Sample records for x-ray storage ring

  1. Picosecond, tunable, high-brightness hard x-ray inverse Compton source at Duke storage ring

    NASA Astrophysics Data System (ADS)

    Litvinenko, Vladimir N.; Wu, Ying; Burnham, Bentley; Barnett, Genevieve A.; Madey, John M. J.

    1995-09-01

    We suggest a state-of-the art x-ray source using a compact electron storage ring with modest energy (less than 1 GeV) and a high power mm-wave as an undulator. A source of this type has x-ray energies and brightness comparable with third generation synchrotron light sources while it can be very compact and fit in a small university or industrial laboratory or hospital. We propose to operate an isochronous mm-wave FEL and a hard x-ray inverse Compton source at the Duke storage ring to test this concept. Resonant FEL conditions for the mm- wave will be provided by the off-axis interaction with an electromagnetic wave. A special optical resonator with holes for the e-beam is proposed for pumping a hard x-ray inverse Compton source with very high brightness. Simulation results of mm-wave FEL operation of the Duke storage ring are discussed. Expected performance of mm-wave FEL and hard x-ray inverse Compton source are presented.

  2. Compact Storage Ring for an X-Ray Source

    NASA Astrophysics Data System (ADS)

    Ovchinnikova, L.; Shvedunov, V.; Ivanov, K.

    2017-12-01

    We propose a new design of a compact storage ring for a source of X-ray radiation on the basis of reverse Thomson scattering of laser radiation by electrons with the energy of 35-50 MeV, which has small number of optical elements and a significant clear space for the placement of a beam injection-extraction system and a RF cavity. The original laser cavity layout has been considered. The ring dynamic aperture after correction of chromaticity and a second-order dispersion function is sufficient for the injection and stable circulation of an electron bunch in the ring.

  3. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  4. An undulator based soft x-ray source for microscopy on the Duke electron storage ring

    NASA Astrophysics Data System (ADS)

    Johnson, Lewis Elgin

    1998-09-01

    This dissertation describes the design, development, and installation of an undulator-based soft x-ray source on the Duke Free Electron Laser laboratory electron storage ring. Insertion device and soft x-ray beamline physics and technology are all discussed in detail. The Duke/NIST undulator is a 3.64-m long hybrid design constructed by the Brobeck Division of Maxwell Laboratories. Originally built for an FEL project at the National Institute of Standards and Technology, the undulator was acquired by Duke in 1992 for use as a soft x-ray source for the FEL laboratory. Initial Hall probe measurements on the magnetic field distribution of the undulator revealed field errors of more than 0.80%. Initial phase errors for the device were more than 11 degrees. Through a series of in situ and off-line measurements and modifications we have re-tuned the magnet field structure of the device to produce strong spectral characteristics through the 5th harmonic. A low operating K has served to reduce the effects of magnetic field errors on the harmonic spectral content. Although rms field errors remained at 0.75%, we succeeded in reducing phase errors to less than 5 degrees. Using trajectory simulations from magnetic field data, we have computed the spectral output given the interaction of the Duke storage ring electron beam and the NIST undulator. Driven by a series of concerns and constraints over maximum utility, personnel safety and funding, we have also constructed a unique front end beamline for the undulator. The front end has been designed for maximum throughput of the 1st harmonic around 40A in its standard mode of operation. The front end has an alternative mode of operation which transmits the 3rd and 5th harmonics. This compact system also allows for the extraction of some of the bend magnet produced synchrotron and transition radiation from the storage ring. As with any well designed front end system, it also provides excellent protection to personnel and to the

  5. Pseudo-single-bunch mode for a 100 MHz storage ring serving soft X-ray timing experiments

    NASA Astrophysics Data System (ADS)

    Olsson, T.; Leemann, S. C.; Georgiev, G.; Paraskaki, G.

    2018-06-01

    At many storage rings for synchrotron light production there is demand for serving both high-flux and timing users simultaneously. Today this is most commonly achieved by operating inhomogeneous fill patterns, but this is not preferable for rings that employ passive harmonic cavities to damp instabilities and increase Touschek lifetime. For these rings, inhomogeneous fill patterns could severely reduce the effect of the harmonic cavities. It is therefore of interest to develop methods to serve high-flux and timing users simultaneously without requiring gaps in the fill pattern. One such method is pseudo-single-bunch (PSB), where one bunch in the bunch train is kicked onto another orbit by a fast stripline kicker. The light emitted from the kicked bunch can then be separated by an aperture in the beamline. Due to recent developments in fast kicker design, PSB operation in multibunch mode is within reach for rings that operate with a 100 MHz RF system, such as the MAX IV and Solaris storage rings. This paper describes machine requirements and resulting performance for such a mode at the MAX IV 1.5 GeV storage ring. A solution for serving all beamlines is discussed as well as the consequences of beamline design and operation in the soft X-ray energy range.

  6. X-Rays from Saturn and its Rings

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    In January 2004 Saturn was observed by Chandra ACIS-S in two exposures, 00:06 to 11:00 UT on 20 January and 14:32 UT on 26 January to 01:13 UT on 27 January. Each continuous observation lasted for about one full Saturn rotation. These observations detected an X-ray flare from the Saturn's disk and indicate that the entire Saturnian X-ray emission is highly variable -- a factor of $\\sim$4 variability in brightness in a week time. The Saturn X-ray flare has a time and magnitude matching feature with the solar X-ray flare, which suggests that the disk X-ray emission of Saturn is governed by processes happening on the Sun. These observations also unambiguously detected X-rays from Saturn's rings. The X-ray emissions from rings are present mainly in the 0.45-0.6 keV band centered on the atomic OK$\\alpha$ fluorescence line at 525 eV: indicating the production of X-rays due to oxygen atoms in the water icy rings. The characteristics of X-rays from Saturn's polar region appear to be statistically consistent with those from its disk X-rays, suggesting that X-ray emission from the polar cap region might be an extension of the Saturn disk X-ray emission.

  7. High-precision X-ray spectroscopy of highly-charged ions at the experimental storage ring using silicon microcalorimeters

    NASA Astrophysics Data System (ADS)

    Scholz, Pascal A.; Andrianov, Victor; Echler, Artur; Egelhof, Peter; Kilbourne, Caroline; Kiselev, Oleg; Kraft-Bermuth, Saskia; McCammon, Dan

    2017-10-01

    X-ray spectroscopy on highly charged heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. One limitation of the current accuracy of such experiments is the energy resolution of available X-ray detectors for energies up to 100 keV. To improve this accuracy, a novel detector concept, namely the concept of microcalorimeters, is exploited for this kind of measurements. The microcalorimeters used in the present experiments consist of silicon thermometers, ensuring a high dynamic range, and of absorbers made of high-Z material to provide high X-ray absorption efficiency. Recently, besides an earlier used detector, a new compact detector design, housed in a new dry cryostat equipped with a pulse tube cooler, was applied at a test beamtime at the experimental storage ring (ESR) of the GSI facility in Darmstadt. A U89+ beam at 75 MeV/u and a 124Xe54+ beam at various beam energies, both interacting with an internal gas-jet target, were used in different cycles. This test was an important benchmark for designing a larger array with an improved lateral sensitivity and statistical accuracy.

  8. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings

    PubMed Central

    Schmitt, Thorsten; de Groot, Frank M. F.; Rubensson, Jan-Erik

    2014-01-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned. PMID:25177995

  9. Prospects of high-resolution resonant X-ray inelastic scattering studies on solid materials, liquids and gases at diffraction-limited storage rings.

    PubMed

    Schmitt, Thorsten; de Groot, Frank M F; Rubensson, Jan Erik

    2014-09-01

    The spectroscopic technique of resonant inelastic X-ray scattering (RIXS) will particularly profit from immensely improved brilliance of diffraction-limited storage rings (DLSRs). In RIXS one measures the intensities of excitations as a function of energy and momentum transfer. DLSRs will allow for pushing the achievable energy resolution, signal intensity and the sampled spot size to new limits. With RIXS one nowadays probes a broad range of electronic systems reaching from simple molecules to complex materials displaying phenomena like peculiar magnetism, two-dimensional electron gases, superconductivity, photovoltaic energy conversion and heterogeneous catalysis. In this article the types of improved RIXS studies that will become possible with X-ray beams from DLSRs are envisioned.

  10. Discovery of Oxygen Kalpha X-ray Emission from the Rings of Saturn

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Waite, J. Hunter, Jr.; Gladstone, G Randall; Cravens, Thomas E.; Ford, Peter G.

    2005-01-01

    Using the Advanced CCD Imaging Spectrometer (ACIS), the Chandra X-ray Observatory (CXO) observed the Saturnian system for one rotation of the planet (approx.37 ks) on 20 January, 2004, and again on 26-27 January, 2004. In this letter we report the detection of X-ray emission from the rings of Saturn. The X-ray spectrum from the rings is dominated by emission in a narrow (approx.130 eV wide) energy band centered on the atomic oxygen Ka fluorescence line at 0.53 keV. The X-ray power emitted from the rings in the 0.49-0.62 keV band is about one-third of that emitted from Saturn disk in the photon energy range 0.24-2.0 keV. Our analysis also finds a clear detection of X-ray emission from the rings in the 0.49-0.62 keV band in an earlier (14-15 April, 2003) Chandra ACIS observation of Saturn. Fluorescent scattering of solar X-rays from oxygen atoms in the H20 icy ring material is the likely source mechanism for ring X-rays, consistent with the scenario of solar photo-production of a tenuous ring oxygen atmosphere and ionosphere recently discovered by Cassini.

  11. Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291

    NASA Technical Reports Server (NTRS)

    Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.

    2012-01-01

    We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.

  12. Vertical beam size measurement in the CESR-TA e+e- storage ring using x-rays from synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Fontes, E.; Heltsley, B. K.; Hopkins, W.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Savino, J.; Seeley, R.; Shanks, J.; Flanagan, J. W.

    2014-06-01

    We describe the construction and operation of an X-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring using synchrotron radiation. The device can measure vertical beam sizes of 10-100μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of ~2GeV. At such beam energies the xBSM images X-rays of ɛ≈1-10keV (λ≈0.1-1nm) that emerge from a hard-bend magnet through a single- or multiple-slit (coded aperture) optical element onto an array of 32 InGaAs photodiodes with 50μm pitch. Beamlines and detectors are entirely in-vacuum, enabling single-shot beam size measurement down to below 0.1 mA (2.5×109 particles) per bunch and inter-bunch spacing of as little as 4 ns. At Eb=2.1GeV, systematic precision of ~1μm is achieved for a beam size of ~12μm; this is expected to scale as ∝1/σb and ∝1/Eb. Achieving this precision requires comprehensive alignment and calibration of the detector, optical elements, and X-ray beam. Data from the xBSM have been used to extract characteristics of beam oscillations on long and short timescales, and to make detailed studies of low-emittance tuning, intra-beam scattering, electron cloud effects, and multi-bunch instabilities.

  13. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  14. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  15. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  16. Physics issues in diffraction limited storage ring design

    NASA Astrophysics Data System (ADS)

    Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui

    2012-05-01

    Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.

  17. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  18. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  19. EUTERPE, a small electron storage ring for XRF

    NASA Astrophysics Data System (ADS)

    Botman, J. I. M.; Mutsaers, P. H. A.; Hagedoorn, H. L.; De Voigt, M. J. A.

    1990-04-01

    A small-sized electron storage ring is under construction at the Eindhoven University of Technology which will cover the energy range of 15 to 400 MeV. At top energy the characteristic wavelength of the synchrotron radiation spectrum is 8.3 nm for the regular dipole magnets and 1.2 nm corresponding to 1.06 keV for a 10 T wiggler magnet. This will provide useful radiation for X-ray fluorescence (XRF) up to 3.2 keV. Alternatively, photon conversion with a high power CO 2 laser beam of 0.124 eV photons will generate X-rays for XRF with energies ranging from 0.5 to 300 keV, depending on the operating energy of the storage ring. This facility will provide an important extension to the activities of the Eindhoven group on PIXE, RBS and microbeam analysis. A short description of the macnine will be given together with applications and specific examples of the XRF method.

  20. Beam dynamics and expected performance of Sweden's new storage-ring light source: MAX IV

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Andersson, Å.; Eriksson, M.; Lindgren, L.-J.; Wallén, E.; Bengtsson, J.; Streun, A.

    2009-12-01

    MAX IV will be Sweden’s next-generation high-performance synchrotron radiation source. The project has recently been granted funding and construction is scheduled to begin in 2010. User operation for a broad and international user community should commence in 2015. The facility is comprised of two storage rings optimized for different wavelength ranges, a linac-based short-pulse facility and a free-electron laser for the production of coherent radiation. The main radiation source of MAX IV will be a 528 m ultralow emittance storage ring operated at 3 GeV for the generation of high-brightness hard x rays. This storage ring was designed to meet the requirements of state-of-the-art insertion devices which will be installed in nineteen 5 m long dispersion-free straight sections. The storage ring is based on a novel multibend achromat design delivering an unprecedented horizontal bare lattice emittance of 0.33 nm rad and a vertical emittance below the 8 pm rad diffraction limit for 1 Å radiation. In this paper we present the beam dynamics considerations behind this storage-ring design and detail its expected unique performance.

  1. Kinoform optics applied to X-ray photon correlation spectroscopy.

    PubMed

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  2. Future Synchrotron Light Sources Based on Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yunhai; /SLAC

    2012-04-09

    The main purpose of this talk is to describe how far one might push the state of the art in storage ring design. The talk will start with an overview of the latest developments and advances in the design of synchrotron light sources based on the concept of an 'ultimate' storage ring. The review will establish how bright a ring based light source might be, where the frontier of technological challenges are, and what the limits of accelerator physics are. Emphasis will be given to possible improvements in accelerator design and developments in technology toward the goal of achieving anmore » ultimate storage ring. An ultimate storage ring (USR), defined as an electron ring-based light source having an emittance in both transverse planes at the diffraction limit for the range of X-ray wavelengths of interest for a scientific community, would provide very high brightness photons having high transverse coherence that would extend the capabilities of X-ray imaging and probe techniques beyond today's performance. It would be a cost-effective, high-coherence 4th generation light source, competitive with one based on energy recovery linac (ERL) technology, serving a large number of users studying material, chemical, and biological sciences. Furthermore, because of the experience accumulated over many decades of ring operation, it would have the great advantage of stability and reliability. In this paper we consider the design of an USR having 10-pm-rad emittance. It is a tremendous challenge to design a storage ring having such an extremely low emittance, a factor of 100 smaller than those in existing light sources, especially such that it has adequate dynamic aperture and beam lifetime. In many ultra-low emittance designs, the injection acceptances are not large enough for accumulation of the electron beam, necessitating on-axis injection where stored electron bunches are completely replaced with newly injected ones. Recently, starting with the MAX-IV 7-bend achromatic

  3. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  4. Storage Rings in the Sky: Gamma Ray Bursts and Galactic Gravitational Collapse Stored Energy

    NASA Astrophysics Data System (ADS)

    Greyber, H. D.

    2004-05-01

    The recent discovery of almost 100% polarization of the prompt gamma ray emission from GRB021206, (1), confirms my 44 year old ``Strong" Magnetic Field" model (SMF) for galactic dynamics. In SMF, Storage Ring particles were accelerated long ago during the original gravitational collapse of the pregalactic/prequasar plasma cloud that is permeated by an almost uniform primordial magnetic field (2,3) The enormous, intense, slender, relativistic, stable, completely coherent Storage Ring stores a very small fraction of the huge galactic gravitational collapse energy in an almost radiationless state, unless disturbed. The concept of an Astrophysical Storage Ring was introduced by me in l961. At first it was to explain galactic structure, but soon it proved useful to explain active galactic nuclei (AGN) and the dynamics of quasar/AGN jets. AGN and galactic morphology, energetics and dynamics vary as the ratio of magnetic energy to rotational energy in the particular object. Gamma ray bursts (GRB) are due simply to a ``rock". i.e. a white dwarf, ordinary star, neutron sstar, asteroid, planet, etc. falling rapidly through the Storage Ring and being almost instantly vaporized into a hot plasma fireball, causing an electromagnetic shower (2) Then the fireball speeds into the huge organized magnetic field surrounding the current ring, thus generating very highly polarized prompt gamma ray emission (as seen in GRB021206) from the synchrotron radiation process. The timing fits the GRB observations nicely. For instance, a ``rock" racing at 1000 kilometers per second across a 20,000 km. path in the beam would produce a twenty second burst. Other times, a target might track across a short chord for a short burst. Space missions have shown that often typical currents in space plasmas are made up of slender filaments. Thus the puzzling less than one millisecond spikes observed in some GRB are simply describing the structure of that particular ring current at that particular time. 1

  5. Feasibility of a ring FEL at low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Agapov, I.

    2015-09-01

    A scheme for generating coherent radiation at latest generation low emittance storage rings such as PETRA III at DESY (Balewski et al., 2004 [1]) is proposed. The scheme is based on focusing and subsequent defocusing of the electron beam in the longitudinal phase space at the undulator location. The expected performance characteristics are estimated for radiation in the wavelength range of 500-1500 eV. It is shown that the average brightness is increased by several orders of magnitude compared to spontaneous undulator radiation, which can open new perspectives for photon-hungry soft X-ray spectroscopy techniques.

  6. Simulation of emittance dilution in electron storage ring from Compton backscattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blumberg, L.N.; Blum, E.

    1993-07-01

    A Monte-Carlo simulation of Compton backscattered {kappa}{sub L}=3.2-{mu}m photons from an IR-FEL on 75-MeV electrons in a storage ring yields an RMS electron energy spread of {Delta}{sub E}=11.9-keV for a sample of 10{sup 7} single scattering events. Electrons are sampled from a beam of natural energy spread {sigma}{sub E} = 5.6-keV and damped transverse angle spreads {sigma}{sub x}{prime}, = .041-mrad and {sigma}{sub y}{prime} = .052-mrad (100%) coupling, scaled from the 200-MeV BNL XLS compact storage ring. The Compton-scattered X-Rays are generated from an integral of the CM Klein-Nishina cross-section transformed to the lab. A tracking calculation has also been performedmore » in 6-dimensional phase space. Initial electron coordinates are selected randomly from a Gaussian distribution of RMS spreads {sigma}{sub xo}=.102-mm, {sigma}{sub x{prime}o}=.041-mrad, {sigma}{sub yo}=.018-mm, {sigma}{sub y{prime}o}=.052-mrad, {sigma}{sub {phi}o}=22-mrad and {sigma}{sub Eo}=6-keV. A sample of 10000 electrons were each following for 40000 turns around the ring through an RF cavity of f{sub rf}=211.54-MHz and peak voltage V{sub m}=300-keV. Preliminary results indicate that the resulting energy distribution is quite broad with an RMS width of {Delta}{sub E} = 124-keV. The transverse widths are only slightly increased from their original values, i.e. {Delta}{sub x} = .106-mm and {Delta}{sub x}{prime}=.043 mrad. The scaled energy spread of {Delta}{sub E} {approximately} 360-keV for {approximately} 350,000 turns desired in a 10-msec X-Ray angiography exposure is well within the RF bucket used here; even V{sub m} < 50-kV is adequate. Further, the electron energy spread adds a negligible RMS X-Ray energy spread of {Delta}{sub Ex}=.32-keV. The electron energy damping time of {tau}{sub E}=379-msec at 75-MeV in an XLS-type ring allows for damping this induced spread and top-off of the ring between heart cycles.« less

  7. Simulation of emittance dilution in electron storage ring from Compton backscattering

    NASA Astrophysics Data System (ADS)

    Blumberg, L. N.; Blum, E.

    A Monte-Carlo simulation of Compton backscattered kappa(sub L) = 3.2-micron photons from an IR-FEL on 75-MeV electrons in a storage ring yields an RMS electron energy spread of delta(sub E) = 11.9-keV for a sample of 10(exp 7) single scattering events. Electrons are sampled from a beam of natural energy spread sigma(sub E) = 5.6-keV and damped transverse angle spreads sigma(sub x)(prime) = .041-mrad and sigma(sub y)(prime) = .052-mrad (100%) coupling, scaled from the 200-MeV BNL XLS compact storage ring. The Compton-scattered x-rays are generated from an integral of the CM Klein-Nishina cross-section transformed to the lab. A tracking calculation has also been performed in 6-dimensional phase space. Initial electron coordinates are selected randomly from a Gaussian distribution of RMS spreads sigma(sub xo) = .102-mm, sigma(sub x(prime)o) = .041-mrad, sigma(sub yo) = .018-mm, sigma(sub y(prime)o) = .052-mrad, sigma(sub (phi)o) = 22-mrad and sigma(sub Eo) = 6-keV. A sample of 10000 electrons were each following for 40000 turns around the ring through an RF cavity of f(sub RF) = 211.54-MHz and peak voltage V(sub m)=300-keV. Preliminary results indicate that the resulting energy distribution is quite broad with an RMS width of delta(sub E) = 124-keV. The transverse widths are only slightly increased from their original values, i.e. delta(sub x) = .106-mm and delta(sub x)(prime) = .043 mrad. The scaled energy spread of delta(sub E) approximately = 360-keV for approximately 350,000 turns desired in a 10-msec x-ray angiography exposure is well within the RF bucket used here; even V(sub m) less than 50-kV is adequate. Further, the electron energy spread adds a negligible RMS x-ray energy spread of delta(sub Ex) = .32-keV. The electron energy damping time of tau(sub E) = 379-msec at 75-MeV in an XLS-type ring allows for damping this induced spread and top-off of the ring between heart cycles.

  8. Vacuum system for room temperature X-ray lithography source (XLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuchman, J.C.

    1988-09-30

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  9. Vacuum system for room temperature X-ray lithography source (XLS)

    NASA Astrophysics Data System (ADS)

    Schuchman, J. C.

    1988-09-01

    A prototype room-temperature X-Ray Lithography Source (XLS)was proposed to be built at Brookhaven National Laboratory as part of a technology-transfer- to-American-industry program. The overall machine comprises a full energy linac, a 170 meter long transport line, and a 39 meter circumference storage ring. The scope of this paper will be limited to describing the storage ring vacuum system. (AIP)

  10. BioCARS: a synchrotron resource for time-resolved X-ray science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graber, T.; Anderson, S.; Brewer, H.

    2011-08-16

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick-Baez mirror system capable of focusing the X-ray beammore » to a spot size of 90 {micro}m horizontal by 20 {micro}m vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to {approx}4 x 10{sup 10} photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450-2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained.« less

  11. Probing buried layers by photoelectron spectromicroscopy with hard x-ray excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemann, C.; Patt, M.; Cramm, S.

    We report about a proof-of-principle experiment which explores the perspectives of performing hard x-ray photoemission spectromicroscopy with high lateral resolution. Our results obtained with an energy-filtered photoemission microscope at the PETRA III storage ring facility using hard x-ray excitation up to 6.5 keV photon energy demonstrate that it is possible to obtain selected-area x-ray photoemission spectra from regions less than 500 nm in diameter.

  12. Analysis of Methods to Excite Head-Tail Motion Within the Cornell Electron Storage Ring

    NASA Astrophysics Data System (ADS)

    Gendler, Naomi; Billing, Mike; Shanks, Jim

    The main accelerator complex at Cornell consists of two rings around which electrons and positrons move: the synchrotron, where the particles are accelerated to 5 GeV, and the Storage Ring, where the particles circulate a ta Þxed energy, guided by quadrupole and dipole magnets, with a steady energy due to a sinusoidal voltage source. Keeping the beam stable in the Storage Ring is crucial for its lifetime. A long-lasting, invariable beam means more accurate experiments, as well as brighter, more focused X-rays for use in the Cornell High Energy Synchrotron Source (CHESS). The stability of the electron and positron beams in the Cornell Electron Storage Ring (CESR) is important for the development of accelerators and for usage of the beam in X-ray science and accelerator physics. Bunch oscillations tend to enlarge the beam's cross section, making it less stable. We believe that one such oscillation is ``head-tail motion,'' where the bunch rocks back and forth on a pivot located at the central particle. In this project, we write a simulation of the bunch that induces head-tail motion with a vertical driver. We also excite this motion physically in the storage ring, and observe a deÞnite head-tail signal. In the experiment, we saw a deÞnite persistence of the drive-damp signal within a small band around the head-tail frequency, indicating that the head-tail frequency is a natural vertical mode of the bunch that was being excited. The signal seen in the experiment matched the signal seen in the simulation to within an order of magnitude.

  13. Hard x-ray response of a CdZnTe ring-drift detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, A.; Hartog, R. den; Quarati, F.

    We present the results of an experimental study of a special type of CdZnTe detector of hard x and {gamma} rays--A-drift detector. The device consists of a double ring electrode structure surrounding a central point anode with a guard plane surrounding the outer anode ring. The detector can be operated in two distinctively different modes of charge collection--pseudohemispherical and pseudodrift. We study the detector response profiles obtained by scanning the focused x-ray beam over the whole detector area, specifically the variations in count rate, peak position, and energy resolution for x rays from 10 to 100 keV. In addition, atmore » 662 keV the energy resolution was shown to be 4.8 keV, more than a factor of 2 better than for CdZnTe coplanar grid detectors. To interpret the experimental data, we derive an analytical expression for the spatial distribution of the electric field inside the detector and neglecting carrier diffusion, and identify carrier collection patterns for both modes of operation within the drift model approximation. We show that this model provides a good understanding of measured profiles.« less

  14. A New Hard X-ray Wiggler for DORIS III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tischer, M.; Gumprecht, L.; Pflueger, J.

    2007-01-19

    A 4 m long hard X-ray wiggler has been built and installed in the DORIS III storage ring at DESY. The device replaces an old wiggler especially designed for angiography studies. Future use of this beamline at the HARWI straight section has been dedicated to hard X-ray scattering and diffraction experiments for material science and geological investigations. The required energy range is from 30 keV to about 200 keV with emphasis on the {approx}100 keV spectral range. The magnet configuration corresponds to a hybrid structure with additional side magnets to achieve a 2 T peak field for the specified periodmore » length of 110 mm. The wiggler position in the storage ring has been moved 8 m upstream into the next cell which allowed for reduction of the minimum magnetic wiggler gap to 14 mm.« less

  15. BioCARS: a synchrotron resource for time-resolved X-ray science

    PubMed Central

    Graber, T.; Anderson, S.; Brewer, H.; Chen, Y.-S.; Cho, H. S.; Dashdorj, N.; Henning, R. W.; Kosheleva, I.; Macha, G.; Meron, M.; Pahl, R.; Ren, Z.; Ruan, S.; Schotte, F.; Šrajer, V.; Viccaro, P. J.; Westferro, F.; Anfinrud, P.; Moffat, K.

    2011-01-01

    BioCARS, a NIH-supported national user facility for macromolecular time-resolved X-ray crystallography at the Advanced Photon Source (APS), has recently completed commissioning of an upgraded undulator-based beamline optimized for single-shot laser-pump X-ray-probe measurements with time resolution as short as 100 ps. The source consists of two in-line undulators with periods of 23 and 27 mm that together provide high-flux pink-beam capability at 12 keV as well as first-harmonic coverage from 6.8 to 19 keV. A high-heat-load chopper reduces the average power load on downstream components, thereby preserving the surface figure of a Kirkpatrick–Baez mirror system capable of focusing the X-ray beam to a spot size of 90 µm horizontal by 20 µm vertical. A high-speed chopper isolates single X-ray pulses at 1 kHz in both hybrid and 24-bunch modes of the APS storage ring. In hybrid mode each isolated X-ray pulse delivers up to ∼4 × 1010 photons to the sample, thereby achieving a time-averaged flux approaching that of fourth-generation X-FEL sources. A new high-power picosecond laser system delivers pulses tunable over the wavelength range 450–2000 nm. These pulses are synchronized to the storage-ring RF clock with long-term stability better than 10 ps RMS. Monochromatic experimental capability with Biosafety Level 3 certification has been retained. PMID:21685684

  16. X-Ray Absorption Toward the Einstein Ring Source PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Mathur, Smita; Nair, Sunita

    1997-01-01

    PKS 1830-211 is an unusually radio-loud gravitationally lensed quasar. In the radio spectrum, the system appears as two compact, dominant features surrounded by relatively extended radio emission that forms an Einstein ring. As the line of sight to it passes close to our Galactic center, PKS 1830-211 has not been detected in wave bands other than the radio and X-ray so far. Here we present X-ray data of PKS 1830-211 observed with ROSAT Position Sensitive Proportional Counter. The X-ray spectrum shows that absorption in excess of the Galactic contribution is highly likely, which at the redshift of the lensing galaxy (z(sub t)=0.886) corresponds to N(sub H)=3.5((sup 0.6)(sub -0.5))x10(exp 22) atoms sq cm. The effective optical extinction is large, A(sub V)(observed) is greater than or approximately 5.8. When corrected for this additional extinction, the two-point optical to X-ray slope alpha(sub ox) of PKS 1830-211 lies just within the observed range of quasars. It is argued here that both compact images must be covered by the X-ray absorber(s) that we infer to be the lensing galaxy (galaxies). The dust-to-gas ratio along the line of sight within the lensing galaxy is likely to be somewhat larger than for our Galaxy.

  17. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  18. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  19. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed.

  20. Optimizing a synchrotron based x-ray lithography system for IC manufacturing

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Speiser, Kenneth; Thaw, Winston; Heese, Richard N.

    1990-05-01

    The electron storage ring is a realistic solution as a radiation source for production grade, industrial X-ray lithography system. Today several large scale plans are in motion to design and implement synchrotron storage rings of different types for this purpose in the USA and abroad. Most of the scientific and technological problems related to the physics, design and manufacturing engineering, and commissioning of these systems for microlithography have been resolved or are under extensive study. However, investigation on issues connected to application of Synchrotron Orbit Radiation (SOR ) in chip production environment has been somewhat neglected. In this paper we have filled this gap pointing out direct effects of some basic synchrotron design parameters and associated subsystems (injector, X-ray beam line) on the operation and cost of lithography in production. The following factors were considered: synchrotron configuration, injection energy, beam intensity variability, number of beam lines and wafer exposure concept. A cost model has been worked out and applied to three different X-ray Lithography Source (XLS) systems. The results of these applications are compared and conclusions drawn.

  1. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  2. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis

    PubMed Central

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-01-01

    Background and Aims Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Methods Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Key Results Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. Conclusions A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. PMID:27107414

  3. NSLS-II storage ring insertion device and front-end commissioning and operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed.more » We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.« less

  4. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  5. Two-dimensional single crystal diamond refractive x-ray lens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S., E-mail: s.antipov@euclidtechlabs.com; Baryshev, S. V.; Butler, J. E.

    2016-07-27

    The next generation light sources such as diffraction-limited storage rings and high repetition rate x-ray free-electron lasers will generate x-ray beams with significantly increased brilliance. These future machines will require X-ray optical components that are capable of handling higher instantaneous and average power densities while tailoring the properties of the x-ray beams for a variety of scientific experiments. Single crystal diamond is one of the best bulk materials for this application, because it is radiation hard, has a suitable uniform index of refraction and the best available thermal properties. In this paper we report on fabrication and experimental testing ofmore » a two-dimensional (2D) single crystal diamond compound refractive X-ray lenses (CRL). These lenses were manufactured using femto-second laser cutting and tested at the Advanced Photon Source of Argonne National Laboratory.« less

  6. Injection envelope matching in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minty, M.G.; Spence, W.L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the {beta}-tron frequency indicate the presence of a {beta}-mismatch, while envelope oscillations at the {beta}-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  7. Injection envelope matching in storage rings

    NASA Astrophysics Data System (ADS)

    Minty, M. G.; Spence, W. L.

    1995-05-01

    The shape and size of the transverse phase space injected into a storage ring can be deduced from turn-by-turn measurements of the transient behavior of the beam envelope in the ring. Envelope oscillations at 2 x the beta-tron frequency indicate the presence of a beta-mismatch, while envelope oscillations at the beta-tron frequency are the signature of a dispersion function mismatch. Experiments in injection optimization using synchrotron radiation imaging of the beam and a fast-gated camera at the SLC damping rings are reported.

  8. A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis.

    PubMed

    De Mil, Tom; Vannoppen, Astrid; Beeckman, Hans; Van Acker, Joris; Van den Bulcke, Jan

    2016-06-01

    Disentangling tree growth requires more than ring width data only. Densitometry is considered a valuable proxy, yet laborious wood sample preparation and lack of dedicated software limit the widespread use of density profiling for tree ring analysis. An X-ray computed tomography-based toolchain of tree increment cores is presented, which results in profile data sets suitable for visual exploration as well as density-based pattern matching. Two temperate (Quercus petraea, Fagus sylvatica) and one tropical species (Terminalia superba) were used for density profiling using an X-ray computed tomography facility with custom-made sample holders and dedicated processing software. Density-based pattern matching is developed and able to detect anomalies in ring series that can be corrected via interactive software. A digital workflow allows generation of structure-corrected profiles of large sets of cores in a short time span that provide sufficient intra-annual density information for tree ring analysis. Furthermore, visual exploration of such data sets is of high value. The dated profiles can be used for high-resolution chronologies and also offer opportunities for fast screening of lesser studied tropical tree species. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Single-crystal diamond refractive lens for focusing X-rays in two dimensions.

    PubMed

    Antipov, S; Baryshev, S V; Butler, J E; Antipova, O; Liu, Z; Stoupin, S

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.

  10. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    PubMed Central

    Antipov, S.; Baryshev, S. V.; Butler, J. E.; Antipova, O.; Liu, Z.; Stoupin, S.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources for secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses. PMID:26698059

  11. Pushing the MAX IV 3 GeV storage ring brightness and coherence towards the limit of its magnetic lattice

    NASA Astrophysics Data System (ADS)

    Leemann, S. C.; Wurtz, W. A.

    2018-03-01

    The MAX IV 3 GeV storage ring is presently being commissioned and crucial parameters such as machine functions, emittance, and stored current have either already been reached or are approaching their design specifications. Once the baseline performance has been achieved, a campaign will be launched to further improve the brightness and coherence of this storage ring for typical X-ray users. During recent years, several such improvements have been designed. Common to these approaches is that they attempt to improve the storage ring performance using existing hardware provided for the baseline design. Such improvements therefore present more short-term upgrades. In this paper, however, we investigate medium-term improvements assuming power supplies can be exchanged in an attempt to push the brightness and coherence of the storage ring to the limit of what can be achieved without exchanging the magnetic lattice itself. We outline optics requirements, the optics optimization process, and summarize achievable parameters and expected performance.

  12. The X-ray microscopy beamline UE46-PGM2 at BESSY

    NASA Astrophysics Data System (ADS)

    Follath, R.; Schmidt, J. S.; Weigand, M.; Fauth, K.

    2010-06-01

    The Max Planck Institute for Metal Physics in Stuttgart and the Helmholtz Center Berlin operate a soft X-ray microscopy beamline at the storage ring BESSY II. A collimated PGM serves as monochromator for a scanning X-ray microscope and a full field X-ray microscope at the helical undulator UE46. The selection between both instruments is accomplished via two switchable focusing mirrors. The scanning microscope (SM) is based on the ALS STXM microscope and fabricated by the ACCEL company. The full field microscope (FFM) is currently in operation at the U41-SGM beamline and will be relocated to its final location this year.

  13. An improved ring removal procedure for in-line x-ray phase contrast tomography

    NASA Astrophysics Data System (ADS)

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-01

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  14. An improved ring removal procedure for in-line x-ray phase contrast tomography.

    PubMed

    Massimi, Lorenzo; Brun, Francesco; Fratini, Michela; Bukreeva, Inna; Cedola, Alessia

    2018-02-12

    The suppression of ring artifacts in x-ray computed tomography (CT) is a required step in practical applications; it can be addressed by introducing refined digital low pass filters within the reconstruction process. However, these filters may introduce additional ringing artifacts when simultaneously imaging pure phase objects and elements having a non-negligible absorption coefficient. Ringing originates at sharp interfaces, due to the truncation of spatial high frequencies, and severely affects qualitative and quantitative analysis of the reconstructed slices. In this work, we discuss the causes of ringing artifacts, and present a general compensation procedure to account for it. The proposed procedure has been tested with CT datasets of the mouse central nervous system acquired at different synchrotron radiation facilities. The results demonstrate that the proposed method compensates for ringing artifacts induced by low pass ring removal filters. The effectiveness of the ring suppression filters is not altered; the proposed method can thus be considered as a framework to improve the ring removal step, regardless of the specific filter adopted or the imaged sample.

  15. Challenges for Synchrotron X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.

    2002-12-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano

  16. Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula

    NASA Astrophysics Data System (ADS)

    1999-09-01

    After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission

  17. The soft x-ray beamline at Frascati Labs

    NASA Astrophysics Data System (ADS)

    Cinque, Gianfelice; Burattini, Emilio; Grilli, Antonio; Dabagov, Sultan

    2005-08-01

    DAΦNE-Light is the Synchrotron Radiation laboratory at the Laboratori Nazionali di Frascati (LNF)1. Three beamlines were commissioned since spring 2003 to exploit parasitically the intense photon emission from DAΦNE, the 0.5 1 GeV storage ring routinely circulating over 1 A of electrons. The soft X-ray beamline utilizes a wiggler source and, by a double-crystal fixed-exit monochromator, it is operational in the distinguishing energy window 1.5 - 4 keV range to be extended from the "water window" toward 6 keV. At present, the research activity is focused on X-ray Absorption Spectroscopy (XAS): precisely, X-ray Absorption Near Edge Spectroscopy (XANES) on the inner electronic levels of light elements and transition metals from Al to Ge and both d- and f-shells of higher Z atoms. Preliminary tests of X-ray imaging have been performed in view of applying different focusing optics, namely policapillary systems in trasmission and/or bent mica diffractor in back-reflection, for X-ray microscopy and spectromicroscopy experiments. The use of polycapillary systems (lenses, halflenses, capillaries) for studying features of radiation transportation by such structures (X-ray channelling, focusing, bending, etc.) has been planned.

  18. Single-crystal diamond refractive lens for focusing X-rays in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, S.; Baryshev, Sergey; Butler, J. E.

    2016-01-01

    The fabrication and performance evaluation of single-crystal diamond refractive X-ray lenses of which the surfaces are paraboloids of revolution for focusing X-rays in two dimensions simultaneously are reported. The lenses were manufactured using a femtosecond laser micromachining process and tested using X-ray synchrotron radiation. Such lenses were stacked together to form a standard compound refractive lens (CRL). Owing to the superior physical properties of the material, diamond CRLs could become indispensable wavefront-preserving primary focusing optics for X-ray free-electron lasers and the next-generation synchrotron storage rings. They can be used for highly efficient refocusing of the extremely bright X-ray sources formore » secondary optical schemes with limited aperture such as nanofocusing Fresnel zone plates and multilayer Laue lenses.« less

  19. Template For Aiming An X-Ray Machine

    NASA Technical Reports Server (NTRS)

    Morphet, W. J.

    1994-01-01

    Relatively inexpensive template helps in aligning x-ray machine with phenolic ring to be inspected for flaws. Phenolic ring in original application part of rocket nozzle. Concept also applicable to x-ray inspection of other rings. Template contains alignment holes for adjusting orientation, plus target spot for adjusting lateral position, of laser spotting beam. (Laser spotting beam coincides with the x-ray beam, turned on later, after alignment completed.) Use of template decreases positioning time and error, providing consistent sensitivity for detection of flaws.

  20. Frontiers of X-ray research at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmer, J.J.

    1995-12-31

    With providential timing, the Advanced Photon Source (APS) at Argonne National Laboratory has begun to produce x-rays during the centennial year of Wilhelm Rongtgen`s discovery of a {open_quotes}new kind of rays.{close_quotes} When complete, this third-generation, 7-GeV positron storage ring will produce nearly one hundred intense x-ray beams, with a major emphasis on the laser-like (highly collimated, locally coherent) beams from undulator sources. This talk will provide an overview of (1) the important properties of the synchrotron radiation to be produced by the APS, (2) the major classes of experimental approaches that use x-rays, and (3) some speculation on the impactsmore » of the APS on the materials, chemical, biological, and environmental sciences.« less

  1. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  2. Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.

    PubMed

    Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori

    2013-04-22

    We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.

  3. Commissioning and Early Operation Experience of the NSLS-II Storage Ring RF System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, F.; Rose, J.; Cupolo, J.

    2015-05-03

    The National Synchrotron Light Source II (NSLS-II) is a 3 GeV electron X-ray user facility commissioned in 2014. The storage ring RF system, essential for replenishing energy loss per turn of the electrons, consists of digital low level RF controllers, 310 kW CW klystron transmitters, CESR-B type superconducting cavities, as well as a supporting cryogenic system. Here we will report on RF commissioning and early operation experience of the system for beam current up to 200mA.

  4. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  5. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small x-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation x-ray beamlines is the slow detuning of x-ray optics to marginal alignment where the onset of clipping increases the beam's susceptibility to higher frequency position oscillations. In this article, we show that a 1 mu m amplitude horizontal x-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensitymore » at optimal alignment.« less

  6. Extremum seeking x-ray position feedback using power line harmonic leakage as the perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohar, S.; Kissick, D. J.; Venugopalan, N.

    Small X-ray beam sizes necessary for probing nanoscale phenomena require exquisite stability to prevent data corruption by noise. One source of instability at synchrotron radiation X-ray beamlines is the slow detuning of X-ray optics to marginal alignment where the onset of clipping increases the beam’s susceptibility to higher frequency position oscillations. In this article, we show that a 1 µm amplitude horizontal X-ray beam oscillation driven by power line harmonic leakage into the electron storage ring can be used as perturbation for horizontal position extremum seeking feedback. Feedback performance is characterized by convergence to 1.5% away from maximum intensity atmore » optimal alignment.« less

  7. Storage-ring Electron Cooler for Relativistic Ion Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Fanglei; Derbenev, Yaroslav; Douglas, David R.

    Application of electron cooling at ion energies above a few GeV has been limited due to reduction of electron cooling efficiency with energy and difficulty in producing and accelerating a high-current high-quality electron beam. A high-current storage-ring electron cooler offers a solution to both of these problems by maintaining high cooling beam quality through naturally-occurring synchrotron radiation damping of the electron beam. However, the range of ion energies where storage-ring electron cooling can be used has been limited by low electron beam damping rates at low ion energies and high equilibrium electron energy spread at high ion energies. This papermore » reports a development of a storage ring based cooler consisting of two sections with significantly different energies: the cooling and damping sections. The electron energy and other parameters in the cooling section are adjusted for optimum cooling of a stored ion beam. The beam parameters in the damping section are adjusted for optimum damping of the electron beam. The necessary energy difference is provided by an energy recovering SRF structure. A prototype linear optics of such storage-ring cooler is presented.« less

  8. Hard X-Rays can BE Used to Visualize Cochlear Soft Tissue Displacements in a Closed Cochlea

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Fishman, A.; Fan, L.; Shintani, S.; Rau, C.

    2009-02-01

    Experiments were made at the Advanced Photon Source (APS), Argonne National Laboratory. The APS is a synchrotron radiation source of the third generation, for which the particular characteristic is the highly coherent X-ray radiation. X-rays are generated with an undulator, inserted in a straight section of the storage ring. Images taken with hard X-rays at full field. A video flow algorithm by Lucas and Kanade was used to determine and quantify cochlear soft tissue displacements. The results show that displacements as low as 100 nm could be visualized.

  9. Intra-Beam Scattering, Impedance, and Instabilities in Ultimate Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bane, Karl; /SLAC

    We have investigated collective effects in an ultimate storage ring, i.e. one with diffraction limited emittances in both planes, using PEP-X as an example. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, a 4.5 GeV ring running round beams at 200 mA in 3300 bunches, IBS doubles the emittances to 11.5 pm at the design current. The Touschek lifetime is 11 hours. Impedance driven collective effects tend not to be important since the beam current is relatively low. We have investigated collective effects in PEP-X, an ultimate storage ring, i.e.more » one with diffraction limited emittances (at one angstrom wavelength) in both planes. In an ultimate ring intra-beam scattering (IBS) sets the limit of current that can be stored. In PEP-X, IBS doubles the emittances to 11.5 pm at the design current of 200 mA, assuming round beams. The Touschek lifetime is quite large in PEP-X, 11.6 hours, and - near the operating point - increases with decreasing emittance. It is, however, a very sensitive function of momentum acceptance. In an ultimate ring like PEP-X impedance driven collective effects tend not to be important since the beam current is relatively low. Before ultimate PEP-X can be realized, the question of how to run a machine with round beams needs serious study. For example, in this report we assumed that the vertical emittance is coupling dominated. It may turn out that using vertical dispersion is a preferable way to generate round beams. The choice will affect IBS and the Touschek effect.« less

  10. Ring artifact reduction in synchrotron x-ray tomography through helical acquisition

    NASA Astrophysics Data System (ADS)

    Pelt, Daniël M.; Parkinson, Dilworth Y.

    2018-03-01

    In synchrotron x-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make it difficult or impossible to use the reconstructed image in further analyses. The severity of ring artifacts is often reduced in practice by applying pre-processing on the acquired data, or post-processing on the reconstructed image. However, such additional processing steps can introduce additional artifacts as well, and rely on specific choices of hyperparameter values. In this paper, a different approach to reducing the severity of ring artifacts is introduced: a helical acquisition mode. By moving the sample parallel to the rotation axis during the experiment, the sample is detected at different detector positions in each projection, reducing the effect of systematic errors in detector elements. Alternatively, helical acquisition can be viewed as a way to transform ring artifacts to helix-like artifacts in the reconstructed volume, reducing their severity. We show that data acquired with the proposed mode can be transformed to data acquired with a virtual circular trajectory, enabling further processing of the data with existing software packages for circular data. Results for both simulated data and experimental data show that the proposed method is able to significantly reduce ring artifacts in practice, even compared with popular existing methods, without introducing additional artifacts.

  11. A new storage-ring light source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, Alex

    2015-06-01

    A recently proposed technique in storage ring accelerators is applied to provide potential high-power sources of photon radiation. The technique is based on the steady-state microbunching (SSMB) mechanism. As examples of this application, one may consider a high-power DUV photon source for research in atomic and molecular physics or a high-power EUV radiation source for industrial lithography. A less challenging proof-of-principle test to produce IR radiation using an existing storage ring is also considered.

  12. Ion Storage Ring Measurements of Low Temperature Dielectronic Recombination Rate Coefficients for Modeling X-Ray Photoionized Cosmic Plasmas

    NASA Technical Reports Server (NTRS)

    Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.

    2002-01-01

    Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.

  13. Emission and absorption x-ray edges of Li

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callcott, T A; Arakawa, E T; Ederer, D L

    1977-01-01

    Measurements of the K X-ray absorption and emission edges of Li are reported. They were made with the same spectrometer at the NBS storage ring and serve to establish a 0.1 eV separation between the edges with no possibility of instrument calibration error. These results are compared with recent theories of Almbladh and Mahan describing the effects of incomplete phonon relaxation about the core hole. It is concluded that these theories give a satisfactory explanation of the data.

  14. Experimental evaluation of the ring focus test for X-ray telescopes using AXAF's technology mirror assembly, MSFC CDDF Project No. H20

    NASA Technical Reports Server (NTRS)

    Zissa, D. E.; Korsch, D.

    1986-01-01

    A test method particularly suited for X-ray telescopes was evaluated experimentally. The method makes use of a focused ring formed by an annular aperture when using a point source at a finite distance. This would supplement measurements of the best focus image which is blurred when the test source is at a finite distance. The telescope used was the Technology Mirror Assembly of the Advanced X-ray Astrophysis Facility (AXAF) program. Observed ring image defects could be related to the azimuthal location of their sources in the telescope even though in this case the predicted sharp ring was obscured by scattering, finite source size, and residual figure errors.

  15. Near-edge X-ray absorption spectra for metallic Cu and Mn

    NASA Astrophysics Data System (ADS)

    Greaves, G. N.; Durham, P. J.; Diakun, G.; Quinn, P.

    1981-11-01

    The measurement of X-ray absorption fine structure of metals- both in the extended region (EXAFS) as well as in the near edge region (XANES)-has been widely discussed (see refs 1-6 for Cu and refs 7-9 for Mn). The recent availability of intense X-ray fluxes from storage rings has usually been exploited for EXAFS leaving the XANES often with poorer resolution than earlier work performed on conventional sources (for example, compare the near edge structure for copper in ref. 1 with refs 3 or 6). In addition, whilst the theory and analysis of EXAFS is relatively well-established2,10, a theory for the strong scattering regime near to the absorption edge has only recently been developed11. We report here the first high resolution XANES spectra for Cu and Mn which were performed at the SRS storage ring at Daresbury. Although both metals have close-packed structures consisting of atoms of similar size their local atomic structure is different in detail. Significant differences are found in their respective XANES reflecting the senstivity of this region of the X-ray absorption fine structure to the local atomic structure. Spectra for the two metals have been analysed using the new multiple scattering formalism. This is a real space calculation and unlike a conventional band structure approach it does not require structural periodicity but works from the local arrangement of atoms.

  16. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft[sup 2] support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  17. CARNAÚBA: The Coherent X-Ray Nanoprobe Beamline for the Brazilian Synchrotron SIRIUS/LNLS

    NASA Astrophysics Data System (ADS)

    Tolentino, Hélio C. N.; Soares, Márcio M.; Perez, Carlos A.; Vicentin, Flávio C.; Abdala, Dalton B.; Galante, Douglas; Teixeira, Verônica de C.; de Araújo, Douglas H. C.; Westfahl, Harry, Jr.

    2017-06-01

    The CARNAÚBA beamline is the tender-to-hard X-ray (2 - 15 keV) scanning nanoprobe planned for the 4th generation storage ring SIRIUS at the LNLS. CARNAÚBA uses an undulator source with vertical linear polarization in a low-beta straight section and grazing incidence-focusing mirrors to create a nanoprobe at 143 m from the source. The beamline optic is based on KB mirrors and provides high brilliance at an achromatic focal spot down to the diffraction limit diameter of ˜30 nm with a working distance of ˜6 cm. These characteristics are crucial for studying nanometric samples in experiments involving complex stages and environments. The CARNAÚBA beamline aims to perform raster scans using x-ray fluorescence, x-ray absorption spectroscopy, x-ray diffraction and coherent x-ray imaging techniques. Computed tomography will extend these methods to three dimensions.

  18. Total x-ray power measurements in the Sandia LIGA program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malinowski, Michael E.; Ting, Aili

    2005-08-01

    Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different frommore » the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power

  19. Construction and operation of a support facilities (Building 729) for operation/testing of a prototype accelerator/storage ring (XLS) and machine shop for the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, New York. Environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-01

    Proposed action is to construct at BNL a 5,600-ft{sup 2} support building, install and operate a prototypic 200 MeV accelerator and a prototypic 700 MeV storage ring within, and to construct and operate a 15 kV substation to power the building. The accelerator and storage ring would comprise the x-ray lithography source or XLS.

  20. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  1. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  2. Study of Storage Ring Free-Electron Laser Using Experimental and Simulation Approaches

    NASA Astrophysics Data System (ADS)

    Jia, Botao

    2011-12-01

    The Duke electron storage ring, first commissioned in November of 1994, has been developed as a dedicated driver for storage ring free-electron lasers (SRFELs) operating in a wide wavelength range from infrared, to visible, to ultraviolet (UV) and vacuum ultraviolet (VUV). The storage ring has a long straight section for various insertion devices and can be operated in a wide energy range (0.25 GeV to 1.15 GeV). Commissioned in 1995, the first free-electron laser (FEL) on the Duke storage ring was the OK-4 FEL, an optical klystron with two planar undulators sandwiching a buncher magnet. In 2005, the OK-5 FEL with two helical undulators was commissioned. Operating four undulators---two OK-4 and two OK-5 undulators, the world's first distributed optical klystron FEL was brought to operation in 2005. Via Compton scattering of FEL photons and electrons in the storage ring, the Duke FEL drives the world's most powerful, nearly monochromatic, and polarized Compton gamma-ray source, the High Intensity Gamma-ray Source (HIgammaS). Today, a variety of configurations of the storage ring FELs at Duke have been used in a wide range of research areas from nuclear physics to biophysics, from chemical and medical research to industrial applications. The capability of accurately measuring the storage ring electron beam energy spread is crucial for understanding the longitudinal beam dynamics and the dynamics of the storage ring FEL. In this dissertation, we have successfully developed a noninvasive, versatile, and accurate method to measure the energy spread using optical klystron radiation. Novel numerical methods based upon the Gauss-Hermite expansion have been developed to treat both spectral broadening and modulation on an equal footing. Through properly configuring the optical klystron, this energy spread measurement method has a large dynamic range. In addition, a model-based scheme has been developed for correcting the electron beam emittance related inhomogeneous spectral

  3. X-Ray Emission for the Saturnian System

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ron F.; Waite, J. Hunter; Gladstone, G. Randall; Branduardi-Raymont, Graziella; Cravens, Tom E.; Ford, Peter G.

    2005-01-01

    Early attempts to detect X-ray emission from Saturn with Einstein (in December 1979) and ROSAT (in April 1992) were negative and marginal, respectively. Saturnian X-rays were unambiguously detected by XMM-Newton in September 2002 and by the Chandra X-ray Observatory in April 2003. These earlier X-ray observations of Saturn revealed emissions only from its non-auroral disk. In January 2004, Saturn was observed by the Advanced CCD Imaging Spectrometer of the Chandra observatory in two exposures on 20 and 26-27 January; each continuous observation lasted for about one full Saturn rotation. These new observations detected an X-ray flare at Saturn, and show that the Saturnian X-ray emission is highly variable - a factor of 4 variability in brightness over one week. These observations also discovered X-rays from Saturn's rings. The X-ray spectrum of the rings is dominated by emission in the 0.49-0.63 keV band with peak flux near the atomic oxygen K(lpha) fluorescence line at 525 eV. In addition, there is a hint of auroral emission from Saturn's south pole. But unlike Jupiter, X-rays from Saturn's polar region have characteristics similar to those from its disk and that they vary in brightness inversely to the FUV aurora observed by the Hubble Space Telescope. These exciting results obtained from Chandra observations will be presented and discussed.

  4. On the influence of monochromator thermal deformations on X-ray focusing

    DOE PAGES

    Antimonov, M. A.; Khounsary, A. M.; Sandy, A. R.; ...

    2016-03-02

    A cooled double crystal monochromator system is used on many high heat load X-ray synchrotron radiation beamlines in order to select, by diffraction, a narrow spectrum of the beam. Thermal deformation of the first crystal monochromator – and the potential loss of beam brightness – is often a concern. However, if downstream beam focusing is planned, the lensing effect of the monochromator must be considered even if thermal deformations are small. In this paper we report on recent experiments at an Advanced Photon Source (APS) beamline that focuses the X-ray beam using compound refractive lenses downstream of an X-ray monochromatormore » system. Increasing the X-ray beam power by increasing the storage ring current from 100 mA to 130 mA resulted in an effective doubling of the focal distance. We show quantitatively that this is due to a lensing effect of the distorted monochromator that results in the creation of a virtual source downstream of the actual source. Lastly, an analysis of the defocusing and options to mitigate this effect are explored.« less

  5. Fine Structure of Diffuse Scattering Rings in Al-Li-Cu Quasicrystal: A Comparative X-ray and Electron Diffraction Study

    NASA Astrophysics Data System (ADS)

    Donnadieu, P.; Dénoyer, F.

    1996-11-01

    A comparative X-ray and electron diffraction study has been performed on Al-Li-Cu icosahedral quasicrystal in order to investigate the diffuse scattering rings revealed by a previous work. Electron diffraction confirms the existence of rings but shows that the rings have a fine structure. The diffuse aspect on the X-ray diffraction patterns is then due to an averaging effect. Recent simulations based on the model of canonical cells related to the icosahedral packing give diffractions patterns in agreement with this fine structure effect. Nous comparons les diagrammes de diffraction des rayon-X et des électrons obtenus sur les mêmes échantillons du quasicristal icosaèdrique Al-Li-Cu. Notre but est d'étudier les anneaux de diffusion diffuse mis en évidence par un travail précédent. Les diagrammes de diffraction électronique confirment la présence des anneaux mais ils montrent aussi que ces anneaux possèdent une structure fine. L'aspect diffus des anneaux révélés par la diffraction des rayons X est dû à un effet de moyenne. Des simulations récentes basées sur la décomposition en cellules canoniques de l'empilement icosaédrique produisent des diagrammes de diffraction en accord avec ces effects de structure fine.

  6. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    PubMed Central

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; Madsen, Anders; Saldin, Evgeni; Serkez, Svitozar; Shvyd’ko, Yuri; Sutter, John

    2016-01-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm−1 spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm−1 are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combination of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 1012 photons s−1 in a 90 µeV bandwidth can be achieved on the sample. This will provide unique new possibilities for dynamics studies by IXS. PMID:26917127

  7. Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

    DOE PAGES

    Chubar, Oleg; Geloni, Gianluca; Kocharyan, Vitali; ...

    2016-03-01

    Inelastic X-ray scattering (IXS) is an important tool for studies of equilibrium dynamics in condensed matter. A new spectrometer recently proposed for ultra-high-resolution IXS (UHRIX) has achieved 0.6 meV and 0.25 nm ₋1spectral and momentum-transfer resolutions, respectively. However, further improvements down to 0.1 meV and 0.02 nm ₋1are required to close the gap in energy–momentum space between high- and low-frequency probes. It is shown that this goal can be achieved by further optimizing the X-ray optics and by increasing the spectral flux of the incident X-ray pulses. UHRIX performs best at energies from 5 to 10 keV, where a combinationmore » of self-seeding and undulator tapering at the SASE-2 beamline of the European XFEL promises up to a 100-fold increase in average spectral flux compared with nominal SASE pulses at saturation, or three orders of magnitude more than what is possible with storage-ring-based radiation sources. Wave-optics calculations show that about 7 × 10 12 photons s ₋1in a 90 µeV bandwidth can be achieved on the sample. Ultimately, this will provide unique new possibilities for dynamics studies by IXS.« less

  8. Measuring and interpreting X-ray fluorescence from planetary surfaces.

    PubMed

    Owens, Alan; Beckhoff, Burkhard; Fraser, George; Kolbe, Michael; Krumrey, Michael; Mantero, Alfonso; Mantler, Michael; Peacock, Anthony; Pia, Maria-Grazia; Pullan, Derek; Schneider, Uwe G; Ulm, Gerhard

    2008-11-15

    As part of a comprehensive study of X-ray emission from planetary surfaces and in particular the planet Mercury, we have measured fluorescent radiation from a number of planetary analog rock samples using monochromatized synchrotron radiation provided by the BESSY II electron storage ring. The experiments were carried out using a purpose built X-ray fluorescence (XRF) spectrometer chamber developed by the Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The XRF instrumentation is absolutely calibrated and allows for reference-free quantitation of rock sample composition, taking into account secondary photon- and electron-induced enhancement effects. The fluorescence data, in turn, have been used to validate a planetary fluorescence simulation tool based on the GEANT4 transport code. This simulation can be used as a mission analysis tool to predict the time-dependent orbital XRF spectral distributions from planetary surfaces throughout the mapping phase.

  9. Software defined photon counting system for time resolved x-ray experiments.

    PubMed

    Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J

    2007-01-01

    The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.

  10. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  11. Short x-ray pulse generation using deflecting cavities at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajaev, V.; Borland, M.; Chae, Y.-C.

    2007-11-11

    Storage-ring-based third-generation light sources can provide intense radiation pulses with durations as short as 100 ps. However, there is growing interest within the synchrotron radiation user community in performing experiments with much shorter X-ray pulses. Zholents et al. [Nucl. Instr. and Meth. A 425 (1999) 385] recently proposed using RF orbit deflection to generate sub-ps X-ray pulses. In this scheme, two deflecting cavities are used to deliver a longitudinally dependent vertical kick to the beam. An optical slit can then be used to slice out a short part of the radiation pulse. Implementation of this scheme is planned for onemore » APS beamline in the near future. In this paper, we summarize our feasibility study of this method and the expected X-ray beam parameters. We find that a pulse length of less than two picoseconds can be achieved.« less

  12. An optical storage cavity-based, Compton-backscatter x-ray source using the MKV free electron laser

    NASA Astrophysics Data System (ADS)

    Hadmack, Michael R.

    A compact, high-brightness x-ray source is presently under development at the University of Hawai`i Free Electron Laser Laboratory. This source utilizes Compton backscattering of an infrared laser from a relativistic electron beam to produce a narrow beam of monochromatic x-rays. The scattering efficiency is greatly increased by tightly focusing the two beams at an interaction point within a near-concentric optical storage cavity, designed with high finesse to coherently stack the incident laser pulses and greatly enhance the number of photons available for scattering with the electron beam. This dissertation describes the effort and progress to integrate and characterize the most important and challenging aspects of the design of this system. A low-power, near-concentric, visible-light storage cavity has been constructed as a tool for the exploration of the performance, alignment procedures, and diagnostics required for the operation of a high power infrared storage cavity. The use of off-axis reflective focussing elements is essential to the design of the optical storage cavity, but requires exquisite alignment to minimize astigmatism and other optical aberrations. Experiments using a stabilized HeNe laser have revealed important performance characteristics, and allowed the development of critical alignment and calibration procedures, which can be directly applied to the high power infrared storage cavity. Integration of the optical and electron beams is similarly challenging. A scanning-wire beam profiler has been constructed and tested, which allows for high resolution measurement of the size and position of the laser and electron beams at the interaction point. This apparatus has demonstrated that the electron and laser beams can be co-aligned with a precision of less than 10 microm, as required to maximize the x-ray production rate. Equally important is the stabilization of the phase of the GHz repetition rate electron pulses arriving at the interaction point

  13. Putting a Ring on it: Light Echoes from X-ray Transients as Probes of Interstellar Dust and Galactic Structure

    NASA Astrophysics Data System (ADS)

    Heinz, Sebastian

    2017-09-01

    When an X-ray transient exhibits a bright flare, scattering by interstellar dust clouds can give rise to a light echo in the form of concentric rings. To date, three such echoes have been detected, each leading to significant discoveries and press attention. We propose a Target-of-Opportunity campaign to observe future echoes with the aim to follow the temporal evolution of the echo in order to (a) map the 3D distribution interstellar dust along the line of sight to parsec accuracy, (b) constrain the composition and grain size distribution of ISM dust in each of the clouds towards the source, (c) measure the distance to the X-ray source, (d) constrain the velocity dispersion of molecular clouds and (e) search for evidence of streaming velocities by combing X-ray and CO data on the clouds.

  14. Complete elliptical ring geometry provides energy and instrument calibration for synchrotron-based two-dimensional X-ray diffraction

    PubMed Central

    Hart, Michael L.; Drakopoulos, Michael; Reinhard, Christina; Connolley, Thomas

    2013-01-01

    A complete calibration method to characterize a static planar two-dimensional detector for use in X-ray diffraction at an arbitrary wavelength is described. This method is based upon geometry describing the point of intersection between a cone’s axis and its elliptical conic section. This point of intersection is neither the ellipse centre nor one of the ellipse focal points, but some other point which lies in between. The presented solution is closed form, algebraic and non-iterative in its application, and gives values for the X-ray beam energy, the sample-to-detector distance, the location of the beam centre on the detector surface and the detector tilt relative to the incident beam. Previous techniques have tended to require prior knowledge of either the X-ray beam energy or the sample-to-detector distance, whilst other techniques have been iterative. The new calibration procedure is performed by collecting diffraction data, in the form of diffraction rings from a powder standard, at known displacements of the detector along the beam path. PMID:24068840

  15. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    PubMed Central

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; van Driel, Tim B.; Adachi, Shin-ichi; Bordage, Amélie; Bressler, Christian; Chabera, Pavel; Christensen, Morten; Dohn, Asmus O.; Galler, Andreas; Gawelda, Wojciech; Gosztola, David; Haldrup, Kristoffer; Harlang, Tobias; Liu, Yizhu; Møller, Klaus B.; Németh, Zoltán; Nozawa, Shunsuke; Pápai, Mátyás; Sato, Tokushi; Sato, Takahiro; Suarez-Alcantara, Karina; Togashi, Tadashi; Tono, Kensuke; Uhlig, Jens; Vithanage, Dimali A.; Wärnmark, Kenneth; Yabashi, Makina; Zhang, Jianxin; Sundström, Villy; Nielsen, Martin M.

    2015-01-01

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances. Experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined. PMID:25727920

  16. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses

    DOE PAGES

    Canton, Sophie E.; Kjær, Kasper S.; Vankó, György; ...

    2015-03-02

    Ultrafast photoinduced electron transfer preceding energy equilibration still poses many experimental and conceptual challenges to the optimization of photoconversion since an atomic-scale description has so far been beyond reach. Here we combine femtosecond transient optical absorption spectroscopy with ultrafast X-ray emission spectroscopy and diffuse X-ray scattering at the SACLA facility to track the non-equilibrated electronic and structural dynamics within a bimetallic donor–acceptor complex that contains an optically dark centre. Exploiting the 100-fold increase in temporal resolution as compared with storage ring facilities, these measurements constitute the first X-ray-based visualization of a non-equilibrated intramolecular electron transfer process over large interatomic distances.more » Thus experimental and theoretical results establish that mediation through electronically excited molecular states is a key mechanistic feature. The present study demonstrates the extensive potential of femtosecond X-ray techniques as diagnostics of non-adiabatic electron transfer processes in synthetic and biological systems, and some directions for future studies, are outlined.« less

  17. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  18. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2011-09-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During bservations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula in front of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  19. An X-ray look at the first head-trail nebula in an X-ray binary

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo

    2010-10-01

    Head-tail trails are a common feature in active galactic nuclei and pulsar bow-shocks. Heinz et al. (2008) suggested that also X-ray binaries, being jet sources moving with high velocities in dense media, can leave trails of highly ionized plasma that should be detectable at radio frequencies. During observations of faint-persistent X-ray binaries, we discovered an optical nebula around the X-ray binary SAX J1712.6-3739, consisting of a bow-shock ring-like nebula ``in front'' of the binary and two trails originating close to it. This is the first detection of such structure in a X-ray binary and it opens a new sub-field in the study of these objects. Observations with XMM-Newton and Chandra are now needed to investigate the properties of the surrounding nebula.

  20. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction.

    PubMed

    Salditt, Tim; Osterhoff, Markus; Krenkel, Martin; Wilke, Robin N; Priebe, Marius; Bartels, Matthias; Kalbfleisch, Sebastian; Sprung, Michael

    2015-07-01

    A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.

  1. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-09-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  2. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    NASA Astrophysics Data System (ADS)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  3. Observation and theory of X-ray mirages

    PubMed Central

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell–Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography. PMID:23733009

  4. Observation and theory of X-ray mirages.

    PubMed

    Magnitskiy, Sergey; Nagorskiy, Nikolay; Faenov, Anatoly; Pikuz, Tatiana; Tanaka, Mamoko; Ishino, Masahiko; Nishikino, Masaharu; Fukuda, Yuji; Kando, Masaki; Kawachi, Tetsuya; Kato, Yoshiaki

    2013-01-01

    The advent of X-ray lasers allowed the realization of compact coherent soft X-ray sources, thus opening the way to a wide range of applications. Here we report the observation of unexpected concentric rings in the far-field beam profile at the output of a two-stage plasma-based X-ray laser, which can be considered as the first manifestation of a mirage phenomenon in X-rays. We have developed a method of solving the Maxwell-Bloch equations for this problem, and find that the experimentally observed phenomenon is due to the emergence of X-ray mirages in the plasma amplifier, appearing as phase-matched coherent virtual point sources. The obtained results bring a new insight into the physical nature of amplification of X-ray radiation in laser-induced plasma amplifiers and open additional opportunities for X-ray plasma diagnostics and extreme ultraviolet lithography.

  5. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzen, Julia; Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching; Donath, Tilman

    2011-11-15

    X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects withmore » high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.« less

  6. X-ray characterization of a multichannel smart-pixel array detector.

    PubMed

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 × 48 pixels, each 130 µm × 130 µm × 520 µm thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  7. The Storage Ring Proton EDM Experiment

    NASA Astrophysics Data System (ADS)

    Semertzidis, Yannis; Storage Ring Proton EDM Collaboration

    2014-09-01

    The storage ring pEDM experiment utilizes an all-electric storage ring to store ~1011 longitudinally polarized protons simultaneously in clock-wise and counter-clock-wise directions for 103 seconds. The radial E-field acts on the proton EDM for the duration of the storage time to precess its spin in the vertical plane. The ring lattice is optimized to reduce intra-beam scattering, increase the statistical sensitivity and reduce the systematic errors of the method. The main systematic error is a net radial B-field integrated around the ring causing an EDM-like vertical spin precession. The counter-rotating beams sense this integrated field and are vertically shifted by an amount, which depends on the strength of the vertical focusing in the ring, thus creating a radial B-field. Modulating the vertical focusing at 10 kHz makes possible the detection of this radial B-field by a SQUID-magnetometer (SQUID-based BPM). For a total number of n SQUID-based BPMs distributed around the ring the effectiveness of the method is limited to the N = n /2 harmonic of the background radial B-field due to the Nyquist sampling theorem limit. This limitation establishes the requirement to reduce the maximum radial B-field to 0.1-1 nT everywhere around the ring by layers of mu-metal and aluminum vacuum tube. The metho's sensitivity is 10-29 e .cm , more than three orders of magnitude better than the present neutron EDM experimental limit, making it sensitive to SUSY-like new physics mass scale up to 300 TeV.

  8. HIGH-ENERGY X-RAY PINHOLE CAMERA FOR HIGH-RESOLUTION ELECTRON BEAM SIZE MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B.; Morgan, J.; Lee, S.H.

    The Advanced Photon Source (APS) is developing a multi-bend achromat (MBA) lattice based storage ring as the next major upgrade, featuring a 20-fold reduction in emittance. Combining the reduction of beta functions, the electron beam sizes at bend magnet sources may be reduced to reach 5 – 10 µm for 10% vertical coupling. The x-ray pinhole camera currently used for beam size monitoring will not be adequate for the new task. By increasing the operating photon energy to 120 – 200 keV, the pinhole camera’s resolution is expected to reach below 4 µm. The peak height of the pinhole imagemore » will be used to monitor relative changes of the beam sizes and enable the feedback control of the emittance. We present the simulation and the design of a beam size monitor for the APS storage ring.« less

  9. An IAEA multi-technique X-ray spectrometry endstation at Elettra Sincrotrone Trieste: benchmarking results and interdisciplinary applications.

    PubMed

    Karydas, Andreas Germanos; Czyzycki, Mateusz; Leani, Juan José; Migliori, Alessandro; Osan, Janos; Bogovac, Mladen; Wrobel, Pawel; Vakula, Nikita; Padilla-Alvarez, Roman; Menk, Ralf Hendrik; Gol, Maryam Ghahremani; Antonelli, Matias; Tiwari, Manoj K; Caliri, Claudia; Vogel-Mikuš, Katarina; Darby, Iain; Kaiser, Ralf Bernd

    2018-01-01

    The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14 keV for the Elettra storage ring operating at 2.0 or 2.4 GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.

  10. Hard X-ray Wiggler Front End Filter Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte-Schrepping, Horst; Hahn, Ulrich

    2007-01-19

    The front end filter design and implementation for the new HARWI-II hard X-ray wiggler at DORIS-III at HASYLAB/DESY is presented. The device emits a total power of 30 kW at 150mA storage ring current. The beam has a horizontal width of 3.8mrad and a central power density of 54 W/mm2 at 26m distance to the source. The filter section located in the ring tunnel has been introduced to tailor the thermal loads at the downstream optical components. The high power density and the high total power at the filter section are handled with a layered design. Glassy carbon filters convertmore » the absorbed power into thermal radiation to lower the heat load to an acceptable level for water cooled copper filters. The requirements in beam size and filtering are addressed by separating the filter functions in three units which are switched individually into the beam.« less

  11. Purification, crystallization and X-ray diffraction analysis of a novel ring-cleaving enzyme (BoxC{sub C}) from Burkholderia xenovorans LB400

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bains, Jasleen; Boulanger, Martin J., E-mail: mboulang@uvic.ca

    2008-05-01

    Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC{sub C}). Sequence analysis suggests that BoxC{sub C} is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC{sub C} crystallizedmore » with two molecules in the asymmetric unit of the P2{sub 1}2{sub 1}2{sub 1} space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å{sup 3} Da{sup −1}. Selenomethionine BoxC{sub C} has been purified and crystals are currently being refined for anomalous dispersion studies.« less

  12. C-shaped diastereomers containing cofacial thiophene-substituted quinoxaline rings: synthesis, photophysical properties, and X-ray crystallography.

    PubMed

    DeBlase, Catherine R; Finke, Ryan T; Porras, Jonathan A; Tanski, Joseph M; Nadeau, Jocelyn M

    2014-05-16

    Synthesis and characterization of two diastereomeric C-shaped molecules containing cofacial thiophene-substituted quinoxaline rings are described. A previously known bis-α-diketone was condensed with an excess of 4-bromo-1,2-diaminobenzene in the presence of zinc acetate to give a mixture of two C-shaped diastereomers with cofacial bromine-substituted quinoxaline rings. After chromatographic separation, thiophene rings were installed by a microwave-assisted Suzuki coupling reaction, resulting in highly emissive diastereomeric compounds that were studied by UV-vis, fluorescence, and NMR spectroscopy, as well as X-ray crystallography. The unique symmetry of each diastereomer was confirmed by NMR spectroscopy. NMR data indicated that the syn isomer has restricted rotation about the bond connecting the thiophene and quinoxaline rings, which was also observed in the solid state. The spectroscopic properties of the C-shaped diastereomers were compared to a model compound containing only a single thiophene-substituted quinoxaline ring. Ground state intramolecular π-π interactions in solution were detected by NMR and UV-vis spectroscopy. Red-shifted emission bands, band broadening, and large Stokes shifts were observed, which collectively suggest excited state π-π interactions that produce excimer-like emissions, as well as a remarkable positive emission solvatochromism, indicating charge-transfer character in the excited state.

  13. System design considerations for a production-grade, ESR-based x-ray lithography beamline

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Melore, Dan; Cerrina, Franco; Cole, Richard K.

    1991-08-01

    As electron storage ring (ESR) based x-ray lithography technology moves closer to becoming an industrial reality, more and more attention has been devoted to studying problem areas related to its application in the production environment. A principle component is the x-ray lithography beamline (XLBL) and its associated design requirements. XLBL, an x-ray radiation transport system, is one of the three major subunits in the ESR-based x-ray lithography system (XLS) and has a pivotal role in defining performance characteristics of the entire XLS. Its major functions are to transport the synchrotron orbital radiation (SOR) to the lithography target area with defined efficiency and to modify SOR into the spectral distribution defined by the lithography process window. These functions must be performed reliably in order to satisfy the required high production rate and ensure 0.25 micron resolution lithography conditions. In this paper the authors attempt to answer some specific questions that arise during the formulation of an XLBL system design. Three principle issues that are essential to formulating a design are (1) Radiation transport efficiency, (2) X-ray optical configurations in the beamline, (3) Beamline system configurations. Some practical solutions to thee problem areas are presented, and the effects of these parameters on lithography production rate are examined.

  14. Online optimization of storage ring nonlinear beam dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiaobiao; Safranek, James

    2015-08-01

    We propose to optimize the nonlinear beam dynamics of existing and future storage rings with direct online optimization techniques. This approach may have crucial importance for the implementation of diffraction limited storage rings. In this paper considerations and algorithms for the online optimization approach are discussed. We have applied this approach to experimentally improve the dynamic aperture of the SPEAR3 storage ring with the robust conjugate direction search method and the particle swarm optimization method. The dynamic aperture was improved by more than 5 mm within a short period of time. Experimental setup and results are presented.

  15. Removing ring artefacts from synchrotron radiation-based hard x-ray tomography data

    NASA Astrophysics Data System (ADS)

    Thalmann, Peter; Bikis, Christos; Schulz, Georg; Paleo, Pierre; Mirone, Alessandro; Rack, Alexander; Siegrist, Stefan; Cörek, Emre; Huwyler, Jörg; Müller, Bert

    2017-09-01

    In hard X-ray microtomography, ring artefacts regularly originate from incorrectly functioning pixel elements on the detector or from particles and scratches on the scintillator. We show that due to the high sensitivity of contemporary beamline setups further causes inducing inhomogeneities in the impinging wavefronts have to be considered. We propose in this study a method to correct the thereby induced failure of simple flatfield approaches. The main steps of the pipeline are (i) registration of the reference images with the radiographs (projections), (ii) integration of the flat-field corrected projection over the acquisition angle, (iii) high-pass filtering of the integrated projection, (iv) subtraction of filtered data from the flat-field corrected projections. The performance of the protocol is tested on data sets acquired at the beamline ID19 at ESRF using single distance phase tomography.

  16. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGES

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; ...

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  17. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  18. Beam diagnostics at high-intensity storage rings

    NASA Astrophysics Data System (ADS)

    Plum, Mike

    1994-10-01

    Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).

  19. Hard X-ray Sources for the Mexican Synchrotron Project

    NASA Astrophysics Data System (ADS)

    Reyes-Herrera, Juan

    2016-10-01

    One of the principal tasks for the design of the Mexican synchrotron was to define the storage ring energy. The main criteria for choosing the energy come from studying the electromagnetic spectrum that can be obtained from the synchrotron, because the energy range of the spectrum that can be obtained will determine the applications available to the users of the future light source. Since there is a public demand of hard X-rays for the experiments in the synchrotron community users from Mexico, in this work we studied the emission spectra from some hard X-ray sources which could be the best options for the parameters of the present Mexican synchrotron design. The calculations of the flux and the brightness for one Bending Magnet and four Insertion Devices are presented; specifically, for a Superconducting Bending Magnet (SBM), a Superconducting Wiggler (SCW), an In Vacuum Short Period Undulator (IV-SPU), a Superconducting Undulator (SCU) and for a Cryogenic Permanent Magnet Undulator (CPMU). Two commonly available synchrotron radiation programs were used for the computation (XOP and SRW). From the results, it can be concluded that the particle beam energy from the current design is enough to have one or more sources of hard X-rays. Furthermore, a wide range of hard X-ray region can be covered by the analyzed sources, and the choice of each type should be based on the specific characteristics of the X-ray beam to perform the experiments at the involved beamline. This work was done within the project Fomix Conacyt-Morelos ”Plan Estrategico para la construccion y operación de un Sincrotron en Morelos” (224392).

  20. Design and performance of coded aperture optical elements for the CESR-TA x-ray beam size monitor

    NASA Astrophysics Data System (ADS)

    Alexander, J. P.; Chatterjee, A.; Conolly, C.; Edwards, E.; Ehrlichman, M. P.; Flanagan, J. W.; Fontes, E.; Heltsley, B. K.; Lyndaker, A.; Peterson, D. P.; Rider, N. T.; Rubin, D. L.; Seeley, R.; Shanks, J.

    2014-12-01

    We describe the design and performance of optical elements for an x-ray beam size monitor (xBSM), a device measuring e+ and e- beam sizes in the CESR-TA storage ring. The device can measure vertical beam sizes of 10 - 100 μm on a turn-by-turn, bunch-by-bunch basis at e± beam energies of 2 - 5 GeV. x-rays produced by a hard-bend magnet pass through a single- or multiple-slit (coded aperture) optical element onto a detector. The coded aperture slit pattern and thickness of masking material forming that pattern can both be tuned for optimal resolving power. We describe several such optical elements and show how well predictions of simple models track measured performances.

  1. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in

  2. Robert R. Wilson Prize: The Quest for Bright, Coherent X-Rays: A Personal Story

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Je

    2014-03-01

    Stories associated with the advances in x-ray source techniques during the last several decades will be told from a personal viewpoint. I will start from the ``third-generation'' x-ray sources based on storage-ring-based undulators and a struggle to find a proper way to quantify the radiation strength. I will then discuss how the initially incoherent undulator radiation evolves into an intense-quasi-coherent radiation via free-electron laser (FEL) interaction. This so-called self-amplified spontaneous emission (SASE) in the x-ray region could be realized with the advent of laser-induced electron guns and forms the basis of the linac-driven ``fourth generation'' x-ray facilities. An x-ray FEL oscillator (XFELO) will also be feasible if Bragg reflectors, such as diamond crystals, are used as cavity mirrors. An XFELO driven by a CW superconducting linac would be a ``real x-ray laser,'' producing a steady stream of fully coherent, spectrally pure x-ray pulses. An XFELO can be mode-locked, thus producing x-ray spectral comb, if the cavity length can be fixed to a fraction of the x-ray wavelength by referencing to a narrow nuclear resonance. A mode-locked XFELO will enable x-ray quantum optics experiments, such as matter-wave interferometry, for fundamental physics. Alongside these main themes, stories for novel and ``cute'' schemes, such as a crossed undulator for polarization switching and an emittance exchanger for swapping the transverse and longitudinal phase space, will also be presented. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  3. Storage rings, internal targets and PEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.E.

    Storage rings with internal targets are described, using PEP as an example. The difference between electrons and heavier particles such as protons, antiprotons, and heavy ions is also discussed because it raises possibilities of bypass insertions for more exotic experiments. PEP is compared to other rings in various contexts to verify the assertion that it is an ideal ring for many fundamental and practical applications that can be carried on simultaneously. (LEW)

  4. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2002-07-31

    This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.

  5. New insights into globoids of protein storage vacuoles in wheat aleurone using synchrotron soft X-ray microscopy

    PubMed Central

    Regvar, Marjana; Eichert, Diane; Kaulich, Burkhard; Gianoncelli, Alessandra; Pongrac, Paula; Vogel-Mikuš, Katarina; Kreft, Ivan

    2011-01-01

    Mature developed seeds are physiologically and biochemically committed to store nutrients, principally as starch, protein, oils, and minerals. The composition and distribution of elements inside the aleurone cell layer reflect their biogenesis, structural characteristics, and physiological functions. It is therefore of primary importance to understand the mechanisms underlying metal ion accumulation, distribution, storage, and bioavailability in aleurone subcellular organelles for seed fortification purposes. Synchrotron radiation soft X-ray full-field imaging mode (FFIM) and low-energy X-ray fluorescence (LEXRF) spectromicroscopy were applied to characterize major structural features and the subcellular distribution of physiologically important elements (Zn, Fe, Na, Mg, Al, Si, and P). These direct imaging methods reveal the accumulation patterns between the apoplast and symplast, and highlight the importance of globoids with phytic acid mineral salts and walls as preferential storage structures. C, N, and O chemical topographies are directly linked to the structural backbone of plant substructures. Zn, Fe, Na, Mg, Al, and P were linked to globoid structures within protein storage vacuoles with variable levels of co-localization. Si distribution was atypical, being contained in the aleurone apoplast and symplast, supporting a physiological role for Si in addition to its structural function. These results reveal that the immobilization of metals within the observed endomembrane structures presents a structural and functional barrier and affects bioavailability. The combination of high spatial and chemical X-ray microscopy techniques highlights how in situ analysis can yield new insights into the complexity of the wheat aleurone layer, whose precise biochemical composition, morphology, and structural characteristics are still not unequivocally resolved. PMID:21447756

  6. Low emittance electron storage rings

    NASA Astrophysics Data System (ADS)

    Levichev, E. B.

    2018-01-01

    Low-emittance electron (positron) beams are essential for synchrotron light sources, linear collider damping rings, and circular Crab Waist colliders. In this review, the principles and methods of emittance minimization are discussed, prospects for developing relativistic electron storage rings with small beam phase volume are assessed, and problems related to emittance minimization are examined together with their possible solutions. The special features and engineering implementation aspects of various facilities are briefly reviewed.

  7. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.

    2000-01-01

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  8. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.

    PubMed

    Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell

    2000-06-20

    The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.

  9. An Inside Look: NSLS-II Storage Ring

    ScienceCinema

    Fries, Gregory

    2018-06-12

    Look inside the storage ring of the National Synchrotron Light Source II, under construction at Brookhaven Lab. Exactly 843 magnets now encircle the ring. Their job will be to steer, stabilize, and store electrons racing around at near light speed.

  10. Effect of Air and Vacuum Storage on the Tensile Properties of X-Ray Exposed Aluminized-FEP

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Gummow, Jonathan D.

    2000-01-01

    Metallized Teflon(Registered Trademark) FEP (fluorinated ethylene propylene), a common spacecraft thermal control material, from the exterior layer of the Hubble Space Telescope (HST) has become embrittled and suffers from extensive cracking. Teflon samples retrieved during Hubble servicing missions and from the Long Duration Exposure Facility (LDEF) indicate that there may be continued degradation in tensile properties over time. An investigation has been conducted to evaluate the effect of air and vacuum storage on the mechanical properties of x-ray exposed FEP. Aluminized-FEP (Al-FEP) tensile samples were irradiated with 15.3 kV Cu x-rays and stored in air or under vacuum for various time periods. Tensile data indicate that samples stored in air display larger decreases in tensile properties than for samples stored under vacuum. Air-stored samples developed a hazy appearance, which corresponded to a roughening of the aluminized surface. Optical property changes were also characterized. These findings indicate that air exposure plays a role in the degradation of irradiated FEP, therefore proper sample handling and storage is necessary with materials retrieved from space.

  11. Trace element abundance determinations by Synchrotron X Ray Fluorescence (SXRF) on returned comet nucleus mineral grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1989-01-01

    Trace element analyses were performed on bulk cosmic dust particles by Proton Induced X Ray Emission (PIXE) and Synchrotron X Ray Fluorescence (SXRF). When present at or near chondritic abundances the trace elements K, Ti, Cr, Mn, Cu, Zn, Ga, Ge, Se, and Br are presently detectable by SXRF in particles of 20 micron diameter. Improvements to the SXRF analysis facility at the National Synchrotron Light Source presently underway should increase the range of detectable elements and permit the analysis of smaller samples. In addition the Advanced Photon Source will be commissioned at Argonne National Laboratory in 1995. This 7 to 8 GeV positron storage ring, specifically designed for high-energy undulator and wiggler insertion devices, will be an ideal source for an x ray microprobe with one micron spatial resolution and better than 100 ppb elemental sensitivity for most elements. Thus trace element analysis of individual micron-sized grains should be possible by the time of the comet nucleus sample return mission.

  12. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Iaroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  13. A full-field transmission x-ray microscope for time-resolved imaging of magnetic nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewald, J.; Nisius, T.; Abbati, G.

    Sub-nanosecond magnetization dynamics of small permalloy (Ni{sub 80}Fe{sub 20}) elements has been investigated with a new full-field transmission microscope at the soft X-ray beamline P04 of the high brilliance synchrotron radiation source PETRA III. The soft X-ray microscope generates a flat-top illumination field of 20 μm diameter using a grating condenser. A tilted nanostructured magnetic sample can be excited by a picosecond electric current pulse via a coplanar waveguide. The transmitted light of the sample plane is directly imaged by a micro zone plate with < 65 nm resolution onto a 2D gateable X-ray detector to select one particular bunch in themore » storage ring that probes the time evolution of the dynamic information successively via XMCD spectromicroscopy in a pump-probe scheme. In the experiments it was possible to generate a homogeneously magnetized state in patterned magnetic layers by a strong magnetic Oersted field pulse of 200 ps duration and directly observe the recovery to the initial flux-closure vortex patterns.« less

  14. Small Angle X-Ray Scattering Detector

    DOEpatents

    Hessler, Jan P.

    2004-06-15

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

  15. Chandra X-Ray Observatory Image of Crab Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky

  16. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    DOE PAGES

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; ...

    2016-01-28

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses atmore » megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. Lastly, we detail the characteristics, operation, testing and application of the detector.« less

  17. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    PubMed Central

    Philipp, Hugh T.; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T.; Gruner, Sol M.

    2016-01-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed. PMID:26917125

  18. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation.

    PubMed

    Philipp, Hugh T; Tate, Mark W; Purohit, Prafull; Shanks, Katherine S; Weiss, Joel T; Gruner, Sol M

    2016-03-01

    A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8-12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10-100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  19. Polarization Studies for the eRHIC Electron Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianfelice-Wendt, Eliana; Tepikian, S.

    A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV.more » Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.« less

  20. X-ray fluorescence beamline at the LNLS: Current instrumentation and future developments (abstract)

    NASA Astrophysics Data System (ADS)

    Pérez, C. A.; Bueno, M. I. S.; Neuenshwander, R. T.; Sánchez, H. J.; Tolentino, H.

    2002-03-01

    The x-ray fluorescence (XRF) beamline, constructed at the Brazilian National Synchrotron Radiation Laboratory (LNLS-http://www.lnls.br), has been operating for the external users since August of 1998 (C. A. Pérez et al., Proc. of the European Conference on Energy Dispersive X-Ray Spectrometry, Bologna, Italy, 1998, pp. 125-129). The synchrotron source for this beamline is the D09B (15°) dipole magnet of the LNLS storage ring. Two main experimental setups are mounted at the XRF beamline. One consists of a high vacuum chamber adapted to carry out experiments in grazing excitation conditions. This allows chemical trace and ultratrace element determination on several samples, mainly coming from environmental and biological sciences. Another setup consists of an experimental station, operated in air, in which x-ray fluorescence analysis with spatial resolution can be done. This station is equipped with a fine conical capillary, capable of achieving 20 μm spatial resolution, and with an optical microscope in order to select the region of interest on the sample surface. In this work, the main characteristic of the beamline, experimental stations as well as the description of some new experimental facilities will be given. Future development in the instrumentation focuses on an appropriate x-ray optic to be able to carry out chemical trace analysis of light elements using the total x-ray fluorescence technique. Also, chemical mapping below 10 μm spatial resolution, while keeping high flux of photon on the sample, will be achieved by using the Kirkpatrick-Baez x-ray microfocusing optic.

  1. Ray Tracing through the Edge Focusing of Rectangular Benders and an Improved Model for the Los Alamos Proton Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolski, Jeffrey S.; Barlow, David B.; Macek, Robert J.

    2011-01-01

    Particle ray tracing through simulated 3D magnetic fields was executed to investigate the effective quadrupole strength of the edge focusing of the rectangular bending magnets in the Los Alamos Proton Storage Ring (PSR). The particle rays receive a kick in the edge field of the rectangular dipole. A focal length may be calculated from the particle tracking and related to the fringe field integral (FINT) model parameter. This tech note introduces the baseline lattice model of the PSR and motivates the need for an improvement in the baseline model's vertical tune prediction, which differs from measurement by .05. An improvedmore » model of the PSR is created by modifying the fringe field integral parameter to those suggested by the ray tracing investigation. This improved model is then verified against measurement at the nominal PSR operating set point and at set points far away from the nominal operating conditions. Lastly, Linear Optics from Closed Orbits (LOCO) is employed in an orbit response matrix method for model improvement to verify the quadrupole strengths of the improved model.« less

  2. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale

    NASA Astrophysics Data System (ADS)

    Bonetti, Stefano

    2017-04-01

    Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.

  3. X-ray imaging of spin currents and magnetisation dynamics at the nanoscale.

    PubMed

    Bonetti, Stefano

    2017-04-05

    Understanding how spins move in time and space is the aim of both fundamental and applied research in modern magnetism. Over the past three decades, research in this field has led to technological advances that have had a major impact on our society, while improving the understanding of the fundamentals of spin physics. However, important questions still remain unanswered, because it is experimentally challenging to directly observe spins and their motion with a combined high spatial and temporal resolution. In this article, we present an overview of the recent advances in x-ray microscopy that allow researchers to directly watch spins move in time and space at the microscopically relevant scales. We discuss scanning x-ray transmission microscopy (STXM) at resonant soft x-ray edges, which is available at most modern synchrotron light sources. This technique measures magnetic contrast through the x-ray magnetic circular dichroism (XMCD) effect at the resonant absorption edges, while focusing the x-ray radiation at the nanometre scale, and using the intrinsic pulsed structure of synchrotron-generated x-rays to create time-resolved images of magnetism at the nanoscale. In particular, we discuss how the presence of spin currents can be detected by imaging spin accumulation, and how the magnetisation dynamics in thin ferromagnetic films can be directly imaged. We discuss how a direct look at the phenomena allows for a deeper understanding of the the physics at play, that is not accessible to other, more indirect techniques. Finally, we present an overview of the exciting opportunities that lie ahead to further understand the fundamentals of novel spin physics, opportunities offered by the appearance of diffraction limited storage rings and free electron lasers.

  4. Cryo X-ray microscope with flat sample geometry for correlative fluorescence and nanoscale tomographic imaging.

    PubMed

    Schneider, Gerd; Guttmann, Peter; Rehbein, Stefan; Werner, Stephan; Follath, Rolf

    2012-02-01

    X-ray imaging offers a new 3-D view into cells. With its ability to penetrate whole hydrated cells it is ideally suited for pairing fluorescence light microscopy and nanoscale X-ray tomography. In this paper, we describe the X-ray optical set-up and the design of the cryo full-field transmission X-ray microscope (TXM) at the electron storage ring BESSY II. Compared to previous TXM set-ups with zone plate condenser monochromator, the new X-ray optical layout employs an undulator source, a spherical grating monochromator and an elliptically shaped glass capillary mirror as condenser. This set-up improves the spectral resolution by an order of magnitude. Furthermore, the partially coherent object illumination improves the contrast transfer of the microscope compared to incoherent conditions. With the new TXM, cells grown on flat support grids can be tilted perpendicular to the optical axis without any geometrical restrictions by the previously required pinhole for the zone plate monochromator close to the sample plane. We also developed an incorporated fluorescence light microscope which permits to record fluorescence, bright field and DIC images of cryogenic cells inside the TXM. For TXM tomography, imaging with multi-keV X-rays is a straightforward approach to increase the depth of focus. Under these conditions phase contrast imaging is necessary. For soft X-rays with shrinking depth of focus towards 10nm spatial resolution, thin optical sections through a thick specimen might be obtained by deconvolution X-ray microscopy. As alternative 3-D X-ray imaging techniques, the confocal cryo-STXM and the dual beam cryo-FIB/STXM with photoelectron detection are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Oxygen storage properties of La 1-xSr xFeO 3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    DOE PAGES

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; ...

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La 1–xSr xFeO 3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La 1–xSr xFeO 3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2,more » 2/3, and 1, we discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La 2/3Sr 1/3FeO 3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  6. Elemental-sensitive Detection of the Chemistry in Batteries through Soft X-ray Absorption Spectroscopy and Resonant Inelastic X-ray Scattering.

    PubMed

    Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli

    2018-04-17

    Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.

  7. Low-temperature X-ray detectors for precise Lamb shift measurements on hydrogen-like heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kluge, H.-J.; Liebisch, U.; McCammon, D.; Meier, H. J.; Sebastián, O.; Stahle, C. K.; Weber, M.

    2000-04-01

    The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman- α transitions in 208Pb81+ or 238U91+ with sufficient accuracy a high resolving calorimetric detector for hard X-rays ( E⩽100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of X-ray absorbers made of high Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/ 4He dilution refrigerator with a side arm which fits to the geometry of the internal target of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.3 mm 2×66 μm Sn absorber an energy resolution of Δ EFWHM=75 eV is obtained for 60 keV X-rays.

  8. A compressed sensing X-ray camera with a multilayer architecture

    DOE PAGES

    Wang, Zhehui; Laroshenko, O.; Li, S.; ...

    2018-01-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  9. A compressed sensing X-ray camera with a multilayer architecture

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  10. A compressed sensing X-ray camera with a multilayer architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhehui; Laroshenko, O.; Li, S.

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less

  11. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  12. The Discovery of an Evolving Dust Scattered X-ray Halo Around GRB 031203

    NASA Technical Reports Server (NTRS)

    Vaughan, S.; Willingale, R.; OBrien, P. T.; Osborne, J. P.; Reeves, J. N.; Levan, A. J.; Watson, M. G.; Tedds, J. A.; Watson, D.; Santos-Lleo, M.

    2003-01-01

    We report the first detection of a time-dependent, dust-scattered X-ray halo around a gamma-ray burst. GRB3 031203 was observed by XMM-Newton starting six hours after the burst. The halo appeared as concentric ring-like structures centered on the GRB location. The radii of these structures increased with time as t(sup 1/2), consistent with small-angle X-ray scattering caused by a large column of dust along the line of sight to a cosmologically distant GRB. The rings are due to dust concentrated in two distinct slabs in the Galaxy located at distances of 880 and 1390 pc, consistent with known Galactic features. The halo brightness implies an initial soft X-ray pulse consistent with the observed GRB.

  13. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstratedmore » for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.« less

  14. Calorimetric low temperature detectors for high resolution x-ray spectroscopy on stored highly stripped heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kluge, H.-J.; Liebisch, U.; Mc Cammon, D.; Meier, H. J.; Sebastián, O.; Stahle, C. K.; Stöhlker, T.; Weber, M.

    2000-06-01

    The precise determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of QED in very strong Coulomb fields, not accessible otherwise, and has also the potential to deduce nuclear charge radii. A brief overview on the present status of such experiments, performed at the storage ring ESR at GSI Darmstadt, is given. For the investigation of the Lyman-α transitions in Au78+- or U91+- ions with improved accuracy a high resolving calorimetric low temperature detector for hard x-rays (E⩽100 keV) is presently developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator which fits to the geometry of the ESR target. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector an energy resolution of ΔEFWHM=75 eV is obtained for 60 keV x-rays.

  15. Calorimetric low-temperature detectors for high resolution x-ray spectroscopy on stored highly stripped heavy ions

    NASA Astrophysics Data System (ADS)

    Bleile, A.; Egelhof, P.; Kraft, S.; McCammon, D.; Meier, H. J.; Shrivastava, A.; Stahle, C. K.; Weber, M.

    2002-02-01

    The accurate determination of the Lamb shift in heavy hydrogen-like ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields, not accessible otherwise. For the investigation of the Lyman-α transitions in 208Pb81+ or 238U91+ with sufficient accuracy, a high resolution calorimetric detector for hard x-rays (E<=100 keV) is presently being developed. The detector modules consist of arrays of silicon thermistors and of x-ray absorbers made of high-Z material to optimize the absorption efficiency. The detectors are housed in a specially designed 3He/4He dilution refrigerator with a side arm which fits to the internal target geometry of the storage ring ESR at GSI Darmstadt. The detector performance presently achieved is already close to fulfill the demands of the Lamb shift experiment. For a prototype detector pixel with a 0.2 mm2×47 μm Pb absorber an energy resolution of ΔEFWHM=65 eV is obtained for 60 keV x-rays. .

  16. Cabling design of booster and storage ring construction progress of TPS

    NASA Astrophysics Data System (ADS)

    Wong, Y.-S.; Liu, K.-B.; Liu, C.-Y.; Wang, b.-S.

    2017-06-01

    The 2012 Taiwan Photon Source (TPS) cable construction project started after 10 months to complete the cable laying and installation of power supply. The circumference of the booster ring (BR) is 496.8 m, whereas that of the storage ring (SR) is 518.4 m. Beam current is set to 500 mA at 3.3 GeV. The paper on grounding systems discusses the design of the ground wire (< 0.2 Ω) with low impedance, power supply of the accelerator and cabling tray. The flow and size of the ground current are carefully evaluated to avoid grounded current from flowing everywhere, which causes interference problems. In the design of the TPS, special shielding will be established to isolate the effects of electromagnetic interference on the magnet and ground current. Booster ring dipoles are connected by a series of 54-magnet bending dipole; the cable size of its stranded wire measures 250 mm2, with a total length of 5000 m. Booster ring and storage ring quadrupoles have 150 magnets; the cable size of their stranded wire is 250 mm2, with a total length of 17000 m. Storage ring dipole consists of 48 magnets; the cable size of its stranded wire is 325 mm2, with a total length of 6000 m. This study discusses the power supply cabling design of the storage ring and booster ring construction progress of TPS. The sections of this paper are divided into discussions of the construction of the control and instrument area, cabling layout of booster ring and storage ring, as well as the installation and commission machine. This study also discusses the use of a high-impedance meter to determine the effect of cabling insulation and TPS power supply machine on energy transfer to ensure the use of safe and correct magnet.

  17. Black hole accretion rings revealed by future X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Sochora, V.; Karas, V.; Svoboda, J.; Dovčiak, M.

    2011-11-01

    Spectral features can arise by reflection of coronal X-rays on a black hole accretion disc. The resulting profile bears various imprints of a strong gravitational field acting on the light-emitting gas. The observed shape of the reflection line is formed by integrating contributions over a range of radii across the accretion disc plane, where the individual photons experience a different level of energy shifts, boosting and amplification by relativistic effects. These have to be convolved with the intrinsic emissivity of the line, which is a function of radius and the emission angle in the local frame. We study if the currently discussed instruments on-board X-ray satellites will be able to reveal the departure of the line radial emissivity from a simple smooth power-law function, which is often assumed in data fitting and its interpretation. Such a departure can be a result of excess emission occurring at a certain distance. This could be used to study variations with a radius of the line production or to constrain the position of the inner edge of the accretion disc. By simulating artificial data from a bright active galactic nucleus of a type 1 Seyfert galaxy (inclination ≃30°, X-ray flux ≃1-2 mCrab in a keV energy band) we show that the required sensitivity and energy resolution could be reached with a large area detector of the proposed Large Observatory for X-ray Timing mission. Galactic black holes will provide another category of potentially suitable targets if the relativistic spectral features are indeed produced by reflection from their accretion discs.

  18. A simultaneous multiple angle-wavelength dispersive X-ray reflectometer using a bent-twisted polychromator crystal

    PubMed Central

    Matsushita, Tadashi; Arakawa, Etsuo; Voegeli, Wolfgang; Yano, Yohko F.

    2013-01-01

    An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically. The normalized intensity distribution of the reflected beam measured downstream of the specimen with a two-dimensional pixel array detector (PILATUS 100K) represents the reflectivity curve. Specular X-ray reflectivity curves were measured from a commercially available silicon (100) wafer, a thin gold film coated on a silicon single-crystal substrate and the surface of liquid ethylene glycol with data collection times of 0.01 to 1000 s using synchrotron radiation from a bending-magnet source of a 6.5 GeV electron storage ring. A typical value of the simultaneously covered range of the momentum transfer was 0.01–0.45 Å−1 for the silicon wafer sample. The potential of this reflectometer for time-resolved X-ray studies of irreversible structural changes is discussed. PMID:23254659

  19. The phase slip factor of the electrostatic cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  20. X-ray characterization of short-pulse laser illuminated hydrogen storage alloys having very high performance

    NASA Astrophysics Data System (ADS)

    Daido, Hiroyuki; Abe, Hiroshi; Shobu, Takahisa; Shimomura, Takuya; Tokuhira, Shinnosuke; Takenaka, Yusuke; Furuyama, Takehiro; Nishimura, Akihiko; Uchida, Hirohisa; Ohshima, Takeshi

    2015-09-01

    Hydrogen storage alloys become more and more important in the fields of electric energy production and stage and automobiles such as Ni-MH batteries. The vacancies introduced in hydrogen absorption alloy by charged particle beams were found to be positive effect on the increase in the initial hydrogen absorption reaction rate in the previous study. The initial reaction rates of hydrogen absorption and desorption of the alloy are one of the important performances to be improved. Here, we report on the characterization of the hydrogen absorption reaction rate directly illuminated by a femtosecond and nanosecond lasers instead of particle beam machines. A laser illuminates the whole surface sequentially on a tip of a few cm square LaNi4.6Al0.4 alloy resulting in significant improvement in the hydrogen absorption reaction rate. For characterization of the surface layer, we perform an x-ray diffraction experiment using a monochromatized intense x-ray beam from SPring-8 synchrotoron machine.

  1. Examination for optimization of synchrotron radiation spectrum for the x ray depth lithography

    NASA Astrophysics Data System (ADS)

    Dany, Raimund

    1992-06-01

    The effect of reducing the vertical distribution of synchrotron radiation on its spectral distribution is examined through resin irradiation. The resulting filter effect is compared to that of absorption filters. Transmission coefficients of titanium, gold, and polyamide were calculated from linear absorption coefficients with the Beer law. The use of a diaphragm in X-ray depth lithography, which is the first step of the LIGA (Lithography Galvanoforming Molding) process, is discussed. A calorimetric device for determining the synchrotron radiation power and distribution was developed and tested. Measurements at the ELSA storage ring show a strong dependence of the vertical emittance on the electron current.

  2. AUSPEX: a graphical tool for X-ray diffraction data analysis.

    PubMed

    Thorn, Andrea; Parkhurst, James; Emsley, Paul; Nicholls, Robert A; Vollmar, Melanie; Evans, Gwyndaf; Murshudov, Garib N

    2017-09-01

    In this paper, AUSPEX, a new software tool for experimental X-ray data analysis, is presented. Exploring the behaviour of diffraction intensities and the associated estimated uncertainties facilitates the discovery of underlying problems and can help users to improve their data acquisition and processing in order to obtain better structural models. The program enables users to inspect the distribution of observed intensities (or amplitudes) against resolution as well as the associated estimated uncertainties (sigmas). It is demonstrated how AUSPEX can be used to visually and automatically detect ice-ring artefacts in integrated X-ray diffraction data. Such artefacts can hamper structure determination, but may be difficult to identify from the raw diffraction images produced by modern pixel detectors. The analysis suggests that a significant portion of the data sets deposited in the PDB contain ice-ring artefacts. Furthermore, it is demonstrated how other problems in experimental X-ray data caused, for example, by scaling and data-conversion procedures can be detected by AUSPEX.

  3. Recent progress in X-ray optics at the ESRF

    NASA Astrophysics Data System (ADS)

    Freund, A.

    2003-03-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfil this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has a ways been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and Systems based on bent surfaces, for example Kirkpatrick-Baez Systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. A review of recent progress in this field is given.

  4. Soft x-ray holography and microscopy of biological cells

    NASA Astrophysics Data System (ADS)

    Chen, Jianwen; Gao, Hongyi; Xie, Honglan; Li, Ruxin; Xu, Zhizhan

    2003-10-01

    Some experimental results on soft X-ray microscopy and holography imaging of biological specimens are presented in the paper. As we know, due to diffraction effects, there exists a resolution limit determined by wavelength λ and numerical aperture NA in conventional optical microscopy. In order to improve resolution, the num erical aperture should be made as large as possible and the wavelength as short as possible. Owing to the shorter wavelength, X-rays provide the potential of higher resolution in X-ray microscopy, holography image and allow for exam ination the interior structures of thicker specimens. In the experiments, we used synchrotron radiation source in Hefei as light source. Soft X-rays come from a bending magnet in 800 M eV electron storage ring with characteristic wavelength of 2.4 nm. The continuous X-ray spectrums are monochromatized by a zone-plate and a pinhole with 300 m diameter. The experimental set-up is typical contact microscopic system, its main advantage is simplicity and no special optical element is needed. The specimens used in the experiments of microscopic imaging are the colibacillus, the gingko vascular hundle and the fritillaries ovary karyon. The specimen for holographic imaging is the spider filam ents. The basic structures of plant cells such as the cell walls, the cytoplasm and the karyon especially the joint structures between the cells are observed clearly. An experimental study on a thick biological specimen that is a whole sporule w ith the thickness of about 30 μm is performed. In the holographic experiments, the experimental setup is typical Gabor in-line holography. The specimen is placed in line with X-ray source, which provides both the reference w aves and specimen illum ination. The specimen is some spider filament, which adhere to a Si3N4 film. The recording medium is PM M A, which is placed at recording distance of about 400 μm from the specimen. The hologram s were reconstructed by digital method with 300 nm

  5. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, Benjamin; Heinrich, Ingo; Merz, Bruno

    2015-10-01

    For both societal and ecological reasons, it is important to understand past and future subsurface water dynamics but estimating subsurface water storage is notoriously difficult. In this pilot study, we suggest the reconstruction of subsurface water dynamics by a multi-disciplinary approach combining hydrology, dendrochronology and geodesy. In a first step, nine complete years of high-precision gravimeter observations are used to estimate water storage changes in the subsurface at the Geodetic Observatory Wettzell in the Bavarian Forest, Germany. The record is extended to 63 years by calibrating a hydrological model against the 9 years of gravimeter observations. The relationship between tree-ring growth and water storage changes is evaluated as well as that between tree-ring growth and supplementary hydro-meteorological data. Results suggest that tree-ring growth is influenced primarily by subsurface water storage. Other variables related to the overall moisture status (e.g., Standardized Precipitation Index, Palmer Drought Severity Index, streamflow) are also strongly correlated with tree-ring width. While these indices are all indicators of water stored in the landscape, water storage changes of the subsurface estimated by depth-integral measurements give us the unique opportunity to directly reconstruct subsurface water storage dynamics from records of tree-ring width. Such long reconstructions will improve our knowledge of past water storage variations and our ability to predict future developments. Finally, knowing the relationship between subsurface storage dynamics and tree-ring growth improves the understanding of the different signal components contained in tree-ring chronologies.

  6. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  7. Thickness determination of thin solid films by angle-resolved X-ray fluorescence spectrometry using monochromatized synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Schmitt, W.; Drotbohm, P.; Rothe, J.; Hormes, J.; Ottermann, C. R.; Bange, K.

    1995-05-01

    Thickness measurements by the method of angle-resolved, self-ratio X-ray fluorescence spectrometry (AR/SR/XFS) have been carried out on thin solid films using monochromatized synchrotron radiation at the Bonn storage ring ELSA. Synchrotron radiation was monochromatized by means of a double-crystal monochromator and fluorescence radiation was detected by a Si(Li) semiconductor detector. The results for sample systems consisting of Au on Si, Cr on SiO2 and TiO2 on alkali-free glass are very satisfactory and agree well with results obtained by other methods.

  8. Conditioning of BPM pickup signals for operations of the Duke storage ring with a wide range of single-bunch current

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.

    2014-10-01

    The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.

  9. WavePropaGator: interactive framework for X-ray free-electron laser optics design and simulations.

    PubMed

    Samoylova, Liubov; Buzmakov, Alexey; Chubar, Oleg; Sinn, Harald

    2016-08-01

    This article describes the WavePropaGator ( WPG ) package, a new interactive software framework for coherent and partially coherent X-ray wavefront propagation simulations. The package has been developed at European XFEL for users at the existing and emerging free-electron laser (FEL) facilities, as well as at the third-generation synchrotron sources and future diffraction-limited storage rings. The WPG addresses the needs of beamline scientists and user groups to facilitate the design, optimization and improvement of X-ray optics to meet their experimental requirements. The package uses the Synchrotron Radiation Workshop ( SRW ) C/C++ library and its Python binding for numerical wavefront propagation simulations. The framework runs reliably under Linux, Microsoft Windows 7 and Apple Mac OS X and is distributed under an open-source license. The available tools allow for varying source parameters and optics layouts and visualizing the results interactively. The wavefront history structure can be used for tracking changes in every particular wavefront during propagation. The batch propagation mode enables processing of multiple wavefronts in workflow mode. The paper presents a general description of the package and gives some recent application examples, including modeling of full X-ray FEL beamlines and start-to-end simulation of experiments.

  10. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  11. Condenser optics, partial coherence, and imaging for soft-x-ray projection lithography.

    PubMed

    Sommargren, G E; Seppala, L G

    1993-12-01

    A condenser system couples the radiation source to an imaging system, controlling the uniformity and partial coherence at the object, which ultimately affects the characteristics of the aerial image. A soft-x-ray projection lithography system based on a ring-field imaging system and a laser-produced plasma x-ray source places considerable constraints on the design of a condenser system. Two designs are proposed, critical illumination and Köhler illumination, each of which requires three mirrors and scanning for covering the entire ring field with the required uniformity and partial coherence. Images based on Hopkins' formulation of partially coherent imaging are simulated.

  12. Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.

  13. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    PubMed

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  14. Coupled beam motion in a storage ring with crab cavities

    DOE PAGES

    Huang, Xiaobiao

    2016-02-16

    We studied the coupled beam motion in a storage ring between the transverse and longitudinal directions introduced by crab cavities. Analytic form of the linear decoupling transformation is derived. Also, the equilibrium bunch distribution in an electron storage ring with a crab cavity is given, including contribution to the eigen-emittance induced by the crab cavity. Furthermore, application to the short pulse generation scheme using crab cavities [1] is considered.

  15. X-rays from superbubbles in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Mac Low, Mordecai-Marc

    1990-01-01

    Diffuse X-ray emission not associated with known supernova remnants (SNRs) are found in seven Large Magellanic Cloud H II complexes encompassing 10 OB associations: N44, N51D, N57A, N70, N154, N157 (30 Dor), and N158. Their X-ray luminosities range from 7 x 10 to the 34th ergs/s in N57A to 7 x 10 to the 36th ergs/s in 30 Dor. All, except 30 Dor, have simple ring morphologies, indicating shell structures. Modeling these as superbubbles, it is found that the X-ray luminosities expected from their hot interiors fall an order of magnitude below the observed values. SNRs close to the center of a superbubble add very little emission, but it is calculated that off-center SNRs hitting the ionized shell could explain the observed emission.

  16. New beamline optics of the x-ray undulator BW1 at DORIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, U.; Frahm, R.; Guertler, P.

    1996-12-31

    The X-ray undulator BW1 at the storage ring DORIS is a high brightness source for the spectral range from 2 to 20 keV. The undulator beam is used by three experiments with different distances to the source. The new optical elements allow the adaptation of the focal lengths to the needs of the experimental set-ups. The optical concept consists of a premirror with different optical surfaces, a double crystal monochromator and a focusing second mirror. Sagittal focusing is achieved either by using the cylindrical part of the premirror or by a bend crystal for a monochromatic beam, meridional focusing ismore » done with a pneumatic driven mirror bender for the second mirror.« less

  17. Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics

    NASA Astrophysics Data System (ADS)

    Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.

    2012-04-01

    Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily

  18. X-ray filter for x-ray powder diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less

  19. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.

    1992-12-29

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.

  20. Apparatus and method to enhance X-ray production in laser produced plasmas

    DOEpatents

    Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.

    1992-01-01

    Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.

  1. Single-pass BPM system of the Photon Factory storage ring.

    PubMed

    Honda, T; Katoh, M; Mitsuhashi, T; Ueda, A; Tadano, M; Kobayashi, Y

    1998-05-01

    At the 2.5 GeV ring of the Photon Factory, a single-pass beam-position monitor (BPM) system is being prepared for the storage ring and the beam transport line. In the storage ring, the injected beam position during the first several turns can be measured with a single injection pulse. The BPM system has an adequate performance, useful for the commissioning of the new low-emittance lattice. Several stripline BPMs are being installed in the beam transport line. The continuous monitoring of the orbit in the beam transport line will be useful for the stabilization of the injection energy as well as the injection beam orbit.

  2. X-Ray Pulse Selector With 2 ns Lock-in Phase Setting And Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindenau, B.; Raebiger, J.; Polachowski, S.

    2004-05-12

    Selector devices, which are based on magnetically suspended, high speed triangular shutter rotors, have been designed and built in cooperation with ESRF, APS, and recently Spring-8 for time resolved studies with isolated x-ray pulses at white beam lines. The x-ray pulse selection is accomplished by means of a beam channel along one of the edges of the triangular rotor, which opens once per revolution. Entrance and exit apertures of the channel can be designed wedge shaped for variable tuning of the channel height between 0.1 mm to 0.9 mm. At the 1 kHz maximum operation frequency of a 220 mmmore » diameter disk with 190 mm channel length, the practicable open times of the channel are demonstrated to range down to 200 ns. The selector drive electronics is directly coupled to the storage ring RF clock for rotational phase control. It allows for continuous selector operation in phase locked mode to the temporal pulse structure of the synchrotron at 2 ns RMS stability. The phase angle between the pulse transmission period and the synchrotron bunch sequence can be adjusted with similar precision for X-ray pulse selection according to the experimental needs. ID09, Michael Wulff ; BioCARS 14-BM, Reinhard Pahl; BL40-XU, Shin-ichi Adachi.« less

  3. Note: Comparison of grazing incidence small angle x-ray scattering of a titania sponge structure at the beamlines BW4 (DORIS III) and P03 (PETRA III)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawolle, M.; Koerstgens, V.; Ruderer, M. A.

    2012-10-15

    Grazing incidence small angle x-ray scattering (GISAXS) is a powerful technique for morphology investigation of nanostructured thin films. GISAXS measurements at the newly installed P03 beamline at the storage ring PETRA III in Hamburg, Germany, are compared to the GISAXS data from the beamline BW4 at the storage ring DORIS III, which had been used extensively for GISAXS investigations in the past. As an example, a titania thin film sponge structure is investigated. Compared to BW4, at beamline P03 the resolution of larger structures is slightly improved and a higher incident flux leads to a factor of 750 in scatteredmore » intensity. Therefore, the acquisition time in GISAXS geometry is reduced significantly at beamline P03.« less

  4. Dose estimates for the 1104 m APS storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moe, H.J.

    1989-06-01

    The estimated dose equivalent rates outside the shielded storage ring, and the estimated annual dose equivalent to members of the public due to direct radiation and skyshine from the ring, have been recalculated. The previous estimates found in LS-84 (MOE 87) and cited in the 1987 Conceptual Design Report of the APS (ANL 87) required revision because of changes in the ring circumference and in the proposed location of the ring with respect to the nearest site boundary. The values assumed for the neutron quality factors were also overestimated (by a factor of 2) in the previous computation, and themore » correct values have been used for this estimate. The methodology used to compute dose and dose rate from the storage ring is the same as that used in LS-90 (MOE 87a). The calculations assumed 80 cm thick walls of ordinary concrete (or the shielding equivalent of this) and a roof thickness of 1 meter of ordinary concrete. The circumference of the ring was increased to 1,104 m, and the closest distance to the boundary was taken as 140 m. The recalculation of the skyshine component used the same methodology as that used in LS-84.« less

  5. New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2008-02-01

    We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.

  6. The KACST Heavy-Ion Electrostatic Storage Ring

    NASA Astrophysics Data System (ADS)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  7. The KACST Heavy-Ion Electrostatic Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The developmentmore » of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.« less

  8. Development of a fluorescent x-ray source for medical imaging

    NASA Astrophysics Data System (ADS)

    Toyofuku, F.; Tokumori, K.; Nishimura, K.; Saito, T.; Takeda, T.; Itai, Y.; Hyodo, K.; Ando, M.; Endo, M.; Naito, H.; Uyama, C.

    1995-02-01

    A fluorescent x-ray source for medical imaging, such as K-edge subtraction angiography and monochromatic x-ray CT, has been developed. Using a 6.5 GeV accumulation ring in Tsukuba, fluorescent x rays, which range from about 30 to 70 keV are generated by irradiating several target materials. Measurements have been made of output intensities and energy spectra for different target angles and extraction angles. The intensities of fluorescent x rays at a 30 mA beam current are on the order of 1-3×106 photons/mm2/s at 30 cm from the local spot where the incident beam is collimated to 1 mm2. A phantom which contains three different contrast media (iodine, barium, gadolinium) was used for the K-edge energy subtraction, and element selective CT images were obtained.

  9. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstratedmore » by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.« less

  10. Status of the Frankfurt low energy electrostatic storage ring (FLSR)

    NASA Astrophysics Data System (ADS)

    King, F.; Kruppi, T.; Müller, J.; Dörner, R.; Schmidt, L. Ph H.; Schmidt-Böcking, H.; Stiebing, K. E.

    2015-11-01

    Frankfurt low-energy storage ring (FLSR) is an electrostatic storage ring for low-energy ions up to q · 80 keV (q being the ion charge state) at Institut für Kernphysik der Goethe-Universität, Frankfurt am Main, Germany. It has especially been designed to provide a basis for experiments on the dynamics of ionic and molecular collisions in complete kinematics, as well as for high precision and time resolved laser spectroscopy. The ring has ‘racetrack’ geometry with a circumference of 14.23 m. It comprises four experimental/diagnostic sections with regions of enhanced ion density (interaction regions). First beam has successfully been stored in FLSR in summer 2013. Since then the performance of the ring has continuously been improved and an electron target for experiments on dissociative recombination has been installed in one of the experimental sections.

  11. Probing cluster potentials through gravitational lensing of background X-ray sources

    NASA Technical Reports Server (NTRS)

    Refregier, A.; Loeb, A.

    1996-01-01

    The gravitational lensing effect of a foreground galaxy cluster, on the number count statistics of background X-ray sources, was examined. The lensing produces a deficit in the number of resolved sources in a ring close to the critical radius of the cluster. The cluster lens can be used as a natural telescope to study the faint end of the (log N)-(log S) relation for the sources which account for the X-ray background.

  12. Small Angle X-ray Scattering for Nanoparticle Research

    DOE PAGES

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    2016-04-07

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  13. Small Angle X-ray Scattering for Nanoparticle Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Senesi, Andrew J.; Lee, Byeongdu

    X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and ångström length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle’s size, size distribution,more » shape, and organization into hierarchal structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well the combination of SAXS with other X-ray and non-X ray characterization tools. Furthermore, we conclude with an examination of several key areas of research where X-rays scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and in operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.« less

  14. Investigation of molecular mechanisms of action of chelating drugs on protein-lipid model membranes by X-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, N. N., E-mail: nn_novikova@ns.crys.ras.ru; Zheludeva, S. I.; Koval'chuk, M. V.

    Protein-lipid films based on the enzyme alkaline phosphatase were subjected to the action of chelating drugs, which are used for accelerating the removal of heavy metals from the human body, and the elemental composition of the resulting films was investigated. Total-reflection X-ray fluorescence measurements were performed at the Berlin Electron Storage Ring Company for Synchrotron Radiation (BESSY) in Germany. A comparative estimation of the protective effect of four drugs (EDTA, succimer, xydiphone, and mediphon) on membrane-bound enzymes damaged by lead ions was made. The changes in the elemental composition of the protein-lipid films caused by high doses of chelating drugsmore » were investigated. It was shown that state-of-the-art X-ray techniques can, in principle, be used to develop new methods for the in vitro evaluation of the efficiency of drugs, providing differential data on their actions.« less

  15. National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  16. National Synchrotron Light Source annual report 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulbert, S.L.; Lazarz, N.M.

    1992-04-01

    This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less

  17. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    NASA Astrophysics Data System (ADS)

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  18. FinEstBeaMS - A wide-range Finnish-Estonian Beamline for Materials Science at the 1.5 GeV storage ring at the MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Pärna, R.; Sankari, R.; Kukk, E.; Nõmmiste, E.; Valden, M.; Lastusaari, M.; Kooser, K.; Kokko, K.; Hirsimäki, M.; Urpelainen, S.; Turunen, P.; Kivimäki, A.; Pankratov, V.; Reisberg, L.; Hennies, F.; Tarawneh, H.; Nyholm, R.; Huttula, M.

    2017-07-01

    The FinEstBeaMS beamline is under construction at the 1.5 GeV storage ring of the MAX IV Laboratory at Lund, Sweden. It has been designed to cover an unusually wide energy range from ultraviolet (4.3 eV) to soft X-rays (1000 eV) but experiments will also be possible at the Mg and Al Kα energies. Instead of having two different insertion devices and optical schemes for low and high photon energy regions, we have based our design on a single long-period, elliptically polarizing undulator and a plane grating monochromator. This solution will provide very good conditions for planned experiments in the whole photon energy region. The beamline will have two branches: one will mainly be used to investigate free atoms, molecules and clusters with photoelectron/photoion coincidence spectroscopy as well as solids with photoluminescence spectroscopy whereas the other one will be dedicated to ultra-high vacuum studies of surfaces and interfaces, utilizing X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. This paper focuses on the optical design of the beamline and general design concepts of the gas phase and solid state end stations.

  19. Extreme ultraviolet resonant inelastic X-ray scattering (RIXS) at a seeded free-electron laser

    DOE PAGES

    Dell’Angela, M.; Hieke, F.; Malvestuto, M.; ...

    2016-12-12

    In the past few years, we have been witnessing an increased interest for studying materials properties under non-equilibrium conditions. Several well established spectroscopies for experiments in the energy domain have been successfully adapted to the time domain with sub-picosecond time resolution. Here we show the realization of high resolution resonant inelastic X-ray scattering (RIXS) with a stable ultrashort X-ray source such as an externally seeded free electron laser (FEL). We have designed and constructed a RIXS experimental endstation that allowed us to successfully measure the d-d excitations in KCoF 3 single crystals at the cobalt M 2,3-edge at FERMI FELmore » (Elettra-Sincrotrone Trieste, Italy). The FEL-RIXS spectra show an excellent agreement with the ones obtained from the same samples at the MERIXS endstation of the MERLIN beamline at the Advanced Light Source storage ring (Berkeley, USA). We established experimental protocols for performing time resolved RIXS experiments at a FEL source to avoid X ray-induced sample damage, while retaining comparable acquisition time to the synchrotron based measurements. Finally, we measured and modelled the influence of the FEL mixed electromagnetic modes, also present in externally seeded FELs, and the beam transport with ~120 meV experimental resolution achieved in the presented RIXS setup.« less

  20. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  1. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    2015-01-01

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  2. Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging.

    PubMed

    Deng, Junjing; Nashed, Youssef S G; Chen, Si; Phillips, Nicholas W; Peterka, Tom; Ross, Rob; Vogt, Stefan; Jacobsen, Chris; Vine, David J

    2015-03-09

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object's complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous "fly-scan" mode for ptychographic data collection in which the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.

  3. Sodium storage mechanisms of bismuth in sodium ion batteries: An operando X-ray diffraction study

    NASA Astrophysics Data System (ADS)

    Gao, Hui; Ma, Wensheng; Yang, Wanfeng; Wang, Jiawei; Niu, Jiazheng; Luo, Fakui; Peng, Zhangquan; Zhang, Zhonghua

    2018-03-01

    Understanding the sodium (Na) chemistry is crucial for development of high-performance sodium ion batteries (SIBs). Nanostructured bismuth (Bi) has shown great potentials as an anode in SIBs, however, the Na storage mechanisms of Bi are still unclear. Herein, the operando X-ray diffraction (XRD) technique was utilized to probe the Na storage mechanisms of three Bi anodes (sputtered Bi film, nanoporous Bi and commercial Bi). Despite different morphologies and sizes, all the Bi anodes follow the same two-step reversible alloying/dealloying mechanisms (Bi ↔ NaBi ↔ Na3Bi) during the discharge/charge processes, associated with two voltage plateaus. As for the intercalation/deintercalation mechanism proposed for nanostructured Bi anodes in SIBs, we rationalize the reason why only the Bi phase is detected in the discharged/charged samples under ex-situ XRD conditions through addressing the stability issue of the Na-Bi system (NaBi and Na3Bi).

  4. A Model Describing Stable Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdóttir, Á.; Venturini, M.; Abo-Bakr, M.; Feikes, J.; Holldack, K.; Kuske, P.; Wüstefeld, G.; Hübers, H.-W.; Warnock, R.

    2004-08-01

    We present a model describing high power stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The model includes distortion of bunch shape from the synchrotron radiation (SR), which enhances higher frequency coherent emission, and limits to stable emission due to an instability excited by the SR wakefield. It gives a quantitative explanation of several features of the recent observations of CSR at the BESSYII storage ring. We also use this model to optimize the performance of a source for stable CSR emission.

  5. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmand, Maryam

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopymore » (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.« less

  6. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging.

    PubMed

    Koerner, Lucas J; Gruner, Sol M

    2011-03-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 10(3) X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected.

  7. X-ray analog pixel array detector for single synchrotron bunch time-resolved imaging

    PubMed Central

    Koerner, Lucas J.; Gruner, Sol M.

    2011-01-01

    Dynamic X-ray studies can reach temporal resolutions limited by only the X-ray pulse duration if the detector is fast enough to segregate synchrotron pulses. An analog integrating pixel array detector with in-pixel storage and temporal resolution of around 150 ns, sufficient to isolate pulses, is presented. Analog integration minimizes count-rate limitations and in-pixel storage captures successive pulses. Fundamental tests of noise and linearity as well as high-speed laser measurements are shown. The detector resolved individual bunch trains at the Cornell High Energy Synchrotron Source at levels of up to 3.7 × 103 X-rays per pixel per train. When applied to turn-by-turn X-ray beam characterization, single-shot intensity measurements were made with a repeatability of 0.4% and horizontal oscillations of the positron cloud were detected. PMID:21335901

  8. Beam vacuum system of Brookhaven`s muon storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuth, H.C.; Snydstrup, L.; Mapes, M.

    1995-11-01

    A storage ring with a circumference of 45 m is being built at Brookhaven to measure the g-2 value of the muons to an accuracy of 0.35 ppm.. The beam vacuum system of the storage ring will operate at 10{sup -7} Torr and has to be completely non-magnetic. It consists of twelve sector chambers. The chambers are constructed of aluminum and are approximately 3.5 m in length with a rectangular cross-section of 16.5 cm high by 45 cm at the widest point. The design features, fabrication techniques and cleaning methods for these chambers are described. The beam vacuum system willmore » be pumped by forty eight non-magnetic distributed ion pumps with a total pumping speed of over 2000 {ell}/sec. Monte Carlo simulations of the pressure distribution in the muon storage region are presented.« less

  9. Planning and Prototyping for a Storage Ring Measurement of the Proton Electric Dipole Moment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talman, Richard

    2015-07-01

    Electron and proton EDM's can be measured in "frozen spin" (with the beam polarization always parallel to the orbit, for example) storage rings. For electrons the "magic" kinetic energy at which the beam can be frozen is 14.5 MeV. For protons the magic kinetic energy is 230 MeV. The currently measured upper limit for the electron EDM is much smaller than the proton EDM upper limit, which is very poorly known. Nevertheless, because the storage ring will be an order of magnitude cheaper, a sensible plan is to first build an all-electric electron storage ring as a prototype. Such anmore » electron ring was successfully built at Brookhaven, in 1954, as a prototype for their AGS ring. This leaves little uncertainty concerning the cost and performance of such a ring. (This is documentedin one of the Physical Review papers mentioned above.)« less

  10. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  11. Differences in responses to X-ray exposure between osteoclast and osteoblast cells

    PubMed Central

    Zhang, Jian; Wang, Ziyang; Wu, Anqing; Nie, Jing; Pei, Hailong; Hu, Wentao; Wang, Bing; Shang, Peng; Li, Bingyan

    2017-01-01

    Abstract Radiation-induced bone loss is a potential health concern for cancer patients undergoing radiotherapy. Enhanced bone resorption by osteoclasts and decreased bone formation by osteoblasts were thought to be the main reasons. In this study, we showed that both pre-differentiating and differentiating osteoclasts were relatively sensitive to X-rays compared with osteoblasts. X-rays decreased cell viability to a greater degree in RAW264.7 cells and in differentiating cells than than in osteoblastic MC3T3-E1 cells. X-rays at up to 8 Gy had little effects on osteoblast mineralization. In contrast, X-rays at 1 Gy induced enhanced osteoclastogenesis by enhanced cell fusion, but had no effects on bone resorption. A higher dose of X-rays at 8 Gy, however, had an inhibitory effect on bone resorption. In addition, actin ring formation was disrupted by 8 Gy of X-rays and reorganized into clusters. An increased activity of Caspase 3 was found after X-ray exposure. Actin disorganization and increased apoptosis may be the potential effects of X-rays at high doses, by inhibiting osteoclast differentiation. Taken together, our data indicate high radiosensitivity of osteoclasts. X-ray irradiation at relatively low doses can activate osteoclastogenesis, but not osteogenic differentiation. The radiosensitive osteoclasts are the potentially responsive cells for X-ray-induced bone loss. PMID:28541506

  12. Geoscience Applications of Synchrotron X-ray Computed Microtomography

    NASA Astrophysics Data System (ADS)

    Rivers, M. L.

    2009-05-01

    Computed microtomography is the extension to micron spatial resolution of the CAT scanning technique developed for medical imaging. Synchrotron sources are ideal for the method, since they provide a monochromatic, parallel beam with high intensity. High energy storage rings such as the Advanced Photon Source at Argonne National Laboratory produce x-rays with high energy, high brilliance, and high coherence. All of these factors combine to produce an extremely powerful imaging tool for earth science research. Techniques that have been developed include: - Absorption and phase contrast computed tomography with spatial resolution approaching one micron - Differential contrast computed tomography, imaging above and below the absorption edge of a particular element - High-pressure tomography, imaging inside a pressure cell at pressures above 10GPa - High speed radiography, with 100 microsecond temporal resolution - Fluorescence tomography, imaging the 3-D distribution of elements present at ppm concentrations. - Radiographic strain measurements during deformation at high confining pressure, combined with precise x- ray diffraction measurements to determine stress. These techniques have been applied to important problems in earth and environmental sciences, including: - The 3-D distribution of aqueous and organic liquids in porous media, with applications in contaminated groundwater and petroleum recovery. - The kinetics of bubble formation in magma chambers, which control explosive volcanism. - Accurate crystal size distributions in volcanic systems, important for understanding the evolution of magma chambers. - The equation-of-state of amorphous materials at high pressure using both direct measurements of volume as a function of pressure and also by measuring the change x-ray absorption coefficient as a function of pressure. - The formation of frost flowers on Arctic sea-ice, which is important in controlling the atmospheric chemistry of mercury. - The distribution of

  13. Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, M.; Hester, J. J.; Tennant, A. F.; Elsner, R. F.; Schulz, N. S.; Marshall, H. L.; Karovska, M.; Nichols, J. S.; Swartz, D. A.; Kolodziejczak, J. J.

    2000-01-01

    The Chandra X-ray Observatory observed the Crab Nebula and Pulsar During orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) read-out by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure, at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the Nebula.

  14. Reduction in Listeria monocytogenes and spoilage bacteria on smoked catfish using X-ray treatments.

    PubMed

    Mahmoud, B S M; Coker, R; Su, Y-C

    2012-06-01

    To determine the efficacy of X-ray processes in inactivating L. monocytogenes levels in smoked catfish during storage at 5°C and to determine the effects of X-ray doses on controlling the growth of spoilage bacteria on smoked catfish during storage at 5°C for up to 5 weeks. Smoked catfish fillets inoculated with L. monocytogenes were treated with 0.0-2.0 kGy X-ray and stored at 5°C for 5 weeks. The negative controls (uninoculated/untreated) and uninoculated samples treated with the lowest (0.1 kGy) and highest (2.0 kGy) doses were stored at 5°C and tested for psychrotrophs count during the 5 weeks of storage. The initial L. monocytogenes population on smoked catfish was significantly (P < 0.05) reduced to undetectable level by a treatment of 1.0 kGy or higher. The initial psychrotrophs count on smoked catfish was significantly reduced from 4.7 CFU g(-1) to below the detectable level by a treatment with 2.0 kGy. Smoked catfish treated with 2.0 kGy X-ray had no detectable L. monocytogenes throughout 35 days of storage at 5°C. A treatment with 2.0 kGy X-ray also kept the levels of psychrotrophs in the smoked catfish within the acceptable level until 35 days. The results of this investigation indicate that X-ray at 2.0 kGy can eliminate L. monocytogenes and extend the shelf life of smoked catfish stored at refrigeration temperature. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  15. Effects of CSR Generated from Upstream Bends in a Laser Plasma Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, C.; Qiang, J.; Venturini, M.

    The recent proposal [1] of a Laser Plasma Storage Ring (LPSR) envisions the use of a laser-plasma (LP) acceleration module to inject an electron beam into a compact 500 MeV storage ring. Electron bunches generated by LP methods are naturally very short (tens of femtoseconds), presenting peak currents on the order of 10 kA or higher. Of obvious concern is the impact of collective effects and in particular Coherent Synchrotron Radiation (CSR) on the beam dynamics in the storage ring. Available simulation codes (e.g. Elegant [2]) usually include transient CSR effects but neglect the contribution of radiation emitted from trailingmore » magnets. In a compact storage ring, with dipole magnets close to each other, cross talking between different magnets could in principle be important.In this note we investigate this effect for the proposed LPSR and show that, in fact, this effect is relatively small. However our analysis also indicates that CSR effects in general would be quite strong and deserve a a careful study.« less

  16. The cryogenic storage ring CSR

    NASA Astrophysics Data System (ADS)

    von Hahn, R.; Becker, A.; Berg, F.; Blaum, K.; Breitenfeldt, C.; Fadil, H.; Fellenberger, F.; Froese, M.; George, S.; Göck, J.; Grieser, M.; Grussie, F.; Guerin, E. A.; Heber, O.; Herwig, P.; Karthein, J.; Krantz, C.; Kreckel, H.; Lange, M.; Laux, F.; Lohmann, S.; Menk, S.; Meyer, C.; Mishra, P. M.; Novotný, O.; O'Connor, A. P.; Orlov, D. A.; Rappaport, M. L.; Repnow, R.; Saurabh, S.; Schippers, S.; Schröter, C. D.; Schwalm, D.; Schweikhard, L.; Sieber, T.; Shornikov, A.; Spruck, K.; Sunil Kumar, S.; Ullrich, J.; Urbain, X.; Vogel, S.; Wilhelm, P.; Wolf, A.; Zajfman, D.

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm-3 is derived, equivalent to a room-temperature pressure below 10-14 mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  17. The cryogenic storage ring CSR.

    PubMed

    von Hahn, R; Becker, A; Berg, F; Blaum, K; Breitenfeldt, C; Fadil, H; Fellenberger, F; Froese, M; George, S; Göck, J; Grieser, M; Grussie, F; Guerin, E A; Heber, O; Herwig, P; Karthein, J; Krantz, C; Kreckel, H; Lange, M; Laux, F; Lohmann, S; Menk, S; Meyer, C; Mishra, P M; Novotný, O; O'Connor, A P; Orlov, D A; Rappaport, M L; Repnow, R; Saurabh, S; Schippers, S; Schröter, C D; Schwalm, D; Schweikhard, L; Sieber, T; Shornikov, A; Spruck, K; Sunil Kumar, S; Ullrich, J; Urbain, X; Vogel, S; Wilhelm, P; Wolf, A; Zajfman, D

    2016-06-01

    An electrostatic cryogenic storage ring, CSR, for beams of anions and cations with up to 300 keV kinetic energy per unit charge has been designed, constructed, and put into operation. With a circumference of 35 m, the ion-beam vacuum chambers and all beam optics are in a cryostat and cooled by a closed-cycle liquid helium system. At temperatures as low as (5.5 ± 1) K inside the ring, storage time constants of several minutes up to almost an hour were observed for atomic and molecular, anion and cation beams at an energy of 60 keV. The ion-beam intensity, energy-dependent closed-orbit shifts (dispersion), and the focusing properties of the machine were studied by a system of capacitive pickups. The Schottky-noise spectrum of the stored ions revealed a broadening of the momentum distribution on a time scale of 1000 s. Photodetachment of stored anions was used in the beam lifetime measurements. The detachment rate by anion collisions with residual-gas molecules was found to be extremely low. A residual-gas density below 140 cm(-3) is derived, equivalent to a room-temperature pressure below 10(-14) mbar. Fast atomic, molecular, and cluster ion beams stored for long periods of time in a cryogenic environment will allow experiments on collision- and radiation-induced fragmentation processes of ions in known internal quantum states with merged and crossed photon and particle beams.

  18. Fluorescence decay of naphthalene studied in an electrostatic storage ring, the Mini-Ring

    NASA Astrophysics Data System (ADS)

    Martin, S.; Matsumoto, J.; Kono, N.; Ji, M.-C.; Brédy, R.; Bernard, J.; Cassimi, A.; Chen, L.

    2017-10-01

    The cooling of naphthalene cations (C10H8)+ has been studied in a compact electrostatic ion storage ring, the Mini-Ring. A nano second laser pulse of 532 nm (2.33 eV) was used to probe the internal energy distribution every millisecond during the storage time up to 5 ms. The evolution of the internal energy distribution of the stored ions was simulated with a model taking into account the dissociation and the radiative decay processes. Calculated decay curves were fitted to the corresponding laser induced neutral decays. For a laser power of 200 μJ/pulse, a good agreement between experiment and modeling was found using an initial Gaussian energy distribution centered to 5.9 eV and a fluorescence decay rate varying from 200 to 300 s-1 in the energy range from 6 to 7 eV. This fast decay was attributed to the delayed Poincaré fluorescence process.

  19. Design of the transfer line from booster to storage ring at 3 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayar, C., E-mail: cafer.bayar@cern.ch; Ciftci, A. K., E-mail: abbas.kenan.ciftci@cern.ch

    The Synchrotron Booster Ring accelerates the e-beam up to 3 GeV and particles are transported from booster to storage ring by transfer line. In this study, two options are considered, the first one is a long booster which shares the same tunnel with storage ring and the second one is a compact booster. As a result, two transfer line are designed based on booster options. The optical design is constrained by the e-beam Twiss parameters entering and leaving the transfer line. Twiss parameters in the extraction point of booster are used for the entrance of transfer line and are matchedmore » in the exit of transfer line to the injection point of the storage ring.« less

  20. Ring profiler: a new method for estimating tree-ring density for improved estimates of carbon storage

    Treesearch

    David W. Vahey; C. Tim Scott; J.Y. Zhu; Kenneth E. Skog

    2012-01-01

    Methods for estimating present and future carbon storage in trees and forests rely on measurements or estimates of tree volume or volume growth multiplied by specific gravity. Wood density can vary by tree ring and height in a tree. If data on density by tree ring could be obtained and linked to tree size and stand characteristics, it would be possible to more...

  1. Correlation methods in optical metrology with state-of-the-art x-ray mirrors

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Centers, Gary; Gevorkyan, Gevork S.; Lacey, Ian; Smith, Brian V.

    2018-01-01

    The development of fully coherent free electron lasers and diffraction limited storage ring x-ray sources has brought to focus the need for higher performing x-ray optics with unprecedented tolerances for surface slope and height errors and roughness. For example, the proposed beamlines for the future upgraded Advance Light Source, ALS-U, require optical elements characterized by a residual slope error of <100 nrad (root-mean-square) and height error of <1-2 nm (peak-tovalley). These are for optics with a length of up to one meter. However, the current performance of x-ray optical fabrication and metrology generally falls short of these requirements. The major limitation comes from the lack of reliable and efficient surface metrology with required accuracy and with reasonably high measurement rate, suitable for integration into the modern deterministic surface figuring processes. The major problems of current surface metrology relate to the inherent instrumental temporal drifts, systematic errors, and/or an unacceptably high cost, as in the case of interferometry with computer-generated holograms as a reference. In this paper, we discuss the experimental methods and approaches based on correlation analysis to the acquisition and processing of metrology data developed at the ALS X-Ray Optical Laboratory (XROL). Using an example of surface topography measurements of a state-of-the-art x-ray mirror performed at the XROL, we demonstrate the efficiency of combining the developed experimental correlation methods to the advanced optimal scanning strategy (AOSS) technique. This allows a significant improvement in the accuracy and capacity of the measurements via suppression of the instrumental low frequency noise, temporal drift, and systematic error in a single measurement run. Practically speaking, implementation of the AOSS technique leads to an increase of the measurement accuracy, as well as the capacity of ex situ metrology by a factor of about four. The developed

  2. X-ray micro-modulated luminescence tomography (XMLT)

    PubMed Central

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  3. Suzaku Observations of the Monogem Ring and the Origin of the Gemini Hα Ring

    NASA Astrophysics Data System (ADS)

    Knies, Jonathan R.; Sasaki, Manami; Plucinsky, Paul P.

    2018-04-01

    We present the analysis of Suzaku X-ray observations of the Galactic supernova remnant (SNR) 'Monogem Ring', a large structure observed in X-rays with an extent of ≈ 25°, located at an anti-centre position. One observation close to the shock also coincides with a large ring-like structure observed in Hα, which is called the 'Gemini Hα ring'. We investigate the origin of the ring-like structure and also possible interactions with the SNR. We show that the SNR is expanding in a region with a density gradient, which has an effect on the morphology of the SNR and the properties of the plasma. The X-ray spectra are fit well with a collisional ionisation equilibrium (CIE) model with a temperature of kT ≈ 0.3 keV. The spectra obtained at a position where the SNR coincides with the Gemini Hα ring are better described with non-equilibrium ionisation (NEI) with a temperature of kT ≈ 1.0 keV. Based on the spectral analysis results, we estimate an age of t ≈ 6.8 × 104 yr for a distance of ≈300 pc, using the Sedov-Taylor solution. We have identified several early-type stars in the Hipparcos catalogue at a distance of 200- 300pc, which have most likely formed the 'Gemini Hα ring' by their powerful stellar winds.

  4. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  5. Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Astrophysics Data System (ADS)

    Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.

    1994-12-01

    We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.

  6. Radiation hardness of molybdenum silicon multilayers designed for use in a soft-x-ray projection lithography system.

    PubMed

    Gaines, D P; Spitzer, R C; Ceglio, N M; Krumrey, M; Ulm, G

    1993-12-01

    A molybdenum silicon multilayer is irradiated with 13.4-nm radiation to investigate changes in multilayer performance under simulated soft-x-ray projection lithography (SXPL) conditions. The wiggler-undulator at the Berlin electron storage ring BESSY is used as a quasi-monochromatic source of calculable spectral radiant intensity and is configured to simulate an incident SXPL x-ray spectrum. The test multilayer receives a radiant exposure of 240 J/mm(2) in an exposure lasting 8.9 h. The corresponding average incident power density is 7.5 mW/mm(2). The absorbed dose of 7.8 × 10(10) J/kg (7.8 × 10(12) rad) is equivalent to 1.2 times the dose that would be absorbed by a multilayer coating on the first imaging optic in a hypothetical SXPL system during 1 year of operation. Surface temperature increases do not exceed 2 °C during the exposure. Normal-incidence reflectance measurements at λ(0) = 13.4 nm performed before radiation exposure are in agreement with measurements performed after the exposure, indicating that no sign icant damage had occurred.

  7. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  8. Continuous motion scan ptychography: Characterization for increased speed in coherent x-ray imaging

    DOE PAGES

    Deng, Junjing; Nashed, Youssef S. G.; Chen, Si; ...

    2015-02-23

    Ptychography is a coherent diffraction imaging (CDI) method for extended objects in which diffraction patterns are acquired sequentially from overlapping coherent illumination spots. The object’s complex transmission function can be reconstructed from those diffraction patterns at a spatial resolution limited only by the scattering strength of the object and the detector geometry. Most experiments to date have positioned the illumination spots on the sample using a move-settle-measure sequence in which the move and settle steps can take longer to complete than the measure step. We describe here the use of a continuous “fly-scan” mode for ptychographic data collection in whichmore » the sample is moved continuously, so that the experiment resembles one of integrating the diffraction patterns from multiple probe positions. This allows one to use multiple probe mode reconstruction methods to obtain an image of the object and also of the illumination function. We show in simulations, and in x-ray imaging experiments, some of the characteristics of fly-scan ptychography, including a factor of 25 reduction in the data acquisition time. This approach will become increasingly important as brighter x-ray sources are developed, such as diffraction limited storage rings.« less

  9. A multi-MHz single-shot data acquisition scheme with high dynamic range: pump-probe X-ray experiments at synchrotrons.

    PubMed

    Britz, Alexander; Assefa, Tadesse A; Galler, Andreas; Gawelda, Wojciech; Diez, Michael; Zalden, Peter; Khakhulin, Dmitry; Fernandes, Bruno; Gessler, Patrick; Sotoudi Namin, Hamed; Beckmann, Andreas; Harder, Manuel; Yavaş, Hasan; Bressler, Christian

    2016-11-01

    The technical implementation of a multi-MHz data acquisition scheme for laser-X-ray pump-probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high-repetition rates of X-ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60-bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X-ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12-bit resolution. These traces are then processed to deliver an integrated value for each recorded single X-ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single-shot values are averaged over ∼10 7  pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X-ray probe energy. The sensitivity reaches down to the shot-noise limit, and signal-to-noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse -1 and is only technically limited by the utilized APD.

  10. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  11. Diamond-anvil high-pressure cell with improved X-ray collimation system

    DOEpatents

    Schiferl, David; Olinger, Barton W.; Livingston, Robert W.

    1986-01-01

    An adjustable X-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The X-ray collimation system includes a tubular insert which contains an X-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric O-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the O-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  12. Diamond-anvil high-pressure cell with improved x-ray collimation system

    DOEpatents

    Schiferl, D.; Olinger, B.W.; Livingston, R.W.

    1984-03-30

    An adjustable x-ray collimation system for a diamond-anvil high-pressure cell of the type including a cooperable piston and cylinder and a pair of opposing diamonds located between the head of the piston and the head of the cylinder. The x-ray collimation system includes a tubular insert which contains an x-ray collimator. The insert is engageable in the bore of the piston. The collimator is mounted within the insert by means of an elastomeric o-ring at the end closest the opposed diamonds, and by means of a set of adjustable set screws at the opposite end. By adjustment of the set screws the collimator can be pivoted about the o-ring and brought into alignment with the opposed diamonds and the sample contained therein. In the preferred embodiment there is further provided a set of plugs which are insertable in the bore of the collimator. The plugs have bores of different diameters. By successively inserting plugs of progressively smaller bore diameters and adjusting the alignment of the collimator with each plug, the collimator can be quickly brought into accurate alignment with the diamonds. The collimation system allows alignment of the collimator either before or after the cell has been loaded and pressurized.

  13. Constrained multi-objective optimization of storage ring lattices

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  14. First refraction contrast imaging via Laser-Compton Scattering X-ray at KEK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaue, Kazuyuki; Aoki, Tatsuro; Washio, Masakazu

    2012-07-31

    Laser-Compton Scattering (LCS) is one of the most feasible techniques for high quality, high brightness, and compact X-ray source. High energy electron beam produced by accelerators scatters off the laser photon at a small spot. As a laser target, we have been developing a pulsedlaser storage cavity for increasing an X-ray flux. The X-ray flux was still inadequate that was 2.1 Multiplication-Sign 10{sup 5}/sec, however, we performed first refraction contrast imaging in order to evaluate the quality of LCS X-ray. Edge enhanced contrast imaging was achieved by changing the distance from sample to detector. The edge enhancement indicates that themore » LCS X-ray has small source size, i.e. high brightness. We believe that the result has demonstrated good feasibility of linac-based high brightness X-ray sources via laser-electron Compton scatterings.« less

  15. Observations of the Crab Nebula with the Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2012-01-01

    The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.

  16. X-Ray Polarization from High Mass X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Dorodnitsyn, A.; Blondin, J.

    2015-01-01

    X-ray astronomy allows study of objects which may be associated with compact objects, i.e. neutron stars or black holes, and also may contain strong magnetic fields. Such objects are categorically non-spherical, and likely non-circular when projected on the sky. Polarization allows study of such geometric effects, and X-ray polarimetry is likely to become feasible for a significant number of sources in the future. A class of potential targets for future X-ray polarization observations is the high mass X-ray binaries (HMXBs), which consist of a compact object in orbit with an early type star. In this paper we show that X-ray polarization from HMXBs has a distinct signature which depends on the source inclination and orbital phase. The presence of the X-ray source displaced from the star creates linear polarization even if the primary wind is spherically symmetric whenever the system is viewed away from conjunction. Direct X-rays dilute this polarization whenever the X-ray source is not eclipsed; at mid-eclipse the net polarization is expected to be small or zero if the wind is circularly symmetric around the line of centers. Resonance line scattering increases the scattering fraction, often by large factors, over the energy band spanned by resonance lines. Real winds are not expected to be spherically symmetric, or circularly symmetric around the line of centers, owing to the combined effects of the compact object gravity and ionization on the wind hydrodynamics. A sample calculation shows that this creates polarization fractions ranging up to tens of percent at mid-eclipse.

  17. Be/X-ray Binary Science for Future X-ray Timing Missions

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2011-01-01

    For future missions, the Be/X-ray binary community needs to clearly define our science priorities for the future to advocate for their inclusion in future missions. In this talk, I will describe current designs for two potential future missions and Be X-ray binary science enabled by these designs. The Large Observatory For X-ray Timing (LOFT) is an X-ray timing mission selected in February 2011 for the assessment phase from the 2010 ESA M3 call for proposals. The Advanced X-ray Timing ARray (AXTAR) is a NASA explorer concept X-ray timing mission. This talk is intended to initiate discussions of our science priorities for the future.

  18. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive ...

  19. A search for X-ray polarization in cosmic X-ray sources. [binary X-ray sources and supernovae remnants

    NASA Technical Reports Server (NTRS)

    Hughes, J. P.; Long, K. S.; Novick, R.

    1983-01-01

    Fifteen strong X-ray sources were observed by the X-ray polarimeters on board the OSO-8 satellite from 1975 to 1978. The final results of this search for X-ray polarization in cosmic sources are presented in the form of upper limits for the ten sources which are discussed elsewhere. These limits in all cases are consistent with a thermal origin for the X-ray emission.

  20. In situ X-ray-based imaging of nano materials

    DOE PAGES

    Weker, Johanna Nelson; Huang, Xiaojing; Toney, Michael F.

    2016-02-13

    We study functional nanomaterials that are heterogeneous and understanding their behavior during synthesis and operation requires high resolution diagnostic imaging tools that can be used in situ. Over the past decade, huge progress has been made in the development of X-ray based imaging, including full field and scanning microscopy and their analogs in coherent diffractive imaging. Currently, spatial resolution of about 10 nm and time resolution of sub-seconds are achievable. For catalysis, X-ray imaging allows tracking of particle chemistry under reaction conditions. In energy storage, in situ X-ray imaging of electrode particles is providing important insight into degradation processes. Recently,more » both spatial and temporal resolutions are improving to a few nm and milliseconds and these developments will open up unprecedented opportunities.« less

  1. X-Ray Emission from the Soft X-Ray Transient Aquila X-1

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1998-01-01

    Aquila X-1 is the most prolific of soft X-ray transients. It is believed to contain a rapidly spinning neutron star sporadically accreting near the Eddington limit from a low-mass companion star. The interest in studying the repeated X-ray outbursts from Aquila X-1 is twofold: (1) studying the relation between optical, soft and hard X-ray emission during the outburst onset, development and decay; (2) relating the spectral component to thermal and non-thermal processes occurring near the magnetosphere and in the boundary layer of a time-variable accretion disk. Our investigation is based on the BATSE monitoring of Aquila X-1 performed by our group. We observed Aquila X-1 in 1997 and re-analyzed archival information obtained in April 1994 during a period of extraordinary outbursting activity of the source in the hard X-ray range. Our results allow, for the first time for this important source, to obtain simultaneous spectral information from 2 keV to 200 keV. A black body (T = 0.8 keV) plus a broken power-law spectrum describe accurately the 1994 spectrum. Substantial hard X-ray emission is evident in the data, confirming that the accretion phase during sub-Eddington limit episodes is capable of producing energetic hard emission near 5 x 10(exp 35) ergs(exp -1). A preliminary paper summarizes our results, and a more comprehensive account is being written. We performed a theoretical analysis of possible emission mechanisms, and confirmed that a non-thermal emission mechanism triggered in a highly sheared magnetosphere at the accretion disk inner boundary can explain the hard X-ray emission. An anticorrelation between soft and hard X-ray emission is indeed prominently observed as predicted by this model.

  2. Low-emittance tuning of storage rings using normal mode beam position monitor calibration

    NASA Astrophysics Data System (ADS)

    Wolski, A.; Rubin, D.; Sagan, D.; Shanks, J.

    2011-07-01

    We describe a new technique for low-emittance tuning of electron and positron storage rings. This technique is based on calibration of the beam position monitors (BPMs) using excitation of the normal modes of the beam motion, and has benefits over conventional methods. It is relatively fast and straightforward to apply, it can be as easily applied to a large ring as to a small ring, and the tuning for low emittance becomes completely insensitive to BPM gain and alignment errors that can be difficult to determine accurately. We discuss the theory behind the technique, present some simulation results illustrating that it is highly effective and robust for low-emittance tuning, and describe the results of some initial experimental tests on the CesrTA storage ring.

  3. "X-Ray Transients in Star-Forming Regions" and "Hard X-Ray Emission from X-Ray Bursters"

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    This grant funded work on the analysis of data obtained with the Burst and Transient Experiment (BATSE) on the Compton Gamma-Ray Observatory. The goal of the work was to search for hard x-ray transients in star forming regions using the all-sky hard x-ray monitoring capability of BATSE. Our initial work lead to the discovery of a hard x-ray transient, GRO J1849-03. Follow-up observations of this source made with the Wide Field Camera on BeppoSAX showed that the source should be identified with the previously known x-ray pulsar GS 1843-02 which itself is identified with the x-ray source X1845-024 originally discovered with the SAS-3 satellite. Our identification of the source and measurement of the outburst recurrence time, lead to the identification of the source as a Be/X-ray binary with a spin period of 94.8 s and an orbital period of 241 days. The funding was used primarily for partial salary and travel support for John Tomsick, then a graduate student at Columbia University. John Tomsick, now Dr. Tomsick, received his Ph.D. from Columbia University in July 1999, based partially on results obtained under this investigation. He is now a postdoctoral research scientist at the University of California, San Diego.

  4. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray ...

  5. X-ray ptychography

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Franz

    2018-01-01

    X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.

  6. Beam Loss Measurements at the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Spickermann, Thomas

    2005-06-01

    During normal operation the Los Alamos Proton Storage Ring (PSR) accumulates up to 4ṡ1013 protons over 625μs with a repetition rate of 20 Hz, corresponding to a current of 125μA to the Lujan Neutron Science Center. Beam losses in the ring as well as in the extraction beam line and the subsequent activation of material are a limiting factor at these currents. Careful tuning of injection, ring and extraction line is paramount to limiting losses to acceptable levels. Losses are typically not uniform around the ring, but occur in significantly higher levels in certain "hot spots". Here I will report on losses related to the stripper foil which are the dominant source of losses in the ring. First results of a comparison with simulations will also be presented.

  7. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Mancini, Derrick C; Ilavsky, Jan

    2015-05-01

    The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world.

  8. Database application of digital medical X-rays and labs: computerization, storage, retrieval, interpretation, and distribution.

    PubMed

    Hatcher, Myron; Tabriziani, Hossein; Heetebry, Irene

    2005-08-01

    Stenter lets the health care worker order an X-ray that is produced as a computer image rather than on flat film. The health care provider can be in any location with the correct equipment, and view the digital image. The dimensions of this discussion are extensive. The cost savings because of reduced media and storage cost is substantial. Health care quality can be improved because of the ability to obtain consultation via telemedicine and the enhanced ability to track medical problems over time via trends. The major downside is the limited cost imbursement system to pay for technology. Unfortunately, this may impact on the improved quality of care. In simple terms someone needs to pay for the technology and the quality of health care needs to be maintained or improved. The real cost to the health care systems needs to be correctly calculated and inappropriate charging kept to a minimum. Specific costs need to be kept in mind and the first is the cost for new staff or staff training. The number of health care providers that are able to read the X-ray can be enlarged remembering that only American Board Certified Radiologists are allowed to give the final recommendation. How do we view the cost of missing something? It could be argued that this risk will be reduced because of improved technology for obtaining the digital X-ray and improved enhancement software. One way to view this situation is to include technology, management, and organization. The cost and benefits occur through the interplay of all three dimensions. The development of digital imaging hardware and artificial intelligence software will demand change in the management and organization. The organization will require changes in its design to accommodate the technology as to support and resources. Management will evolve to include methods for control and monitoring this technology. Business processes and standard operating procedures will change to integrate the technology into the organization in

  9. UNDERSTANDING X-RAY STARS:. The Discovery of Binary X-ray Sources

    NASA Astrophysics Data System (ADS)

    Schreier, E. J.; Tananbaum, H.

    2000-09-01

    The discovery of binary X-ray sources with UHURU introduced many new concepts to astronomy. It provided the canonical model which explained X-ray emission from a large class of galactic X-ray sources: it confirmed the existence of collapsed objects as the source of intense X-ray emission; showed that such collapsed objects existed in binary systems, with mass accretion as the energy source for the X-ray emission; and provided compelling evidence for the existence of black holes. This model also provided the basis for explaining the power source of AGNs and QSOs. The process of discovery and interpretation also established X-ray astronomy as an essential sub-discipline of astronomy, beginning its incorporation into the mainstream of astronomy.

  10. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  11. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  12. Skull x-ray

    MedlinePlus

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... Chernecky CC, Berger BJ. Radiography of skull, chest, and cervical spine - diagnostic. In: Chernecky CC, Berger BJ, eds. Laboratory Tests and Diagnostic Procedures . 6th ed. ...

  13. Full-field transmission x-ray imaging with confocal polycapillary x-ray optics

    PubMed Central

    Sun, Tianxi; MacDonald, C. A.

    2013-01-01

    A transmission x-ray imaging setup based on a confocal combination of a polycapillary focusing x-ray optic followed by a polycapillary collimating x-ray optic was designed and demonstrated to have good resolution, better than the unmagnified pixel size and unlimited by the x-ray tube spot size. This imaging setup has potential application in x-ray imaging for small samples, for example, for histology specimens. PMID:23460760

  14. Storage rings for spin-polarized hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, D.; Lovelace, R.V.E.; Lee, D.

    1989-11-01

    A strong-focusing storage ring is proposed for the long-term magnetic confinement of a collisional gas of neutral spin-polarized hydrogen atoms in the Za{l arrow} and Zb{l arrow} hyperfine states. The trap uses the interaction of the magnetic moments of the gas atoms with a static magnetic field. Laser cooling and evaporative cooling can be utilized to enhance the confinement and to offset the influence of viscous heating. An important application of the trap is to the attainment of Bose--Einstein condensation.

  15. High resolution monochromator for the VUV radiation from the DORIS storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saile, V.; Gurtler, P.; Koch, E.E.

    1976-10-01

    The unique properties of the DORIS storage ring at DESY as a synchroton radiation source are exploited for high resolution spectroscopy in the vacuum ultraviolet. We describe a new experimental set up with a 3-m normal incidence monochromator for wavelengths between 3000 A and 300 A (4 < or = h..omega.. < or = 40 eV) using a vertical dispersion plane. The storage ring provides a light flux intense and stable enough for rapid photoelectrical scanning of the spectra with a resolution of 0.03 A in first order. (AIP)

  16. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  17. Stacked, filtered multi-channel X-ray diode array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark

    2015-08-01

    There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustnessmore » and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.« less

  18. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  19. Thermal Model Development for an X-Ray Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Bonafede, Joseph A.

    2015-01-01

    Space-based x-ray optics require stringent thermal environmental control to achieve the desired image quality. Future x-ray telescopes will employ hundreds of nearly cylindrical, thin mirror shells to maximize effective area, with each shell built from small azimuthal segment pairs for manufacturability. Thermal issues with these thin optics are inevitable because the mirrors must have a near unobstructed view of space while maintaining near uniform 20 C temperature to avoid thermal deformations. NASA Goddard has been investigating the thermal characteristics of a future x-ray telescope with an image requirement of 5 arc-seconds and only 1 arc-second focusing error allocated for thermal distortion. The telescope employs 135 effective mirror shells formed from 7320 individual mirror segments mounted in three rings of 18, 30, and 36 modules each. Thermal requirements demand a complex thermal control system and detailed thermal modeling to verify performance. This presentation introduces innovative modeling efforts used for the conceptual design of the mirror assembly and presents results demonstrating potential feasibility of the thermal requirements.

  20. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH, Schaefer- ...

  1. X-Ray Data Booklet

    Science.gov Websites

    X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory Introduction X-Ray Properties of Elements Electron Binding Energies X-Ray Energy Emission Energies Table of X-Ray Properties Synchrotron Radiation Characteristics of Synchrotron Radiation History of X

  2. Lord of the Rings - Return of the King: Swift-XRT observations of dust scattering rings around V404 Cygni

    NASA Astrophysics Data System (ADS)

    Beardmore, A. P.; Willingale, R.; Kuulkers, E.; Altamirano, D.; Motta, S. E.; Osborne, J. P.; Page, K. L.; Sivakoff, G. R.

    2016-10-01

    On 2015 June 15, the black hole X-ray binary V404 Cygni went into outburst, exhibiting extreme X-ray variability which culminated in a final flare on June 26. Over the following days, the Swift-X-ray Telescope detected a series of bright rings, comprising five main components that expanded and faded with time, caused by X-rays scattered from the otherwise unobservable dust layers in the interstellar medium in the direction of the source. Simple geometrical modelling of the rings' angular evolution reveals that they have a common temporal origin, coincident with the final, brightest flare seen by INTEGRAL's JEM X-1, which reached a 3-10 keV flux of ˜25 Crab. The high quality of the data allows the dust properties and density distribution along the line of sight to the source to be estimated. Using the Rayleigh-Gans approximation for the dust scattering cross-section and a power-law distribution of grain sizes a, ∝ a-q, the average dust emission is well modelled by q = 3.90^{+0.09}_{-0.08} and maximum grain size of a_+ = 0.147^{+0.024}_{-0.004} { μ m}, though significant variations in q are seen between the rings. The recovered dust density distribution shows five peaks associated with the dense sheets responsible for the rings at distances ranging from 1.19 to 2.13 kpc, with thicknesses of ˜40-80 pc and a maximum density occurring at the location of the nearest sheet. We find a dust column density of Ndust ≈ (2.0-2.5) × 1011 cm-2, consistent with the optical extinction to the source. Comparison of the inner rings' azimuthal X-ray evolution with archival Wide-field Infrared Survey Explorer mid-IR data suggests that the second most distant ring follows the general IR emission trend, which increases in brightness towards the Galactic north side of the source.

  3. Recent X-ray Variability of Eta Car Approaching The X-ray Eclipse

    NASA Technical Reports Server (NTRS)

    Corcoran, M.; Swank, J. H.; Ishibashi, K.; Gull, T.; Humphreys, R.; Damineli, A.; Walborn, N.; Hillier, D. J.; Davidson, K.; White, S. M.

    2002-01-01

    We discuss recent X-ray spectral variability of the supermassive star Eta Car in the interval since the last X-ray eclipse in 1998. We concentrate on the interval just prior to the next X-ray eclipse which is expected to occur in June 2003. We compare the X-ray behavior during the 2001-2003 cycle with the previous cycle (1996-1998) and note similarities and differences in the temporal X-ray behavior. We also compare a recent X-ray observation of Eta Car obtained with the Chandra high energy transmission grating in October 2002 with an earlier observation from Nov 2002, and interpret these results in terms of the proposed colliding wind binary model for the star. In addition we discuss planned observations for the upcoming X-ray eclipse.

  4. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  5. Development of x-ray laminography under an x-ray microscopic condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa

    2011-07-15

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less

  6. Biomonitoring of environmental pollution using growth tree rings of Tipuana tipu: Quantification by synchrotron radiation total reflection X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Geraldo, S. M.; Canteras, F. B.; Moreira, S.

    2014-02-01

    Currently, many studies use the bioindicators to qualitatively and/or quantitatively measure pollution. The analyses of tree growth rings represent one such bioindicator as changes in the environment are often recorded as impressions in the wood. The main objective of the present study is to examine the growth rings of Tipuana tipu - a member of the Leguminosae family that is native to Argentina and Bolivia and was introduced in Brazil as an ornamental plant - for potentially toxic elements. T. tipu is one of the most common trees in the urban landscape of Sao Paulo city and would provide an accurate reflection of environment changes. Tree ring samples previously dated using Synchrotron Radiation Total Reflection X-ray Fluorescence were collected from strategic locations in Sao Paulo. These locations include Piracicaba (SP) that has little access and small flow traffic and the campus of the University of São Paulo. Some trace elements present concentrations higher than considered as normal in some periods. In São Paulo city, samples collected from the campus of University of São Paulo (Butantã), showed the highest toxicity, with concentrations above the tolerable limit for the elements: Cr, Cu, and Pb. For the samples collected in Piracicaba city, one sample presented highest concentrations for the majority of the elements when compared to the other four samples collected at the same place, exceeding the toxicity limits for: Cr, Ni, Cu, and Pb.

  7. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    DOE PAGES

    Miaja-Avila, L.; O'Neil, G. C.; Uhlig, J.; ...

    2015-03-02

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ~10 6 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10 7 laser pulses, wemore » also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.« less

  8. Panoramic Dental X-Ray

    MedlinePlus

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  9. Soft x-ray spectroscopy of high pressure liquid.

    PubMed

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; Macdougall, James; Pepper, John; Armitage, Kevin; Borsos, Jason; Knauss, Kevin G; Lee, Namhey; Allézy, Arnaud; Gilbert, Benjamin; MacDowell, Alastair A; Liu, Yi-Sheng; Glans, Per-Anders; Sun, Xuhui; Chao, Weilun; Guo, Jinghua

    2018-01-01

    We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3 N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3 N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3 N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length of the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3 N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3 N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (∼350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.

  10. Soft x-ray spectroscopy of high pressure liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  11. Soft x-ray spectroscopy of high pressure liquid

    DOE PAGES

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; ...

    2018-01-01

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  12. ACCELERATORS: Beam based alignment of the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Zhang, Man-Zhou; Li, Hao-Hu; Jiang, Bo-Cheng; Liu, Gui-Min; Li, De-Ming

    2009-04-01

    There are 140 beam position monitors (BPMs) in the Shanghai Synchrotron Radiation Facility (SSRF) storage ring used for measuring the closed orbit. As the BPM pickup electrodes are assembled directly on the vacuum chamber, it is important to calibrate the electrical center offset of the BPM to an adjacent quadrupole magnetic center. A beam based alignment (BBA) method which varies individual quadrupole magnet strength and observes its effects on the orbit is used to measure the BPM offsets in both the horizontal and vertical planes. It is a completely automated technique with various data processing methods. There are several parameters such as the strength change of the correctors and the quadrupoles which should be chosen carefully in real measurement. After several rounds of BBA measurement and closed orbit correction, these offsets are set to an accuracy better than 10 μm. In this paper we present the method of beam based calibration of BPMs, the experimental results of the SSRF storage ring, and the error analysis.

  13. X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1

    NASA Astrophysics Data System (ADS)

    Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.

    2007-05-01

    We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  14. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  15. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  16. Symplectic orbit and spin tracking code for all-electric storage rings

    NASA Astrophysics Data System (ADS)

    Talman, Richard M.; Talman, John D.

    2015-07-01

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring "trap." At the "magic" kinetic energy of 232.792 MeV, proton spins are "frozen," for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10-29e -cm or greater will produce a statistically significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial "symplectification"). Any residual spurious damping or antidamping is sufficiently small to permit reliable tracking for the

  17. X-ray imaging crystal spectrometer for extended X-ray sources

    DOEpatents

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  18. Colliding or co-rotating ion beams in storage rings for EDM search

    NASA Astrophysics Data System (ADS)

    Koop, I. A.

    2015-11-01

    A new approach to search for and measure the electric dipole moment (EDM) of the proton, deuteron and some other light nuclei is presented. The idea of the method is to store two ion beams, circulating with different velocities, in a storage ring with crossed electric and magnetic guiding fields. One beam is polarized and its EDM is measured using the so-called ‘frozen spin’ method. The second beam, which is unpolarized, is used as a co-magnetometer, sensitive to the radial component of the ring’s magnetic field. The particle’s magnetic dipole moment (MDM) couples to the radial magnetic field and mimics the EDM signal. Measuring the relative vertical orbit separation of the two beams, caused by the presence of the radial magnetic field, one can control the unwanted MDM spin precession. Examples of the parameters for EDM storage rings for protons and other species of ions are presented. The use of crossed electric and magnetic fields helps to reduce the size of the ring by a factor of 10-20. We show that the bending radius of such an EDM storage ring could be about 2-3 m. Finally, a new method of increasing the spin coherence time, the so-called ‘spin wheel’, is proposed and its applicability to the EDM search is discussed.

  19. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  20. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  1. Bone cartilage imaging with x-ray interferometry using a practical x-ray tube

    NASA Astrophysics Data System (ADS)

    Kido, Kazuhiro; Makifuchi, Chiho; Kiyohara, Junko; Itou, Tsukasa; Honda, Chika; Momose, Atsushi

    2010-04-01

    The purpose of this study was to design an X-ray Talbot-Lau interferometer for the imaging of bone cartilage using a practical X-ray tube and to develop that imaging system for clinical use. Wave-optics simulation was performed to design the interferometer with a practical X-ray tube, a source grating, two X-ray gratings, and an X-ray detector. An imaging system was created based on the results of the simulation. The specifications were as follows: the focal spot size was 0.3 mm of an X-ray tube with a tungsten anode (Toshiba, Tokyo, Japan). The tube voltage was set at 40 kVp with an additive aluminum filter, and the mean energy was 31 keV. The pixel size of the X-ray detector, a Condor 486 (Fairchild Imaging, California, USA), was 15 μm. The second grating was a Ronchi-type grating whose pitch was 5.3 μm. Imaging performance of the system was examined with X-ray doses of 0.5, 3 and 9 mGy so that the bone cartilage of a chicken wing was clearly depicted with X-ray doses of 3 and 9 mGy. This was consistent with the simulation's predictions. The results suggest that X-ray Talbot-Lau interferometry would be a promising tool in detecting soft tissues in the human body such as bone cartilage for the X-ray image diagnosis of rheumatoid arthritis. Further optimization of the system will follow to reduce the X-ray dose for clinical use.

  2. Bandpass x-ray diode and x-ray multiplier detector

    DOEpatents

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  3. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  4. X-Ray

    MedlinePlus

    ... of gray. For some types of X-ray tests, a contrast medium — such as iodine or barium — is introduced into your body to provide greater detail on the images. Why it's done X-ray technology is used to examine many parts of the ...

  5. X-ray luminescence computed tomography using a focused x-ray beam.

    PubMed

    Zhang, Wei; Lun, Michael C; Nguyen, Alex Anh-Tu; Li, Changqing

    2017-11-01

    Due to the low x-ray photon utilization efficiency and low measurement sensitivity of the electron multiplying charge coupled device camera setup, the collimator-based narrow beam x-ray luminescence computed tomography (XLCT) usually requires a long measurement time. We, for the first time, report a focused x-ray beam-based XLCT imaging system with measurements by a single optical fiber bundle and a photomultiplier tube (PMT). An x-ray tube with a polycapillary lens was used to generate a focused x-ray beam whose x-ray photon density is 1200 times larger than a collimated x-ray beam. An optical fiber bundle was employed to collect and deliver the emitted photons on the phantom surface to the PMT. The total measurement time was reduced to 12.5 min. For numerical simulations of both single and six fiber bundle cases, we were able to reconstruct six targets successfully. For the phantom experiment, two targets with an edge-to-edge distance of 0.4 mm and a center-to-center distance of 0.8 mm were successfully reconstructed by the measurement setup with a single fiber bundle and a PMT. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array

    DOE PAGES

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; ...

    2015-01-01

    Here, the needs both for increased experimental throughput and forin operandocharacterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to followmore » the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample underidenticalexperimental conditions in simultaneous measurements. Lastly, in the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world.« less

  7. Burton Richter, Storage Rings, and the J/psi Particle

    Science.gov Websites

    [SLAC's] Technical Director, [Richter] became Director ... from 1984 through 1999. During his tenure, SLAC Limits of Quantum Electro-dynamics, DOE Technical Report, June 1959 Design Considerations for High Energy Electron -- Positron Storage Rings, DOE Technical Report, November 1966 Inclusive Yields of pi+, pi-, K

  8. X-ray Observations of Cosmic Ray Acceleration

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2012-01-01

    Since the discovery of cosmic rays, detection of their sources has remained elusive. A major breakthrough has come through the identification of synchrotron X-rays from the shocks of supernova remnants through imaging and spectroscopic observations by the most recent generation of X-ray observatories. This radiation is most likely produced by electrons accelerated to relativistic energy, and thus has offered the first, albeit indirect, observational evidence that diffusive shock acceleration in supernova remnants produces cosmic rays to TeV energies, possibly as high as the "knee" in the cosmic ray spectrum. X-ray observations have provided information about the maximum energy to which these shOCks accelerate electrons, as well as indirect evidence of proton acceleration. Shock morphologies measured in X-rays have indicated that a substantial fraction of the shock energy can be diverted into particle acceleration. This presentation will summarize what we have learned about cosmic ray acceleration from X-ray observations of supernova remnants over the past two decades.

  9. Incoherent-scatter computed tomography with monochromatic synchrotron x ray: feasibility of multi-CT imaging system for simultaneous measurement-of fluorescent and incoherent scatter x rays

    NASA Astrophysics Data System (ADS)

    Yuasa, T.; Akiba, M.; Takeda, T.; Kazama, M.; Hoshino, A.; Watanabe, Y.; Hyodo, K.; Dilmanian, F. A.; Akatsuka, T.; Itai, Y.

    1997-10-01

    We describe a new system of incoherent scatter computed tomography (ISCT) using monochromatic synchrotron X rays, and we discuss its potential to be used in in vivo imaging for medical use. The system operates on the basis of computed tomography (CT) of the first generation. The reconstruction method for ISCT uses the least squares method with singular value decomposition. The research was carried out at the BLNE-5A bending magnet beam line of the Tristan Accumulation Ring in KEK, Japan. An acrylic cylindrical phantom of 20-mm diameter containing a cross-shaped channel was imaged. The channel was filled with a diluted iodine solution with a concentration of 200 /spl mu/gI/ml. Spectra obtained with the system's high purity germanium (HPGe) detector separated the incoherent X-ray line from the other notable peaks, i.e., the iK/sub /spl alpha// and K/sub /spl beta/1/ X-ray fluorescent lines and the coherent scattering peak. CT images were reconstructed from projections generated by integrating the counts In the energy window centering around the incoherent scattering peak and whose width was approximately 2 keV. The reconstruction routine employed an X-ray attenuation correction algorithm. The resulting image showed more homogeneity than one without the attenuation correction.

  10. Advances in X-Ray Simulator Technology

    DTIC Science & Technology

    1995-07-01

    d’Etudes de Gramat ; I. Vitkovitsky, Logicon RDA INTRODUCTION DNA’s future x-ray simulators are based upon inductive energy storage, a technology which...switch. SYRINX, a proposed design to be built by the Centre d’Etudes de Gramat (CEG) in France would employ a modular approach, possibly with a...called SYRINX, would be built at the Centred’ Etudes de Gramat (CEG). It would employ a modular.long conduction time current source to drive a PRS

  11. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  12. X-ray monitoring optical elements

    DOEpatents

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  13. The development of structural x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Woolfson, M. M.

    2018-03-01

    From its birth in 1912, when only the simplest structures could be solved, x-ray structural crystallography is now able to solve macromolecular structures containing many thousands of independent non-hydrogen atoms. This progress has depended on, and been driven by, great technical advances in the development of powerful synchrotron x-ray sources, advanced automated equipment for the collection and storage of large data sets and powerful computers to deal with everything from data processing to running programmes employing complex algorithms for the automatic solution of structures. The sheer number of developments in the subject over the past century makes it impossible for this review to be exhaustive, but it will describe some major developments that will enable the reader to understand how the subject has grown from its humble beginnings to what it is today.

  14. Effect of X-ray irradiation on the optical absorption of СdSe1-xTex nanocrystals embedded in borosilicate glass

    NASA Astrophysics Data System (ADS)

    Prymak, M. V.; Azhniuk, Yu. M.; Solomon, A. M.; Krasilinets, V. M.; Lopushansky, V. V.; Bodnar, I. V.; Gomonnai, A. V.; Zahn, D. R. T.

    2012-07-01

    The effect of X-ray irradiation on the optical absorption spectra of CdSe1-xTex nanocrystals embedded in a borosilicate matrix is studied. The observed blue shift of the absorption edge and bleaching of the confinement-related features in the spectra are related to X-ray induced negative ionization of the nanocrystals with charge transfer across the nanocrystal/matrix interface. The radiation-induced changes are observed to recover after longer post-irradiation storage at room temperature.

  15. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    NASA Astrophysics Data System (ADS)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  16. Tree- Rings Link Climate and Carbon Storage in a Northern Mixed Hardwood Forest

    NASA Astrophysics Data System (ADS)

    Chiriboga, A.

    2007-12-01

    The terrestrial biosphere is a variable sink for atmospheric carbon dioxide. It is important to understand how carbon storage in trees is affected by natural climate variability to better characterize the sink. Quantifying the sensitivity of forest carbon storage to climate will improve carbon budgets and have implications for forest management practices. Here we explore how climate variability affects the ability of a northern mixed hardwood forest in Michigan to sequester atmospheric carbon dioxide in woody tissues. This site is ideal for studies of carbon sequestration; The University of Michigan Biological Station is an Ameriflux site, and has detailed meteorological and biometric records, as well as CO2 flux data. We have produced an 82- year aspen (Populus grandidentata) tree-ring chronology for this site, and measured ring widths at several heights up the bole. These measurements were used to estimate annual wood volume, which represents carbon allocated to aboveground carbon stores. Standard dendroclimatological techniques are used to identify environmental factors (e.g. temperature or precipitation) that drive tree-ring increment variability in the past century, and therefore annual carbon storage in this forest. Preliminary results show that marker years within the tree- ring chronology correspond with years that have cold spring temperatures. This suggests that trees at this site are temperature sensitive.

  17. FLSR - The Frankfurt low energy storage ring

    NASA Astrophysics Data System (ADS)

    Stiebing, K. E.; Alexandrov, V.; Dörner, R.; Enz, S.; Kazarinov, N. Yu.; Kruppi, T.; Schempp, A.; Schmidt Böcking, H.; Völp, M.; Ziel, P.; Dworak, M.; Dilfer, W.

    2010-02-01

    An electrostatic storage ring for low-energy ions with a design energy of 50 keV is presently being set up at the Institut für Kernphysik der Johann Wolfgang Goethe-Universität Frankfurt am Main, Germany (IKF). This new device will provide a basis for new experiments on the dynamics of ionic and molecular collisions, as well as for high precision and time resolved laser spectroscopy. In this article, the design parameters of this instrument are reported.

  18. The Cambridge-Cambridge X-ray Serendipity Survey: I X-ray luminous galaxies

    NASA Technical Reports Server (NTRS)

    Boyle, B. J.; Mcmahon, R. G.; Wilkes, B. J.; Elvis, M.

    1994-01-01

    We report on the first results obtained from a new optical identification program of 123 faint X-ray sources with S(0.5-2 keV) greater than 2 x 10(exp -14) erg/s/sq cm serendipitously detected in ROSAT PSPC pointed observations. We have spectroscopically identified the optical counterparts to more than 100 sources in this survey. Although the majority of the sample (68 objects) are QSO's, we have also identified 12 narrow emission line galaxies which have extreme X-ray luminosities (10(exp 42) less than L(sub X) less than 10(exp 43.5) erg/s). Subsequent spectroscopy reveals them to be a mixture of star-burst galaxies and Seyfert 2 galaxies in approximately equal numbers. Combined with potentially similar objects identified in the Einstein Extended Medium Sensitivity Survey, these X-ray luminous galaxies exhibit a rate of cosmological evolution, L(sub X) varies as (1 + z)(exp 2.5 +/- 1.0), consistent with that derived for X-ray QSO's. This evolution, coupled with the steep slope determined for the faint end of the X-ray luminosity function (Phi(L(sub X)) varies as L(sub X)(exp -1.9)), implies that such objects could comprise 15-35% of the soft (1-2 keV) X-ray background.

  19. Compact X-ray sources: X-rays from self-reflection

    NASA Astrophysics Data System (ADS)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  20. Astrochemistry in TSR and CSR Ion Storage Rings

    NASA Astrophysics Data System (ADS)

    Novotny, Oldrich

    2017-04-01

    Dissociative recombination (DR) of molecular ions plays a key role in controlling the charge density and composition of the cold interstellar medium (ISM). Experimental data on DR are required in order to understand the chemical network in the ISM and related processes such as star formation from molecular clouds. Needed data include not only total reaction cross sections, but also the chemical composition and excitation states of the neutral products. Utilizing the TSR storage ring in Heidelberg, Germany, we have carried out DR measurements for astrophysically important molecular ions. We use a merged electron-ion beams technique combined with event-by-event fragment counting and fragment imaging. The count rate of detected neutral DR products yields the absolute DR rate coefficient. Imaging the distribution of fragment distances provides information on the kinetic energy released including the states of both the initial molecule and the final products. Additional kinetic energy sensitivity of the employed detector allows for identification of fragmentation channels by fragment-mass combination within each dissociation event. Such combined information is essential for studies on DR of polyatomic ions with multi-channel breakup. The recently commissioned Cryogenic Storage Ring (CSR) in Heidelberg, Germany, extends the experimental capabilities of TSR by operation at cryogenic temperatures down to 6 K. At these conditions residual gas densities down to 100 cm-3 can be reached resulting in beam storage times of several hours. Long storage in the cold environment allows the ions to relax down to their rotational ground state, thus mimicking well the conditions in the cold ISM. A variety of astrophysically relevant reactions will be investigated at these conditions, such as DR, electron impact excitation, ion-neutral collisions, etc. We report our TSR results on DR of HCl+ and D2Cl+. We also present first results from the CSR commissioning experiments.

  1. Understanding the X-ray spectrum of anomalous X-ray pulsars and soft gamma-ray repeaters

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Jun; Dai, Shi; Li, Zhao-Sheng; Liu, Yuan; Tong, Hao; Xu, Ren-Xin

    2015-04-01

    Hard X-rays above 10 keV are detected from several anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs), and different models have been proposed to explain the physical origin within the frame of either a magnetar model or a fallback disk system. Using data from Suzaku and INTEGRAL, we study the soft and hard X-ray spectra of four AXPs/SGRs: 1RXS J170849-400910, 1E 1547.0-5408, SGR 1806-20 and SGR 0501+4516. It is found that the spectra could be well reproduced by the bulk-motion Comptonization (BMC) process as was first suggested by Trümper et al., showing that the accretion scenario could be compatible with X-ray emission from AXPs/SGRs. Simulated results from the Hard X-ray Modulation Telescope using the BMC model show that the spectra would have discrepancies from the power-law, especially the cutoff at ˜200 keV. Thus future observations will allow researchers to distinguish different models of the hard X-ray emission and will help us understand the nature of AXPs/SGRs. Supported by the National Natural Science Foundation of China.

  2. Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution

    PubMed Central

    Acerbo, Alvin Samuel; Cook, Michael J.; Gillilan, Richard Edward

    2015-01-01

    X-ray scattering of biological macromolecules in solution is an increasingly popular tool for structural biology and benefits greatly from modern high-brightness synchrotron sources. The upgraded MacCHESS BioSAXS station is now located at the 49-pole wiggler beamline G1. The 20-fold improved flux over the previous beamline F2 provides higher sample throughput and autonomous X-ray scattering data collection using a unique SAXS/WAXS dual detectors configuration. This setup achieves a combined q-range from 0.007 to 0.7 Å−1, enabling better characterization of smaller molecules, while opening opportunities for emerging wide-angle scattering methods. In addition, a facility upgrade of the positron storage ring to continuous top-up mode has improved beam stability and eliminated beam drift over the course of typical BioSAXS experiments. Single exposure times have been reduced to 2 s for 3.560 mg ml−1 lysozyme with an average quality factor I/σ of 20 in the Guinier region. A novel disposable plastic sample cell design that incorporates lower background X-ray window material provides users with a more pristine sample environment than previously available. Systematic comparisons of common X-ray window materials bonded to the cell have also been extended to the wide-angle regime, offering new insight into best choices for various q-space ranges. In addition, a quantitative assessment of signal-to-noise levels has been performed on the station to allow users to estimate necessary exposure times for obtaining usable signals in the Guinier regime. Users also have access to a new BioSAXS sample preparation laboratory which houses essential wet-chemistry equipment and biophysical instrumentation. User experiments at the upgraded BioSAXS station have been on-going since commissioning of the beamline in Summer 2013. A planned upgrade of the G1 insertion device to an undulator for the Winter 2014 cycle is expected to further improve flux by an order of magnitude. PMID

  3. X-ray Irradiation Induced Reversible Resistance Change in Pt/TiO 2 /Pt Cells

    DOE PAGES

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; ...

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. But, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO 2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few ordersmore » of magnitude, depending on the intensity of impinging X-rays. Furthermore, we found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. In understanding X-ray-controlled reversible resistance changes we can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.« less

  4. X-ray irradiation induced reversible resistance change in Pt/TiO2/Pt cells.

    PubMed

    Chang, Seo Hyoung; Kim, Jungho; Phatak, Charudatta; D'Aquila, Kenneth; Kim, Seong Keun; Kim, Jiyoon; Song, Seul Ji; Hwang, Cheol Seong; Eastman, Jeffrey A; Freeland, John W; Hong, Seungbum

    2014-02-25

    The interaction between X-rays and matter is an intriguing topic for both fundamental science and possible applications. In particular, synchrotron-based brilliant X-ray beams have been used as a powerful diagnostic tool to unveil nanoscale phenomena in functional materials. However, it has not been widely investigated how functional materials respond to the brilliant X-rays. Here, we report the X-ray-induced reversible resistance change in 40-nm-thick TiO2 films sandwiched by Pt top and bottom electrodes, and propose the physical mechanism behind the emergent phenomenon. Our findings indicate that there exists a photovoltaic-like effect, which modulates the resistance reversibly by a few orders of magnitude, depending on the intensity of impinging X-rays. We found that this effect, combined with the X-ray irradiation induced phase transition confirmed by transmission electron microscopy, triggers a nonvolatile reversible resistance change. Understanding X-ray-controlled reversible resistance changes can provide possibilities to control initial resistance states of functional materials, which could be useful for future information and energy storage devices.

  5. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  6. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  7. Symplectic orbit and spin tracking code for all-electric storage rings

    DOE PAGES

    Talman, Richard M.; Talman, John D.

    2015-07-22

    Proposed methods for measuring the electric dipole moment (EDM) of the proton use an intense, polarized proton beam stored in an all-electric storage ring “trap.” At the “magic” kinetic energy of 232.792 MeV, proton spins are “frozen,” for example always parallel to the instantaneous particle momentum. Energy deviation from the magic value causes in-plane precession of the spin relative to the momentum. Any nonzero EDM value will cause out-of-plane precession—measuring this precession is the basis for the EDM determination. A proposed implementation of this measurement shows that a proton EDM value of 10 –29e–cm or greater will produce a statisticallymore » significant, measurable precession after multiply repeated runs, assuming small beam depolarization during 1000 s runs, with high enough precision to test models of the early universe developed to account for the present day particle/antiparticle population imbalance. This paper describes an accelerator simulation code, eteapot, a new component of the Unified Accelerator Libraries (ual), to be used for long term tracking of particle orbits and spins in electric bend accelerators, in order to simulate EDM storage ring experiments. Though qualitatively much like magnetic rings, the nonconstant particle velocity in electric rings gives them significantly different properties, especially in weak focusing rings. Like the earlier code teapot (for magnetic ring simulation) this code performs exact tracking in an idealized (approximate) lattice rather than the more conventional approach, which is approximate tracking in a more nearly exact lattice. The Bargmann-Michel-Telegdi (BMT) equation describing the evolution of spin vectors through idealized bend elements is also solved exactly—original to this paper. Furthermore the idealization permits the code to be exactly symplectic (with no artificial “symplectification”). Any residual spurious damping or antidamping is sufficiently small to permit

  8. The Advanced X-Ray Astrophysics Facility. Observing the Universe in X-Rays

    NASA Technical Reports Server (NTRS)

    Neal, V.

    1984-01-01

    An overview of the Advanced X ray Astronophysics Facility (AXAF) program is presented. Beginning with a brief introduction to X ray astrophysics, the AXAF observatory is described including the onboard instrumentation and system capabilities. Possible X ray sources suitable for AXAF observation are identified and defined.

  9. The Mapping X-ray Fluorescence Spectrometer (MapX)

    NASA Astrophysics Data System (ADS)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  10. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  11. Fundamentals of Coherent Synchrotron Radiation in Storage Rings

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Byrd, J. M.; Loftsdottir, A.; Martin, M. C.; Venturini, M.

    2004-05-01

    We present the fundamental concepts for producing stable broadband coherent synchrotron radiation (CSR) in the terahertz frequency region in an electron storage ring. The analysis includes distortion of bunch shape from the synchrotron radiation (SR), enhancing higher frequency coherent emission and limits to stable emission due to a microbunching instability excited by the SR. We use these concepts to optimize the performance of a source for CSR emission.

  12. Exploring the X-ray Morphology of the Supernova Remnant Kes 27 using Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Dwarkadas, Vikram; Dewey, D.

    2013-04-01

    Kesteven 27 is a member of the class of thermal composite or mixed-morphology remnants, which can show thermal X-ray emission extending all the way in towards the center. The Chandra image shows two incomplete shell-like features in the north-eastern half, with brightness fading towards the southwest. The X-ray and radio structure led Chen et al. (2008) to suggest that the morphology represents a supernova remnant expanding in a windblown bubble. The two X-ray rings represent the outer shock of the supernova remnant, and a reflected shock arising from collision with a dense shell. Using numerical simulations followed by a computation of the X-ray emission, we explore this possibility. Our initial modeling suggests that the scenario discussed by Chen et al. (2008) may not work. We suggest and discuss modifications to this scenario that may be able to reproduce the observed morphology, and the implications for thermal composite remnants.

  13. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; hide

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  14. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  15. X-ray lasers

    NASA Astrophysics Data System (ADS)

    Elton, Raymond C.

    Theoretical and practical aspects of X-ray lasers are discussed in an introduction emphasizing recent advances. Chapters are devoted to the unique optical properties of the X-ray spectral region, the principles of short-wavelength lasers, pumping by exciting plasma ions, pumping by electron capture into excited ionic states, pumping by ionization of atoms and ions, and alternative approaches. The potential scientific, technical, biological, and medical applications of X-ray lasers are briefly characterized.

  16. The superslow pulsation X-ray pulsars in high mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2013-03-01

    There exists a special class of X-ray pulsars that exhibit very slow pulsation of P spin > 1000 s in the high mass X-ray binaries (HMXBs). We have studied the temporal and spectral properties of these superslow pulsation neutron star binaries in hard X-ray bands with INTEGRAL observations. Long-term monitoring observations find spin period evolution of two sources: spin-down trend for 4U 2206+54 (P spin ~ 5560 s with Ṗ spin ~ 4.9 × 10-7 s s-1) and long-term spin-up trend for 2S 0114+65 (P spin ~ 9600 s with Ṗ spin ~ -1 × 10-6 s s-1) in the last 20 years. A Be X-ray transient, SXP 1062 (P spin ~ 1062 s), also showed a fast spin-down rate of Ṗ spin ~ 3 × 10-6 s s-1 during an outburst. These superslow pulsation neutron stars cannot be produced in the standard X-ray binary evolution model unless the neutron star has a much stronger surface magnetic field (B > 1014 G). The physical origin of the superslow spin period is still unclear. The possible origin and evolution channels of the superslow pulsation X-ray pulsars are discussed. Superslow pulsation X-ray pulsars could be younger X-ray binary systems, still in the fast evolution phase preceding the final equilibrium state. Alternatively, they could be a new class of neutron star system - accreting magnetars.

  17. Intense X-ray machine for penetrating radiography

    NASA Astrophysics Data System (ADS)

    Lucht, Roy A.; Eckhouse, Shimon

    Penetrating radiography has been used for many years in the nuclear weapons research programs. Infrequently penetrating radiography has been used in conventional weapons research programs. For example the Los Alamos PHERMEX machine was used to view uranium rods penetrating steel for the GAU-8 program, and the Ector machine was used to see low density regions in forming metal jets. The armor/anti-armor program at Los Alamos has created a need for an intense flash X-ray machine that can be dedicated to conventional weapons research. The Balanced Technology Initiative, through DARPA, has funded the design and construction of such a machine at Los Alamos. It will be an 8- to 10-MeV diode machine capable of delivering a dose of 500 R at 1 m with a spot size of less than 5 mm. The machine used an 87.5-stage low inductance Marx generator that charges up a 7.4-(Omega), 32-ns water line. The water line is discharged through a self-breakdown oil switch into a 12.4-(Omega) water line that rings up the voltage into the high impendance X-ray diode. A long (233-cm) vacuum drift tube is used to separate the large diameter oil-insulated diode region from the X-ray source area that may be exposed to high overpressures by the explosive experiments. The electron beam is selffocused at the target area using a low pressure background gas.

  18. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  19. Best Practices for Operando Battery Experiments: Influences of X-ray Experiment Design on Observed Electrochemical Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkiewicz, O. J.; Wiaderek, Kamila M.; Chupas, Peter J.

    Dynamic properties and multiscale complexities governing electrochemical energy storage in batteries are most ideally interrogated under simulated operating conditions within an electrochemical cell. We assess how electrochemical reactivity can be impacted by experiment design, including the X-ray measurements or by common features or adaptations of electrochemical cells that enable X-ray measurements.

  20. Dielectronic recombination experiments at the storage rings: From the present CSR to the future HIAF

    NASA Astrophysics Data System (ADS)

    Huang, Z. K.; Wen, W. Q.; Xu, X.; Wang, H. B.; Dou, L. J.; Chuai, X. Y.; Zhu, X. L.; Zhao, D. M.; Li, J.; Ma, X. M.; Mao, L. J.; Yang, J. C.; Yuan, Y. J.; Xu, W. Q.; Xie, L. Y.; Xu, T. H.; Yao, K.; Dong, C. Z.; Zhu, L. F.; Ma, X.

    2017-10-01

    Dielectronic recombination (DR) experiments of highly charged ions at the storage rings have been developed as a precision spectroscopic tool to investigate the atomic structure as well as nuclear properties of stable and unstable nuclei. The DR experiment on lithium-like argon ions was successfully performed at main Cooler Storage Ring (CSRm) at Heavy Ion Research Facility in Lanzhou (HIRFL) accelerator complex. The DR experiments on heavy highly charged ions and even radioactive ions are currently under preparation at the experimental Cooler Storage Ring (CSRe) at HIRFL. The current status of DR experiments at the CSRm and the preparation of the DR experiments at the CSRe are presented. In addition, an overview of DR experiments by employing an electron cooler and a separated ultra-cold electron target at the upcoming High Intensity heavy ion Accelerator Facility (HIAF) will be given.

  1. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  2. ACCELERATORS: Preliminary application of turn-by-turn data analysis to the SSRF storage ring

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Hui; Zhao, Zhen-Tang

    2009-07-01

    There is growing interest in utilizing the beam position monitor turn-by-turn (TBT) data to debug accelerators. TBT data can be used to determine the linear optics, coupled optics and nonlinear behaviors of the storage ring lattice. This is not only a useful complement to other methods of determining the linear optics such as LOCO, but also provides a possibility to uncover more hidden phenomena. In this paper, a preliminary application of a β function measurement to the SSRF storage ring is presented.

  3. Preparing the MAX IV storage rings for timing-based experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stråhlman, C., E-mail: Christian.Strahlman@maxlab.lu.se; Olsson, T., E-mail: Teresia.Olsson@maxlab.lu.se; Leemann, S. C.

    2016-07-27

    Time-resolved experimental techniques are increasingly abundant at storage ring facilities. Recent developments in accelerator technology and beamline instrumentation allow for simultaneous operation of high-intensity and timing-based experiments. The MAX IV facility is a state-of-the-art synchrotron light source in Lund, Sweden, that will come into operation in 2016. As many storage ring facilities are pursuing upgrade programs employing strong-focusing multibend achromats and passive harmonic cavities (HCs) in high-current operation, it is of broad interest to study the accelerator and instrumentation developments required to enable timing-based experiments at such machines. In particular, the use of hybrid filling modes combined with pulse pickingmore » by resonant excitation or pseudo single bunch has shown promising results. These methods can be combined with novel beamline instrumentation, such as choppers and instrument gating. In this paper we discuss how these techniques can be implemented and employed at MAX IV.« less

  4. X-Pinch And Its Applications In X-ray Radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou Xiaobing; Wang Xinxin; Liu Rui

    2009-07-07

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 mum to 5 mum and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, andmore » for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.« less

  5. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  6. Active x-ray optics for Generation-X, the next high resolution x-ray observatory

    NASA Astrophysics Data System (ADS)

    Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.

    2006-06-01

    X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.

  7. Development of X-ray CCD camera based X-ray micro-CT system

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  8. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  9. Multi-objective dynamic aperture optimization for storage rings

    DOE PAGES

    Li, Yongjun; Yang, Lingyun

    2016-11-30

    We report an efficient dynamic aperture (DA) optimization approach using multiobjective genetic algorithm (MOGA), which is driven by nonlinear driving terms computation. It was found that having small low order driving terms is a necessary but insufficient condition of having a decent DA. Then direct DA tracking simulation is implemented among the last generation candidates to select the best solutions. The approach was demonstrated successfully in optimizing NSLS-II storage ring DA.

  10. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  11. 13.1 micrometers hard X-ray focusing by a new type monocapillary X-ray optic designed for common laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; zhang, Xiaoyun; Zhu, Yu; Wang, Yabing; Shang, Hongzhong; Zhang, Fengshou; Liu, Zhiguo; Sun, Tianxi

    2018-04-01

    A new type of monocapillary X-ray optic, called 'two bounces monocapillary X-ray optics' (TBMXO), is proposed for generating a small focal spot with high power-density gain for micro X-ray analysis, using a common laboratory X-ray source. TBMXO is consists of two parts: an ellipsoidal part and a tapered part. Before experimental testing, the TBMXO was simulated by the ray tracing method in MATLAB. The simulated results predicted that the proposed TBMXO would produce a smaller focal spot with higher power-density gain than the ellipsoidal monocapillary X-ray optic (EMXO). In the experiment, the TBMXO performance was tested by both an optical device and a Cu target X-ray tube with focal spot of 100 μm. The results indicated that the TBMXO had a slope error of 57.6 μrad and a 13.1 μm focal spot and a 1360 gain in power density were obtained.

  12. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  13. X-Ray Exam: Hip

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Hip KidsHealth / For Parents / X-Ray Exam: Hip What's in this article? What ... Have Questions Print What It Is A hip X-ray is a safe and painless test that ...

  14. X-Ray Exam: Forearm

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: Forearm What's in this article? What ... Have Questions Print What It Is A forearm X-ray is a safe and painless test that ...

  15. X-Ray Exam: Ankle

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Ankle KidsHealth / For Parents / X-Ray Exam: Ankle What's in this article? What ... Have Questions Print What It Is An ankle X-ray is a safe and painless test that ...

  16. X-Ray Exam: Foot

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: Foot What's in this article? What ... Have Questions Print What It Is A foot X-ray is a safe and painless test that ...

  17. X-Ray Exam: Wrist

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: Wrist What's in this article? What ... Have Questions Print What It Is A wrist X-ray is a safe and painless test that ...

  18. X-Ray Exam: Finger

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: Finger What's in this article? What ... Have Questions Print What It Is A finger X-ray is a safe and painless test that ...

  19. X-Ray Exam: Pelvis

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: Pelvis What's in this article? What ... Have Questions Print What It Is A pelvis X-ray is a safe and painless test that ...

  20. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  1. Ultrahigh resolution photographic films for X-ray/EUV/FUV astronomy

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Walker, Arthur B. C., Jr.; Deforest, Craig E.; Watts, Richard; Tarrio, Charles

    1993-01-01

    The quest for ultrahigh resolution full-disk images of the sun at soft X-ray/EUV/FUV wavelengths has increased the demand for photographic films with broad spectral sensitivity, high spatial resolution, and wide dynamic range. These requirements were made more stringent by the recent development of multilayer telescopes and coronagraphs capable of operating at normal incidence at soft X-ray/EUV wavelengths. Photographic films are the only detectors now available with the information storage capacity and dynamic range such as is required for recording images of the solar disk and corona simultaneously with sub arc second spatial resolution. During the Stanford/MSFC/LLNL Rocket X-Ray Spectroheliograph and Multi-Spectral Solar Telescope Array (MSSTA) programs, we utilized photographic films to obtain high resolution full-disk images of the sun at selected soft X-ray/EUV/FUV wavelengths. In order to calibrate our instrumentation for quantitative analysis of our solar data and to select the best emulsions and processing conditions for the MSSTA reflight, we recently tested several photographic films. These studies were carried out at the NIST SURF II synchrotron and the Stanford Synchrotron Radiation Laboratory. In this paper, we provide the results of those investigations.

  2. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    NASA Astrophysics Data System (ADS)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  3. Measurement of Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Imig, Astrid; Stephenson, Edward

    2009-10-01

    The Storage Ring EDM Collaboration was using the Cooler Synchrotron (COSY) and the EDDA detector at the Forschungszentrum J"ulich to explore systematic errors in very sensitive storage-ring polarization measurements. Polarized deuterons of 235 MeV were used. The analyzer target was a block of 17 mm thick carbon placed close to the beam so that white noise applied to upstream electrostatic plates increases the vertical phase space of the beam, allowing deuterons to strike the front face of the block. For a detector acceptance that covers laboratory angles larger than 9 ^o, the efficiency for particles to scatter into the polarimeter detectors was about 0.1% (all directions) and the vector analyzing power was about 0.2. Measurements were made of the sensitivity of the polarization measurement to beam position and angle. Both vector and tensor asymmetries were measured using beams with both vector and tensor polarization. Effects were seen that depend upon both the beam geometry and the data rate in the detectors.

  4. Frontiers of X-Ray Astronomy

    NASA Astrophysics Data System (ADS)

    Fabian, Andrew C.; Pounds, Kenneth A.; Blandford, Roger D.

    2004-07-01

    Preface; 1. Forty years on from Aerobee 150: a personal perspective K. Pounds; 2. X-ray spectroscopy of astrophysical plasmas S. M. Kahn, E. Behar, A. Kinkhabwala and D. W. Savin; 3. X-rays from stars M. Gudel; 4. X-ray observations of accreting white-dwarf systems M. Cropper, G. Ramsay, C. Hellier, K. Mukai, C. Mauche and D. Pandel; 5. Accretion flows in X-ray binaries C. Done; 6. Recent X-ray observations of supernova remnants C. R. Canizares; 7. Luminous X-ray sources in spiral and star-forming galaxies M. Ward; 8. Cosmological constraints from Chandra observations of galaxy clusters S. W. Allen; 9. Clusters of galaxies: a cosmological probe R. Mushotzky; 10. Obscured active galactic nuclei: the hidden side of the X-ray Universe G. Matt; 11. The Chandra Deep Field-North Survey and the cosmic X-ray background W. N. Brandt, D. M. Alexander, F. E. Bauer and A. E. Hornschemeier; 12. Hunting the first black holes G. Hasinger; 13. X-ray astronomy in the new millennium: a summary R. D. Blandford.

  5. X-ray laser microscope apparatus

    DOEpatents

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  6. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  7. Generalized Stability Conditions for an Ultra-Low Energy Electrostatic Charged Particle Storage Ring

    NASA Astrophysics Data System (ADS)

    Sullivan, Michael

    A low energy (~50 eV) electrostatic storage ring has been constructed that can store a recirculating bunch of either electrons or ions. The charged particle bunch 'orbits' within an apparatus consisting of four lenses and two hemispherical deflector analysers, arranged in a 'race-track' configuration of length 64.1 cm. A theoretical study, using transfer matrices from charged particle optics for a 'symmetric' configuration of lens potentials, has been previously completed by Hammond et al. [New J. Phys. 11 (2009) 043033]. That approach was capable of predicting modes of storage which appeared as a resonant-like pattern. An 'asymmetric' configuration, new in this work and extending the previous study to apply to a more general case, has been completed and will be presented alongside experimental results. The level of agreement between the theoretical and experimental results is found to be excellent, and the robustness of the matrix formalism has eliminated the need to rely on computer simulation to achieve storage. This asymmetric arrangement of the lenses allows for greater flexibility in the operation of the ring, creating the potential for a more diverse range of applications and potentially aid in the design of future rings. Several spectra for both electrons and positive ions are presented to provide an indication as to how the charged particle bunch evolves as more orbits are completed. The number of counts inevitably decreases as a function of orbit number due to loss mechanisms. Enhanced measurement techniques, as well as the matrix theory, have made storage of the bunch for over a hundred orbits routine, corresponding to over 65 m travelled, and this is observed directly from the spectra. The application of the storage ring as a multi-pass time-of-flight mass spectrometer has been studied. The isotopes of krypton and xenon have been made to completely separate from one another out of a single pulse of ions. This is observed to occur after ~15 orbits of the

  8. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1985-01-01

    A progress report of research activities carried out in the area of cosmic X-ray physics is presented. The Diffuse X-ray Spectrometer DXS which has been flown twice as a rocket payload is described. The observation times proved to be too small for meaningful X-ray data to be obtained. Data collection and reduction activities from the Ultra-Soft X-ray background (UXT) instrument are described. UXT consists of three mechanically-collimated X-ray gas proportional counters with window/filter combinations which allow measurements in three energy bands, Be (80-110 eV), B (90-187 eV), and O (e84-532 eV). The Be band measurements provide an important constraint on local absorption of X-rays from the hot component of the local interstellar medium. Work has also continued on the development of a calorimetric detector for high-resolution spectroscopy in the 0.1 keV - 8keV energy range.

  9. A multiple-orbit time-of-flight mass spectrometer based on a low energy electrostatic storage ring

    NASA Astrophysics Data System (ADS)

    Sullivan, M. R.; Spanjers, T. L.; Thorn, P. A.; Reddish, T. J.; Hammond, P.

    2012-11-01

    The results are presented for an electrostatic storage ring, consisting of two hemispherical deflector analyzers (HDA) connected by two separate sets of cylindrical lenses, used as a time-of-flight mass spectrometer. Based on the results of charged particle simulations and formal matrix model, the Ion Storage Ring is capable of operating with multiple stable orbits, for both single and multiply charged ions simultaneously.

  10. X-ray (image)

    MedlinePlus

    X-rays are a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media ( ...

  11. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  12. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  13. Tunable X-ray source

    DOEpatents

    Boyce, James R [Williamsburg, VA

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  14. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  15. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  16. Abdominal x-ray

    MedlinePlus

    ... are, or may be, pregnant. Alternative Names Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... Guidelines Viewers & Players MedlinePlus Connect for EHRs For Developers U.S. National Library of Medicine 8600 Rockville Pike, ...

  17. X-Ray Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Radiographic Image Acquisition & Processing Software for Security Markets. Used in operation of commercial x-ray scanners and manipulation of x-ray images for emergency responders including State, Local, Federal, and US Military bomb technicians and analysts.

  18. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less

  19. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS

    DOE PAGES

    Lee, Sooheyong; Roseker, W.; Gutt, C.; ...

    2013-10-08

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse modemore » $$\\langle$$M s$$\\rangle$$ = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Lastly the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.« less

  20. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E [Manteca, CA

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  1. Symbiotic Stars in X-rays

    NASA Technical Reports Server (NTRS)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  2. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  3. PEGASYS---A proposed internal target facility for the PEP storage ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Biber, K.

    A proposal for an integral gas-jet target and forward spectrometer for the PEP storage ring is described. The beam structure, allowable, luminosity (L = 10/sup 33/ cm/sup /minus/2/s/sup /minus/1/ for H/sub 2/, D/sub 2/) and energy (E/sub e/ less than or equal to 15 GeV) make the ring ideal for multiparticle coincidence studies in the scaling regime, and where perturbative QCD may be an apt description of some exclusive and semi-inclusive reactions. 14 refs., 7 figs.

  4. X-ray transparent Microfluidics for Protein Crystallization and Biomineralization

    NASA Astrophysics Data System (ADS)

    Opathalage, Achini

    Protein crystallization demands the fundamental understanding of nucleation and applying techniques to find the optimal conditions to achieve the kinetic pathway for a large and defect free crystal. Classical nucleation theory predicts that the nucleation occurs at high supersaturation conditions. In this dissertation we sought out to develop techniques to attain optimal supersaturation profile to a large defect free crystal and subject it to in-situ X-ray diffraction using microfluidics. We have developed an emulsion-based serial crystallographic technology in nanolitre-sized droplets of protein solution encapsulated in to nucleate one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different un-oriented crystals. As proof of concept, the structure of Glucose Isomerase was solved to 2.1 A. We have developed a suite of X-ray semi-transparent micrfluidic devices which enables; controlled evaporation as a method of increasing supersaturation and manipulating the phase space of proteins and small molecules. We exploited the inherently high water permeability of the thin X-ray semi-transparent devices as a mean of increasing the supersaturation by controlling the evaporation. We fabricated the X-ray semi-transparent version of the PhaseChip with a thin PDMS membrane by which the storage and the reservoir layers are separated, and studies the phase transition of amorphous CaCO3.

  5. X-ray techniques for innovation in industry

    PubMed Central

    Lawniczak-Jablonska, Krystyna; Cutler, Jeffrey

    2014-01-01

    The smart specialization declared in the European program Horizon 2020, and the increasing cooperation between research and development found in companies and researchers at universities and research institutions have created a new paradigm where many calls for proposals require participation and funding from public and private entities. This has created a unique opportunity for large-scale facilities, such as synchrotron research laboratories, to participate in and support applied research programs. Scientific staff at synchrotron facilities have developed many advanced tools that make optimal use of the characteristics of the light generated by the storage ring. These tools have been exceptionally valuable for materials characterization including X-ray absorption spectroscopy, diffraction, tomography and scattering, and have been key in solving many research and development issues. Progress in optics and detectors, as well as a large effort put into the improvement of data analysis codes, have resulted in the development of reliable and reproducible procedures for materials characterization. Research with photons has contributed to the development of a wide variety of products such as plastics, cosmetics, chemicals, building materials, packaging materials and pharma. In this review, a few examples are highlighted of successful cooperation leading to solutions of a variety of industrial technological problems which have been exploited by industry including lessons learned from the Science Link project, supported by the European Commission, as a new approach to increase the number of commercial users at large-scale research infrastructures. PMID:25485139

  6. Observation of femtosecond X-ray interactions with matter using an X-ray–X-ray pump–probe scheme

    PubMed Central

    Inoue, Ichiro; Inubushi, Yuichi; Sato, Takahiro; Tono, Kensuke; Katayama, Tetsuo; Kameshima, Takashi; Ogawa, Kanade; Togashi, Tadashi; Owada, Shigeki; Amemiya, Yoshiyuki; Tanaka, Takashi; Hara, Toru

    2016-01-01

    Resolution in the X-ray structure determination of noncrystalline samples has been limited to several tens of nanometers, because deep X-ray irradiation required for enhanced resolution causes radiation damage to samples. However, theoretical studies predict that the femtosecond (fs) durations of X-ray free-electron laser (XFEL) pulses make it possible to record scattering signals before the initiation of X-ray damage processes; thus, an ultraintense X-ray beam can be used beyond the conventional limit of radiation dose. Here, we verify this scenario by directly observing femtosecond X-ray damage processes in diamond irradiated with extraordinarily intense (∼1019 W/cm2) XFEL pulses. An X-ray pump–probe diffraction scheme was developed in this study; tightly focused double–5-fs XFEL pulses with time separations ranging from sub-fs to 80 fs were used to excite (i.e., pump) the diamond and characterize (i.e., probe) the temporal changes of the crystalline structures through Bragg reflection. It was found that the pump and probe diffraction intensities remain almost constant for shorter time separations of the double pulse, whereas the probe diffraction intensities decreased after 20 fs following pump pulse irradiation due to the X-ray–induced atomic displacement. This result indicates that sub-10-fs XFEL pulses enable conductions of damageless structural determinations and supports the validity of the theoretical predictions of ultraintense X-ray–matter interactions. The X-ray pump–probe scheme demonstrated here would be effective for understanding ultraintense X-ray–matter interactions, which will greatly stimulate advanced XFEL applications, such as atomic structure determination of a single molecule and generation of exotic matters with high energy densities. PMID:26811449

  7. First storage of ion beams in the Double Electrostatic Ion-Ring Experiment: DESIREE.

    PubMed

    Schmidt, H T; Thomas, R D; Gatchell, M; Rosén, S; Reinhed, P; Löfgren, P; Brännholm, L; Blom, M; Björkhage, M; Bäckström, E; Alexander, J D; Leontein, S; Hanstorp, D; Zettergren, H; Liljeby, L; Källberg, A; Simonsson, A; Hellberg, F; Mannervik, S; Larsson, M; Geppert, W D; Rensfelt, K G; Danared, H; Paál, A; Masuda, M; Halldén, P; Andler, G; Stockett, M H; Chen, T; Källersjö, G; Weimer, J; Hansen, K; Hartman, H; Cederquist, H

    2013-05-01

    We report on the first storage of ion beams in the Double ElectroStatic Ion Ring ExpEriment, DESIREE, at Stockholm University. We have produced beams of atomic carbon anions and small carbon anion molecules (C(n)(-), n = 1, 2, 3, 4) in a sputter ion source. The ion beams were accelerated to 10 keV kinetic energy and stored in an electrostatic ion storage ring enclosed in a vacuum chamber at 13 K. For 10 keV C2 (-) molecular anions we measure the residual-gas limited beam storage lifetime to be 448 s ± 18 s with two independent detector systems. Using the measured storage lifetimes we estimate that the residual gas pressure is in the 10(-14) mbar range. When high current ion beams are injected, the number of stored particles does not follow a single exponential decay law as would be expected for stored particles lost solely due to electron detachment in collision with the residual-gas. Instead, we observe a faster initial decay rate, which we ascribe to the effect of the space charge of the ion beam on the storage capacity.

  8. X-Ray Spectrometer For ROSAT II (SPECTROSAT)

    NASA Astrophysics Data System (ADS)

    Predehl, Peter; Brauninger, Heinrich

    1986-01-01

    The objective transmission grating was one of the earliest inventions in the field of X-ray astronomy and has been incorporated into Skylab, HERO-P, and EXOTAT. In recent years there have been advances in grating technology and spectrometer design. A high precision mechanical ruling and replication process for manufacturing large self-supporting transmission gratings has been developed by an industrial manufacturer in cooperation with the Max-Planck-Institute (MPI). Theoretical analyses have determined the optimum configuration of the grating facets and the grating surface in order to correct third order aberations and obtain maximum resolving power. We have verified experimentally that the predicted efficiencies may be achieved. In addition, an experimental study of large grating assemblies for space telescopes was made in industry with scientific guidance by MPI. Main objectives of this study were the determination of mechanical loads during launch, as well as the design, construction and fabrication of a representative model of a ROSAT grating ring. Performancy studies including instrument pro-perties as well as the simulated radiation from hot plasmas have shown the ability of SPECTROSAT to perform high efficiency, high resolution line-spectroscopy on a wide variety of cosmic X-ray sources.

  9. X ray spectra of X Per. [oso-8 observations

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Boldt, E. A.; Holt, S. S.; Pravdo, S. H.; Robinson-Saba, J.; Serlemitsos, P. J.; Swank, J. H.

    1978-01-01

    The cosmic X-ray spectroscopy experiment on OSO-8 observed X Per for twenty days during two observations in Feb. 1976 and Feb. 1977. The spectrum of X Per varies in phase with its 13.9 min period, hardening significantly at X-ray minimum. Unlike other X-ray binary pulsar spectra, X Per's spectra do not exhibit iron line emission or strong absorption features. The data show no evidence for a 22 hour periodicity in the X-ray intensity of X Per. These results indicate that the X-ray emission from X Per may be originating from a neutron star in a low density region far from the optically identified Be star.

  10. Accretion and Outflows in X-ray Binaries: What's Really Going on During X-ray Quiescence

    NASA Astrophysics Data System (ADS)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle

    2015-01-01

    X-ray binaries, consisting of a star and a stellar-mass black hole, are wonderful laboratories for studying accretion and outflows. They evolve on timescales quite accessible to us, unlike their supermassive cousins, and allow the possibility of gaining a deeper understanding of these two common astrophysical processes. Different wavelength regimes reveal different aspects of the systems: radio emission is largely generated by outflows and jets, X-ray emission by inner accretion flows, and optical/infrared (OIR) emission by the outer disk and companion star. The search for relationships between these different wavelengths is thus an area of active research, aiming to reveal deeper connections between accretion and outflows.Initial evidence for a strong, tight correlation between radio and X-ray emission has weakened as further observations and newly-discovered sources have been obtained. This has led to discussions of multiple tracks or clusters, or the possibility that no overall relation exists for the currently-known population of X-ray binaries. Our ability to distinguish among these options is hampered by a relative lack of observations at lower luminosities, and especially of truly X-ray quiescent (non-outbursting) systems. Although X-ray binaries spend the bulk of their existence in quiescence, few quiescent sources have been observed and multiple observations of individual sources are largely nonexistent. Here we discuss new observations of the lowest-luminosity quiescent X-ray binary, A0620-00, and the place this object occupies in investigations of the radio/X-ray plane. For the first time, we also incorporate simultaneous OIR data with the radio and X-ray data.In December 2013 we took simultaneous observations of A0620-00 in the X-ray (Chandra), the radio (EVLA), and the OIR (SMARTS 1.3m). These X-ray and radio data allowed us to investigate similarities among quiescent X-ray binaries, and changes over time for this individual object, in the radio/X-ray

  11. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  12. Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography

    PubMed Central

    Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.

    2013-01-01

    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640

  13. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  14. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  15. Model-independent and fast determination of optical functions in storage rings via multiturn and closed-orbit data

    NASA Astrophysics Data System (ADS)

    Riemann, Bernard; Grete, Patrick; Weis, Thomas

    2011-06-01

    Multiturn (or turn-by-turn) data acquisition has proven to be a new source of direct measurements for Twiss parameters in storage rings. On the other hand, closed-orbit measurements are a long-known tool for analyzing closed-orbit perturbations with conventional beam position monitor (BPM) systems and are necessarily available at every storage ring. This paper aims at combining the advantages of multiturn measurements and closed-orbit data. We show that only two multiturn BPMs and four correctors in one localized drift space in the storage ring (diagnostic drift) are sufficient for model-independent and absolute measuring of β and φ functions at all BPMs, including the conventional ones, instead of requiring all BPMs being equipped with multiturn electronics.

  16. Toward Adaptive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  17. Toward active x-ray telescopes

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; Michette, Alan G.; Ramsey, Brian D.; Reid, Paul B.; Rodriguez Sanmartin, Daniel; Saha, Timo T.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.; Willingale, Richard; Zhang, William W.

    2011-09-01

    Future x-ray observatories will require high-resolution (< 1") optics with very-large-aperture (> 25 m2) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the areal density of the grazing-incidence mirrors to about 1 kg/m2 or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve active (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, active optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom (UK) and the Generation-X (Gen-X) concept studies in the United States (US). This paper discusses relevant technological issues and summarizes progress toward active x-ray telescopes.

  18. Engine materials characterization and damage monitoring by using x ray technologies

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.

    1993-01-01

    X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws

  19. X-ray superbubbles

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1983-01-01

    Four regions of the galaxy, the Cygnus Superbubble, the Eta Carina complex, the Orion/Eridanus complex, and the Gum Nebula, are discussed as examples of collective effects in the interstellar medium. All four regions share certain features, indicating a common structure. The selection effects which determine the observable X-ray properties of the superbubbles are discussed, and it is demonstrated that only a very few more in our Galaxy can be detected in X rays. X-ray observation of extragalactic superbubbles is shown to be possible but requires the capabilities of a large, high quality, AXAF class observatory.

  20. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  1. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  2. Synthesis and X-ray crystal structure determination of N- p-methylphenyl-4-benzoyl-3,4-diphenyl-2-azetidinone

    NASA Astrophysics Data System (ADS)

    Kabak, Mehmet; Şenöz, Hülya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dušek, Michal; Fejfarová, Karla

    2010-12-01

    The title compound, C29H23NO2, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (Mo K α and Cu K α). The non-centrosymmetric hexagonal crystal structure contains four-membered planar β-lactam ring with an unusually long C-C bond. The β-lactam ring is almost planar.

  3. X-ray Arcs Tell The Tale Of Giant Eruption

    NASA Astrophysics Data System (ADS)

    2002-08-01

    Long ago, a giant eruption occurred in a nearby galaxy and plunged it into turmoil. Now NASA's Chandra X-ray Observatory has revealed the remains of that explosion in the form of two enormous arcs of hot gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes in the centers of many so-called "active" galaxies. Scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) report that two arc-like structures of multimillion-degree gas in the galaxy Centaurus A appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been produced in a titanic explosion that occurred about ten million years ago. A composite image of the galaxy made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a stunning tableau of a tumultuous galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of X-ray emitting hot gas. "Putting all the images together was the key to understanding what Chandra showed," said Margarita Karovska, lead author on a paper in the September 20, 2002, issue of The Astrophysical Journal. "Suddenly it all clicked in, as with a giant puzzle, and the images fit together to make a complete picture of the galaxy geometry that was not at all apparent before." The team proposes that the orientation of the arcs of hot gas perpendicular to the jet and the symmetry of the projected ring with respect to the center of the galaxy could be evidence that the ring is the result of a giant eruption in the nucleus of the galaxy 10 million years ago. This explosion may have produced a galaxy-sized shock wave that has been moving outward at speeds of a million miles per hour. The age of 10 million years for the

  4. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  5. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  6. Phase measurement for driven spin oscillations in a storage ring

    NASA Astrophysics Data System (ADS)

    Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration

    2018-04-01

    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.

  7. The physical origin of the X-ray emission from SN 1987A

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Orlando, S.; Petruk, O.

    2017-10-01

    We revisit the spectral analysis of the set of archive XMM-Newton observations of SN 1987A through our 3-D hydrodynamic model describing the whole evolution from the onset of the supernova to the full remnant development. For the first time the spectral analysis accounts for the single observations and for the evolution of the system self-consistently. We adopt a forward modeling approach which allows us to directly synthesize, from the model, X-ray spectra and images in different energy bands. We fold the synthetic observables through the XMM-Newton instrumental response and directly compare models and actual data. We find that our simulation provides an excellent fit to the data, by reproducing simultaneously X-ray fluxes, spectral features, and morphology of SN 1987A at all evolutionary stages. Our analysis enables us to obtain a deep insight on the physical origin of the observed multi-thermal emission, by revealing the contribution of shocked surrounding medium, dense clumps of the circumstellar ring, and ejecta to the total emission. We finally provide predictions for future observations (to be performed with XMM-Newton in the next future and with the forthcoming Athena X-ray telescope in approximately 10 years), showing the growing contribution of the ejecta X-ray emission.

  8. Johann Spectrometer for High Resolution X-ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machek, Pavel; Froeba, Michael; Welter, Edmund

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixedmore » Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.« less

  9. Remote analysis of planetary soils: X-ray diffractometer development

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.

    1973-01-01

    A system is described suitable for remote low power mineralogical analysis of lunar, planetary, or asteroid soils. It includes an X-ray diffractometer, fluorescence spectrometer, and sample preparation system. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin or focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flipflops requiring only 3.5 milliwatts was designed and tested. Total instrument power is less than 5 watts. Powder diffraction patterns using a flat breadboard multiwire counter were recorded.

  10. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  11. AXAF VETA-I mirror ring focus measurements

    NASA Technical Reports Server (NTRS)

    Tananbaum, H. D.; Zhao, P.

    1994-01-01

    The AXAF VETA-I mirror ring focus measurements were made with an HRI (microchannel plate) X-ray detector. The ring focus is a sharply focused ring formed by X-rays before they reach the VEAT-I focal plane. It is caused by spherical aberrations due to the finite source distance and the despace in the VETA-I test. The ring focus test reveals some aspects fo the test system distortions and the mirror surface figure which are difficult or impossible to detect at the focal plane. The test results show periodic modulations of the ring radius and width which could be caused by gravity, thermal, and/or epoxy shrinkage distortions. The strongest component of the modulation had a 12-fold symmetry, because these distortions were exerted on the mirror through 12 flexures of the VETA-I mount. Ring focus models were developed to simulate the ring image. The models were compared with the data to understand the test system distortions and the mirror glass imperfection. Further studies will be done to complete this work. The ring focus measurement is a very powerful test. We expect that a similar test for the finally assembled mirror of AXAD-I will be highly valuable.

  12. Development of polycapillary x-ray optics for x-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Adams, Bernhard W.; Attenkofer, Klaus; Bond, Justin L.; Craven, Christopher A.; Cremer, Till; O'Mahony, Aileen; Minot, Michael J.; Popecki, Mark A.

    2016-09-01

    Bundles of hollow glass capillaries can be tapered to produce quasi-focusing x-ray optics. These optics are known as Kumakhov lenses. These optics are interesting for lab-based sources because they can be used to collimate and concentrate x-rays originating from a point, such as a laser focus or an electron-beam focus in a microtube.

  13. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  14. Exploring the X-Ray Universe

    NASA Astrophysics Data System (ADS)

    Seward, Frederick D.; Charles, Philip A.

    1995-11-01

    Exploring the X-Ray Universe describes the view of the stars and galaxies that is obtained through X-ray telescopes. X-rays, which are invisible to human sight, are created in the cores of active galaxies, in cataclysmic stellar explosions, and in streams of gas expelled by the Sun and stars. The window on the heavens used by the X-ray astronomers shows the great drama of cosmic violence on the grandest scale.

    This account of X-ray astronomy incorporates the latest findings from several observatories operating in space. These include the Einstein Observatory operated by NASA, and the EXOSAT satellite of the European Space Agency. The book covers the entire field, with chapters on stars, supernova remnants, normal and active galaxies, clusters of galaxies, the diffuse X-ray background, and much more. The authors review basic principles, include the necessary historical background, and explain exactly what we know from X-ray observations of the Universe.

  15. X-ray imaging physics for nuclear medicine technologists. Part 1: Basic principles of x-ray production.

    PubMed

    Seibert, J Anthony

    2004-09-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. Advances in PET technology have lead to widespread applications in diagnostic imaging and oncologic staging of disease. Combined PET/CT scanners provide the high-resolution anatomic imaging capability of CT with the metabolic and physiologic information by PET, to offer a significant increase in information content useful for the diagnostician and radiation oncologist, neurosurgeon, or other physician needing both anatomic detail and knowledge of disease extent. Nuclear medicine technologists at the forefront of PET should therefore have a good understanding of x-ray imaging physics and basic CT scanner operation, as covered by this 4-part series. After reading the first article on x-ray production, the nuclear medicine technologist will be familiar with (a) the physical characteristics of x-rays relative to other electromagnetic radiations, including gamma-rays in terms of energy, wavelength, and frequency; (b) methods of x-ray production and the characteristics of the output x-ray spectrum; (c) components necessary to produce x-rays, including the x-ray tube/x-ray generator and the parameters that control x-ray quality (energy) and quantity; (d) x-ray production limitations caused by heating and the impact on image acquisition and clinical throughput; and (e) a glossary of terms to assist in the understanding of this information.

  16. X-ray absorption spectroscopy: EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-04-01

    The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less

  17. X-ray radiative transfer in protoplanetary disks. The role of dust and X-ray background fields

    NASA Astrophysics Data System (ADS)

    Rab, Ch.; Güdel, M.; Woitke, P.; Kamp, I.; Thi, W.-F.; Min, M.; Aresu, G.; Meijerink, R.

    2018-01-01

    Context. The X-ray luminosities of T Tauri stars are about two to four orders of magnitude higher than the luminosity of the contemporary Sun. As these stars are born in clusters, their disks are not only irradiated by their parent star but also by an X-ray background field produced by the cluster members. Aims: We aim to quantify the impact of X-ray background fields produced by young embedded clusters on the chemical structure of disks. Further, we want to investigate the importance of the dust for X-ray radiative transfer in disks. Methods: We present a new X-ray radiative transfer module for the radiation thermo-chemical disk code PRODIMO (PROtoplanetary DIsk MOdel), which includes X-ray scattering and absorption by both the gas and dust component. The X-ray dust opacities can be calculated for various dust compositions and dust-size distributions. For the X-ray radiative transfer we consider irradiation by the star and by X-ray background fields. To study the impact of X-rays on the chemical structure of disks we use the well established disk ionization tracers N2H+ and HCO+. Results: For evolved dust populations (e.g. grain growth), X-ray opacities are mostly dominated by the gas; only for photon energies E ≳ 5-10 keV do dust opacities become relevant. Consequently the local disk X-ray radiation field is only affected in dense regions close to the disk midplane. X-ray background fields can dominate the local X-ray disk ionization rate for disk radii r ≳ 20 au. However, the N2H+ and HCO+ column densities are only significantly affected in cases of low cosmic-ray ionization rates (≲10-19 s-1), or if the background flux is at least a factor of ten higher than the flux level of ≈10-5 erg cm-2 s-1 expected for clusters typical for the solar vicinity. Conclusions: Observable signatures of X-ray background fields in low-mass star-formation regions, like Taurus, are only expected for cluster members experiencing a strong X-ray background field (e.g. due to

  18. A two-stage series diode for intense large-area moderate pulsed X rays production.

    PubMed

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm 2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  19. The new Athena alpha particle X-ray spectrometer for the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Gellert, R.; Brückner, J.; Klingelhöfer, G.; Dreibus, G.; Yen, A.; Squyres, S. W.

    2003-11-01

    The new alpha particle X-ray spectrometer (APXS) is part of the Athena payload of the two Mars Exploration Rovers (MER). The APXS sensor head is attached to the turret of the instrument deployment device (IDD) of the rover. The APXS is a very light-weight instrument for determining the major and minor elemental composition of Martian soils, rocks, and other geological materials at the MER landing sites. The sensor head has simply to be docked by the IDD on the surface of the selected sample. X-ray radiation, excited by alpha particles and X rays of the radioactive sources, is recorded by a high-resolution X-ray detector. The X-ray spectra show elements starting from sodium up to yttrium, depending on their concentrations. The backscattered alpha spectra, measured by a ring of detectors, provide additional data on carbon and oxygen. By means of a proper calibration, the elemental concentrations are derived. Together with data from the two other Athena instruments mounted on the IDD, the samples under investigation can be fully characterized. Key APXS objectives are the determination of the chemistry of crustal rocks and soils and the examination of water-related deposits, sediments, or evaporates. Using the rock abrasion tool attached to the IDD, issues of weathering can be addressed by measuring natural and abraded surfaces of rocks.

  20. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  1. X-Rays from Pluto

    NASA Image and Video Library

    2016-09-14

    The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first

  2. Innovative space x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.; Ticha, H.; Brozek, V.

    2017-11-01

    We report on the progress in innovative X-ray mirror development with focus on requirements of future X-ray astronomy space projects. Various future projects in X-ray astronomy and astrophysics will require large lightweight but highly accurate segments with multiple thin shells or foils. The large Wolter 1 grazing incidence multiple mirror arrays, the Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (shaped, bent or flat foils) with high X-ray reflectivity and excellent mechanical stability.

  3. X-Ray Exam: Cervical Spine

    MedlinePlus

    ... through them and appear black. An X-ray technician takes the X-rays. Usually, three different pictures ... to tell her doctor and the X-ray technician. Procedure Although the procedure may take up to ...

  4. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most ...

  5. Quality of fresh-cut purple fleshed sweet potatoes after x-ray irradiation treatment and refrigerated storage

    USDA-ARS?s Scientific Manuscript database

    The effect of x-ray irradiation on the quality of fresh-cut, refrigerated purple-fleshed sweetpotato (PFSP) cubes was investigated. Packaged sweetpotato cubes were treated with 0, 250, 500, 750 or 1000 Gy x-ray irradiation and stored at 4 ± 1 ºC for 14 days. After 14 days, total aerobic bacteria cou...

  6. Deep Extragalactic X-Ray Surveys

    NASA Astrophysics Data System (ADS)

    Brandt, W. N.; Hasinger, G.

    2005-09-01

    Deep surveys of the cosmic X-ray background are reviewed in the context of observational progress enabled by the Chandra X-Ray Observatory and the X-Ray Multi-Mirror Mission-Newton. The sources found by deep surveys are described along with their redshift and luminosity distributions, and the effectiveness of such surveys at selecting active galactic nuclei (AGN) is assessed. Some key results from deep surveys are highlighted, including (a) measurements of AGN evolution and the growth of supermassive black holes, (b) constraints on the demography and physics of high-redshift AGN, (c) the X-ray AGN content of infrared and submillimeter galaxies, and (d) X-ray emission from distant starburst and normal galaxies. We also describe some outstanding problems and future prospects for deep extragalactic X-ray surveys.

  7. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doose, C.; Dejus, R.; Jaski, M.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces tomore » gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.« less

  8. Modeling Systematic Error Effects for a Sensitive Storage Ring EDM Polarimeter

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Imig, Astrid

    2009-10-01

    The Storage Ring EDM Collaboration has obtained a set of measurements detailing the sensitivity of a storage ring polarimeter for deuterons to small geometrical and rate changes. Various schemes, such as the calculation of the cross ratio [1], can cancel effects due to detector acceptance differences and luminosity differences for states of opposite polarization. Such schemes fail at second-order in the errors, becoming sensitive to geometrical changes, polarization magnitude differences between opposite polarization states, and changes to the detector response with changing data rates. An expansion of the polarimeter response in a Taylor series based on small errors about the polarimeter operating point can parametrize such effects, primarily in terms of the logarithmic derivatives of the cross section and analyzing power. A comparison will be made to measurements obtained with the EDDA detector at COSY-J"ulich. [4pt] [1] G.G. Ohlsen and P.W. Keaton, Jr., NIM 109, 41 (1973).

  9. Rapid soft X-ray fluctuations in solar flares observed with the X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Zarro, D. M.; Saba, J. L. R.; Strong, K. T.

    1986-01-01

    Three flares observed by the Soft X-Ray Polychromator on the Solar Maximum Mission were studied. Flare light curves from the Flat Crystal Spectrometer and Bent Crystal Spectrometer were examined for rapid signal variations. Each flare was characterized by an initial fast (less than 1 min) burst, observed by the Hard X-Ray Burst Spectrometer (HXRBS), followed by softer gradual X-ray emission lasting several minutes. From an autocorrelation function analysis, evidence was found for quasi-periodic fluctuations with rise and decay times of 10 s in the Ca XIX and Fe XXV light curves. These variations were of small amplitude (less than 20%), often coincided with hard X-ray emissions, and were prominent during the onset of the gradual phase after the initial hard X-ray burst. It is speculated that these fluctuations were caused by repeated energy injections in a coronal loop that had already been heated and filled with dense plasma associated with the initial hard X-ray burst.

  10. Status of NSLS-II Storage Ring Vacuum Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doom,L.; Hseuh,H.; Ferreira, M.

    2009-05-04

    National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3-GeV, high-flux and high- brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system will have extruded aluminium chambers with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers will be used to intercept the un-used bending magnet radiation. In-situ bakeout will be implemented to achieve fast conditioning during initial commissioning and after interventions.

  11. Photoswitchable Dihydroazulene Macrocycles for Solar Energy Storage: The Effects of Ring Strain.

    PubMed

    Vlasceanu, Alexandru; Frandsen, Benjamin N; Skov, Anders B; Hansen, Anne Schou; Rasmussen, Mads Georg; Kjaergaard, Henrik G; Mikkelsen, Kurt V; Nielsen, Mogens Brøndsted

    2017-10-06

    Efficient energy storage and release are two major challenges of solar energy harvesting technologies. The development of molecular solar thermal systems presents one approach to address these issues by tuning the isomerization reactions of photo/thermoswitches. Here we show that the incorporation of photoswitches into macrocyclic structures is a particularly attractive solution for increasing the storage time. We present the synthesis and properties of a series of macrocycles incorporating two dihydroazulene (DHA) photoswitching subunits, bridged by linkers of varying chain length. Independent of ring size, all macrocycles exhibit stepwise, light-induced, ring-opening reactions (DHA-DHA to DHA-VHF to VHF-VHF; VHF = vinylheptafulvene) with the first DHA undergoing isomerization with a similar efficiency as the uncyclized parent system while the second (DHA-VHF to VHF-VHF) is significantly slower. The energy-releasing, VHF-to-DHA, ring closures also occur in a stepwise manner and are systematically found to proceed slower in the more strained (smaller) cycles, but in all cases with a remarkably slow conversion of the second VHF to DHA. We managed to increase the half-life of the second VHF-to-DHA conversion from 65 to 202 h at room temperature by simply decreasing the ring size. A computational study reveals the smallest macrocycle to have the most energetic VHF-VHF state and hence highest energy density.

  12. Monte Carlo study of x-ray cross talk in a variable resolution x-ray detector

    NASA Astrophysics Data System (ADS)

    Melnyk, Roman; DiBianca, Frank A.

    2003-06-01

    A variable resolution x-ray (VRX) detector provides a great increase in the spatial resolution of a CT scanner. An important factor that limits the spatial resolution of the detector is x-ray cross-talk. A theoretical study of the x-ray cross-talk is presented in this paper. In the study, two types of the x-ray cross-talk were considered: inter-cell and inter-arm cross-talk. Both types of the x-ray cross-talk were simulated, using the Monte Carlo method, as functions of the detector field of view (FOV). The simulation was repeated for lead and tungsten separators between detector cells. The inter-cell x-ray cross-talk was maximum at the 34-36 cm FOV, but it was low at small and the maximum FOVs. The inter-arm x-ray cross-talk was high at small and medium FOVs, but it was greatly reduced when variable width collimators were placed on the front surfaces of the detector. The inter-cell, but not inter-arm, x-ray cross-talk was lower for tungsten than for lead separators. From the results, x-ray cross-talk in a VRX detector can be minimized by imaging all objects between 24 cm and 40 cm in diameter with the 40 cm FOV, using tungsten separators, and placing variable width collimators in front of the detector.

  13. Behavior of characteristic X-rays from a partial-transmission-type X-ray target.

    PubMed

    Raza, Hamid Saeed; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2013-10-01

    The angular distribution of characteristic X-rays using a partial-transmission tungsten target was analyzed. Twenty four tallies were modeled to cover a 360° envelope around the target. The Monte Carlo N-Particle (MCNP5) simulation results revealed that the characteristic X-ray flux is not always isotropic around the target. Rather, the flux mainly depends on the target thickness and the energy of the incident electron beam. A multi-energy photon generator is proposed to emit high-energy characteristic X-rays, where the target acts as a filter for the low-energy characteristic X-rays. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Inter-satellites x-ray communication system

    NASA Astrophysics Data System (ADS)

    Mou, Huan; Li, Bao-quan

    2017-02-01

    An inter-satellite X-ray communication system is presented in this paper. X-ray has a strong penetrating power without almost attenuation for transmission in outer space when the energy of X-ray photons is more than 10KeV and the atmospheric pressure is lower than 10-1 Pa, so it is convincing of x-ray communication in inter-satellite communication and deep space exploration. Additionally, using X-ray photons as information carriers can be used in some communication applications that laser communication and radio frequency (RF) communication are not available, such as ionization blackout area communication. The inter-satellites X-ray communication system, including the grid modulated X-ray source, the high-sensitivity X-ray detector and the transmitting and receiving antenna, is described explicitly. As the X-ray transmitter, a vacuum-sealed miniature modulated X-ray source has been fabricated via the single-step brazing process in a vacuum furnace. Pulse modulation of X-rays, by means of controlling the voltage value of the grid electrode, is realized. Three focusing electrodes, meanwhile, are used to make the electron beam converge and finally 150μm focusing spot diameter is obtained. The X-ray detector based on silicon avalanche photodiodes (APDs) is chosen as the communication receiver on account of its high temporal resolution and non-vacuum operating environment. Furthermore, considering x-ray emission characteristic and communication distance of X-rays, the multilayer nested rotary parabolic optics is picked out as transmitting and receiving antenna. And as a new concept of the space communication, there will be more important scientific significance and application prospects, called "Next-Generation Communications".

  15. BEAM DIAGNOSTICS USING BPM SIGNALS FROM INJECTED AND STORED BEAMS IN A STORAGE RING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.M.; Shaftan; T.

    2011-03-28

    Many modern light sources are operating in top-off injection mode or are being upgraded to top-off injection mode. The storage ring always has the stored beam and injected beam for top-off injection mode. So the BPM data is the mixture of both beam positions and the injected beam position cannot be measured directly. We propose to use dedicated wide band BPM electronics in the NSLS II storage ring to retrieve the injected beam trajectory with the singular value decomposition (SVD) method. The beam position monitor (BPM) has the capability to measure bunch-by-bunch beam position. Similar electronics can be used tomore » measure the bunch-by-bunch beam current which is necessary to get the injection beam position. The measurement precision of current needs to be evaluated since button BPM sum signal has position dependence. The injected beam trajectory can be measured and monitored all the time without dumping the stored beam. We can adjust and optimize the injected beam trajectory to maximize the injection efficiency. We can also measure the storage ring acceptance by mapping the injected beam trajectory.« less

  16. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Bucciantini, N.; Idec, W.; Nillson, K.; Schweizer, T.; Tennant, A. F.; Zanin, R.

    2013-01-01

    We have studied the wisps to the northwest of the Crab pulsar as part of a multi-wavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. It is also interesting to note that the optical and radio wisps are also separated from each other (Bietenholz et al. 2004). Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of PWNe, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 4.

  17. X-MIME: An Imaging X-ray Spectrometer for Detailed Study of Jupiter's Icy Moons and the Planet's X-ray Aurora

    NASA Technical Reports Server (NTRS)

    Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.

    2004-01-01

    Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.

  18. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  19. High-energy, high-resolution x-ray imaging for metallic cultural heritages

    NASA Astrophysics Data System (ADS)

    Hoshino, Masato; Uesugi, Kentaro; Shikaku, Ryuji; Yagi, Naoto

    2017-10-01

    An x-ray micro-imaging technique to visualize high-resolution structure of cultural heritages made of iron or copper has been developed. It utilizes high-energy x-rays from a bending magnet at the SPring-8 synchrotron radiation facility. A white x-ray beam was attenuated by 0.5 mm tungsten and 2.0 mm lead absorbers resulting in the peak energy of 200 keV. The tungsten absorber eliminated the photon energy peak below the absorption edge of lead. A sample was rotated over 180 degrees in 500 s and projection images were continuously collected with an exposure time of 500 ms by an sCMOS camera equipped with a scintillator. Tomographic reconstruction of an ancient sword containing of both copper and iron was successfully obtained at a voxel size of 14.8 μm. Beam hardening was found to cause 2.5 % differences in density in a reconstructed image of a homogeneous stainless-steel rod. Ring artefacts were reduced by continuously moving the absorbers. This work demonstrates feasibility of high-energy, high-resolution imaging at a synchrotron beamline which may be generally useful for inspecting metallic objects.

  20. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  1. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-01-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 +/- 0.5%), the optical emission does not show any statistically significant variations. We set a 3s upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is approximately equal to 2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3 sigma) for optical variability on an approximately 24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  2. Ray-trace analysis of glancing-incidence X-ray optical systems

    NASA Technical Reports Server (NTRS)

    Foreman, J. W., Jr.; Cardone, J. M.

    1976-01-01

    The results of a ray-trace analysis of several glancing-incidence X-ray optical systems are presented. The object of the study was threefold. First, the vignetting characteristics of the S-056 X-ray telescope were calculated using experimental data to determine mirror reflectivities. Second, a small Wolter Type I X-ray telescope intended for possible use in the Geostationary Operational Environmental Satellite program was designed and ray traced. Finally, a ray-trace program was developed for a Wolter-Schwarzschild X-ray telescope.

  3. Magnet design for a low-emittance storage ring

    PubMed Central

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk. PMID:25177980

  4. The X-ray Astronomy Recovery Mission

    NASA Astrophysics Data System (ADS)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  5. Preliminary study of injection transients in the TPS storage ring

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Liu, Y. C.; Y Chen, J.; Chiu, M. S.; Tseng, F. H.; Fann, S.; Liang, C. C.; Huang, C. S.; Y Lee, T.; Y Chen, B.; Tsai, H. J.; Luo, G. H.; Kuo, C. C.

    2017-07-01

    An optimized injection efficiency is related to a perfect match between the pulsed magnetic fields in the storage ring and transfer line extraction in the TPS. However, misalignment errors, hardware output errors and leakage fields are unavoidable. We study the influence of injection transients on the stored TPS beam and discuss solutions to compensate these. Related simulations and measurements will be presented.

  6. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  7. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  8. Studies on X-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Miao, Huijie

    significantly during the data collecting process. One of the tests we did was putting a dry room-temperature grid into the beam, cooling it down to liquid nitrogen temperature, and then collecting the diffraction pattern of it over time. This test showed that, after the cold grid remained in the chamber for a while, a ring could be observed in the diffraction pattern. The time necessary for this ring to be visible is highly dependent on the pressure and vacuum history of the chamber. We will discuss how the chamber pressure influences the ice accumulation rate, how an anti-contamination device can help to reduce the rate, and how this ring forms. The last part of the research is based on simulations and a real data set collected on beamline 9.0.1 at the ALS in Berkeley. In X-ray diffraction microscopy, one of the major challenges when processing the data is to accurately determine the true center of the recorded data; that is, the zero spatial frequency position. Simulations of reconstructing shifted data show that if the center of a 2D diffraction pattern is shifted by more than 3 pixels from its true center, the positivity constraint to the phase, which otherwise might be applied to improve the convergence of the reconstruction algorithm, cannot be imposed. Moreover, the phase unwrapping problem may appear during the reconstruction. These issues undermine the quality of the reconstruction of 2D data. Furthermore, the individual shift in each 2D pattern will lead to errors when assembling a 3D diffraction data cube, making the 3D reconstruction very difficult. We developed a method which uses power spectra of the partial diffraction pattern to pre-align the data. A reconstruction without severe phase unwrapping can then be obtained from the pre-aligned data. Next, the precise zero spatial frequency position can be found by examining the linear ramp present in the reconstructed phase. This method was applied to a freeze-dried yeast data set to show that this approach is

  9. X-ray bursters and the X-ray sources of the galactic bulge

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.; Joss, P. C.

    1980-01-01

    Type 1 X-ray bursts, optical, infrared, and radio properties of the galactic bulge sources, are discussed. It was proven that these burst sources are neutron stars in low mass, close binary stellar systems. Several burst sources are found in globular clusters with high central densities. Optical type 1 X-ray bursts were observed from three sources. Type 2 X-ray bursts, observed from the Rapid Burster, are due to an accretion instability which converts gravitational potential energy into heat and radiation, which makes them of a fundamentally different nature from Type 1 bursts.

  10. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    NASA Astrophysics Data System (ADS)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  11. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage.

    PubMed

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. X-ray absorption fine structure and x-ray diffraction studies of crystallographic grains in nanocrystalline FePd:Cu thin films

    NASA Astrophysics Data System (ADS)

    Krupinski, M.; Perzanowski, M.; Polit, A.; Zabila, Y.; Zarzycki, A.; Dobrowolska, A.; Marszalek, M.

    2011-03-01

    FePd alloys have recently attracted considerable attention as candidates for ultrahigh density magnetic storage media. In this paper we investigate FePd thin alloy film with a copper admixture composed of nanometer-sized grains. [Fe(0.9 nm)/Pd(1.1 nm)/Cu(d nm)]×5 multilayers were prepared by thermal deposition at room temperature in UHV conditions on Si(100) substrates covered by 100 nm SiO2. The thickness of the copper layer has been changed from 0 to 0.4 nm. After deposition, the multilayers were rapidly annealed at 600 °C in a nitrogen atmosphere, which resulted in the creation of the FePd:Cu alloy. The structure of alloy films obtained this way was determined by x-ray diffraction (XRD), glancing angle x-ray diffraction, and x-ray absorption fine structure (EXAFS). The measurements clearly showed that the L10 FePd:Cu nanocrystalline phase has been formed during the annealing process for all investigated copper compositions. This paper concentrates on the crystallographic grain features of FePd:Cu alloys and illustrates that the EXAFS technique, supported by XRD measurements, can help to extend the information about grain size and grain shape of poorly crystallized materials. We show that, using an appropriate model of the FePd:Cu grains, the comparison of EXAFS and XRD results gives a reasonable agreement.

  13. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  14. Optics Requirements For The Generation-X X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; hide

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  15. Effect of X-ray exposure on the pharmaceutical quality of drug tablets using X-ray inspection equipment.

    PubMed

    Uehara, Kazuaki; Tagami, Tatsuaki; Miyazaki, Itaru; Murata, Norikazu; Takahashi, Yoshifumi; Ohkubo, Hiroshi; Ozeki, Tetsuya

    2015-06-01

    X-ray inspection equipment is widely used to detect missing materials and defective goods in opaque containers. Its application has been expanded to the pharmaceutical industry to detect the presence of drug tablets in aluminum foil press-through packaging. However, the effect of X-rays on the pharmaceutical quality of drug tablets is not well known. In this study, the effect of X-rays on the pharmaceutical quality of drug tablets was investigated. Exposure of acetaminophen, loxoprofen and mefenamic acid tablets to X-ray doses of 0.34 mGy (thrice the dose by X-ray scanning) to 300 Gy (maximum dose from our X-ray equipment) was demonstrated, and the samples were evaluated by formulation tests. Exposure to X-rays did not affect the pharmaceutical quality of the drug content. The samples exposed to X-rays exhibited almost the same profile in formulation tests (dissolution test, disintegrating test and hardness test) as control samples (0 Gy). The combination of X-ray exposure with accelerated temperature and humidity tests (six months) also did not affect the pharmaceutical quality. The color change of light-sensitive drugs (nifedipine and furosemide tablets) after X-ray exposure was negligible (< 1.0). In contrast, tablet color was remarkably changed by light from a D65 lamp. The X-ray scanning and X-ray exposure under our experimental conditions did not affect the pharmaceutical quality of drug tablets.

  16. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  17. X-ray tube thermal management

    NASA Astrophysics Data System (ADS)

    Nadella, Naresh; Khounsary, Ali M.

    2015-09-01

    This paper presents a brief overview of the various stationary anode X-ray tube designs and the thermal management challenges of the anode target that limit the intensity of the generated X-ray beams. Several options to further increase X-ray beam intensity are discussed.

  18. Spin Filtering in Storage Rings

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. N.; Pavlov, F. F.

    The spin filtering in storage rings is based on a multiple passage of a stored beam through a polarized internal gas target. Apart from the polarization by the spin-dependent transmission, a unique geometrical feature of interaction with the target in such a filtering process, pointed out by H.O. Meyer,1 is a scattering of stored particles within the beam. A rotation of the spin in the scattering process affects the polarization buildup. We derive here a quantum-mechanical evolution equation for the spin-density matrix of a stored beam which incorporates the scattering within the beam. We show how the interplay of the transmission and scattering within the beam changes from polarized electrons to polarized protons in the atomic target. After discussions of the FILTEX results on the filtering of stored protons,2 we comment on the strategy of spin filtering of antiprotons for the PAX experiment at GSI FAIR.3.

  19. FPGA based charge acquisition algorithm for soft x-ray diagnostics system

    NASA Astrophysics Data System (ADS)

    Wojenski, A.; Kasprowicz, G.; Pozniak, K. T.; Zabolotny, W.; Byszuk, A.; Juszczyk, B.; Kolasinski, P.; Krawczyk, R. D.; Zienkiewicz, P.; Chernyshova, M.; Czarski, T.

    2015-09-01

    Soft X-ray (SXR) measurement systems working in tokamaks or with laser generated plasma can expect high photon fluxes. Therefore it is necessary to focus on data processing algorithms to have the best possible efficiency in term of processed photon events per second. This paper refers to recently designed algorithm and data-flow for implementation of charge data acquisition in FPGA. The algorithms are currently on implementation stage for the soft X-ray diagnostics system. In this paper despite of the charge processing algorithm is also described general firmware overview, data storage methods and other key components of the measurement system. The simulation section presents algorithm performance and expected maximum photon rate.

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-04-01

    This Chandra X-Ray Observatory (CXO) image is a spectrum of a black hole, which is similar to the colorful spectrum of sunlight produced by a prism. The x-rays of interest are shown here recorded in bright stripes that run rightward and leftward from the center of the image. These x-rays are sorted precisely according to their energy with the highest-energy x-rays near the center of the image and the lower-energy x-rays farther out. The spectrum was obtained by using the Low Energy Transmission Grating (LETG), which intercepts x-rays and changes their direction by the amounts that depend sensitively on the x-ray energy. The assembly holds 540 gold transmission gratings. When in place behind the mirrors, the gratings intercept the x-rays reflected from the telescope. The bright spot at the center is due to a fraction of the x-ray radiation that is not deflected by the LETG. The spokes that intersect the central spot and the faint diagonal rays that flank the spectrum itself are artifacts due to the structure that supports the LETG grating elements. (Photo credit: NASA Cfa/J. McClintock et al)

  1. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  2. Astrochemistry at the Cryogenic Storage Ring

    NASA Astrophysics Data System (ADS)

    Kreckel, Holger; Becker, Arno; Blaum, Klaus; Breitenfeldt, Christian; George, Sebastian; Göck, Jürgen; Grieser, Manfred; Grussie, Florian; Guerin, Elisabeth; Heber, Oded; Karthein, Jonas; Krantz, Claude; Meyer, Christian; Mishra, Preeti; Novotny, Oldrich; O'Connor, Aodh; Saurabh, Sunny; Schippers, Stefan; Spruck, Kaija; Kumar, S. Sunil; Urbain, Xavier; Vogel, Stephen; von Hahn, Robert; Wilhelm, Patrick; Wolf, Andreas; Zajfman, Daniel

    2017-01-01

    Almost 200 different molecular species have been identified in space, and this number continues to grow steadily. This surprising molecular diversity bears witness to an active reaction network, in which molecular ions are the main drivers of chemistry in the gas phase. To study these reactions under controlled conditions in the laboratory is a major experimental challenge. The new Cryogenic Storage Ring (CSR) that has recently been commissioned at the Max Planck Institute for Nuclear Physics in Heidelberg will serve as an ideal testbed to study cold molecular ions in the gas phase. With residual gas densities of <140 cm-3 and temperatures below 10K, the CSR will allow for merged beams collision studies involving molecular ions, neutral atoms, free electrons and photons under true interstellar conditions.

  3. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  4. X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Risaliti, Guida

    2005-01-01

    XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already

  5. Upgrade of BPM Electronics for the SPring-8 Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Shigeki; Fujita, Takahiro; Shoji, Masazumi

    2006-11-20

    SPring-8, a 3rd generation synchrotron light source, has operated since 1997. Improvement of BPM performance is required as a part of upgrading activities of the storage ring as a light source. We have developed new electronics circuits for signal processing of the storage ring BPM, with target performance of sub-{mu}m range resolution with sufficiently fast measurement speed and good long-term stability. A set of the new circuits consists of multiplexers, an RF amplifier, a mixer, an IF amplifier, and a local oscillator for analog signal processing. The IF amplifier outputs are sampled with 16-bit 2-MSPS ADC on ADC boards andmore » the data are sent to a DSP board. The sampled data are processed and converted to position information in the DSP. A multiplexing method was employed to have a better stability of the performance by cancellation of variation common to each channel. Evaluation of the performance by using a prototype shows that position resolution well into the sub-{mu}m range has been achieved with a bandwidth of 1 kHz, and long-term stability of within 1 {mu}m has also been achieved.« less

  6. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  7. Polarized x-ray excitation for scatter reduction in x-ray fluorescence computed tomography.

    PubMed

    Vernekohl, Don; Tzoumas, Stratis; Zhao, Wei; Xing, Lei

    2018-05-25

    X-ray fluorescence computer tomography (XFCT) is a new molecular imaging modality which uses x-ray excitation to stimulate the emission of fluorescent photons in high atomic number contrast agents. Scatter contamination is one of the main challenges in XFCT imaging which limits the molecular sensitivity. When polarized x rays are used, it is possible to reduce the scatter contamination significantly by placing detectors perpendicular to the polarization direction. This study quantifies scatter contamination for polarized and unpolarized x-ray excitation and determines the advantages of scatter reduction. The amount of scatter in preclinical XFCT is quantified in Monte Carlo simulations. The fluorescent x rays are emitted isotropically, while scattered x rays propagate in polarization direction. The magnitude of scatter contamination is studied in XFCT simulations of a mouse phantom. In this study, the contrast agent gold is examined as an example, but a scatter reduction from polarized excitation is also expected for other elements. The scatter reduction capability is examined for different polarization intensities with a monoenergetic x-ray excitation energy of 82 keV. The study evaluates two different geometrical shapes of CZT detectors which are modeled with an energy resolution of 1 keV FWHM at an x-ray energy of 80 keV. Benefits of a detector placement perpendicular to the polarization direction are shown in iterative and analytic image reconstruction including scatter correction. The contrast to noise ratio (CNR) and the normalized mean square error (NMSE) are analyzed and compared for the reconstructed images. A substantial scatter reduction for common detector sizes was achieved for 100% and 80% linear polarization while lower polarization intensities provide a decreased scatter reduction. By placing the detector perpendicular to the polarization direction, a scatter reduction by factor up to 5.5 can be achieved for common detector sizes. The image

  8. X-ray absorption investigation of the electronic structure of the CuI@SWCNT nanocomposite

    NASA Astrophysics Data System (ADS)

    Generalov, A. V.; Brzhezinskaya, M. M.; Vinogradov, A. S.; Püttner, R.; Chernysheva, M. V.; Lukashin, A. V.; Eliseev, A. A.

    2011-03-01

    The Cu 2 p, I 3 d, and C 1 sX-ray absorption spectra of the CuI@SWCNT nanocomposite prepared by filling single-walled carbon nanotubes (SWCNTs) with the CuI melt by the capillary technique have been measured with a high-energy resolution using the equipment of the Russian-German beamline at the BESSY electron storage ring. In order to characterize the electronic structure of the nanocomposite and possible changes in the atomic and electronic structures of CuI and SWCNTs in the CuI@SWCNT nanocomposite, the spectra obtained have been analyzed in the framework of the quasi-molecular approach by comparing with the spectra of the pristine (CuI and SWCNT) and reference (CuO) systems. It has been revealed that the encapsulation of the CuI compound inside SWCNTs is accompanied by changes in the electronic structure of CuI and SWCNTs due to the chemical interaction between the filler and carbon nanotubes and the change in the atomic structure of CuI.

  9. Most powerful X-ray telescope marks third anniversary

    NASA Astrophysics Data System (ADS)

    2002-08-01

    include its discovery of an X-ray ring around the Crab Nebula , finding the most distant X-ray cluster of galaxies, capturing the deepest X-ray images ever recorded and discovering a new size of black hole. Because Earth's atmosphere blocks X-rays from reaching the surface, X-ray astronomy can only be performed from space. Launched in July 1999, the Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light-gathering sister, the Hubble Space Telescope. The Marshall Center manages the Chandra program, and TRW, Inc. of Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

  10. Handbook Of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  11. Digital optical correlator x-ray telescope alignment monitoring system

    NASA Astrophysics Data System (ADS)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  12. X-ray Spectromicroscopy Studies of Nanoparticles in the Environment

    NASA Astrophysics Data System (ADS)

    Sedlmair, J.; Gleber, S.-C.; Schirz, A.; Zanker, H.; Thieme, J.

    2009-04-01

    Motivation: In recent time, carbon nanotubes (CNTs) have drawn a lot of attention due to their unique properties and due to that possible application, for instance in pharmacology, material sciences or as semiconductors. CNTs are tubes with diameters in the nanometer scale, but with lengths up to several millimeters. Their walls consist of carbon atoms, each bound to three other carbon atoms (sp2-hybridization), which results in a hexagonal honeycomb-like structure. They can also be functionalized, e.g. with carboxyl- or hydroxyl groups. Although the production and modification of CNTs in sizable quantities have been improved continuously, the characterization of these nano-particles still needs to be advanced. Additionally, the ecological aspect comes into account. Since most of these new materials consist of particles too small to be biodegraded, it is important to analyze the impact of CNTs on the environment (and biomolecular matter in general). Here we present the result of a study of pristine and functionalized carbon nanotubes (CNTs) using the x-ray scanning transmission microscope (STXM) at the storage ring BESSY II in Berlin for a NEXAFS (near edge x-ray absorption spectroscopy) analysis with spatial resolution. Experiment and results: We characterized three types of multi-walled CNTs (3-15 walls, outer diameter of 13-16 nm and length distribution 1-10 nm) by x-ray spectromicroscopy. To be more specific, we have investigated different CNT-samples with energies around the C1s K-shell edge (~284 eV) dry and in aqueous environment at ambient conditions. Using the STXM, the spatial information from the x-ray image with a pixel size of 50 nm can be combined with NEXAFS-spectra[5] of each pixel of the image area. The differences between the species are observable both in the microscopic images and the spectral data. The evaluation[1][2] of the NEXAFS-spectra yields information about the chemical bindings in the sample. Discussion The difference between the

  13. High resolution X- and gamma-ray spectroscopy of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1983-01-01

    A high resolution X-ray spectrometer and large area phoswich detector were designed and co-aligned in a common elevation mounting in order to measure solar and cosmic X-ray and gamma ray emission in the 13 to 600 KeV energy range from a balloon. The instrument is described and results obtained for the Crab Nebula, the supernova remnant Cas A, and the Sun are discussed and analyzed.

  14. An X-ray halo around Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Stewart, G. C.; Fabian, A. C.; Seward, F. D.

    The large-scale X-ray emission of Cas A is characterized, and mechanisms are proposed to explain it. The Einstein HRI image of Murray et al. (1979) is binned into 16-arcsec pixels, a point-spread function based on the 2.04-keV monochromatic Zr source is applied, and the data are modeled as a series of circularly symmetric rings of emission. A significant excess extending to a radius of 6 arcmin (roughly the size of the optical H II region) is found to have a total 0.5-3-keV luminosity of about 5 x 10 to the 34th erg/s, or about 2 percent of the total luminosity of Cas A, which is assumed to lie at a distance of 3 kpc. Thermal bremsstrahlung, synchrotron radiation, and dust scattering of the main-shell emission are examined and found to be plausible emission mechanisms; further observations are required to identify the one active in Cas A.

  15. Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source.

    PubMed

    Du, Yingchao; Yan, Lixin; Hua, Jianfei; Du, Qiang; Zhang, Zhen; Li, Renkai; Qian, Houjun; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2013-05-01

    Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 × 10(6) per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

  16. Curcumin-β-cyclodextrin inclusion complex: stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application.

    PubMed

    Mangolim, Camila Sampaio; Moriwaki, Cristiane; Nogueira, Ana Claudia; Sato, Francielle; Baesso, Mauro Luciano; Neto, Antônio Medina; Matioli, Graciette

    2014-06-15

    Curcumin was complexed with β-CD using co-precipitation, freeze-drying and solvent evaporation methods. Co-precipitation enabled complex formation, as indicated by the FT-IR and FT-Raman techniques via the shifts in the peaks that were assigned to the aromatic rings of curcumin. In addition, photoacoustic spectroscopy and X-ray diffraction, with the disappearance of the band related to aromatic rings, by Gaussian fitting, and modifications in the spectral lines, respectively, also suggested complex formation. The possible complexation had an efficiency of 74% and increased the solubility of the pure colourant 31-fold. Curcumin-β-CD complex exhibited a sunlight stability 18% higher than the pure colourant. This material was stable to pH variations and storage at -15 and 4°C. With an isothermal heating at 100 and 150°C for 2h, the material exhibited a colour retention of approximately 99%. The application of curcumin-β-CD complex in vanilla ice creams intensified the colour of the products and produced a great sensorial acceptance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Curved Image-Plate Detector System for High-Resolution Synchrotron X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarin, P.; Haggerty, R; Yoon, W

    2009-01-01

    The developed curved image plate (CIP) is a one-dimensional detector which simultaneously records high-resolution X-ray diffraction (XRD) patterns over a 38.7 2{theta} range. In addition, an on-site reader enables rapid extraction, transfer and storage of X-ray intensity information in {le}30 s, and further qualifies this detector to study kinetic processes in materials science. The CIP detector can detect and store X-ray intensity information linearly proportional to the incident photon flux over a dynamical range of about five orders of magnitude. The linearity and uniformity of the CIP detector response is not compromised in the unsaturated regions of the image plate,more » regardless of saturation in another region. The speed of XRD data acquisition together with excellent resolution afforded by the CIP detector is unique and opens up wide possibilities in materials research accessible through X-ray diffraction. This article presents details of the basic features, operation and performance of the CIP detector along with some examples of applications, including high-temperature XRD.« less

  18. PAL-XFEL soft X-ray scientific instruments and X-ray optics: First commissioning results

    NASA Astrophysics Data System (ADS)

    Park, Sang Han; Kim, Minseok; Min, Changi-Ki; Eom, Intae; Nam, Inhyuk; Lee, Heung-Soo; Kang, Heung-Sik; Kim, Hyeong-Do; Jang, Ho Young; Kim, Seonghan; Hwang, Sun-min; Park, Gi-Soo; Park, Jaehun; Koo, Tae-Yeong; Kwon, Soonnam

    2018-05-01

    We report an overview of soft X-ray scientific instruments and X-ray optics at the free electron laser (FEL) of the Pohang Accelerator Laboratory, with selected first-commissioning results. The FEL exhibited a pulse energy of 200 μJ/pulse, a pulse width of <50 fs full width at half maximum, and an energy bandwidth of 0.44% at a photon energy of 850 eV. Monochromator resolving power of 10 500 was achieved. The estimated total time resolution between optical laser and X-ray pulses was <270 fs. A resonant inelastic X-ray scattering spectrometer was set up; its commissioning results are also reported.

  19. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    PubMed Central

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    As synchrotron light sources and optics deliver greater photon flux on samples, X-ray-induced photo-chemistry is increasingly encountered in X-ray absorption spectroscopy (XAS) experiments. The resulting problems are particularly pronounced for biological XAS experiments. This is because biological samples are very often quite dilute and therefore require signal averaging to achieve adequate signal-to-noise ratios, with correspondingly greater exposures to the X-ray beam. This paper reviews the origins of photo-reduction and photo-oxidation, the impact that they can have on active site structure, and the methods that can be used to provide relief from X-ray-induced photo-chemical artifacts. PMID:23093745

  20. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2004-08-23

    This spectacular Chandra X-Ray Observatory (CXO) image of the supernova remnant Cassiopeia A is the most detailed image ever made of the remains of an exploded star. The one-million-second image shows a bright outer ring (green) 10 light years in diameter that marks the location of a shock wave generated by the supernova explosion. In the upper left corner is a large jet-like structure that protrudes beyond the shock wave, and a counter-jet can be seen on the lower right. The x-ray spectra show that the jets are rich in silicon atoms, and relatively poor in iron atoms. This indicates that the jets formed soon after the initial explosion of the star, otherwise, the jets should have contained large quantities of iron from the star’s central regions. The bright blue areas are composed almost purely of iron gas, which was produced in the central, hottest regions of the star and somehow ejected in a direction almost perpendicular to the jets. The bright source at the center of the image is presumed to be a neutron star created during the supernova. Unlike most others, this neutron star is quiet, faint, and so far shows no evidence of pulsed radiation. A working hypothesis is that the explosion that created Cassiopeia A produced high speed jets similar to, but less energetic than, the hyper nova jets thought to produce gamma-ray bursts. During the explosion, the star may have developed an extremely strong magnetic filed that helped to accelerate the jets and later stifled any pulsar wind activity. CXO project management is the responsibility of NASA’s Marshall Space Flight Center in Huntsville, Alabama.

  1. SAVLOC, computer program for automatic control and analysis of X-ray fluorescence experiments

    NASA Technical Reports Server (NTRS)

    Leonard, R. F.

    1977-01-01

    A program for a PDP-15 computer is presented which provides for control and analysis of trace element determinations by using X-ray fluorescence. The program simultaneously handles data accumulation for one sample and analysis of data from previous samples. Data accumulation consists of sample changing, timing, and data storage. Analysis requires the locating of peaks in X-ray spectra, determination of intensities of peaks, identification of origins of peaks, and determination of a real density of the element responsible for each peak. The program may be run in either a manual (supervised) mode or an automatic (unsupervised) mode.

  2. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  3. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1997-04-15

    This photograph captures the installation of the Chandra X-Ray Observatory, formerly Advanced X-Ray Astrophysics Facility (AXAF), Advanced Charged-Coupled Device (CCD) Imaging Spectrometer (ACIS) into the Vacuum Chamber at the X-Ray Calibration Facility (XRCF) at Marshall Space Flight Center (MSFC). The AXAF was renamed Chandra X-Ray Observatory (CXO) in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The ACIS is one of two focal plane instruments. As the name suggests, this instrument is an array of CCDs similar to those used in a camcorder. This instrument will be especially useful because it can make x-ray images and measure the energies of incoming x-rays. It is the instrument of choice for studying the temperature variation across x-ray sources, such as vast clouds of hot-gas intergalactic space. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).

  4. X-ray angiography systems.

    PubMed

    1993-11-01

    Despite the emergence of several alternative angiographic imaging techniques (i.e., magnetic resonance imaging, computed tomography, and ultrasound angiography), x-ray angiography remains the predominant vascular imaging modality, generating over $4 billion in revenue a year in U.S. hospitals. In this issue, we provide a brief overview of the various angiographic imaging techniques, comparing them with x-ray angiography, and discuss the clinical aspects of x-ray vascular imaging, including catheterization and clinical applications. Clinical, cost, usage, and legal issues related to contrast media are discussed in "Contrast Media: Ionic versus Nonionic and Low-osmolality Agents." We also provide a technical overview and selection guidance for a basic x-ray angiography imaging system, including the gantry and table system, x-ray generator, x-ray tube, image intensifier, video camera and display monitors, image-recording devices, and digital acquisition and processing systems. This issue also contains our Evaluation of the GE Advantx L/C cardiac angiography system and the GE Advantx AFM general-purpose angiography system; the AFM can be used for peripheral, pulmonary, and cerebral vascular studied, among others, and can also be configured for cardiac angiography. Many features of the Advantx L/C system, including generator characteristics and ease of use, also apply to the Advantx AFM as configured for cardiac angiography. Our ratings are based on the systems' ability to provide the best possible image quality for diagnosis and therapy while minimizing patient and personnel exposure to radiation, as well as its ability to minimize operator effort and inconvenience. Both units are rated Acceptable. In the Guidance Section, "Radiation Safety and Protection," we discuss the importance of keeping patient and personnel exposures to radiation as low as reasonably possible, especially in procedures such as cardiac catheterization, angiographic imaging for special procedures

  5. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2 - x LiF (0 ≤ x ≤ 2) binary system

    NASA Astrophysics Data System (ADS)

    Takeda, Nanami; Hoshino, Satoshi; Xie, Lixin; Chen, Shuo; Ikeuchi, Issei; Natsui, Ryuichi; Nakura, Kensuke; Yabuuchi, Naoaki

    2017-11-01

    A binary system of LiMoO2 - x LiF (0 ≤ x ≤ 2), Li1+xMoO2Fx, is systematically studied as potential positive electrode materials for rechargeable Li batteries. Single phase and nanosized samples on this binary system are successfully prepared by using a mechanical milling route. Crystal structures and Li storage properties on the binary system are also examined. Li2MoO2F (x = 1), which is classified as a cation-/anion-disordered rocksalt-type structure and is a thermodynamically metastable phase, delivers a large reversible capacity of over 300 mAh g-1 in Li cells with good reversibility. Highly reversible Li storage is realized for Li2MoO2F consisting of nanosized particles based on Mo3+/Mo5+ two-electron redox as evidenced by ex-situ X-ray absorption spectroscopy coupled with ex-situ X-ray diffractometry. Moreover, the presence of the most electronegative element in the framework structure effectively increases the electrode potential of Mo redox through an inductive effect. From these results, potential of nanosized lithium molybdenum oxyfluorides for high-capacity positive electrode materials of rechargeable Li batteries are discussed.

  6. Apollo 15 X-ray fluorescence experiment

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.

    1971-01-01

    The X-ray fluorescence spectrometer, carried in the SIM bay of the command service module was employed principally for compositional mapping of the lunar surface while in lunar orbit, and secondarily, for X-ray astronomical observations during the trans-earth coast. The lunar surface measurements involved observations of the intensity and characteristics energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The astronomical observations consisted of relatively long periods of measurements of X-rays from pre-selected galactic sources such as Cyg-X-1 and Sco X-1 as well as from the galactic poles.

  7. X-ray Binaries and the Galaxy Structure in Hard X-rays

    NASA Astrophysics Data System (ADS)

    Lutovinov, Alexander

    The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.

  8. Globular cluster x-ray sources

    PubMed Central

    Pooley, David

    2010-01-01

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204

  9. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  10. X-rays from the Solar System

    NASA Astrophysics Data System (ADS)

    Dennerl, K.

    2017-10-01

    While the beginning of X-ray astronomy was motivated by solar system studies (Sun and Moon), the main research interest soon shifted outwards to much more distant and exotic objects. However, the ROSAT discovery of X-rays from comets in 1996 and the insight that this `new' kind of X-ray emission, charge exchange, was underestimated for a long time, has demonstrated that solar system studies are still important for X-ray astrophysics in general. While comets provide the best case for studying the physics of charge exchange, the X-ray signatures of this process have now also been detected at Venus, Mars, and Jupiter, thanks to Chandra and XMM-Newton. An analysis of the X-ray data of solar system objects, however, is challenging in many respects. This is particularly true for comets, which appear as moving, extended X-ray sources, emitting a line-rich spectrum at low energies. Especially for XMM-Newton, which has the unparalleled capability to observe with five highly sensitive X-ray instruments plus an optical monitor simultaneously, it is a long way towards photometrically and spectroscopically calibrated results, which are consistent between all its instruments. I will show this in my talk, where I will also summarize the current state of solar system X-ray research.

  11. Chandra Observations of SN 1987A: The Soft X-Ray Light Curve Revisited

    NASA Technical Reports Server (NTRS)

    Helder, E. A.; Broos, P. S.; Dewey, D.; Dwek, E.; McCray, R.; Park, S.; Racusin, J. L.; Zhekov, S. A.; Burrows, D. N.

    2013-01-01

    We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by approximately 6 x 10(exp-13) erg s(exp-1)cm(exp-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.

  12. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  13. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  14. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1995-01-14

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  15. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  16. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    NASA Technical Reports Server (NTRS)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  17. Development of Compton X-ray spectrometer for high energy resolution single-shot high-flux hard X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp, E-mail: sfujioka@ile.osaka-u.ac.jp; Ikenouchi, Takahito; Arikawa, Yasunobu

    Hard X-ray spectroscopy is an essential diagnostics used to understand physical processes that take place in high energy density plasmas produced by intense laser-plasma interactions. A bundle of hard X-ray detectors, of which the responses have different energy thresholds, is used as a conventional single-shot spectrometer for high-flux (>10{sup 13} photons/shot) hard X-rays. However, high energy resolution (Δhv/hv < 0.1) is not achievable with a differential energy threshold (DET) X-ray spectrometer because its energy resolution is limited by energy differences between the response thresholds. Experimental demonstration of a Compton X-ray spectrometer has already been performed for obtaining higher energy resolutionmore » than that of DET spectrometers. In this paper, we describe design details of the Compton X-ray spectrometer, especially dependence of energy resolution and absolute response on photon-electron converter design and its background reduction scheme, and also its application to the laser-plasma interaction experiment. The developed spectrometer was used for spectroscopy of bremsstrahlung X-rays generated by intense laser-plasma interactions using a 200 μm thickness SiO{sub 2} converter. The X-ray spectrum obtained with the Compton X-ray spectrometer is consistent with that obtained with a DET X-ray spectrometer, furthermore higher certainly of a spectral intensity is obtained with the Compton X-ray spectrometer than that with the DET X-ray spectrometer in the photon energy range above 5 MeV.« less

  18. Fabrication of absorption gratings with X-ray lithography for X-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Yu-Ting; Yi, Fu-Ting; Zhang, Tian-Chong; Liu, Jing; Zhou, Yue

    2018-05-01

    Grating-based X-ray phase contrast imaging is promising especially in the medical area. Two or three gratings are involved in grating-based X-ray phase contrast imaging in which the absorption grating of high-aspect-ratio is the most important device and the fabrication process is a great challenge. The material with large atomic number Z is used to fabricate the absorption grating for excellent absorption of X-ray, and Au is usually used. The fabrication process, which involves X-ray lithography, development and gold electroplating, is described in this paper. The absorption gratings with 4 μm period and about 100 μm height are fabricated and the high-aspect-ratio is 50.

  19. X-ray Timing Measurements

    NASA Technical Reports Server (NTRS)

    Strohmayer, T.

    2008-01-01

    We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\

  20. Handbook of X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Arnaud, Keith A. (Editor); Smith, Randall K.; Siemiginowska, Aneta

    2011-01-01

    X-ray astronomy was born in the aftermath of World War II as military rockets were repurposed to lift radiation detectors above the atmosphere for a few minutes at a time. These early flights detected and studied X-ray emission from the Solar corona. The first sources beyond the Solar System were detected during a rocket flight in 1962 by a team headed by Riccardo Giaccom at American Science and Engineering, a company founded by physicists from MIT. The rocket used Geiger counters with a system designed to reduce non-X-ray backgrounds and collimators limiting the region of sky seen by the counters. As the rocket spun, the field of view (FOV) happened to pass over what was later found to be the brightest non-Solar X-ray source; later designated See X-1. It also detected a uniform background glow which could not be resolved into individual sources. A follow-up campaign using X-ray detectors with better spatial resolution and optical telescopes identified See X-1 as an interacting binary with a compact (neutron star) primary. This success led to further suborbital rocket flights by a number of groups. More X-ray binaries were discovered, as well as X-ray emission from supernova remnants, the radio galaxies M87 and Cygnus-A, and the Coma cluster. Detectors were improved and Geiger counters were replaced by proportional counters, which provided information about energy spectra of the sources. A constant challenge was determining precise positions of sources as only collimators were available.

  1. Adjustable Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  2. Spectral and temporal properties of the X-ray pulsar SMC X-1 at hard X-rays

    NASA Technical Reports Server (NTRS)

    Kunz, M.; Gruber, D. E.; Kendziorra, E .; Kretschmar, P.; Maisack, M.; Mony, B.; Staubert, R.; Doebereiner, S.; Englhauser, J.; Pietsch, W.

    1993-01-01

    The binary X-ray pulsar SMC X- 1 has been observed at hard X-rays with the High Energy X-Ray Experiment (HEXE) on nine occasions between Nov. 1987 and March 1989. A thin thermal bremsstrahlung fit to the phase averaged spectrum yields a plasma temperature (14.4 +/- 1.3) keV and a luminosity above (1.1 +/- 0.1) x 10 exp 38 erg/s in the 20-80 keV band. Pulse period values have been established for three observations, confirming the remarkably stable spin-up trend of SMC X-1. In one of the three observations the pulse profile was seen to deviate from a dominant double pulsation, while at the same time the pulsed fraction was unusually large. For one observation we determined for the first time the pulsed fraction in narrow energy bands. It increases with photon energy from about 20 percent up to over 60 percent in the energy range from 20 to 80 keV.

  3. Toward Active X-ray Telescopes II

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Aldroft, Thomas L.; Atkins, Carolyn; Button, Timothy W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peter; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; hide

    2012-01-01

    In the half century since the initial discovery of an astronomical (non-solar) x-ray source, the sensitivity for detection of cosmic x-ray sources has improved by ten orders of magnitude. Largely responsible for this dramatic progress has been the refinement of the (grazing-incidence) focusing x-ray telescope. The future of x-ray astronomy relies upon the development of x-ray telescopes with larger aperture areas (greater than 1 m2) and finer angular resolution (less than 1.). Combined with the special requirements of grazing-incidence optics, the mass and envelope constraints of space-borne telescopes render such advances technologically challenging.requiring precision fabrication, alignment, and assembly of large areas (greater than 100 m2) of lightweight (approximately 1 kg m2 areal density) mirrors. Achieving precise and stable alignment and figure control may entail active (in-space adjustable) x-ray optics. This paper discusses relevant programmatic and technological issues and summarizes progress toward active x-ray telescopes.

  4. [Quality assurance from the viewpoint of the x-ray film industry].

    PubMed

    von Volkmann, T

    1992-08-01

    The parameters of a film-screen-combination are listed in the directive to section 16 of the german X-ray Regulation. These parameters are determined by methods described in DIN standards and published by the manufacturer. Comparable but less precise parameters are determined in the Acceptance Test. For physical reasons it is not possible to determine the speed of an X-ray film or the intensification factor of a screen separately. The films, screens and processing chemicals delivered by the members of the manufacturer association ZVEI are kept below a deviation (expressed as relative contribution to the system speed S) of +/- 10% for the majority of products, the upper limit is +/- 15%. Poor storage and transport conditions may adversely affect the quality of X-ray films. A special labeling of the film box shall serve to guarantee safe distribution channels. The processing conditions are adjusted at the Acceptance Test according to the manufacturers recommendations. The Constancy Test of film processing serves to maintain these correct conditions. Methods deviating from the DIN-method are of limited (Bayerische method) or no value (Stuttgart method).

  5. X-ray scattering study

    NASA Technical Reports Server (NTRS)

    Wriston, R. S.; Froechtenigt, J. F.

    1972-01-01

    A soft X-ray glancing incidence telescope mirror and a group of twelve optical flat samples were used to study the scattering of X-rays. The mirror was made of Kanigen coated beryllium and the images produced were severely limited by scattering of X-rays. The best resolution attained was about fifteen arc seconds. The telescope efficiency was found to be 0.0006. The X-ray beam reflected from the twelve optical flat samples was analyzed by means of a long vacuum system of special design for these tests. The scattering then decreased with increasing angle of incidence until a critical angle was passed. At larger angles the scattering increased again. The samples all scattered more at 44 A than at 8 A. Metal samples were found to have about the same scattering at 44 A but greater scattering at 8 A than glass samples.

  6. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  7. The STAR-X X-Ray Telescope Assembly (XTA)

    NASA Astrophysics Data System (ADS)

    McClelland, Ryan S.

    2017-08-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCDs capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called metashells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  8. VETA-1 x ray detection system

    NASA Technical Reports Server (NTRS)

    Podgorski, W. A.; Flanagan, Kathy A.; Freeman, Mark D.; Goddard, R. G.; Kellogg, Edwin M.; Norton, T. J.; Ouellette, J. P.; Roy, A. G.; Schwartz, Daniel A.

    1992-01-01

    The alignment and X-ray imaging performance of the Advanced X-ray Astrophysics Facility (AXAF) Verification Engineering Test Article-I (VETA-I) was measured by the VETA-I X-Ray Detection System (VXDS). The VXDS was based on the X-ray detection system utilized in the AXAF Technology Mirror Assembly (TMA) program, upgraded to meet the more stringent requirements of the VETA-I test program. The VXDS includes two types of X-ray detectors: (1) a High Resolution Imager (HRI) which provides X-ray imaging capabilities, and (2) sealed and flow proportional counters which, in conjunction with apertures of various types and precision translation stages, provide the most accurate measurement of VETA-I performance. Herein we give an overview of the VXDS hardware including X-ray detectors, translation stages, apertures, proportional counters and flow counter gas supply system and associated electronics. We also describe the installation of the VXDS into the Marshall Space Flight Center (MSFC) X-Ray Calibration Facility (XRCF). We discuss in detail the design and performance of those elements of the VXDS which have not been discussed elsewhere; translation systems, flow counter gas supply system, apertures and thermal monitoring system.

  9. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    1999-10-13

    Chandra X-Ray Observatory took this first x-ray picture of the Andromeda Galaxy (M31) on October 13, 1999. The blue dot in the center of the image is a "cool" million-degree x-ray source where a supermassive black hole with the mass of 30-million suns is located. The x-rays are produced by matter furneling toward the black hole. Numerous other hotter x-ray sources are also apparent. Most of these are probably due to x-ray binary systems, in which a neutron star or black hole is in close orbit around a normal star. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other x-ray sources in the Andromeda Galaxy. To be detected by an x-ray telescope, the gas must have a temperature of more than a million degrees. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. (Photo Credit: NASA/CXC/SAO/S. Murray, M. Garcia)

  10. History of Chandra X-Ray Observatory

    NASA Image and Video Library

    2000-10-01

    This most distant x-ray cluster of galaxies yet has been found by astronomers using Chandra X-ray Observatory (CXO). Approximately 10 billion light-years from Earth, the cluster 3C294 is 40 percent farther than the next most distant x-ray galaxy cluster. The existence of such a faraway cluster is important for understanding how the universe evolved. CXO's image reveals an hourglass-shaped region of x-ray emissions centered on the previously known central radio source (seen in this image as the blue central object) that extends outward for 60,000 light- years. The vast clouds of hot gas that surround such galaxies in clusters are thought to be heated by collapse toward the center of the cluster. Until CXO, x-ray telescopes have not had the needed sensitivity to identify such distant clusters of galaxies. Galaxy clusters are the largest gravitationally bound structures in the universe. The intensity of the x-rays in this CXO image of 3C294 is shown as red for low energy x-rays, green for intermediate, and blue for the most energetic x-rays. (Photo credit: NASA/loA/A. Fabian et al)

  11. Low emittance lattice for the storage ring of the Turkish Light Source Facility TURKAY

    NASA Astrophysics Data System (ADS)

    Nergiz, Z.; Aksoy, A.

    2015-06-01

    The TAC (Turkish Accelerator Center) project aims to build an accelerator center in Turkey. The first stage of the project is to construct an Infra-Red Free Electron Laser (IR-FEL) facility. The second stage is to build a synchrotron radiation facility named TURKAY, which is a third generation synchrotron radiation light source that aims to achieve a high brilliance photon beam from a low emittance electron beam at 3 GeV. The electron beam parameters are highly dependent on the magnetic lattice of the storage ring. In this paper a low emittance storage ring for TURKAY is proposed and the beam dynamic properties of the magnetic lattice are investigated. Supported by Turkish Republic Ministry of Development (DPT2006K120470)

  12. Search for the 1P 1 charmonium state in overlinepp annihilations at the CERN intersecting storage rings

    NASA Astrophysics Data System (ADS)

    Baglin, C.; Baird, S.; Bassompierre, G.; Borreani, G.; Brient, J.-C.; Broll, C.; Brom, J.-M.; Bugge, L.; Buran, T.; Burq, J.-P.; Bussière, A.; Buzzo, A.; Cester, R.; Chemarin, M.; Chevallier, M.; Escoubes, B.; Fay, J.; Ferroni, S.; Gracco, V.; Guillaud, J.-P.; Khan-Aronsen, E.; Kirsebom, K.; Kylling, A.; Ille, B.; Lambert, M.; Leistam, L.; Lundby, A.; Macri, M.; Marchetto, F.; Menichetti, E.; Mörch, Ch.; Mouellic, B.; Olsen, D.; Pastrone, N.; Petrillo, L.; Pia, M. G.; Poole, J.; Poulet, M.; Rinaudo, G.; Santroni, A.; Severi, M.; Skjevling, G.; Stapnes, S.; Stugu, B.; R704 Collaboration

    1986-04-01

    This experiment has been performed at the CERN Intersecting Storage Rings to study the direct formation of charmonium states in antiproton-proton annihilations. The experimental program has partly been devoted to an inclusive scan for overlinepp → J/ψ + X in the range 3520-3530 MeV/ c2. A cluster of five events has been observed in a narrow energy band, centred on the centre of gravity of the 3P J states where the 1P 1 is expected to be. When interpreted as a new resonace, these data yield a mass m = 3525.4±0.8 MeV/ c2.

  13. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  14. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    NASA Astrophysics Data System (ADS)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  15. The 1979 X-ray outburst of Centaurus X-4

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Swank, J. H.

    1980-01-01

    X-ray observations of the first major outburst of the classical transient X-ray source Centaurus X-4 since its discovery in 1969 are presented. The observations were obtained in May, 1979, with the all-sky monitor on board Ariel 5. The flare light curve is shown to exhibit many of the characteristics of other transients, including a double-peaked maximum, as well as significant, apparently random, variations and a lower peak flux and shorter duration than the 1969 event. Application of a standard epoch-folding technique to data corrected for linear decay trends indicates a possible source modulation at 0.3415 days (8.2 hours). Comparison of the results with previous other data on Cen X-4 and the characteristics of the soft X-ray transients allows a total X-ray output of approximately 3 x 10 to the 43rd ergs to be estimated, and reveals the duration and decay time of the 1979 Cen X-4 outburst to be the shortest yet observed from soft X-ray transients. The observations are explained in terms of episodic mass exchange from a late-type dwarf onto a neutron star companion in a relatively close binary system.

  16. The very soft X-ray emission of X-ray-faint early-type galaxies

    NASA Technical Reports Server (NTRS)

    Pellegrini, S.; Fabbiano, G.

    1994-01-01

    A recent reanaylsis of Einstein data, and new ROSAT observations, have revealed the presence of at least two components in the X-ray spectra of X-ray faint early-type galaxies: a relatively hard component (kT greater than 1.5 keV), and a very soft component (kT approximately 0.2-0.3 keV). In this paper we address the problem of the nature of the very soft component and whether it can be due to a hot interstellar medium (ISM), or is most likely originated by the collective emission of very soft stellar sources. To this purpose, hydrodynamical evolutionary sequences for the secular behavior of gas flows in ellipticals have been performed, varying the Type Ia supernovae rate of explosion, and the dark matter amount and distribution. The results are compared with the observational X-ray data: the average Einstein spectrum for six X-ray faint early-type galaxies (among which are NGC 4365 and NGC 4697), and the spectrum obtained by the ROSAT pointed observation of NGC 4365. The very soft component could be entirely explained with a hot ISM only in galaxies such as NGC 4697, i.e., when the depth of the potential well-on which the average ISM temperature strongly depends-is quite shallow; in NGC 4365 a diffuse hot ISM would have a temperature larger than that of the very soft component, because of the deeper potential well. So, in NGC 4365 the softest contribution to the X-ray emission comes certainly from stellar sources. As stellar soft X-ray emitters, we consider late-type stellar coronae, supersoft sources such as those discovered by ROSAT in the Magellanic Clouds and M31, and RS CVn systems. All these candidates can be substantial contributors to the very soft emission, though none of them, taken separately, plausibly accounts entirely for its properties. We finally present a model for the X-ray emission of NGC 4365, to reproduce in detail the results of the ROSAT pointed observation, including the Position Sensitive Proportional Counter (PSPC) spectrum and radial

  17. The surface of 1-euro coins studied by X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Gou, F.; Gleeson, M. A.; Villette, J.; Kleyn, S. E. F.; Kleyn, A. W.

    2004-03-01

    The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p 3/2 core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale.

  18. Bone age assessment by dual-energy X-ray absorptiometry in children: an alternative for X-ray?

    PubMed

    Heppe, D H M; Taal, H R; Ernst, G D S; Van Den Akker, E L T; Lequin, M M H; Hokken-Koelega, A C S; Geelhoed, J J M; Jaddoe, V W V

    2012-02-01

    The aim of the study was to validate dual-energy X-ray absorptiometry (DXA) as a method to assess bone age in children. Paired dual-energy X-ray absorptiometry (DXA) scans and X-rays of the left hand were performed in 95 children who attended the paediatric endocrinology outpatient clinic of University Hospital Rotterdam, the Netherlands. We compared bone age assessments by DXA scan with those performed by X-ray. Bone age assessment was performed by two blinded observers according to the reference method of Greulich and Pyle. Intra-observer and interobserver reproducibility were investigated using the intraclass correlation coefficient (ICC), and agreement was tested using Bland and Altman plots. The intra-observer ICCs for both observers were 0.997 and 0.991 for X-ray and 0.993 and 0.987 for DXA assessments. The interobserver ICC was 0.993 and 0.991 for X-ray and DXA assessments, respectively. The mean difference between bone age assessed by X-ray and DXA was 0.11 years. The limits of agreement ranged from -0.82 to 1.05 years, which means that 95% of all differences between the methods were covered by this range. Results of bone age assessment by DXA scan are similar to those obtained by X-ray. The DXA method seems to be an alternative for assessing bone age in a paediatric hospital-based population.

  19. X-ray modeling for SMILE

    NASA Astrophysics Data System (ADS)

    Sun, T.; Wang, C.; Wei, F.; Liu, Z. Q.; Zheng, J.; Yu, X. Z.; Sembay, S.; Branduardi-Raymont, G.

    2016-12-01

    SMILE (Solar wind Magnetosphere Ionosphere Link Explorer) is a novel mission to explore the coupling of the solar wind-magnetosphere-ionosphere system via providing global images of the magnetosphere and aurora. As the X-ray imaging is a brand new technique applied to study the large scale magnetopause, modeling of the solar wind charge exchange (SWCX) X-ray emissions in the magnetosheath and cusps is vital in various aspects: it helps the design of the Soft X-ray Imager (SXI) on SMILE, selection of satellite orbits, as well as the analysis of expected scientific outcomes. Based on the PPMLR-MHD code, we present the simulation results of the X-ray emissions in geospace during storm time. Both the polar orbit and the Molniya orbit are used. From the X-ray images of the magnetosheath and cusps, the magnetospheric responses to an interplanetary shock and IMF southward turning are analyzed.

  20. X-ray grid-detector apparatus

    DOEpatents

    Boone, John M.; Lane, Stephen M.

    1998-01-27

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.