial dislocations. Furthermore, Ca accumulation in M2 (Fe) site around the stacking faults was detected by STEM-EDS. Interestingly, Ca is distributed not only in these stacking faults but also Opx matrix around the faults. jmicro;63/suppl_1/i17/DFU063F1F1DFU063F1Fig. 1. (a) HAADF and (b) ABF of Opx view of [010] direction with inset simulation images and models of its unit cell (a = 0.52, c = 1.83 nm). © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Long-range two-dimensional superstructure in the superconducting electron-doped cuprate Pr 0.88 LaCe 0.12 CuO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, B. J.; Rosenkranz, S.; Kang, H. J.

    2015-07-01

    Utilizing single-crystal synchrotron x-ray scattering, we observe distorted CuO 2 planes in the electron- doped superconductor Pr 1-xLaCe xCuO 4+δ , x =0.12. Resolution-limited rods of scattering are indicative of a long-range two-dimensional 2√2 × 2√2 superstructure in the a-b plane, adhering to planar space-group symmetry p4gm, which is subject to stacking disorder perpendicular to the planes. This superstructure is present only in annealed, superconducting samples, but not in the as-grown, nonsuperconducting samples. These long-range distortions of the CuO 2 planes, which are generally considered to be detrimental to superconductivity, have avoided detection to date due to the challenges ofmore » observing and interpreting subtle diffuse-scattering features.« less

  19. Optical performance of W/B4C multilayer mirror in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Pradhan, P. C.; Majhi, A.; Nayak, M.

    2018-03-01

    W/B4C x-ray multilayers (MLs) with 300 layer pairs and a period in the range of d = 2-1.6 nm are fabricated and investigated for the x-ray optical element in the soft x-ray regime. The structural analyses of the MLs are carried out by using hard x-ray reflectivity (HXR) measurements at 8.047 keV. Well-defined successive higher order Bragg peaks (up to 3rd order) in HXR data collected up to glancing incidence angles of ˜9° reveal a good quality of the periodic structure. The ML mirrors have an average interface width of ˜0.35 nm and have a compressive residual stress of ˜0.183 GPa and 0. 827 GPa for d = 1.62 nm and d = 1.98 nm, respectively. MLs maintain structural stability over a long time, with a slight increase in interface widths of the W layers by 0.1 nm due to self-diffusion. Soft x-ray reflectivity (SXR) performances are evaluated in the energy range of 650 to 1500 eV. At energy ˜ 1489 eV, measured reflectivities (energy resolution, ΔE) are ˜ 10% (19 eV) and 4.5% (13 eV) at glancing incident angles of 12.07° and 15° for MLs having periods of 1.98 nm and 1.62 nm, respectively. The optical performance from 1600 eV to 4500 eV is theoretically analysed by considering the measured structural parameters. The structure-stress-optical performance is correlated on the basis of the mechanism of film growth. The implications of W/B4C MLs are discussed, particularly with respect to the development of ML optics with high spectral selectivity and reflectance for soft x-ray instruments.

  20. Hard alpha-keratin degradation inside a tissue under high flux X-ray synchrotron micro-beam: a multi-scale time-resolved study.

    PubMed

    Leccia, Emilie; Gourrier, Aurélien; Doucet, Jean; Briki, Fatma

    2010-04-01

    X-rays interact strongly with biological organisms. Synchrotron radiation sources deliver very intense X-ray photon fluxes within micro- or submicro cross-section beams, resulting in doses larger than the MGy. The relevance of synchrotron radiation analyses of biological materials is therefore questionable since such doses, million times higher than the ones used in radiotherapy, can cause huge damages in tissues, with regard to not only DNA, but also proteic and lipid organizations. Very few data concerning the effect of very high X-ray doses in tissues are available in the literature. We present here an analysis of the structural phenomena which occur when the model tissue of human hair is irradiated by a synchrotron X-ray micro-beam. The choice of hair is supported by its hierarchical and partially ordered keratin structure which can be analysed inside the tissue by X-ray diffraction. To assess the damages caused by hard X-ray micro-beams (1 microm(2) cross-section), short exposure time scattering SAXS/WAXS patterns have been recorded at beamline ID13 (ESRF) after various irradiation times. Various modifications of the scattering patterns are observed, they provide fine insight of the radiation damages at various hierarchical levels and also unexpectedly provide information about the stability of the various hierarchical structural levels. It appears that the molecular level, i.e. the alpha helices which are stabilized by hydrogen bonds and the alpha-helical coiled coils which are stabilized by hydrophobic interactions, is more sensitive to radiation than the supramolecular architecture of the keratin filament and the filament packing within the keratin associated proteins matrix, which is stabilized by disulphide bonds. (c) 2009 Elsevier Inc. All rights reserved.

  1. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA.

    PubMed

    Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki

    2016-05-01

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.

  2. Crystal-Packing Trends for a Series of 6,9,12,15,18-Pentaaryl-1-hydro[60]fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Robert D.; Halim, Merissa; Khan, Saeed I.

    2012-06-11

    The relationship between the size of the substituents of aryl groups in a series of fifteen 6,9,12,15,18-pentaaryl-1-hydro[60]fullerenes and the solid-state structures and packing motifs of these compounds has been analyzed. Pentaarylfullerenes have a characteristic “badminton shuttlecock” shape that causes several derivatives to crystallize into columnar stacks. However, many pentaarylfullerenes form non-stacked structures with, for example, dimeric, layered, diamondoid, or feather-in-cavity relationships between molecules. Computational modeling gave a qualitative estimate of the best shape match between the ball and socket surfaces of each pentaarylfullerene. The best match was for pentaarylfullerenes with large, spherically shaped para-substituents on the aryl groups. The seriesmore » of pentaarylfullerenes was characterized by single-crystal X-ray diffraction. A total of 34 crystal structures were obtained as various solvates and were categorized by their packing motifs.« less

  3. Naphthodipyrrolidone (NDP) based conjugated polymers with high electron mobility and ambipolar transport properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haichang; Zhang, Shuo; Mao, Yifan

    Two novel donor–acceptor π-conjugated polymers based on naphthodipyrrolidone (NDP) were synthesized and characterized. The polymers possess low band gaps and suitable molecular orbital levels as ambipolar semiconductors. The thin film organic field effect transistor of NDP polymers exhibited ambipolar transport properties with a high electron mobility up to 0.67 cm 2 V –1 s –1. The grazing-incidence wide-angle X-ray scattering (GIWAXS) studies demonstrated that the polymer molecules pack into a long-range-ordered lamellar structure with isotropically oriented crystalline domains. Thermal annealing promoted edge-on lamellar stacking as evidenced by the increased diffraction intensity along the out-of-plane direction. In conclusion, the polymer withmore » NDP and bithiophene units achieved the best edge-on lamellar stacking after thermal annealing, which yielded the best electron transport performance in this work.« less

  4. Naphthodipyrrolidone (NDP) based conjugated polymers with high electron mobility and ambipolar transport properties

    DOE PAGES

    Zhang, Haichang; Zhang, Shuo; Mao, Yifan; ...

    2017-05-12

    Two novel donor–acceptor π-conjugated polymers based on naphthodipyrrolidone (NDP) were synthesized and characterized. The polymers possess low band gaps and suitable molecular orbital levels as ambipolar semiconductors. The thin film organic field effect transistor of NDP polymers exhibited ambipolar transport properties with a high electron mobility up to 0.67 cm 2 V –1 s –1. The grazing-incidence wide-angle X-ray scattering (GIWAXS) studies demonstrated that the polymer molecules pack into a long-range-ordered lamellar structure with isotropically oriented crystalline domains. Thermal annealing promoted edge-on lamellar stacking as evidenced by the increased diffraction intensity along the out-of-plane direction. In conclusion, the polymer withmore » NDP and bithiophene units achieved the best edge-on lamellar stacking after thermal annealing, which yielded the best electron transport performance in this work.« less

  5. High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates

    NASA Astrophysics Data System (ADS)

    Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.

    2013-09-01

    The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.

  6. A comparison of classical histology to anatomy revealed by hard x-rays

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Tan, Xiaodong; Young, Hunter; Stock, Stuart; Robinson, Alan; Byskosh, Orest; Zheng, Jing; Soriano, Carmen; Xiao, Xianghui; Whitlon, Donna

    2016-10-01

    Many diseases trigger morphological changes in affected tissue. Today, classical histology is still the "gold standard" used to study and describe those changes. Classical histology, however, is time consuming and requires chemical tissue manipulations that can result in significant tissue distortions. It is sometimes difficult to separate tissue-processing artifacts from changes caused by the disease process. We show that synchrotron X-ray phase-contrast micro-computed tomography (micro-CT) can be used to examine non-embedded, hydrated tissue at a resolution comparable to that obtained with classical histology. The data analysis from stacks of reconstructed micro-CT images is more flexible and faster than when using the classical, physically embedded sections that are by necessity fixed in a particular orientation. We show that in a three-dimensional (3D) structure with meticulous structural details such as the cochlea and the kidney, micro-CT is more flexible, faster and more convenient for morphological studies and disease diagnoses.

  7. Partial glass isosymmetry transition in multiferroic hexagonal ErMn O 3

    DOE PAGES

    Barbour, A.; Alatas, A.; Liu, Y.; ...

    2016-02-08

    Ferroelectric transitions of a hexagonal multiferroic, ErMnO 3, are studied by x-ray scattering techniques. An isosymmetry transition, similar to that previously observed for YMnO 3, approximately 300 K below the well-known ferroic transition temperature is investigated. The partial glassy behavior of the isosymmetry transition is identified by appearance of quasi-elastic scattering lines in high-energy-resolution scans. The glassy behavior is further supported by the increased interlayer decorrelation of (√3×√3)R30º ordering below the isosymmetry transition. The transition behavior is considered for possible hidden sluggish modes and two-step phase transitions theoretically predicted for the stacked triangular antiferromagnets. The in-plane azimuthal (orientational) ordering behaviorsmore » were also compared to the theoretical predictions. Coherent x-ray speckle measurements show unambiguously that the domain sizes decrease anomalously near both the isosymmetry and ferroic transitions. However, domain boundary fluctuations increase monotonically with an Arrhenius form with an activation energy of 0.54(5) eV through both transitions.« less

  8. Root Cause Investigation of Lead-Free Solder Joint Interfacial Failures After Multiple Reflows

    NASA Astrophysics Data System (ADS)

    Li, Yan; Hatch, Olen; Liu, Pilin; Goyal, Deepak

    2017-03-01

    Solder joint interconnects in three-dimensional (3D) packages with package stacking configurations typically must undergo multiple reflow cycles during the assembly process. In this work, interfacial open joint failures between the bulk solder and the intermetallic compound (IMC) layer were found in Sn-Ag-Cu (SAC) solder joints connecting a small package to a large package after multiple reflow reliability tests. Systematic progressive 3D x-ray computed tomography experiments were performed on both incoming and assembled parts to reveal the initiation and evolution of the open failures in the same solder joints before and after the reliability tests. Characterization studies, including focused ion beam cross-sections, scanning electron microscopy, and energy-dispersive x-ray spectroscopy, were conducted to determine the correlation between IMC phase transformation and failure initiation in the solder joints. A comprehensive failure mechanism, along with solution paths for the solder joint interfacial failures after multiple reflow cycles, is discussed in detail.

  9. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    DOE PAGES

    Mohacsi, Istvan; Vartiainen, Ismo; Rosner, Benedikt; ...

    2017-03-08

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, single- chip optical devices with 15 andmore » 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Furthermore, beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.« less

  10. Direct observation of conductive filament formation in Alq3 based organic resistive memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busby, Y., E-mail: yan.busby@unamur.be; Pireaux, J.-J.; Nau, S.

    2015-08-21

    This work explores resistive switching mechanisms in non-volatile organic memory devices based on tris(8-hydroxyquinolie)aluminum (Alq{sub 3}). Advanced characterization tools are applied to investigate metal diffusion in ITO/Alq{sub 3}/Ag memory device stacks leading to conductive filament formation. The morphology of Alq{sub 3}/Ag layers as a function of the metal evaporation conditions is studied by X-ray reflectivity, while depth profile analysis with X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry is applied to characterize operational memory elements displaying reliable bistable current-voltage characteristics. 3D images of the distribution of silver inside the organic layer clearly point towards the existence of conductive filamentsmore » and allow for the identification of the initial filament formation and inactivation mechanisms during switching of the device. Initial filament formation is suggested to be driven by field assisted diffusion of silver from abundant structures formed during the top electrode evaporation, whereas thermochemical effects lead to local filament inactivation.« less

  11. Neoplastic transformation of hamster embryo cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Z.; Suzuki, H.; Suzuki, F.; Suzuki, M.; Furusawa, Y.; Kato, T.; Ikenaga, M.

    1998-11-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  12. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  13. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohacsi, Istvan; Vartiainen, Ismo; Rosner, Benedikt

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, single- chip optical devices with 15 andmore » 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Furthermore, beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.« less

  14. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    PubMed Central

    Mohacsi, Istvan; Vartiainen, Ismo; Rösner, Benedikt; Guizar-Sicairos, Manuel; Guzenko, Vitaliy A.; McNulty, Ian; Winarski, Robert; Holt, Martin V.; David, Christian

    2017-01-01

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.

  15. Interlaced zone plate optics for hard X-ray imaging in the 10 nm range

    NASA Astrophysics Data System (ADS)

    Mohacsi, Istvan; Vartiainen, Ismo; Rösner, Benedikt; Guizar-Sicairos, Manuel; Guzenko, Vitaliy A.; McNulty, Ian; Winarski, Robert; Holt, Martin V.; David, Christian

    2017-03-01

    Multi-keV X-ray microscopy has been particularly successful in bridging the resolution gap between optical and electron microscopy. However, resolutions below 20 nm are still considered challenging, as high throughput direct imaging methods are limited by the availability of suitable optical elements. In order to bridge this gap, we present a new type of Fresnel zone plate lenses aimed at the sub-20 and the sub-10 nm resolution range. By extending the concept of double-sided zone plate stacking, we demonstrate the doubling of the effective line density and thus the resolution and provide large aperture, singlechip optical devices with 15 and 7 nm smallest zone widths. The detailed characterization of these lenses shows excellent optical properties with focal spots down to 7.8 nm. Beyond wave front characterization, the zone plates also excel in typical imaging scenarios, verifying their resolution close to their diffraction limited optical performance.

  16. New poly(butylene succinate)/layered silicate nanocomposites: preparation and mechanical properties.

    PubMed

    Ray, Suprakas Sinha; Okamoto, Kazuaki; Maiti, Pralay; Okamoto, Masami

    2002-04-01

    New poly(butylene succinate) (PBS)/layered silicate nanocomposites have been successfully prepared by simple melt extrusion of PBS and octadecylammonium modified montmorillonite (C18-mmt) at 150 degrees C. The d-spacing of both C18-mmt and intercalated nanocomposites was investigated by wide-angle X-ray diffraction analysis. Bright-field transmission electron microscopic study showed several stacked silicate layers with random orientation in the PBS matrix. The intercalated nanocomposites exhibited remarkable improvement of mechanical properties in both solid and melt states as compared with that of PBS matrix without clay.

  17. [Zn(INO) 2(DMF)]·DMF: A new three-dimensional supramolecular open framework containing one-dimensional channels

    NASA Astrophysics Data System (ADS)

    Hong, Jun

    2006-02-01

    A three-dimensional supramolecular compound, [Zn(INO) 2(DMF)]·DMF (1) (INO=isonicotinic acid N-oxide), has been prepared in the DMF solution at room temperature, and characterized by elemental analysis, TG and single crystal X-ray diffraction. The three-dimensional supramolecular open framework of 1 contains rectangular channels with the dimensions of 9.02×10.15 Å, assembled from one-dimensional helical chains via hydrogen-bonding and π-π stacking interactions. Furthermore, compound 1 shows blue photoluminescence at room temperature.

  18. Quantification of eggshell microstructure using X-ray micro computed tomography

    PubMed Central

    Riley, A.; Sturrock, C. J.; Mooney, S. J.

    2014-01-01

    1. X-ray microcomputed tomography can be used to produce rapid, fully analysable, three-dimensional images of biological and other materials without the need for complex or tedious sample preparation and sectioning. We describe the use of this technique to visualise and analyse the microstructure of fragments of shell taken from three regions of chicken eggs (sharp pole, blunt pole and equatorial region). 2. Two- and three-dimensional images and data were obtained at a resolution of 1.5 microns. The images were analysed to provide measurements of shell thickness, the spacial density of mammillary bodies, the frequency, shape, volume and effective diameter of individual pore spaces, and the intrinsic sponginess (proportion of non-X-ray dense material formed by vesicles) of the shell matrix. Measurements of these parameters were comparable with those derived by traditional methods and reported in the literature. 3. The advantages of using this technology for the quantification of eggshell microstructural parameters and its potential application for commercial, research and other purposes are discussed. PMID:24875292

  19. An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko, S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.

    2003-01-01

    We present results from a Chandra observation of the NGC 346 cluster, which is the ionizing source of N66, the most luminous HII region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation: this is more than five times the number of sources detected by previous X-ray surveys. We investigate here their characteristics in detail. The sources possess rather high hardness ratios, and their cumulative luminosity function is steeper than that for the rest of the SMC at higher .luminosities. Their absorption columns suggest that most of the sources belong to NGC346. Using new UBV RI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources and estimated a B spectral type for a large number of these counterparts. This tends to suggest that most of the X-ray sources in the field are in fact X-ray binaries. Finally, some objects show X-ray and/or optical variability, with a need for further monitoring.

  20. [Roentgenological semiotics of sarcoidosis].

    PubMed

    Terpigorev, S A; Stashuk, G A; Dubrova, S E

    2008-01-01

    The aim of this review was to summarize semiotics of X-ray and CT-observable manifestations of intrathoracic sarcoidosis and clarify the role of conventional X-ray examination and CT (including high resolution CT) in the diagnosis of this disease and its complications. Also analysed are changes in pulmonary parenchyma compared with those detected in morphological studies.

  1. xspec_emcee: XSPEC-friendly interface for the emcee package

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremy

    2018-05-01

    XSPEC_EMCEE is an XSPEC-friendly interface for emcee (ascl:1303.002). It carries out MCMC analyses of X-ray spectra in the X-ray spectral fitting program XSPEC (ascl:9910.005). It can run multiple xspec processes simultaneously, speeding up the analysis, and can switch to parameterizing norm parameters in log space.

  2. Satellite services system analysis study. Volume 3A: Service equipment requirements, appendix

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Spacecraft descriptions and mission sequences, mission and servicing operations functional analyses, servicing requirements, and servicing equipment are discussed for five reference satellites: the X-ray Timing Explorer, the Upper Atmospheric Research Satellite, the Advanced X-ray Astrophysics Facility, the Earth Gravity Field Survey Mission, and the Orbiting Astronomical Observatory.

  3. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  4. Observations of the structure and evolution of solar flares with a soft X-ray telescope

    NASA Technical Reports Server (NTRS)

    Vorpahl, J. A.; Gibson, E. G.; Landecker, P. B.; Mckenzie, D. L.; Underwood, J. M.

    1975-01-01

    Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented.

  5. X-rays from the colliding wind binary WR 146

    NASA Astrophysics Data System (ADS)

    Zhekov, Svetozar A.

    2017-12-01

    The X-ray emission from the massive Wolf-Rayet binary (WR 146 ) is analysed in the framework of the colliding stellar wind (CSW) picture. The theoretical CSW model spectra match well the shape of the observed X-ray spectrum of WR 146, but they overestimate considerably the observed X-ray flux (emission measure). This is valid in the case of both complete temperature equalization and partial electron heating at the shock fronts (different electron and ion temperatures), but there are indications for a better correspondence between model predictions and observations for the latter. To reconcile the model predictions and observations, the mass-loss rate of WR 146 must be reduced by a factor of 8-10 compared to the currently accepted value for this object (the latter already takes clumping into account). No excess X-ray absorption is derived from the CSW modelling.

  6. Thick-target bremsstrahlung interpretation of short time-scale solar hard X-ray features

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.

    1983-01-01

    Steady-state analyses of bremsstrahlung hard X-ray production in solar flares are appropriate only if the lifetime of the high energy electrons in the X-ray source is much shorter than the duration of the observed X-ray burst. For a thick-target nonthermal model, this implies that a full time-dependent analysis is required when the duration of the burst is comparable to the collisional lifetime of the injected electrons, in turn set by the lengths and densities of the flaring region. In this paper we present the results of such a time-dependent analysis, and we point out that the intrinsic temporal signature of the thick-target production mechanism, caused by the finite travel time of the electrons through the target, may indeed rule out such a mechanism for extremely short duration hard X-ray events.

  7. XAP, a program for deconvolution and analysis of complex X-ray spectra

    USGS Publications Warehouse

    Quick, James E.; Haleby, Abdul Malik

    1989-01-01

    The X-ray analysis program (XAP) is a spectral-deconvolution program written in BASIC and specifically designed to analyze complex spectra produced by energy-dispersive X-ray analytical systems (EDS). XAP compensates for spectrometer drift, utilizes digital filtering to remove background from spectra, and solves for element abundances by least-squares, multiple-regression analysis. Rather than base analyses on only a few channels, broad spectral regions of a sample are reconstructed from standard reference spectra. The effects of this approach are (1) elimination of tedious spectrometer adjustments, (2) removal of background independent of sample composition, and (3) automatic correction for peak overlaps. Although the program was written specifically to operate a KEVEX 7000 X-ray fluorescence analytical system, it could be adapted (with minor modifications) to analyze spectra produced by scanning electron microscopes, electron microprobes, and probes, and X-ray defractometer patterns obtained from whole-rock powders.

  8. Probing high-redshift clusters with HST/ACS gravitational weak-lensing and Chandra x-ray observations

    NASA Astrophysics Data System (ADS)

    Jee, Myungkook James

    2006-06-01

    Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.

  9. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Chen, Yu-Sheng; Phelan, D.; Zheng, Hong; Norman, M. R.; Mitchell, J. F.

    2016-08-01

    The quasi-2D nickelate La4Ni3O8 (La-438), consisting of trilayer networks of square planar Ni ions, is a member of the so-called T' family, which is derived from the Ruddlesden-Popper (R-P) parent compound La4Ni3O10-x by removing two oxygen atoms and rearranging the rock salt layers to fluorite-type layers. Although previous studies on polycrystalline samples have identified a 105-K phase transition with a pronounced electronic and magnetic response but weak lattice character, no consensus on the origin of this transition has been reached. Here, we show using synchrotron X-ray diffraction on high-pO2 floating zone-grown single crystals that this transition is associated with a real space ordering of charge into a quasi-2D charge stripe ground state. The charge stripe superlattice propagation vector, q = (2/3, 0, 1), corresponds with that found in the related 1/3-hole doped single-layer R-P nickelate, La5/3Sr1/3NiO4 (LSNO-1/3; Ni2.33+), with orientation at 45° to the Ni-O bonds. The charge stripes in La-438 are weakly correlated along c to form a staggered ABAB stacking that reduces the Coulomb repulsion among the stripes. Surprisingly, however, we find that the charge stripes within each trilayer of La-438 are stacked in phase from one layer to the next, at odds with any simple Coulomb repulsion argument.

  10. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

    1991-01-01

    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

  11. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    PubMed

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  12. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NASA Astrophysics Data System (ADS)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  13. X-Ray Diffraction Reference Intensity Ratios of Amorphous and Poorly Crystalline Phases: Implications for CheMin on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.

  14. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    NASA Astrophysics Data System (ADS)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  15. The Si/CdTe semiconductor camera of the ASTRO-H Hard X-ray Imager (HXI)

    NASA Astrophysics Data System (ADS)

    Sato, Goro; Hagino, Kouichi; Watanabe, Shin; Genba, Kei; Harayama, Atsushi; Kanematsu, Hironori; Kataoka, Jun; Katsuragawa, Miho; Kawaharada, Madoka; Kobayashi, Shogo; Kokubun, Motohide; Kuroda, Yoshikatsu; Makishima, Kazuo; Masukawa, Kazunori; Mimura, Taketo; Miyake, Katsuma; Murakami, Hiroaki; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Onishi, Mitsunobu; Saito, Shinya; Sato, Rie; Sato, Tamotsu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin`ichiro; Yuasa, Takayuki

    2016-09-01

    The Hard X-ray Imager (HXI) is one of the instruments onboard the ASTRO-H mission [1-4] to be launched in early 2016. The HXI is the focal plane detector of the hard X-ray reflecting telescope that covers an energy range from 5 to 80 keV. It will execute observations of astronomical objects with a sensitivity for point sources as faint as 1/100,000 of the Crab nebula at > 10 keV. The HXI camera - the imaging part of the HXI - is realized by a hybrid semiconductor detector system that consists of silicon (Si) and cadmium telluride (CdTe) semiconductor detectors. Here, we present the final design of the HXI camera and report on the development of the flight model. The camera is composed of four layers of Double-sided Silicon Strip Detectors (DSSDs) and one layer of CdTe Double-sided Strip Detector (CdTe-DSD), each with an imaging area of 32 mm×32 mm. The strip pitch of the Si and CdTe sensors is 250 μm, and the signals from all 1280 strips are processed by 40 Application Specified Integrated Circuits (ASICs) developed for the HXI. The five layers of sensors are vertically stacked with a 4 mm spacing to increase the detection efficiency. The thickness of the sensors is 0.5 mm for the Si, and 0.75 mm for the CdTe. In this configuration, soft X-ray photons will be absorbed in the Si part, while hard X-ray photons will go through the Si part and will be detected in the CdTe part. The design of the sensor trays, peripheral circuits, power connections, and readout schemes are also described. The flight models of the HXI camera have been manufactured, tested and installed in the HXI instrument and then on the satellite.

  16. An Archival Chandra and XMM-Newton Survey of Type 2 Quasars

    NASA Technical Reports Server (NTRS)

    Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy; Zakamska, Nadia L.

    2013-01-01

    In order to investigate obscuration in high-luminosity type 2 active galactic nuclei (AGNs), we analyzed Chandra and XMM-Newton archival observations for 71 type 2 quasars detected at 0.05 < z < 0.73, which were selected based on their [O III] lambda5007 emission lines. For 54 objects with good spectral fits, the observed hard X-ray luminosity ranges from 2 × 10(exp 41) to 5.3 × 10(exp 44) erg s(exp -1), with a median of 1.1 × 10(exp 43) erg s(exp -1). We find that the means of the column density and photon index of our sample are log N(sub H) = 22.9 cm(exp -2) and gamma = 1.87, respectively. From simulations using a more physically realistic model, we find that the absorbing column density estimates based on simple power-law models significantly underestimate the actual absorption in approximately half of the sources. Eleven sources show a prominent Fe K alpha emission line (EW>100 eV in the rest frame) and we detect this line in the other sources through a joint fit (spectral stacking). The correlation between the Fe K alpha and [O III] fluxes and the inverse correlation of the equivalent width of the Fe Ka line with the ratio of hard X-ray and [O III] fluxes is consistent with previous results for lower luminosity Seyfert 2 galaxies. We conclude that obscuration is the cause of the weak hard X-ray emission rather than intrinsically low X-ray luminosities. We find that about half of the population of optically selected type 2 quasars are likely to be Compton thick. We also find no evidence that the amount of X-ray obscuration depends on the AGN luminosity (over a range of more than three orders of magnitude in luminosity).

  17. X-ray diffraction, inelastic neutron scattering (INS) and infrared (IR) studies on 2:1 hexamethylbenzene (HMB) tetracyanoethylene (TCNE) complex

    NASA Astrophysics Data System (ADS)

    Pawlukojć, A.; Sawka-Dobrowolska, W.; Bator, G.; Sobczyk, L.; Grech, E.; Nowicka-Scheibe, J.

    2006-09-01

    The structure of the 2:1 hexamethylbenzene (HMB)-tetracyanoethylene (TCNE) complex was determined at 100 K. In the crystalline lattice the molecules of HMB (D) and TCNE (A) are arranged in DDADDADD stacks along the b-axis. Based on the red shift of the ν(C tbnd N) IR frequencies the charge transfer (CT) degree ( Z) was estimated to be equal to 0.14. It is markedly higher than that for the complex of HMB with tetracyanoquinodimethane (TCNQ) for which Z = 0.06. The analysis of vibrational modes connected with torsional motion in the low frequency region was performed based on the inelastic neutron scattering (INS) experiments and DFT theoretical calculations. The correlation between νexp/ νcalc and νcalc shows a deviation of experimental values from calculated ones. It is the higher the lower is the frequency of the analysed mode. The comparison of correlations for neat HMB and its complexes with TCNQ and TCNE suggests that some role in decreasing the barrier to rotation can be played by the charge transfer between D and A molecules.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.

    This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less

  19. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernier, Nicolas, E-mail: n.bernier@yahoo.fr; Xhoffer, Chris; Van De Putte, Tom, E-mail: tom.vandeputte@arcelormittal.com

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters ofmore » aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn{sup 2+} and Mn{sup 3+} are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN){sub x}(SiMn{sub 0.25}N{sub y}O{sub z}){sub 1−x} with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn{sup 2+} and Mn{sup 3+}. • Oxygen incorporation is invoked to account for the thermal stability of (Al,Si,Mn)N.« less

  20. The hard x-ray imager (HXI) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Nakazawa, Kazuhiro; Sato, Goro; Kokubun, Motohide; Enoto, Teruaki; Fukazawa, Yasushi; Hagino, Kouichi; Harayama, Atsushi; Hayashi, Katsuhiro; Kataoka, Jun; Katsuta, Junichiro; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Rie; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Watanabe, Shin; Yamaoka, Kazutaka; Yatsu, Yoichi; Yuasa, Takayuki

    2016-07-01

    Hitomi X-ray observatory launched in 17 February 2016 had a hard X-ray imaging spectroscopy system made of two hard X-ray imagers (HXIs) coupled with two hard X-ray telescopes (HXTs). With 12 m focal length, they provide fine (2' half-power diameter; HPD) imaging spectroscopy at 5 to 80 keV. The HXI main imagers are made of 4 layers of Si and a CdTe semiconductor double-sided strip detectors, stacked to enhance detection efficiency as well as to enable photon interaction-depth sensing. Active shield made of 9 BGO scintillators surrounds the imager to provide with low background. Following the deployment of the Extensible Optical Bench (EOB) on 28 February, the HXI was gradually turned on. Two imagers successfully started observation on 14 March, and was operational till the incident lead to Hitomo loss, on 26 March. All detector channels, 1280 ch of imager and 11 channel of active shields and others each, worked well and showed performance consistent with those seen on ground. From the first light observation of G21.5-0.9 and the following Crab observations, 5-80 keV energy coverage and good detection efficiency were confirmed. With blank sky observations, we checked our background level. In some geomagnetic region, strong background continuum, presumably caused by trapped electron with energy 100 keV, is seen. But by cutting the high-background time-intervals, the background became significantly lower, typically with 1-3 x 10-4 counts s-1 keV-1 cm-2 (here cm2 is shown with detector geometrical area). Above 30 keV, line and continuum emission originating from activation of CdTe was significantly seen, though the level of 1-4 x 10-4 counts s-1 keV-1 cm-2 is still comparable to those seen in NuSTAR. By comparing the effective area and background rate, preliminary analysis shows that the HXI had a statistical sensitivity similar to NuSTAR for point sources, and more than twice better for largely extended sources.

  1. Ionothermal synthesis of open-framework metal phosphates with a Kagomé lattice network exhibiting canted anti-ferromagnetism† †Electronic supplementary information (ESI) available: Cif files, atomic parameters, X-ray diffraction patterns, IR spectra, TG curves, and thermal ellipsoid plot and atomic label schemes of compound 1–4. See DOI: 10.1039/c4tc00290c Click here for additional data file.

    PubMed Central

    Wang, Guangmei; Valldor, Martin; Mallick, Bert

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4 + ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (T c = 10 or 13 K for Co and T c = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+. PMID:25580250

  2. Projection of the Liquidus Surface of the Co - Sn - Bi System

    NASA Astrophysics Data System (ADS)

    Abilov, Ch. I.; Allazov, M. R.; Sadygova, S. G.

    2016-11-01

    The crystallization behavior of phases in alloys of the Co - Sn - Bi system is studied by the methods of differential thermal (DTA), x-ray phase (XRP) and x-ray diffraction (XRD) analyses and hardness measurement. The projection of the liquidus surface is plotted. The boundaries of layering, the development of the monovariant processes, and the coordinates of the nonvariant equilibrium compositions are determined. Compositions of (Co3Sn2)1 - x Bi x solid solutions suitable for the production of antifriction materials are suggested.

  3. T-ReX Spies the Stars of 30 Doradus

    NASA Astrophysics Data System (ADS)

    Broos, Patrick; Townsley, Leisa K.; Pollock, Andrew; Crowther, Paul

    2017-08-01

    30 Doradus (the Tarantula Nebula) is the Local Group's most massive young star-forming complex. At its heart is R136, the most massive resolved stellar cluster; R136 contains, in turn, the most massive stars known. The Chandra X-ray Observatory has recently observed 30 Dor for the 2-megasecond X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX). This deep observation exploits Chandra's fine spatial resolution to study the full complement of massive stars and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst. Here we give preliminary results from the ongoing analyses of the data, focusing on the massive stars. While many remain undetected even in this deep ACIS-I observation, a few show dramatic X-ray lightcurves and/or high luminosities befitting this amazing starburst cluster.

  4. Imaging Performance Analysis of Simbol-X with Simulations

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Roques, J. P.

    2009-05-01

    Simbol-X is an X-Ray telescope operating in formation flight. It means that its optical performances will strongly depend on the drift of the two spacecrafts and its ability to measure these drifts for image reconstruction. We built a dynamical ray tracing code to study the impact of these parameters on the optical performance of Simbol-X (see Chauvin et al., these proceedings). Using the simulation tool we have developed, we have conducted detailed analyses of the impact of different parameters on the imaging performance of the Simbol-X telescope.

  5. Relationship between radiation dose reduction and image quality change in photostimulable phosphor luminescence X-ray imaging systems.

    PubMed

    Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I

    2010-05-01

    The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.

  6. Very low emissions of airborne particulate pollutants measured from two municipal solid waste incineration plants in Switzerland

    NASA Astrophysics Data System (ADS)

    Setyan, Ari; Patrick, Michael; Wang, Jing

    2017-10-01

    A field campaign has been performed in two municipal solid waste incineration (MSWI) plants in Switzerland, at Hinwil (ZH) and Giubiasco (TI). The aim was to measure airborne pollutants at different locations of the abatement systems (including those released from the stacks into the atmosphere) and at a near-field (∼1 km) downwind site, in order to assess the efficiency of the abatement systems and the environmental impact of these plants. During this study, we measured the particle number concentration with a condensation particle counter (CPC), and the size distribution with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). We also sampled particles on filters for subsequent analyses of the morphology, size and elemental composition with a scanning electron microscope coupled to an energy dispersive X-ray spectroscope (SEM/EDX), and of water soluble ions by ion chromatography (IC). Finally, volatile organic compounds (VOCs) were sampled on adsorbing cartridges and analyzed by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS), and a portable gas analyzer was used to monitor NO, SO2, CO, CO2, and O2. The particle concentration decreased significantly at two locations of the plants: at the electrostatic precipitator and the bag-house filter. The particle concentrations measured at the stacks were very low (<100 #/cm3), stressing the efficiency of the abatement system of the two plants. At Hinwil, particles sampled at the stack were mainly constituted of NaCl and KCl, two salts known to be involved in the corrosion process in incinerators. At Giubiasco, no significant differences were observed for the morphology and chemical composition of the particles collected in the ambient background and at the downwind site, suggesting that the incineration plant released very limited amounts of particles to the surrounding areas.

  7. [Analysis of 14 elements for Jinhua bergamot by X-ray fluorescence spectrometry and elemental analyser].

    PubMed

    Wang, Zhi-gang; Yu, Hong-mei

    2012-01-01

    The content of the elements C, H, O and N in Jinhua bergamot was analysed by using Vario III elemental analyser, the bergamot sample was scanned by using X-ray fluorescence spectrometer with PW2400 wavelength dispersion, and the content of the elements Mg, Al, P, S, Cl, K, Ca, Mn, Fe and Sr was analysed by using IQ+ analytical method. It turned out that the result is more ideal if the content of the elements C, H, O and N is processed as fix phase, and the analytical result is more ideal if, to prevent the sample skin from coming off, the sample is wrapped with mylar film with the film coefficient adjusted.

  8. Complex UV/X-ray variability of 1H 0707-495

    NASA Astrophysics Data System (ADS)

    Pawar, P. K.; Dewangan, G. C.; Papadakis, I. E.; Patil, M. K.; Pal, Main; Kembhavi, A. K.

    2017-12-01

    We study the relationship between the UV and X-ray variability of the narrow-line Seyfert 1 galaxy 1H 0707-495. Using a year-long Swift monitoring and four long XMM-Newton observations, we perform cross-correlation analyses of the UV and X-ray light curves, on both long and short time-scales. We also perform time-resolved X-ray spectroscopy on 1-2 ks scale, and study the relationship between the UV emission and the X-ray spectral components - soft X-ray excess and a power law. We find that the UV and X-ray variations anticorrelate on short, and possibly on long time-scales as well. Our results rule out reprocessing as the dominant mechanism for the UV variability, as well as the inward propagating fluctuations in the accretion rate. Absence of a positive correlation between the photon index and the UV flux suggests that the observed UV emission is unlikely to be the seed photons for the thermal Comptonization. We find a strong correlation between the continuum flux and the soft-excess temperature which implies that the soft excess is most likely the reprocessed X-ray emission in the inner accretion disc. Strong X-ray heating of the innermost regions in the disc, due to gravitational light bending, appears to be an important effect in 1H 0707-495, giving rise to a significant fraction of the soft excess as reprocessed thermal emission. We also find indications for a non-static, dynamic X-ray corona, where either the size or height (or both) vary with time.

  9. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  10. Study of Lead as a Source X-ray Radiation Protection with an Analysis Grey Level Image

    NASA Astrophysics Data System (ADS)

    Susilo; Rahma, I. N.; Mosik; Masturi

    2017-04-01

    X-ray utilization in the medical field still has a potential danger for the human. This occurs when exposure to x-ray radiation received exceeds the dose limit value. It required a radiation shielding to prevent the hazard, and lead is one of the metals usually used as x-ray radiation shield. This work aims to determine the metallic lead properties to find out of the step wedge lead radiograph image. The instruments used are the plane x-ray, digital radiography system and personal computer installed by MATLAB, while the material is step wedge lead. The image of radiograph was analysed using GUI applications on MATLAB software to determine the values of grey level from the image and the optical density of the radiograph image. The results showed the greater optical density, the higher the image contrast, and the value of optical density in the image is inversely proportional to the voltage x-ray since the value of grey level at high voltage is smaller than that of at low voltage.

  11. Final Technical Report

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1997-01-01

    We have analysed ROSAT X-ray data for a small sample of starburst galaxies in order to understand the physical origin of the X-ray emission and probe the physics and phenomenology of galactic-scale outflows of hot gas ('superwinds') that are driven by tile mechanical energy supplied by the ensemble of supernovae in the starbursts. We have found that the X-ray emission in the ROSAT energy band comes from a population of compact hard sources (most likely X-ray binaries) and hot diffuse gas with a temperature ranging from a few to ten million K. This gas is spatially-extended on galactic scales and its properties are entirely consistent with theoretical expectations for a starburst-driven superwind. The starbursts studied span a range of roughly 1000 in bolometric luminosity and are hosted by galaxies ranging from dwarfs through L* spirals through ma,ior galactic mergers. The X-ray properties of these o@jecls scale in a natural way with the luminosity of tile starburst: more powerful starbursts are more X-ray luminous and create hot outflowing gas whose energy content is likewise larger.

  12. MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JONES,K.W.; FENG,H.

    2000-12-01

    High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less

  13. [X-ray semiotics of the morphological and functional changes in chronic bronchitis].

    PubMed

    Khomenko, A G; Dmitrieva, L I; Polak, J; Gapon'ko, G A; Starilova, I P

    1985-01-01

    The authors analysed structural disorders of a pulmonary pattern in patients with non-obstructive, obstructive and purulent bronchitis. Characteristic x-ray symptom-complexes were singled out for each clinical variant of the disease. In addition to roentgenomorphological changes functional disorders showing changes of biomechanics in patients with chronic bronchitis were revealed at roentgenopneumopolygraphy.

  14. Photodetector having high speed and sensitivity

    DOEpatents

    Morse, Jeffrey D.; Mariella, Jr., Raymond P.

    1991-01-01

    The present invention provides a photodetector having an advantageous combination of sensitivity and speed; it has a high sensitivity while retaining high speed. In a preferred embodiment, visible light is detected, but in some embodiments, x-rays can be detected, and in other embodiments infrared can be detected. The present invention comprises a photodetector having an active layer, and a recombination layer. The active layer has a surface exposed to light to be detected, and comprises a semiconductor, having a bandgap graded so that carriers formed due to interaction of the active layer with the incident radiation tend to be swept away from the exposed surface. The graded semiconductor material in the active layer preferably comprises Al.sub.1-x Ga.sub.x As. An additional sub-layer of graded In.sub.1-y Ga.sub.y As may be included between the Al.sub.1-x Ga.sub.x As layer and the recombination layer. The recombination layer comprises a semiconductor material having a short recombination time such as a defective GaAs layer grown in a low temperature process. The recombination layer is positioned adjacent to the active layer so that carriers from the active layer tend to be swept into the recombination layer. In an embodiment, the photodetector may comprise one or more additional layers stacked below the active and recombination layers. These additional layers may include another active layer and another recombination layer to absorb radiation not absorbed while passing through the first layers. A photodetector having a stacked configuration may have enhanced sensitivity and responsiveness at selected wavelengths such as infrared.

  15. Perpendicular magnetic anisotropy in Mo/Co2FeAl0.5Si0.5/MgO/Mo multilayers with optimal Mo buffer layer thickness

    NASA Astrophysics Data System (ADS)

    Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.

    2018-05-01

    Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.

  16. Fabrication and Characterization of CZTS Thin Films Prepared by the Sulfurization of RF-Sputtered Stacked Metal Precursors

    NASA Astrophysics Data System (ADS)

    Abusnina, Mohamed; Moutinho, Helio; Al-Jassim, Mowafak; DeHart, Clay; Matin, Mohammed

    2014-09-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were prepared by the sulfurization of metal precursors deposited sequentially via radio frequency magnetron sputtering on Mo-coated soda-lime glass. The stack order of the precursors was Mo/Zn/Sn/Cu. Sputtered precursors were annealed in sulfur atmosphere with nine different conditions to study the impact of sulfurization time and substrate temperature on the structural, morphological, and optical properties of the final CZTS films. X-ray fluorescence was used to determine the elemental composition ratio of the metal precursors. Final CZTS films were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). XRD and EDS were combined to investigate the films' structure and to identify the presence of secondary phases. XRD analysis indicated an improvement in film crystallinity with an increase of the substrate temperature and annealing times. Also indicated was the minimization and/or elimination of secondary phases when the films experienced longer annealing time. EDS revealed slight Sn loss in films sulfurized at 550°C; however, an increase of the sulfurization temperature to 600°C did not confirm these results. SEM study showed that films treated with higher temperatures exhibited dense morphology, indicating the completion of the sulfurization process. The estimated absorption coefficient was on the order of 104 cm-1 for all CZTS films, and the values obtained for the optical bandgap energy of the films were between 1.33 eV and 1.52 eV.

  17. Synthesis and crystal structure of a new aluminum-silicon-nitride phosphor containing boron, Ba5B2Al4Si32N52:Eu

    NASA Astrophysics Data System (ADS)

    Yoshimura, Fumitaka; Yamane, Hisanori; Nagasako, Makoto

    2017-07-01

    Single crystals of Ba5B2Al4Si32N52:Eu were grown on the wall of a boron nitride crucible by heating a starting mixture of binary nitrides at 2050 °C and a N2 pressure of 0.85 MPa. The fundamental reflections of X-ray diffraction (XRD) for the crystals were indexed with triclinic cell parameters, a=9.7879(11) Å, b=9.7920(11) Å, c=12.7226(15) Å, α=96.074(4)°, β=112.330(3)°, and γ=94.080(4)°. Streak lines were observed between the fundamental reflections in the direction of the c* axis in the oscillation XRD images and selected area electron diffraction (SAED) patterns, indicating stacking faults in the structure. The atomic images of stacking faults with a slip system of (0 0 1)[-1 1 0]/3, and displacement of a Ba atom layer with (0 0 1)[-1 -1 0]/6 were observed with a scanning transmission electron microscope (STEM). The models of the basic (normal-stacking) structure with space group P1 and local structures of the stacking faults are herein presented. The single crystals emitted blue light with a peak wavelength of 472 nm and a full width at half maximum of 78 nm under 365 nm excitation.

  18. Formation of an 18R long-period stacking ordered structure in rapidly solidified Mg{sub 88}Y{sub 8}Zn{sub 4} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcés, Gerardo, E-mail: ggarces@cenim.csic.es

    The formation of the long-period stacking ordered structure (LPSO) in a Mg{sub 88}Y{sub 8}Zn{sub 4}(at%) ribbon produced by melt spinning was studied using high energy X-ray synchrotron radiation diffraction during in-situ isochronal heating and transmission electron microscopy. The microstructure of the rapidly solidified ribbons is characterised by fine magnesium grains with yttrium and zinc in solid solution and primary 18R LPSO-phase segregated at grain boundaries. Using differential scanning calorimetry, a strong exothermal peak was observed around 300 °C which was associated with the development of the 18R-type LPSO-phase in the magnesium grains. The apparent activation energy calculated using the Kissingermore » model was 125 KJmol{sup −1} and it is related to simultaneous diffusion of Y and Zn through magnesium basal plane. - Highlights: •The formation of the LPSO phase in rapidly solidified ribbons was studied. •The formation of the 18R LPSO starts at around 300 °C. •LPSO formation have to steps: Stacking faults along basal plane and then growth of 18R structure along the c direction.« less

  19. Rearrangement of van der Waals stacking and formation of a singlet state at T = 90 K in a cluster magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheckelton, John P.; Plumb, Kemp W.; Trump, Benjamin A.

    Insulating Nb3Cl8 is a layered chloride consisting of two-dimensional triangular layers of Seff = 1/2 Nb3Cl13 clusters at room temperature. Magnetic susceptibility measurement show a sharp, hysteretic drop to a temperature independent value below T = 90 K. Specific heat measurements show that the transition is first order, with ΔS ≈ 5 J K-1 mol-1 f.u.-1, and a low temperature T-linear contribution originating from defect spins. Neutron and X-ray diffraction show a lowering of symmetry from trigonal P[3 with combining macron]m1 to monoclinic C2/m symmetry, with a change in layer stacking from –AB–AB– to –AB'–BC'–CA'– and no observed magnetic order.more » This lowering of symmetry and rearrangement of successive layers evades geometric magnetic frustration to form a singlet ground state. It is the lowest temperature at which a change in stacking sequence is known to occur in a van der Waals solid, occurs in the absence of orbital degeneracies, and suggests that designer 2-D heterostructures may be able to undergo similar phase transitions.« less

  20. TAKASAGO-6 apparatus for cryogenic coherent X-ray diffraction imaging of biological non-crystalline particles using X-ray free electron laser at SACLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka

    Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less

  1. Optical and X-ray early follow-up of ANTARES neutrino alerts

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaš, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Klotz, A.; Boer, M.; Le Van Suu, A.; Akerlof, C.; Zheng, W.; Evans, P.; Gehrels, N.; Kennea, J.; Osborne, J. P.; Coward, D. M.

    2016-02-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

  2. Optical and X-ray early follow-up of ANTARES neutrino alerts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adrián-Martínez, S.; Ardid, M.; Ageron, M.

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from amore » single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.« less

  3. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    USGS Publications Warehouse

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  4. One step Pd(0)-catalyzed synthesis, X-ray analysis, and photophysical properties of cyclopent[hi]aceanthrylene: fullerene-like properties in a nonalternant cyclopentafused aromatic hydrocarbon.

    PubMed

    Dang, Hung; Levitus, Marcia; Garcia-Garibay, Miguel A

    2002-01-09

    A simple procedure for the synthesis of cyclopentafused polycyclic aromatic hydrocarbons (CP-PAH) with Pd(PPh(3))(2)Cl(2) catalyst has been applied to the one-pot palladium(0)-catalyzed coupling of 9,10-dibromoanthracene (1) with 2-methyl-3-butyn-2-ol. Reactions carried out in refluxing benzene in the presence of CuSO(4)/Al(2)O(3) yielded 9,10-dialkynylanthracene 2a, alkynyl aceanthrylene 2b, and 2,7-disubstituted cyclopent[hi]aceanthrylene 2c in 13%, 23%, and 19% purified yields, respectively, with total conversions of 80-90%. Sealed tube reactions without copper at 110 degrees C improved the yield of 2c up to >75%. Single-crystal X-ray analyses of 2a and 2c reveal a three-dimensional hydrogen bonding network, producing a unique crystal packing. The packing structure of 2b is dominated by pi-pi stacking interactions between two aceanthrylene molecules. CP-PAHs 2b and 2c have potentially interesting fullerene-like photophysics. While the UV-vis and fluorescence spectra of 2a (Phi(F) = 0.87) show the characteristic vibronic structure of anthracene, the UV-vis spectra of ruby-red aceanthrylene 2b and greenish-black cyclopent[hi]aceanthrylene 2c extend well into the visible range. Isomers 2b and 2c showed no detectable fluorescence emission. Unlike fullerenes, compounds 2b and 2c are poor singlet oxygen sensitizers with measured (1)O(2) quantum yields of 0.02 and 0.06, respectively. As expected from a simple Hückel analysis, 2c has relatively low two-electron reduction potentials as determined by cyclic voltammetry.

  5. On the nature of the reversibility of hydration-dehydration on the crystal structure and magnetism of the ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6].H2O.

    PubMed

    Yoshida, Yusuke; Inoue, Katsuya; Kurmoo, Mohamedally

    2009-01-05

    We report the synthesis, crystal structure, and thermal and magnetic properties of the two-dimensional achiral soft ferrimagnet [Mn(II)(enH)(H(2)O)][Cr(III)(CN)(6)].H(2)O (1), en = 1,2-diaminoethane, as well as the recyclability of the dehydration and rehydration and their influence on the crystal structure and its magnetic properties. Unlike [Mn(S-pnH)(H(2)O)][Cr(CN)(6)].H(2)O (2S, pn = 1,2-diaminopropane), which is a chiral (P2(1)2(1)2(1)) enantiopure ferrimagnet (T(C) = 38 K), 1 crystallizes in the achiral orthorhombic Pcmn space group, having a similar two-dimensional square network of Mn-Cr with bridging cyanide, and 1 behaves also as a soft ferrimagnet (T(C) = 42 K). X-ray diffraction experiments on a single crystal of 1 indicate a transformation from a single crystal to an amorphous phase upon dehydrataion and partial recovery of its crystallinity upon rehydration. The dehydrated phase 1-DP exhibits long-range ordering at 75 K to a ferrimagnetic state and coercive field at 2 K of 100 Oe, which are a higher critical temperature and coercive field than for the virgin sample (H(C) = 60 Oe). Thermogravimetric analyses indicate that the crystallinity deteriorates upon hydration-dehydration cycling, with persistence toward the amorphous phase, as also seen by magnetization measurements. This effect is associated with an increase of statistical disorder inherent in the dehydration-rehydration process. X-ray powder diffraction suggests that 1-DP may retain order within the layers but loses coherence in the stacking of the layers.

  6. Tunable optical properties of plasmonic Au/Al2O3 nanocomposite thin films analyzed by spectroscopic ellipsometry accounting surface characteristics.

    PubMed

    Jaiswal, Jyoti; Mourya, Satyendra; Malik, Gaurav; Chandra, Ramesh

    2018-05-01

    In the present work, we have fabricated plasmonic gold/alumina nanocomposite (Au/Al 2 O 3 NC) thin films on a glass substrate at room temperature by RF magnetron co-sputtering. The influence of the film thickness (∼10-40  nm) on the optical and other physical properties of the samples was investigated and correlated with the structural and compositional properties. The X-ray diffractometer measurement revealed the formation of Au nanoparticles with average crystallite size (5-9.2 nm) embedded in an amorphous Al 2 O 3 matrix. The energy-dispersive X ray and X-ray photoelectron spectroscopy results confirmed the formation of Au/Al 2 O 3 NC quantitatively and qualitatively and it was observed that atomic% of Au increased by increasing thickness. The optical constants of the plasmonic Au/Al 2 O 3 NC thin films were examined by variable angle spectroscopic ellipsometry in the wide spectral range of 246-1688 nm, accounting the surface characteristics in the optical stack model, and the obtained results are expected to be unique. Additionally, a thickness-dependent blueshift (631-590 nm) of surface plasmon resonance peak was observed in the absorption spectra. These findings of the plasmonic Au/Al 2 O 3 NC films may allow the design and fabrication of small, compact, and efficient devices for optoelectronic and photonic applications.

  7. PALOMA: A Magnetic CV between Polars and Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Joshi, Arti; Pandey, J. C.; Singh, K. P.; Agrawal, P. C.

    2016-10-01

    We present analyses of archival X-ray data obtained from the XMM-Newton satellite and optical photometric data obtained from 1 m class telescopes of ARIES, Nainital of a magnetic cataclysmic variable (MCV) Paloma. Two persistent periods at 156 ± 1 minutes and 130 ± 1 minutes are present in the X-ray data, which we interpret as the orbital and spin periods, respectively. These periods are similar to those obtained from the previous as well as new optical photometric observations. The soft-X-ray excess seen in the X-ray spectrum of Paloma and the averaged X-ray spectra are well fitted by two-temperature plasma models with temperatures of {0.10}-0.01+0.02 and {13.0}-0.5+0.5 keV with an Fe Kα line and an absorbing column density of 4.6 × 1022 cm-2. This material partially covers 60 ± 2% of the X-ray source. We also present the orbital and spin-phase-resolved spectroscopy of Paloma in the 0.3{--}10.0 {keV} energy band and find that the X-ray spectral parameters show orbital and spin-phase dependencies. New results obtained from optical and X-ray studies of Paloma indicate that it belongs to a class of a few magnetic CVs that seem to have the characteristics of both the polars and the intermediate polars.

  8. SPIDERS: the spectroscopic follow-up of X-ray-selected clusters of galaxies in SDSS-IV

    DOE PAGES

    Clerc, N.; Merloni, A.; Zhang, Y. -Y.; ...

    2016-09-05

    SPIDERS (The SPectroscopic IDentification of ERosita Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (~7500 deg 2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This study describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (~10 14–10 15 M⊙) galaxy clusters discovered in ROSAT and XMM–Newton imaging. The immediate aim is to determine precisemore » (Δz ~ 0.001) redshifts for 4000–5000 of these systems out to z ~ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. Finally, we discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX–σ) relation and the building of stacked phase-space diagrams.« less

  9. Magnetized Disk Winds in NGC 3783

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 kilosecond stacked Chandra/HETG (High-Energy Transmission Grating) spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2-dimension (2-D) magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination theta (sub obs) and wind density normalization n (sub o). Considering the most significant absorption features in the approximately 1.8-20 angstrom range, we show that the MHD wind is best described by n(r) approximately equal to 6.9 times 10 (sup 11) (r/r (sub o)) (sup - 1.15) cubic centimeters and theta (sub obs). We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  10. Magnetized Disk Winds in NGC 3783

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis

    2018-01-01

    We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.

  11. SPIDERS: the spectroscopic follow-up of X-ray selected clusters of galaxies in SDSS-IV

    NASA Astrophysics Data System (ADS)

    Clerc, N.; Merloni, A.; Zhang, Y.-Y.; Finoguenov, A.; Dwelly, T.; Nandra, K.; Collins, C.; Dawson, K.; Kneib, J.-P.; Rozo, E.; Rykoff, E.; Sadibekova, T.; Brownstein, J.; Lin, Y.-T.; Ridl, J.; Salvato, M.; Schwope, A.; Steinmetz, M.; Seo, H.-J.; Tinker, J.

    2016-12-01

    SPIDERS (The SPectroscopic IDentification of eROSITA Sources) is a programme dedicated to the homogeneous and complete spectroscopic follow-up of X-ray active galactic nuclei and galaxy clusters over a large area (˜7500 deg2) of the extragalactic sky. SPIDERS is part of the Sloan Digital Sky Survey (SDSS)-IV project, together with the Extended Baryon Oscillation Spectroscopic Survey and the Time-Domain Spectroscopic Survey. This paper describes the largest project within SPIDERS before the launch of eROSITA: an optical spectroscopic survey of X-ray-selected, massive (˜1014-1015 M⊙) galaxy clusters discovered in ROSAT and XMM-Newton imaging. The immediate aim is to determine precise (Δz ˜ 0.001) redshifts for 4000-5000 of these systems out to z ˜ 0.6. The scientific goal of the program is precision cosmology, using clusters as probes of large-scale structure in the expanding Universe. We present the cluster samples, target selection algorithms and observation strategies. We demonstrate the efficiency of selecting targets using a combination of SDSS imaging data, a robust red-sequence finder and a dedicated prioritization scheme. We describe a set of algorithms and work-flow developed to collate spectra and assign cluster membership, and to deliver catalogues of spectroscopically confirmed clusters. We discuss the relevance of line-of-sight velocity dispersion estimators for the richer systems. We illustrate our techniques by constructing a catalogue of 230 spectroscopically validated clusters (0.031 < z < 0.658), found in pilot observations. We discuss two potential science applications of the SPIDERS sample: the study of the X-ray luminosity-velocity dispersion (LX-σ) relation and the building of stacked phase-space diagrams.

  12. Physical parameters in long-decay coronal enhancements. [from Skylab X ray observations

    NASA Technical Reports Server (NTRS)

    Maccombie, W. J.; Rust, D. M.

    1979-01-01

    Four well-observed long-decay X-ray enhancements (LDEs) are examined which were associated with filament eruptions, white-light transients, and loop prominence systems. In each case the physical parameters of the X-ray-emitting plasma are determined, including the spatial distribution and temporal evolution of temperature and density. The results and recent analyses of other aspects of the four LDEs are compared with current models of loop prominence systems. It is concluded that only a magnetic-reconnection model, such as that proposed by Kopp and Pneuman (1976) is consistent with the observations.

  13. [The value of the x-ray findings in the follow-up of the adult respiratory distress syndrome. A retrospective analysis].

    PubMed

    Konrad, H; Schild, H; Weilemann, L S; Lorenz, J

    1992-09-01

    Serial chest x-rays of 23 ARDS patients, taken in an 24 hour interval, were retrospectively analysed. Radiographic patterns of ARDS were divided into five stages and were related to corresponding parameters of respiratory status. Characteristic findings on chest x-ray films occurred after a short latency period following the clinical onset of ARDS. There was a close relationship between the time of maximum radiographic changes and maximum loss of lung function. The progression through successive radiologic stages was in many cases accompanied by a significant deterioration of functional parameters. Distinction between survivors and non-survivors was achieved while considering maximum radiographic abnormalities. The results suggest significance of serial chest x-rays in diagnosis and course estimation of ARDS.

  14. Investigation of L X-ray intensity ratios in Pt induced by proton collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Manpuneet; Kaur, Mandeep; Department of Physics, Punjabi University, Patiala, 147 002, Punjab

    2015-08-28

    A survey of literature on L X-ray parameters inspires us for taking up the present investigation. These parameters are useful to study atomic properties. In view of this, we report L X-ray intensity ratios for Pt, namely, L{sub ℓ} / L{sub α}, L{sub β} / L{sub α} and L{sub γ} / L{sub α} with proton collisions over the energy range 260 - 400 keV with an interval of 20 keV. The intention of research presented in this paper is to explore their energy dependence and comparison with theoretical calculations. These analyses will yield a data in the low energy regionmore » which assist in better clarity of proton induced X-ray emission phenomenon.« less

  15. Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-05-01

    Volume II contains the flight path, radiometric multi-parameter stacked profiles, magnetic and ancillary parameter stacked profiles, histograms, and anomaly maps for the Weed Quadrangle in California.

  16. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New techniques for the design of the EUV and FUV polarizers and quarterwave retarders are described in Section 5. X- and gamma-ray detectors rely on a measurement of the electron which is effected when a ray interacts with matter. The design of an x- and gamma-ray telescope to operate in a particular region of the spectrum is, therefore, largely dictated by the mechanism through which the rays interact. Energy selection and the focusing of the incident high energy rays can be achieved with spectrally selective high reflective multilayers. The design and spectral performance of narrowband reflective x-ray Pi-multilayers are presented in section 6.

  17. Chandra Reveals the X-ray Glint in the Cat's Eye

    NASA Astrophysics Data System (ADS)

    Chu, Y.-H.; Guerrero, M. A.; Gruendl, R. A.; Kaler, J. B.; Williams, R. M.

    2000-12-01

    The Cat's Eye Nebula, also known as NGC 6543, has perhaps the most intriguing and complex morphology among planetary nebulae (PNe). It is a known X-ray source, but previous observations were unable to resolve the distribution of the X-rays. Recent Chandra ACIS-S observations of the Cat's Eye clearly resolved the X-ray emission into a point source at the central star and diffuse emission confined within the central elliptical shell and two lobes along the major axis. Analyses of the spectra of the central shell and the two lobes show that the hot gas in the Cat's Eye has temperatures of ~1.6x106 K and that its abundances are similar to those of the fast stellar wind and not those of the nebula. The spectral variations among these regions can be explained by different amounts of absorption through the nebula along the line of sight. It is puzzling that the X-ray-emitting gas appears to be comprised of mostly stellar wind material yet its temperature is much lower than expected for an adiabatically shocked stellar wind. Extremely efficient cooling mechanisms are needed. The study of X-ray emission from the Cat's Eye will help us understand why most PNe do not have detectable diffuse X-ray emission, and thus provide insights on the formation and evolution of PNe. This work is supported by the CXC grant number GO0-1004X.

  18. The Perils of Electron Microprobe Analysis of Apatite

    NASA Astrophysics Data System (ADS)

    Henderson, C. E.; Essene, E. J.; Wang, K. L.; Zhang, Y.

    2010-12-01

    Accurate electron microprobe analysis of apatite is problematic, especially for F and Cl, whose concentrations are essential in calculating a non-analyzable OH component. The issues include beam-induced sample damage and temporal variation of F and Cl X-rays; both effects are mainly dependent on beam current, beam spot size and apatite orientation [1]. To establish a rigorous analytical procedure, several oriented apatite samples, including the well-known Durango and Wilberforce fluorapatites, were analyzed for a large suite of elements, including oxygen. Careful X-ray spectroscopy was performed, including selection of appropriate analytical standards, background measurement positions and comparison of area peak factors. Polarized infrared spectra on oriented apatite samples were also collected for complementary information. The results show that when apatite samples are oriented with the c-axis parallel to the electron beam, there is significant nonlinear variation (an increase or decrease, depending on measurement conditions) of F and Cl X-ray intensities during analyses, and systematically higher-than-expected F apparent concentrations, despite the careful selection of electron beam conditions from a series of X-ray time scans and zero-time count rate extrapolation. On the other hand, when the electron beam is oriented perpendicular to the c-axis, with a ≤ 15 nA beam current and a ≥ 5 µm diameter defocused beam, F and Cl X-ray intensities do not vary or vary slowly and predictably with time, yielding quantitative analysis results for the Durango and Wilberforce apatites (both containing little OH) which are in good agreement with published wet chemical analyses. Furthermore, the OH and CO2 contents inferred for three other analyzed apatite samples are roughly consistent with infrared analyses. For example, for an apatite from Silver Crater Mine in Ontario, significant deficiency in the P site, as well as extra F, was inferred from microprobe analyses. Infrared spectra show a strong band of (CO3)2- for this apatite, which indicates a possible substitution of (CO3)2-(F)- for (PO4)3-. Other techniques to mitigate temporal variation of F and Cl, including alternative metal coatings, concurrent stage movement, and cryogenic sample-cooling were attempted, but did not eliminate the disparity in measured F concentrations between the two sample orientations. Thus, we believe that F measurements on F-rich apatite samples of unknown orientation are immediately suspect and should be regarded as upper limits of true F concentration. X-ray mapping, CL imaging and subsequent quantitative analyses show compositional variations in Na, S, Si, and REE in the Durango and Wilberforce fluorapatite samples used in this study. Problems of electron beam sensitivity, X-ray intensity anisotropy due to sample orientation, and compositional heterogeneity call into question their continued use as routine microanalysis reference materials. Microanalysts are encouraged to use more robust calibration standards, such as Cl-rich or other F-poor apatites for Ca, P, O and Cl, and MgF2 for F measurements. [1] Stormer, J.C., Pierson, M.L, and Tacker, R.C. (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min., 78, 641-648.

  19. A high-speed digital camera system for the observation of rapid H-alpha fluctuations in solar flares

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.; Dennis, Brian R.; Orwig, Larry E.

    1989-01-01

    Researchers developed a prototype digital camera system for obtaining H-alpha images of solar flares with 0.1 s time resolution. They intend to operate this system in conjunction with SMM's Hard X Ray Burst Spectrometer, with x ray instruments which will be available on the Gamma Ray Observatory and eventually with the Gamma Ray Imaging Device (GRID), and with the High Resolution Gamma-Ray and Hard X Ray Spectrometer (HIREGS) which are being developed for the Max '91 program. The digital camera has recently proven to be successful as a one camera system operating in the blue wing of H-alpha during the first Max '91 campaign. Construction and procurement of a second and possibly a third camera for simultaneous observations at other wavelengths are underway as are analyses of the campaign data.

  20. Optimization of exposure factors for X-ray radiography non-destructive testing of pearl oyster

    NASA Astrophysics Data System (ADS)

    Susilo; Yulianti, I.; Addawiyah, A.; Setiawan, R.

    2018-03-01

    One of the processes in pearl oyster cultivation is detecting the pearl nucleus to gain information whether the pearl nucleus is still attached in the shell or vomited. The common tool used to detect pearl nucleus is an X-ray machine. However, an X-ray machine has a drawback that is the energy used is higher than that used by digital radiography. The high energy make the resulted image is difficult to be analysed. One of the advantages of digital radiography is the energy used can be adjusted so that the resulted image can be analysed easily. To obtain a high quality of pearl image using digital radiography, the exposure factors should be optimized. In this work, optimization was done by varying the voltage, current, and exposure time. Then, the radiography images were analysed using Contrast to Noise Ratio (CNR). From the analysis, it can be determined that the optimum exposure factors are 60 kV of voltage, 16 mA of current, and 0.125 s of exposure time which result in CNR of 5.71.

Top